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Chapter 1

Introduction

The Cosmic Microwave Background (CMB), discovered in 1965, is arguably the
strongest evidence in favour of the Big Bang theory. It consists of photons that
have travelled freely through space since the era of recombination, and so contains
information about the conditions of the early stages of the universe.

The Wilkinson Microwave Anisotropy Probe (WMAP) was launched in 2001 to
provide measurements of the CMB. However, these measurements are impaired
by several factors, especially the presence of the Milky Way galaxy which ob-
scures our view of the intergalactic space. This sort of contamination is, along
with all other non-CMB sources that emit microwave radiation, collectively re-
ferred to as foregrounds. As the study and measurement of the CMB becomes
ever more precise, a more thorough understanding of the nature of these fore-
ground sources becomes vital.
In the study of data from WMAP, some surprising discoveries were made, es-
pecially when looking at large-scale structures. In this thesis, we focus on the
apparant alignment between two of the largest scales, the quadrupole and the
octopole. These two appear to be orientated along a common axis, in violation
of the assumed isotropic nature of the CMB ([27]). In this thesis, 3 different
methods of foreground removal are examined and compared in order to check if
foreground residuals may be responsible for the alignment—. External Template
Fitting (ETF), Internal Linear Combination (ILC) and Wavelet-based hIgh reso-
lution Fitting of Internal Templates (WI-FIT) will be tested in order to determine
their effectiveness, and the validity of the properties of the resultant CMB-maps.
Chapter 2 begins with an overview of current theories on the origin of the uni-
verse, and a brief introduction to the CMB.
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4 CHAPTER 1. INTRODUCTION

A vital tool in CMB-analysis, the Fourier-transform is discussed in section 2.2,
before we discuss Gaussian statistics. Wavelet-transforms and Lagrange multipli-
ers are both used in the algorithm section, these mathematical tools are discussed
in sections 2.5 and 2.4.
Then we move on to analyzing the CMB, first introducing some notation and
terminology, before giving a short review/preview of past, present and future ex-
periments and results.
The galactic foreground emissions, and the physical processes that drive them is
considered next, before the chapter closes with a look at the underlying philoso-
phy behind the three cleaning methods applied in this thesis.

We have used Monte Carlo simulations to implement and test these methods. The
details are given in chapter 3.
We have applied the algorithms to both our simulations and the data from WMAP,
and the results are presented in chapter 4.
In closing, chapter 5 presents a discussion and comparison of the results achieved
by the different methods.

We have found the ILC-method produces the best results, but caution is required.
We have worked only with full skymaps, applying ILC and WI-FIT to smaller
partitions of the sky can be expected to dramatically improve results.
Regardless, our results seems to imply the alignment between the two multipoles
are not foreground-related.



Chapter 2

Background

In this chapter, we lay down the basis for the analysis to come. What is the CMB,
and why is it of interest to us? What were the conditions in the early universe like,
and what is it’s connection to the CMB we observe today?
After trying to answer these questions, we move on to Fourier theory and the
related topic of wavelet transforms. Also covered is Lagrangian multipliers and
some Gaussian statistics. These are all mathematical tools vital to the algorithms
we will be implementing.
Once we have those covered, we can begin with our CMB-analysis. We look
at some important terminology, and some of the satellites that have been used,
or will be used to observe the CMB, before we close the chapter with a look at
foregrounds and ways of removing them from our CMB-maps.

2.1 Cosmology

The information in this chapter is mostly taken from [4], [6] and [16]. The field
of astrophysics that deals with the origin and evolution of the Universe as a whole
is known as cosmology. It covers topics such as the size, shape and age of the
Universe. In order to understand the cosmos today, and predict what it will be like
in the future, we need to understand its past. In this thesis, we focus on the Cosmic
Microwave Background, leftover radiation from the primordial fireball that filled
all space shortly after the event known as the Big Bang. We begin with a look at
how the universe is expanding, before moving on to the Big Bang. Then follows
an introduction to the CMB.

5



6 CHAPTER 2. BACKGROUND

2.1.1 The Expanding Universe
Two of the most basic questions in cosmology are how big is the universe, and has
it always been this size? At the time of Isaac Newton, the universe was imagined
to be infinite and static. In such a model, the universe is infinitely old, will exist
forever and is filled with an infinite amount of stars. However, this model raised
a dilemma: Why is the night sky dark? If there are an endless amount of stars
and the universe in infinitely old, there should be a star along every line of sight.
This is known as Olbers paradox, named after the astronomer who first noticed
the problem.
When Einstein formulated his theory of relativity, he found that it did not de-
scribe a static universe, but rather one that is expanding. Though Einstein did not
trust his own conclusions on this matter initially, the discoveries of Edwin Hub-
ble confirmed that the universe was indeed growing in size. Vesto Slipher had
earlier discovered that the majority of galaxies were moving away from us, by
noting that their spectral lines were shifted towards the red end of the spectrum,
a phenomenon known as redshift [34]. By studying the spectra of distant galax-
ies, Hubble found there was simple linear relationship between the distance from
Earth and the recessional velocity, the speed with which the galaxy is moving
away from us.
This relationship is known as Hubble’s law,

v = H0d (2.1)

where v is the velocity, d is the distance and H0 is known as Hubble’s constant.
The 0-subscript indicates present time. The redshift z of a given object is found
through the relation

z =
λ− λ0

λ0

=
∆λ

λ0

(2.2)

λ is the wavelength found in the spectrum being analyzed, λ0 is the ordinary,
unshifted wavelength that line would be found at in a stationary object.
The true value of Hubble’s constant is still a hot topic in cosmology. It expresses
the rate at which the Universe is expanding, and can be used to calculate the
age of the Universe. Analysis of the WMAP-data has given a current value of
H0 = 70.1± 1.3 km/s/Mpc [18].
A way of quantifying the distance between us and other galaxies is through the
scale factor. It is typically identified by a lower-case a, and is the ratio between the
current size of the universe to the size at some point in the past. It is defined to be
equal to one at present time, and hence it must have been smaller than one at any
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time in the past assuming an continuously expanding Universe. Understanding
how a changes with time is critical to understanding the history and evolution of
the universe up until today. It is currently believed that a ∝ t

2
3 , t being time [6],

under the assumption that the universe is flat and matter-dominated.
The scale factor is linked to the Hubble constant through the Hubble rate,

Ht =
da/dt

a
(2.3)

The Hubble constant is then the Hubble rate today(t = 0).
The photons that comprise the CMB will have experienced stretching as they
travel through the cosmos due to the expansion of space. The temperature of
the photon that comprise the CMB today is roughly 2.75 Kelvin. Since the energy
of a photon is inversely proportional to its wavelength, the wavelength at some
time in the past would have been smaller by a factor of 1/a. This leads to the
temperature function

T (t) =
T0

a(t)
(2.4)

where T is the temperature of the CMB [6].

2.1.2 The Big Bang
The motion of the galaxies as they move along with the expansion of space is
known as the Hubble flow. It shows that the Universe has been expanding for
billions of years, which implies that the Universe must have been smaller and
denser in the past than what it is today. A logical consequence of this is if we look
far enough back through time, there must have been a time when the density was
infinitely high and concentrated in a very small space. The point in time when
the Universe begun expanding from this state is known as the Big Bang. Using
the Hubble constant, we can estimate the time t0 that has passed since this event
by calculating how long it would take for two galaxies, separated by d, to collide
while travelling at the relative velocity v

t0 =
d

v
(2.5)

Inserting Hubble’s law, v = H0d, we get

t0 =
1

H0

(2.6)
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With the value for H0 quoted above, this leads to a value for t0 of approximately
14 billion years. This is however only an estimate, as the above assumes the uni-
verse has been expanding at a constant rate, which is in all likelihood an incorrect
assumption.
With a finite age of the universe, Olber’s paradox is also resolved. Starlight from
stars that lie more than 14 billion light-years away have not reached us yet, they
are in effect invisible to us.

The Early Universe

Immediately after the Big Bang, the universe was extremely dense and hot. In
such an environment, atoms were unable to form due to the constant violent col-
lisions between particles. The study of the early universe is then intimately tied
to elementary particle physics. An important concept of this is the Heisenberg
uncertainty principle, which states that there is a mutual uncertainty between po-
sition and momentum. In other words, a higher accuracy in the measurement of a
particle’s position leads to a higher uncertainty in the measurements of the parti-
cle’s momentum. An analoguos principle states that the relationship between the
energy of a system and time is equally uncertain. Since energy is linked to mass
through the famous E = mc2, we can not be sure over a brief time interval how
much matter there is in a given location. During this brief time interval, matter
can then appear and disappear. The particles created come in pairs, of matter and
antimatter. They are identical in all aspects except for their electric charges having
opposing signs. These pairs of particles are known as virtual pairs, since they can
not be directly observed.
These particles usually annihilate themselves by colliding with each other, pro-
ducing radiation.

The creation of pairs of matter and anti-matter particles can become real how-
ever. Photons with a very high energy, can interact with each other, and the result
will be a pair of particle and antiparticle. With higher energy-photons comes the
production of more massive particles. As the universe expanded, it also cooled.
The photons lost energy, and the more massive particles could no longer be cre-
ated.
After about 1 second, the temperature was too low for any particles to be created,
however the annihilation process continued, decreasing the matter content and fill-
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ing space with radiation. As all we see in the universe today is made of matter,
there must have been a surplus of matter over antimatter in the early stages of the
universe.
The universe we observe today contains mostly hydrogen and helium. This fact,
together with the observed expansion of space is powerful and compelling evi-
dence in favour of the Big Bang theory. A third piece of convincing evidence is
the Cosmic Microwave Background(CMB).

2.1.3 CMB

Since the early universe was so hot, it must have been filled with high-energy pho-
tons. Given the high density, the mean free path of those photons will have been
so short as to ensure the cosmic radiation field would be kept at thermal equilib-
rium. Under such conditions, the radiation would have a blackbody spectrum.
This property means we can calculate the temperature of the radiation field at
some time in the past using Wien’s law

λmaxT = 0.29cmK (2.7)

where λmax is the peak wavelength and T is the temperature. This law states
that the wavelength is inversely proportional to the temperature. Using this, we
can state the temperature of the CMB radiation at some time Tt in the past as a
function of redshift

Tt = z ∗ 2.7K (2.8)

In the early, hot universe, elementary particles were unable to form atoms due to
the high-energy photons that filled space. Instead, the universe was filled with an
opaque soup of protons, electrons and photons. The highest temperature which
allows hydrogen-atoms to form is about 3000 K. Using Wien’s law, this means
the first atoms were formed about 270,000 years after the Big Bang, at a redshift
of z ≈ 1000. This time is called the era of recombination, referring to electrons
and protons combining to form atoms. Despite the name, these particles had never
before combined into atoms.
The hydrogen atom does not absorb low-energy photons, and these were there-
fore free to escape into space. The universe became transparent. These photons
have travelled freely through space since, and form what we call the Microwave
Background. These photons then form a snapshot of the universe as it was some
300,000 years after the Big Bang, what is known as the last scattering surface.
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The CMB is almost perfectly isotropic, it is the same in all directions. High-
precision measurements however, do detect slight disturbances around the aver-
age temperature of 2.7 K. These small deviations from the isotropy are called
anisotropies. The temperature-drop from 3000 K at the era of recombination to
today’s 2.7 K is caused by the expansion of space, which stretches the photons
causing them to lose energy.
The CMB perturbations were caused by the last scattering surface not being en-
tirely uniform. Why it was not uniform will be discussed in section 2.1.4.
Gravitational attraction led matter to be clumped in some places, while other areas
had correspondingly less matter. In the areas were there was an excess of matter,
the gravitational potential would be lower. This would cause the photon, as they
escaped the primordial soup to be stretched, or redshifted, as they escaped these
gravitational wells. Similarly, photons leaving areas that were less dense than the
average, would be blueshifted.
In addition to this, interaction with matter after the photons left the surface of last
scattering also affects their wavelength. As a photon approaches a concentration
of mass, it is blueshifted. Once past, it is redshifted. These two will cancel each
other out, unless the gravitational field undergoes some change during the transit.
The processes that produce new perturbations to the photons are known collec-
tively as the integrated Sachs-Wolfe effect. [6]
Figure 2.1 shows a map of the CMB perturbations around the mean 2.7 K, based
on data from the WMAP-satellite.

2.1.4 Inflation
The statistical properties found in the CMB raises a problem. Why is it the same
all over the sky? Given the finite age of the universe and the speed of light, we
have two constraints as to how far information can possibly have travelled. Yet
areas separated by even larger distances have almost exactly the same temperature
to an accuracy of 1 in 10,000. This is known as the horizon problem.
A suggested solution lies in the theory of Inflation. This proposes that in its very
early stages, the universe went through a short period of rapid expansion, called
the inflationary epoch. Thus, two points in the sky that was originally near each
other, were moved apart by enormous distances.
This not only answers the question of why the CMB is so uniform, but also why
it is not completely uniform. Heisenbergs uncertainty principle guarantees that
the early, pre-inflation universe can not have been perfectly smooth. There would
have been tiny, quantum fluctuations that, through the sudden onset of explosive
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Figure 2.1: Cosmic Microwave Background, from WMAP, cleaned with ILC-
algorithm

inflation, would have grown to the scales we observe in the CMB-fluctuations
today [9]. The processes that would drive inflation are not very well understood,
but there are several predictions made that can be tested by observing the CMB.
As already explained, the isotropy of the universe is one such prediction. The
universe should look the same in all directions.
Following on from this, inflation predicts the CMB fluctuations should follow a
Gaussian distribution 2.3, and that the CMB should show B-mode polarization.
Investigating whether this is acually the case is therefore of vital importance to
determining the accuracy of inflation-theory.

2.1.5 Foregrounds

Whilst the Milky Way provides a spectacular sight on clear nights, it is also one
of the greatest obstacles we face in the study of the cosmos. Observing any object
or phenomena usually requires a clear line of sight, and the CMB is no different.
The galaxy emits radiation in the same microwave frequency range as we find the
CMB, and thus obscures the background radiation. As changing our vantage point
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is not a viable option, overcoming this problem becomes vital in order to produce
results that yield credible information about our universe.
The galactic emission is mainly a product of three separate physical processes,

• Synchrotron radiation

• Thermal dust emission

• Free-Free emission

These will be covered in section 2.7.

Though the term foregrounds chiefly refers to galactic emission sources, it also
applies to anything that might obscure our view of the CMB, including extra-
galactic sources.
The correct treatment of foreground-signals is absolutely vital to accurate analysis
of the CMB and its properties.

2.2 Fourier-transforms

Analyzing CMB-maps can be a time-consuming and computationally demanding
excercise. It is therefore important to explore ways of reducing the workload, and
to find mathematical tools to lessen the demands on computer power. The Fourier
series and its extension, the Fourier transform do just that. First introduced by
Jean Baptiste Fourier, the underlying principle can easily be formulated: Any
periodic function can be described as a sum of sines and cosines, each multiplied
by different coefficients. The concept is illustrated in figure 2.2, splitting the
original, complex signal with no apparant periodicity into several smaller, periodic
sinusoids.
Using Euler’s formula,

eiθ = cos(θ) + i sin(θ) (2.9)

the series itself has the form

f(x) =
∞∑

n=−∞

cne
2πn
T
ix (2.10)
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Figure 2.2: Fourier-transforms

where f(x) is a periodic function with period T, and

cn =
1

T

∫ T/2

−T/2
f(x)e−

2πn
T
ixdt (2.11)

In order for a function to be expressed as a Fourier-series, it must satisfy the fol-
lowing conditions, [31]

• The function is periodic
• It it continuous and single-valued
• A finite number of extrema within one period
• The integral must converge

What then about functions that are not periodic, such as the CMB? This brings
us to the Fourier transform, which provides a representation of functions that have
no particular periodicity. The term transform refers to the original function being
transformed into a new representation that exists in the frequency domain, where
it is easier to manipulate the transformed function.
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The transform(in one dimension) is defined by

f̃(k) =

∫ ∞
−∞

f(x)e−i2πkxdx (2.12)

The reverse transform, from the frequency domain back to pixel-space is given by

f(x) =

∫ ∞
−∞

f̃(k)ei2πkxdk (2.13)

f(x) here represents the original function in discrete space, f̃(k) is the trans-
formed function in the frequency domain [19]. Both these operations(eqs. 2.12
and 2.13) share an important property, that a function can be recovered completely
after a transform via the inverse process. This means no information is lost as we
move back and forth between pixelspace and the frequency domain.

Extending the concept into two dimensions, the transform is now defined by

f̃(kx, ky) =

∫ ∞
−∞

f(x, y)e−i2π(kxx+kyy)dxdy (2.14)

and the reverse

f(x, y) =

∫ ∞
−∞

f̃(kx, ky)e
i2π(kxx+kyy)dkxdky (2.15)

where x and y as used in the context of this paper are spatial coordinates referring
to a specific pixel in a map. kx and ky defines the continuous frequency domain
as in the one-dimensional case.
However, the CMB-signal is not represented as a continuous function, but rather
as a set of discrete pixel-values. By substituting the discrete function fn for the
continuous f(x) in equations 2.12 and 2.13, an expression for the Discrete Fourier
Transform (DFT) can be found,

f̃(k) =
M−1∑
n=0

f(x)e
−i2π
M

kx (2.16)

Even though fn is a discrete function, its Fourier-representation is continuous.
The reverse transform is as follows

f(x) =
1

M

M−1∑
k=0

(̃f)(k)e
i2π
M
kx (2.17)
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Extending once again to two dimensions, the transforms are given by the follow-
ing equations,

f̃(u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y)e−i2π(ux/M+vy/N) (2.18)

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

(̃f)(u, v)ei2π(ux/M+vy/N) (2.19)

Finally, the concept can be extended to a spherical surface through what is known
as spherical harmonics. Spherical harmonics refers to the angular part of the so-
lution to the Laplace’s equation(∇2ϕ = 0) in spherical coordinates, and are given
by,

Ylm(θ, φ) = (−1)m
[

2l + 1(l −m)!

4π(l +m)!

]
Pm
l (cosθ)eimφ (2.20)

with m ≥ 0. Ylm is known as a spherical harmonic function of degree l and order
m. l andm are both integers, withm = −l,−(l−1),−(l−2), ..., 0, ..(l−1), l and
are analogous to the Fourier-variables kx and ky. θ and φ are spherical coordinates,
similar to the cartesian coordinates x and y uses in the Fourier transforms above.
Pm
l is the associated Legendre polynomial.

For values of m < 0, the spherical harmonic is

Y m
l (θ, φ) = (−1)|m|

[
Y
|m|
l (θ, φ)

]∗
(2.21)

with the asterisk representing complex conjugation.
The CMB temperature field T (θ, φ) can then be expanded as a sum of spherical
harmonic functions,

T (θ, φ) =
∞∑
l=0

l∑
m=−l

almY
m
l (θ, φ) (2.22)

where the coefficients alm are given by

alm =

∫ 1

−1

∫ 2π

0

T (θ, φ)Ylm(θ, φ)d(cosθ)dφ (2.23)

Equation 2.22 is an exact analogy with a Fourier series. Just as in the Fourier-
case, no information is lost in the transform from the temperature field T (θ, φ)
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to the alm-constants. Figure 2.3 visualizes the spherical harmonics-function Ylm
for different values of l and m. The function changes sign each time it crosses
one of the longitudinal or latitudinal lines, and has a value of zero on the lines
themselves. As the figure indicates, l can be interpreted as being related to the
size of structures in the CMB-field, while m denotes position on the sphere.

Figure 2.3: Spherical representation of Ylm. From http://www.wikipedia.
org

http://www.wikipedia.org
http://www.wikipedia.org
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2.3 Gaussian statistics
One of the most central assumptions about the background radiation is that it
follows what is known as a Gaussian, or normal, probability distribution. This
means, we can expect statistical properties of the CMB measurements to follow
certain rules, such as the value of the mean and variance.
The mean is simply the average of the values in a given population of sampled
measurements. Thus, the mean of value x from N samples is

〈x〉 = (x1 + x2 + x3 + ...+ xN)/N (2.24)

Another key concept is the standard deviation, a commonly used measure of the
spread in population values,

σ =

√
(x1 − 〈x〉)2 + ...+ (xN − 〈x〉)2

N − 1
(2.25)

Following on from this, we can define the variance σ2, another commonly used
measure.

The normal distribution is defined by

P (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (2.26)

where µ is the mean and σ is the standard deviation. It is displayed in figure 2.4,
showing how the curve will respond to some different mean and variance-values.
As the figure shows, samples are spread symmetrically about the mean, with the

probability of large deviations dropping quickly towards zero.
Thia can be formalized with the 68-95-99.7-rule. This tells us approximately 68%
of the samples in a normally distributed population will fall within 1σ of the mean
µ, 95% within 2σ and 99.7% within 3σ. The ”standard normal distribution” is
defined as µ = 0 and σ2 = 1 [36].

One property of this figure which will become important later on is what is called
the FullWidth Half-Maximum(FWHM). It is the width of the curve at half the
maximum value. For a normal distribution, this is related to the standard devia-
tion by,

σ =
FWHM√

8ln2
(2.27)
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Figure 2.4: Normal distribution, from http://www.wikipedia.org

We know the measured anisotropy-distribution in one spot is strongly linked to the
values in other spots. A positive or negative value in one location will tend to in-
fluence the value in neighbouring spots in the same positive or negative direction.
This phenomenon can be summarized by the terms covariance and correlation.
Covariance is a measure of the strength of the relationship between two values x1

and x2 and is quantified as

cov(x1, x2) = 〈(x1 − µ1)(x2 − µ2)〉 (2.28)

with µ1 being the mean for variable x1 and µ2 the mean for x2. The relationship
between two such values is called correlation, a measure of how the value of x1

depends on the value of x2, and can be expressed as

corr(x1, x2) =
cov(x1, x2)

σ1σ2

=
〈(x1 − µ1)(x2 − µ2)〉

σ1σ2

(2.29)

where σ1 is the standard deviation of x1, σ2 of x2.
Using these two definitions, the correlation and covariance matrices can be con-
structed by expanding the above equations to n dimensions.

http://www.wikipedia.org
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The covariance matrix is then

Covij = 〈(xi − µi)(xj − µj)〉 (2.30)

and the correlation matrix

Corrij =
〈(xi − µi)(xj − µj)〉

σiσj
(2.31)

Obviously, these two matrices are both symmetric.

The usefulness of the Fourier transform is shown by applying the above two
concepts to a transformed function. For the applications described in this the-
sis, a correlation matrix is a NxN -matrix, with N ≈ 3million. Due to time-
considerations, working with such matrices is not viable. The correlation between
two Fourier-modes k and k′ 〈

f̃(k)f̃(k′)
〉

(2.32)

f̃(k) being defined by 2.12, can be found by making use of∫
eik(x′−x)dx = δD(x′ − x) (2.33)

where δD is the Dirac δ-function

δD(t) =

{
1 t = 0

0 otherwise
(2.34)

This results in〈
f̃(k)f̃(k′)

〉
= δD(k′ − k)

∫ ∫
C(x′ − x)e−ik

′(x′−x) dxdx′ (2.35)

The integral, whereC is a correlation-function, is called the power-spectrum. This
will be explained further in chapter 2.6. What the above result tells us is that two
Fourier-modes are correlated only if δD(k′ − k) 6= 0, which is only true if k′ = k.
Thus, there is no correlation between different modes in Fourier-space.
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2.4 Wavelet-transforms
Earlier, we saw that a function can be restated as a sum of sinusoids. We used
this property to derive the Fourier-transform. However, this transformation has
limited power, because the transformed function accurately represents frequency
resolution, but scale and time resolution are poorly approximated. Though all fre-
quencies present in a signal may be known, we cannot determine when or where
they are present.
Attempts to overcome this problem falls within the field of multi-resolution the-
ory, which is concerned with the analysis of functions or signals at more than one
resolution.
The basic idea is to cut the signal or function of interest into several smaller parts,
and study them separately. Wavelets are one way of such a dividing up of a signal,
using a scalable, sliding window to split it into parts than can then be analyzed
individually.
The wavelets themselves are formed from what is known as the mother wavelet,
by scaling and translation

Ψs,τ (x) =
1√
s

Ψ

[
x− τ
s

]
(2.36)

where s and τ are called the scale and translation parameters, respectively. Using
this definition, we can write the continuous wavelet transform in one dimension
as

γ(s, τ) =

∫ ∞
−∞

f(x)Ψs,τ (x) dx (2.37)

The similarity with Fourier transforms should be obvious, the only difference be-
ing the nature of the basis function, with wavelets replacing sinusoids. However,
there is one important change, the wavelets themselves are not specified. They
can be designed and molded to fit one’s wished and needs in each separate case.
The inverse transform is given by

f(x) =
1

CΨ

∫ ∞
0

∫ ∞
−∞

γ(s, τ)
Ψs,τ (x)

s2
dτ ds (2.38)

where

CΨ =

∫ ∞
−∞

|ψ(k)2|
|k|

dk (2.39)

where ψ(k) is the Fourier transform of Ψ(x). As long as the admissibility criterion
CΨ <∞ is satisfied, the wavelets can be used to analyze and then reconstruct the
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original function through the two equations above. This condition also tells us
that ψ(0) = 0 and that the average value of the wavelet is zero,∫ ∞

−∞
Ψ(x) dx = 0 (2.40)

In other words, Ψ(x) must be a wave.

Specifically as applied to this thesis, the wavelets used are what are known as
Spherical Mexican Hat wavelets. They are proportional to the second derivate of
a Gaussian distribution(equation 2.26):

Ψ(x) =

(
2√
3
π−

1
4

)
(1− x2)e−

1
2
x2

(2.41)

Its name is derived from it’s distinctive shape, shown in figure 2.5 [28] has shown

Figure 2.5: Mexican-hat wavelet

the Spherical Mexican Hat wavelets to be very effective for the analysis of non-
Gaussian features in the CMB.
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2.5 Lagrange multipliers
A common problem in calculus is finding the maxima and minima points, collec-
tively known as extrema, for a given function. A typical complication arises when
the function is constrained by one or more outside conditions.
Lagrange multipliers is en excellent tool when it comes to finding the extrema of
a multi-variate function when there are such constraints.
Assume a function f(x1, x2) for which we wish to find the maxima or minima,
subject to the constraint g(x1, x2) = d, for some value of d.
Lagrangian multipliers uses the fact that in any extrema within the area bounded
by g(x1, x2), the gradient of f(x1, x2) must run parallell to the gradient of g(x1, x2),
the gradient being a vector perpendicular to the function and pointing towards the
direction in which the function is growing the fastest.
Formalizing this condition, we can write,

∇f(x1, x2) = λ∇g(x1, x2) (2.42)

If the two gradients line up, one is a multiple of the other by the constant λ. This
equation can be expanded as

∂f

∂xk
= λ

∂g

∂xk
(2.43)

where k = 1, 2...n for n variables.
This is a system of n + 1 equations(including the constraint g(x1, x2) = d) with
n+ 1 unknowns, that can be solved to find the extremum points.

2.6 CMB-Analysis
The existence of the CMB was first predicted in the 1940’s, as a natural conse-
quence of the Big Bang theory. In a famous article, Ralpha Alpher and George
Gamow outlined how the abundance of hydrogen and helium could be explained
by a Big Bang model of the universe [1]. This paper also predicted there should
be radiation left over from the intense heat of the early universe, that should now
hold a temperature of about 5K [4].
20 years later, the CMB-radiation was detected when two radio-astronomers found
an excess signal they could not otherwise account for [30]. Moving on from ac-
cidental discoveries, the field of CMB-analysis is now a rich field for study of the
conditions of the early universe.
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In this section, we will introduce some basic terms and ideas involved in this anal-
ysis, then discuss some past and future experiments to study the CMB, before
talking about some of the most important discoveries that has resulted from these
experiments.

2.6.1 Important terminology
When observing the sky, a telescope can not observe an arbitrarily small section of
the sky, rather the resolution is determined by the size of the beam. When observ-
ing a point in the sky, the telescope is actually observing not only that point, but
also the surrounding area, the size of that area being determined by the resolution
of the beam.
The temperature assigned to the central point is then a weighted contribution from
the entire area contained within the beam-area, with the weighting being approxi-
mately Gaussian.
An actual Gaussian beam has the form

BG = e−
∆Θ2

2σ2 (2.44)

and in spherical harmonics space

BG = e−(σ2×l×(l+1)/2) (2.45)

where
σ =

FWHM√
8 ln 2

(2.46)

and FWHM is the Full-Width Half Maximum. An associated concept are pixelwindow-
functions. Since we can not operate with maps with an infinite amount of pixels,
each pixel will cover a certain area of the sky. That pixel will then be assigned a
temperature that is an average of the area covered. The actual effect of beams and
pixelwindow-functions are that smaller details in the maps will be smeared out.
In equation 2.45, the l’s are the same as in equation 2.22 and figure 2.3. As
mentioned in the chapter on Fourier-theory, this variable is connected to scale,
confirming that the beam serves to suppress smaller scales, since l grows as the
scales gets progressively smaller.

The l-coefficients are also known as multipoles. A CMB-map contains structures
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of several different sizes, or scales. We can then imagine each full skymap as a
sum of several other maps, these new maps each containing only structures of a
given scale. By multiplying the maps in this new set with a weight(the alm’s from
a spherical harmonic transform), we can recover the original, full map. Each l
and m, or multipole corresponds to one such scale-dependent map. How large the
set of scale-dependent maps, is determined by a variable known as lmax, a small
value of this meaning we only look at large scales.
The first few multipoles are called monopole(l = 0), dipole(l = 1), quadrupole(l =
2), and octopole(l = 3). In analysing the temperature variations in the CMB, the
monopole is the largest scale, which then is the average temperature across the
entire sky, 2.7 K. The dipole, the second largest scale is dominated by a Doppler
shift caused by the Earth’s movement through the CMB radiation field. Measur-
ing this Doppler-shift, the velocity of our solar system can be calculated. It turns
out we are moving through the radiation field at a speed of 371km/s [16], but
this effect also diminishes our ability to measure the CMB at this scale. Thus,
the quadru- and octopole are the largest scales where CMB-anisotropies can be
observed.

A vital statistic about the CMB-anisotropies is of course how much they devi-
ate from the mean, in other words the variance. In spherical harmonics-space, this
is called the power-spectrum Cl, and is defined by

Cl =
1

2l + 1

lmax∑
l=−lmax

alma
∗
lm (2.47)

where the asterisk denote complex conjugation. That is, the power spectrum is
the variance of the alm-coefficients. The power spectrum, calculated from current
WMAP data is plotted in figure 2.6. As mentioned, beams will supress smaller
scales, this effect is shown in figure 2.7. Another problem that will affect the
power spectrum is instrumental noise. This is an uncertainty in the measurements
due to instumental design. It will appear across the map as random fluctuations
that are not correlated with the CMB or any foreground emission. This will affect
the smaller scales, but with the opposite effect from beams. The power at large l’s
will be overestimated, as shown in figure 2.8.

CMB-maps are typically displayed using the Mollweide projection, an ellipti-
cal display with the equator being exatly twice the length of the meridian. The
resolution is determined by the parameter Nside. The maps are first divided into
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Figure 2.6: Power spectrum, without beam or noise

12 square pixels(See figure 2.9). These base-pixels can then also be divided into
smaller parts, Nside gives the number of pixels that lie along one of the sides of
the square. Npix, the total number of pixels in a map is then given by

Npix = 12N2
side (2.48)

The Earth’s atmosphere is almost opaque to the part of the electromagnetic spec-
trum in which we find the CMB. Therefore, measuring the CMB accurately re-
quires detectors launched into space to observe from points above the atmosphere.

2.6.2 COBE
The COsmic Background Explorer (COBE) was a NASA mission launched in
1989, the first to offer high-precision measurements of the CMB. The satellite or-
bited Earth at an altitude of 900km, with an orbital period of 103 minutes [13]. It
took 6 months to scan the entire sky.
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Figure 2.7: Power spectrum, with beam

The spacecraft had three instruments aboard, the Diffuse Infrared Background Ex-
periment (DIRBE), the Differential Microwave Radiometer (DMR) and the Far
Infrared Absolute Spectrophotometer (FIRAS). FIRAS was used to measure the
absolute temperature of the CMB, found to be 2.725 ± 0.002K. DMR observed
the anisotropies in the CMB, while DIRBE studied the Cosmic Infrared Back-
ground. Observations at frequencies above the microwave-part of the spectrum
yields information about star-formation.

The DMR operated on three different frequencies, 31.5, 53, and 90 GHz. The
sky was observed with a 7◦ FWHM beam. The resultant maps were drawn with
6144 pixels, and the power-spectrum was calculated with lmax = 30 [22].



2.6. CMB-ANALYSIS 27

Figure 2.8: Power spectrum, with noise
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Figure 2.9: Mollweide projection, nside=1

2.6.3 WMAP

Figure 2.10: WMAP spacecraft
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The Wilkinson Microwave Anisotropy Probe(WMAP) was launched June 30,
2001 from Cape Canaveral, Florida.
The probe orbits the L2 Lagrange point, about 1.5 million km from Earth. From
this position, the telescope’s view is not obstructed by the Sun, Earth or the moon.
It covers about 30% of the sky every day, covering the full sky every six months
[12]. The spacecraft is shown in figure 2.10 and the projects webpage can be
found at http://map.gsfc.nasa.gov

The main feature of the spacecraft is the two back-to-back telescopes that mea-
sures the difference in temperature between two spots in the sky. The two points
are separated by roughly 140◦.
To provide more data to help with the removal of foreground contamination,
WMAP uses five different frequency bands that are listed in table 2.1. The maps
from the different bands are displayed in figure 2.6.3, showing the bands in order
of increasing frequency.
The resolution of the the different bands are listed in column three of table 2.1.
The five-year data allowed for an estimation of the power spectrum up to about
lmax = 1000 [29].

Band Frequency(GHz) Resolution(FWHM, degrees)
K 22.8 0.93

Ka 33.0 0.68
Q 40.7 0.53
V 60.8 0.35
W 93.5 < 0.23

Table 2.1: WMAP frequencies

http://map.gsfc.nasa.gov


30 CHAPTER 2. BACKGROUND

Figure 2.11: The five WMAP-bands

K-band Ka-band

Q-band V-band

W-band
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2.6.4 Planck

The Planck Surveyour will be launched in October, 2008. This ESA project aims
to improve upon the results from WMAP by using nine frequency channels instead
of WMAP’s five. Divided between two different instruments, these channels will
covers a frequency-range from 30GHz to about 850GHz, the 4 lowest frequencies
being 30, 44, 70 and 100 GHz [11], comparable to those studied by WMAP(Table
2.1). The two instruments are called the Low Frequency and the High Frequency
Instruments.
It will orbit the L2 Lagrange point, just like WMAP, and results will be released
from 2010 onwards.
The frequencies covered and the associated beams are shown in table 2.2.

Frequency(GHz) Resolution(FWHM,arcmins)
30 33
44 24
70 14

100 9.5
143 7.1
217 5.0
353 5.0
545 5.0
857 5.0

Table 2.2: Planck frequencies

The Planck results is expected to provide estimates of the power spectrum up
to lmax = 2000.

2.6.5 Current results

The analysis of the data from WMAP, COBE and other CMB-experiments have
yielded a much improved knowledge of the universe. In the context of this the-
sis, evidence of non-Gaussianity in the CMB is of most interest. Inflation-theory
predicts a Gaussian distribution of the anisotropies, and evidence to the contrary
would put the theory in serious jeopardy. Analysis of the WMAP-data gave three
distinct anomalies, results that do not seem to agree with the theory of inflation.
First, there is a significant assymetry in the measured power between the northern
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and southern hemisphere [24]. On large scales, the southern hemisphere shows
much higher power than the north. One issue that should be taken into considera-
tion here, is that the Sun is actually located roughly 20 parsecs above the galactic
plane, meaning there should be more foreground sources in the southern directions
[26]. However, several different and independent foreground removal methods
applied separately to the two hemispheres, yields consistent results, which would
seem to indicate the asymmetry can not be explained by foreground-residuals.

The second anomaly is the very low power found at the largest scales, particu-
larly the quadru- and octopole. Both multipoles are found to have a low power,
that is unlikely to a 1/20 level [5]. The maps used to arrive at this conclusion,
have had those parts of the sky most contaminated by foregrounds removed (See
section 2.8 for details). It has been suggested that this cut causes the low power
measured at the large scales, since much of that power may be located within the
parts of the sky that is cut away [33]. The analysis done in [33] concludes that the
low power, particularly of the quadrupole lies within reasonable limits, and is not
really a cause for concern.

The third unusual discovery, and the one of most interest to this thesis, is the
apparant lining up of the quadru- and octopole. [27] finds this alignment to be
less than 0.01% likely in a Gaussian regime. Each multipole has a direction on
the sky, in which it has the most power. This direction is found to be the same for
l = 2, 3. A plot showing this alignment is displayed in figure 2.12.
In this thesis, we will investigate the influence of different foreground-removal
methods on the measurement of this direction.

2.7 Physical processes behind foregrounds
The galactic emissions that lie in the microwave part of the electromagnetic spec-
trum is dominated by three different components, synchrotron , free-free and ther-
mal dust emissions. There is evidence of a fourth component, [2] attributing it to
synchtron radiation associated with star-forming regions. [35] suggests the emis-
sions fit a spinning dust model.

Figure 2.13 shows how the three different contaminants vary with frequency, the
WMAP bands are also marked in the plot. As the figure shows, the thermal dust
component should vanish at low frequencies, and it was the discovery of an ap-
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Figure 2.12: Multipole alignment, figure from [10]

parent dust-emission with an amplitude 500 times that expected from thermal dust
emissions [7], between 20 and 40 GHz that has led to the postulating of a fourth
component. The spectral index is a measure of how a given emission source radi-
ates in relation to frequency. It is typically identified as

S = Aνβ (2.49)

where S is the flux, ν is frequency, A is the amplitude and β is the spectral in-
dex. All the methods applied in this thesis, assumes a constant spectral index for
all foreground types across the entire sky. This is not a correct assumption, es-
pecially near the galactic plane there is large variations. Discovering the exact
spectral indexes and how they vary is then of vital importance to creating accurate
templates and models.

2.7.1 Synchrotron radiation
Synchrotron radiation is generated by ultra-relativistic particles accelerating through
a magnetic field in a curved path. The primary galactic source of such radiation is
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Figure 2.13: Galactic emission vs. frequency. From [2]

supernova remnants.
The radiated power P is

P =
2Ke2γ4v4

3c3r2
(2.50)

where e is the electron charge, v is the electrons velocity, r is the radius of it’s
path, c is the speed of light, K is Coulomb’s constant and

γ =
1√

1− v2

c2

(2.51)

The energy spectrum of such radiation is characterized by the relativistic electron
density. Since this density will vary greatly between regions of the galaxy, the
spectral index will also change.
Between the radiating source and our instrument, there will be a number of inter-
vening processes that causes the radiation to lose energy, such as Compton scat-
tering and free-free collisions. Cosmic rays originating in the galactic halo will
lose less energy from such interactions than those coming from within the plane
of the galaxy itself, synchrotron radiation will therefore have a steeper spectral
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index in areas near the galactic plane.
Observations of synchtrotron emission at low frequencies has yielded an approx-
imate mean spectral index of β ≈ −2.7. Observing another galaxy, which is
orientated edge-on to our line of view, [8] found a spectral index ranging from
-2.6 in the plane to -3.1 in the halo.

2.7.2 Thermal dust
Dust-particles that hold a higher temperature than the surrounding space will ra-
diate heat in accordance with the first law of thermodynamics. This form of radia-
tion exhibits an inverse relation between temperature and spectral index, meaning
particles holding a higher temperature will have a lower flux. The dust grains in
the galactic disc is assumed to have a typical temperature of 20K for the fore-
ground templates used in [2], but this is a poor approximation [15]. The same
article suggests the emissions recorded fits a model where there are two separate
types of dust particles, silicate and carbon-dominated grains.
The average spectral index for thermal dust is β = 2. Different types of grains
have different spectral indexe. Silicate grains are thought to dominate emissions at
frequencies below 500 GHz. There is still reason to believe the spectral index will
vary between different frequencies and regions in the sky due to different species
of dust.
According to the model fitted in [15], the silicate grains have a spectral index β =
1.7, with a temperature of 〈T 〉 = 9.5K, the carbon-dominated grains β = 2.7,
〈T 〉 = 16K.

2.7.3 Free-free emission
Free-free emission, also called bremstrahlung, is produced by electrons scattering
off ions. The term free-free refers to the electron not being captured by the ion in
the process, both particles remain ”free” after the interaction. This type of radia-
tion is typically produced in ionized Hydrogen clouds. The name bremstrahlung
relates to the electron losing velocity in the interaction, ”brems” being German
for ”brake”, whilst ”strahlung” means ”radiation”. The spectral index of free-free
radiation is β = −2.15. Since this type of emission does not dominate the sky at
any frequency, studies of the Hα-line is used as a substitute. Both free-free and
Hα are determined by the emission measure EM , defined as

EM =

∫
n2
edl (2.52)
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where, ne is the electron density and dl is a volume unit. Using this we can write
the antenna temperature as

TA = 1.44EMcm−6ps

[1 + 0.22 ln(Te/8000K)− 0.14 ln(ν/41GHZ)]

(ν/41GHz)2(te/8000K)1/2
(2.53)

where Te is the electron temperature [2]. The spectral index is given by

βff = −2− 1

10.48 + 1.5 ln(Te/8000K)− lnνGHz
(2.54)

Te is unknown, but is assumed to be Te ≈ 8000K.

2.8 Foreground subtraction
While this thesis is concerned with the CMB, determining the exact nature of
the galactic emissions themselves is also of interest. For the latter objective, the
WMAP-team used the Maximum Entropy Method (MEM).
MEM seeks to separate the galactic emissions into the three different sources dis-
cussed in section 2.7. A complete skymap is modelled as

Tm(ν, p) = SCMB(ν|p)TCMB(p)+Ss(ν|p)Ts(p)+Sff (ν|p)Tff (p)+Sd(ν|p)Td(p)
(2.55)

where the subscripts denote the different contributions to the signal, CMB, syn-
chrotron, free-free and thermal dust. p indicates pixel and ν is frequency. Sx(ν|p)
is the spectrum of emission-type x, which takes into account the variation in spec-
tral indices across the sky and Tx(p) is the spatial distribution of x [2]. The latter
is based on the templates that will be discussed further in section 2.8.1.
χ2-minimization are used to to determine the best-fit spectral indices and spatial
distributions. The results provide an assessment of how well the templates and
corresponding coefficients used actually fits the data.

Since removing all signs of foreground contamination is beyond current algo-
rithms, making the maps suitable for cosmological analysis requires some addi-
tional measures. Obviously, some parts of the sky are more contaminated than
other, specifically in the plane of the galaxy. Simply observing the rest of the sky,
and ignoring the parts most afflicted by unwanted radiation is done through the
use of masks.
Masks are simply binary maps, with those pixels we wish to mask set equal to



2.8. FOREGROUND SUBTRACTION 37

zero, the rest equal to one. These maps are then superimposed on the skymaps to
cancel out contribution from unwanted pixels.
The WMAP-team constructed their masks by removing pixels with an absolute
value higher than some cutoff-point, shown in figure 2.14. To remove the fore-

Figure 2.14: WMAP masks. From [2]

ground contamination from CMB-maps, this thesis will use three different ap-
proaches, External Template Fitting(ETF), Internal Linear Combination (ILC) and
Wavelet based hIgh resolution Fitting of Internal Templates(WI-FIT).

2.8.1 External Template Fitting

Perhaps the simplest and most straight-forward of the methods applied in this
paper, external template fitting(ETF) uses externally derived templates to clean
the CMB-maps. While this approach may not provide much in terms of a deeper
understanding of the physical nature of the foregrounds, it has the clear advantage
of having well specified noise properties.
One external template is chosen to model each of the three different foreground
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components discussed in section 2.1.5. These templates are drawn from other
experiments in other frequency-ranges than those in which WMAP operates. A
set of coefficients Ct are used with the templates to correct for the change in
frequency, where t represents the three different types of foregrounds.
To model the synchrotron emission, we use the Haslam 408 MHz map [25]. The
results from the WMAP teams implementation of the MEM, showed the resulting
map not to be a great match at the WMAP frequencies, due to not taking into
account that the spectral index varies across the sky [2]. This led to negative
ct, to avoid this problem only the Q-, V-, and W-bands will be examined. By
appropriately scaling the templates, all ct’s will be positive. The coefficients are
derived from the spectral indexes,

ct(ν) = Aνα (2.56)

K and A are constants to fit the templates to the WMAP-frequency range, ν is the
frequency and α is the spectral index for t.
In the release of the three-year data, the Haslam map was replaced by an internal
template, of the difference between the K and Ka-bands, just like in the WIFIT-
method [3]. However, the Haslam-map is used in this thesis.

To represent free-free emission, the Finkbeiner Hα map [14] is used. This is a
composite of three different maps, the Virginia Tech Spectral Line Survey for the
northern hemisphere, the Southern Hα Sky Survey Atlas for the southern and
The Wisconsin Hα Mapper. Hα is an emission line associated with the hydrogen
atom, it is the first line in the Balmer-series. It lies within the visible region of the
electromagnetic spectrum.
The thermal dust-template is from [15], which is again based on [32]. This map
is based upon results from COBE and IRAS missions.
This set of templates will be referred to as the HFF-set throughout this thesis.
We also used a second set of templates. In preparation of the Planck-mission,
workgroups have been established that consider ways of separating the CMB from
foreground emissions. This work has resulted in, among other things, a new set
of templates that is considered better and more realistic than HFF. These new
templates take into account changing spectral indexes, and they will therefore be
a very useful test of the abilities of our applied methods to handle the spectral
index-problem that we know the HFF-set does not provide. This new set of tem-
plates we will refer to as NFG.
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The full skymap T is written as

T = TCMB + Tdust + Tff + Tsync + n (2.57)

that is a sum of a CMB-component and the three different foreground-types and
the instrumental noise. Cleaning such a map is the done by assuming the galactic
components can be described by the templates from above and the appropriate,
frequency-dependent coefficients and subtracting them from the full map.

2.8.2 Internal Linear Combination
The second method we will use is the ILC. The idea is to form linear combina-
tions of the different frequency maps, with constraints to minimize the foreground
contamination while retaining the CMB-signal. A clear advantage in such an ap-
proach is that it does not rely on the use of external templates, instead using only
the WMAP-data hence the name internal.
However, the WMA-team stressed that the resultant map was suitable only for
visualisation purposes, and can not be relied on for precise CMB-analysis.
Writing a sky-map T as a sum of the CMB and foreground signals

T = TCMB + Tfg+n(ν) (2.58)

where ν is frequency, of which the CMB is independent. Tfg+n is the combined
signal from foregrounds and instrumental noise. We seek to suppress the fore-
grounds while retaining the CMB. The ILC-method suggests a map can also be
written as

T =
5∑
i=1

wiT (i) (2.59)

where the sum is over the five WMAP-bands, and wi is a set of weights. Inserting
this into equation 2.58, we get

T =
5∑
i=1

wiTCMB +
5∑
i=1

wiTfg(i) (2.60)

Since we wish to retain the CMB-signal,

5∑
i=1

wi = 1 (2.61)
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With the CMB begin independent of frequency,
∑5

i=1wiTCMB = TCMB. The
trick is then to find the set of weights w that minimizes the foreground component
of the signal, while still summing to one. This can done by searching for the
minimum of the variance σ,

σ(T ) = σ(TCMB) + σ(
5∑
i=1

wiTfg(i)) (2.62)

The WMAP-team did this using a non-linear method, without specifying the de-
tails [2]. In this thesis, we use the approach from [10]. This uses Lagrange multi-
pliers (2.5) to find the weights, the details can be found in the algorithm-section.
Since the spectral indexes vary across the sky, the WMAP ilc-implementation di-
vided the sky into 12 smaller regions, and calculated a set of weights for each. 11
of the regions lie within the Kp2-cut, see figure 2.14, and this approach yielded
an asymmetry in the weights calculated. One particular region gave distinctly dif-
ferent weights from the other regions. This would seem to indicate a problem
with the template-approach used with ETF, and is further evidence that assuming
constant spectral indexes across the sky will corrupt results.

2.8.3 WI-FIT

The third foreground-cleaning method is called Wavelet based hIgh resolution
Fitting of Internal Templates(WI-FIT). WI-FIT uses templates to clean the maps
much like section 2.8.1, the difference being that these templates are not drawn
from other frequencies than those we find the CMB at. Rather, they are created
by taking the difference between two of the available WMAP-frequency bands.
Since the CMB-component is independent of frequency, it will cancel out, leav-
ing only the difference in foreground contributions and a noise component.
Each frequency-band is then cleaned by subtracting a linear combination of in-
ternal templates. The number of internal templates must be equal to the number
of foreground emission-types, which is three in our case (Thermal dust, free-free
and synchrotron). Thus, if we write a complete skymap as

Tν = TCMB + nν +

Nf∑
f=1

cfνF
f (2.63)
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where the sum is over the number of foreground-components f , and F f is the
foreground-contribution from type f . cfν are coefficients that determine the strength
of component f at frequency ν. n is the instumental noise.
To simulate the F f -components, WI-FIT uses templates defined as

Dνν′ = Tν − Tν′ (2.64)

Using these new templates, we can rewrite the full skymap as

Tν = TCMB + nν +
Nt∑
t=1

c̃tν(D
t − δnt) (2.65)

where the sum now goes over templates t. As specified above, Nf = Nt.
Since the internal templates will contain noise-contributions from the two differ-
ent frequency-maps involved in their creation, there is an extra element δn =
nν − nν′ introduced in the sum.
Calculating the c̃tν is done by a χ2-minimization, however doing this in pixelspace
is not possible for higher resolutions, as such an approach requires inverting a
correlation-matrix of sizeNpix×Npix. Therefore, WI-FIT uses wavelet-transforms
to do the calculation in wavelet-space where pixel-pixel correlations are smaller.
Thus, the size of the correlation-matrix will be determined only by scale-scale-
correlations. [23] used 13 scales, which gives a correlation-matrix of size 13× 13
to invert, as opposed to one of 3mill × 3mill in pixel-space assuming an Nside =
512.

The noise in the internal templates leads to a bias in the calculation of the co-
efficients c̃tν . [23] details a bias-correction approach to work around this problem.
However, since noise mostly affects the smaller wavelet scales, we can convolve
the maps with a large beam to suppress the smaller scales and thus minimize the
influence of the noise on the final results.

As mentioned in section 2.8.2, the sky can be divided into smaller sections to
get more accurate estimates of the spectral index in various localizations on the
sky. In this thesis, we worked only with complete skymaps, so the WI-FIT method
implementation assumed a constant spectral index over the complete sky.
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Chapter 3

Algorithm

The implementation of the cleaning algorithms makes use of the Healpix-
package( [20]), a library of visualization and computational software suitable to
process and manage the large amount of data from present day CMB-experiments
[21].
The goal of this section is to make use of the three different methods of foreground-
removal detailed in section 2.8, and to derive results suitable for comparison be-
tween the three so as to be able to determine the reliability, accuracy and effec-
tiveness of the individual approaches.
To achieve this, Monte Carlo simulations of the CMB map will be generated and
then cleaned. The direction of the quadru- and octo-poles will be determined for
each individual simulation in three instances, the original simulated map, the map
with a foreground model added and for the cleaned map. Comparison between
the cleaned and simulated versions will then provide a measure of the algorithm’s
effectiveness.
Apart from a visual inspection of the resulting maps, the cleaning processes per-
formance will be assessed by measuring the difference in direction of the quad-
and octopoles between the simulated and cleaned maps.
A temperature map of CMB-observations can be written as,

T νi = TCMB
i + nνi +

Nt∑
t=1

Cν
t s

t
i (3.1)

where T is the temperature in pixel i for frequency-band ν. The sum is over the
total number of galactic foreground-componentsNt, with sti being the temperature
from component t in pixel i. nνi is the instrumental noise. Cν

t is a set of coefficients

43



44 CHAPTER 3. ALGORITHM

to fit the templates to the appropriate frequency bands, the values that were used
with the templates described in section 2.8.1 are given in table 3.1.

For all three methods, the aim is to separate the CMB-component and suppress
the rest.

3.1 Calculation of preferred axis
As mentioned in section 2.6.5, there is an issue with the directions of the quadru-
and octopole lining up in the WMAP-data. Were we to plot maps containing
only one of these poles, it would appear as a few, large spots scattered around
the sky. In the WMAP-data, not only do all these spots appear to line up along a
common axis. In addition, this axis appears to be the same for both the quadru-
and octopole. In our approach, we will calculate the direction of this axis in our
simulated maps at different stages in the algorithm to investigate the impact of
foregrounds and the foreground-removal methods on the direction of those two
multipoles.

Defining the axis n̂, we can write the spherical harmonics transform of an anisotropy
skymap as a wave function

T (n̂) = ϕ(n̂) (3.2)

To find the direction, we find the axis around which〈
ϕ
∣∣(n̂ · L)2

∣∣ϕ〉 =
∑
m

m2 |alm(n̂)|2 (3.3)

is maximized [10]. The actual implementation was done using computer-code
written by my supervisor Frode K. Hansen.

3.2 ETF
As described in section 2.8.1, External Template Fitting is probably the simplest
way of cleaning datamaps. Models of the foreground contamination are created by
using data from other experiments. These templates are then fitted to the WMAP
frequency channels by a set of coefficients. The templates used are described in
section 2.8.1.
The approach taken here aims to clean the Q, V and W-bands of galactic fore-
ground contamination. These bands contain less galactic emissions than the K
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and Ka-bands(See figure 2.13), and results can be expected to be better for the
former three bands.
500 Monte Carlo simulations for each channel are created and the direction of the
quadrupole and octopole are calculated. The Haslam and Finkbeiner foreground
templates, multiplied by the coefficients given in table 3.1, are then added, and
the directions of the 2 multipoles are found again. Finally, a χ2-minimization is
used to attempt to recover the coefficients from table 3.1 for each simulation. The
templates, this time multiplied with the recovered coefficients are then subtracted
from the map, and the directions are computed one last time.

The maps are created with Nside = 512, the same as the original WMAP-maps.
lmax is set to 1000. A set of alm-coefficients are created, drawn from a distri-
bution defined by the power spectrum calculated from the WMAP-data [17]. In
order to make the simulations resemble the WMAP data, the simulated maps are
smoothed with the band-specific beams defined by the WMAP instrument with
the resolution given in table 2.1. A reverse spherical harmonics-transform(Section
2.2) produces the map, before the noise associated with each channel is added.
The actual code for the first part, the creation CMB-maps, the smoothing with
the appropriate beams from WMAP and the adding of noise is sketched in listing
3.1. Note the loops over bands and simulations(sims), these continue through the
entire code, meaning each map is put through all steps of the process before the
process moves on to the next simulation.
The noise is randomized by multiplying the standard deviation given by the WMAP-
specifications for the appropriate pixel and band, with a random number created
outside the code shown.
The function align calculates the array mom, which is the sum over m given in
equation 3.3, which is then passed to finddir to determine the direction of the
quadru- and octopole. These directions are returned in polar coordinates θ and φ,
in a system where the center of the galaxy is defined as the origin (θ = φ = 0).

Band Dust FreeFree Synchrotron
K 7.00 10.20 28.0

Ka 2.70 4.70 7.50
Q 1.59 2.24 2.78
V 1.00 1.00 1.00
W 1.60 0.45 0.35

Table 3.1: ETF coefficients
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Listing 3.1: Creation of CMB-maps� �
do band =0 , 2 {

do sim =0 , nsims−1 {
! ! Cr ea t e a new s e t o f s p h e r i c a l harmonics−
! ! c o e f f i c i e n t s , drawn from powerspec t rum ’ c l ’ ,
! ! and p u t them i n a r r a y alm

c a l l c r e a t e a l m ( n s i d e , lmax , c l , alm )

! ! Smooth w i t h WMAP−beams
alm=alm∗beam ( band )

! ! Trans form from f r e q u e n c y domain
! ! t o p i x e l s p a c e

c a l l alm2map ( n s i d e , lmax , alm , map )

! ! F i n a l l y , n o i s e i s added
do j =0 , npix−1 {

n o i s e c o e f = n o i s e ( band , j )∗ rnd nmbr
map ( j )=map ( j )+ n o i s e c o e f
}

! ! C a l c u l a t e d i r e c t i o n o f q u a d r u p o l e
! ! and o c t o p o l e
CALL a l i g n ( npix , map , mom)
CALL f i n d d i r ( n s i d e , npix , mom, t h e t a , p h i )
� �

Listing 3.2 shows the next step, adding the foreground templates. The actual read-
ing of the files, and multiplication with the band-specific coefficients(See table 3.1
are done outside the main pipeline, but is included here for completeness. The di-
rections of the two multipoles of interest are found in the same way as above.
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Listing 3.2: Adding foregrounds� �
! ! Read Haslam and F i n k b e i n e r t e m p l a t e s

open ( 1 2 , f i l e = d u s t t e m p l a t e . unf )
read ( 1 2 ) f o r e d u s t ( 0 , : )
c l o s e ( 1 2 )
open ( 1 2 , f i l e = f r e e f r e e t e m p l a t e . unf )
read ( 1 2 ) f o r e f f ( 0 , : )
c l o s e ( 1 2 )
open ( 1 2 , f i l e = s y n c h r o t r o n t e m p l a t e . unf )
read ( 1 2 ) f o r e s y n ( 0 , : )
c l o s e ( 1 2 )

! ! Cr ea t e f o r e g r o u n d s f o r t h e 3 bands
! ! 0=Vband , 1=Wband , 2=Qband

f o r e f f ( 0 , : ) = f o r e f f ( 0 , : ) ∗ f f v b a n d c o e f
f o r e d u s t ( 0 , : ) = f o r e d u s t ( 0 , : ) ∗ d u s t v b a n d c o e f
f o r e s y n ( 0 , : ) = f o r e s y n ( 0 , : ) ∗ s y n v b a n d c o e f
f o r e f f ( 1 , : ) = f o r e f f ( 0 , : ) ∗ f f w b a n d c o e f
f o r e d u s t ( 1 , : ) = f o r e d u s t ( 0 , : ) ∗ d u s t w b a n d c o e f
f o r e s y n ( 1 , : ) = f o r e s y n ( 0 , : ) ∗ s y n w b a n d c o e f
f o r e f f ( 2 , : ) = f o r e f f ( 0 , : ) ∗ f f q b a n d c o e f
f o r e d u s t ( 2 , : ) = f o r e d u s t ( 0 , : ) ∗ d u s t q b a n d c o e f
f o r e s y n ( 2 , : ) = f o r e s y n ( 0 , : ) ∗ s y n q b a n d c o e f

! ! ! C o n t i n u i n g t h e main a l g o r i t h m :

! ! Add t h e fo reground−t e m p l a t e s
do j =0 , npix−1 {

f u l l m a p ( band , j )=map ( band , j )+ f o r e d u s t ( band , j )
+ f o r e f f ( band , j )+ f o r e s y n ( band , j )

}

! ! C a l c u l a t e d i r e c t i o n o f q u a d r u p o l e and o c t o p o l e
CALL a l i g n ( npix , fu l lmap , mom)
CALL f i n d d i r ( n s i d e , npix , mom, t h e t a , p h i )
� �
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The cleaning process aims to recover the coefficients in table 3.1. To accomplish
this, we seek to minimize what is known as the χ2-distribution. This has the
general form

χ2 =
∑
i

(xi − µ)2

σ2
(3.4)

If the value xi deviates significantly from the expected value µ, a large value of
χ2 will result. Specifying the above equation to our case

χ2 =
∑
i

(Ti − (
∑

f C
fF f

i ))2

σ2
i

(3.5)

where i indicates pixels in a map, f is type of foreground emission(dust, freefree
or synchrotron), T is the temperature map and F is the foreground templates. C is
then the coefficients we wish to find. σi is the variance for pixel i. A pixel with a
large variance will then be given less weight than one with a small variance. This
is actually an approximation, the true χ2 value is given by

χ2 =
∑
i

(Ti −
∑
f

CfF f
i )C−1

ij

∑
j

(Tj −
∑
f

CfF f
j ) (3.6)

where Cij is the correlation-matrix between pixels i and j. However, inverting
such a matrix would be too time-consuming, so we instead make the assumption
there are no pixel-to-pixel correlations, and design a correlation-matrix that is
diagonal, with the diagonal elements equal to σi, and all other elements being set
equal to zero. Inverting a diagonal matrix yields another diagonal matrix with the
diagonal elements C−1

ii = 1/Cii, in our case 1/σ2. This gives us equation 3.5,
which we can minimize to find the coefficients that best fit the data.
Expanding eq. 3.5, we get

χ2 =
∑
i

(Ti − C0F 0
i − C1F 1

i − C2F 2
i )2

σ2
i

(3.7)

Minimizing the χ2-statistic is done by differentiating this equation, and setting the
result equal to zero. The differentiation is done with regards to the coefficients C.
The calculation shown is only for C0, but it can easily be extended to solve for the
other two coefficients.

∂χ2

∂C0
=
∑
i

2(Ti − C0F 0
i − C1F 1

i − C2F 2
i )(−F 0

i )σ2
i

σ4
i

(3.8)



3.2. ETF 49

Isolating the C0-term:

∂χ2

∂C0
=
∑
i

2
(Ti − C1F 1

i − C2F 2
i )(−F 0

i )

σ2
i

+
∑
i

2
C0F 0

i F
0
i

σ2
i

(3.9)

Setting the derivate equal to zero and cleaning up:

∑
i

C0F 0
i F

0
i

σ2
i

=
∑
i

(Ti − C1F 1
i − C2F 2

i )(F 0
i )

σ2
i

(3.10)

Finally, we solve for C0:

C0 =

∑
i

(Ti−C1F 1
i −C2F 2

i )(F 0
i )

σ2
i∑

i
F 0
i F

0
i

σ2
i

(3.11)

The solutions for C1 and C2 can be shown to be:

C1 =

∑
i

(Ti−C0F 0
i −C2F 2

i )(F 1
i )

σ2
i∑

i
F 1
i F

1
i

σ2
i

(3.12)

C2 =

∑
i

(Ti−C0F 0
i −C1F 1

i )(F 2
i )

σ2
i∑

i
F 2
i F

2
i

σ2
i

(3.13)

Moving all terms containing C-coefficients to the left side produces three
equations:

C0
∑
i

F 0
i F

0
i

σ2
i

+ C1
∑ F 1

i F
0
i

σ2
i

+ C2
∑ F 2

i F
0
i

σ2
i

=
∑
i

TiF
0
i

σ2
i

(3.14)

C0
∑ F 0

i F
1
i

σ2
i

+ C1
∑
i

F 1
i F

1
i

σ2
i

+ C2
∑ F 2

i F
1
i

σ2
i

=
∑
i

TiF
1
i

σ2
i

(3.15)

C0
∑ F 0

i F
2
i

σ2
i

+ C1
∑ F 1

i F
2
i

σ2
i

+ C2
∑
i

F 2
i F

2
i

σ2
i

=
∑
i

TiF
2
i

σ2
i

(3.16)
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which can be solved as a standard matrix-equation,

A~x = ~b (3.17)

with the matrix A given by:
∑

i
F 0
i F

0
i

σ2
i

∑ F 1
i F

0
i

σ2
i

∑ F 2
i F

0
i

σ2
i∑ F 0

i F
1
i

σ2
i

∑
i
F 1
i F

1
i

σ2
i

∑ F 2
i F

1
i

σ2
i∑ F 0

i F
2
i

σ2
i

∑ F 1
i F

2
i

σ2
i

∑
i
F 2
i F

2
i

σ2
i


The vectors ~x:  C0

C1

C2


and~b: 

∑
i
TiF

0
i

σ2
i∑

i
TiF

1
i

σ2
i∑

i
TiF

2
i

σ2
i


Solving this system is then done by inverting A and solving for~(x),

~x = A−1~b (3.18)

The implementation of this process is outlined in listing 3.3.
σ2 is composed of two parts, the variance in the noise and in the CMB. A randomly
simulated CMB-map is used to find the variance(σs) in the CMB, through

σs =
1

Npix

Npix∑
i=0

p2
i (3.19)

where pi is the pixel.
The noise-variance(σn) is determined by the specifications of the WMAP-instrument,
squaring the standard deviation. σ is the sum of these two components. Then the
matrix A is constructed, for containing the foreground templates.
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Listing 3.3: Cleaning with ETF� �
! ! F i r s t c a l c u l a t e t h e v a r i a n c e sigma ,
! ! u s i n g a randomly c r e a t e d CMB−map
do j =0 , npix−1 {

temp=some map ( j ) ˆ 2
s i g m a s = s i g m a s +temp

}
s i g m a s = s i g m a s / np ix

do j =0 , npix−1 {
s igma n ( band , j ) = s t d d e v ( band , j ) ˆ 2
sigma ( band , j )= s i g m a s + s igma n ( band , j )

}

! ! C a l c u l a t e m a t r i x
do j =0 , npix−1 {

A( band , 0 , 0 ) =A( band , 0 , 0 ) + ( f o r ( 0 , j )∗ f o r ( 0 , j ) / s igma ( band , j ) )
A( band , 1 , 0 ) =A( band , 1 , 0 ) + ( f o r ( 1 , j )∗ f o r ( 0 , j ) / s igma ( band , j ) )
A( band , 2 , 0 ) =A( band , 2 , 0 ) + ( f o r ( 2 , j )∗ f o r ( 0 , j ) / s igma ( band , j ) )
A( band , 1 , 1 ) =A( band , 1 , 1 ) + ( f o r ( 1 , j )∗ f o r ( 1 , j ) / s igma ( band , j ) )
A( band , 2 , 1 ) =A( band , 2 , 1 ) + ( f o r ( 2 , j )∗ f o r ( 1 , j ) / s igma ( band , j ) )
A( band , 2 , 2 ) =A( band , 2 , 2 ) + ( f o r ( 2 , j )∗ f o r ( 2 , j ) / s igma ( band , j ) )

}
! ! S i n c e t h i s i s a s y m m e t r i c ma t r i x , we can r e v e r s e t h e i n d e x e s

A( band , 0 , 1 ) =A( band , 1 , 0 )
A( band , 0 , 2 ) =A( band , 2 , 0 )
A( band , 1 , 2 ) =A( band , 2 , 1 )

! C o n s t r u c t r i g h t s i d e o f t h e m a t r i x e q u a t i o n ,
! t h e v e c t o r b

do j =0 , npix−1 {
b ( band , 0 ) = b ( band , 0 ) + f u l l m a p ( band , j )∗ f o r ( 0 , j ) / s igma ( band , j )
b ( band , 1 ) = b ( band , 1 ) + f u l l m a p ( band , j )∗ f o r ( 1 , j ) / s igma ( band , j )
b ( band , 2 ) = b ( band , 2 ) + f u l l m a p ( band , j )∗ f o r ( 2 , j ) / s igma ( band , j )

}

! ! ! ! To s o l v e t h e sys tem , i n v e r t A
CALL i n v e r s e (A( band , : , : ) )

! ! ! F i n a l l y , s o l v e f o r t h e c o e f f i c i e n t v e c t o r x
x ( band , : , i )= matmul ( b ( band , : ) , A( band , : , : ) )
� �
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The algorithm ends with using the calculated coefficients to clean the maps, sub-
tracting the foreground templates multiplied by the appropriate coefficients. This
is shown in listing 3.4

Listing 3.4: Final cleaning of maps� �
! ! ! Cr ea t e new foreground−maps
! ! ! 0= dus t , 1= f r e e f r e e , 2= s y n c h r o t r o n

do j =0 , npix−1 {
s i m f g d u s t ( j )= f o r ( 0 , j )∗ x ( band , 0 , i )
s i m f g f f ( j )= f o r ( 1 , j )∗ x ( band , 1 , i )
s i m f g s y n ( j )= f o r ( 2 , j )∗ x ( band , 2 , i )

}

! ! ! Clean t h e maps w i t h t h e new f o r e g r o u n d maps
do j =0 , npix−1 {

new map ( j )= f u l l m a p ( band , j )− s i m f g d u s t ( j )
−s i m f g f f ( j )− s i m f g s y n ( j )

}
! ! C a l c u l a t e d i r e c t i o n o f m u l t i p o l e s i n t h e new maps
CALL a l i g n ( npix , new map , mom)
CALL f i n d d i r ( n s i d e , npix , mom, t h e t a , p h i )

} ! ! End loop over s i m u l a t i o n s i
} ! ! End loop over band
� �

3.3 ILC

The Internal Linear Combination (ILC) method was first presented with the re-
lease of the WMAP first-year data [2]. By using proper constraints, foreground
signals can be suppressed while retaining the CMB. A clear advantage to such
an approach is that its results are not reliant on external templates, or any prior
knowledge of the galactic foreground signals.
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A complete skymap may be written as

T = TCMB + Tother (3.20)

that is, as a sum of the CMB and other sources, such as foregrounds and noise.
We wish to suppress the residuals while keeping the CMB-signal intact. TCMB

is obviously independent from both Tother and of frequency. Tother on the other
hand, will change according to frequency. For k different frequency maps, each
WMAP-band can then be written as

Tk = TCMB + Tother(k) (3.21)

Forming the linear combination

T =
k∑
i=1

wiT (i) (3.22)

with the constraint
k∑
i=1

wi = 1 (3.23)

we can write the final map as

T = TCMB +
k∑
i=1

wiTother(i) (3.24)

This guarantees the response to the CMB-signal will always be unity, and we are
free to choose the weights w that limits the residual component to it’s minimum.
To compute the weights, we will use Lagrange multipliers(2.5).

As with the ETF, we create 500 CMB-simulations, apply foreground templates
and then clean the maps using the ILC-algorithm. However, unlike the ETF-
algorithm we will not clean each band separately, but instead use all 5 maps from
the different frequencies to create one final, cleaned map. For this, the different
maps need to be convolved with a common resolution, using a Gaussian beam of
1 deg FWHM, the same as used in both [2] and [10].
Again, we use Nside = 512.
The creation of the CMB-maps is pretty much the same as in listing 3.1, with
the only difference being that each realization is copied five times so we have
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5 different maps to represent the five WMAP bands. The foreground templates
are then added. As with the ETF, both the Finkbeiner and Haslam templates are
used, together with the coefficients in table 3.1 and the Planck workgroup tem-
plates in separate processes. The maps, now complete with both CMB, noise and
foregrounds then have the band-specific WMAP-beams removed, and they are all
convolved with the common, larger beam.
As mentioned, Lagrange multipliers (2.5) are used to find the weights. We seek
then to minimize the variance of a sum over 5 frequency maps, constrained by the
sum of the weights being equal to one. This guarantees we retain the CMB, whilst
the frequency-dependent foregrounds and noise are suppressed. The variance of
map T from equation 3.22 is given by

σ2(T ) =
〈
T 2
〉
− 〈T 〉2 (3.25)

=
1

Npix

Npix∑
p=1

[
5∑
i=1

wiTi(p)

]2

−

(
1

Npix

Npix∑
p=1

[
5∑
i=1

wiTi(p)

])2

(3.26)

=
5∑
i=1

5∑
j=1

wiwj

 1

Npix

Npix∑
p=1

Ti(p)Tj(p)−

 1

Npix

Npix∑
p=1

Ti(p)

2 (3.27)

= ~wTC~w (3.28)

where w is the weights, and C is the covariance matrix defined as

Cij = 〈∆Ti∆Tj〉 =
1

Npix

Npix∑
p=1

[Ti(p)− 〈Ti〉] [Tj(p)− 〈Tj〉] (3.29)

Our task is then to minimize the function

f(~w) =
5∑

i,j=1

wiCijwj (3.30)

with the constraint

g(~w) =
5∑
i=1

wi = 1 (3.31)

Using Lagrange multipliers, we then look for the points along g(~w) that satisfies

∇f( ~w0) = λ∇g( ~w0) (3.32)
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The partial derivates of the two functions in equations 3.30 and 3.31 are

∂f

wi
= 2

5∑
j=1

Cijwj (3.33)

and
∂g

wi
= 1 (3.34)

We can now construct 6 equations with 6 unknowns, which is solved as a matrix
equation, A~x = ~b. The first five equations are

2
5∑
j=1

Cijwj − λ = 0 (3.35)

for each of the five values of i, and the sixth equation is just equation 3.31. Con-
structing the matrix A, 

2C0j −1
2C1j −1
2C2j −1
2C3j −1
2C4j −1
~1T 0


the vectors ~x 

w0

w1

w2

w3

w4

λ


and~b 

0
0
0
0
0
1


Inverting A, and solving for ~x then gives us our weights. The coding to perform
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this operation is shown in listing 3.5.
First, the average pixelvalues are found, and then used to calculate the covariance
matrix. This matrix is also padded with -1’s, 1’s and a 0 to complete the set of
equations to be solved. The weights are then found by inverting this matrix, and
the cleaned map is created.
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Listing 3.5: Cleaning with ILC� �
! ! Find t h e average p i x e l v a l u e

avemaps ( : ) = 0 . d0
do g =0 , band−1

avemaps ( g )= avemaps ( g )+ f u l l m a p s ( g , : ) / np ix
end do

! ! Cr ea t e c o v a r i a n c e m a t r i x
c o v a r ( : , : ) = 0 . d0

do a =0 , band−1
do b =0 , band−1

c o v a r ( a , b ) = 2∗ ( c o v a r ( a , b ) + ( ( f u l l m a p s ( a , : )
−avemaps ( a ) ) ∗ ( f u l l m a p s ( b , : )
−avemaps ( b ) ) ) )

c o v a r ( 5 , b )=−1. d0
end do

c o v a r ( a , 5 ) = 1 . d0
end do

c o v a r ( 5 , 5 ) = 0 . d0
c o v a r ( : , : ) = c o v a r ( : , : ) / np ix

! ! I n v e r t c o v a r i a n c e m a t r i x
CALL i n v e r t ( covar , i n v c o v a r )

! ! Cr ea t e t h e v e c t o r b
b ( 0 : 4 ) = 0 . d0
b ( 5 ) = 1 . d0

! ! C a l c u l a t e t h e v e c t o r c o n t a i n i n g t h e w e i g h t s
w e i g h t s ( : ) = b∗ i n vc ov

! ! Cr ea t e t h e f i n a l , c l e a n e d map u s i n g
! ! t h e w e i g h t s

c leanmaps ( : ) = w e i g h t s ( 0 )∗ f u l l m a p s ( 0 , : )
+ w e i g h t s ( 1 )∗ f u l l m a p s ( 1 , : )
+ w e i g h t s ( 2 )∗ f u l l m a p s ( 2 , : )
+ w e i g h t s ( 3 )∗ f u l l m a p s ( 3 , : )
+ w e i g h t s ( 4 )∗ f u l l m a p s ( 4 , : )
� �



58 CHAPTER 3. ALGORITHM

3.4 WI-FIT
The WI-FIT algorithm uses a linear combination of internal templates to clean the
skymaps. As with ETF, we wish to clean the Q-,V- and W-bands.
A full skymap is written as

T νi = TCMB
i + nνi +

Nf∑
f=1

cνfF
f
i (3.36)

where ν is frequency, n is noise, f is foreground type and F is the foreground
component for pixel i. We wish to create a model of the galactic emissions
(
∑Nf

f=1 c
f
νF

f
i ), by using internal templates defined by

Dνν′

i = T νi − T ν
′

i =

Nf∑
f=1

(cνf − cν
′

f )F f
i + δnνν

′

i (3.37)

Inserting this into equation 3.36, results in

T νi = TCMB
i + nνi

Nt∑
t=1

c̃νt (D
t
i − δnt) (3.38)

where t = νν ′, and Nf = Nt since we need the same amount of templates as we
have foreground components. Unfortunately, δnt is an unknown noise contribu-
tion. We will assume it is equal to zero, but this will introduce a bias in results.
Since noise is mostly dominant on small scales, we implement a large beam to
suppress those scales, thus hoping to reduce the bias.
Solving equation 3.38 in pixel-space is not possible for high resolutions (See sec-
tion 2.8.3), so we use wavelet transforms instead. (Section 2.4). Pixel-pixel cor-
relations can be ignored in wavelet-space, so we only have to consider scale-scale
correlations.
Two cross-correlation coefficients are defined,

Xνt
S =

∑
i

wνiSw
t
iS (3.39)

and
X tt′

S =
∑
i

wtiSw
t′

iS (3.40)
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where wνis is the wavelet transform of T νi for scale S, and wtiS is the transform of
internal template Dt

i . The transforms are done using the Spherical Mexican Hat
wavelets, using 13 different scales.
We can now define the χ2 to minimize as

χ2 =
∑
νT

∑
SS′

(XνT
S −

∑
t

c̃νtX
tT
S )C−1

SS′(X
νT
S′ −

∑
t

c̃νtX
′tT
S ) (3.41)

Finding the coefficients c̃νt is done in much the same way as in the ETF-algorithm,
through solving a matrix-equation∑

t

c̃νtMtf = Bν
f (3.42)

where
Mtf =

∑
t′

∑
SS′

Xft′

S C−1
SS′X

tt′

S′ (3.43)

and
Bν
f =

∑
t′

∑
SS′

Xft′

S C−1
SS′X

νt′

S′ (3.44)

t, t′ and f all represent internal templates. This system is solved by invertingMtf ,
and solving for the vector containing the coefficients c̃νt .

The actual implementation of the WI-FIT algorithm was done with computer-code
written by my supervisor Frode K. Hansen. 500 Monte Carlo CMB-simulations
were created for each band, with Nside = 256. The simulated CMB-maps were
convolved with the WMAP-beams, and instrumental noise based on the standard
deviation defined by the WMAP-instrument were added. Then a set of foreground
templates were added, both the HFF-set(2.8.1) and the NFG-set were used to in-
vestigate the efficiency of the method.
After then removing the band-specific beams, the complete skymaps were all con-
volved with a common gaussian beam with FWHM = 200 arcminutes.
As mentioned in section 2.8.3, WI-FIT is biased due to the noise properties of
both frequency-maps used in creating a template, being carried over to the tem-
plate. Using such a large beam helps in alleviating this problem, it also turns out
choosing the correct templates can reduces the noise.
We know that we need to create the same number of internal templates as there
are distinct types of foreground-emission. Along with every internal template we
choose, we need a coefficient. One template consists of the difference between
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two frequency-bands, for instance K-Ka. So how do we choose which internal
templates, or difference maps to use? Since we operate with three distinct fore-
ground emission sources, we need three internal templates to clean each band.
When we create the difference-maps, we get a noise-contribution from both that
is included in the final, cleaned map. Since we want this noise-contribution to
be as small as possible, it makes sense to want the coefficients we multiply the
internal templates with, to be as small as possible. Using equations 3.36 and 3.38,
we can write ∑

νν′

c̃bνν′
∑
f

(cνf − cν
′

f )F f =
∑
f

cbfF
f (3.45)

since the two different ways of representing the complete skymaps must necessar-
ily be equal. b, ν and ν ′ represent frequency, with the condition b 6= ν 6= ν ′. b
is the band to be cleaned, ν and ν ′ are the bands that forms the templates. F is
the foreground-components, with the sums running over types of foreground, or
equivalently the number of internal templates.
Thus, we have a connection between the old, ETF-coefficients (cbf ) and our new

WI-FIT coeffiecients ( ˜cbνν′).
Equation 3.45 can be solved as simple matrix-equation. For cleaning each band,
there are 4 remaining bands from which to form internal templates. For example,
if we wish to clean the V-band, we can form internal templates by using the K,
Ka, Q and W-bands. This means there will be(

4

2

)
= 6 (3.46)

different combinations for each band. For instance, for the V-band, the possible
combinations are K-Ka, K-Q, K-W, Ka-Q, Ka-W and Q-W. From such a set there
are (

6

3

)
= 20 (3.47)

different ways of selecting 3 templates. Solving equation 3.45, we looked for
the sets of coefficients c̃bνν′ that had the smallest absolute value to minimize the
amount of noise in our cleaned maps. The templates chosen are given in table 3.2.
This selection differs somewhat from those chosen in [23].
It should be noted, due to time constraints we only did this analysis for the
HFF-templates, and used the same internal template-combinations for the NFG-
templates. Thus, the noise and bias for the latter may not have been minimized to
the same degree of accuracy as with the HFF-templates.
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Band Template 1 Template 2 Template 3
Q K-Ka Ka-V W-V

Va K-Q K-W Ka-Q
W K-Ka Ka-Q Q-V

Table 3.2: WIFIT templates

Using these templates, 3.42 is solved, and the Q-,V- and W-bands are cleaned
through a linear combination of the templates and the calculated coefficients. The
coefficients found for the W-band, fitting the templates in column 4 in table 3.2
were so large however, that the noise introduced in the simulated maps made them
unsuitable for analysis.
[23] details a bias correction procedure that can be implemented in lieu of a large
beam, to allow for higher detail and resolution in the cleaned maps, but this ap-
proach lies beyond the scope of this thesis.
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Chapter 4

Results

The effectiveness of the cleaning will be assessed chiefly through calculating the
direction of the quadru- and octopole and comparing results for the cleaned maps
with those from the original simulated CMB-maps. This direction is calculated
using polar coordinates (θ, φ). However, we only plot the θ direction.
If we look at a map, for instance 4.1,
the θ-direction corresponds to up-down(north/south), while φ corresponds to left-
/right (east/west). Since the galaxy runs along the entire left/right direction(φ), but
only covers a small band in the up/down (θ) direction, we make the assumption
that the galaxy have a stronger impact on the direction of the multipoles in the
θ-direction.
We also conduct a visual inspection of the maps, looking for residual foregrounds
and noise.

4.1 ETF

For the ETF-implementation, we clean the Q-, V- and W-band, using 500 simu-
lations for each band. The whole process is done twice, applying first the HFF-
templates, then the NFG-set as a galactic foreground-model. To clean the map,
the HFF-set is subtracted in both instances, using the coefficients derived from the
χ2-minimization.
The results presented are for the V-band. The results from the Q and W-bands are
almost identical to those shown, so they have not been included.

63
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Figure 4.1: ETF-cleaned V-band using HFF-templates

Simulated CMB-map With foregrounds

Cleaned map Difference between cleaned and simulated

The maps(figure 4.1) are shown at three different stages of the algorithm,
the simulated map with instrumental noise added, the same map after the HFF-
templates have been added, and finally the cleaned map. Also included is the
difference between the cleaned and simulated map, note the different scale in the
last display. In figure 4.2, the θ-direction of the quadru and octopole at two differ-
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ent stages are plotted, the plots on the left showing the simulated CMB map versus
the same map with foreground templates applied, the plots on the right showing
the simulated CMB-map versus the cleaned map. The leftmost plots show how
the foregrounds distort the measurements of the multipoles direction, while the
rightmost plot tells us how effective the cleaning has been. A perfect result would
have left all the points lying on a diagonal line.

Figure 4.2: ETF plots V-band using HFF-templates

Full map quadrupole direction Cleaned map quadrupole direction

Full map octopole direction Cleaned map octopole direction
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In tables 4.1 and 4.2, the angular distance ∆Θ between the multipoles before
(θ1, φ1) and after cleaning (θ2, φ2) is displayed, this is calculated through

∆Θ = cos−1 (cos(θ1)cos(θ2) + sin(θ1)sin(θ2)cos(φq − φ2)) (4.1)

The values shown are the mean values over 500 simulations.

Band ∆Θ with fg ∆Θ after cleaning
Q 79.628 3.446
V 65.115 3.895
W 71.053 3.121

Table 4.1: ETF mean angular distance, quadrupole, HFF-templates

Band ∆Θ with fg ∆Θ after cleaning
Q 74.486 3.064
V 63.046 2.495
W 68.219 2.379

Table 4.2: ETF mean angular distance, octopole, HFF-templates

Moving on to the NFG foreground templates, results for the Q and V-bands
are shown, results for W are almost identical to V. Keep in mind that it is still the
HFF-templates that are used to clean the maps.
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Figure 4.3: ETF-cleaned Q-band with NFG foregrounds

Simulated CMB-map With foregrounds

Cleaned map Difference between cleaned and simulated
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Figure 4.4: ETF plots Q-band with NFG foregrounds

Full map quadrupole direction Cleaned map quadrupole direction

Full map octopole direction Cleaned map octopole direction

Figures 4.3 and 4.4, showing results from the Q-band show a clear deteriora-
tion when compared to results for the HFF-templates. Since the NFG-templates
includes variations in the spectral index across the sky, it is no surprise that the
cleaning does poorly close to the galactic plane since the HFF-templates assumes
constant spectral indexes. In accordance with figure 2.13, we know there are more
foreground contamination present in the Q-band than in V or W. The V-band re-
sults (figures 4.6 and 4.5) are much better, and the W-band even better. The V-band
is shown in the interest of comparison with results for WI-FIT, where the W-band
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are not usable. For ETF, the W-band results are actually better than for the V-band.

Figure 4.5: ETF-cleaned V-band with NFG foregrounds

Simulated CMB-map With foregrounds

Cleaned map Difference between cleaned and simulated
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Figure 4.6: ETF plots V-band with NFG foregrounds

Full map quadrupole direction Cleaned map quadrupole direction

Full map octopole direction Cleaned map octopole direction

Tables 4.3 and 4.4 show the distance between the multipoles, displaying the
poor performance of the Q-band.
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Band ∆Θ with fg ∆Θ after cleaning
Q 85.243 28.204
V 75.425 18.460
W 76.766 14.168

Table 4.3: ETF mean angular distance, quadrupole, NFG foregrounds

Band ∆Θ with fg ∆Θ after cleaning
Q 79.882 36.087
V 75.417 20.971
W 77.429 14.215

Table 4.4: ETF mean angular distance, octopole, NFG foregrounds

The above is all done with the maps smoothed by beams defined by the param-
eters of the WMAP satellite. For purposes of comparing results with those from
WI-FIT, we also applied a large beam (200′), along with the NFG foregrounds.
Here we show the results for the V-band, as this is the most important result for
comparison with WI-FIT.
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Figure 4.7: ETF-cleaned V-band with NFG foreground, large beam

Simulated CMB-map With foregrounds

Cleaned map Difference between cleaned and simulated
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Figure 4.8: ETF plots V-band with NFG foregrounds, large beam

Quadrupole Octopole

These results are quite good, and tables 4.5 and 4.6 show the large beam to
have had a minimal impact on the final results.

Band ∆θ with fg ∆θ after cleaning
Q 86.478 36.499
V 73.485 18.738
W 76.765 13.205

Table 4.5: ETF mean angular distance, quadrupole, large beam

Band ∆θ with fg ∆θ after cleaning
Q 87.485 36.548
V 75.012 20.152
W 76.712 14.863

Table 4.6: ETF mean angular distance, octopole, large beam

Finally, the WMAP datamaps are cleaned using HFF-templates along with
the coefficients calculated by simulations using the same templates. As expected,
the results close to the galactic plane are poor, and masks needs to be applied
for these maps to be useful for cosmological analysis. In these maps, we find a
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distance between the quadru and octopole directions of 50◦ or more, which only
underlines the inadequacy of this approach when applied to the full sky.

Figure 4.9: WMAP cleaned with ETF

Q-band V-band

W-band



4.2. ILC 75

4.2 ILC

ILC uses a linear combination of all five frequency-bands, there are therefore no
band-specific results. 500 simulations were done, again in two separate instances
using the HFF- and the NFG-templates. The maps are shown in figures 4.10 and
4.12 for HFF and NFG respectively.
Changes in the θ-component of the multipole-directions are shown in figure 4.11.
The performance with the HFF-templates are better than those using the NFG
foregrounds, as was to be expected. The varying spectral index in the latter will
cause more uncertainties in the results close to the galactic plane. Nevertheless,
ILC performs well when compared to ETF, the final distortion in the multipole
directions being almost identical between the two methods when looking at the
results using NFG-templates.
Tables 4.7 and 4.8 confirms this, with δθ-values comparable to ETF. It is worth re-
membering it is possible to divide the sky into smaller parts to account for changes
in the spectral index, ILC has been proven to give even better results with such an
approach [10].



76 CHAPTER 4. RESULTS

Figure 4.10: ILC-simulations using HFF

Simulated map Cleaned map

Difference map for 1 simulation Average difference map for 500 simulations
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Figure 4.11: ILC plots

Direction of quadrupole Direction of octopole
simulated vs. cleaned map, HFF templates simulated vs. clean map, HFF, templates

Direction of quadrupole Direction of octopole
simulated vs. cleaned map, NFG templates simulated vs. clean map, NFG templates

Multipole ∆Θ after cleaning
Quadrupole 12.995

Octopole 10.157

Table 4.7: ILC mean angular distance
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Multipole ∆Θ after cleaning
Quadrupole 26.279

Octopole 19.951

Table 4.8: ILC mean angular distance, NFG foregrounds

Figure 4.12: ILC-simulations using NFG foregrounds

Simulated map Cleaned map

Difference map for 1 simulation Average difference map for 500 simulations
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As we did with the ETF-method, we have applied a larger beam for sake
of comparison with WI-FIT results. Perhaps the biggest drawback of the ILC-
method, is the complicated noise properties. A large beam will serve to suppress
noise on smaller scales, and we can therefore expect ILC-results to improve using
such a large beam. As figure 4.14 and table 4.9 shows, this is exactly what hap-
pens. Results are now comparable to those achieved using the HFF-templates that
have constant spectral indexes.
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Figure 4.13: ILC-simulations, using NFG templates and large beam

Simulated map Cleaned map

Difference map for 1 simulation Average difference map for 500 simulations
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Figure 4.14: ILC-simulations, using NFG templates and large beam

Direction of quadrupole Direction of octopole
simulated vs. cleaned map simulated vs. clean map

Multipole ∆Θ after cleaning
Quadrupole 10.582

Octopole 11.622

Table 4.9: ILC mean angular distance, large beam

The ILC-algorithm has also been applied to the WMAP-data. the result being
shown in figure 4.2. By visual inspection, this seems to have been more successful
than the ETF-approach.
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Figure 4.15: ILC-method, applied to WMAP-data

Finally, in table 4.10 we have listed the weights found for the internal com-
binations. While these may not be particularly informative, they are included for
completeness.

Set K Ka Q V W
HFF foregrounds 0.02131 -0.72117 1.32333 0.17831 0.19822
NFG foregrounds 0.04528 -0.92887 0.52262 2.24299 -0.88202

NFG foreground,large beam 0.42836 -2.24412 0.92653 3.17574 -1.28652
WMAP data -0.00995 -0.18123 -0.34255 1.46649 0.06724

Table 4.10: ILC weights, mean over 500 simulations

4.3 WI-FIT
The WI-FIT algorithm was also applied to 500 simulations. Due to the bias inher-
ent in the method, we only present results for the V-band as they are the cleanest
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and least disturbed by bias. The large beam, of FWHM = 200′ is applied to
minimize the bias, but our results show even this is insufficient to avoid bias in the
Q and especially the W-band.

Figure 4.16: WIFIT-cleaned V-band, HFF

Simulated map With foregrounds

Cleaned map Difference between cleaned and simulated
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Figure 4.17: WIFIT plots V-band, HFF

Full map quadrupole direction Cleaned map quadrupole direction

Full map octopole direction Cleaned map octopole direction

Aa these plots show, WI-FIT does exceptionally well when dealing with the
HFF-foregrounds. These results are an almost perfect match for those achieved
using ETF. Looking at tables 4.11 and 4.12, keep in mind only the V-band is of
interest.
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Band ∆Θ with fg ∆Θ after cleaning
Q 74.505 25.937
V 65.716 3.440
W 70.048 17.677

Table 4.11: WIFIT mean angular distance, quadrupole, HFF

Band ∆Θ with fg ∆Θ after cleaning
Q 79.384 24.638
V 65.598 5.107
W 69.211 22.964

Table 4.12: WIFIT mean angular distance, octopole, HFF

Moving on the NFG-templates, the results are not nearly as good. WI-FIT
appears more sensitive to changes in the spectral index, and the residual remains
of foreground contamination after cleaning renders the maps unsuited for cos-
mological analysis without applying masks to avoid those areas of the sky most
contaminated by foregrounds.
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Figure 4.18: WIFIT-cleaned V-band, NFG foregrounds

Simulated map With foregrounds

Cleaned map Difference between cleaned and simulated
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Figure 4.19: WIFIT plots V-band, NFG foregrounds

Full map quadrupole direction Cleaned map quadrupole direction

Full map octopole direction Cleaned map octopole direction

Confirming the plots above, tables 4.13 and 4.14 shows WI-FIT can not accu-
rately reproduce the simulated CMB-maps.
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Band ∆Θ with fg ∆Θ after cleaning
Q 81.997 49.662
V 74.021 29.417
W 75.627 38.103

Table 4.13: WIFIT mean angular distance, quadrupole, NFG foregrounds

Band ∆Θ with fg ∆Θ after cleaning
Q 87.097 35.939
V 79.382 21.986
W 78.349 29.414

Table 4.14: WIFIT mean angular distance, octopole, NFG foregrounds

In figure 4.20, we have plotted the distance between the quadru- and octopoles,
simulated maps vs. cleaned maps for all three methods with the NFG templates
and large beam applied. As mentioned in section 2.6, this distance is very small in
the WMAP-data, 7◦ according to [10]. As the figure shows, it seems unlikely that
this is caused by foreground contamination, since none of the methods applied
shows signs of decreasing the distance between the two multipoles. Also worth
noticing is just how unlikely it is that that distance should be zero in the first place,
a quick visual inspection shows there are about 11 out of 1500 simulations where
the distance is below 7◦ in these plots.
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Figure 4.20: Angular distance between quadru- and octopole

External Template Fitting Internal Linear Combination

WI-FIT
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Chapter 5

Discussion

We have used three different methods of removing foreground contamination from
simulated skymaps, investigating the impact of the cleaning techniques on the di-
rection of the quadru- and octopole.
We have used two different sets of templates to model the galactic component of
the foreground emissions.

Looking at the External Template Fitting (ETF)-results first, using the HFF-templates
yields almost perfect cleaning. The directions of the two multipoles in question
change by only a miniscule amount (∼ 3◦) after foregrounds have been added
and then removed. This is not a particularly telling result however, since we are
subtracting the same templates we added as foregrounds.
Moving on to the NFG-templates, the results are more interesting. The Q-band
appears unsuitable for cosmological analysis, the directions of the two multipoles
deviating significantly between the simulated and cleaned maps. We have found
an average difference of roughly 30◦ in the θ-direction for this band. From figure
2.13 we know the Q-band contains more foreground contamination than the other
two bands, which will make this band harder to clean, regardless of the method ap-
plied. The V- and W-bands perform adequately well, both with the high-resolution
WMAP-beams and when convolved with a 200′ beam.
For these bands we find an average distortion between 15◦ and 20◦ both with and
without the larger beam.

With regards to the ILC-simulations, results are slightly worse than ETF with both
sets of templates. When using a linear combination of different frequency-maps,
the instrumental noise from all different bands are included in the final map, al-
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beit weighted. This complication puts ILC at a disadvantage when compared with
ETF since the templates are noise-free, however as discussed in section 2.6, noise
is primarily prevalent at smaller scales. By convolving with the 200′ beam, the
noise is largely suppressed, and the ILC-results improve, outperforming ETF.
The HFF-templates yields an average distance of roughly 10◦. Applying the NFG-
set, the mean distance jumps to a little over 20◦. When convolving with the large
beam (200′), our results are on the same level as those with the HFF-templates.

Moving on to WI-FIT, the performance with the HFF-templates are quite good,
exceptionally so for the V-band with an average distance between the quadrupole
in the simulated and cleaned maps of only 3◦! The results with the NFG-templates
however, are the worst amongst the three methods (∼ 20◦). The HFF-templates
have a constant spectral index, while the NFG templates do not. It seems the
WI-FIT method does not perform as well as the other two methods when deal-
ing with varying spectral indexes across the sky, when the method is applied to
the full sky. This is probably due in part to the bias introduced by ignoring the
noise-component in the internal templates when we calculate the coefficients. As
mentioned, [23] details a bias-correction procedure, that we have not made use of
in this thesis.

To achieve better results, the sky can be divided into smaller parts, and the clean-
ing algorithm applied separately to each one. This approach has already been
applied to the ILC-method [10]. [23] warns that applying the method to smaller
patches of the sky would mean an even more complicated noise structure, obscur-
ing smaller scales.

Two of the algorithms have also been tested on the datamaps.
When subtracting the HFF-templates from the WMAP data, ETF performs poorly
in the galactic plane. This is to due to the template set not taking into account the
variation in spectral indexes.
ILC gives a much more satisfying visual result, but foreground residuals are still
apparent in the galactic plane. This method has also been successfully applied to
smaller regions of the sky separately, improving results further.
Unfortunately, there was not enough time for testing the WI-FIT algorithm on the
WMAP data.

Inflation theory predicts that the CMB should exhibit B-mode polarization, the
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Planck satellite is expected to produce data suitable for testing this prediction.
However, no external templates of galactic polarization exist. It is therefore vital
that methods using only internal data are developed to study the CMB-polarization.
From our results, we can conclude ILC performs better when applied to the full
sky than WI-FIT, but a better test of the respective methods performance would be
to divide the sky into smaller patches, and apply the cleaning-algorithms to each
patch individually. This way, the errors induced by assuming constant spectral
indexes would be limited by the size of the patch.
By comparing results from WI-FIT with those from ETF, we see an exceptional
performance from WI-FIT when we use the HFF-templates, which assumes a
constant spectral index. ILC on the other hand, does not do as well. It seems rea-
sonable then, to expect WI-FIT to match, or even out-perform ILC when looking
at small partitions of the sky where the spectral index will not vary much.

For the actual measurements of the directions of the quadru- and octopole, our
simulations indicate the ILC with a large beam gives the most accurate results.
However, it is not so much the direction itself that is of interest, but rather the
impact of foregrounds and the three cleaning methods on that measured direction.
Looking at figure 4.20, we see no indication that the different algorithms decrease
the distance between the two multipoles, though the spread in the plots are too
large to completely rule out a foreground-related cause for the alignment.
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5.1 Future Work
There are several things that could be done to improve upon the analysis done
here.

• Bias-correction in the WI-FIT algorithm. To minimize bias, we have used a
very large beam, which results in a loss of information on smaller scales.

• Apply the ILC-algorithm to a partitioned sky. This will lead to better results
in the galactic plane, where there is much variation in the spectral indexes.

• Apply the WI-FIT algorithm to a partitioned sky. Our results using the
HFF-templates indicates this should substantially improve results.

• Apply masks to those areas most affected by galactic contamination. Our
analysis tends to be dominated by what happens in the central galactic plane,
using masks would produce results that were more dependent on how the
cleaning algorithms perform outside the galaxy, which might lead to dif-
ferent conclusions. Masking parts of sky may also give ’false’ detections
of the multipole directions, if large parts of the power of those multipoles
happen to be located in the part of the sky we mask.
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