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Chapter 1

Introduction

The Cosmic Microwave Background (CMB) is the remnants of the early universe, and can be
considered to be one of the best evidences for the Hot Big Bang model. When the Big Bang
occurred 13.7 billion years ago the universe was hot and dense, but the universe expanded and
eventually cooled down. In the beginning, the photons were coupled to matter and the universe
was opaque. The CMB marks the transition where the photons decoupled and were able to
move freely across the universe. This is the radiation we actually observe as the CMB, and it
is among the oldest information of the early universe. The CMB covers all the universe and
has the same statistical properties regardless of the direction in which you observe (isotropy).
However, very small deviations from isotropy (anisotropy) have been observed, and these are
of interest to cosmologists.

The data from our observations of the CMB are not without unwelcome signals. The
photons from the last scattering surface have traveled a long way, and on their path towards
us there are foregrounds also emitting in the microwave range (e.g. galaxies). After this long
journey, when the photons finally arrive at our instrument, additional instrumental artifacts
get added to the final data. Cosmologists, who yearn for the best description of our universe,
need the most accurate information they can get. It is therefore of utter importance that the
contaminants are removed. There is, however, a second gain from removing all the foreground
emissions. If the CMB signal still, after the extraction, showed unexpected non-Gaussianity
and after other astrophysical phenomena had been excluded as sources, great revisions to how
we currently model our universe would have been necessary.

This thesis will investigate different methods, mainly using wavelet analysis, for removing
certain classes of foreground contaminants. Chapter 2 reviews basic cosmology and its relation
to the CMB, and the third chapter introduces important concepts in CMB analysis. The
cosmology in these chapters is mainly based on the texts by Dodelson [8], Ryden [21] and
Elgarøy [9], while the statistics are based on the texts by Moore [20] and Murray [22]. Chapter
4 encompasses an introduction to the detection of foreground emission and to wavelets, while
chapter 5 will make an approach to the problem and show how the simulations with the wavelet
analysis will be implemented. Chapter 6 contains the results generated in the analysis, and
the last chapter summarizes the thesis, concludes the results, and suggests further research on
the subject.



Chapter 2

Cosmology and the CMB

The study of the CMB is just one subject of cosmology, and it is important to get a grasp on
concepts linked to the CMB to fully understand it. Cosmology is the study of the very largest
scales of the universe, where even galaxy clusters become inconceivably small. It ultimately
comprises of understanding what the universe is, what it consists of, how it all started and how
it all will end. These are questions humans have asked themselves for all time, but cosmology
as a science is relatively new.

2.1 Cosmology

2.1.1 The cosmological parameters

In 1922, Alexander Friedmann, inspired by Einstein’s general relativity, constructed a set of
equations linking different cosmological parameters together:

ȧ2 + kc2 =
8πG

3
ρa2 +

Λ
3
a2 (2.1)

ä = −4πG
3

(
ρ+

3p
c2

)
a+

Λ
3
a, (2.2)

where c is the speed of light, G the gravitational constant and ˙ = d
dt . The equations can

be used to derive complex descriptions of how a universe behaves, when fed with values
or conditions for the different parameters. The parameter a, called the scale factor, is a
measurement of the expansion of the universe from a given reference point. The parameter k
tells us how the universe curves or if it is flat, while ρ is the energy density of the universe,
given by1

ρ = ρ0a, (2.3)

where ρ0 denotes the density today. The amount of matter or energy is more conveniently
expressed as a ratio to the critical density ρc, called the density parameter:

Ω ≡ ρ

ρc
,

1The equation is obtained by solving the fluid equation ρ̇ = −3 ȧ
a
(ρ + p

c2
), having introduced the equation

of state p = wρc2, where w is a constant depending on the universe model.
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and the critical density itself depends on the Hubble parameter:

ρc ≡ 3H2

8πG
.

When a = 1 today, the density parameter is

Ω0 =
ρ0

ρc
=

8πG
3H2

0

ρ0.

The last parameter in equations (2.1) and (2.2), the cosmological constant Λ, gives the amount
of exotic energy in the universe (in our universe, this might be the dark energy). But how
do we determine what these parameters are for our universe? The answer is the cosmic
microwave background, as well as other observations. From observations of the CMB we can
extract the so called power spectrum, which tells us what the parameters are. The power
spectrum will be examined in greater detail in chapter 3. The ability of the above equations
to model universes is best demonstrated using a particular example. A good example must be
the current observations, which favour the flat ΛCDM-model, a universe dominated by dark
energy and dark matter, with ΩΛ0 > 0. In this example k must be zero, and since dark matter
and energy dominates, the radiation term is negligible:

H(t)2

H2
0

=
Ωm0

a3
+ 1− Ωm0,

where conservation of elements implies ΩΛ0 = 1 − Ωm0. When integrated over all time, the
following scale factor is the result

a(t) =
(

Ωm0

1− Ωm0

)1/3 {
sinh

(
3
2

√
1− Ωm0H0t

)}2/3

.

From this equation we see that we live in a universe that expands with a rate of a ∝ sinh t2/3,
that is, it expands faster the larger it gets. Thus, from the knowledge of what certain cosmo-
logical parameters are, one can conclude that the universe has an accelerating expansion.

2.1.2 Inflation

The ΛCDM-model has no end, but it has a beginning, the Big Bang. However, the Hot Big
Bang model introduces a couple of problems: the flatness problem, the monopole problem
and the horizon problem. It will suffice to explain the latter to understand the context. In
every universe there is a particle horizon. The horizon defines a limit of how far two points
in the universe can be separated, in order to have exchanged information some time in the
history of the universe. Consider two points, 180◦ opposite to each other on the CMB with
an observer at Earth. Last scattering occurred much closer to Big Bang than our time, so
the distance from us to the surface is almost as big as the particle horizon. Therefore the
distance between the two points is longer than the distance to the particle horizon, and the
points can not be causally connected. But the problem arises when we notice that the points
on the CMB have nearly the same temperature. How can points that have not been able
to exchange information have more or less the same temperature? The three problems were
solved with the introduction of inflation into the Hot Big Bang model. In the inflation phase,
the universe went through an extremely rapid expansion for a short period very early on the
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time line, before it continued to evolve as today. Before this phase the two points of the
horizon problem were in causal contact, and could get the same physical properties. The scale
of the universe was blown up considerably during the inflation phase, causing the physical
properties of the two points to stay the same after this phase, despite appearing to be far from
each other.

2.1.3 Isotropy and homogeneity

The universe is isotropic and homogeneous on very large scales; isotropic because it looks the
same regardless of the direction you look from one reference point, and homogeneous because
it looks the same regardless of reference point. However, this is surely not the case on smaller
scales, considering that we do have matter clumping together to form structures like galaxies.
The scalar field set up by quantum fluctuations in the inflation phase induced fluctuations
in the radiation and matter, which eventually ended up as anisotropies in the CMB and
inhomogeneities in the matter. We will take a closer look at the anisotropies in the CMB in
the next section.

2.2 The Cosmic Microwave Background

The Cosmic Microwave Background was accidentally discovered by Penzias & Wilkinson in
1965 when they were observing microwave signals at wavelengths of λ = 7.35 cm, and received
a stronger signal than expected. The energy of a CMB photon is so low, just Eγ = 6× 10−4

eV, that the discoverers first believed they found nothing more than additional noise. The
signal was isotropic and constant in time, and contributed with a temperature of 3.5 K to
the antenna. Great effort was put in finding the source of and removing the "noise", but
without success, until they were put in contact with Robert Dicke, who had predicted the
CMB theoretically. When the COsmic Background Explorer (COBE) satellite observed the
CMB in 1989, the information about it could be much more accurately measured. The CMB
was found to radiate very close to an ideal blackbody at

〈T 〉 = 2.725 K (2.4)

peaking at λ = 0.19 cm. In addition, the temperature fluctuations across the sky map were
measured at only 30 mK, that is, the background is very close to isotropic. These observations
fit neatly with the Hot Big Bang model.

2.2.1 The epoch of recombination

The background radiation we see today appeared approximately when the universe was t =
3 × 105 years old. Before this time the radiation and matter were both part of an ionized
plasma, and the universe was in an opaque state. If, for example, a hydrogen atom was
formed in this plasma, it would be dissolved again quickly by high-energy photons. Being
tightly coupled with the electron-proton fluid, the photons interacted with the electrons by
Compton scattering. This occurred as long as the scattering rate stayed above the rate of which
the universe was expanding, or in other words, as long as the mean free path of the photon
was smaller than the horizon distance. At some point in time, when the universe was cooled
down enough, significant amounts of protons and electrons could combine, making the ionized
plasma a neutral fluid. This is called the epoch of recombination. When the expansion rate
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became larger than the scattering rate, the photons could decouple and were able to move freely
without further interactions with electrons, making the universe increasingly transparent. The
point in time where most photons decoupled, is called the last scattering, and surrounding us
today is the last scattering surface from which the CMB photons have traveled freely towards
us. Recombination, decoupling and last scattering are so close in time compared to the age of
the universe, that they are often approximated as events occurring at the same time. This is
what will be done from here on, denoting it η∗2.

2.2.2 The Boltzmann equations

The primordial perturbations in the matter and radiation were predicted theoretically before
they were observed. The physics of the particles in the early universe is described by Boltzmann
equations,

df(x,p, t)
dt

= C(f),

giving statistical information about particles with momentum p passing a point in space x
per unit time t, with the collision terms on the right hand side of the equation. Since the
universe consists of many unique types of particles, a set of Boltzmann equations is needed,
and since many particles interact, the equations must be solved as a whole. The following
phrase from general relativity may be familiar: Mass tells space-time how to curve, and space-
time tells matter how to move. In other words, this phrase tells us that all the particles
set up a gravitational potential, which again influence the behaviour of the particles. In
the end, there are eight differential equations dictating the evolution of perturbations that
must be solved: two for the non-baryonic dark matter (density and velocity), two for the
baryons, one for the massless photons (no density), one for the massless neutrinos and two for
the gravitational potential (Newtonian potential and potential in the space-time curvature).
Recall that inflation initially perturbed the energy density field, and naturally it is from
inflationary theory that the initial conditions for the differential equations originate from.
We see now that the fluctuations in the radiation field and the perturbations in the matter
components influence the evolution of one another, and one must therefore include the matter
perturbations in the study of how the anisotropies in the CMB appeared.

2.2.3 The evolution of anisotropies

The perturbations in the distribution of photons as seen from a point x in space with photon
directions p̂ is denoted Θ(p̂,x). To easily distinguish between the various scales in the per-
turbations, it is customary to Fourier transform Θ into harmonic space (Fourier theory will be
covered in greater detail in the next chapter), where the perturbations now become a function
of the wave number k. This enables us to study each perturbation scale separately from all
the others. Most generally, the perturbations can be defined in terms of Legendre polynomials
Pl:

Θl =
1

(−i)l

∫ 1

−1

dµ
2
Pl(µ)Θ(µ),

where the variable µ now defines the photon propagation direction in regards to the wave
number. The smaller the angular scales of the perturbations in the temperature field as seen

2The conformal time is defined in terms of the scale factor: dη = dt
a
.
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from one point, the more coefficients Θl are needed to describe it. When there is no variation
in the temperature field, the perturbations only need to be described by the monopole moment
Θ0.

Now that a quick overview of the fundamentals has been made, it is time to discuss how
the fluctuations in the radiation field evolved into the anisotropies we observe today. We will
start with the very early perturbations that appeared before recombination. The large scale
perturbations must be separated from the small scale perturbations, which evolve differently.
Fourier modes larger than the particle horizon, super horizon perturbations, will not evolve
much, since all points on the structure can not interfere with each other. Therefore, when the
large scale modes is observed today, they look very much like they did early in the history of
the universe. When the differential equations described in the last paragraph are solved for
radiation and large scales at the time of recombination, the following relation is found:

(Θ0 + Ψ)(k, η∗) = −1
6
δ(η∗). (2.5)

Here δ denotes the perturbations in matter and Ψ the gravitational potential in the curvature.
With equation (2.5) we can directly relate the observed anisotropies in the temperature to the
perturbations in the matter. The equation informs us that for overdense regions in the matter
perturbations, the anisotropy in the temperature will be observed as cold. This contradicts
common sense, but does in fact have an explanation. Before the photons can start their long
journey towards us, they must get out of the potential well set up by the overdensity, which
causes the photons to lose energy before we observe them. In short, for large scale anisotropies,
the overdense regions are observed as cold spots on the sky, while the underdense regions are
observed as hot spots. The phenomenon is called the Sachs-Wolfe effect.

Smaller scales enter the horizon earlier than large scales, that is, as the horizon gradually
gets bigger, larger and larger scales end up inside the horizon and causal physics can begin to
act. When the density becomes large enough, the perturbations will start to collapse under
their own gravity and at the same time create an overpressure that halts the collapse. The
perturbations are then dissolved, causing an underpressure which reinitiates the collapse. In
such a way, the perturbations create acoustic oscillations. The modes enter the horizon at
different times, and the fluctuations on these scales at the time of recombination will vary
accordingly. Before recombination, the last scattering surface was much smaller than the
horizon, due to the short mean free path of the photons. When the photons all originate from
points close to the observer, the photons must be in thermal equilibrium, and the anisotropies
are dominated by the monopole moment Θ0. In addition, we must account for the dipole
moment Θ1 caused by our movement relative to the photons, where the photons behind us
appear as colder than those in front (Doppler shift). Other moments of the perturbations
can not be observed in the opaque fluid, except for the quadrupole moment Θ2 from photon
diffusion, which has a small nonnegligible effect. When the Boltzmann equations are solved for
each of these moments and the resulting equations combined, the perturbations will manifest
themselves as alternating high and low peaks in k space with a dampening at small scales,
corresponding to the physical description above.

The early evolution of the perturbations affects how they look when observed today. Right
after recombination the anisotropy photons can move freely towards us, but are influenced by
some other effects prior to arrival. The potentials between us and the last scattering surface
are not constant, since there still is a transition between radiation dominated universe and
matter dominated. Later, the dark energy starts to have its influence on the potentials. The
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wells created by these potentials can cause the photons to loose or gain energy, according to
how they vary in time. If the well gets smaller while the photon is caught in it, the photon
gains energy. If it increases, the photon loses energy. When the photons originated from a
non-varying potential well at the time of recombination, it was called the Sachs-Wolfe effect.
The influence of time-varying wells after recombination is called the integrated Sachs-Wolfe
effect. Also, last scattering happened early in the history of the universe, and the photons
have used quite some time to reach us. During this time the universe expanded, and stretched
the photons. With the knowledge of every influence to the photons, the most pristine form
of the power spectrum is now known. The cosmological parameters each have an additional
effect on how the power spectrum looks, making it possible to read their values by finding
deviations from its predicted form.



Chapter 3

CMB analysis

The microwave radiation is registered with a radio antenna on a satellite or on the ground
(preferably with a balloon), and is pointed in every direction on the stellar vault. As mentioned
in the last chapter, the first satellite to observe the CMB, the COBE, achieved some remark-
able discoveries that eventually made it to the Nobel prize in physics in 2006. The COBE
was launched in 1989 with the goal of measuring the primordial radiation in our universe. It
carried three instruments: the Diffuse InfraRed Background Experiment (DIRBE), the Dif-
ferential Microwave Radiometer (DMR) and the Far InfraRed Absolute Spectrophotometer
(FIRAS). The DMR instrument was the first to observe the anisotropies in the CMB [13],
and the FIRAS instrument showed that the CMB radiates very close to an ideal blackbody
[10]. Its successor, the Wilkinson Microwave Anisotropy Probe (WMAP) (figure 3.1), carried
microwave instruments that could measure the full sky with higher accuracy and resolution,
but will soon be succeeded by Planck, to be launched in July 2008.

Figure 3.1: A concept image of the Wilkinson Microwave Anisotropy Probe (WMAP) in orbit around
the second Lagrangian point. Courtesy NASA / WMAP Science Team.
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The radio sensors carried on the satellites register hot or cold regions on the sky depending
on the direction it is pointed. Before any physical analysis is performed, the signal data of
the CMB over the full sky is visualized on a spherical flat surface (see figure 5.1(a) on p. 36),
just like when the Earth is shown on a flat surface (Mollweide projection). The color coding
on the map represents the registered temperature fluctuations from the mean temperature
given in equation (2.4), but in CMB theory we adjust the scale such that the mean becomes 0.
Red areas represent hot regions, and the blue areas represent cold regions. This chapter will
describe how realizations of the CMB is generated from theory, discuss the power spectrum
and how it is extracted from the CMB data and look at phenomena that complicates our
observations of the CMB.

3.1 Overview

Current inflationary models predict that the very initial perturbations during the inflation
phase are Gaussian distributed, which means the small temperature fluctuations in the CMB
are Gaussian distributed. This is very advantageous since we then can make use of the
statistical properties of that distribution in the analysis of the data. The density curve of a
Gaussian distribution peaks at the mean µ, and since the frequency of occurrences on each
side of the mean is the same, it is neither skewed to the left nor right. To measure the spread
of the data we use the standard deviation σ. If the spread is small, the deviation from the
mean is small, and the curve falls off quickly. If the spread is large, the deviation from the
mean is large, and the curve falls off slowly. The probability density function of Gaussian data
is

P (x) =
1√
2πσ

exp
(
−(x− µ)2

2σ2

)
,

where x is the data which here represents the temperature fluctuations. With this function
the probability of a specific temperature value can be calculated. Gaussian distributed data
have certain characteristics that will be utilized throughout the thesis.

The CMB map is the stage of data representation prior to any physical analysis of the
data. Real CMB data can consist of very large data sets, and an effective method of data
representation is therefore desirable. In the analysis of this thesis, observations of the CMB
will be simulated. When the distribution of the physical system is known, several simulations
by random sampling from the distribution can be performed through the Monte Carlo method.
The Monte Carlo method is simply a stochastic numerical process which repeats an algorithm
a given number of times. The results from each simulation are averaged over the number
of simulations, and an accurate measurement of the system with an estimation of the error
can be achieved. To understand how to make a simulated CMB map from theory, we must
start simple and work our way upwards. The correlations in the field of the background are
complicated, and the principles of correlations and the most implicit method of simulating
it will first be explained. In the end we will see a quicker method of simulation, and extend
what we have learned to the sphere.

3.2 Simulating correlations

We begin with a two dimensional grid, where each grid point is one unique pixel. The previous
section showed that the temperature fluctuations in the CMB are Gaussian distributed. This
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will be the starting point when random data is now created for making a simple field in
IDL with equal variance in all pixels. The idea behind the program is simple: make an
N × N grid, take random numbers from a Gaussian distribution and insert them into each
grid point. In figure 3.2(a) you find the grid visualized. Light areas correspond to positive
numbers, and dark areas to negative numbers. This of course coincides with hot and cold
areas on the CMB map, but the created grid in the figure bears no resemblance to a CMB
map at all. Because of the physical processes that initially generated the perturbations in the
background, the temperature in the different pixels are correlated. According to statistical
theory, the correlation between two random variables is

〈xixj〉 = Cijσ
2,

where Cij is the correlation matrix given by

Cij = ξ(|xi − xj|). (3.1)

Here ξ is the two-point correlation function for an isotropic field (i.e. random variables drawn
from a distribution aiming for isotropy), which depends on the norm of the relative distance
between the two random variables xi and xj . If an element of the matrix is 1, then xi and xj is
the same number, and a number closer to zero means less influence between the two variables.
Since the correlation matrix must explain the relation between each and every variable in the
entire N ×N grid, the dimension of Cij becomes N2 ×N2.

The correlation function [9]

ξ =
sin kr
kr

with constant wave number k will be used as an example for generating structures, where
r = |xi − xj | is the distance between the two variables. The tricky part here is to find the
distance r, but this can be done by using the indices of the matrix. A very small grid will be
used to illustrate how to find the distance r. Consider the 2× 2 grid

0 1
2 3

with the associating 4× 4 correlation matrix

C = cij =




c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33


 .

The correlation matrix gives the correlation value between each pixel i and j, but if the
correlation function is to be used, one need the coordinates of these two pixels in the grid. To
find a variable’s position y along the horizontal axis we take the index modulu1 the size of the
matrix, and to find the position z along the vertical axis we take the floored index divided
by the size. This is followed by taking the difference between the y coordinates and the z
coordinates of the variables, and eventually using the well-known

r2 = ∆y2 + ∆z2.

1Modulu is the remainder after a division between the involved numbers.
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For the 2×2 example grid, let us find the distance between pixel 0 and 3. The coordinates for
pixel 0 is y0 = i mod N = 0 mod 2 = 0 and z0 = b j

N c = b0
2c, and similarly the coordinates

for pixel 3 is y3 = 1 and z3 = 1, that is a distance of r =
√

(y3 − y0)2 + (z3 − z0)2 =
√

2. To
successfully draw a correlated map using Cij , we must take the Cholesky decomposition2 of
the matrix

C = LLT , (3.2)

while finalizing with a matrix multiplication between the resulting lower triangular matrix L
and the Gaussian distributed grid x:

x
′
= Lx, (3.3)

This is possible since the correlated pixels are linked to the correlation matrix through
Cholesky decomposition. To see this, let 〈x′ix

′
j〉 be the correlated pixels, and xi and xj the

uncorrelated ones. The discrete form of equation (3.3) is

x
′
i =

∑

k

Likxk,

and inserting this into the expression for correlated pixels yields

〈x′ix
′
j〉 =

∑

k

〈x2
k〉LikLjk.

The statistic 〈x2
k〉 is the variance, and the rest of the sum is the discretized Cholesky decom-

position, such that
〈x′ix

′
j〉 = σ2Cij .

The resulting correlated map is drawn figure 3.3(a). As previously indicated, the correlation
matrix has a dimension N2×N2, and in addition the Cholesky decomposition requires O(N3)
operations. Thus, using this method to create a CMB map is bad when one is dealing with a
real CMB map and large N . To wait longer than the lifetime of the universe is not preferential,
so another method will be considered.

3.3 Fourier transformation

An intelligent way of avoiding the computation intensive Cholesky decomposition is to start
out in Fourier space. In real space the pixels have complicated correlations, but in Fourier
space there are no correlations between them. It is therefore computationally convenient to
generate the correlations in Fourier space. Before continuing, we must first know what Fourier
transformations are all about.

3.3.1 Fourier theory

Any function f(x) can be transformed into a sum of many sinusoidal functions in the frequency
domain. The transformation results in a Fourier series, whose terms are given different weights
according to importance, e.g.

f(x) =
∑

k

ck cos kx+
∑

k

dk sin kx,

2If a matrix is symmetric and positive-definite, it can be decomposed into a lower triangle matrix and the
transpose of the lower triangle matrix.
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(a) (b)

Figure 3.2: (a) Visualization of the uncorrelated two dimensional field with 106 pixel points. The
result is as expected with no sign of structure whatsoever. (b) The histogram of the grid values clearly
indicates that the values are Gaussian distributed as they should be.

(a) (b)

Figure 3.3: When nearby pixels are correlated, they form structures as shown here. Figure (a) is a
visualization of the correlated two dimensional field using Cholesky decomposition (3600 pixels), while
figure (b) is a visualization using Fourier transformation (106 pixels). Since the latter uses less CPU
time than the former, it allows higher resolutions.
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where ck and dk are the weights. A Fourier transformation is a generalized Fourier series, and
is useful when faced with functions on an infinite interval. A Fourier transformation is carried
out by finding the Fourier transform of a function f(x):

f̃(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx, (3.4)

where its inverse is
f(x) =

1√
2π

∫ ∞

−∞
f̃(k)eikxdk.

Extending the Fourier transform in equation (3.4) into 2D space, we have

f̃(k) =
1
2π

∫
f(x)e−ikxd2x.

The frequency space collects the information in the original data in a different manner, which
makes it easier to separate signal from noise, allowing measurements otherwise difficult in the
spatial domain. One application might be easy removal of unwanted signatures in the signal
and, if necessary, inverse transformation back to the original function with the unwanted sig-
natures removed also in the spatial domain. In cosmology, Fourier transformation can simplify
our equations significantly. While variables in regular space are dependent on each other, they
are not in Fourier space3. The dependency is limited to the individual size and orientation
of the variable, and thus each mode k in Fourier space may be dealt with individually. For
example, consider the temperature fluctuations in the CMB. In the spatial domain, all the dif-
ferent looking fluctuations are located randomly across the sky, where only the distance from
other fluctuations determine how they look. When a Fourier transformation is performed, it
is possible to keep all fluctuations of a certain mode separate from all the other modes, and
information about those kind of fluctuations is more easily measured. The resulting plot of
the structures in the frequency domain is known as the power spectrum (see section 3.5).

3.3.2 Fourier transformation of the 2D field

Just like with the field based on Cholesky decomposition, an uncorrelated Gaussian distributed
grid is first created, but this time there is no statistical properties through a correlation
function. Therefore, the random Gaussian distributed pixels must get a realistic variance. The
power spectrum is the variance of the temperature fluctuations, and since inflation predicts
a power spectrum that goes like P (k) ∝ k−3, that value will be used as variance. After the
creation of the uncorrelated Gaussian distributed grid, now complex due to being in Fourier
space, there is another fact that must be implemented in the program. The spatial domain
describing each temperature pixel on the sky map has N values, but when a transformation to
harmonic space is made, each pixel will be described by the real and the imaginary part of the
complex number, giving 2N values. Therefore, there will be some superfluous information,
here by half of the matrix being the complex conjugate of the other half. It is easier to see
how if a one dimensional example is first considered. The discretized Fourier transform is

f̃j =
∑

n

f(xn)e−i 2π
N

nj , j = 0, 1, . . . , N − 1. (3.5)

3This is true only if the variables do not depend on location, that is, if the correlation matrix Cij only
depends on |x− y| and not on x and y individually.
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Here the wave number has been replaced by k = 2π
N j, j is each pixel point in Fourier space, n

is each pixel point in regular space and N is the number of pixels. Using equation (3.5), the
relation

f̃−j =
∑

n

f(xn)ei
2π
N

nj = f̃∗j

is found for −j, and the relation

f̃N−j =
∑
n

f(xn)e−i 2π
N

n(N−j) =
∑

n

f(xn)ei
2π
N

nj = f̃∗j

for N − j. In the last relation we have used that

e−i2πn = cos(2πn)− i sin(2πn) = 1

according to periodicity. The first relation tells us that f̃0 is real, and the second relation that
all elements have a complex conjugate in the other half of the one dimensional array, except
f̃ = N

2 which is real. In a similar fashion we get the following relation in a two dimensional
grid:

f̃(N − jx, N − jy) =
∑
nxny

f(nx, ny)ei
2π
N

((N−jx)nx+(N−jy)ny)

=
∑
nxny

f(nx, ny)e−i 2π
N

(jxnx+jyny) = f̃∗(jx, jy).

Note particularly that
f̃(0, 0) =

∑
nxny

f(nx, ny)

and
f̃

(
N

2
,
N

2

)
= ±

∑
nxny

f(nx, ny)

both are real. Finally, after adjusting according to the rules above, we take the inverse fast
Fourier transform to get the correlated map. Now that each mode k has the correct signal or
amplitude from the start, when transforming "back" to the spatial domain, the temperature
fluctuations are correctly distributed too. Figure 3.3(b) shows the resulting map with this
method. Using fast Fourier transforms instead decreases the number of operations to only
O(N2 ln2N), which is much more satisfactory than the O(N3) operations one had when using
Cholesky decomposition to make the correlated map.

We have now seen the underlying physics of the correlations between the temperature
fluctuations in the background, and how to simulate this process on a sky map. A straight-
forward method of simulating correlations was first considered, before it was shown how it can
be more effectively done by using Fourier space. Summarized, making realizations of CMB
maps progresses as follows:

• Create Gaussian distributed data in Fourier space with a variance P (k) that describes
the physics of our universe.

• Perform an inverse harmonic transformation of the map.

Now it is time to extend this theory to the spherical domain.
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3.4 Simulation on the sphere

3.4.1 Fourier transformation on the sphere

When analyzing the temperature fluctuations, we divide the full sky into grids or pixels, and
assign a temperature value Ti to each. The temperature fluctuations have a relative deviation
from the mean of

∆T (θ, φ)
〈T 〉 =

T (θ, φ)− 〈T 〉
〈T 〉 ,

but since the mean 〈T 〉 is zero by definition, the deviation is simply

∆T (θ, φ) = T (θ, φ).

The temperature fluctuations measured in each and every direction on the sky must be visu-
alized on a spherical surface. The end result of extending the past theory onto the sphere
results in

T (θ, φ) =
∑

lm

almYlm(θ, φ),

where Ylm is the spherical harmonic function and alm is the Fourier coefficients, given by

alm =
∫
Ylm(θ, φ)T (θ, φ)d cos θdφ, (3.6)

or on discretized forms,

Ti =
∑

lm

almY
i
lm (3.7)

and

alm =
∑

i

TiY
i
lm. (3.8)

The coefficients alm measure the amplitude or intensity of the spots at each individual scale
on the map. When the transformation (3.7) is used, the coefficients are summed over many
different spot orientation and sizes, which together give a total description of how the map
looks at the pixel i in question. The index l, the multipole moment, describes the size of the
spots, while m describes the orientation and location. Note that l ∈ [0, lmax] and m ∈ [−l, l].
The angular diameter of the spots on the sky map becomes smaller for larger multipoles
according to

∆θ =
π

l
.

Let us now see the connection with the discussion in the last two sections. The equivalent of
the Fourier coefficients f̃ is the coefficients alm, the equivalent of scale k in two dimensions is
scale l, and in addition we get the extra variable m in the spherical domain. The temperature
pixels Ti are correlated, but the alm coefficients are not. The fluctuations in the temperature
are now generated by drawing a set of alm coefficients from a Gaussian distribution with
variance Cl, the spherical representation of the power spectrum.
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3.4.2 Hierarchical Equal Area isoLatitude Pixelisation (HEALpix)

A spherical surface is usually projected onto a two dimensional surface with a method called
Mollweide projection. The projection enables you to see the whole sphere in one go, where a
familiar analogy is this type of projection of the world map. Pixelating a square surface into
equally sized pixels is a simple matter, but splitting up a sphere in the same manner is more
problematic. One of the solutions lies in HEALpix (developed by Górski et al. [14, 1]), which
is the most used method for representing the CMB data on the sphere in CMB analysis today.

HEALpix divides the pixels into 12 basic diamonds of equal area with center points lying
on one of three latitudes, spaced equally from each other (see figure 3.4). Each of these
diamonds are infused with smaller diamonds if a higher resolution is desired. The resolution
of a HEALpixelated map is defined by the parameter Nside, which is the number of pixels
along one of the sides of one of the 12 basic pixels. The lowest resolution possible is Nside = 1,
i.e. one pixel along the side of a basic pixel. The formula for finding the number of pixels in
a map of a certain resolution is

Npix = 12N2
side,

since maps with the most basic resolution has 12 diamonds and the number of pixels in
each basic diamond is N2

side. This also means that only an Nside of 2n is allowed, where
n = 0, 1, . . . ,∞. The resolution limits the details we are able see, so it is no point in using
a large l for a small Nside. In any case, too large l might give a wrong map out of the alm’s,
since the information about the smallest scales will manifest themselves on the larger scales.
For a given Nside it is common to use a maximum l in between 2Nside and 3Nside. If the lowest
lmax in this interval is used, the map can be reconstructed to numerical precision, while the
highest can not reconstruct multipoles in the interval completely.

Figure 3.4: Using HEALpix, the Mollweide projected sky map is divided into 12 basic diamonds of
equal area. When the resolution is increased, each basic diamonds is split into smaller diamonds as
seen on the three small maps to the right. The first with Nside = 2, the second with Nside = 16 and
the third with Nside = 512.
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3.5 The power spectrum

What one is eventually interested in is the physics of the universe, not where all the spots
are located and what form they have. The exact positions of the temperature fluctuations
are entirely random, and not dependent on the physics that generated the fluctuations. How-
ever, the underlying distribution function is dependent on the cosmological parameters, and
therefore it is possible to find the cosmological parameters by looking at the variance

〈alma
∗
l′m′ 〉 = δll′ δmm′ 〈Cl〉

of the spots at each scale. Here δ is the Kronecker delta function, and Cl the power spectrum
that gives us this information. To estimate the variance statistic, a sample with many obser-
vations is needed, thus the equation for the power at each scale is averaged over all m across
the full sky:

Cl =
1

2l + 1

l∑

m=−l

alma
∗
lm. (3.9)

The power spectrum tells on what scale l the signal is strongest, that is on what scale most
fluctuations or structure is found. It is common to plot l(l + 1)Cl instead of Cl, due to the
large influence of the Sachs-Wolfe effect at low l.

We shall now take a closer look at a simulated power spectrum. Using IDL, a program
that creates a given number of universes with the Monte Carlo method has been developed.
The program uses the create_alm function in the HEALPix environment. The output of the
function is an array with alm values up to a defined lmax (i.e. a CMB map) based on the
theoretical best fit Cl. Finally, the alm values are used to calculate a mean power spectrum.
The best fit to the first year observational data of WMAP has been used to create the last
mentioned power spectrum, together with theoretical calculations and some educated guess,
a method called Likelihood analysis.

Figure 3.5 illustrates a number of plots outputted by the program. The first plot shows the
mean Cl of the simulated maps on top of the best fit. They compare very well to one another
due to the large number of simulations. Another way of checking if the simulations are correct
according to observations is used in the second plot, where the best fit power spectrum is
subtracted from the mean power spectrum for low l. A curve centered around y = 0 means
the simulated data matches the theoretical data with some error, and a curve centered at
another value than y = 0 means the values divert. In our case the curve jumps slightly above
and below 0, which means that the data is similar. Note that there are bigger deviations for
the smallest l’s (large scales). The next three plots show how the power spectrum for a fixed
value of l varies for each realization. It is apparent that there are most deviations for large
scales. The sixth plot shows an extreme decrease in variance after the very first values of l. All
plots tell us that the simulations are less accurate for low values of l, but why is it so? When
the scale is large there are less alm coefficients to average over according to equation (3.9),
producing a larger inaccuracy in the final Cl for that scale. This is called cosmic variance.
The largest scale describes our complete universe, and for that scale there is only one sample
available in the distribution describing our universe. As the scales get smaller, there are more
and more samples available. The more samples used to describe the fluctuations at a certain
scale, the more accurate the simulation at that scale becomes. The last three histograms for
three different scales show how a Gaussian shape appears when more samples are available.
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Figure 3.5: The analysis of the mean power spectrum of 100 simulated universes. The first plot is the
mean Cl plotted on top of the best fit Cl. In the second plot the best fit power spectrum is subtracted
from the mean power spectrum. The third, fourth and fifth plot show the power spectrum values for
all simulations at l = 10, l = 100 and l = 500. The sixth plot is the variance of the power spectrum
at each scale, and the last three plots are histograms for the three fixed l.
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Statistically, this is described by

σ2
x̄ =

σ2

n
,

where σ2 is the population variance. We see that more samples n is needed to reduce the
variance σ2

x̄ of the sampling distribution.

3.6 Noise, beam and the pixel window

The anisotropy temperature readings are modified by environmental conditions and instru-
mental properties. Noise on the sky map may be caused by strains on the instrument or by
other sources of noise like heat and atmospheric noise (for ground-based instruments). Instru-
mental limitations are also important to consider, like the limits to the detail level we are able
to see in the CMB.

3.6.1 Noise

If the background radiation of each pixel i is si, then the noise is simply added to this value
to get the measured temperature value:

Ti = si + ni.

The noise n is Gaussian distributed with a mean value of 〈n〉 = 0, and a variance 〈n2〉 = σ2.
It is a good approximation to assume ideal noise, which has no correlations between each noise
pixel4, giving the noise correlation matrix

N = 〈ninj〉 = δijσ
2 (3.10)

between pixel i and j, where δij is the Kronecker delta function. As noted in the last section,
the variance of Gaussian distributed data may be reduced by collecting many observations, if
the data is changing from each observation. We are interested in finding the effective variance
〈n2

eff〉 = σ2 to back up this fact. When the noise of all the observations is summed up, we get
the effective noise

neff =
1
N

∑

i

ni.

Squaring the effective noise yields

〈n2
eff〉 =

1
N2

∑

i

∑

j

〈ninj〉,

which becomes

σeff =
σ2

N2

∑

ij

δij (3.11)

4Some experiments might induce larger correlations between noise components than others. The WMAP
and Planck satellites collect data in different ways, such that the noise correlations in the Planck data will be
larger than the correlations in the WMAP data. The noise correlations in the WMAP data can be ignored
due to the high signal-to-noise ratio at low l and insignificant effect at high l [15]. For polarization, however,
the signal-to-noise ratio is much smaller, and correlations must be taken into account also for WMAP.
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when recalling from equation (3.10) that each noise pixel is not correlated. Equation (3.11)
can now be reduced to

σeff =
σ2

N
,

showing that the total variance is decreased the larger N is. For simplicity the same noise
variance σ has been used for all pixels, but in reality this is not true. Consider WMAP orbiting
around the second Lagrangian point. The variance changes according to distance from the
sun, but also when the satellite crosses some of the same points from earlier orbits. The
latter is an additional observation, and reduces the variance significantly. Figure 3.6 shows
the difference between a mean map created after 1, 5 and 100 observations, visualizing what
was deduced in the last paragraph.

(a) N=1 (b) N=5 (c) N=100

Figure 3.6: Three sectional maps of Nside = 512 with noise of constant standard deviation σ = 100.
The effect of noise can also be seen on the power spectrum (the best fit Cl is the solid line), where
the small angular scales have more power. When the number of simulations is increased, less noise is
observed on the map and the amplitude of the power spectrum decreases.

3.6.2 Beam

The telescope cannot be pointed at just one single point, but observes a finite solid angle at a
time. This is the instrumental beam, and limits the resolution it is possible to obtain with the
telescope. In the case of radio telescopes the beam function often has a near Gaussian profile,
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and its width is defined by the full-width at half maximum5 of the beam function. The beam
causes each pixel on the sky map to smear outwards in all directions from the pixel, canceling
out the small scales. The measured temperature value with the beam function B is

T beam
i = TiB,

or for all pixels,

T beam(θ, φ) =
∫
T (θ

′
, φ

′
)B

(
|(θ, φ)| − |(θ′ , φ′)|

)
d cos θdφ. (3.12)

Like noise, the beam should be incorporated in our program, so that the simulated data
includes more of the effects observations would produce. Adding the beam numerically pixel
by pixel like in equation (3.12) is computationally very heavy, and it is thus reasonable to
generate alm coefficients containing the beam. The coefficients for a beam with a Gaussian
profile is

aB
lm = alm exp

(
−l(l + 1)

σ2

2

)
, (3.13)

where

σ2 =
FWHM2

8 ln 2
is the width of the beam. It is important to avoid a pixel size that surpasses the beam
size, since information that can be resolved will be lost. The instruments in WMAP have
a beam size of 14′, allowing a minimum pixel size of 1.6 × 10−5 radians. This would hold
785399 pixels on a sphere, corresponding to a map with Nside = 256. However, the size of
the beam is measured at its FWHM, which means that the beam is actually a bit larger than
14′. Therefore Nside = 512 would be more appropriate. As already noted, it is the beam that
limits the scales that it is possible to resolve, thus using a resolution any larger than this would
make computations heavier than necessary. Figure 3.7 and 3.8 show the effect of a beam for
Nside = 128 and Nside = 512 using this formula, accompanied with an illustration of how the
power spectrum changes after adding a beam.

3.6.3 The pixel window

Information about the smallest scales is forfeit when the information contained in each alm

coefficient is converted to a pixel on the sky map. Each pixel can only be one-valued, so the
temperature is averaged for each pixel. This is of concern if we want to convert the map back
to alm coefficients, where we would have observed the power spectrum converging towards
zero at large l. Infinite pixels would have demanded infinite computing power and hard drive
space, making it desirable using the so called pixel window function Wl(Nside) to solve the
problem. A window function is a form of filter, and has similar effects on the map as a beam.
The window function is zero outside a given interval in real space, and when another function
is multiplied with it, only the parts defined within the interval gets through, hence the window
name. The pixel window function applies a controlled smoothing to each pixel. The factor
must be applied to either the alm coefficients or the power spectrum Cl before the conversion
commences, and must be inversely applied again after converting back from the map to get

5Full-width at half maximum (FWHM) is the distance from half the maximum at one side of the maximum
of a Gaussian function to half the maximum at the other side.
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(a) Maps (b) Cl plot

Figure 3.7: The effect of an artificial beam of 1◦ on a sky map with resolution Nside = 128. The
upper sky map has no beam added, while the lower has beam added, and a noticeable smooth out is
visible. When the structures are smoothed out, the smallest scales gets wiped out. The rightmost plot
illustrates how the power spectrum, due to this fact, is degraded for large l.

(a) Maps (b) Cl plot

Figure 3.8: When the beam is smaller, it is possible to resolve smaller scales. This sky map with a
resolution of Nside = 512 has been artificially applied a small beam of 14′. See figure 3.7 for details.
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the original alm’s back again. The pixel window function is a function of Nside, since we need
less smoothing for higher resolutions, which can contain more pixels with more information
about the temperatures.

3.7 The foregrounds

The best parts of the frequency spectrum to observe the background is the area where it
dominates, namely the range 30 to 150 GHz, as pictured in figure 3.9. Both COBE and
WMAP observed the sky within this range; COBE centered at three frequencies (31.5, 53 and
90 GHz) and WMAP centered at five (23, 33, 41, 61 and 94 GHz)6 [2]. Unfortunately there
are many other sources in the universe emitting radiation at the same frequencies as the CMB.
The objects are all in between us and the background, and contaminate it with alien signals7.
This has caused an extra headache for cosmologists, and great effort has been put in filtering
out the signals. Ways of dealing with the challenge is to observe at frequencies and at sky
locations with less contamination. But these are not final solutions when lots of information
is overlooked, and after all, no frequency nor location comes contamination free. Some pixels
can be used for information retrieval after foreground reduction techniques have been applied
to the map, but for other pixels this will not work.

Figure 3.9: Even the frequency domain where the CMB predominates is not free from foreground
emission (the emission shown here mainly originates from normal galaxies). The five channels of
WMAP are marked at the top [5].

The spectra of the foreground emission sources are different from that of the CMB, which
makes it possible to use observations from several frequencies to extract the background emis-
sion from the signal. Observations of the five separated frequencies of the WMAP mission was
used to determine what signals belonged to CMB and what signals came from other sources.
However, some sky locations are so full of contamination that foreground reduction cannot be
performed satisfactory, and retrieving information from the CMB in these locations is hope-
less. This class of contaminants are extragalactic or originates from the Milky Way galaxy.

6Planck will measure the full sky in nine frequency bands, centered at 30, 44, 70, 100, 143, 217, 353, 545
and 857 GHz. This will enable a full sky map of all anisotropies over all frequency channels [3].

7The foregrounds are also a very important source of information for cosmologists, although, in a CMB
analysis context, the foreground is unwanted.
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The temperature contribution from these points are dealt with by applying a mask on the
affected pixels, so that they do not impact the power spectrum. A mask is simply a map
with zeroes for the pixels to be removed and ones for those we do not want to remove (see
figure 3.10). When pixels are removed their contribution to the total amplitude on all scales
is reduced. This is illustrated for three maps with very large masks and their power spectrum
in figure 3.11, where the largest reduction occur for the largest mask. Most contamination
comes from the Milky Way galaxy, and this is where the largest mask, the galactic cut, is
found on maps from observations. Finding the cut-off point for the galactic cut is not an easy
task as the galactic plane has decreasing intensity the further you get from its center. Here
one must achieve a fine line between filtering out the galactic contamination and keeping as
many pixels belonging to the CMB as possible. It is common to make a set of different mask
maps where different intensity cut-off points have been chosen, so that the level of cut-off can
be easily adapted to the analysis performed.

The microwave emission from the galactic plane has many origins. The most prominent are
free-free emission (bremsstrahlung), synchrotron emission and dust radiation. Free-free and
synchrotron emission is prominent in the lower part of the spectrum, and emission from dust in
the upper part, as can be seen from figure 3.9. The free-free emission is caused by free electrons
being slowed down by ions, such that a photon is emitted. Synchrotron emission originates
from cosmic ray electrons in supernova remnants or from diffuse electrons around the galaxy,
where ultrarelativistic electrons are caught spiraling in a magnetic field, emitting photons
while being accelerated in the field. The spectrum from synchrotron emission varies according
to several factors (such as number density, magnetic field strength, energy loss etc.), and the
effect will therefore vary greatly according to the frequency at which the CMB is observed.
Thermal emission from dust also originate from locations with star formation processes, and
as such, can be found in many of the same areas as synchrotron radiation. Thermal emission
radiates significantly in the infrared and the microwave part of the spectrum, but dust can
also emit microwave photons due to spin and thermal fluctuations.

Since many of the extragalactic sources are also galaxies, we can expect some of the same
radiation from these as from the galactic plane. However, this group of contaminants contains
mostly radio sources like radio galaxies and quasars, rather than normal galaxies like the
Milky Way galaxy. These extragalactic sources are point sources that occupy just a few pixels
on the sky map, but there are also larger extragalactic sources, like the Coma Cluster. The
Coma Cluster is a source of the Sunyaev-Zeldovich effect. When a CMB photon passes the
hot gas in the galaxy cluster, it Compton scatters off the hot electrons, causing a frequency
shift that lowers the temperature readings. The next chapter will discuss how the point source
contaminants are detected and removed.
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Figure 3.10: An example mask map with a value of zero at the contaminated pixels.

(a) Northpole cut (b) Northern hemisphere cut (c) Anti-southpole cut

Figure 3.11: Three maps with three different mask sizes, show how the power spectrum is reduced
when less pixels contribute to its amplitude.



Chapter 4

Point source detection and the wavelet
technique

Before masks can be applied on the point sources, they must be located. The point sources
occupy just a few pixels, are scattered randomly across the sky map and are mostly found at
the smaller angular scales. Detecting the point sources in the temperature data has become
a more and more important part of CMB analysis. The COBE had too low resolution to
resolve any point sources, while the WMAP data was contaminated by a few. Planck will
resolve an even greater amount, calling for methods with the ability to locate point sources
more efficiently than the methods used on the WMAP data.

The point sources can be detected by determining their flux compared to the CMB directly
from the sky map as is, an approach used on the WMAP data. However, if the map is applied
with wavelets, the flux of the point sources can be enhanced so that they stand out from the
CMB. There are two types of point sources, resolved and unresolved, and different procedures
are used to detect them. This chapter will explain how point source detection is performed
for both the resolved and the unresolved point sources, and what the wavelet technique is and
how it is used.

4.1 Point source detection

4.1.1 Resolved point sources

The resolved point sources can be filtered by looking at their total flux, which is generally
larger than the flux of the CMB. The method involves using a fixed σ limit, i.e. a factor of the
standard deviation of the data. When filtering out the point sources using this method, there
will always be some pixels falsely identified as point sources, as some pixels of the background
do have a larger flux. According to Gaussian statistics, 68 % of the observations x happen to
have a deviation less than ±σ from the mean 〈x〉, 95 % of the data the values |x− 〈x〉| < 2σ,
99.7 % the values |x− 〈x〉| < 3σ, and so forth. The flux of the point sources does not fall on
the lower tail of the temperature distribution. Therefore, if 3σ is used as filtering limit, 0.15 %
of the data outside the limit will belong to the CMB. In other words, if an Nside of 64 is used,
∼ 74 out of 49152 pixels will be identified as point sources and removed even though they are
not all point sources. Figure 4.1 illustrates this using a plot of the flux at each pixel for a
small sky map containing three point sources. The number of falsely identified point sources
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Figure 4.1: The flux values at each pixel for a small sky map with just 12286 pixels, i.e. Nside = 32
(note that the small sky map is used for illustrative purposes), where 3 point sources have been added
(see marked pixels). The largest threshold has localized two point sources, while a third is considered
to be coming from the CMB. A threshold of 3σ localizes all point sources, however, a handful of pixels
originating from the CMB is falsely identified as point sources.

must be kept as low as possible, and the total number of located true point sources as high
as possible. If, on the one hand, too many false point sources are removed, the background
at these points is ignored, and the cosmological parameters will get larger uncertainties. On
the other hand, if too few true point sources are removed, the estimation of the cosmological
parameters will be wrong. The last section in the previous chapter revealed that observations
of the CMB is performed on several frequency channels. Since the flux of the point sources
vary more between each channel than the flux of the CMB, the point sources can be separated
more easily from the CMB by performing detections on some or all of the channels. The
problem with false point sources is therefore near negligible when analyzing real CMB data.
In this thesis, however, only one channel has been used, and thus the false point sources must
be taken into account.

A quite similar approach to the above was used to detect point sources in the WMAP
data. In the WMAP analysis, a list was first made of all pixels larger than a flux limit of 5σ
in all frequency bands WMAP operates. If any of these pixels were found in any other band
with a flux larger than 2σ, they were also added for that band in the list. After detection of
the resolved point sources from the data, the detections were cross-checked against existing
catalogues of known radio and infrared sources. If the angular position of the point sources
in the WMAP list corresponded well with the sources from the surveys (within two times
the beam size), they were identified as true point sources. The first year analysis of the
WMAP data revealed 208 point sources [5]. After cross-checking with the catalogues, 203
of the detected point sources had counterparts, where all of the counterparts were found in
the catalogues of radio sources. Since the remaining 5 point sources were found close to the
5σ threshold, they were assumed to be spurious, which was consistent with the predictions
made by Gaussian statistics. Thus no point sources were found without a known counterpart.
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According to a later paper [23], the 203 sources were found to be 141 quasars, 42 galaxies
or active galactic nuclei, 19 BL Lac-type objects and the IC418 nebula. After more accurate
results had been obtained when three and five years of observations had been concluded, the
number of resolved point sources was adjusted to 323 [15] and 390 [24] respectively.

4.1.2 Unresolved point sources

Point sources that are not above the defined standard deviation threshold of the CMB are
called unresolved point sources, and have a flux near the peak flux of the CMB. Finding
these point sources is more tricky, but one can use the statistical properties of the data to get
knowledge about their amplitudes. The CMB is Gaussian distributed, but the point sources
destroy the Gaussian distribution. This deviation from Gaussianity can be measured by using
the third and fourth order moments of the distribution, known as skewness and kurtosis. It
is not possible to tell which pixels are contaminated by point sources, but one is be able to
know the amount of point sources or their amplitudes. When a model for the amount of point
sources or the amplitudes of the point sources has been determined, one can compensate for
the deviation, and thereby get a more correct power spectrum.

The skewness statistic is a measure of how asymmetric the data is, and is defined as

S′ =
1

Nσ3

∑

i

(Ti − 〈T 〉)3,

where the variance is defined by

σ′2 =
1
N

∑

i

(Ti − 〈T 〉)2.

Positive skewness signifies a distribution with a tail towards the right, and negative skewness
signifies a distribution with a tail towards the left. Gaussian distributed data has no skew,
and naturally the skewness for such data is 0. Kurtosis is a measure of the peakedness of the
data, and is defined as

K ′ =
1

Nσ4

∑

i

(Ti − 〈T 〉)4.

Positive kurtosis signifies that the data quickly falls off from its peak value (sharp peak), and
negative kurtosis signifies that the data falls off slowly from its peak value (flat peak). The
temperature mean is zero, so the above equations become a bit simplified:

S =
1

Nσ3

∑

i

T 3
i (4.1)

K =
1

Nσ4

∑

i

T 4
i − 3, (4.2)

where
σ2 =

1
N

∑

i

T 2
i . (4.3)

The kurtosis for Gaussian distributed data is 3. Therefore, a normalization factor has been
included in the last term of the equation for kurtosis, so that the relative deviation from the
Gaussian distribution is illustrated more conveniently.
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The deviation of the power spectrum due to the amplitudes of the unresolved point sources
is found by performing a χ2 minimization. The χ2 minimization determines how well the data
xi from n observations, with standard deviation σi, fit a given model mi, and is given by

χ2 =
n∑

i=1

[
xi −mi

σi

]2

.

The accuracy of the χ2 minimization is better if many statistical moments are used. In this
thesis, the skewness and kurtosis for a given amplitude A are the models, and the skewness
and kurtosis for an unknown amplitude are the data. The χ2 statistic is then:

χ2(A) =
n∑

i=1

[
Sobs

i − Smod
i (A)

σS,i

]2

+
n∑

i=1

[
Kobs

i −Kmod
i (A)

σK,i

]2

. (4.4)

The amplitude where χ2 is at its minimum is the amplitude that fits the data best. Finally,
the power spectrum of the model with this amplitude is subtracted from the modelled power
spectrum with no amplitude, and the correction applied to the observed power spectrum.

4.2 Wavelets

4.2.1 Wavelet theory

The first work on wavelet theory was done in France during the 1980’s [12, 7, 17], and was
first used in CMB analysis by Forni and Aghanim in 1999 [11], who developed statistical
tools for finding non-Gaussianity in signals and later applied it in a cosmological context [4].
This recent research show that attempting to search for non-Gaussianity in regular space
does not give as good results as going through wavelet space. In the isotropic field of the
background, isotropic non-Gaussian signals are not better to look for in wavelet space, but
for non-isotropic signals, like point sources, wavelets give better results. The idea is to use
wavelets to enhance the scales where the point sources are located, and in that way find more
of them. Since the wavelet transformation is a linear process, the Gaussian properties of the
CMB are preserved. Before we can continue applying this method for our use, it is necessary
with a basic understanding of what wavelet analysis really is.

Wavelet analysis compares well to Fourier analysis. In Fourier analysis, a function or a
signal of a continuous variable (usually time or space) is represented as a sum of waves localized
in frequency space or harmonic space. In wavelet analysis, the wave is replaced with a wavelet1.
While a wave oscillates with an amplitude distributed over all points, the wavelet’s energy is
concentrated around one point (illustrated in figure 4.2), and contrary to a Fourier series, a
wavelet enjoys good localization properties in both the original space and in frequency space
at the same time. Wavelets are highly configurable, and are scaled and translated through a
mother wavelet. This is the one of the main sets of characteristics defining a wavelet. The
mother wavelet ψ(x) is defined through the continuous isotropic wavelet transform of a signal
f(x), given by

w(R,b) =
∫

dxf(x)
1
R
ψ

( |x− b|
R

)
.

1The word wavelet is in fact a light mix between English and French, where the last syllable means small,
i.e. wavelet means a small wave.
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The isotropic wavelet is spherically symmetric, and can therefore be used anywhere on the
sphere without changing its properties. The variable b translates the wavelet, making it
possible to change the position we want to look at, while R scales (not to be confused with the
scale l) the wavelet, which can be varied to change the detail level or resolution of a certain
position. This feature makes wavelet analysis useful for non-periodic phenomena and local
events, such as the localized point sources and their lack of following a pattern on the sky
map.

(a) Sinus wave (b) Mexican hat wavelet

Figure 4.2: Waves and wavelets in real space.

4.2.2 The Spherical Mexican Hat Wavelet and Spherical Needlets

This thesis will compare the efficency of two types of wavelets, the Spherical Mexican Hat
wavelet (SMH wavelet) and Spherical needlets. Previously only the SMH wavelet and Sphercial
Haar wavelets have been used in the search for non-Gaussianity. Due to the isotropic features
on the sphere and good performance of the SMH wavelet over the Haar wavelet, the SMH
wavelet was until recently considered to be the better wavelet for detecting non-Gaussianity
[6, 19], but needlets are showing promising additional features that make them a possible
candidate for succession [18]. The mathematical details of the SMH wavelets will now be
briefly examined. The mathematical groundwork of needlets, though, is more complex, but is
thoroughly derived in the paper by Marinucci et al. [18].

The SMH wavelet is a spherical version of the more known flat Mexican Hat wavelet
(pictured in figure 4.2(b)):

ψ(x;R) =
1

R
√

2π

(
2− x2

R2

)
exp

(
−1

2
x2

R2

)
. (4.5)

Since we are dealing with spherical data, extending the Mexican Hat wavelet to the sphere
is necessary, but this has been a hard issue to solve. In 1998, Antoine and Vanderheynst
proposed using a stereographic projection on the sphere [19], a method that conserves the
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basic properties of the Mexican Hat wavelet. The projection gives the SMH wavelet

Ψ(θ;R) = N
4

(1 + cos θ)2
ψ

(
x

R
=

2
R

tan
θ

2

)
,

where

N =
1
R

(
1 +

R2

2
+
R4

4

)−1/2

is the normalization constant and ψ(x) is the flat Mexican Hat wavelet defined in equation
(4.5). When the theory for the continuous Spherical Mexican Hat wavelet is discretized, it
is deprived of some of the properties of a wavelet. One of the disadvantages is that we no
longer can inversely transform the sky map after the wavelet has been applied. However,
this is a handicap for some applications, but not for locating the point sources. While other
wavelets used for point source detection have to be stereographically projected onto the sphere,
the needlets are by definition spherical, and can make use of the properties of a sphere. The
disadvantage noted above therefore does not apply to needlets. Needlets are also more friendly
towards numerical adaptation, since the starting point is in the spherical domain.

The SMH wavelet is defined for a large range of scales, but is more localized on some scales
in multipole space than on others. In this way, information of other scales are not lost, though
it is harder to find the point sources on the scales where the wavelet is less localized. Needlets,
on the other hand, have an exact localization on all scales they are defined. Needlets are more
scalable than the SMH wavelet, since they consist of a wide range of mother wavelets. The
SMH wavelets only have one underlying mother wavelet. In multipole space the SMH wavelet
is therefore defined by one variable R, which scales the wavelet, and needlets defined by two
variables, one variable a that defines how the mother wavelet looks and one variable j that
scales it (see figure 4.3). Translation occur when the wavelet is applied to different locations
on the sphere. There is a relation between the two variables a and j for needlets, and the
multipole l of which the wavelets are defined. The lower limit of this range is

lmin = aj−1,

and the higher limit is
lmax = aj+1, (4.6)

where a > 1. The smaller this range is, that is when a is small, the more sharply the wavelet is
localized in spherical harmonic space, but at the same time it becomes harder to localize it in
spherical space. The exact opposite case applies for a large range or when a is large, where the
wavelet is sharply localized on the sphere, while being harder to localize in spherical harmonic
space. The phenomenon is easier to understand when considering its analogy to Heisenberg’s
uncertainty principle2.

A wavelet can be compared to the effect of a beam of a certain scale on the map, though
wavelets are artificially applied to the map for filtering out different scales. Because of this sim-
ilarity, the alm coefficients after the wavelet has been applied is calculated in the same manner
as in equation (3.13), however, the Gaussian beam is replaced by the multipole representation
of the wavelet gs

l of scale s:
awavelet

lm = almg
s
l . (4.7)

2Heisenberg’s uncertainty principle states that when a particle is sharply localized in space, it is less localized
in momentum space. When it is sharply localized in momentum space, it is harder to locate in momentum
space.
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Figure 4.3: Needlets in pixel space. The value of j determines the scale of the wavelets. For a = 1.59
of scale j = 14 (top left panel) and a = 1.2 of scale j = 37 (top right panel), j is a high value, so the
wavelets are small. For a = 1.59 of scale j = 9 (bottom left panel) and a = 1.2 of scale j = 25 (bottom
right panel), j is intermediate, so the wavelets are larger. In harmonic space, from top left to bottom
right, the needlets are defined for l ∈ [415, 1049], l ∈ [709, 1021], l ∈ [41, 103] and l ∈ [79, 114]
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In figure 4.5(a) and 4.6(a), an SMH wavelet with R = 7.5′ and a needlet with a = 1.59
and j = 14 have been plotted in harmonic space. When the wavelets are applied to the
power spectrum in figure 4.4, the interesting scales are enhanced and the uninteresting are
damped. The power spectrum after the SMH wavelet transformation is shown in figure 4.5(b),
where the largest scales have been thoroughly damped, but not completely. The SMH wavelet
is known for this "leakage" at large scales [18], but this does not constitute a problem for
needlets, as seen in figure 4.6(b). The large scales are affected by cosmic variance and make
a greater contribution to the temperature, thus the point sources may be more notable with
needlets. Furthermore, a large peak can be seen at smaller scales, but the needlet transformed
power spectrum is more localized in harmonic space than the SMH wavelet transformed power
spectrum.

Figure 4.4: The power spectrum Cl after 10 simulations, now with a greater amplitude at the small
scales caused by the point sources. The best fit Cl is the solid line.
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(a) gl for R = 7.5′ (b) Cl after transformation

Figure 4.5: Wavelet transformation of the power spectrum in figure 4.4 with an SMH Wavelet of
scale R = 7.5′. Figure (a) is the wavelet in multipole space gl, while figure (b) is the power spectrum
after the transformation. The large scales have been notably damped, while the small scales have been
enhanced.

(a) gl for a = 1.59/j = 14 (b) Cl after transformation

Figure 4.6: Wavelet transformation of the power spectrum in figure 4.4 with a needlet with a = 1.59
and j = 14. Figure (a) is the needlet in multipole space gl, while figure (b) is the power spectrum
after the transformation. The large scales have been fully damped, while the small scales have been
enhanced.



Chapter 5

Method and implementation

5.1 Problem

The previous chapters have illustrated how the point sources contaminate the signal from
the CMB at small angular scales. Some of the point sources are hard to separate from
the temperature variations, and can give large errors in the estimates of the cosmological
parameters. It is desirable to get better measurements of the cosmological parameters by
detecting as many point sources as possible. Our primary goal is to improve the methods of
point source subtraction, and to achieve that a comparison will be made of the efficiency of
no wavelets, Spherical Mexican Hat wavelets and needlets applied to CMB maps.

5.2 Implementation of resolved point source detection

The source code for the detection of resolved point sources in Appendix A.1 allows tweaking
of several variables, however, some variables will be fixed throughout the analysis. In the
simulations, Nside = 512 will be used with lmax = 1080. The resolution is a good compromise
between high resolution and effective code, and in addition, WMAP resources can be more
easily implemented. It will be assumed that at this resolution a sky map will contain 2000
resolved and unresolved point sources. WMAP detected 323 resolved point sources at the 5σ
level1, and to achieve about the same amount of detections with our program, the intensity of
the point sources must be maximum I = 65σcmb, where σcmb is the standard deviation of the
temperatures. The intention is to compare the efficiency of the wavelets, and even though the
intensity and the number of point sources may not be true to reality, they will nevertheless
be identical for the subjects to be compared.

5.2.1 Without wavelets

The first part of the program simulatesN sky maps with the Monte Carlo method for retrieving
an accurate estimate of the variance of the maps by using equation (4.3). A beam taken from
the V band (61 GHz) of WMAP is added in the process (this beam includes the pixel window
function), while noise is not simulated to begin with. The noise adds additional complications
to the detection of point sources by affecting the small angular scales. The simulation uses

1The 5-year analysis of the WMAP observations was released after the simulations in this thesis commenced,
and therefore the 3-year analysis was used as reference.
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(a) Without point sources

(b) With point sources

Figure 5.1: A single simulation of a sky map before (a) and after (b) point sources have been added.
Note the increase in sky temperature in the magnified illustration from a maximum of 316 µK to 501
µK.
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(a) No mask (b) Mask

Figure 5.2: The smoothing of pixels surrounding the point source adds additional false point sources.
When a point source is detected, it is therefore covered with a mask that reduces the number of false
detections. Figure (a) shows the map without mask, while figure (b) shows the map with mask after
detection at the 5σ level. Only one point source has high enough flux to be detected at this level
(bottom left).
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the existing create_alm, alm2map and map2alm functions in the HEALpix package. The first
function makes random alm coefficients from the best fit Cl, and the two latter functions
transform back and forth between map and alm coefficients. After the beam has been applied
to the map, the standard deviation is calculated from a sum over all pixels and simulations.
Extra transformations between the map and the alm coefficients are performed at the point
in the code where the point sources will be added in a second Monte Carlo loop. To avoid
computational differences, the transformations must be performed an equal number of times
for the calibration of the variance and during the detection of point sources.

In the second Monte Carlo loop, following the calculation of the standard deviation of
the simulations, the point sources are added to random locations on the map (see figure 5.1).
The flux and the position of the point sources are taken from a uniform distribution with
values between zero and a defined maximum limit. Realistically their intensity is distributed
differently, but a uniform distribution is a sufficient approximation for comparison of the
detection rate. The position is limited to the dimensions of the sphere, θ ∈ [0, π] and φ ∈
[0, 2π], while the intensity is limited to the maximum intensity I = 65σcmb. To be able to
distinguish between real point source detections and false detections, the location of all the
point sources are saved. The point source detection may now commence. If the flux of a
given pixel is larger than a desired factor of σcmb, the program checks if the location of this
pixel corresponds to the location of a point source. The number of true detections is counted
together with the number of false detections for all the N simulations. The final detection
numbers are averages over the number of detections for each simulation.

The beam adds some complications. When the beam is applied to the map, it averages
the temperature in each pixel over the temperatures in the nearby pixels. Thus, for each true
point source, a series of extra false point sources is created, which are not associated with the
false point sources predicted by Gaussian statistics. A pixel larger than the defined threshold
might be a byproduct of a nearby point source, that is, the pixel may not necessarily be the
point source itself. Therefore, the program checks which of the surrounding pixels within a
chosen radius around the detected pixel has the largest temperature, before a mask is applied
around the pixel. If any other true point sources are found within the radius, the mask is
removed at their pixel locations, so that they may be counted and their surrounding pixels
masked when the program checks their locations. A larger mask than necessary for each pixel
combined with many detections can result in too much of the background ignored. The beam
is slightly larger than its FWHM, so with a mask size of 28′ we should get all the extra false
point sources without exaggerating the size of the mask2. Figure 5.2 shows one part of the
sky map before and after masks have been applied to the point sources.

The interpretation of true point source detection, false point source detection and extra
false point source detection should be emphazised. A true detection means a point source
in the temperature map, a false detection means that the detected point source originates
from the background and an extra false detection means false point sources created by the
smoothing of a true or false point source. Summarized, the simulations described in this
section proceed as follows:

• A first Monte Carlo loop simulates N CMB maps with beam, and calculates their stand-
ard deviation.

2It is difficult to determine the size of the WMAP beam, but the effective size of 21′ has been assumed
throughout the thesis [2].
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• A second Monte Carlo loop makes new simulations of maps, and adds the point sources
to random locations on the sphere with flux up to a defined maximum intensity.

• Point source detection is performed within the loop. All true and false detections are
counted, and a mask is put at the locations of the true point sources to avoid counts
from extra false point sources.

• The point source counts are averaged over all simulations.

5.2.2 With wavelets

When the program in Appendix A.1 is run with wavelets it works in a similar fashion as
without wavelets, and the same parameters will be used as before. This time, however, the
temperature map is filtered with a wavelet prior to calculating the standard deviation and
checking what pixels are above the threshold. The wavelet generation subroutines for the
Spherical Mexican Hat wavelets and needlets are developed by Frode K. Hansen.

Both the SMH wavelets and needlets have been implemented in the same program, and the
choice of wavelet type, mother wavelet and wavelet scale can be selected by a single parameter
each. The large angular scales are not interesting in this setting, since the point sources affect
the small scales. Therefore, for the SMH wavelet, the scale of the wavelet will be limited
to about 20′ depending on what scale is most efficient at detecting the point sources. The
smallest scales must also be avoided, as there is no purpose with a wavelet size smaller than
the pixel size. The smallest possible size of the SMH wavelet is slightly less than the pixel
size of 6.81′, so we will choose 5′ as the smallest angular scale. Needlets reach larger scales at
small j for all a and at all values of j for large a, and thus we can expect small j and large a
to be less efficient at finding point sources. Smaller scales than the chosen lmax for needlets is
not allowed, as seen from equation (4.6).

When wavelets were not applied to the map, a fixed mask size was used on the point
sources. If many extra false point sources are present during point source extraction from real
observations, a larger percentage of the sky map will be masked. In order to compare this
effect between the different wavelets, a dynamic mask has been introduced. Since the level of
smoothing changes with each mother wavelet and wavelet scale, a unique mask is required for
each wavelet to be able to remove all the extra false point sources. The mask size is selected
by finding the radius at which the value of a wavelet transformed single pixel is reduced by
90 %. Outlined, the dynamic mask is created as follows:

• Add one pixel to an empty map, and apply the wavelet on it.

• Check all values in the map, and create a mask from all surrounding pixels that is larger
than 10 % of the original pixel.

• Calculate the radius of the mask from the total area of the pixels.

Certain needlets, however, generate more troughs and peaks in pixel space than the SMH
wavelet, due to the bad localization properties in pixel space when localization in harmonic
space is good, as mentioned in the last chapter. The above code for determining the mask
will make a smaller mask than required when there are many troughs less than 90 % the flux
of the single pixel in between the peaks, as illustrated in figure 5.3. The needlets therefore
receive an additional 10 % to the size of the mask.
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Figure 5.3: The size of the dynamic mask is determined from the area of all surrounding pixels larger
than 10 % the size of a wavelet transformed pixel. The left panel is a single pixel transformed with
the needlet a = 1.096259 of scale j = 75, while the right panel shows all pixels larger than 10 % its
size. The bad localization properties of the needlet generates troughs that make the calculation of the
mask harder.

(a) No mask (b) Mask

Figure 5.4: (a) A sky map filtered with the SMH wavelet of scale R = 7.5′. The flux of the point
sources is enhanced, and they are more easily detected. (b) The map after the mask has been applied
to point sources detected at the 5σ level. The apparent point sources that were not detected without
wavelets in figure 5.2 are now detected.
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Figure 5.4 is a visualization of the map after transformation with the SMH wavelet. The
figure shows how the transformation elevates the point sources, and the better ability of the
SMH wavelet to locate them. Maps transformed with two types of needlets are illustrated in
figure 5.5. One of the wavelets generates many waves on the sphere, while the other generates
less. Also some of the false point sources above the threshold create a series of extra false point
sources. This did not constitute a significant problem without wavelets. Since the background
generally has lower flux than the point sources, the effect is less extensive. A mask size 40 %
the size of the mask for the true point sources will be used for the false point sources, which
have been tested to get most of the extra false point sources.

5.3 Implementation of unresolved point source detection

The code for detecting the unresolved point sources in Appendix A.2 is based on the code
for the resolved point sources, but this time no direct point source detection is performed in
the code. The first Monte Carlo loop, used for determining the standard deviation of the
sky maps earlier, is this time carried out for calculating expected skewness and kurtosis using
equations (4.1) and (4.2). The data from this run will be used for generating confidence levels
for the skewness and kurtosis of the CMB wavelet maps. A larger number of simulations than
earlier is needed before these statistics stabilize at their theoretical values, since the confidence
intervals for skewness and kurtosis can only be calculated from many distributions of pixels.
In the second Monte Carlo loop, the point sources are added to the maps, and the skewness
and kurtosis are once again measured. The data from the simulation of CMB maps with point
sources will then be compared to the theoretical confidence levels to detect any deviation from
Gaussianity.

Before any detection of unresolved point sources is performed in CMB data, the located
resolved point sources are masked out, and do not contribute to the amplitude of the tem-
perature map any more. Therefore, for the simulation of detecting deviations caused by the
unresolved point sources, the maximum intensity of the point sources have been reduced to
I = 35σcmb. With this intensity there are almost no point sources with amplitude above the
5σ level of the temperature.

The χ2 statistic in equation (4.4) is used to find the deviation to the power spectrum
caused by the unresolved point sources. The formula is summed over several wavelet scales
(corresponds to the observations n in the equation) to get as much information about the
deviation as possible. The χ2 minimization finds the deviation that best compares to the
deviation of the observations. First, an attempt will be made to find an analytical model for
the skewness and kurtosis for different point source amplitudes. If an analytical expression
is not found, the models will be simulated and their mean will be used in the equation. For
simplicity, the simulated observations the model is compared with will have point sources with
a constant intensity of I = 20σcmb.

5.4 Introducing noise in the analysis

Section 3.6.1 in the chapter about CMB analysis illustrated how instrumental noise affects the
observations of the CMB. To make the comparison of the point source detection performance
more realistic, the noise should be added in the analysis. The noise is present on the small
angular scales, and since the point sources are also found on these scales, the noise should



42 Method and implementation

(a) No mask (a = 1.096259, j = 75) (b) Mask (a = 1.096259, j = 75)

(c) No mask (a = 1.35483, j = 22) (d) Mask (a = 1.35483, j = 22)

Figure 5.5: Figure (a) and (c) are sky maps after transformation with two different needlets. The
needlet with a = 1.096259 generates more troughs and peaks on the sphere than the needlet with
a = 1.35483. A much larger mask is therefore needed for the first mentioned needlet, as seen in figure
(b) and (d), but the code is not able to get all the extra false point sources for the first case. The
smaller masks seen in figure (b) is the 40% masks used on the false sources.
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naturally complicate the detection of the point sources. This analysis will simulate the effective
noise from the V band of WMAP. The standard deviation of the noise as observed by WMAP
in this channel at each point on the full sky is visualized in figure 5.6. The standard deviation
in each point varies according to how many times WMAP has observed that point on the full
sky, and many observations reduces the standard deviation. For each simulation and each
pixel on the full sky, a random number from Gaussian distributed data, with the standard
deviation of that pixel in the noise map, is drawn and added to the map. Since the standard
deviation of each noise pixel is different from the others, a unique standard deviation for each
pixel will need to be calculated, rather than a total standard deviation for the complete map.
This also means that we will have to use more simulations before the standard deviation
converges towards the correct value. The skewness and kurtosis statistics in the unresolved
analysis, however, are dependent on the complete distribution, so the standard deviation for
this analysis must be calculated as before.

Figure 5.6: The RMS noise map from the V band of WMAP.WMAP has performed most observations
in the ecliptic poles, and in rings around 141◦ from the poles, where the standard deviation is at its
lowest. Few observations have been performed in the ecliptic plane and in the positions of planets (the
small circular masks), which contaminate the CMB signal [15].



Chapter 6

Results

The results chapter is divided into three main parts. The first section compares the perform-
ance of the SMH wavelet and needlet for the resolved point sources, and section 6.2 will test
their performance for the unresolved point sources. Both the two first sections of the analysis
deal with less complicated noiseless sky maps, but the last section will add noise for a more
realistic approach, and some of the tests done in the two first sections will be performed again.

Before the results presented in this chapter were generated, the code went through a thor-
ough consistency and bug check. One very important consistency check was the correctness
of the number of false and true detections. The number of false detections must coincide with
the number of false detections predicted by Gaussian statistics. Due to the extra false point
sources, the true point sources were removed from the map before the accordance with Gaus-
sian statistics was checked. The consistency of the true point sources was tested by varying
all actuating parameters. It was especially important that the applied mask did not hinder
true point sources to be detected, as this would have given fewer true detections than one is
supposed to find.

6.1 Detection of resolved point sources

6.1.1 Without wavelets

Table 6.1 and 6.2 list the results for the run with no wavelets applied to the map with N = 10
and N = 100 respectively, where N is the number of simulations. It is apparent that a
confidence limit of 3σ yields too many false detections to be reliably used. If the 3σ level was
used on real observational data, where true and false point sources cannot be distinguished, the
number of pixels masked out (removed from the map due to the point sources) would be very
large, which again would lead to bigger uncertainties in the estimation of the power spectrum.
Both the 4σ and 5σ levels, however, are good candidates. The first gives a larger number
of detected sources, while the latter gives practically no false detections, but at the expense
of true detections. It is pointless using a larger threshold than 5σ, when the contribution
from false point sources has already nearly vanished. The number of false detections stabilizes
around the number predicted by Gaussian statistics when the number of simulations rise. The
predicted numbers for the 3σ, 4σ and 5σ levels are 4250, 100 and 1 respectively. The number
of false detections for the 4σ case has a slightly higher value than predicted, but this is only
due to the chosen seed, and it stabilizes more when N is increased a bit further. Throughout
the analysis, 100 simulations will be maintained for final data, while 10 simulations will be
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used to get quick overviews. The histogram in figure 6.1 illustrates how the pixels get larger
temperatures when point sources are present.

# of true # of false % masked
3σ 954 3778 1.6
4σ 618 78 1.0
5σ 310 0.5 0.5

Table 6.1: The number of true and false detections for three thresholds for N = 10. Level 3σ yields
too many false detections, but the 4σ and 5σ levels can be used. The percentage of the map ignored
by masking out the detected point sources is also shown.

# of true # of false % masked
3σ 959 4306 1.6
4σ 614 101 1.0
5σ 309 1 0.5

Table 6.2: The number of true and false detections for three thresholds for N = 100, where the
number of false detections has become more stabilized around the predicted value. See table 6.1 for
details.

6.1.2 Spherical Mexican Hat wavelets

From this point results are focused on the 5σ level. The efficiency of each scale for the SMH
wavelets is plotted in figure 6.2(a), where scales from 5′ up to 15′ have been tested. The best
scale is the peak of the curve, which lies around R = 7.5′. At this scale 1425 true point sources
are detected, a lot more than detected without wavelets. The percentage of the pixels in the
map covered with a wavelet mask for this scale is 2.7 %. Figure 6.2(b) shows the associated
number of false detections, which is ∼ 1 for R = 7.5′. From the figure it is apparent that
the number of false detections increases with the scale. The false sources contributing to this
count are due to extra false sources near true sources smaller than the threshold. When the
wavelet takes an average over pixels near each other on the map in these cases, the extra false
sources are averaged larger than the threshold, while the true sources are not. The program
could have counted such cases as true sources, but there are not many of them and they only
have an effect were the number of true detections is smaller. The finer plot around R = 7.5′ in
figure 6.3 reveals no significant change in the number of detected point sources, but R = 7.32′

is slightly better with 1426 true detections.
If the different scales discover different point sources, several scales could be combined

to reach a larger number of true point source detections. However, the number of unique
detections for each scale is negligible, as seen in table 6.3. The table lists the mean number of
unique pixels detected compared to those detected by the scale R = 7.5′. The total number
of unique detections is even smaller than the sum of these numbers, since other scales also
have some equal detections. In a finer search for unique pixels around R = 7.32′, the number
of equal detections between all scales is larger.
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Figure 6.1: The solid line pictures a histogram of a sky map with point sources added, while the
dotted line is a clean sky map with no foreground. The pixels with point sources added increases the
temperature for some pixels, as can be seen by the difference in the frequency at the peak temperature
and the longer tail.

(a) True detections (b) False detections

Figure 6.2: The number of true (a) and false (b) detections after wavelet transformation with the
SMH wavelet for selected R values after 100 simulations. The small scale R = 7.5′ is best with around
1425 true detections and 1 false detection.
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Figure 6.3: A finer plot of the number of true detections around R = 7.5′. The best result of 1426
true detections is achieved with R = 7.32′.

R count R count R count R count R count R count
6′ 0.2 8′ 2.6 9.5′ 0.9 11′ 0.5 12.5′ 0.2 14′ 0.2

6.5′ 2.1 8.5′ 1.8 10′ 0.7 11.5′ 0.3 13′ 0.2 14.5′ 0.2
7′ 4.4 9′ 1.2 10.5′ 0.7 12′ 0.2 13.5′ 0.1 15′ 0.1

Table 6.3: The average number of unique detections after 10 simulations for each scale compared to
R = 7.5′ is small. If the other scales are compared to each other, the total number of unique detections
becomes even smaller.

6.1.3 Needlets

As seen in chapter 4, needlets come in many variations. The mother wavelet is changed
by varying the parameter a, while the scale of each of these mother wavelets is changed by
varying the parameter j. A selection of the tested needlets from a = 1 to a = 2 are listed in
table 6.4. All the needlets are of the smallest possible scale j, which almost always detects
most point sources. The discrepancy here is for very small a, where the difference between
each scale is so small that statistical variation occurs. At first glance, the table tells us that
mother wavelets which do not allow lmax to reach its highest value, detect fewer point sources.
Furthermore, the highest number of detections is seen for a = 1.09898, which detects 1741
true point sources. However, for the most part, smaller a means a greater number of false
sources. Recall that the dynamic mask was introduced because of the changing number of
extra false point sources between the different wavelets. For needlets, the mask was increased
by an additional 10 %. Even with this increase the code does not manage to catch all the
extra false point sources when the number of peaks and troughs generated by the wavelet in
pixel space gets larger with a. Nevertheless, the mask in these cases is already so large that
too much of the background is removed. How this works out will become more apparent in
the next section, when the performance of the best needlet is simulated without knowledge of
the locations of the true point sources, and with a mask size comparable to the size used on
real observations.

As long as lmax is not too small, needlets perform better than the SMH wavelet for all
mother wavelets approximately in the range 1.02 < a < 2.0. The observations in table 6.4 are
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a j lmin lmax # of true # of false % masked
1.001 6387 1077 1080 414 7068 81
1.01 700 1049 1070 1361 3317 80
1.02 351 1023 1065 1538 2277 70
1.03 235 1009 1070 1620 1424 57
1.04 177 995 1076 1667 1413 48
1.05 142 972 1072 1697 1269 42
1.062 115 951 1073 1720 1064 35
1.07 102 928 1063 1609 154 31

1.07016 102 943 1079 1733 755 31
1.08 80 874 1019 1660 511 27

1.08069 89 924 1079 1737 1234 28
1.09 80 905 1075 1738 838 24

1.09898 73 894 1080 1741 582 21
1.1 72 869 1051 1708 287 22

1.1961 38 754 1079 1689 45 10
1.2 37 709 1020 1642 7 11
1.3 25 543 917 1595 8 10

1.308 25 629 1076 1678 24 9
1.4175 19 534 1073 1670 2 5
1.5 16 438 935 1590 1 6

1.50812 16 475 1080 1649 2 6
1.5922 14 423 1071 1618 1 6
1.7 12 343 990 1544 14 3
1.71 12 366 1069 1586 25 3
1.7896 11 337 1079 1574 9 3
1.886 10 302 1074 1554 4 4
1.9 9 170 613 571 11 3
2.0 9 256 1024 1490 2 4

Table 6.4: Number of true and false detections for a selection of needlets at their smallest possible
scale j, together with their associated lmin, lmax and mask size, averaged over 10 simulations. See
figure 6.4, 6.6 and 6.5 for plots of these numbers.
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a j lmin lmax # of true # of false % masked
1.001 6387 1077 1080 414 7068 81
1.0101 694 1058 1080 1362 3342 81
1.01987 354 1038 1080 1544 2681 68
1.0288 245 1020 1080 1610 1723 56
1.03939 178 999 1080 1668 1419 47
1.0497 143 980 1080 1698 958 41
1.06376 112 954 1080 1726 1021 34
1.07234 99 939 1080 1733 1111 30
1.08164 88 924 1080 1739 1189 28
1.09244 78 905 1080 1742 796 24
1.11163 65 874 1080 1738 259 18
1.1532 48 812 1080 1711 220 14
1.20178 37 748 1080 1688 31 10
1.24392 31 698 1080 1678 231 9
1.30818 25 631 1080 1680 25 9
1.35483 22 588 1080 1680 6 7
1.39459 20 555 1080 1677 3 5
1.44428 18 518 1080 1667 2 6
1.50812 16 475 1080 1649 2 6
1.54735 15 451 1080 1637 1 6
1.593 14 425 1080 1623 2 6
1.6469 13 398 1080 1608 15 5
1.7113 12 369 1080 1592 26 3
1.78972 11 337 1080 1575 9 3
1.88692 10 303 1080 1557 3 4
2.01067 9 267 1080 1525 1 4

Table 6.5: Number of true and false detections for a selection of needlets with lmax reaching 1080.
These numbers are the dashed lines in figure 6.4, 6.6 and 6.5. The discrepancy in the number of true
point source detections for a = 1.24392 is due to the low number of simulations.
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more evident in figure 6.4, where all the true detection counts of each mother wavelet in the
table have been plotted. Especially notable are the dips in the plot. These are caused by the
mother wavelets that can not reach lmax = 1080, as can be seen by the nice correspondence
with the dips in figure 6.5, which is a plot of the associating lmin and lmax for each a. The
dashed line in the figures illustrates the same case for only values of a that can reach the
smallest scales (given in table 6.5), and thereby the largest numbers of true detections. The
number of false detections, plotted on a logarithmic scale in figure 6.6, sinks drastically to
start with before it settles. Some increase in between can be observed, which is caused by the
mentioned deficient mask.

Figure 6.4: The solid line is a plot of the number of true detections of the needlets in table 6.4. The
dips in the figure are the needlets which do not reach the largest possible lmax. The dashed line is the
same plot for the needlets in table 6.5, which are all defined up to the largest lmax.

In figure 6.7 you find a finer plot around the scale that was determined best from table
6.5 and figure 6.4. The best scale here is a = 1.096259 with a slightly better count of 1744
true point sources. Now that the mother wavelet and scale which gives the best number of
true detections for needlets is known, its performance for each j should also be looked at.
This is shown in table 6.6 and figure 6.8. The number of true detections increases quickly
and steadily from j = 62. The number of false detections, however, does not start to grow
significantly before j = 74. At high j, the amplitude of the peaks and troughs the wavelet
generates on the map is greater (see figure 6.9), and in addition the code presented in chapter
5 makes a smaller mask than necessary. Thus, a greater number of surrounding pixels pass
the 5σ threshold, and cause the sudden increase in the number of false detections seen in the
plot. If the false detections become a problem when the code is tested on the case where the
locations of the point sources are unknown, it may be reasonable to use a slightly smaller j,
if they perform better than for values of a where the number of false detections is small for
the largest j.



6.1 Detection of resolved point sources 51

Figure 6.5: The associated lmax and lmin for the needlets in table 6.4. The dips are located at same
a’s as in figure 6.4, confirming that smaller lmax results in fewer detections.

Figure 6.6: The associated number of false detections for the needlets in table 6.4. See figure 6.4 for
details.
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(a) True detections (b) False detections

Figure 6.7: Finer plots of the number of true (a) and false (b) detections around a = 1.09898 averaged
over 100 simulations. The best scale is a = 1.096259 with 1744 true detections.

(a) True detections (b) False detections

Figure 6.8: The number of true (a) and false (b) detections at all scales j for the best needlet
a = 1.096259 averaged over 100 simulations. The number of false detections increases rapidly in terms
of j later than the number of true detections. The increase is due to the greater amplitudes of the
peaks and troughs the wavelet generates at high j, and more of the surrounding pixels then pass the
threshold. The numerical values for the higher j can be found in table 6.6.
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j lmin lmax # of true # of false % masked
69 518 622 914 14 28.2
70 568 682 1180 12 31.3
71 622 745 1358 18 28.9
72 682 820 1414 21 26.1
73 745 899 1474 25 24.2
74 820 985 1606 91 22.3
75 899 1080 1743 657 22.7

Table 6.6: The detection rate for the highest values of j for the needlet with a = 1.096259. The data
has been plotted in figure 6.8

Figure 6.9: Needlet a = 1.096259 of scale j = 75 (left panel) and j = 70 (right panel) with maximum
at 5σ, that is, the pixels shown in red are above this threshold. When j = 75, more of the surrounding
pixels pass the 5σ threshold than when j = 70, and lead to a greater amount of false point sources.
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For the SMH wavelet it was checked if the different scales detected different point sources,
but there were not many unique detections between the scales. The case might be different for
needlets. Needlets are more sharply defined in multipole space, and the detections at lower j
might contain many differences from those at the highest j. Table 6.6 shows that a = 1.096259
has l ∈ [899, 1080] for j = 75, and l ∈ [745, 899] for j = 73. That is, every other j covers
completely different scales. The results from table 6.7, however, clearly indicate that there is
not much to obtain from using different scales. Since other needlets cover the same interval in
multipole space for all j, it is satisfactory to only test the different scales of the best needlet
against each other.

j count j count
69 0.5 72 7.1
70 2.4 73 8.4
71 5.9 74 12.1

Table 6.7: The average number of unique detections after 10 simulations for the highest values of
j for a = 1.096259 compared to j = 75. The number of unique detections is slightly higher than for
the SMH wavelet, but also here the total number of unique detections becomes smaller when each
individual scale is compared.

6.1.4 Unknown point source locations

Until now it has been assumed that the positions of the point sources are known, and thus it
has been possible to distinguish between true and false point source detections. With a correct
count of the number of true point sources detected, a precise way of comparing the ability of
each wavelet to enhance the point sources was possible. A dynamic mask was used on the
different wavelets to take the extra false detections into account, which varied a lot between
the wavelets. When point source detections are performed on real data, however, the point
source locations are not always known. It will now be assumed that the point source locations
are unknown, and therefore any pixel larger than the threshold is masked out. Even though
the location of the true point sources are not supposed to be known, the number of incorrect
discoveries will still be kept track of to get a measurement of the performance level. Note that
the incorrect detection count is now the number of wrong detections within the total count
of detections. When point source detection is performed on real data, it is the beam mask
that is used to remove the point sources from the map. The mask size will be kept at a fixed
size comparable to the size used in the WMAP analysis [24], that is, two times the size of
the beam (42′). This means that some wavelets will have many incorrect detections, but it is
more important to detect and remove the true point sources that can give wrong estimates of
the power spectrum.

The needlet previously found to have the best number of true detections was the first
applied to the sky map, and the results can be viewed in table 6.8. As expected, the best
needlet generates so many troughs and peaks in pixels space, such that the the true detections
drown in false detections. The 42′ mask is too small for needlets that require large masks (i.e.
needlets with high a and high j), which is the main cause for the large number of incorrect
detections. The code blindly chooses the first largest pixel it detects within the radius of the
mask. Smaller true point sources within the radius are covered with the mask, and are not
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detected. Extra false point sources from these true point sources will then also go clear of the
mask, increasing the number of false detections within the total point source detection count.
It is also apparent from the table that smaller values of j are not better choices, as the number
of detections gets too small when the number of incorrect detections is minimized.

Some needlets, which had few false detections in table 6.5, have been listed in table 6.9.
From a = 1.44428 and upwards the number of incorrect detections within the count does
not seem to sink much more. This needlet detects 1634 point sources, where 15 of them are
incorrect detections. Figure 6.10 shows its performance for all j. When the code is used on
the best scale R = 7.32′ for the SMH wavelet, 1397 point sources are detected with 7 incorrect
detections and 5.2 % masked map. This is about 240 detections less than the needlet above
can yield, but with a slightly lower incorrect detection rate.

j lmin lmax count incorrect % masked
69 518 622 1098 201 3.9
70 568 682 1507 357 5.4
71 622 745 1997 677 7.1
72 682 820 2199 821 7.6
73 745 899 2520 1079 8.4
74 820 985 3953 2381 11.8
75 899 1080 7268 5561 18.9

Table 6.8: The detection rate for the highest values of j for the needlet with a = 1.096259 when
the point source locations are unknown. The incorrect detections within the count is also listed. The
number of incorrect detections is still too high even after the number of detections has sunk below an
acceptable amount. 100 simulations have been used.

a j lmin lmax count incorrect % masked
1.24392 31 698 1080 2026 393 7.1
1.30818 25 631 1080 1705 76 6.3
1.35483 22 588 1080 1661 31 6.2
1.39459 20 555 1080 1648 21 6.1
1.44428 18 518 1080 1634 15 6.1
1.50812 16 475 1080 1616 13 6.0
1.54735 15 451 1080 1605 14 6.0
1.593 14 425 1080 1594 15 5.9

1.64692 13 398 1080 1582 16 5.9
1.7113 12 369 1080 1569 16 5.8

Table 6.9: The detection rate for needlets that had low numbers of false detections in table 6.5
averaged over 100 simulations. From a = 1.44428 and upwards, the number of incorrect detections
within the count does not sink much more.
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(a) All detections (b) Incorrect detections

Figure 6.10: The number of all point source detections (a) and the associating number of incorrect
detections (b) at all scales j for the needlet a = 1.44428, when the point source locations are unknown.
The needlet detects a high number of point sources, with few incorrect detections.

6.2 Detection of unresolved point sources

To detect the unresolved point sources, the deviation from Gaussianity was measured using
the skewness and kurtosis statistics. If the skewness and kurtosis at a certain scale are close to
zero and within the confidence limits, there are no measured deviation from Gaussianity. The
deviation is presented as a factor of the 68 % confidence level, which will allow comparison of
the measured deviation between the different wavelets and wavelet scales. When the deviation
on the different scales is known, one can use the χ2 minimization technique to find the effect
of the unresolved point sources on the power spectrum. The last part of this section will apply
this technique to the discoveries of the first part.

6.2.1 Spherical Mexican Hat wavelets

Figure 6.11 gives an overview over the skewness and kurtosis with 68 %, 95 % and 99.7 %
confidence intervals up to very large scales for the SMH wavelet. The size of the confidence
interval increases the larger the scale, where the cosmic variance comes into play. Large
deviations from Gaussianity are only spotted at the very smallest scales. The skewness and
kurtosis have been plotted around the smallest scales in figure 6.12 as a factor of their standard
deviations σS and σK . The largest deviation occur around R = 8′, which is close to the scale
that detected most resolved point sources. A finer plot around these scales in figure 6.13
reveal the largest deviation in skewness of S = 54σS at R = 8.52′, and the largest deviation in
kurtosis of K = 283σK at R = 7.68′. The registered deviations are very large, since there is no
noise present to disrupt the detection of non-Gaussianity (will be covered in section 6.3). The
noise enhances the Gaussian form of the CMB distribution, and makes detection of deviations
harder.
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(a) Skewness (b) Kurtosis

Figure 6.11: An overview of the skewness (a) and kurtosis (b) for the SMH wavelet map up to very
large scales. No deviation from Gaussianity is observed at large scales, although deviation is observed
at the very smallest scales. The confidence intervals at the 68 %, 95 % and the 99.7 % levels are
based on data from 1000 simulations, while the kurtosis and skewness values are generated from 100
simulations.

(a) Skewness (b) Kurtosis

Figure 6.12: Skewness (a) and kurtosis (b) as a factor of σS and σK for the SMH wavelet map at
the small scales after 1000 simulations. The largest deviation occur around R = 8′, close to the scale
where most point sources were detected for the resolved point sources.
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(a) Skewness (b) Kurtosis

Figure 6.13: Finer plots around R = 8′ of skewness (a) and kurtosis (b) for the SMH wavelet map.
The largest deviation occur at R = 8.52′ for skewness and at R = 7.68′ for kurtosis.

6.2.2 Needlets

For needlets a similiar approach has been adapted as for the resolved point sources. All the
needlets in table 6.5 were tested and plotted, and the measured skewness and kurtosis are
shown as a factor of σS and σK in figure 6.14. The largest deviations are always measured at
the highest j, although due to small differences between the scales at very small a, the highest
j is not always best for these. Some needlets which cannot reach an lmax of 1080 at the highest
j have also been tested (not shown in the plots), but they have smaller deviations than the
needlets in their vicinity with lmax ∼ 1080. The standard deviation in the plots were calculated
after 100 simulations to obtain an overview, and have therefore not completely stabilized at
their theoretical values. Apparent peaks are spotted approximately between a = 1.2 and
a = 1.6, but the peak of the kurtosis does not begin to decrease significantly before around
a = 1.1. Thus, all values of a (all that can reach lmax ∼ 1080) have been tested in the very
large interval a ∈ [1.1, 1.6] to make sure there are no signs of larger peaks for low a.

The results of the 1000 simulations of a ∈ [1.1, 1.6] have been plotted in figure 6.15. The
largest deviation for skewness is observed at a = 1.39459 with S = 381σS . The measurements
of kurtosis, however, may still seem unstable. The plot shows many peaks for the tested
interval, with the most apparent for a ∈ [1.1, 1.2] and a ∈ [1.3, 1.6]. The peaks in the first
mentioned interval have been tested with several seeds and an increased number of simulations,
and have been confirmed to be genuine. The largest deviation for kurtosis, although not much
larger than the the other peaks for a ∈ [1.3, 1.6], is found at a = 1.41798 with K = 2866σK .
The measured deviations for both skewness and kurtosis are much larger than what was
measured from the SMH transformed maps. Figure 6.16 shows the deviation at all j for the
best needlets with confidence intervals.
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(a) Skewness (b) Kurtosis

Figure 6.14: The skewness (a) and kurtosis (b) as a factor of σS and σK for various values of a.
The standard deviations have been averaged over 100 simulations, hence the instability. The largest
deviation occur somewhere around the peaks between a = 1.2 and a = 1.6.

(a) Skewness (b) Kurtosis

Figure 6.15: Finer plots of skewness (a) and kurtosis (b) around the a’s that in figure 6.14 measured
the largest deviations, now averaged over 1000 simulations. The largest skewness of S = 381σS is
measured at a = 1.39459, and the largest kurtosis of K = 2866σK is measured at a = 1.41798.
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(a) Skewness (b) Kurtosis

Figure 6.16: The skewness (a)and kurtosis (b) with 68 %, 95 % and 99.7 % confidence intervals
for all j for the needlets that measured the largest deviation from Gaussianity. For skewness, the
needlet with a = 1.39459 is shown, and for kurtosis, the needlet with a = 1.41798 is shown. The
confidence intervals are based on data from 1000 simulations, while the skewness and kurtosis have
been calculated after 100 simulations. The measurements at large scales (small j) are unreliable

6.2.3 Estimation of skewness and kurtosis for a given amplitude

As a first step towards calculating the deviation of the power spectrum due to the unresolved
point sources, the skewness and kurtosis will be expressed as a function of the amplitude A
of the point sources. Skewness and kurtosis models for the χ2 minimization introduced in
section 4.1.2 may be more quickly calculated analytically than through simulations. Thus, it
is desirable with analytical expressions for S(A) and K(A).

The total temperature of the sky map in pixel i is a sum of the temperature of the
background and the temperature of the foreground:

T tot
i = T cmb

i + T ps
i = T cmb

i +
∑

j

Aδij , (6.1)

where equal amplitude for all the point sources has been assumed for simplicity. If a point
source exists at the index i, that is if index i and j are equal, the amplitude A is added to
the temperature value of the background at this pixel. Using equations (3.8) and (4.7), the
wavelet coefficients of the sky map can be expressed as

Ci =
∑

lm

almglY
i
lm,

and inserting this into equation (4.1) for skewness yields
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.
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The amplitude is gained into this expression by using equations (3.8) and (6.1):
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where
Dk =

∑

j

δkj .

The sum over k in equation (6.2) can be split up:
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If one defines
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the equation can be simplified to

S =
1

Nσ3

∑

i

(Pi +AQi)
3 . (6.3)

A similar approach with the variance in equation (4.3) gives

σ2 =
1
N

∑

i

(Pi +AQi)
2 ,

such that equation (6.3) finally becomes

S(A) = N1/2

∑
i (Pi +AQi)

3

(∑
i (Pi +AQi)

2
)3/2

,

where
(P +AQ)3 = P 3 + 3P 2AQ+ 3P (AQ)2 + (AQ)3

and
(P +AQ)2 = P 2 + 2PAQ+ (AQ)2.

When the amplitude is large, the cubic term in the numerator and the quadratic term in the
denominator dominate. The denominator ends up going as A3, such that S approaches a
constant. Similarly, the expression for the kurtosis becomes

K(A) = N

∑
i (Pi +AQi)

4 − 3(∑
i (Pi +AQi)

2
)2 ,

which also approaches a constant when A is large.
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The analytical expressions above is confirmed by simulations for large A. In figure 6.17,
which show how the skewness and kurtosis behave with different point source amplitudes for
the best SMH wavelet and needlet, the curves converge towards a constant for large amplitudes.
The SMH wavelet and needlet follow approximately the same pattern. Unfortunately, the
analytical expressions above are complicated, and complicated analytical expressions may
themselves require numerical approaches. Simulations must therefore be used to calculate the
skewness and kurtosis of different amplitudes needed for the χ2 minimization.

(a) Skewness (b) Kurtosis

Figure 6.17: Skewness and kurtosis as a function of constant point source amplitude. (a) Skewness
for the SMH wavelet of scale R = 8.52′ (solid line) and needlet a = 1.39459 of scale j = 20 (dashed
line). (b) Kurtosis for the SMH wavelet of scale R = 7.68′ and needlet a = 1.41798 of scale j = 19.

6.2.4 χ2 minimization and correction to the power spectrum

The χ2 minimization gives a measure of which model fits the data best. Since the analytical
models for S(A) and K(A) were intricate, simulations were made to create the models. For
each constant A, 100 simulations were performed, and their mean skewness and kurtosis were
used in equation 4.4. The observations to be compared to the model were simulated with the
same number of simulations. The amplitude of the simulated observations was chosen to be
A = 20, but recall that in reality this amplitude is unknown and non-constant. The different
scales of the SMH wavelet and a chosen needlet serve as the observations n in the equation.
For the SMH wavelet, the equation was summed over scales around the largest deviation in
figure 6.12, that is where R ∈ [6′, 21′], where each scale is separated by 0.5′. A needlet around
the largest peak for both skewness and kurtosis in the plot of the a’s in figure 6.15 was chosen,
but the largest scales were avoided due to the uncertainty.

The χ2 minimizations from one simulation for the SMH wavelet and the needlet are shown
in figure 6.18, where the amplitude of the simulation has been determined to be near A = 21
in both cases. The power spectrum of each simulation is then corrected by using the model
power spectra for the amplitude determined by the χ2 minimization and for no amplitude.
The corrected power spectra by using the SMH wavelet and the needlet are shown in figure
6.19 and 6.20 with the uncertainty of the estimation, where the impact of the cosmic variance
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has been subtracted from the uncertainty. The error bars increase towards the small angular
scales, where larger corrections to the amplitude of the power spectrum has been performed
due to the point sources. The error bars are marginally larger at the smallest angular scales for
the SMH wavelet. This small difference and the general increase in variance towards smaller
scales are slightly more evident in figure 6.21, which shows a plot of the standard deviation of
the two power spectra.

(a) SMH wavelet (b) Needlet

Figure 6.18: The χ2 minimization for one simulation using several scales of the SMH wavelet (a)
and the needlet a = 1.39459 (b). Both minimizations find the amplitude of the data to be closest to
the amplitude near A = 21 of the model.

6.3 Detection with noise

The noise has been introduced in the analysis for a more realistic comparison of the perform-
ance of the different wavelets. The next couple of tests will briefly go through the highlights
of the tests done in the previous sections.

6.3.1 Detection of resolved point sources

When point source detection1 is performed at the 5σ level on the sky map with no wavelets
applied, 59 true point sources and 14 false point sources are detected. 1000 simulations were
used for generating the thresholds, and 100 was used for the detection of point sources. The
number of true detections has decreased by about 250 compared to the noiseless simulations,
while the number of false detections has increased by a a little less than 15. If the point
sources are removed from the map, the latter number becomes 1, which is consistent with
Gaussian statistics. Therefore, the larger false detection count is due to the point sources.

1One note on the chosen intensity of the point sources in section 5.2. Recall that the intensity was based
on when the code detected about the same amount of point sources as the 3-year analysis of the WMAP data.
Since noise was not present in the analysis at that stage, the intensity does not correspond in any way to the
measurements of WMAP. Nevertheless, the same intensity has been used also in the simulations with noise,
so that the comparison between the earlier simulations will still be valid.
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Figure 6.19: Corrected power spectrum with error bars using the SMH wavelet, where the cosmic
variance has been subtracted from the error bars. The error increases towards the smaller angular,
where the amplitude caused by the point sources was greater before the correction. The error is
marginally larger at the smallest angular scales compared to the corrected power spectrum by using
needlets, shown in figure 6.20. The small difference is slightly more evident in 6.21.
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Figure 6.20: Corrected power spectrum with error bars using the needlet a = 1.39459. See figure
6.19 for details.

(a) SMH wavelet (b) Needlet

Figure 6.21: The standard deviation of the power spectra in figure 6.19 and 6.20, where the cosmic
variance has been subtracted from the variance. The error increases towards the smaller scales, and a
marginally larger error for the SMH wavelet compared to the needlet is noted at the smallest scales.
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The extra false detections are caused by pixels near smoothed true point sources, where all
the pixels are slightly smaller than the threshold. Due to the noise, some of these pixels can
get a flux slightly above the threshold, while the true point sources remain smaller. A code
was not incorporated to count such detections as true also when the noise was not simulated,
since the number of these occurrences were few when the number of detections was large.

The number of true detections for the SMH wavelet filtered sky map is plotted in figure
6.22. The number of false detections is not plotted, but generally lies around a count of
10 for each scale, and appear due to the noise and the few true detections as stated above.
Compared to the case without noise in figure 6.2, the true detection count is smaller and the
scale giving the highest number of true detections has shifted to larger scales where the noise
is less present. According to the fine plot around the peak in the figure, the best scale is now
R = 9.36′ with 784 true detections.

(a) R ∈ [5′, 15′] (b) R ∈ [9′, 10′]

Figure 6.22: The number of true detections on sky maps with noise after wavelet transformation
with the SMH wavelet for selected R values. The plot (a) has shifted to higher scales where the noise
is less present. According to the rightmost fine plot (b), the best scale is now R = 9.36′ with around
784 true detections.

In figure 6.23, the needlets from table 6.5 have been plotted with an accompanying plot
of the multipoles the needlet is defined for. This time, however, the highest j does not always
give the best results, and the j with the largest detection rate for each needlet is therefore
used in the plot. For the largest a these are the highest j, while for the smaller a, the best
j is slightly lower than the highest. There are two peaks in the curve of the figure, one at
a = 1.54735/j = 14 with l ∈ [292, 698] and the other at a = 2.39429/j = 7 with l ∈ [188, 1080].
The two peaks are due to the differences in the covered multipoles. Around the first peak,
the scales reaching for lower multipoles gave higher detection counts than those that covered
the higher multipoles at the expense of the low multipoles. At the turning point between the
curves, this changes to the opposite. Now covering high multipoles give better results, and
the detection rate increases as more and more of the lower multipoles are once again covered.
The number of false detections lies steadily around a count of 10-20 for all a, since the best
detection rate is achieved at lower j than earlier. In figure 6.24, more needlets with multipole
ranges close to that of the peak in figure 6.23(a) have been tested, but the figure reveals
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minor changes. The best detection rate of 796 point sources is accomplished with the needlet
a = 2.385/j = 7, which is not defined for the very largest l, where there is more noise.

(a) true detections (b) l interval

Figure 6.23: (a) The number of true detections on sky maps with noise after wavelet transformation
with a selection of needlets. (b) The accompanying multipole range of the needlets. The largest peak
occur for needlets that cover a large range of multipoles.

Overall, the number of true detections sinks when there is noise present compared to when
there is not, and the larger wavelet scales are less affected by noise. In figure 6.25, three sky
maps with noise applied are shown. The first sky map is non-filtered, the second is filtered
with the SMH wavelet of scale R = 7.32′ and the third is filtered with the a = 1.096259
needlet of scale j = 75. Previously, both these wavelets detected most point sources. Note
the difference between these sky maps to the ones in figure 5.4(a) and 5.5(a). Since the noise
is present on the small scales where the point sources dwell, they do not get filtered with
the small scale wavelet. This entails an increase in the variance of the filtered sky map, the
threshold become higher and fewer point sources are detected. In particular, note that the
performance of needlets is now on level with SMH wavelets, with only a few detections more.
The needlets performed best when localized at high l in multipole space, but these multipoles
are now dominated by noise.

6.3.2 Detection of unresolved point sources

The deviation of skewness and kurtosis as a function of σS and σK for the SMH wavelet
transformed maps with noise for R ∈ [5′, 50′] is presented in figure 6.26. Previously, without
noise, kurtosis registered the largest deviation, but now skewness performs better. The peak
has now shifted to around R = 13′, compared to around R = 8′ before. Plots in a smaller
interval around the peak is given in figure 6.27, where the largest deviation is measured at
R = 12.12′ with S = 6.9σS and at R = 13.34′ with K = 3.1σK .

An overview of kurtosis and skewness for all needlets where the deviation is larger than
the 99.7% confidence level is found in figure 6.28, and a finer plot around the peaks is found in
figure 6.29. The standard deviations of the data in the first mentioned plots was made from
measurements of 100 simulations, while they in the latter was made from 1000 simulations.
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(a) true detections (b) l interval

Figure 6.24: (a) Finer plot of the number of true detections around the largest peak in figure 6.23.
(b) The accompanying multipole range of the needlets. The detection rate reaches its height of 796
point sources for a = 2.385/j = 7, where l ∈ [184, 1047].

For needlets, the largest measured deviation has moved to much larger scales than before, in
particular for kurtosis. Smaller peaks can also be seen prior to the largest measured deviation.
For skewness the largest peak is found at a = 2.39429/j = 7 with a deviation of S = 15.7σS ,
while the peak for kurtosis is found at a = 4.04282/j = 4 withK = 2.7σK . These needlets and
their scales correspond to the multipole ranges l ∈ [188, 1080] and l ∈ [66, 1080] respectively.

For the resolved point sources, the differences in performance between the SMH wavelet
and needlets were minor. For the unresolved point sources, however, needlets measure larger
deviations than the SMH wavelet for skewness, while there is nearly no difference for kurtosis.
The multipole ranges are very large for the best needlets. It is apparent that it is favourable
with information from most multipoles when there is noise present, and since the SMH wavelets
are also defined for a large range of multipoles, the differences between the two wavelet types
have evened out.
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(a) Non-filtered

(b) SMH wavelet R = 7.32′ (c) Needlet a = 1.096259/j = 75

Figure 6.25: Three maps (at the same galactic coordinates) affected by noise. Figure (a) is non-
filtered, figure (b) is filtered with the SMH wavelet of scale R = 7.32′ and figure (c) is filtered with
the needlet a = 1.096259 of scale j = 75. Both the two latter cases detected the largest numbers of
point sources when there was no noise present in the maps. The figures show how the noise, due to
being present at the small scales as the point sources, still is present after the filtration process.
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(a) Skewness (b) Kurtosis

Figure 6.26: Skewness (a) and kurtosis (b) for the SMH wavelet transformed maps with noise. The
peak of the curve lies around R = 13′, which is on a larger scale than the case without noise.

(a) Skewness (b) Kurtosis

Figure 6.27: Finer plots of the skewness (a) and kurtosis (b) in figure 6.26 for the SMH wavelet
transformed maps with noise. The largest deviation is measured at R = 12.12′ with S = 6.9σS and at
R = 13.34′ with K = 3.1σK .
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(a) Skewness (b) Kurtosis

Figure 6.28: Skewness (a) and kurtosis (b) based on simulations of 100 sky maps with noise, filtered
with various needlets. The scale j giving the largest deviation is shown. For skewness the largest
deviation occur between the very large scales a = 2 and a = 3, and for kurtosis at even larges scales
around a = 4. Smaller peaks are also found prior to the large peaks at the large scales.

(a) Skewness (b) Kurtosis

Figure 6.29: Plots of skewness (a) and kurtosis (b) concentrated around the peaks in figure 6.28,
and based on data from 1000 simulations instead of 100. The largest deviation for skewness occur for
a = 2.39429/j = 7 with S = 15.7σS , and for kurtosis for a = 4.04282/j = 4 with K = 2.7σK .



Chapter 7

Summary and conclusions

In between the Cosmic Microwave Background (CMB) and the instrument there are other
sources of radiation, called foregrounds. The foregrounds radiate in the same frequency bands
as the background, and cause contamination in the signal of the CMB. To ensure no wrong
estimations of the power spectrum, these contaminants must be removed. There are several
classes of contaminants, and this thesis has investigated techniques of removing the point
sources (class of extragalactic sources), which occupy just a few pixels on the full sky and are
located at the small angular scales.

The wavelet filtering technique was used for point source detection, and in particular, new
types of wavelets called needlets. The wavelets have good localization properties in both real
and harmonic space, and are characterized by an underlying mother wavelet which can be
fine-tuned by scaling and translation. These properties make wavelets particularly useful for
point source detection. The wavelets can enhance the scales in harmonic space where the
point sources are located, such that they are more easily separated from the background. The
most used wavelet for detection of non-Gaussianity today is the Spherical Mexican Hat (SMH)
wavelet, but needlets are showing promising additional features that make them a possible
candidate of succession. These wavelets enjoy direct definition on the sphere, can be more
localized in harmonic space and are more scalable than the SMH wavelet. The mother wavelet
of needlets is defined by the parameter a and their scale by j, while the SMH wavelet has only
one mother wavelet and is scaled through R. This thesis has investigated the performance of
needlets compared to the SMH wavelet.

Detecting the point sources that can be resolved from the distribution of the CMB was
the first goal, and several Monte Carlo simulations of the detection ability of each wavelet
was performed to achieve statistically significant results. At the 5σ threshold, the SMH
wavelet detected 1426 point sources at the best scale R = 7.32′. Needlets performed best for
a = 1.096259 of scale j = 75 with 1744 detections. However, this needlet is badly localized in
pixel space, and generates many extra false point source detections not associated with those
predicted by Gaussian statistics. In general, high a have very bad localization properties on
the sphere, and are not suitable for point source detection. These findings are consistent
with those made by Marrinucci et al. [18]. If the needlets at high a was to be used in
real observational data analysis, too much of the information in the CMB would be removed
(masked). The best needlet, that does not generate many extra false point sources and leave
a high percentage of the full sky masked, was found to be a = 1.44428 of scale j = 18 with
1667 detections, ∼ 240 more than the SMH wavelet.
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Real observations, however, contain noise that are located on the small angular scales like
the point sources, and makes the detection of point sources harder. The first part of the
analysis showed that needlets perform better than the SMH wavelet at the smallest angular
scales, but the noise are more present at these scales and makes them unusable for point source
detection. With the introduction of noise, the performance of the needlets compared to the
SMH wavelet evened out. Now the best scale for the SMH wavelet was R = 9.36′ with 784
detections, and the best scale for needlets was a = 2.385 of scale j = 7 with 796 detections.

The second goal of the thesis was to see the ability of the two wavelets to detect point
sources that can not be resolved from the distribution of the CMB. Using the skewness and
kurtosis statistics, the deviation of the distribution from Gaussianity caused by the point
sources was checked. Without noise, the largest deviation was measured with needlets, but
when the power spectrum was corrected using the χ2 minimization technique, very little
difference in the ability to correct the power spectrum between the two wavelets was found.
With noise, the ability of needlets to measure deviations with the kurtosis statistic was evened
out, while slightly larger deviations were still measured with skewness. Corrections to the
power spectrum in the noise analysis was not performed, but due to the smaller skewness and
kurtosis deviations measured with noise, one can assume larger errors and smaller differences
in the ability to correct the power spectrum between the wavelets than without noise.

Table 7.1 and 7.2 summarizes the best measured performance of the needlets and the SMH
wavelet, with and without noise. When confronted with realistic simulations, this work has
shown no indication of one wavelet being significantly better than the other.

It is important to note that the main goal of the analysis of the thesis was to compare
the efficiency of the SMH wavelet compared to needlets, and therefore the simple case of one
single frequency was used. Simulation at different frequencies should be considered for further
investigation of how one can best take advantage of the properties of Spherical needlets. Also
this thesis has not tested the point source detection algorithm of both the SMH wavelet and
needlets on WMAP data, and no comparison with the method used by Wright et al. [24]
could then be performed. The WMAP data can contain different amount of point sources
than what was assumed here, and the Milky Way Galaxy must also be taken into account in
such an analysis. Corrections of the power spectrum due to the point source amplitudes was
briefly covered here, and should be further examined, both including noise and for the resolved
point sources. Making precise corrections to the power spectrum is of crucial importance in
cosmology, which is reconfirmed by the recent discoveries of Huffenberger et al. [16].

a R/j Detections
SMH wavelet (no noise) - 7.32′ 1426

Needlet (no noise) 1.44428 18 1667
SMH wavelet (noise) - 9.36′ 784

Needlet (noise) 2.385 7 796

Table 7.1: Summary of the best results for the detection of resolved point sources
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a R/j S [σS ] a R/j K [σK ]
SMH wavelet (no noise) - 8.52 54.4 - 7.68 283

Needlet (no noise) 1.39459 20 381 1.41798 19 2870
SMH wavelet (noise) - 12.12 6.9 - 13.34 3.1

Needlet (noise) 2.39429 7 16 4.04282 4 2.7

Table 7.2: Summary of the best results for the detection of unresolved point sources
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Source code

A.1 Detection of resolved point sources

Listing A.1: psw_par.f90
1 PROGRAM psw
2 USE psw_sub
3
4 INTEGER( I4B ) : : n_pols , i s eed , midpix
5 CHARACTER(LEN=128) : : h ea lp ixd i r , f i l ename
6 TYPE(PLANCK_RNG) : : rng_handle
7
8 ! Necessary for pa ra l l e l i z a t i on
9 CALL MPI_INIT( i e r r )
10 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks , i e r r )
11 CALL MPI_COMM_RANK(MPI_COMM_WORLD, me, i e r r )
12
13 ! Find Healpix−directory
14 CALL getEnvironment ( "HEALPIX" , h e a l p i xd i r )
15
16 ! Set parameters
17 f i l ename = ’params_psw . txt ’
18 CALL get_params ( f i l ename )
19
20 ! Set standard values derived from the parameters
21 npix=ns ide ∗∗2∗12
22 n_pols = 1 + 2∗ po la r ! e i ther 1 or 3
23 i s e ed = start_seed+me
24 midpix = npix /2
25 p i x s i z e = SQRT((4_dp∗pi ) /npix )
26
27 ! Necessary for pa ra l l e l i z a t i on
28 ALLOCATE(N_max_pp( 0 : ntasks−1) )
29 ALLOCATE( stat ( 0 :MPI_STATUS_SIZE−1) )
30
31 ! Code to d i s t r i bu t e number of N evenly to each CPU, and i f there ’ s a
32 ! remainder from the divis ion , the remaining N are added to the f i r s t CPUs
33 N_max_pp=N_max1/ ntasks
34 IF (MOD(N_max1, ntasks ) .NE. 0 ) THEN
35 N_max_pp( 0 :MOD(N_max1, ntasks )−1)=N_max_pp( 0 :MOD(N_max1, ntasks )−1)+1
36 END IF
37
38 ! Al locate memory for arrays
39 CALL a l l o c ( n_pols )
40
41 ! Preperation of the array containing the sca les
42 IF ( wavelet ) THEN
43 IF (smh) THEN
44 s c a l e s (1 ) = sca l e_s ta r t
45 DO i =2, n s c a l e s
46 s c a l e s ( i ) = s c a l e s ( i−1) + add
47 END DO
48 END IF
49 ELSE
50 s c a l e s (1 ) = 1
51 END IF
52
53 zbounds=[−1 ,1]
54 w8ring_TQU=1
55 mask = 1
56 sigma_s = 0d0
57 sigma_noise = 0d0
58 false_mean = 0
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59 true_mean = 0
60 mask_mean = 0
61
62 ! The unit for f i l e opening i s d i f f e r en t for each CPU, where me i s
63 ! the CPU number
64 unit=10+me
65
66 ! Fetches the beam from f i l e
67 OPEN(unit , f i l e=’MAP_blxwl_avgv_opt . unf ’ , form=’unformatted ’ , status=’old ’ )
68 REWIND(unit )
69 READ(unit ) beam
70 CLOSE(unit )
71
72 ! Fetches the noise from f i l e
73 OPEN(unit , f i l e=’MAP_noise_avgv . unf ’ , form=’unformatted ’ , status=’old ’ )
74 REWIND(unit )
75 READ(unit ) no i s e
76 CLOSE(unit )
77
78 IF ( wavelet ) THEN
79 IF (me .EQ. 0) PRINT ∗ , "Generating ␣wave let s . . . "
80 IF (smh) THEN
81
82 ! Finds g_l for the SMH wavelets at the defined sca les
83 CALL calc_gl_smh ( nside , lmax , nsca l e s , s c a l e s , gl , .FALSE. , .TRUE. , g l f i l e , me)
84 ELSE
85 ! Finds g_l for the needlets at the defined sca les
86 CALL ca lc_f2 ( f2 , nn)
87 CALL ca lc_gl ( f2 , nn , j0 , nj , lmax , gl , aa )
88
89 OPEN(unit , f i l e=’gl_psw . unf ’ , form=’unformatted ’ , status=’unknown ’ )
90 REWIND(unit )
91 WRITE(unit ) g l
92 CLOSE(unit )
93 END IF
94 END IF
95
96 ! Transfer iseed to rng_handle , from now on , use rng_handle in c a l l s to
97 ! routines using random generator
98 CALL rand_init ( rng_handle , i s e ed ) ! takes up to 4 seeds simultaneously
99

100 ! Generates CMB maps to determine a value for sigma_CMB
101 IF (me .EQ. 0) PRINT ∗ , " Ca l i b ra t ing ␣sigma . . . "
102 DO, i_N=1, N_max_pp(me)
103
104 ! Finds which N to give to th i s CPU
105 IF (me .EQ. 0) THEN
106 N=i_N ! The f i r s t cpu jus t gets the f i r s t N
107 ELSE
108 ! Sums up a l l the N given to the previous CPUs such that
109 ! the index s tar t s o f f at the correct N
110 N=SUM(N_max_pp( 0 :me−1) )+i_N
111 END IF
112
113 CALL f ind_sigma ( i seed , rng_handle , fwhm_arcmin )
114 END DO
115
116 ! Takes the sum of sigma_CMB and sigma_s from a l l cpus , and puts the
117 ! r e su l t in a l l CPUs
118 CALL reduce_sigma
119
120 ! Necessary for pa ra l l e l i z a t i on
121 DEALLOCATE(N_max_pp)
122 DEALLOCATE( stat )
123 ALLOCATE(N_max_pp( 0 : ntasks−1) )
124 ALLOCATE( stat ( 0 :MPI_STATUS_SIZE−1) )
125
126 ! Code to d i s t r i bu t e number of N evenly to each CPU, and i f there ’ s a
127 ! remainder from the divis ion , the remaining N are added to the f i r s t CPUs
128 N_max_pp=N_max2/ ntasks
129 IF (MOD(N_max2, ntasks ) .NE. 0 ) THEN
130 N_max_pp( 0 :MOD(N_max2, ntasks )−1)=N_max_pp( 0 :MOD(N_max2, ntasks )−1)+1
131 END IF
132
133 CALL r e a l l o c ( n_pols )
134
135 ! Generates CMB maps to simulate detect ion of point sources
136 IF (me .EQ. 0) PRINT ∗ , "Detect ing ␣ point ␣ source s . . . "
137 DO, i_N=1, N_max_pp(me)
138
139 IF (me .EQ. 0) THEN
140 N=i_N
141 ELSE
142 N=SUM(N_max_pp( 0 :me−1) )+i_N
143 END IF
144
145 CALL detect_ps ( i s eed , rng_handle , fwhm_arcmin , midpix )
146 END DO
147
148 ! Print r e su l t s to screen and write to f i l e
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149 CALL dump_results
150
151 ! Deallocate the memory used for arrays
152 CALL dea l l o c
153
154 ! Necessary for pa ra l l e l i z a t i on
155 CALL MPI_FINALIZE( i e r r )
156
157 ENDPROGRAM psw

Listing A.2: psw_sub_par.f90
1 MODULE psw_sub
2
3 USE healpix_types
4 USE alm_tools
5 USE ran_tools
6 USE pix_too ls
7 USE extens ion
8 USE mod_domwav
9 USE rngmod , ONLY: rand_init , rand_gauss , planck_rng
10
11 IMPLICIT NONE
12 INCLUDE ’ mpif . h ’ ! Necessary for pa ra l l e l i z a t i on
13
14 INTEGER( I4B ) , DIMENSION( : ) , ALLOCATABLE : : l i s t p i x , o therp ix
15 INTEGER( I4B ) , DIMENSION( : , : ) , ALLOCATABLE : : ps_index
16 REAL(SP) , DIMENSION( : ) , ALLOCATABLE : : map_TQU, s ca l e s , true_mean , false_mean , true_mean0 ,

false_mean0 , mask , map_pixel , pixel_mask , o the r f lux , mask_mean , mask_mean0 , noise , noise_map ,
ps_amp , ps_amp0

17 REAL(SP) , DIMENSION( : , : ) , ALLOCATABLE : : g l
18 REAL(DP) , DIMENSION( : ) , ALLOCATABLE : : zbounds , vector , f2 , sigma_s , sigma_s0
19 REAL(DP) , DIMENSION( : , : ) , ALLOCATABLE : : beam , w8ring_TQU , ps_flux , sigma_noise ,

sigma_noise0
20 COMPLEX(SPC) , DIMENSION( : , : , : ) , ALLOCATABLE : : alm_TGC, alm_g , alm_test , alm_g_test , alm_noise ,

alm_g_noise
21 CHARACTER(LEN=80) , DIMENSION( 1 : 1 80 ) : : header_PS
22 CHARACTER(LEN=128) : : c l f i l e , g l f i l e
23
24 INTEGER( I4B ) : : ns ide , lmax , polar , no_of_sources , n sca l e s , N, i_N , l , i , s , j0 , nj , nn , s ta r t ,

f i n i s h , s tart_seed
25 INTEGER( I8B ) : : N_max1, N_max2, npix
26 REAL(SP) : : fwhm_arcmin , add , s ca l e_star t , source_intens i ty , sigma_limit , sigma_test
27 REAL(DP) : : sigma_CMB, sigma_CMB0 , aa , p i x s i z e , d i s c_s i z e
28 LOGICAL(LGT) : : smh , knowps , addnoise , wavelet
29
30 ! Necessary for pa ra l l e l i z a t i on
31 INTEGER( I4B ) , DIMENSION( : ) , ALLOCATABLE : : N_max_pp, stat
32 INTEGER( I4B ) : : i e r r , ntasks , unit , cnt , dest , tag , src , me
33 CONTAINS
34
35 SUBROUTINE get_params ( f i l ename )
36
37 IMPLICIT NONE
38 CHARACTER(LEN=128) : : l i n e , name, value , f i l ename , wlet , kps , addn
39 INTEGER( I4B ) : : r s t a t
40 LOGICAL(LGT) : : exist
41
42 ! Checks i f the f i l e e x i s t s on disk . trim cuts the blank characters
43 ! away from filename
44 INQUIRE( f i l e=fi lename , exist=exist )
45 IF ( .NOT. exist ) THEN
46 PRINT ∗ , "Error : ␣ F i l e ␣" , TRIM( f i l ename ) , "␣not␣ found . "
47 STOP
48 END IF
49
50 ! Reads the f i l e l ine for l ine . Scan f inds the index of the spec i f i ed
51 ! character in the s tr ing . I f there i s no ’=’ on the l ine being read ,
52 ! or there i s a comment ’#’ on the l ine , the do loop skips to the next
53 ! l ine with cycle . Name contains the var iab le name, and value the value
54 ! of the var iab le . I f the name corresponds to one of the cases , the value
55 ! of that name i s inserted into the correct var iab le
56 OPEN(unit , f i l e=fi lename , form=’formatted ’ , iostat=r s t a t )
57 DO WHILE( r s t a t .EQ. 0)
58 READ(unit , fmt=’(A) ’ , iostat=r s t a t ) l i n e
59 i = SCAN( l i n e , ’= ’)
60 IF ( ( i .EQ. 0) .OR. ( l i n e ( 1 : 1 ) .EQ. ’# ’) ) CYCLE
61 name = TRIM(ADJUSTL( l i n e ( : i−1) ) )
62 value = TRIM(ADJUSTL( l i n e ( i +1:) ) )
63
64 SELECT CASE(TRIM(name) )
65 CASE( ’ ns ide ’ )
66 READ( value ,∗ ) ns ide
67 CASE( ’ lmax ’ )
68 READ( value ,∗ ) lmax
69 CASE( ’N_max1’ )
70 READ( value ,∗ ) N_max1
71 CASE( ’N_max2’ )
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72 READ( value ,∗ ) N_max2
73 CASE( ’ no_of_sources ’ )
74 READ( value ,∗ ) no_of_sources
75 CASE( ’ source_intens i ty ’ )
76 READ( value ,∗ ) source_intens i ty
77 CASE( ’ sigma_limit ’ )
78 READ( value ,∗ ) s igma_limit
79 CASE( ’ polar ’ )
80 READ( value ,∗ ) po la r
81 CASE( ’ start_seed ’ )
82 READ( value ,∗ ) s tart_seed
83 CASE( ’ fwhm_arcmin ’ )
84 READ( value ,∗ ) fwhm_arcmin
85 CASE( ’ wavelet ’ )
86 READ( value ,∗ ) wlet
87 IF ( wlet .EQ. ’smh ’ ) THEN
88 wavelet = .TRUE.
89 smh = .TRUE.
90 ELSE IF ( wlet .EQ. ’ need l e t s ’ ) THEN
91 wavelet = .TRUE.
92 smh = .FALSE.
93 ELSE IF ( wlet .EQ. ’ no ’ ) THEN
94 wavelet = .FALSE.
95 smh = .TRUE.
96 ELSE
97 PRINT ∗ , "Error : ␣" , TRIM( wlet ) , "␣ i s ␣not␣a␣ va l i d ␣wavelet . "
98 STOP
99 END IF

100 CASE( ’ n sca l e s ’ )
101 READ( value ,∗ ) n s c a l e s
102 CASE( ’ add ’ )
103 READ( value ,∗ ) add
104 CASE( ’ s ca l e_star t ’ )
105 READ( value ,∗ ) s c a l e_s ta r t
106 CASE( ’ j0 ’ )
107 READ( value ,∗ ) j 0
108 CASE( ’ nj ’ )
109 READ( value ,∗ ) nj
110 CASE( ’ aa ’ )
111 READ( value ,∗ ) aa
112 CASE( ’ nn ’ )
113 READ( value ,∗ ) nn
114 CASE( ’ d i sc_s ize ’ )
115 READ( value ,∗ ) d i s c_s i z e
116 CASE( ’ knowps ’ )
117 READ( value ,∗ ) kps
118 IF ( kps .EQ. ’ true ’ ) THEN
119 knowps = .TRUE.
120 ELSE IF ( kps .EQ. ’ f a l s e ’ ) THEN
121 knowps = .FALSE.
122 ELSE
123 PRINT ∗ , "Error : ␣knowps␣must␣be␣ true ␣ or ␣ f a l s e . "
124 STOP
125 END IF
126 CASE( ’ addnoise ’ )
127 READ( value ,∗ ) addn
128 IF ( addn .EQ. ’ true ’ ) THEN
129 addnoise = .TRUE.
130 ELSE IF ( addn .EQ. ’ f a l s e ’ ) THEN
131 addnoise = .FALSE.
132 ELSE
133 PRINT ∗ , "Error : ␣ addnoise ␣must␣be␣ true ␣ or ␣ f a l s e . "
134 STOP
135 END IF
136 CASE( ’ c l f i l e ’ )
137 READ( value ,∗ ) c l f i l e
138 CASE( ’ g l f i l e ’ )
139 READ( value ,∗ ) g l f i l e
140 END SELECT
141 END DO
142 CLOSE(unit )
143
144 END SUBROUTINE get_params
145
146 SUBROUTINE a l l o c ( n_pols )
147
148 IMPLICIT NONE
149 INTEGER( I4B ) : : n_pols
150
151 ALLOCATE(alm_TGC(1 : n_pols , 0 : lmax , 0 : lmax ) )
152 ALLOCATE( alm_test ( 1 : n_pols , 0 : lmax , 0 : lmax ) )
153 ALLOCATE(alm_g ( 1 : n_pols , 0 : lmax , 0 : lmax ) )
154 ALLOCATE( alm_noise ( 1 : n_pols , 0 : lmax , 0 : lmax ) )
155 ALLOCATE( alm_g_test ( 1 : n_pols , 0 : lmax , 0 : lmax ) )
156 ALLOCATE( alm_g_noise ( 1 : n_pols , 0 : lmax , 0 : lmax ) )
157 ALLOCATE(map_TQU(0 : npix−1) )
158 ALLOCATE(map_pixel ( 0 : npix−1) )
159 ALLOCATE( no i s e ( 0 : npix−1) )
160 ALLOCATE( noise_map ( 0 : npix−1) )
161 ALLOCATE( pixel_mask ( 0 : npix−1) )
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162 ALLOCATE(beam ( 0 : lmax , 1 : n_pols ) )
163 ALLOCATE( zbounds ( 1 : 2 ) )
164 ALLOCATE(w8ring_TQU(1 :2∗ lmax , 1) )
165 ALLOCATE(mask ( 0 : npix−1) )
166 ALLOCATE( vec tor ( 1 : 3 ) )
167 ALLOCATE( l i s t p i x ( 0 : npix−1) )
168 ALLOCATE( o therp ix ( 0 : npix−1) )
169 ALLOCATE( o th e r f l ux ( 0 : npix−1) )
170
171 IF ( wavelet ) THEN
172 IF (smh) THEN
173 s t a r t=1
174 f i n i s h=ns c a l e s
175 ALLOCATE( s c a l e s ( s t a r t : f i n i s h ) )
176 ELSE
177 s t a r t=j0
178 f i n i s h=j0+nj−1
179 ALLOCATE( f 2 ( 0 : nn−1) )
180 END IF
181 ELSE
182 s t a r t=1
183 f i n i s h=1
184 ALLOCATE( s c a l e s ( s t a r t : f i n i s h ) )
185 END IF
186
187 ALLOCATE( g l ( 0 : lmax , s t a r t : f i n i s h ) )
188 ALLOCATE( sigma_s ( s t a r t : f i n i s h ) )
189 ALLOCATE( sigma_s0 ( s t a r t : f i n i s h ) )
190 ALLOCATE( sigma_noise ( s t a r t : f i n i s h , 0 : npix−1) )
191 ALLOCATE( sigma_noise0 ( s t a r t : f i n i s h , 0 : npix−1) )
192 ALLOCATE( true_mean ( s t a r t : f i n i s h ) )
193 ALLOCATE( false_mean ( s t a r t : f i n i s h ) )
194 ALLOCATE(mask_mean( s t a r t : f i n i s h ) )
195 ALLOCATE(ps_amp( s t a r t : f i n i s h ) )
196 ALLOCATE( true_mean0 ( s t a r t : f i n i s h ) )
197 ALLOCATE( false_mean0 ( s t a r t : f i n i s h ) )
198 ALLOCATE(mask_mean0( s t a r t : f i n i s h ) )
199 ALLOCATE(ps_amp0( s t a r t : f i n i s h ) )
200
201 END SUBROUTINE a l l o c
202
203 SUBROUTINE r e a l l o c ( n_pols )
204
205 IMPLICIT NONE
206 INTEGER( I4B ) : : n_pols
207
208 ALLOCATE( ps_index ( 1 : no_of_sources , 1 :N_max_pp(me) ) )
209 ALLOCATE( ps_flux ( 1 : no_of_sources , 1 :N_max_pp(me) ) )
210
211 END SUBROUTINE r e a l l o c
212
213 SUBROUTINE dea l l o c
214
215 DEALLOCATE(alm_TGC, alm_g , alm_test , alm_g_test , alm_noise , alm_g_ noise , map_TQU, map_pixel ,

no ise , noise_map , pixel_mask , beam , ps_index , ps_flux , sigma_s , sigma_s0 , sigma_noise ,
sigma_noise0 , zbounds , w8ring_TQU , true_mean , false_mean , mask_mean , ps_amp , mask , vector ,
l i s t p i x , otherpix , o the r f lux , true_mean0 , false_mean0 , mask_mean0)

216
217 IF ( wavelet ) THEN
218 DEALLOCATE( g l )
219 IF (smh) THEN
220 DEALLOCATE( s c a l e s )
221 ELSE
222 DEALLOCATE( f 2 )
223 END IF
224 ELSE
225 DEALLOCATE( s c a l e s )
226 END IF
227
228 ! Necessary for pa ra l l e l i z a t i on
229 DEALLOCATE(N_max_pp, stat )
230
231 END SUBROUTINE dea l l o c
232
233 SUBROUTINE f ind_sigma ( i seed , rng_handle , fwhm_arcmin )
234
235 IMPLICIT NONE
236 INTEGER( I4B ) : : i s e ed
237 REAL(SP) : : fwhm_arcmin
238 TYPE(PLANCK_RNG) : : rng_handle
239
240 IF (me .EQ. 0) PRINT ∗ , " Enter ing ␣N=" , i_N
241
242 ! Creates a simulated CMB map
243 CALL create_alm ( nside , lmax , lmax , polar , c l f i l e , rng_handle , fwhm_arcmin , alm_TGC, header_PS )
244
245 ! Transforms the alm ’ s to map and back again at the point in the code
246 ! where point sources are added in the second MC loop
247 CALL alm2map( nside , lmax , lmax , alm_TGC, map_TQU)
248 CALL map2alm( nside , lmax , lmax ,map_TQU,alm_TGC, zbounds ,w8ring_TQU)
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249
250 ! Add beam e f f e c t s to the created map (note that the p i xe l window
251 ! function i s included in th i s map)
252 DO l =0, lmax
253 alm_TGC(1 , l , : ) = alm_TGC(1 , l , : ) ∗beam( l , 1 )
254 END DO
255
256 ! Need the map for ca lcu la t ion of sigma_CMB
257 CALL alm2map( nside , lmax , lmax , alm_TGC, map_TQU)
258
259 ! Calculates the variance of the CMB map before noise
260 sigma_CMB = sigma_CMB + SUM(map_TQU∗∗2)
261
262 ! Add noise e f f e c t s to the created map
263 IF ( addnoise ) THEN
264 DO i =0,npix−1
265 noise_map ( i ) = no i s e ( i )∗ randgauss_boxmuller ( i s e ed ) ∗1000
266 END DO
267 END IF
268
269 ! Need alm ’ s for wavelet transformation
270 CALL map2alm( nside , lmax , lmax ,map_TQU,alm_TGC, zbounds ,w8ring_TQU)
271 CALL map2alm( nside , lmax , lmax , noise_map , alm_noise , zbounds ,w8ring_TQU)
272
273 ! Loop over a l l the chosen scales , which ca lcu la tes the alm ’ s for the
274 ! wavelets and transforms them to map
275 DO s=sta r t , f i n i s h
276 IF (me .EQ. 0) PRINT ∗ , " Proces s ing ␣ s c a l e ␣" , s , "␣ o f ␣" , f i n i s h
277
278 IF ( wavelet ) THEN
279 DO l =0, lmax
280 alm_g(1 , l , : ) = alm_TGC(1 , l , : ) ∗ g l ( l , s )
281 alm_g_noise (1 , l , : ) = alm_noise (1 , l , : ) ∗ g l ( l , s )
282 END DO
283 CALL alm2map( nside , lmax , lmax , alm_g , map_TQU)
284 CALL alm2map( nside , lmax , lmax , alm_g_noise , noise_map )
285 END IF
286
287 ! Calcuate the variance of the wavelet c o e f f i s i en t s at each sca le
288 sigma_s ( s ) = sigma_s ( s ) + SUM(map_TQU∗∗2)
289 IF ( addnoise ) THEN
290 DO i =0, npix−1
291 sigma_noise ( s , i ) = sigma_noise ( s , i ) + noise_map ( i )∗∗2
292 END DO
293 END IF
294 END DO
295
296 END SUBROUTINE f ind_sigma
297
298 SUBROUTINE reduce_sigma
299
300 IMPLICIT NONE
301 REAL(DP) : : temp
302
303 cnt = 1
304 CALL MPI_AllReduce (sigma_CMB, sigma_CMB0 , cnt ,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD, i e r r )
305 sigma_CMB = SQRT(sigma_CMB0/(N_max1∗npix ) )
306
307 IF ( wavelet ) THEN
308 IF (smh) THEN
309 cnt = ns c a l e s
310 ELSE
311 cnt = nj
312 END IF
313 ELSE
314 cnt = 1
315 END IF
316
317 CALL MPI_AllReduce ( sigma_s , sigma_s0 , cnt ,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD, i e r r )
318 sigma_s = SQRT( sigma_s0 /(N_max1∗npix ) )
319
320 IF ( addnoise ) THEN
321
322 IF ( wavelet ) THEN
323 IF (smh) THEN
324 cnt = ns c a l e s ∗npix
325 ELSE
326 cnt = nj∗npix
327 END IF
328 ELSE
329 cnt = npix
330 END IF
331
332 CALL MPI_AllReduce ( sigma_noise , sigma_noise0 , cnt ,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,

i e r r )
333
334 DO s=sta r t , f i n i s h
335 sigma_noise ( s , : ) = SQRT(( sigma_noise0 ( s , : ) /N_max1) + ( sigma_s0 ( s ) /(N_max1∗npix ) ) )
336 END DO
337 END IF
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338
339 END SUBROUTINE reduce_sigma
340
341 SUBROUTINE detect_ps ( i s eed , rng_handle , fwhm_arcmin , midpix )
342
343 IMPLICIT NONE
344 INTEGER( I4B ) : : i s eed , pix , j , k , true_source , fa l s e_source , n l i s t , largest_pix , midpix ,

foundcount
345 REAL(SP) : : fwhm_arcmin
346 REAL(DP) : : costheta , radius , f a l s e_rad ius , phi , theta
347 TYPE(PLANCK_RNG) : : rng_handle
348 LOGICAL(LGT) : : found
349
350 IF (me .EQ. 0) PRINT ∗ , " Enter ing ␣N=" , i_N
351
352 ! Reset the map. Add one point source to a clean map for f inding mask s i ze
353 map_pixel = 0
354 map_pixel ( midpix ) = 1
355
356 ! Creates a simulated CMB map
357 CALL create_alm ( nside , lmax , lmax , polar , c l f i l e , rng_handle , fwhm_arcmin , alm_TGC, header_PS )
358
359 ! Transform the alm ’ s to map
360 CALL alm2map( nside , lmax , lmax , alm_TGC, map_TQU)
361
362 ! Create random point sources
363 DO i =1, no_of_sources
364
365 ! Random direct ion and f l ux
366 cos the ta = ran_mwc( i s e ed )∗2 − 1
367 phi = ran_mwc( i s e ed ) ∗2∗3.14159265
368 ps_flux ( i , i_N) = ran_mwc( i s e ed )∗ source_intens i ty ∗sigma_CMB
369
370 ! Convert the angular coordinates to a p i xe l index
371 CALL ang2pix_ring ( nside , ACOS( cos the ta ) , phi , pix )
372 ps_index ( i , i_N) = pix
373
374 ! Add the point sources to the map
375 map_TQU( ps_index ( i , i_N) ) = map_TQU( ps_index ( i , i_N) ) + ps_flux ( i , i_N)
376 END DO
377
378 ! Converts the map back to alm ’ s
379 CALL map2alm( nside , lmax , lmax ,map_TQU,alm_TGC, zbounds ,w8ring_TQU)
380 CALL map2alm( nside , lmax , lmax , map_pixel , alm_test , zbounds ,w8ring_TQU)
381
382 ! Add beam e f f e c t s to the created map (note that the p i xe l window
383 ! function i s included in th i s map)
384 DO l =0, lmax
385 alm_TGC(1 , l , : ) = alm_TGC(1 , l , : ) ∗beam( l , 1 )
386 alm_test (1 , l , : ) = alm_test (1 , l , : ) ∗beam( l , 1 )
387 END DO
388
389 ! Point source detect ion must do the same processes to the map
390 ! as for the ca l i bra t ion of sigma
391 CALL alm2map( nside , lmax , lmax , alm_TGC, map_TQU)
392 CALL alm2map( nside , lmax , lmax , alm_test , map_pixel )
393
394 ! Adds noise e f f e c t s to the created map
395 IF ( addnoise ) THEN
396 DO i =0,npix−1
397 map_TQU( i ) = map_TQU( i ) + no i s e ( i )∗ randgauss_boxmuller ( i s e ed ) ∗1000
398 END DO
399 END IF
400
401 CALL map2alm( nside , lmax , lmax ,map_TQU,alm_TGC, zbounds ,w8ring_TQU)
402 CALL map2alm( nside , lmax , lmax , map_pixel , alm_test , zbounds ,w8ring_TQU)
403
404 ! Loop over a l l the chosen sca les
405 DO s=sta r t , f i n i s h
406 IF (me .EQ. 0) PRINT ∗ , " Proces s ing ␣ s c a l e ␣" , s , "␣ o f ␣" , f i n i s h
407
408 IF ( wavelet ) THEN
409 ! Calculate the alm ’ s for the wavelets
410 DO l =0, lmax
411 alm_g(1 , l , : ) = alm_TGC(1 , l , : ) ∗ g l ( l , s )
412 alm_g_test (1 , l , : ) = alm_test (1 , l , : ) ∗ g l ( l , s )
413 END DO
414
415 ! Transform the alm ’ s to map for the wavelet c o e f f i s i en t s
416 CALL alm2map( nside , lmax , lmax , alm_g , map_TQU)
417 CALL alm2map( nside , lmax , lmax , alm_g_test , map_pixel )
418 END IF
419
420 true_source = 0
421 fa l s e_source = 0
422 mask = 1 .
423
424 ! Find to t a l point source amplitude
425 DO i =1, no_of_sources
426 ps_amp( s ) = ps_amp( s ) + map_TQU( ps_index ( i , i_N) )
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427 END DO
428
429 ! Find mask for the current wavelet
430 CALL mask_finder ( radius , f a l s e_rad ius , midpix )
431 i f (me . eq . 0) print ∗ , " sigma−l im i t=" , s igma_limit∗sigma_s ( s )
432
433 ! Routine for locat ing point sources larger than X∗sigma_CMB
434 DO pix=0,npix−1
435
436 IF ( addnoise ) THEN
437 sigma_test = sigma_noise ( s , pix )
438 ELSE
439 sigma_test = sigma_s ( s )
440 END IF
441
442 ! Tests i f the current temperature value i s greater than a
443 ! chosen factor of sigma_CMB. These p i xe l s are poss ib l e
444 ! point source candidates . The t e s t w i l l avoid cases where
445 ! the map i s 0 , since these cases slow down the program
446 IF ( (map_TQU( pix ) .GE. sigma_limit∗ sigma_test ) .AND. map_TQU( pix ) .NE. 0) THEN
447
448 found = .FALSE.
449 foundcount = −1
450 la rge s t_p ix = pix
451
452 ! Checks i f any of the surrounding p i xe l s are larger
453 CALL pix2vec_ring ( nside , pix , vec tor )
454 CALL query_disc ( nside , vector , radius , l i s t p i x , n l i s t )
455 DO j =0, n l i s t −1
456 IF (map_TQU( l i s t p i x ( j ) ) .GT. map_TQU( la rge s t_pix ) ) THEN
457 la rge s t_p ix = l i s t p i x ( j )
458 END IF
459 END DO
460
461 ! Centers the search around the la rges t p i xe l
462 CALL pix2vec_ring ( nside , largest_pix , vec tor )
463 CALL query_disc ( nside , vector , radius , l i s t p i x , n l i s t )
464
465 ! Either known point source locat ions or unknown
466 IF ( knowps ) THEN
467 DO j =1,no_of_sources
468
469 ! Checks i f the point source rea l l y i s a point source or jus t
470 ! wrongly accused of being such a point . I f true , then the
471 ! point source i s counted as a true point source
472 IF ( pix .EQ. ps_index ( j , i_N) ) THEN
473 found = .TRUE.
474 true_source = true_source + 1
475 END IF
476
477 ! Al l the surrounding p i xe l s might be point sources . The t e s t
478 ! f a i l s i f any of these point sources are smaller than the sigma
479 ! l imit , that i s i f there are point sources within the mask that
480 ! are smaller than the point sources we are supposed to f ind
481 DO k=0, n l i s t −1
482
483 IF ( addnoise ) THEN
484 sigma_test = sigma_noise ( s , l i s t p i x (k ) )
485 END IF
486
487 IF ( ( l i s t p i x (k ) .EQ. ps_index ( j , i_N) ) .AND. (map_TQU( l i s t p i x (k ) ) .GE.

sigma_limit∗ sigma_test ) ) THEN
488
489 foundcount = foundcount + 1
490 otherp ix ( foundcount ) = l i s t p i x (k )
491 o th e r f l ux ( foundcount ) = map_TQU( l i s t p i x (k ) )
492 found = .TRUE.
493 END IF
494 END DO
495 END DO
496
497 ! A mask i s put around the la rges t p i xe l . I f other true
498 ! point sources were found in the above test , they are not
499 ! masked , so that they can be found la t e r on . I f no true
500 ! point sources were found , the point or ig inates from CMB,
501 ! and the case i s reg is tered as a f a l s e point source and i s
502 ! masked with a smaller mask
503 IF ( found ) THEN
504 CALL pix2vec_ring ( nside , largest_pix , vec tor )
505 CALL query_disc ( nside , vector , radius , l i s t p i x , n l i s t )
506 mask( l i s t p i x ( 0 : n l i s t −1) ) = 0 .
507 map_TQU( l i s t p i x ( 0 : n l i s t −1) ) = 0 .
508 map_TQU( otherp ix ( 0 : foundcount ) ) = o the r f l ux ( 0 : foundcount )
509
510 ELSE
511 fa l s e_source = fa l s e_source + 1
512
513 CALL pix2vec_ring ( nside , largest_pix , vec tor )
514 CALL query_disc ( nside , vector , f a l s e_rad ius , l i s t p i x , n l i s t )
515 mask( l i s t p i x ( 0 : n l i s t −1) ) = 0 .
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516 map_TQU( l i s t p i x ( 0 : n l i s t −1) ) = 0 .
517 END IF
518
519 ELSE
520 CALL pix2vec_ring ( nside , largest_pix , vec tor )
521 CALL query_disc ( nside , vector , radius , l i s t p i x , n l i s t )
522
523 ! Checks i f the point source i s rea l . Note that
524 ! false_source i s used to count correct detect ions here
525 DO j =1,no_of_sources
526 DO k=0, n l i s t −1
527
528 IF ( addnoise ) THEN
529 sigma_test = sigma_noise ( s , l i s t p i x (k ) )
530 END IF
531
532 IF ( ( l i s t p i x (k ) .EQ. ps_index ( j , i_N) ) .AND. ( .NOT. found ) .AND. (map_TQU(

l i s t p i x (k ) ) .GE. sigma_limit∗ sigma_test ) ) THEN
533 fa l s e_source = fa l s e_source + 1
534 found = .TRUE.
535 END IF
536 END DO
537 END DO
538
539 ! Unknown point sources are a l l treated as true point
540 ! sources , and masked with a standard beam mask
541 mask( l i s t p i x ( 0 : n l i s t −1) ) = 0 .
542 map_TQU( l i s t p i x ( 0 : n l i s t −1) ) = 0 .
543 true_source = true_source + 1
544 END IF
545 END IF
546 END DO
547
548 ! Calculation of the means
549 false_mean ( s ) = false_mean ( s ) + fa l s e_source
550 true_mean ( s ) = true_mean ( s ) + true_source
551 mask_mean( s ) = mask_mean( s ) + 100∗(1_dp−(SUM(mask) /npix ) )
552
553 IF (N .EQ. 1) THEN
554 ! Counts the number of p i xe l s remaining in map with mask
555 PRINT ∗ , ’Number o f p i x e l s in mask i s ’ , npix−INT(SUM(mask) )
556 PRINT ∗ , ’ Percentage in mask ’ , 100∗(1_dp−(SUM(mask) /npix ) )
557 PRINT ∗
558
559 ! Prints the re su l t s to screen
560 IF ( wavelet ) THEN
561 IF (smh) THEN
562 PRINT ∗ , ’CURRENT SCALE IS s= ’ , s c a l e s ( s )
563 ELSE
564 PRINT ∗ , ’CURRENT SCALE IS j= ’ , s
565 END IF
566 END IF
567 PRINT ∗ , true_source , ’ o f ’ , no_of_sources , ’ po int source s were found ’
568 IF ( knowps ) THEN
569 PRINT ∗ , f a l s e_source , ’ found point source s were f a l s e ’
570 ELSE
571 PRINT ∗ , true_source−f a l s e_source , ’ o f these are i n c o r r e c t de t ec t i ons ’
572 END IF
573 PRINT ∗
574 END IF
575 END DO
576
577 END SUBROUTINE detect_ps
578
579 SUBROUTINE mask_finder ( radius , f a l s e_rad ius , midpix )
580
581 IMPLICIT NONE
582 INTEGER( I4B ) : : j , n l i s t , midpix
583 REAL(DP) : : radius , f a l s e_rad ius , map_sum, area
584
585 ! Either f i xed or dynamic mask
586 IF ( d i s c_s i z e .EQ. 0) THEN
587
588 ! Creates a mask of a s ing l e wavelet transformed p ixe l . I f a p i xe l
589 ! i s larger than 0.1 the p i xe l s ize , i t w i l l be within the mask
590 pixel_mask = 0
591 DO i =0,npix−1
592 IF (ABS(map_pixel ( i ) ) .GT. 0 .1∗map_pixel ( midpix ) ) pixel_mask ( i ) = 1
593 END DO
594
595 ! Finds the area of the mask , and ca lcu la tes i t s radius
596 map_sum = SUM( pixel_mask )
597 area = p i x s i z e ∗∗2∗map_sum
598 rad ius = SQRT( area / pi )
599
600 ! Compensates for the p i xe l s l e s s than 0.1 the p i xe l s i z e that
601 ! was within the radius , and increases the radius by 10 % in
602 ! case some fa l s e sources were missed . The radius then becomes
603 ! a b i t larger . Mask s i z e s larger than the sphere must be avoided ,
604 ! and these are set to pi .
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605 IF ( rad iu s .LT. p i ) THEN
606
607 CALL pix2vec_ring ( nside , midpix , vec tor )
608 CALL query_disc ( nside , vector , radius , l i s t p i x , n l i s t )
609
610 DO j =0, n l i s t −1
611 IF ( pixel_mask ( l i s t p i x ( j ) ) .EQ. 0) map_sum = map_sum + 1
612 END DO
613
614 area = p i x s i z e ∗∗2∗map_sum
615 rad ius = SQRT( area / pi )
616 IF ( .NOT. smh) rad ius = rad ius ∗1.1
617 IF ( rad iu s .GT. p i ) rad ius = pi
618
619 IF (N .EQ. 1) PRINT ∗ , ’Use mask s ize ’ , r ad ius ∗(180_dp/ pi ) ∗60_dp
620 ELSE
621 rad ius = pi
622 END IF
623 ELSE
624 rad ius = d i s c_s i z e /((180_dp/ pi )∗60_dp)
625 IF (N .EQ. 1) PRINT ∗ , ’Use f i x ed mask s ize ’ , r ad iu s ∗(180_dp/ pi ) ∗60_dp
626 END IF
627
628 ! Determine mask for f a l s e sources from mask for true sources
629 f a l s e_rad iu s = rad ius ∗0.4
630 IF (N .EQ. 1) PRINT ∗ , ’ Fa l se mask s ize ’ , f a l s e_rad iu s ∗(180_dp/ pi ) ∗60_dp
631
632 END SUBROUTINE mask_finder
633
634 SUBROUTINE dump_results
635
636 ! Takes the sum of false_mean and true_mean from a l l cpus , and puts i t
637 ! into cpu #0
638 IF ( wavelet ) THEN
639 IF (smh) THEN
640 cnt = ns c a l e s
641 ELSE
642 cnt = nj
643 END IF
644 ELSE
645 cnt = 1
646 END IF
647
648 dest = 0
649 CALL MPI_Reduce( false_mean , false_mean0 , cnt ,MPI_REAL,MPI_SUM, dest ,MPI_COMM_WORLD, i e r r )
650 CALL MPI_Reduce( true_mean , true_mean0 , cnt ,MPI_REAL,MPI_SUM, dest ,MPI_COMM_WORLD, i e r r )
651 CALL MPI_Reduce(mask_mean ,mask_mean0 , cnt ,MPI_REAL,MPI_SUM, dest ,MPI_COMM_WORLD, i e r r )
652 CALL MPI_Reduce(ps_amp , ps_amp0 , cnt ,MPI_REAL,MPI_SUM, dest ,MPI_COMM_WORLD, i e r r )
653
654 IF (me .EQ. 0) THEN
655 false_mean0 = false_mean0/N_max2
656 true_mean0 = true_mean0/N_max2
657 mask_mean0 = mask_mean0/N_max2
658 ps_amp0 = ps_amp0/(N_max2∗no_of_sources )
659
660 IF ( wavelet ) THEN
661 IF (smh) THEN
662 DO s=sta r t , f i n i s h
663 PRINT ∗ , ’MEAN VALUES FOR THE SCALE ’ , s c a l e s ( s ) , ’ ARC MINUTES’
664 PRINT ∗ , true_mean0 ( s ) , ’ o f ’ , no_of_sources , ’ po int source s were found ’
665 IF ( knowps ) THEN
666 PRINT ∗ , false_mean0 ( s ) , ’ found point source s were f a l s e ’
667 ELSE
668 PRINT ∗ , true_mean0 ( s )−false_mean0 ( s ) , ’ o f these are i n c o r r e c t de t ec t i ons ’
669 END IF
670 PRINT ∗ , ’ Percentage in mask ’ , mask_mean0( s )
671 PRINT ∗ , ’ Total PS amplitude ’ , ps_amp0( s )
672 PRINT ∗
673 END DO
674 ELSE
675 DO s=sta r t , f i n i s h
676 PRINT ∗ , ’MEAN VALUES FOR THE SCALE j = ’ , s
677 PRINT ∗ , true_mean0 ( s ) , ’ o f ’ , no_of_sources , ’ po int source s were found ’
678 IF ( knowps ) THEN
679 PRINT ∗ , false_mean0 ( s ) , ’ found point source s were f a l s e ’
680 ELSE
681 PRINT ∗ , true_mean0 ( s )−false_mean0 ( s ) , ’ o f these are i n c o r r e c t de t ec t i ons ’
682 END IF
683 PRINT ∗ , ’ Percentage in mask ’ , mask_mean0( s )
684 PRINT ∗ , ’ Total PS amplitude ’ , ps_amp0( s )
685 PRINT ∗
686 END DO
687 END IF
688 ELSE
689 DO s=sta r t , f i n i s h
690 PRINT ∗ , ’MEAN VALUES’
691 PRINT ∗ , true_mean0 ( s ) , ’ o f ’ , no_of_sources , ’ po int source s were found ’
692 IF ( knowps ) THEN
693 PRINT ∗ , false_mean0 ( s ) , ’ found point source s were f a l s e ’
694 ELSE
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695 PRINT ∗ , true_mean0 ( s )−false_mean0 ( s ) , ’ o f these are i n c o r r e c t de tec t i ons ’
696 END IF
697 PRINT ∗ , ’ Percentage in mask ’ , mask_mean0( s )
698 PRINT ∗ , ’ Total PS amplitude ’ , ps_amp0( s )
699 PRINT ∗
700 END DO
701 END IF
702
703 open(unit , f i l e=’ de t e c t i on s . unf ’ , form=’unformatted ’ , status=’unknown ’ )
704 rewind (unit )
705 write (unit ) true_mean0 , false_mean0
706 close (unit )
707 END IF
708
709 END SUBROUTINE dump_results
710 ENDMODULE psw_sub

A.2 Detection of unresolved point sources

Listing A.3: psks_par.f90
1 PROGRAM psks
2 USE psks_sub
3
4 INTEGER( I4B ) : : n_pols , i s e ed
5 REAL(DP) : : r ad ius
6 CHARACTER(LEN=128) : : h ea lp ixd i r , f i l ename
7 TYPE(PLANCK_RNG) : : rng_handle
8
9 ! Necessary for pa ra l l e l i z a t i on
10 CALL MPI_INIT( i e r r )
11 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks , i e r r )
12 CALL MPI_COMM_RANK(MPI_COMM_WORLD, me, i e r r )
13
14 ! Find Healpix−directory
15 CALL getEnvironment ( "HEALPIX" , h e a l p i xd i r )
16
17 ! Set parameters
18 f i l ename = ’ params_psks3 . txt ’
19 CALL get_params ( f i l ename )
20
21 ! Set standard values derived from the parameters
22 rad ius = d i s c_s i z e ∗3.1416/(180 d0∗60d0 )
23 npix=ns ide ∗∗2∗12
24 n_pols = 1 + 2∗ po la r ! e i ther 1 or 3
25 i s e ed = start_seed+me
26
27 ! Necessary for pa ra l l e l i z a t i on
28 ALLOCATE(N_max_pp( 0 : ntasks−1) )
29 ALLOCATE( stat ( 0 :MPI_STATUS_SIZE−1) )
30
31 ! Code to d i s t r i bu t e number of N evenly to each CPU, and i f there ’ s a
32 ! remainder from the divis ion , the remaining N are added to the f i r s t CPUs
33 N_max_pp=N_max1/ ntasks
34 IF (MOD(N_max1, ntasks ) .NE. 0 ) THEN
35 N_max_pp( 0 :MOD(N_max1, ntasks )−1)=N_max_pp( 0 :MOD(N_max1, ntasks )−1)+1
36 END IF
37
38 ! Al locate memory for arrays
39 CALL a l l o c ( n_pols , .TRUE. )
40
41 ! Preperation of the array containing the sca les
42 IF ( wavelet ) THEN
43 IF (smh) THEN
44 s c a l e s (1 ) = sca l e_s ta r t
45 DO i =2, n s c a l e s
46 s c a l e s ( i ) = s c a l e s ( i−1) + add
47 END DO
48 END IF
49 ELSE
50 s c a l e s (1 ) = 1
51 END IF
52
53 ! Preperation of the array containing the amplitudes
54 IF (amp) THEN
55 source_intens i ty (1 ) = midamp − (N_amp/2)∗addamp
56 DO i =2,N_amp
57 source_intens i ty ( i ) = source_intens i ty ( i−1) + addamp
58 END DO
59 ELSE
60 source_intens i ty (1 ) = midamp
61 END IF
62
63 ! Set values a f ter a l locat ion
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64 zbounds=[−1 ,1]
65 w8ring_TQU=1
66 mask = 1 .
67 sigma_s = 0d0
68 sigma_noise = 0d0
69
70 ! The unit for f i l e opening i s d i f f e r en t for each CPU, where me i s
71 ! the CPU number
72 unit=10+me
73
74 ! Fetches the beam from f i l e
75 OPEN(unit , f i l e=’MAP_blxwl_avgv_opt . unf ’ , form=’unformatted ’ , status=’old ’ )
76 REWIND(unit )
77 READ(unit ) beam
78 CLOSE(unit )
79
80 ! Fetches the noise from f i l e
81 OPEN(unit , f i l e=’MAP_noise_avgv . unf ’ , form=’unformatted ’ , status=’old ’ )
82 REWIND(unit )
83 READ(unit ) no i s e
84 CLOSE(unit )
85
86 IF ( wavelet ) THEN
87 IF (me . eq . 0) PRINT ∗ , "Generating ␣wave let s . . . "
88 IF (smh) THEN
89
90 ! Finds g_l for the SMH wavelets at the defined sca les
91 CALL calc_gl_smh ( nside , lmax , nsca l e s , s c a l e s , gl , .FALSE. , .TRUE. , g l f i l e , me)
92 ELSE
93 ! Finds g_l for the needlets at the defined sca les
94 CALL ca lc_f2 ( f2 , nn)
95 CALL ca lc_gl ( f2 , nn , j0 , nj , lmax , gl , aa )
96
97 OPEN(unit , f i l e=’gl_psks . unf ’ , form=’unformatted ’ , status=’unknown ’ )
98 REWIND(unit )
99 WRITE(unit ) g l

100 CLOSE(unit )
101 END IF
102 END IF
103
104 ! Transfer iseed to rng_handle , from now on , use rng_handle in c a l l s to
105 ! routines using random generator
106 CALL rand_init ( rng_handle , i s e ed ) ! takes up to 4 seeds simultaneously
107
108 ! Generates CMB maps to determine a value for sigma_CMB
109 IF (me .EQ. 0) PRINT ∗ , " Ca l i b ra t ing ␣ con f idence . . . "
110 DO, i_N=0, N_max_pp(me)−1
111
112 ! Finds which N to give to th i s CPU
113 IF (me .EQ. 0) THEN
114 N=i_N ! The f i r s t cpu jus t gets the f i r s t N
115 ELSE
116 ! Sums up a l l the N given to the previous CPUs such that
117 ! the index s tar t s o f f at the correct N
118 N=SUM(N_max_pp( 0 :me−1) )+i_N
119 END IF
120
121 CALL f ind_data ( i seed , rng_handle , fwhm_arcmin )
122 END DO
123
124 ! Takes the sum of sigma_CMB and sigma etc . from a l l cpus , and puts the
125 ! r e su l t in a l l CPUs
126 CALL reduce ( .TRUE. )
127 CALL dea l l o c ( .FALSE. )
128
129 ! Necessary for pa ra l l e l i z a t i on
130 ALLOCATE(N_max_pp( 0 : ntasks−1) )
131 ALLOCATE( stat ( 0 :MPI_STATUS_SIZE−1) )
132
133 ! Code to red i s t r i bu t e number of N evenly to each CPU, and i f there ’ s a
134 ! remainder from the divis ion , the remaining N are added to the f i r s t CPUs
135 N_max_pp=N_max2/ ntasks
136 IF (MOD(N_max2, ntasks ) .NE. 0 ) THEN
137 N_max_pp( 0 :MOD(N_max2, ntasks )−1)=N_max_pp( 0 :MOD(N_max2, ntasks )−1)+1
138 END IF
139
140 ! Real locate memory for some arrays
141 CALL a l l o c ( n_pols , . FALSE. )
142
143 ! Generates CMB maps to simulate detect ion of point sources
144 IF (me .EQ. 0) PRINT ∗ , "Detect ing ␣ point ␣ source s . . . "
145 DO, i_N=0, N_max_pp(me)−1
146
147 IF (me .EQ. 0) THEN
148 N=i_N
149 ELSE
150 N=SUM(N_max_pp( 0 :me−1) )+i_N
151 END IF
152
153 CALL sim ( i seed , rng_handle , fwhm_arcmin , rad iu s )
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154 END DO
155
156 ! Takes the sum of sigma_CMB and sigma etc . from a l l cpus , and puts the
157 ! r e su l t in a l l CPUs
158 CALL reduce ( .FALSE. )
159
160 ! Necessary for pa ra l l e l i z a t i on
161 CALL MPI_FINALIZE( i e r r )
162
163 ! Deallocate the memory used for arrays
164 CALL dea l l o c ( .TRUE. )
165
166 ENDPROGRAM psks

Listing A.4: psks_sub_par.f90
1 MODULE psks_sub
2
3 USE healpix_types
4 USE alm_tools
5 USE ran_tools
6 USE pix_too ls
7 USE extens ion
8 USE mod_domwav
9 USE rngmod , ONLY: rand_init , rand_gauss , planck_rng
10
11 IMPLICIT NONE
12 INCLUDE ’ mpif . h ’ ! Necessary for pa ra l l e l i z a t i on
13
14 INTEGER( I4B ) , DIMENSION( : ) , ALLOCATABLE : : l i s t p i x
15 INTEGER( I4B ) , DIMENSION( : , : ) , ALLOCATABLE : : ps_index
16 REAL(SP) , DIMENSION( : ) , ALLOCATABLE : : map_TQU, s ca l e s , mask , no ise , source_intens i ty ,

start_map
17 REAL(SP) , DIMENSION( : , : ) , ALLOCATABLE : : g l
18 REAL(DP) , DIMENSION( : ) , ALLOCATABLE : : zbounds , vector , f 2
19 REAL(DP) , DIMENSION( : , : ) , ALLOCATABLE : : beam , w8ring_TQU , ps_flux
20 REAL(DP) , DIMENSION( : , : , : ) , ALLOCATABLE : : sigma , sigma0 , skew , skew0 , kurt , kurt0 , c l , c l 0
21 COMPLEX(SPC) , DIMENSION( : , : , : ) , ALLOCATABLE : : alm_TGC, alm_g , alm_corr
22 CHARACTER(LEN=80) , DIMENSION( 1 : 1 80 ) : : header_PS
23 CHARACTER(LEN=128) : : c l f i l e , g l f i l e
24
25 INTEGER( I4B ) : : ns ide , lmax , polar , no_of_sources , n sca l e s , N, i_N , l , i , s , j0 , nj , nn , s ta r t ,

f i n i s h , start_seed , N_amp
26 INTEGER( I8B ) : : npix , N_max1, N_max2
27 REAL(SP) : : fwhm_arcmin , add , s ca l e_star t , addamp , midamp
28 REAL(DP) : : sigma_CMB, sigma_CMB0 , aa , d i s c_s i z e
29 LOGICAL(LGT) : : smh , wavelet , addnoise , amp, constamp
30
31 ! Necessary for pa ra l l e l i z a t i on
32 INTEGER( I4B ) , DIMENSION( : ) , ALLOCATABLE : : N_max_pp, stat
33 INTEGER( I4B ) : : i e r r , ntasks , unit , cnt , cnt_cl , dest , tag , src , me
34
35 CONTAINS
36 SUBROUTINE get_params ( f i l ename )
37
38 CHARACTER(LEN=128) : : l i n e , name, value , f i l ename , wlet , addn , ampamp, camp
39 INTEGER( I4B ) : : r s t a t
40 LOGICAL(LGT) : : exist
41
42 ! Checks i f the f i l e e x i s t s on disk . trim cuts the blank characters
43 ! away from filename
44 INQUIRE( f i l e=fi lename , exist=exist )
45 IF ( .NOT. exist ) THEN
46 PRINT ∗ , "Error : ␣ F i l e ␣" , TRIM( f i l ename ) , "␣not␣ found . "
47 STOP
48 END IF
49
50 ! Reads the f i l e l ine for l ine . Scan f inds the index of the spec i f i ed
51 ! character in the s tr ing . I f there i s no ’=’ on the l ine being read ,
52 ! or there i s a comment ’#’ on the l ine , the do loop skips to the next
53 ! l ine with cycle . Name contains the var iab le name, and value the value
54 ! of the var iab le . I f the name corresponds to one of the cases , the value
55 ! of that name i s inserted into the correct var iab le
56 OPEN(unit , f i l e=fi lename , form=’formatted ’ , iostat=r s t a t )
57 DO WHILE( r s t a t .EQ. 0)
58 READ(unit , fmt=’(A) ’ , iostat=r s t a t ) l i n e
59 i = SCAN( l i n e , ’= ’)
60 IF ( ( i .EQ. 0) .OR. ( l i n e ( 1 : 1 ) .EQ. ’# ’) ) CYCLE
61 name = TRIM(ADJUSTL( l i n e ( : i−1) ) )
62 value = TRIM(ADJUSTL( l i n e ( i +1:) ) )
63
64 SELECT CASE(TRIM(name) )
65 CASE( ’ ns ide ’ )
66 READ( value ,∗ ) ns ide
67 CASE( ’ lmax ’ )
68 READ( value ,∗ ) lmax
69 CASE( ’N_max1’ )
70 READ( value ,∗ ) N_max1



88 Source code

71 CASE( ’N_max2’ )
72 READ( value ,∗ ) N_max2
73 CASE( ’ no_of_sources ’ )
74 READ( value ,∗ ) no_of_sources
75 CASE( ’ polar ’ )
76 READ( value ,∗ ) po la r
77 CASE( ’ start_seed ’ )
78 READ( value ,∗ ) s tart_seed
79 CASE( ’amp ’ )
80 READ( value ,∗ ) ampamp
81 IF (ampamp .EQ. ’ true ’ ) THEN
82 amp = .TRUE.
83 ELSE IF (ampamp .EQ. ’ f a l s e ’ ) THEN
84 amp = .FALSE.
85 ELSE
86 PRINT ∗ , "Error : ␣amp␣must␣be␣ true ␣ or ␣ f a l s e . "
87 STOP
88 END IF
89 CASE( ’ constamp ’ )
90 READ( value ,∗ ) camp
91 IF (camp .EQ. ’ true ’ ) THEN
92 constamp = .TRUE.
93 ELSE IF (camp .EQ. ’ f a l s e ’ ) THEN
94 constamp = .FALSE.
95 ELSE
96 PRINT ∗ , "Error : ␣constamp␣must␣be␣ true ␣ or ␣ f a l s e . "
97 STOP
98 END IF
99 CASE( ’N_amp’ )

100 READ( value ,∗ ) N_amp
101 CASE( ’ source_intens i ty ’ )
102 READ( value ,∗ ) midamp
103 CASE( ’ addamp ’ )
104 READ( value ,∗ ) addamp
105 CASE( ’ fwhm_arcmin ’ )
106 READ( value ,∗ ) fwhm_arcmin
107 CASE( ’ wavelet ’ )
108 READ( value ,∗ ) wlet
109 IF ( wlet .EQ. ’smh ’ ) THEN
110 wavelet = .TRUE.
111 smh = .TRUE.
112 ELSE IF ( wlet .EQ. ’ need l e t s ’ ) THEN
113 wavelet = .TRUE.
114 smh = .FALSE.
115 ELSE IF ( wlet .EQ. ’ no ’ ) THEN
116 wavelet = .FALSE.
117 smh = .TRUE.
118 ELSE
119 PRINT ∗ , "Error : ␣" , TRIM( wlet ) , "␣ i s ␣not␣a␣ va l i d ␣wavelet . "
120 STOP
121 END IF
122 CASE( ’ n sca l e s ’ )
123 READ( value ,∗ ) n s c a l e s
124 CASE( ’ add ’ )
125 READ( value ,∗ ) add
126 CASE( ’ s ca l e_star t ’ )
127 READ( value ,∗ ) s c a l e_s ta r t
128 CASE( ’ j0 ’ )
129 READ( value ,∗ ) j 0
130 CASE( ’ nj ’ )
131 READ( value ,∗ ) nj
132 CASE( ’ aa ’ )
133 READ( value ,∗ ) aa
134 CASE( ’ nn ’ )
135 READ( value ,∗ ) nn
136 CASE( ’ d i sc_s ize ’ )
137 READ( value ,∗ ) d i s c_s i z e
138 CASE( ’ addnoise ’ )
139 READ( value ,∗ ) addn
140 IF ( addn .EQ. ’ true ’ ) THEN
141 addnoise = .TRUE.
142 ELSE IF ( addn .EQ. ’ f a l s e ’ ) THEN
143 addnoise = .FALSE.
144 ELSE
145 PRINT ∗ , "Error : ␣ addnoise ␣must␣be␣ true ␣ or ␣ f a l s e . "
146 STOP
147 END IF
148 CASE( ’ c l f i l e ’ )
149 READ( value ,∗ ) c l f i l e
150 CASE( ’ g l f i l e ’ )
151 READ( value ,∗ ) g l f i l e
152 END SELECT
153 END DO
154 CLOSE(unit )
155
156 END SUBROUTINE get_params
157
158 SUBROUTINE a l l o c ( n_pols , f i r s t t im e )
159
160 IMPLICIT NONE
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161 INTEGER( I4B ) : : n_pols
162 LOGICAL(LGT) : : f i r s t t im e
163
164 ! Al locates only the f i r s t time
165 IF ( f i r s t t im e ) THEN
166 ALLOCATE(alm_TGC(1 : n_pols , 0 : lmax , 0 : lmax ) )
167 ALLOCATE(alm_g ( 1 : n_pols , 0 : lmax , 0 : lmax ) )
168 ALLOCATE( alm_corr ( 1 : n_pols , 0 : lmax , 0 : lmax ) )
169 ALLOCATE(map_TQU(0 : npix−1) )
170 ALLOCATE( start_map ( 0 : npix−1) )
171 ALLOCATE( no i s e ( 0 : npix−1) )
172 ALLOCATE(beam ( 0 : lmax , 1 : n_pols ) )
173 ALLOCATE( zbounds ( 1 : 2 ) )
174 ALLOCATE(w8ring_TQU(1 :2∗ lmax , 1) )
175 ALLOCATE(mask ( 0 : npix−1) )
176 ALLOCATE( vec tor ( 1 : 3 ) )
177 ALLOCATE( l i s t p i x ( 0 : npix−1) )
178 ALLOCATE( source_intens i ty ( 1 :N_amp) )
179
180 IF ( wavelet ) THEN
181 IF (smh) THEN
182 s t a r t=1
183 f i n i s h=ns c a l e s
184 ALLOCATE( s c a l e s ( s t a r t : f i n i s h ) )
185 ELSE
186 s t a r t=j0
187 f i n i s h=j0+nj−1
188 ALLOCATE( f 2 ( 0 : nn−1) )
189 END IF
190 ELSE
191 s t a r t=1
192 f i n i s h=1
193 ALLOCATE( s c a l e s ( s t a r t : f i n i s h ) )
194 END IF
195
196 IF ( .NOT. amp) N_amp = 1
197
198 ALLOCATE( g l ( 0 : lmax , s t a r t : f i n i s h ) )
199 ALLOCATE( sigma ( 0 :N_max_pp(me)−1, s t a r t : f i n i s h , 1 :N_amp) )
200 ALLOCATE( skew ( 0 :N_max_pp(me)−1, s t a r t : f i n i s h , 1 :N_amp) )
201 ALLOCATE( kurt ( 0 :N_max_pp(me)−1, s t a r t : f i n i s h , 1 :N_amp) )
202 sigma = 0 . ; skew = 0 . ; kurt = 0 .
203
204 ! sigma0 etc . i s an array that contain a l l the re su l t s . This array i s
205 ! only given to CPU #0
206 IF (me .EQ. 0) THEN
207 ALLOCATE( sigma0 ( 0 :N_max1−1, s t a r t : f i n i s h , 1 :N_amp) )
208 ALLOCATE( skew0 ( 0 :N_max1−1, s t a r t : f i n i s h , 1 :N_amp) )
209 ALLOCATE( kurt0 ( 0 :N_max1−1, s t a r t : f i n i s h , 1 :N_amp) )
210 sigma0 = 0 . ; skew0 = 0 . ; kurt0 = 0 .
211 END IF
212
213 ELSE ! For rea l locat ion of a couple of arrays
214 ALLOCATE( ps_index ( 1 : no_of_sources , 0 :N_max_pp(me)−1))
215 ALLOCATE( ps_flux ( 1 : no_of_sources , 0 :N_max_pp(me)−1) )
216 ALLOCATE( sigma ( 0 :N_max_pp(me)−1, s t a r t : f i n i s h , 1 :N_amp) )
217 ALLOCATE( skew ( 0 :N_max_pp(me)−1, s t a r t : f i n i s h , 1 :N_amp) )
218 ALLOCATE( kurt ( 0 :N_max_pp(me)−1, s t a r t : f i n i s h , 1 :N_amp) )
219 ALLOCATE( c l ( 0 : lmax , 0 :N_max_pp(me) −1 ,1:N_amp) )
220 sigma = 0 . ; skew = 0 . ; kurt = 0 . ; c l=0
221
222 IF (me .EQ. 0) THEN
223 ALLOCATE( sigma0 ( 0 :N_max2−1, s t a r t : f i n i s h , 1 :N_amp) )
224 ALLOCATE( skew0 ( 0 :N_max2−1, s t a r t : f i n i s h , 1 :N_amp) )
225 ALLOCATE( kurt0 ( 0 :N_max2−1, s t a r t : f i n i s h , 1 :N_amp) )
226 ALLOCATE( c l 0 ( 0 : lmax , 0 :N_max2−1 ,1:N_amp) )
227 sigma0 = 0 . ; skew0 = 0 . ; kurt0 = 0 . ; c l 0 = 0 .
228 END IF
229 END IF
230
231 END SUBROUTINE a l l o c
232
233 SUBROUTINE dea l l o c ( l a s t t ime )
234
235 IMPLICIT NONE
236 LOGICAL(LGT) : : l a s t t ime
237
238 IF ( l a s t t ime ) THEN
239 DEALLOCATE(alm_TGC, alm_g , alm_corr , map_TQU, start_map , noise , beam , ps_index , ps_flux ,

sigma , skew , kurt , zbounds , w8ring_TQU , mask , vector , l i s t p i x , gl , c l
240
241 IF (me .EQ. 0) DEALLOCATE( sigma0 , skew0 , kurt , c l 0 )
242
243 IF ( wavelet ) THEN
244 IF (smh) THEN
245 DEALLOCATE( s c a l e s )
246 ELSE
247 DEALLOCATE( f 2 )
248 END IF
249 ELSE
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250 DEALLOCATE( s c a l e s )
251 END IF
252
253 ! Necessary for para l l e l i z a t i on
254 DEALLOCATE(N_max_pp, stat )
255 ELSE
256 DEALLOCATE( sigma , skew , kurt )
257
258 IF (me .EQ. 0) THEN
259 DEALLOCATE( sigma0 , skew0 , kurt0 )
260 END IF
261
262 ! Necessary for para l l e l i z a t i on
263 DEALLOCATE(N_max_pp, stat )
264 END IF
265
266 END SUBROUTINE dea l l o c
267
268 SUBROUTINE f ind_data ( i seed , rng_handle , fwhm_arcmin )
269
270 IMPLICIT NONE
271 INTEGER( I4B ) : : i s e ed
272 REAL(SP) : : fwhm_arcmin
273 TYPE(PLANCK_RNG) : : rng_handle
274
275 IF (me . eq . 0) PRINT ∗ , " Enter ing ␣N=" , i_N+1
276
277 ! Creates a simulated CMB map
278 CALL create_alm ( nside , lmax , lmax , polar , c l f i l e , rng_handle , fwhm_arcmin , alm_TGC, header_PS )
279
280 ! Transforms the alm ’ s to map and back again at the point in the code
281 ! where point sources are added in the second MC loop
282 CALL alm2map( nside , lmax , lmax , alm_TGC, map_TQU)
283 CALL map2alm( nside , lmax , lmax ,map_TQU,alm_TGC, zbounds ,w8ring_TQU)
284
285 ! Add beam e f f e c t s to the created map (note that the p i xe l window
286 ! function i s included in th i s map)
287 DO l =0, lmax
288 alm_TGC(1 , l , : ) = alm_TGC(1 , l , : ) ∗beam( l , 1 )
289 END DO
290
291 ! Need the map for ca lcu la t ion of sigma_CMB
292 CALL alm2map( nside , lmax , lmax , alm_TGC, map_TQU)
293
294 ! Calculates the variance of the CMB map
295 sigma_CMB = sigma_CMB + SUM(map_TQU∗∗2)
296
297 ! Add noise e f f e c t s to the created map
298 IF ( addnoise ) THEN
299 DO i =0,npix−1
300 map_TQU( i ) = map_TQU( i ) + no i s e ( i )∗ randgauss_boxmuller ( i s e ed ) ∗1000
301 END DO
302 END IF
303
304 ! Need alm ’ s for wavelet transformation
305 CALL map2alm( nside , lmax , lmax ,map_TQU,alm_TGC, zbounds ,w8ring_TQU)
306
307 ! Loop over a l l the chosen scales , which ca lcu la tes the alm ’ s for the
308 ! wavelets and transform them to map
309 DO s=sta r t , f i n i s h
310 IF (me . eq . 0) PRINT ∗ , " Proces s ing ␣ s c a l e ␣" , s , "␣ o f ␣" , f i n i s h
311
312 IF ( wavelet ) THEN
313 DO l =0, lmax
314 alm_g(1 , l , : ) = alm_TGC(1 , l , : ) ∗ g l ( l , s )
315 END DO
316 CALL alm2map( nside , lmax , lmax , alm_g , map_TQU)
317 END IF
318
319 ! Calculate the variance , skewness and kurtos is of the wavelet
320 ! c o e f f i s i en t s at each sca le
321 sigma (i_N , s , 1 ) = SUM(map_TQU∗∗2)
322 skew (i_N , s , 1 ) = SUM(map_TQU∗∗3)
323 kurt ( i_N , s , 1 ) = SUM(map_TQU∗∗4)
324 END DO
325
326 END SUBROUTINE f ind_data
327
328 SUBROUTINE sim ( i seed , rng_handle , fwhm_arcmin , rad ius )
329
330 IMPLICIT NONE
331 INTEGER( I4B ) : : i s eed , ip ix , n l i s t , Ai
332 REAL(SP) : : fwhm_arcmin
333 REAL(DP) : : costheta , phi , rad iu s
334 TYPE(PLANCK_RNG) : : rng_handle
335
336 IF (me .EQ. 0) PRINT ∗ , " Enter ing ␣N=" , i_N+1
337
338 ! Creates a simulated CMB map
339 CALL create_alm ( nside , lmax , lmax , polar , c l f i l e , rng_handle , fwhm_arcmin , alm_TGC, header_PS )
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340
341 ! Transform the alm ’ s to map
342 CALL alm2map( nside , lmax , lmax , alm_TGC, start_map )
343
344 ! Loop over a l l amplitudes
345 DO Ai=1, N_amp
346
347 IF (me .EQ. 0) PRINT ∗ , "Test ing ␣ amplitude ␣" , source_intens i ty (Ai )
348 map_TQU = start_map
349
350 ! Create random point sources
351 DO i =1, no_of_sources
352
353 ! Random direct ion and f lux
354 cos the ta = ran_mwc( i s e ed )∗2 − 1
355 phi = ran_mwc( i s e ed ) ∗2∗3.14159265
356 IF ( constamp ) THEN ! For constant amplitude
357 ps_flux ( i , i_N) = source_intens i ty (Ai )∗sigma_CMB
358 ELSE
359 ps_flux ( i , i_N) = ran_mwc( i s e ed )∗ source_intens i ty (Ai )∗sigma_CMB
360 ENDIF
361
362 ! Convert the angular coordinates to a p ixe l index
363 CALL ang2pix_ring ( nside , ACOS( cos the ta ) , phi , i p i x )
364 ps_index ( i , i_N) = ip i x
365
366 ! Add the point sources to the map
367 map_TQU( ps_index ( i , i_N) ) = map_TQU( ps_index ( i , i_N) ) + ps_flux ( i , i_N)
368 END DO
369
370 ! Converts the map back to alm ’ s
371 CALL map2alm( nside , lmax , lmax ,map_TQU,alm_TGC, zbounds ,w8ring_TQU)
372
373 ! Add beam e f f e c t s to the created map (note that the p i xe l window
374 ! function i s included in th i s map)
375 DO l =0, lmax
376 alm_TGC(1 , l , : ) = alm_TGC(1 , l , : ) ∗beam( l , 1 )
377 END DO
378
379 ! Point source simulation must do the same processes to the map
380 ! as for the ca l i bra t ion of the confidence l imi t s
381 CALL alm2map( nside , lmax , lmax , alm_TGC, map_TQU)
382
383 ! Add noise e f f e c t s to the created map
384 IF ( addnoise ) THEN
385 DO i =0,npix−1
386 map_TQU( i ) = map_TQU( i ) + no i s e ( i )∗ randgauss_boxmuller ( i s e ed ) ∗1000
387 END DO
388 END IF
389
390 CALL map2alm( nside , lmax , lmax , map_TQU, alm_TGC, zbounds , w8ring_TQU)
391
392 ! Correct with beam before creating C_l
393 DO l =0, lmax
394 alm_corr (1 , l , : ) = alm_TGC(1 , l , : ) /beam( l , 1 )
395 END DO
396
397 ! Calculates c l
398 DO l =0, lmax
399 c l ( l , i_N , Ai ) = (1d0/(2d0∗ l + 1d0 ) ) ∗( alm_corr (1 , l , 0 ) ∗∗2+2d0∗SUM( alm_corr (1 , l , 1 : l )∗CONJG(

alm_corr (1 , l , 1 : l ) ) ) )
400 END DO
401
402 ! Loop over a l l the chosen sca les
403 DO s=sta r t , f i n i s h
404 IF (me . eq . 0) PRINT ∗ , " Proces s ing ␣ s c a l e ␣" , s , "␣ o f ␣" , f i n i s h
405
406 IF ( wavelet ) THEN
407 ! Calculate the alm ’ s for the wavelets
408 DO l =0, lmax
409 alm_g(1 , l , : ) = alm_TGC(1 , l , : ) ∗ g l ( l , s )
410 END DO
411
412 ! Transform the alm ’ s to map for the wavelet c o e f f i s i en t s
413 CALL alm2map( nside , lmax , lmax , alm_g , map_TQU)
414 END IF
415
416 ! Calculate the variance , skewness and kurtos is of the wavelet
417 ! c o e f f i s i en t s at each sca le
418 sigma (i_N , s , Ai ) = sum(map_TQU∗∗2)
419 skew (i_N , s , Ai ) = sum(map_TQU∗∗3)
420 kurt ( i_N , s , Ai ) = sum(map_TQU∗∗4)
421 END DO
422 END DO
423
424 END SUBROUTINE sim
425
426 SUBROUTINE reduce (data )
427
428 IMPLICIT NONE
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429 LOGICAL(LGT) : : data
430 CHARACTER(LEN=128) : : s igma_fi le , skew_fi le , ku r t_ f i l e
431
432 IF (data ) THEN
433 cnt = 1
434 CALL MPI_AllReduce (sigma_CMB, sigma_CMB0 , cnt ,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD, i e r r )
435 sigma_CMB = SQRT(sigma_CMB0/(N_max1∗npix ) )
436 END IF
437
438 ! Al l cpus , except cpu #0, must wait before program can continue . Al l
439 ! the cpus must f in i sh ca lcu la t ion of sigma etc . f i r s t
440 dest = 0 ! The dest inat ion CPU of the data
441 IF (me .NE. 0) THEN
442
443 ! Total number of elements to be sent
444 IF ( wavelet ) THEN
445 IF (smh) THEN
446 cnt = ns c a l e s ∗N_max_pp(me)∗N_amp
447 ELSE
448 cnt = nj∗N_max_pp(me)∗N_amp
449 END IF
450 ELSE
451 cnt = 1∗N_max_pp(me)∗N_amp
452 END IF
453 cnt_cl = ( lmax+1)∗N_max_pp(me)∗N_amp
454
455 tag = me
456 PRINT∗ , ’∗∗∗∗ Sending sigma from ’ ,me
457 CALL MPI_SSEND( sigma , cnt ,MPI_DOUBLE_PRECISION, dest , tag ,MPI_COMM_WORLD, i e r r )
458 PRINT∗ , ’∗∗∗∗ Sent sigma from ’ ,me
459
460 tag = me+ntasks ! Tag must be d i f f e r en t from the previous
461 PRINT∗ , ’∗∗∗∗ Sending skewness from ’ ,me
462 CALL MPI_SSEND( skew , cnt ,MPI_DOUBLE_PRECISION, dest , tag ,MPI_COMM_WORLD, i e r r )
463 PRINT∗ , ’∗∗∗∗ Sent skewness from ’ ,me
464
465 tag = me+ntasks ∗2 ! Tag must be d i f f e r en t from the previous
466 PRINT∗ , ’∗∗∗∗ Sending ku r t o s i s from ’ ,me
467 CALL MPI_SSEND( kurt , cnt ,MPI_DOUBLE_PRECISION, dest , tag ,MPI_COMM_WORLD, i e r r )
468 PRINT∗ , ’∗∗∗∗ Sent c l from ’ ,me
469
470 IF ( .NOT. data ) THEN
471 tag = me+ntasks ∗3 ! Tag must be d i f f e r en t from the previous
472 PRINT∗ , ’∗∗∗∗ Sending c l from ’ ,me
473 CALL MPI_SSEND( cl , cnt_cl ,MPI_DOUBLE_PRECISION, dest , tag ,MPI_COMM_WORLD, i e r r )
474 PRINT∗ , ’∗∗∗∗ Sent c l from ’ ,me
475 END IF
476
477 ELSE
478 DO i =0, ntasks−1
479
480 ! Total number of elements to be received
481 IF ( wavelet ) THEN
482 IF (smh) THEN
483 cnt = ns c a l e s ∗N_max_pp( i )∗N_amp
484 ELSE
485 cnt = nj∗N_max_pp( i )∗N_amp
486 END IF
487 ELSE
488 cnt = 1∗N_max_pp(me)∗N_amp
489 END IF
490 cnt_cl = ( lmax+1)∗N_max_pp(me)∗N_amp
491
492 IF ( i .EQ. 0) THEN
493 sigma0 ( 0 :N_max_pp(0) −1 , : , : ) = sigma
494 skew0 ( 0 :N_max_pp(0) −1 , : , : ) = skew
495 kurt0 ( 0 :N_max_pp(0) −1 , : , : ) = kurt
496 IF ( .NOT. data ) c l 0 ( : , 0 :N_max_pp(0) −1 ,:) = c l
497 ELSE
498
499 s r c=i ! The source CPU of the data
500 tag=i ! The tag must match the one i t ’ s receiving from
501 PRINT∗ , ’∗∗∗∗ Rece iv ing sigma from ’ , i
502 CALL MPI_RECV( sigma0 (SUM(N_max_pp( 0 : i−1) ) :SUM(N_max_pp( 0 : i ) ) −1 , : , : ) , cnt ,

MPI_DOUBLE_PRECISION, src , tag ,MPI_COMM_WORLD, stat , i e r r )
503 PRINT∗ , ’∗∗∗∗Received sigma from ’ , i
504
505 tag=i+ntasks
506 PRINT∗ , ’∗∗∗∗ Rece iv ing skewness from ’ , i
507 CALL MPI_RECV( skew0 (SUM(N_max_pp( 0 : i−1) ) :SUM(N_max_pp( 0 : i ) ) −1 , : , : ) , cnt ,

MPI_DOUBLE_PRECISION, src , tag ,MPI_COMM_WORLD, stat , i e r r )
508 PRINT∗ , ’∗∗∗∗Received skewness from ’ , i
509
510 tag=i+ntasks ∗2
511 PRINT∗ , ’∗∗∗∗ Rece iv ing ku r t o s i s from ’ , i
512 CALL MPI_RECV( kurt0 (SUM(N_max_pp( 0 : i−1) ) :SUM(N_max_pp( 0 : i ) ) −1 , : , : ) , cnt ,

MPI_DOUBLE_PRECISION, src , tag ,MPI_COMM_WORLD, stat , i e r r )
513 PRINT∗ , ’∗∗∗∗Received ku r t o s i s from ’ , i
514
515 IF ( .NOT. data ) THEN



A.2 Detection of unresolved point sources 93

516 tag=i+ntasks ∗3
517 PRINT∗ , ’∗∗∗∗ Rece iv ing c l from ’ , i
518 CALL MPI_RECV( c l 0 ( : ,SUM(N_max_pp( 0 : i−1) ) :SUM(N_max_pp( 0 : i ) ) −1 ,:) , cnt_cl ,

MPI_DOUBLE_PRECISION, src , tag ,MPI_COMM_WORLD, stat , i e r r )
519 PRINT∗ , ’∗∗∗∗Received c l from ’ , i
520 END IF
521 END IF
522 END DO
523
524 ! Takes the middle of std . dev , skewness and kurtos is of a l l the p i xe l s
525 sigma0 = SQRT( sigma0/npix )
526 skew0 = skew0 /( npix∗ sigma0 ∗∗3)
527 kurt0 = kurt0 /( npix∗ sigma0 ∗∗4)−3
528 END IF
529
530 ! Print r e su l t s to screen and write to f i l e
531 IF (data ) THEN
532 s igma_f i l e = ’dummy. unf ’
533 skew_f i l e = ’ skew_data . unf ’
534 ku r t_ f i l e = ’ kurt_data . unf ’
535 ELSE
536 s igma_f i l e = ’ cl_sim . unf ’
537 skew_f i l e = ’ skew_sim . unf ’
538 ku r t_ f i l e = ’ kurt_sim . unf ’
539 END IF
540 CALL dump_results ( s igma_fi le , skew_fi le , ku r t_ f i l e )
541
542 END SUBROUTINE reduce
543
544 SUBROUTINE dump_results ( c l_ f i l e , skew_fi le , ku r t_ f i l e )
545
546 IMPLICIT NONE
547 CHARACTER(LEN=128) : : c l_ f i l e , skew_fi le , ku r t_ f i l e
548
549 IF (me .EQ. 0) THEN
550 OPEN(unit , f i l e=c l_ f i l e , form=’unformatted ’ , status=’unknown ’ )
551 REWIND(unit )
552 WRITE(unit ) c l 0
553 CLOSE(unit )
554
555 OPEN(unit , f i l e=skew_fi le , form=’unformatted ’ , status=’unknown ’ )
556 REWIND(unit )
557 WRITE(unit ) skew0
558 CLOSE(unit )
559
560 OPEN(unit , f i l e=kurt_f i l e , form=’unformatted ’ , status=’unknown ’ )
561 REWIND(unit )
562 WRITE(unit ) kurt0
563 CLOSE(unit )
564 END IF
565
566 END SUBROUTINE dump_results
567 ENDMODULE psks_sub
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