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Preface

Looking up into a starry night, mesmerized by the thousands of sparkling
bright and faint lights, knowing that the beauty above is only a very, very
small fraction of the Universe, knowing that the beauty stretches out end-
lessly in all directions, it is almost impossible not to be filled with thoughts
of how, why and what.

For as long as I can remember, I've been fascinated by the sky above and
the questions it brings. There are several ways to try and find answers to
these fundamental questions. You have philosophers and theologians, and
there are astrophysicists. I believe the best way to get true knowledge about
the Universe is to study it, using physical laws as our basis. And although
there certainly are questions which can not be answered by physics alone,
I’ve chosen astrophysics as my way to find answers.

The work on this thesis has been carried out at the Institute for theoretical
astrophysics at the University of Oslo.

I’ve been very lucky to have a proficient and caring supervisor in associated
professor Dystein Elgargy. He has provided invaluable help, guidance and
constructive criticism on my work. So big thanks to you, Qystein.
Furthermore 1 would like to thank Hans Kristian Eriksen for practical help
and stimulating discussions. | will also send a special thank you to Antony
Lewis for very helpful discussions (concerning parameter estimation and the
use of COSMOMC). William H. Kinney also deserves a thanks for helpful dis-
cussions.

Finally I would like to thank Lis and Kanutte for proof-reading this thesis,
and thank you, Kanutte, for making me smile every day.
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Abstract

During inflation, the potential of the inflaton scalar field ¢, drives the ex-
ponential expansion of the Universe. The nature of the inflaton potential is
presently unknown, but one hopes to learn more from observations of the cos-
mic microwave background (CMB). Models of topical interest of the inflaton
potential can be divided into four classes, based on observable parameters.
In this thesis we explore the possibility of reconstructing the inflaton poten-
tial from observational data using a MonteCarlo reconstruction method. A
pipeline to estimate cosmological parameter constraints using a MonteCarlo
MarkovChain (MCMC) is also investigated. The object is to exclude whole
classes of inflaton potentials.

We find that the MonteCarlo reconstruction method is well suited to
produce vast numbers of candidates for the inflaton potential, but present
constraints on the cosmological parameters of interest are too weak for the
MonteCarlo reconstruction to be a useful method. Furthermore we discover
weaknesses with COSMOMC, the MCMC method commonly used to constrain
cosmological parameters. Currently, COSMOMC fails when using B-mode polar-
isation data, and the time and computing power needed to analyse noise-free
CMB data is far beyond what is needed for current observational data.

If the difficulties with the MCMC method are resolved, there is an exciting
possibility of using the MCMC method in conjunction with the MonteCarlo
reconstruction method to reconstruct the true inflaton potential from future
high precision CMB observations.
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Introduction

We live in a universe which, most likely, is the result of a Big Bang some
13.7 billion years ago. Most cosmologists today believe the Universe is filled
with energy, but not the ordinary energy of matter. Observations indicate
that baryonic matter only contributes about 4 % of the total amount of en-
ergy. A weird form of gravitationally only interacting matter, the so-called
cold dark matter (CDM), contributes roughly 26 % of the total energy, while
the remaining 70 % is a completely different form of energy, called vacuum
energy or Dark Energy. We really do not know what the Dark Energy is.
However, both CDM and Dark Energy seem to be required in order to match
our models with observations.

Our Universe is spatially flat, homogeneous and isotropic, and these prop-
erties make the Big Bang model inadequate. Therefore a so-called inflation-
ary epoch in the very early universe is propsed to solve the problems associ-
ated with the Big Bang model. The inflationary epoch lasts only for a tiny
fraction of a second, but in that short time, it changes our Universe radically.
The size of the Universe expands exponentially during inflation, resulting in
a smooth and flat universe, and “all” problems with the Big Bang model
are solved. As one understands, the concept of inflation is useful, and it
is therefore essential to get knowledge of what drives inflation. A type of
model which is able to explain the “force” behind inflation is a scalar field ¢,
with a corresponding potential V(). The scalar field ¢ is called the inflaton,
and V(¢) is the inflaton potential. In most models, the so-called slow-roll
models, it is assumed that the potential dominates the field during inflation.
Therefore it is important to have knowledge of the shape of the potential.
We wish to explore the possibility of reconstructing the inflaton potential
from observational data. Currently, there is no real understanding of what
the inflaton is, physically. By reconstructing, we therefore mean finding the
shape of the potential as a function of ¢ during inflation. We do not intend
to find anything more fundamental about the inflaton and its potential.

We first employed to reconstruct the inflaton potential, is not as fruit-
ful as we had hoped. Therefore we proceeded to examine the chances of,
from future observational data, excluding whole classes of possible inflaton
potential models. We simulate observational data and employ a method to
constrain the different model parameters. There are many different mod-
els for the inflaton potential, but most of them fall into one of four different
classes. Luckily, these four classes belong to seperate observational parameter
spaces. If we are able to constrain the parameters from the data well enough,
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we should be able to exclude one or more classes of models. If this is feasi-
ble from cosmological data, it would prove very useful in future attempts to
reconstruct the potential V' (¢), and thus our ability to say something about
the underlying physics.
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Chapter 1

Cosmology

In this chapter we present an outline of modern cosmological theory. An
interested reader may find a more comprehensive and thorough description
in a standard cosmology textbook [1, 2].

1.1 History

As long as humans have wandered this planet we have been filled with amaze-
ment about everything we see. For many, the heavens above have been the
most fascinating and it has always raised fundamental questions. Cosmology
is the science which tries to explain the Universe we observe. This section is
a very short and far from complete history of cosmology.

From the ancient Greeks to the people of the fifteenth century, “every-
body” assumed and believed that the Earth was the center of everything in
the Universe. There were no other “Suns” or planets, and the idea of galax-
ies was not even thought of at the time. This firm belief in the geocentric
worldview was challenged by Copernicus in the early 1500s. He worked out
a model where the Earth, and the other planets discovered at that time, all
rotated around the Sun in perfect circles. This heliocentric model did, how-
ever, not succeed in explaining the motions of the planets any better than
the geocentric model, and as it made the Sun, and not the Earth, the centre
of the Universe, it was not easily accepted.

On November 11, 1572, a bright star suddenly appeared in the constella-
tion of Cassiopeia. Initially being brighter than Venus, the star faded from
view after 18 months. This supernova explosion was not easy to explain in
the sixteenth century, a time when most scholars believed the heavens to be
permanent and unalterable. Thus the new star could not be a star at all, but
must instead be some sort of bright object quite near the Farth, possibly in
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the atmosphere. Tycho Brahe, a Danish astronomer, suggested measuring
the parallax of the new star to determine its distance. He failed to measure
any parallax, hence showing that the star had to be much further away than
anyone could imagine.

In the seventeenth century, Johannes Kepler, an assistant of Brahe, con-
structed a heliocentric model in which the planets move in elliptical orbits as
opposed to perfect circles. This model fitted Brahe’s observational data per-
fectly. Later Galileo Galilei, using a telescope, observed the phases of Venus
and the four large moons of Jupiter, thus finding strong evidence for the
heliocentric model and equally strong evidence against a geocentric model.
For this he was arrested by the Roman Catholic Church.

In the mid-seventeenth century, Isaac Newton introduced his laws of mo-
tion and the science of physics was changed forever. It became possible to
calculate the motions of objects using a mathematical framework.

We now take a rather big leap forward in time to 1845. Telescopes have
by this time improved and the Milky Way can now be observed. For the first
time the telescopes were powerful enough to observe, and see structures in
other galaxies, although it was not realized at the time that they were in fact
other galaxies. The astronomical community was divided in the discussion of
these “island universes”. Not until 1923 did Edwin Hubble settle the mattter
when he measured the distance to the Andromeda “nebula”, and found it to
be much larger than the size of the Milky Way.

In 1916 Albert Einstein published his theory of General Relativity, chang-
ing once again our understanding of time and space completely.

?

Hubble discovered in the mid 1920s that not only were there other galax-
ies, but they were receding from us; the Universe is expanding. Yet later the
theory of a Big Bang (see the next section) was born, and in the 1960s the
cosmic microwave background, the remnant of this cataclysmic event, was
discovered.

During the late 1990s, supernovae data [3, 4, 5, 6] have suggested that
not only is the Universe expanding, the expansion is also accelerating.

To sum up: We have come from being the centre of the Universe to
realizing that we are not much more than a blip in a cosmos vastly greater
than we are able to imagine. Cosmology is the science we use when we try
to make sense of all this.

1.2 Hot Big Bang

The standard model for the evolution of the Universe is often denoted the
hot Big Bang (HBB). In this section we briefly describe this theory, and



more detailed information can be found in e.g. [7, 8,9, 10]. The Friedmann
equations describe the evolution of this homogeneous and isotropic universe
model. The main components in this universe are matter and radiation fluids,
and the kinematic properties (e.g. the Hubble parameter) are equivalent
to those we observe in the real Universe. It is assumed that when going
backwards in time the temperature increases. However, the theory does not
describe what happened during the first 107** seconds of the Universe. Prior
to this all known physics breaks down. The period from 10™* seconds to
1073% seconds after the Big Bang is called the Planck epoch. In this era the
temperature T' drops from approximately 7" = 10%2 K to T = 10*" K. At
t = 10=** seconds after the Big Bang, the force of gravity separates from the
three other forces (strong and weak forces and the electromagnetic force),
and at ¢ = 107% seconds the strong force separates from the electronuclear
force. Next follows the Grand Unification epoch (GUE) which covers the
time from ¢ = 107*° to ¢ = 107'? seconds after the Big Bang. During GUE
the temperature drops from 7' = 10" K to 7" = 10'® K. Inflation is also
thought to take place during GUE. After the GUE the so-called Electroweak
epoch covers the time from 107'? to 107° seconds after the Big Bang. In
this epoch the weak force is separated from the electromagnetic force, and
the four fundamental forces we have in the Universe today are all separated.
The temperature decreases further from 7' = 10" K to 7' = 10" K.

A brief outline of the evolution of the HBB starting from ¢ = 107¢ seconds
after the start of the Universe follows next.

In very early times (note that the inflationary epoch (chapter 2) is not
included in the standard HBB picture described here, as that is thought
to take place right after the Planck epoch) it is thought that the Universe
consisted of a very hot and dense gas containing several particle species.
These particle species must not be confused with the particles we see in the
Universe today, although among these particle species we also find radiation,
i.e. photons, which are also found in the present Universe. The radiation in
the primordial gas is observed as the cosmic microwave background today.
This is also the reason why the model is termed hot; the radiation component
in the present universe is of a hot cosmological origin. As this hot, dense
primordial cosmic soup expands it cools and the cooling introduces phase
transitions. Many of these transitions separate the different cosmological
epochs in the HBB model, but not all cosmological epochs are separated by
phase transitions.

The first epoch is the radiation dominated era. In this epoch the total
energy density is dominated by ultra relativistic particles such as photons
and high energy bosons and fermions. The momentum distribution is that
of a blackbody since the photons and particles are in a thermal equilibrium.
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It can be shown that the temperature T varies with expansion as 7' %

during this epoch. At 7" > 1 MeV the neutrinos (assumed massless) are
no longer at thermal equilibrium with the rest of the cosmic soup. The
neutrinos, being massless, will keep the momentum distribution form with
an effective temperature T, % A short time after this (approximately 1
second after the Big Bang) all electrons and positrons become non-relativistic
and annihilate, except for one electron for each proton. This ensures electrical
neutrality in the Universe. When the temperature finally drops low enough,
atomic nuclei (deuterium) are produced and are stable enough to collide
with other deuterium nuclei and produce heavier elements (75 % hydrogen,
25 % helium and trace amounts of lithium, deuterium, berillium and boron).
Elements heavier than boron are not produced due to the high temperatures
required (deuterium, which is needed in the first place, is only produced at
lower temperatures). This period, which lasts from approximately 1 second
to 3 minutes after the big bang is called the epoch of Nucleosynthesis.

After a few hundred thousand years, the Universe has cooled to about
3000 kelvin and the atomic nuclei (hydrogen) can capture electrons and form
stable atoms in an event known as recombination. This event is important
as the previously free electrons can no longer scatter the photons (through
Thompson scattering) and the Universe becomes transparent to light. It is
these photons we observe today as the cosmic microwave background with a
temperature of 2.726 K due to the expansion of the Universe (cosmic redshift).
The CMB is often said to originate from the surface of last scattering, or the
last scattering surface (Iss), as it is last time the photons have been scattered.
After this the Universe becomes matter dominated and all objects such as
galaxies, clusters, quasars, stars and planets are eventually formed through
gravitational collapse.

1.3 Classical cosmology

By “classical cosmology” we mean cosmological models within the framework
of Einstein’s theory of general relativity (GR) [11]. The GR framework en-
ables us to describe an evolving universe and we will look at some of the basic
ideas of GR and also a few “classic” models founded on the GR-framework.
The purpose is to familiarize the reader with perhaps the most important
theoretical basis in current cosmology. GR allows us to develop widely dif-
ferent models of the Universe depending on the kinds of energies and energy
densities we allow in the models. A very important part of any GR based
model is the chosen metric. In cosmology the Robertson-Walker metric (RW-
metric) is used, which is the unique metric for a homogenous and isotropic



universe. The RW-line-element is given by [11]:

dr?
1 — kr?

ds? = 2di? — aQ(t) +r2do* + r?sin? 9d¢2 (1.1)
and depends on the curvature k of our 3-dimensional universe and the scale
factor a(t). The curvature is normally scaled to -1, 0 or 41 for negative curva-
ture, no-curvature (flat) and positive curvature respectively. The scale factor
a is generally time-dependent and is found using the metric and the Einstein
equations. With the time-dependence of the scale factor we can describe a
universe with changing comoving volume, i.e. expansion or contraction of
the universe. It is clear that the scale factor is an important quantity if we
are to learn something about the evolution of the universe, since its birth
and final fate can be seen from the scale factor.

1.3.1 The Einstein equations

Using general relativity, we relate the geometry of space-time, i.e. the metric,
to the matter content of the Universe through the following set of equations

[11]:

B 7 &

B = = (1.2)
1
B = R — Sg" R (1.3)

where the indices 1 and v represent the space-time coordinates ¢ and z. One
normally denotes the space-time coordinates with 0,1,2,3, where 0 is the
time coordinate. In expressions like equation (1.2) and (1.3) one sum over
repeated indices, so that the above equations in reality are a set of equations,
je. 00 — 8:—4GT00,E01 — 8:—4GT01
In the above equations, K*” is the Einstein tensor describing the geometry,
T+ the energy-momentum tensor, R*” is the Ricci tensor and R the Ricci
scalar. The metric g, is related to the RW-line-element (1.1) through

, and so on.

ds® = g, dx"dz”

and is an important quantity when describing the geometry of space-time
[11]. The first equations (1.2), called the Einstein equations, tell us that
the geometry of space-time is governed by the mass-energy distribution in
the universe. In other words this means that mass tells space-time how to
curve and space-time tells mass how to move. If we assume that the universe
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consists of perfect fluids, i.e. no viscosity, then the energy-momentum tensor
T" is given by [1,page 7|:

T = (p+ pc)U*U" — pg*” (1.4)

where p is the pressure and p the energy density associated with the fluid.
U*" is the 4-speed U* = %. Given K and T™ we can solve the Einstein

equations. Using the RW-metric we find the Friedmann equations:

. AnG P
a = — 3 (p + 3c_2> a (1.5)
ai + 24> + 2k = AnG (p — %) a? (1.6)
¢
a4 ket = 87;Gpa2 (1.7)

One can derive equation (1.7) from equations (1.5) and (1.6), so that the
last two are the only non-trivial equations. If we further assume that the
universe expands adiabatically we find:

d(pc*a®) = —pda® (1.8)

only one of the Friedmann equations is needed to derive the remaining two
equations. Adiabatic expansion is equivalent to energy-momentum conser-
vation, T:j] = 0, which is thought to be a reasonable assumption. Adiabatic
expansion is also a consequence of homogeneity and isotropy; there can be
no heat flow between volume elements in a homogeneous and isotropic fluid.
From equations (1.8) and (1.7) one can derive equation (1.5) by first find-
ing the derivative of (1.7) with respect to cosmic time and then apply the
assumption of adiabatic expansion. We have defined the Einstein tensor
without a cosmological constant A and instead taken a more modern, and
mathematically equivalent view and given vacuum an energy density p, and
a pressure py. When we apply this view, we consider the cosmological con-
stant not to be a geometrical effect of space-time, but say that empty space is
not completely void when it comes to energy and pressure. The cosmological
constant is treated as a cosmic fluid in the same way as dust and radiation,
and therefore has similar fluid properties. Perhaps one of the most important
properties of a fluid in this context, is its equation of state, which tells us
how the pressure relates to the energy density:

p = w(t)pc® (1.9)

Here we have written the parameter w as a function of time, but it is often
more convenient to write it w = w(z), where z is the redshift. It is also



common in cosmology to use units where ¢ = 1. For a universe model
containing only dust, we have w = 0 since dust has no pressure. For radiation,
the equation of state is p = %p, and the cosmological constant fluid has
w = —1. We see that these three models have time-independent equations
of state. It is not known whether w for dark energy is time-dependent or
not. However, with recent high-quality data it has become possible to search
for the time-dependence of the effective equation of state, that is the total
contribution from all the cosmic fluids. If this time-dependence is found, it
can possibly help us come closer to explaining the nature of the dark energy.

With the equation of state we can find the time-dependence or the evo-
lution of e.g. the energy density with respect to the scale factor a. Differ-
entiating equation (1.8) with respect to time and substituting for equation
(1.9) we get:

pa’ + 3pa*a = —3pa*a
o 301 +w)s
p a
agp\ 3(1+w)
p = po (f) (1.10)

assuming w is time-independent. Equation (1.10) is obviously a very impor-
tant equation when we wish to describe how the energy or matter density in
the universe evolves.

1.3.2 Density parameters

A universe with curvature & = 0, which means a spatially flat one, is said
to have critical density. If there is no A or dark energy, this universe defines
the boundary between a model which expands forever and one that eventu-
ally collapses. We can derive an expression for the critical density from the
Friedmann equations [1,page 13]:

@

at+ k= 3 paQ,k:O
3 /a\’
et = -
= pe(t) 87rG<a>
3
A1) = ——H?*(t 1.11
5ol = o HR() (111)

The critical density is a function of time and changes with the value of
2
the Hubble parameter. The present value is: p.o = p(to) = % = 1.88 -

1072?A% gem™ and with & ~ 0.7 this corresponds to about 0.01 hydrogen
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atoms for every cm?®. It is convenient to define a set of density parameters,
and from the Friedmann equation (1.7) we get:

8rG , 887G A,

.2 2
ke = — 1.12
@ HRe =t g (1.12)
and further define the cosmological constant’s energy density pyc? = %.
For the present epoch t = t:
87 1
do + ket = %poag + g/\c2a3
e
L )
agHy Pec Pe
= 1 - QO—I'QAO—I'QkO (113)
where we have defined the density parameters 2y = ’;—‘i, Qro = %0 and

Qo = —%. One should also note that the matter density parameter (g
contains bootoh the baryon and CDM matter, so that Q¢ = Q9 + Qyno. The
value of the scale factor today is often set to equal to unity, ag = 1. The
relation (1.13) is useful as it is independent of the geometry of the universe

and valid for all the models we will consider.

1.3.3 Cosmological horizons

When we observe the night sky we see light in all directions and one could
easily think that what we see is the whole Universe. However, because light
travels at a finite speed and the Universe expands, what we see is not neces-
sarily the whole picture. The evolution of the scale factor determines what
we are able to see, and in a general model what we see is restricted by a
horizon.

The concept of a horizon arises in many parts of astrophysics, and in the
following a more mathematical description of some of the horizons encoun-
tered in cosmology will be presented [1,pages 45-48]. Consider an observer
at the origin of a coordinate system O at time . We want to find the set of
points capable of sending light signals that can be received by the observer.
This is equivalent to finding the points casually connected with the origin at
time ¢. Any light signal received at the origin O by time ¢ must have been
emitted by a source at some time ¢’ € [0,¢]. The set of points we seek must
hence be inside a sphere centred upon O with the proper radius

tedl!

Ri(t) = a(t) / 0 (1.14)

0
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where cdt’ is the generic distance travelled by a light ray between ¢’ and
t'+dt’. When multiplied with ;((f,)) and integrated, we find the proper distance
travelled. The integral (1.14) can possibly diverge if the lower limit is zero,

because a(t) — 0 for small values of ¢. If this is the case, the observer in O

can have received light signals from the whole Universe. The other possibility
comes about when the integral gives a finite value. Then the observer can
only have received light signals from within a sphere with centre O and radius
Rpy. The surface of this sphere is called the particle horizon at time ¢, and
it is important to note that the observer cannot, at any previous time, have
received light signals, or any other signals, from sources situated at proper
distances greater than R (t). The particle horizon divides the set of all
points into two groups, those within the horizon which can, in principle,
have been observed by O, and those which cannot have been observed and
therefore must be outside the horizon. Another horizon often encountered,
and arguably the most important one, is the Hubble distance, frequently
just called the horizon. The radius of the Hubble sphere, called the Hubble
distance, is defined to be the distance from O to an object moving with the
cosmological expansion at the speed of light with respect to O:

a
RCECT:
a

= (1.15)

The Hubble distance gives an estimate of the distance light can travel while

the Universe expands appreciably. This means that for most purposes we can

ignore expansion of the Universe in a region much smaller than the Hubble
1

distance during a time interval much less than the Hubble time (15 = ).

We also mention the so-called event horizon. This horizon is not used
much in cosmology, perhaps mostly because it does not exist in Friedmann
models with —% < w < 1. However it does exist in a de Sitter model. The
event horizon is defined as:

tmas ¢ !
Rp = a(t)/t 0 (1.16)

and we see that it is equal to the particle horizon except that the limits
of the integral have changed. The upper limit ¢,,,, is dependent on the
cosmological model discussed. For a closed model, which ends with a Big
Crunch t,,ax = {f, where t; is the time of the Big Crunch. In an open or flat
model we have t,,x = 0.
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1.4 Classic models

Now we will take a brief look at some “classic” models in cosmology. These
models are special cases of the equation of state p = wp, with the assumption
of a flat universe; Qyor = 1, Yot = Ly + Qraa + Q. From equation (1.7) we

obtain:
o\ 2
- = H*t
(%) (0
an 2 any 143w
— Hg (;0) |:Qtot0 (;0) —I' (1 - QtotO)

By setting Q;,:0 = 1 and integrating the equation above we find:

2

a(t) = ao <t>m (1.17)

to
with t, = m being the time from the Big-Bang singularity to the
present.
1.4.1 Dust
2
For w = 0 we have a(t) = ao (%)3 and tp = ﬁ This corresponds to

a universe consisting of a pressureless gas, more commonly known as dust.
This particular dust-model is known as the Einstein de Sitter model (EdS-
model /universe) [1,pages 36-37]. It’s an elegant model, but is easily ruled
out by observations. We have {5 = % -9.778 Gyr and the currently favoured
value h ~ 0.7 leads to {5 ~ 9.31 Gyr. As some of the oldest stars have
estimated ages far beyond this (approximately 13 billion years) this forces
us to conclude that the EdS-model is incorrect. From equation (1.10) we
find that for dust the energy U = pa® is constant, which means that the
mass in a comoving volume is constant during expansion. It is interesting
to compare the evolution of the horizon for different cosmological models.
Using equation (1.14) and the expression for the scale factor a(t) above we

find:
tedt!
1) =
Ra) = [

t
— cﬁ/ 15 dl
0

= 3ct (1.18)

where we have used the common definition ag = 1. For a comparison with
other classic cosmological models see figure (1.1).
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1.4.2 Radiation

Radiative models have an equation of state

3

By radiation we mean a gas of photons or ultra-relativistic particles. In this
model we find pa* =constant (see equation (1.10) with w = £). The energy U
in a comoving volume is proportional to % during expansion, meaning the ra-
diation energy decreases during the expansion. One way of explaining this is
to say that the number of photons within a comoving volume is constant, but
they lose energy with time because of cosmological redshift. An alternative
explanation from the first law of thermodynamics is:

dU 4+ pdV = 0
= dU = —pdV
Which means that energy is being drained from a radiation-filled comoving
volume due to a thermodynamical work being done at the surface of the

comoving volume transporting energy to the outside. From (1.17) we find
that the scale factor for a radiation model varies as

w0- ()

with ag = 1. Together with (1.14) this yields:

7l = [

! 1
/ t~a2dt’
0

= 2 (1.19)

N

= ct

See figure (1.1) for the radiation model plotted together with a dust model
and a cosmological constant model.

1.4.3 Cosmological constant

Introduced by Einstein in 1917 to give a static universe, the cosmological
constant A is now considered by many to give a possible solution to the fact
that the Universe seems to be accelerating [3, 4, 5, 6]. A flat, empty universe
with only a cosmological constant will give a Hubble parameter constant in
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Figure 1.1: The evolution of the particle horizon for different cosmological
models plotted as dunction of ¢t. The dust model is the upper model, and we
see that the horizon size grows quicker for this model than for the radiation
model.

time, H(t) = Hy. This is called the de Sitter universe. A Lorentz Invariant
Vacuum Energy (LIVE) [11] has an energy-momentum tensor proportional
to the metric tensor:

Ty = pGuv

Assuming that vacuum can be described as a perfect fluid we find

Ty = (p+puuu, — pgu
= p= —p

Further we assume that energy densities are positive also for vacuum, yielding
p < 0. Vacuum is in a stretched condition, and one can show that pressure
(p > 0) or stretch (p < 0) have a gravitational influence. Stretch actually
contributes to a repulsive gravitational effect. The cosmological constant is
considered to represent LIVE’s energy-momentum tensor.

From equation (1.10) we find that the energy density of vacuum is con-
stant during expansion, p(t) = po. This means the energy of vacuum increases
inside a comoving volume during expansion.

Evolution of the de Sitter universe

Let us solve the Friedman equation (1.12) for a spatially flat (k = 0) universe
containing nothing but the cosmological constant (p = 0). We find

(g)Q _ % (1.20)
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which implies that A is positive. A general solution of (1.20) has the form:

1\
()
3

: 1
It is here interesting to note that the Hubble “constant” H = % = (%)2 is

actually constant in time in the de Sitter universe. That also implies that the

a = Aexp (1.21)

Hubble radius is constant in this model. Any test particles will move away
from each other due to the repulsive gravitational effect of the cosmological
constant. In the de Sitter universe there is no Big Bang at ¢ = 0, and as
can be seen from the expression for the scale factor above, the scale factor
will not be 0 at ¢ = 0, but instead approach 0 only when { — —oc. This
means there is no particle horizon in the de Sitter model. To see this e solve
equation (1.14) with the lower limit set equal to —oc:

Ru(l) - /’f cdt!

[t — ] (1.22)

which obviously diverges.

1.4.4 Real life - The ACDM model

The model which fits today’s ever growing set of observations best, is the
so-called ACDM model [12]. This model is radically different from a dust
or radiation dominated model. The primary contents of the Universe in this
model is vacuum energy (240 ~ 70 %) and the exotic CDM (Qocpamr ~ 26 %).

CDM is matter because it interacts gravitationally with ordinary matter
(baryons etc.). It is dark in the sense that we cannot see it in any other way
than through its gravitational influence on the visible matter in our cosmos,
and it is cold due to its dust-like behaviour, i.e. it has no, or negligible,
random motion (temperature).

Assuming the total energy density €, is unity and Q;,; = Qpo + Qo we
have Q0 = 0.04, where Q¢ = Qocpar + Qo and Qg 1s the total baryon energy
density in the Universe. It looks like only 4 % of the energy in our universe
is known to us.

Recent supernovae data suggest that the expansion of the Universe is
accelerating. This is, at least in the ACDM model, due to the repulsive
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nature of vacuum energy. We have seen that p, will not decrease as p,qq4,
nor stay constant as p,,, with an expanding universe. Rather it increases
within a comoving volume during expansion, and A will therefore become
increasingly dominant in the Universe as the scale factor grows.



Chapter 2

Inflation

2.1 Why inflation?

Historically the idea of inflation was introduced to make the main cosmolog-
ical event, the Big Bang, seem more plausible [13, 14]. As already mentioned
the Universe is very close to being perfectly spatially flat, homogenous and
isotropic, which makes the equations describing the Universe simpler. In the
following it will be explained that these properties introduce a need to fine-
tune the initial conditions if the hot Big Bang is the correct description of the
Universe. Such a degree of fine-tuning is generally considered a bad thing in
any physical model. It is therefore better to seek models which explain the
observed properties without fine-tuning of initial parameters. Hence the idea
of inflation is introduced in the hot Big Bang model. Let us now take a closer
look at some of the problems that arise when inflation is not considered:

1. The flatness problem, or, why is the Universe so old?
One problem arises when one tries to explain the observed spatially
flatness in the Universe. The problem is connected to the fact that the
Universe is as old as it is. For the Universe to get so old the density
parameter ) must be extremely fine-tuned during the early stages of
Big Bang. Let us see exactly how much fine-tuning is needed. From
equation (1.13) we can write equation (1.7) as:

k
Q-1=—p (2.1)

where @ = Q,,0 + Qa¢. It is easy to see that if the Universe at some
time is flat, i.e. & = 0 or equivalently 8 = 1, then the Universe will
stay flat forever. On the other hand, if the Universe is not flat, the
density parameter 0 will evolve as time rolls by. For a nearly flat
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matter dominated universe we have
1— Q| «t?
and for radiation domination we have
1T—Q| ot

Today we know €} to be close to unity and this means that earlier Q had
to be even closer to 1. At the time of nucleosynthesis, approximately
1 second after the Big Bang we must have

1Q(taue) — 1] < 1071°

if the Universe is to evolve to what it is today [15, 2]. For still earlier
times |1 — Q| must be even smaller. Any further deviaton from unity
would either cause the expansion to reverse and the Universe to rec-
ollapse (€ > 1), or the expansion would never stop and the Universe
would very quickly become a very cold and empty place (2 < 1). The
traditional Big Bang theory has no explanation for this fine-tuning and
it must be part of the initial conditions.

. Trouble at the Horizon

The cosmic microwave background is observed to be very uniform. Its
temperature is 2.73 K to a precision of 10™° on the entire sky. This is
a problem because there is no reason why two points on the sky should
have the same temperature unless they have been in causal contact with
each other. But when the CMB photons were released approximately
300000 years after the Big Bang1 the comoving distance causal processes

could occur over was & 1809, 2A~! Mpc. After this decoupling radia-
tion has traveled a comoving distance of approximately 5820h~! Mpc.
This implies that radiation coming from regions separated by more
than the horizon scale at last scattering, which is about 0.8 angular
degrees, cannot have interacted before decoupling [2,page 37]. So why
do they have the same temperature? The HBB is not able to explain
this and it must be part of the initial conditions.

. Homogeneity and isotropy

The Universe is not perfectly homogeneous and isotropic. On small
scales, this deviation from perfect homogeneity and isotropy is easily
seen as stars and galaxies. The Universe does however get very close to
being homogeneous and isotropic on large enough scales. When we ob-
serve the CMB we see anisotropies and interpret these as irregularities
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at the last scattering surface. Furthermore we believe these irregulari-
ties to be the seeds of the large-scale structures in the present universe.
The observed size of the anisotropies today indicate that their physical
scale at the time of last scattering is much larger than the horizon scale
at that time. This relates to the horizon problem above. How could
physical structures larger than the horizon scale be formed? There is
no causal physical process that can work over such great distances. To
explain the large-scale structures within the HBB model they must be
part of the initial conditions.

There are also other phenomena the hot Big Bang model cannot satis-
factorily explain, like the magnetic monopole problem and other unwanted
relics (gravitino, topological defects, etc.), but the three discussed above are
more than enough to raise questions about the Hot Big Bang model and to
make us seek a better understanding of the early universe.

2.2 Inflation in brief

In this section we give a brief introduction to the concept of inflation following
[2]. The idea of inflation is not a stand-alone theory to replace the Big
Bang model. It is rather something extra, an “add-on”, that solves many
of the problems associated with the HBB - model, but also poses some new
ones. Inflation is an epoch in the very early universe where the expansion is
accelerating:

Inflation <= a > 0 (2.2)

Another way to say this is:

“ L C0fora >0 23
dal()  diat € Thi (2:3)

d ¢ d ¢ d1 c
a dt a a2

i.e. inflation & %ch(t) < 0 which can give us a more physical meaning to
inflationary idea. ﬁ, called the Hubble length, is the distance light travels
during a typical expansion time, and —r~— is the comoving Hubble length.
And as seen, the comoving Hubble length decreases with time during infla-

tion, i.e. seen in coordinates fixed with expansion the observable Universe

becomes smaller during inflation. The problems discussed in the previous sec-

tion can all be solved if inflation occurs. The solution to the flatness problem

. . . d 1 I,r
is the easiest to see: F o <10 and from |Q(¢) — 1] m we see

that € is driven towards 1 since — will be driven towards 0 during inflation.

An example of this is the de Sitter model where a o< e, H o Z% = const.
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= aH ox e = Q0 —1 o« e — 0. The solution to the horizon problem is
as follows. A region with proper size £ can only be casually connected when
the Hubble radius is Ry = £. In a Friedmann-model, we have Ry o ¢ in the
early universe, while the proper size of a region with given comoving coordi-
nate size grows as ¢© with 8 < 1. The radius of the Hubble-sphere decides
the causal properties of a given epoch, and during inflation this is a more
useful quantity to consider than the particle horizon. The Hubble sphere
radius is known as the Hubble-length. The proper size of the Hubble length
is R, = & = & and the comoving length is r. = R.% = =¢. This implies
that a comoving scale enters inside the Hubble length at a time ¢y () # 0
because r. increases with time. The main point here is that during inflation
the comoving Hubble radius decreases dramatically, thus allowing our entire
observable region (the “Universe”) to lie within a region that was well inside
the Hubble radius at the start of inflation. The Universe expands so much
during inflation that our observable universe can originate from a very small
region casually connected prior to inflation.
From (1.5) we see that inflation is equivalent with

p+3p<0 (2.4)

If we assume general relativity to be valid, inflation can be seen as a question
of pressure and energy density. The pressure must be less than —%p, or when
we write the equation of state p = wp we have w < —L1. Which means a

3
negative pressure is needed to have inflation.

2.3 Scalar fields

As seen in chapter 2.2, a negative pressure is needed to drive inflation. A
way of ending inflation once it is under way is also required. The cosmo-
logical constant has negative pressure, but it is also a constant and inflation
would thus never end. A fluid with the property of negative pressure and
time variation could fill the requirements. A scalar field describing scalar
particles, i.e. particles with spin 0, can have these properties. An example
of a 0-spin particle is the long-sought-after Higgs boson. In modern parti-
cle physics, scalar fields and their associated particles are important when
it comes to symmetry breaking between the fundamental forces. The scalar
field introduced in cosmology to drive inflation, is called the inflaton [2,page
41]. An unusual feature of scalar fields which make them useful when de-
scribing inflation, is that the potential energy associated with the field may
redshift extremely slowly as the Universe expands, corresponding to an effec-
tive equation of state with a negative pressure [2,page 41]. If we were to do
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this properly we would use the field’s Lagrangian, and we make use of that
when we talk more about generation of perturbations, but for now we only
state that pressure and energy density of the inflaton field ¢(t) is:

1

ps = §<152+V(¢) (2.5)
pe = 38 -V(9) (26)

V(&) is the potential of the field and perhaps the most important quantity to
specify, as it is the potential that gives inflation. One hopes to find a shape
of V(¢) from particle physics since different V(¢) correspond to different
inflationary models. The energy density p, and pressure py cannot be related
through an equation of state because any given py can correspond to different
values of the pressure if the energy is distributed differently between the
potential and kinetic terms:

Pe _ 7%992 — V(@) # const. (2.7)

Ps 562+ V(9)

However, if 952 & V(¢) the scalar field will mimic a cosmological constant
with pgy ~ —ps. The dynamics of the scalar field universe can be found if
we in the Friedmann equations and continuity equations use equations (2.5)

and (2.6). Assuming k& = 0 we find:

1 1.
H* = ) + =& 2.
[V + 59 (2.)
a 8T ‘o
) = — 2.
(%) = o V-4 (2:9)
. . dV
+3Hp = —— 2.1
¢+ 3Ho i (2.10)
)
d d
(psa”) = —pya® (2.11)
where M3, = % is the reduced Planck mass. It is also easy to see that

the condition for inflation; p 4+ 3p < 0 is satisfied for V' > q.bQ. This does not
have to be the case initially, provided the potential is suitably flat and the
scalar field is not at the minimum. Any curvature term in the Friedmann
equation will become less important as soon as inflation starts. Even if it
is not negligible from the start of inflation, the early stages of inflation will
make it so, therefore £ = 0 is a reasonable assumption.
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We write the Hubble parameter H = (%) as a function of the scalar field
¢, that is H = H(¢). This can be done if ¢ is monotonic in cosmic time.
This gives another set of equations of motion:

2

6 = —THH(9) (2.12)
T - T H0) = -2 (2.13)

Equation (2.13) is often called the Hamillon-Jacobi equation [16]. The
Hamilton-Jacobi formalism is introduced because it allows an easier deriva-
tion of many inflation results. It also has applications to the general in-
homogeneous situatuion [2], as it is a geometric quantity, and V(¢) is not.
This means inflation is more naturally described using the Hamilton-Jacobi
formalism [2]. We define the slow-roll (SR) parameter ¢(¢) as

(9)= 20 (%) (2.14)

and furthermore define

Ve = +2m\/l} <%) (2.15)

Later we will define other SR-parameters. Using ¢(¢) allows us to rewrite
the Hamilton-Jacobi equation as:

01 - e = (5o ) VI9) (2.16)

2
3mp,

Using € we can also rewrite (2.9) as:

(%) = e - o (2.17)

a

As explained in chapter 2, inflation is defined as a period when % > 0. From
equation (2.17) above we see that inflation will take place for € < 1.

2.4 Slow-roll

The following section is based mostly on [2,pages 42-56] and references
therein. The common technique when studying inflation is to assume the
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slow-roll (SR) approximation. This assumption simplifies the dynamic equa-
tions of inflation:

2 . V(9)
H? ~ 0, (2.18)
3H ~ —V'(¢) (2.19)

where the prime denotes derivative with respect to the field ¢. The slow-
roll approximation means that we assume the field to be dominated by its
potential (V(¢) > 1¢2) and this to be sufﬁc1ently flat and generally well
behaved. The condition ¢ < 3|qu| ensures that ¢ is small, meaning b grows
slowly and we can have inflation for some time. The SR-approximation is
consistent if V' and V" << V. For the approximation to hold we need the
following conditions to be fulfilled:

(o) < 1 (2.20)
(o)l < 1 (2.21)
€ and n are called the slow-roll parameters and are sometimes defined as
. Mz (V'Y
= — 2.22
wvio) = M2 (1) (2.22)
‘ V//
nw(d) = Mp~— % (2.23)

and in this section we will use the above definiton. However, another often
used definition is the following

e = mPl( (())> (2.24)
n = ZL;I (HH(;D)> (2.25)
o = % [% <%) - < )2] (2.26)
Ag = (mP1> Hj l‘fi;jiff (2.27)

which is an infinite hierarchy. For most of the thesis we will use this definition

of the slow-roll parameters.
It is easily seen by substitution that equations (2.20) and (2.21) are nec-
essary for the SR-approximation to hold. However they are not sufficient.
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This is because they do not put any restrictions on the kinetic term 9'62, only
on the shape of the potential V(¢). The problem with this is that the full
scalar wave equation is second-order, and so the value of </§ can be chosen
freely, it can even violate the SR-approximation. What saves the model is
what might seem like an assumption; 3H¢ ~ —V'(¢). This “assumption”
can be proven (see section 2.4.3), and the solution, the attractor behaviour
of the equations of motion, is in fact vital for the slow-roll approximation to
succeed. If the SR conditions are fulfilled we will have inflation. Consider
the condition for inflation (equation 2.2) rewritten as:

—H+H*> 0

~-H < 1

il Q| R

Furthermore equations (2.18) and (2.19) yields

H M [V’
M <7> . (2.28)

This means that if the slow-roll approximation is valid, i.e. ¢ < 1, then
inflation will occur. We will stress the point that inflation will occur with
slow-roll, but it is not a necessary condition for inflation to take place. It is
quite possible to have inflation and violate the slow-roll condition, but the
amount of inflation is then usually very small.

2.4.1 Amount of inflation

During the inflationary epoch, the scale factor grows exponentially and the
Universe expands vastly. The ratio between the value of the scale factor at the
end of inflation and at the beginning of inflation, or some other initial time,
is used as a measurement of how much the Universe expands during inflation.
This ratio is usually very large and one therefore takes the logarithm of this
ratio and ends up with the number of e-foldings N during inflation:

(2.29)

N is a measure of the amount of inflation after #;. As seen earlier inflation can
solve both the horizon and flatness problems and for that about 60 e-foldings
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of inflation is needed. We see that:

N = I Yena
Clti

tend
— H(t)dt

ti

fnd 1 V() pdt

12

o Mp V() db

B 1/?5i Vo
B MIQDI (bendV/QD

(2.30)

Assuming €(pend) = 1 it is possible to find the energy scale of the scalar
field during inflation. Consider the potential V(¢) = A¢?*. From equation

(2.22) we find ey (¢) as:

MR (AN sME,

ev(¢) == o
And from the assumption €(¢end) = 1 we get:
¢§nd = 8M1231

Inserting this into equation (2.30) yields:

¢y 44
v o 1/ /\<pd¢

M]%l ¢end 4)\993
1 ¢
= 7 Pdgp
4M%l (bendZSM?DJ
952
~

(2.31)

(2.32)

If we then furthermore assume that inflation lasts for N = 60 e-foldings we

can find an estimate for the energy scale when inflation starts (start):

N = 60 = ¢ugare ~ 2V 120 Mp; ~ 20 M p;

2.4.2 Examples of V(¢)

There are many models for the inflaton potential. Some are influenced by

particle physics like the Higgs-like potential:
V(¢) = M¢* — M?)?

(2.33)
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while another example of an inflaton potential is the self-interacting potential:

V(¢) = Ao (2.34)

Power-law inflation corresponds to a potential of the type:

V(o) = vaexo (222 (2.35)

We will take a brief look at one of the simplest models for the inflaton
potential. Consider a massive, free scalar field which has potential:

V(g) = g’ (2.36)

where m is the mass of the scalar field. The slow-roll equations (2.18, 2.19)
then yield:

m2¢2
Pl

3H) +m?p = 0 (2.38)

Furthermore we have for the SR-parameters:

2 /s, \2 2M2
v = () =T (239
nv :Mgl%g—; = ey (2.40)

Using € < 1 as the condition to end inflation, we see that inflation takes place
as long as ¢* > 2M3,.

The inflationary epoch will end when the field reaches an energy scale
below the energy scale needed to sustain inflation. However, it is possible
to have an oscillating behaviour from the field after the end of inflation and
the Universe will in that case undergo a period of so-called reheating due
to oscillations, decay of inflaton particles and thermalization of the decay
products (see section 2.4.4). The energy density contained in the inflaton
will be transferred back to conventional matter and also radiation during
reheating as ¢ interacts with other fields. This oscillating behaviour can be
seen from our model V(¢) = %mQQbQ. At the opposite side of the slow-roll
approximation we have

dv

b - (2.41)
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which gives

$+mip = 0
= p = et (2.42)

Since the mass m of the potential is assumed to be very small, the solution
above will yield rapid oscillations of ¢.

2.4.3 Inflationary Attractor

We hope inflation can give insight into the generation of perturbations and
the overall evolution of the Universe. If inflation is to give us that insight it
must be predictive, i.e. for any given point on the potential, the evolution
of the scalar field has to be independent of the initial conditions. If this
is not the case, any result, such as the the amplitude of density perturba-
tions, would depend on the initial conditions, which in turn are unknowable.
Unfortunately the scalar wave equation (2.10) is a second-order equation,
and so, in principle, ¢ can take any value anywhere on the potential, thus
contradicting the requirement of a unique solution at each point of the po-
tential. The only way inflation can be predictive is if the solutions display
an attractor behaviour, i.e. all differences due to different initial conditions
vanish rapidly with time. We will show that the inflationary equations ac-
tually do have an attractor behaviour [16, 17]. When we introduced the
SR-approximation we also reduced the order of the inflationary equations by
one. Thus an initial value of ¢ is not a free parameter, but is instead deter-
mined by the slow-roll equations. If the slow-roll solution shall represent the
whole single-parameter family of solutions it replaces, it must also display an
attractor behaviour. The Hamilton-Jacobi formalism [16] makes it easier to
show the attractor behaviour. As first shown by [16] it is sufficient to assume
linear homogeneous perturbations since, classically at least, inflation gener-
ates large smooth patches. Furthermore we assume that the perturbations
do not change the sign of ®, but it can be shown that the result holds under
more general circumstances. Having chosen ¢ to increase with time, our task
is to show that all solutions rapidly approach one another as ¢ increases. We
assume Hy(¢) to be a solution to

_ 3
217,

1

[H' (&) H(9) = g3

V(e) (2.43)

either inflationary or non-inflationary. By perturbing this solution using
a linear homogeneous perturbation §H(¢), the attractor condition will be
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satisfied if  H(¢) becomes small as ¢ increases. Substituting H(¢) = Ho(¢)+
dH(¢) into equation (2.43) and linearizing, we find:

, 23 0 1 ,

HY6) + SH'O) — g U 400 = —V(e) (2

P 3
— H,0H' = QM]%ZHoéH (2.45)

which has the general solution

3 [* Ho(9) .
0H(¢) = §H (o, exp( ——d¢o 2.46
D=otl@er (o, ), o) (240

where §H(¢;) is the value at some initial point ¢;. Since H, and d¢ have
opposite signs, the integrand within the exponential term is negative definite,
and therefore all linear perturbations vanishes. Neither the assumption of
linearity nor the assumption that qb does not change sign is very restrictive.
The latter can only matter if the perturbation takes the field over the top
of the maximum in the potential. Otherwise it will simply roll up, reverse
its direction, and pass back down through the same point. At that point
it can be regarded as a perturbation on the original solution with the same
sign of qb When it comes to non-linear perturbations the solutions are more
complicated, but due to the full equation only being first order it is easy to see
that solutions are compelled to approach one another regardless of whether
the perturbation is linear or not. One should note that the slow-roll solution
is not precisely the attractor solution that all solutions to the full equations
approach. The slow-roll solution is however, generally, a good approximation
to the attractor solution whenever the SR-conditions are fullfilled.

2.4.4 Reheating

As inflation ends there is a transition process before the standard hot Big
Bang evolution takes over. This transition process is known as reheating.
Normally there are three stages to the reheating process:

1. non-inflationary scalar field dynamics

2. decay of inflaton particles, and

3. thermalization of the decay products
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Scalar field oscillations

As we have described earlier (section 2.4.2), the scalar field oscillates about
the minimum of the inflaton potential once inflation has ended. The oscilla-
tions are coherent, i.e. they have the same phase at all points in the large
homogeneous regions created by inflation. If the only particle decay chan-
nels are into fermions there will be no rapid particle decays. The oscillating
phase could then last a considerable time due to the particle decay time being
much larger than the Hubble time. This phase could be described by con-
sidering the time-averaged behaviour of the scalar field. If the potential can
be approximated as ¢? near its minimum, the equation of motion is that of a
harmonic oscillator, and the average energy p¢, =< ¢? > obeys the equation:

ps+3Hps =0 (2.47)

Remembering equation (1.10) we see that equation (2.47) is the equation
for the density of non-relativistic matter and we have shown (section 1.4.1)
that the energy density falls as a=® for this type. This means that during
the coherent oscillation phase, the decay of the amplitude of the oscillations
represents a fall in the scalar field potential energy density.

Coherent inflaton decays

When the Hubble time reaches the decay time there will be decays of inflaton
particles. If only fermionic decay routes are available one can introduce a
phenomenological decay term F¢¢ into ¢ + 3H¢ = —V'(¢) provided it is
used only on a slow-decay case and that the equation only refers to the
time-averaged scalar field. This yields:

ps+ (3H +Ty)p, =0 (2.48)

Equation (2.48) now describes the “envelope” of the oscillations. If we instead
of only having fermionic decay routes also allow the inflaton to decay into
bosonic particles, we get a much more interesting situation. The bosonic
decay path allows a decay by parametric resonance [18] which in many models
can be broad [19, 20]. This permits an extremely rapid decay of inflaton
particles, so fast that the oscillating phase ends nearly as soon as it has begun.
The decays can be into a second bosonic field, or into quanta of the inflaton
field itself, and the process has been termed preheating to distinguish it from
the later stage of particle decay and thermalization. Parametric resonance
generally generates huge occupation numbers and this helps explaining why
preheating does not occur if only fermionic decay routes are allowed. The
Pauli exclusion principle will prevent further decays as soon as the energy
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states are filled. The occupation numbers being so huge also leaves the
created bosons a long way from thermal equilibrium.

Decay and thermalization

Once parametric resonance has created the high occupation number states
or, for some reason, it is ineffective, the remainder of reheating can proceed
according to the standard slow-decay picture [21, 22]. The bosonic particles
should decay, interact and finally reach thermal equilibrium. The details of
this process will heavily depend on the field theory adopted, and the chosen
field theory will in the end determine the temperature at which the Universe
can be said to have reached thermal equilibrium and re-enter the standard
hot Big Bang behaviour.

2.5 Quantum Generation of Pertubations

This section will discuss the quantum mechanical fluctuations that the infla-
ton and gravitational field undergo during inflation. These fluctuations have
a possible great impact on the large-scale structure of the Universe in our
epoch. Both the inflaton and metric fluctuations produce perturbations in
a similar fashion, and we will therefore begin with a qualitative description
of the effects of the former, followed by a calculation of both spectra and
their present expected amplitudes [23], [2,pages 164-203, 333-347], [1,pages
263-287], [24].

2.5.1 Density perturbations - a qualitative discussion

As mentioned earlier, inflation provides a natural mechanism to produce
density perturbations and thus generates the observed large-scale structures
in the Universe today.

The inflaton field ¢ is not a classical field, but is subject to quantum
fluctuations. These fluctuations cause inflation to not end at the exact same
time at different points in space. Consequently the evolution of the scale
factor a is unique to each point in space. In more mathematical terms one
can say that a constant density perturbation d¢ does not correspond to a
constant time hypersurface.

It is thought that in addition to producing the scalar density pertur-
bations the quantum fluctuations also give rise to gravitational waves (i.e.
tensor fluctuations) and the anisotropies in the temperature distribution of

the CMB.
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A “normal” inflationary scenario predicts a density perturbation spec-
trum which is Gaussian and scale dependent. In these “normal” scenarios
the inflaton field is only weakly coupled to other fields, and the models we
work with in our simulations are “normal” in that sense. It is however pos-
sible to construct non-Gaussian inflationary models, i.e. inflation does not
imply Gaussianity.

The fluctuations were originally thought to be of a scale-invariant (Har-
rison - Zel’dovich [25, 26]) form, but it was quickly realized thath this could
only be an approximation as the scalar field must evolve to end inflation.
This evolution leads to a scale dependence in the spectrum.

Following is a brief description of the perturbation generation mechanism.
Inflation is able to generate density perturbations on large scales because the
comoving Hubble radius ﬁ
isotropic and homogeneous universe the Hubble radius H~' represents the

is decreasing during inflation. In a spatially flat,

scale which no causal physical process can operate beyond.

To a first approximation everything is dragged along during expansion
and thus we are chiefly interested in comoving scales when discussing large-
scale structures. A given perturbation’s scale compared to the Hubble radius
decides the scales behaviour. Without inflation (@ < 0), the comoving Hubble
radius ﬁ is always increasing and any scale is therefore initially much larger
than this. Thus no causal process can alter the scale’s evolution. As the
scale finally enters within the Hubble radius it will stay inside it forever.
In a standard scenario (still no inflation), looking at the CMB anisotropies,
we see large-scale perturbations at a time when they were much larger than
the Hubble radius. Accordingly, no mechanism could have produced the
perturbations.

With inflation any given perturbation could have a much more compli-
cated history than outlined above. Farly on during inflation, a scale can be
within the Hubble radius and causal physics can modify the scale. This helps
solve the horizon problem and generates homogeneity, but also sets up small
perturbations. Prior to the end of inflation the scale will cross outside the
Hubble radius and causal physics can no longer manipulate it. Hence the
generated perturbations become “frozen in”. It should be noted that long
after inflation has ended, the perturbations will re-enter the Hubble radius
(see figure 2.1) since the comoving Hubble radius is now increasing.

Perturbations are obviously generated on a wide range of scales, but the
easiest to observe today are those that are of a size comparable to the present
Hubble radius and down to a few orders of magnitude smaller.

The main point of this qualitative discussion is that inflation can generate
perturbations on scales larger than the present horizon without violating
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causality.

Vacuum fluctuations and Gaussian perturbations

Classical physics predicts that the inflaton field ¢ becomes homogeneous and
isotropic on scales well inside the horizon during inflation. However, this is
not entirely true. Due to the quantum nature of the Universe there will be a
vacuum fluctuation §¢ in the inflaton field [2,page 59]. We will look at these
fluctuations and their probability distributions. First we Fourier expand ¢
in a comoving box with sides of comoving length L (physical length al):

Sz, 1) =) Sopu(t)et=

where z is related to the physical position r through r = a(?)z, and the
physical wavenumber is f The possible values of £ form a cubic lattice with

spacing
_ 2m

L

Expanding inside a box imposes an artificial periodicity, but if we have a

Ak

large enough box, i.e. much larger than any scale we are interested in, this
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periodicity will not matter.

The inverse wavenumber 7 defines a distance scale carried along with
the expansion, which is specified conveniently by its present value % If %
is less than unity, a scale is said to be inside the horizon, and outside if it
is bigger. The scales we are interested in leave the horizon at some epoch
during inflation and re-enter it long after inflation ends. For each Fourier
component §¢(t) there is a vacuum fluctuation, which evolves independently
of the others. A few e-foldings (Hubble times) after horizon exit, the vacuum
fluctuation can be regarded as a classical quantity, with an almost constant
value, which we denote d¢i(t.) [2,page 60]. Many e-folds after horizon exit
d¢p(t) may have had time to change significantly, but we are interested only
in its value at the time ¢, taken to be a few e-folds after horizon exit. This is
because the curvature perturbation will have become frozen-in to a constant
value by then. The perturbation §¢(z,t) also leads to a perturbation dp(z, )
in the energy density, and hence the metric of space-time. After inflation,
as the inflaton field decays into conventional matter (section 2.4.4), there
will be inherited perturbations dp;(z,t) in the densities of each individiual
particle species. In addition there are more (and also more complicated)
perturbations, but they are all determined by d¢(2.). A generic perturbation
g(z,t) can be Fourier expanded

gz, t) =) gu(t)e™=

and as long as the perturbations are small, the time dependence for a given
k is given by a set of linear differential equations with no coupling between
different modes k [2,page 60]. For a given k-mode of any quantity, the solution
of these equations is determined by d¢(t.) and the equations, being linear,
yields a solution of form

gi(t) = Ty(t, k)dx(t.)

The transfer function T (, k) is fixed by the cosmological model under consid-
eration. Physical processes, such as radiation, collisions between relativistic
particles and hot and cold dark matter, influence the growth of the density
perturbations, and the transfer function describes the change of the shape
of the original power spectrum due to these processes [1,page 328]. Note
that 7, is independent of the direction of k because the evolution equations
are rotational invariant. The Fourier coefficients d¢y, being in the quan-
tum state, do not at any instant have well-defined values [2,page 60]. We
can however expand the vacuum state in terms of states where they have
well-defined values, and the probability of finding a given set of values is the
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modulus squared of the relevant coefficients in the expansion. Although we
apply quantum physics to describe the density perturbations, there are a few
things that should be noted. In ordinary applications of quantum physics
the phrase “probability of finding” can be replaced by “probability that a
measurement yields”, but this appears unreasonable for the Universe. Surely
the density perturbation exists whether we observe it or not. Therefore one
instead asserts that our Universe corresponds to a typical member of the
ensemble of possible Universes obtained when we expand the vacuum state
into states with a definite inflaton-field perturbation. This allows us to make
definite predictions, which can be compared with observations. As is normal
in ordinary quantum mechanics, we do not ponder about how a particular
member (our Universe) of the ensemble has been chosen.

From quantum field theory we have that the real and imaginary parts
of each component d¢; have the dynamics of a harmonic oscillator. In the
vacuum state each real and imaginary part has a Gaussian probability distri-
bution, with no correlation between them except for the reality condition! [2].
From the model of inflation one can calculate the variances (=mean squares)
of the probability distributions. They are independent of the direction of &,
and for a given k they are the same for the real and imaginary parts. Equiv-
alently, for a given k, the phase of d¢; is drawn randomly from a uniform
distribution. The Fourier components g = T}, (¢, k)d¢y of a generic distri-
bution inherit these properties, and they define what is called a Gaussian
perturbation [2]. 1t is the Fourier coefficients having independent probability
distributions which makes the perturbations what mathematicians call Gaus-
sian. In addition, the fact that the variances are independent of the direction
k and are equal for the real and imaginary parts, gives the perturbations the
additional property that its stochastic properties are invariant under trans-
lations and rotations. As cosmologists we take this additional property for
granted, and take the term Gaussian to include it.

2.5.2 Quantitative analysis

We will now perform a more thorough quantitative analysis of the perturba-
tion generation. It is imperative to have accurate predictions for the spectra
arising from the various inflation models if we are to make full use of very

n fact, nothing depends on the shapes of the probability distributions of the Fourier
coeflicients; what matters is their independence. The reason being that in the limit of
large box size, we will sum over an infinite number of values of k£, within an infinitesimal
cell of k-space. Then, according to the central limit theorem, the probability distribution
of the sum will be Gaussian for any (reasonable) probability distributions of the individual
terms. Thus we lose no generality in writing the probability distributions as Gaussian.
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accurate observations expected to be made in the future. The process of
calculating the C';’s include many subtle physical effects, but researchers are
determined to calculate the spectra to within 1 percent. Since the slow-roll
(SR) parameters typically are at least a few percent that means the spectra
must be determined to at least one order beyond SR. In our calculations
we use/apply linear perturbation theory which is considerably more accurate
than the slow-roll approximation due to the anisotropies being so small. Tt
is possible, but not necessary, to go beyond the linear approximation.

In order to avoid any possible confusion we will specify what we mean by
first-order, second-order and higher-order expressions. An expression con-
taining only terms like oed where o, € and § are SR-parameters, and only
to the first power in any SR-parameter, is said to be of first or lowest order.
An expression with terms o2¢d or o¢?d is said to be of the next-lowest order,
shortened to next-order.

Perturbations and the perturbation spectrum

In the following section we will derive an expression for the scalar pertur-
bation spectrum form the scalar perturbations. It is also possible to do the
same for the gravitational wave perturbations, we will however not show the
derivation here. Instead we quote the corresponding expression for the ten-
sor perturbation spectrum and refer the eager reader to [23] or [24], as this
section is based on these articles. When we are considering perturbations we
divide the total space-time into a background and a perturbation part. The
background is described by the RW-metric (equation 1.1) while the pertur-
bation part is a measurement of how much the real universe deviates from
this ideal background. The most general form of the line-element describing
both the background and perturbations is given by [1,page 9]:

ds® = a*(7) [(1 +2A)dr? — 20; Bdz'dr — (1 —2W)4;; + Q@i@jEd:z;id;r:j]
(2.49)
Herer = | ;l(—ff is conformal time and A, B, ¥ and F are quantities describing
the nature of scalar perturbations. All are functions of both space and time.
Let d¢ denote the fluctuation of the inflaton field. One can then measure
the scalar perturbations through the intrinsic curvature perturbation, R, of
the comoving hypersurface:

R=—-U— %595 (2.50)

where H and qb are calculated from the background field equations. We now
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introduce the gauge-invariant potential [24]:

¢

=ald — 2.51
u=a|dp+ 7 ( )

and define a new variable )

ag
= — 2.52
T H (2:52)

One now readily see that

u=—2zR (2.53)

If we perform a Taylor expansion of the Lagrangian about a fixed value of
the scalar field, apply the background field equations and integrate by parts,
we obtain the following Lagrangian:

L= % (@TU)Q — cwaiu@ju + ﬁUQ (2.54)
z

where a subscribt 7 represents partial differentiation with respect to confor-
mal time 7. From this we find the momentum canonical to u:
oL

m(r,z) = a) ur (7, ) (2.55)

So far the treatment of the perturbations and potential u have been classical.
To quantize the theory we start by promoting u and 7 to operators, & and 7
respectively. These operators satisfy the commutation relations

li(r,2), (7, y)] = [#(r,2),#(r,y)] =0 (2.56)

[i(r,z), (7, y)] = i@ (z —y) (2.57)

on the hypersurface defined by 7 =constant. To proceed we perform a plane
wave expansion of the operator @ and find

u(T, z) :/(;ljf% {uk(r)&&e@g—l-uZ(T)Qie_Z&'g} (2.58)

The annihilation and creation operators a; and a} obey the commutation
relation for bosons:

=0 (2.59)

= 8 (k1) (2.60)
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The Einstein action S describes the evolution of the perturbations and is
given as

1 y 7 TT
S = /d4x£ = §/d7d3§ {(&U)Q — 0Y0;udju + Z—uﬂ (2.61)
z
Taking the derivative of S with respect to u to be zero (% = 0) yields the
field equations for the coefficients uy:
d*uy, 1d%z
SR —— = 2.62
dr? +< zd7’2>uk 0 (2.62)
At short distances the modes u(7) should reproduce ordinary flat space-time
quantum field theory [27], thus we have that modes in the limit % — 00

have form of plane waves

k
apoeo Lo g

up(r) “— \/%e (2.63)

In the case of long-wavelength, i.e. one can neglect k, one sees that the
growing mode solution of (equation 2.62) is

Up X 2 (2.64)

And in this there is no dependence on the scale factor a, except implicitly
through the definition of z (equation 2.52). We claimed the perturbations
could be measured by the curvature perturbation R, therefore we need to
obtain a useful expression for this. Fourier expanding R results in

R = / %R&(T)ei&r—' (2.65)

We now define the power spectrum Pz (k)in terms of the vacuum expectation

value of R: )
. 27

< RyR} >= ﬁmcs@ (E—1) (2.66)

Combining equations (2.53), (2.60) and (2.65) give us an expression for the

left hand side of equation (2.66)
1
< RyRp >= = | ux 2 6@k —1) (2.67)

and from equation (2.66) and equation (2.67) we see that the power spectrum
can be expressed as

Pa(k) =/ | 2| (2.68)
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2.5.3 Power-law

Power-law inflation is inflationary models with scale factor a oc t?, where
p > 1. It can be shown that this corresponds to an inflation potential of the
form [2,page 49]:

2 ¢
V(o) = Woexp(—4/ ——— 2.69
(6) = Voewp(—/ 1o (2.69)
where Mp; = m—vé:lr. As we have seen, single-field inflation models generate

Gaussian spectra of purely adiabatic density perturbations (scalar perturba-
tions) and gravitational waves (tensor perturbations). For power-law models
we are able to find the exact solution for the power spectra Pr (k) and P,(k).
We have previously shown that the scalar perturbations are given as:

% k3 Uk
PAK) = /o | 2 | (2.70)

and to find this we must first solve for ug from equation (2.62):

d*uy L 1d*z

e — 2.7
dr? + szQ)uh ( )
As % — 0 we have
— —Lexp(—tkr) (2.72)
u exp(—ikT .
k 5% P
It can be shown that ij% can be rewritten as [2]:
1d*z 3 1 1
——— =2"H* |1 +e— = 22 —n® 4 =€ 2.73
Zdrz [“ 1t 677+277+2'§] (2.73)

or as [23]:
1 d*z 3 1 1 . [
;W = 2a2H2 |:1 + 551 + €1 + 55% + 56151 + ﬁél + ﬁ51:| (274)
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where we have used the following definitions:

)
- %%(%) (2.75)
y = Z—%Hf (2.76)

)
555%%<ﬁ53 (2.77)
€6 = ;]—[;[ (2.78)
5 = Hi;b (2.79)

Both equation (2.73) and (2.74) are exact results. From a o t? we have:

g=2=" (2.80)
a 1
Let us write the Hubble-parameter as a function of the inflaton field:
dr & —
H($) = Hoexpl(y | Z2 =90 (2.81)

P mp

and this yields ¢ = n = £ = 1 = constant when the scalar field is translated so
that ¢ = ¢ at the time when the scale & we are interested in obeys k& = aH.
This allows us to write equation (2.74) as:

1d?z 1
—— " —=924*H? |1 — - 2.82
zdr? “ [ 26} (2.82)

A expression for the conformal time 7 is obtained using integration by parts:

dt B 1 eda
= — =[5 = —— 2.83
T /a(t) o H aH + a’H ( )

and since ¢ is constant for power-law inflation this implies

1 1
= —— 2.84
4 aH1 —¢ ( )

From equations (2.71), (2.74) and (2.84) we find a new equation for the

perturbations:
d2 1/2 1
— k- —— 2w =0 (2.85)

dr? T2
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where we have defined v = % + = The solution to equation (2.85) with the

correct short-scale behaviour (see equation 2.72) is:

1

ur = SVTexp(ile + ) 3)(-7)

[N

HWY(—k7) (2.86)

where ngl) is the Hankel function of the first kind, with order v. Since we
seek the asymptotic form of the solution, that is the behaviour of the solution
long after horizon exit, we let % — 0 and find:

u, — exp(2(v + %)2”_% FEZ) L(—k'r)_”% (2.87)

ﬁ
5
ol

here I' is the usual gamma function, F% = %\/E From equations (2.87) and

(2.70) we get:

% i %FV 1 1% le k‘l fﬁ
Pz (k) = [2 W (1 p) ] \/;% <k> (2.88)

where Hy = H |,g—,-
We can obtain a similar expression for the equation of motion for tensor
perturbations as for the equation of motion for the scalar perturbations (2.62)

[23]:
d*vy, , 1d%
T2 + <k — §—> v =0 (2.89)

and following the same lines as we did for scalar perturbations we obtain

[23]:

=

by =23l ey H
PI(k) =2 r()(l oyt

For power law inflation the tensor perturbations can furthermore be ex-

pressed as [23, 28]
1 2 1
Pi (k) = \/;7373(16) (2.91)

It might look like the expressions for scalar and tensor perturbations (2.88
and 2.91 respectively) give the value of the perturbation as it crosses the Hub-
ble radius, but in reality it gives the asymptotic value as % — 0, rewritten
in terms of the values which the quantities had at Hubble radius crossing,

A= [24].

(2.90)

W

aH=k
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2.5.4 General potentials - a slow-roll approach

In this section we will derive a second-order slow-roll expression for the scalar
perturbation spectrum for a general potential [23]. The exact solution found
in the power-law case is used as the basis for an expansion. Instead of having
constant and equal slow-roll parameters we allow them to be different and
to vary with time. However, the slow-roll parameters are assumed to be

small, and terms that are quadratic in €, n and Hiqb = jllr:lf We will follow

the original work of [23] in this derivation. Therefore we use the definitions
(2.78) and (2.79) for the slow-roll parameters. Furthermore this definition of
the slow-roll parameters allow us to write equation (2.74) as:

1 d7

zdr?

3 1 1 le, 16
:2&2]'[2 1—|—§51—|—61—|—§(Sf—|——6151—|— “ !

5 SH T 3H (2.92)

The conformal time 7 is defined as in equation (2.83). It is then straightfor-
ward to show that equation (2.92) can be written as

1d22_ 1

— e 2_ —
z dT? 72(1/ 4) (2.93)
where - |
1 €1
= 1 — 2.94
Y=o, o (2.94)
From
DL (et 8)
q = €1l€1 1
8 &
— = H(—=-—-9
i 1(qu 1+ €1)

we find that ¢; and §; are approximately constant for small ¢, é; and gb
It is therefore possible to use the results we obtained in sections (2.5.2) and
(2.5.3). Expanding equation (2.94) for small ¢; yields

3
v~ —+ 261 + (Sl
2
and from equations (2.66), (2.67), (2.68) and (2.87) we find, to lowest order
in ¢ and 6; [23]:

1 2

Pa(k) = [1+ (2= 02— b)(2e + 61) — €] % (2.95)

— lanr=s
2m|¢|

where b is the Euler-Mascheroni constant, meaning 2 — In2 — b ~ (0.7296.
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2.6 Spectral indices, observables and the con-
sistency relation

Previously we have seen that during inflation, the scalar field slowly rolls
down its self-interacting potential. Henceforth the Hubble parameter varies
as a function of cosmic time, thus also with respect to the scale at Hubble
radius crossing. Equation (2.68) for the power spectrum depend on the Hub-
ble parameter, which makes them scale-dependent. This scale dependence is
commonly expressed in terms of spectral indices n, (scalar spectral index)
and ny (tensor spectral index), and we define them as [24]:

ne(k) —1 = C”%H’Rk(k) (2.96)
nr(k) = ‘”%H»'fék) (2.97)

When considering power-law inflation one often defines n; through the equa-
tion

Pr(k) o k™! (2.98)

and we see that the two definitions (2.96, 2.98) coincide in this case [24]. For
a more general potential we could use

Pr(k) = Pr (ko) (:—‘OYSWI (2.99)

but this definition requires a specific choice of kg and we see that the two
definitions (2.96, 2.99) do not coincide [24]. It should also be noted that
for power-law inflation the spectral indices are constant, whereas for a more
general form of inflation they are generally not, i.e. there is a change in the
scale dependence with wavenumber k. This is called a running of the spectral
index and is normally denoted o, and ar for the scalar spectral index n, and
tensor spectral index nr respectively. Furthermore they are defined as:

_ dns d*In Pr (k)
Y= Uk~ dnk? (2.100)
dny A2 Py(k)

dink — dlnk?

ar (2.101)

It is often convenient to express the spectral indicies using the slow-roll
parameters. From the lowest order expressions for the perturbation spectra
(see e.g. [24, 23]), we can easily obtain the following, often used expressions
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[24]:

ns(k) = 14 2n—4e (2.102)
nr(k) = —2¢ (2.103)

We are able, in principle, to extract knowledge of both the spectral indices
and the running of the indices from observations of the CMB. One can, given
precise enough data, extend this and find a possible running of the running
and so on. It is also possible to find the ratio of tensor to scalar perturbations.
There are several expressions for this parameter, here we define it as

tensor
C

4
Oscalar

£

r =

~ 12.4¢ = —6.2n7 (2.104)

where we assume that the Universe is perfectly matter-dominated and that
only the Sachs-Wolfe effect applies (section 4.1.2) [2]. We also assume that
we look at an £ value corresponding to scales that are sufficiently small for the
curvature of the last scattering surface to be negligible and yet large enough
to be well above the Hubble radius at decoupling [24]. The expression
(2.104) is often called the consistency relation. Assuming single-field slow-
roll inflation this equation holds regardless of the scalar-field potential and
is known as the consistency equation [2,page 193].

Another definition of the tensor/scalar ratio is

=Py _
Pr

r

¢ (2.105)

which is exact in the case of power-law inflation, and valid to lowest or-
der in slow-roll [29]. Yet another, frequently encountered, definition of the

tensor/scalar ratio is:
Ctensor
" 2

ro=
scalar
C3

The relation between equation (2.105) and equation (2.106) depends on the
background cosmology [30]. In particular the densities of matter (£2,,) and
cosmological constant (€24) are important. For a model with ©,, ~ 0.3 and

(2.106)

Q4 ~ 0.7 the relation is approximately [30]
r" ~ 10e

Unfortunately there are still other choices of normalization used in the liter-
ature. In this thesis the definition (2.104) is used, unless stated otherwise.
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If tensor modes are detected in future observations we are able to test the
inflationary models via the consistency relation. Other theories of structure
formation do not have such a relation between the scalar and tensor pertur-
bations, e.g. if one generalize to multifield inflation, the consistency relation
is replaced by an inequality [2,page 201]. The consistency relation reflects
the perturbations’ common physical origin; both the density perturbation
and gravitational wave spectra are generated during the same inflationary
period from the inflaton potential V(¢) [2,page 194].



Chapter 3

Inflationary models

There are many models for the inflationary epoch and it is customary to
divide the inflation scenario into three general types of models; small-field,
large-field and hybrid [30]. There is also a fourth type which exists on a
boundary between small- and large-field models called linear. Small-field,
large-field and linear models are so-called single-field models with one field
acting, whereas a hybrid model consists of two or more fields interacting
to give inflation [31, 32, 33]. These are generally harder to describe and
have more parameters than the single-field models. In our work we will
concentrate mostly on single-field models, but we will also present the hybrid
class and mention this throughout, especially when discussing the results
obtained. The different classes will be discussed in greater detail in the
following sections.

The single-field potential is characterized by two independent mass scales,
a “height” A*, corresponding to the vacuum energy density during inflation,
and a “width” p, corresponding to the change in the field value, A®, during
inflation:

V(®) = A'f (%) (3.1)

The function f separates the different models from each other [30]. One can
fix the A parameter by normalization to the amplitude of the large-scale CMB
anisotropies, and therefore i is the only free parameter. After normalization,
the parameter space for distingushing between the different model types is,
to lowest order in slow-roll, the r — n, plane. If we go to next-order in slow
roll, the running of ng, d'“ilﬁ, must also be introduced. We have seen that the
tensor/scalar ratio can be written as

Tensor
C
— 2

Y= ——
Scalar
C,

~ 10¢ (3.2)
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and that when using the slow-roll parameters, the scalar spectral index can
be expressed as

n, =1—4e+42n (3.3)

The second derivative of the potential, and therefore the relationship between
¢ and n (equations 2.24 and 2.25 respectively), distinguishes the different
classes of models from each other [30].

3.1 Small-field n < —¢

The small-field class of inflationary models is characterized by V"(¢) < 0
early on during inflation, but could at some later point become convex
(V"(¢) > 0). Another constraint is n < —e. Small-field models have a

generic potential of the type V(¢) = A? {1 — (%)p} This can be seen as

a lowest-order Taylor expansion of an arbitrary potential about the origin.
These potentials could come from spontaneous symmetry-breaking such as
the original models of “new” inflation [34, 35], or so-called natural inflation
[36]. Since € is typically close to zero in small-field models, so is the tensor
spectral index (equation 2.97) and the tensor/scalar ratio (equation 3.2). Be-
cause of this, any test of the consistency relation (2.104) for inflation will be

2
hard to perform with such models. For p = 2, that is V(¢) = A* [1 — (9) ]

n
we find:

r=5(1—ns)exp[—1 — N(1 —ny)] (3.4)

where N is the number of e-folds of inflation. With p > 2 we have the result:

2 (p—1
sl — = —— 3.5
! N<p—2> (3:5)

The scalar spectral index is in this case independent of r. If we furthermore
assume that the change in the field (0¢) during inflation is less than the
Planck scale, i.e. ¢ < mp;, we find an upper bound on r:

p 8T =
TONG -2 (Np(p—Q)) (36)

For any normal inflationary scenario (N =~ 60) the tensor/scalar ratio r will

be very small.
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Figure 3.1: The r - n, plane. The different types of potentials, small field,
large field and hybrid, occupy different regions of the observable parameter
space. Figure taken from [30]

3.2 Large-field —c <n <e

The models belonging to the large-field class are often so-called “chaotic”
inflation scenarios [37].

When cosmological scales leave the horizon, the inflaton field is displaced
from the minimum of the potential by an order of 10 Mp;. The potential
moves the field towards the minimum.

A typical example of large-field inflaton potential could be a polynomial

vie =t (2)

7

potential

or a exponential potential
VR
V(g)=A eXP(;)

Large-field models have V"(¢) > 0 and —e < < e. As for the small-field
models, we can find observational parameters for these models as well. Power-
law inflation yields slow-roll parameters ¢ = + and n = zlo = ¢, both constants.
Inflation takes place if p > 1. Due to the fact that e is constant, inflation



48 Inflationary models

would never end in this simple model, unless one makes some modifications.
Furthermore we find the spectral indices n, = 1 — % and n;, = —%. The
tensor/scalar ratio is given:

12.4
r=——==6.2(1 —ny) (3.7)
p
where we use the definiton (2.104). Using the alternative definition (2.106)
would give

r=5(1—ns) (3.8)

This is not a generic result, but only applicable to power-law models. In the
power-law case we notice that observable gravitational waves are possible,
unless n; is very close to unity (r > 0.1 for ny < 0.985).

For polynomial potentials V() ox ¢ we find [30]

r=>5 <$> (1 - ny) (3.9)

with the tensor/scalar ratio defined as in (3.2).

3.3 Hybrid

In hybrid inflationary models there are two fields interacting [31, 32, 33]. In
addition to the ordinary slowly rolling inflaton field ¢, we have another field
¥, which contributes to most of the energy density. The -field is stabilized
by ¢ in a false vacuum state, but when ¢ reaches a critical value ¢., on its
way towards a minimum, ¢ is destabilized, and will roll towards its true
vacuum state, thus ending inflation [30] (see figure 3.2).

The hybrid scenario is characterized by V"(¢) > 0 and 0 < € < 7.

A general form for the potential is V(¢) = A* {1 + (%)p}, but as already

mentioned ¢ is coupled to ¢ and a total potential V;,:(¢, ) would be different.
A hybrid inflation model could have a quadratic potential of the type:

1 1 1
V= §m2g§2 + ) (2 — M?)* + §X¢2¢2 (3.10)

where m and M are the masses assosciated with ¢ and v respectivly [2,page
216]. X and X are coupling constants. Since the value of ¢ at the end of
inflation is not determined by the inflaton field alone, we have one additional
free parameter characterizing the model. This extra degree of freedom causes
hybrid models to fill a large region in the r — ns-plane. However, there is no
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Figure 3.2: The hybrid inflation potential. The field rolls down down the
U = 0 channel, until it encounters the instability point, after which the
U = 0 solution becomes unstable and the fields roll to their true minimum

at ¢ =0, ¥ = £ M. Figure from [2]

overlap (see figure 3.1) between hybrid models and other models in this plane.
If we are able to narrow down the errors on ng; and r in our observations,
this could be a potentially powerful test of what class of models caused the
observations. Hybrid models generally have a so-called blue spectral index,
ie. ng > 1, if n > 2¢, but in principle they can also have ny < 1 [30]. Further-
more, hybrid models will generate isocurvature perturbations in addition to
the normal adiabatic perturbations generated by single-field models. A pure
isocurvature perturbation can be generated if the energy densities of the two
fields add up to zero. If this happens, the primeval curvature perturbation
Ry vanishes [2,page 158]. Instead of energy fluctuations, there is a fluctua-
tion in the entropy [1,page 328]. Since inflation ends with a phase transition
in hybrid models, there is a possibility of forming topological defects, which
could also prove to be a test in whether or not the model in question can be
valid from observations [30].

3.4 Linear- and other models

With linear models we are referring to models that have potentials propor-
tional to the inflaton field ¢, i.e. V(¢) x ¢. These have V"(¢) =0, n = —¢
and are models on the bordeline between large-field models and small-field
models [30]. The spectral index n; is related to the tensor/scalar ratio (3.2)
as [30]:

, = %(1 ) (3.11)
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The categories of models we have mentioned in the last chapter certainly
do not encompass all inflation models. Several single-field models do not fit
this arrangement, such as logarithmic potentials V(¢) o In¢ or potentials
with non-positive powers of the scalar field, V(¢) o< ¢77. These two examples
require a second field to end inflation, and as such should be called hybrid
models, but they reside in the small-field region of the r-n plane. The cate-
gories are complete in the sense that they cover the entire r-n, plane (figure

3.1).



Chapter 4

The cosmic microwave
background

4.1 Observations of the CMB

The cosmic microwave background (CMB) was first discovered in 1965. Two
radio engineers, Penzias and Wilson [38], working with a communicating
satellite project, discovered a uniform background “hiss” at microwave fre-
quencies. They were unable to attribute this noise to any known sources.
Unknown to Penzias and Wilson, Alpher and Herman [39, 40] predicted in
the mid 1940’s such a thermal radiation background. The cosmic microwave
background is the relic of the primordial fireball phase, commonly known as
the Big Bang. The CMB is the most perfect black body radiation spectrum
observed in nature. Its temperature is known to be 2.725 + 0.002K [41] over
the entire sky. This near-perfect black body is seen as strong evidence for
the Big Bang model.

In the following sections we describe some of the observations of the
CMB, and present some important theories concerning the application of
CMB observations.

4.1.1 Observing the CMB

The first observations of the CMB was made using ground- and balloon-
based experiments. These first experiments were neither sensitive enough,
nor able to overcome atmospheric absorbtion, to measure the CMB with great
precision. But with the launch of the COBE (Cosmic Background Explorer)
satellite [42] in 1989, the CMB could be measured to high precision. The
COBE data showed that the microwave background is incredibly even across
the whole sky, but more importantly, the data showed some small anisotropies
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in the radiation. These anisotropies are very small, one part in 10°, but they
are interpreted as the seeds to the Universe we see today. For the first time,
one had showed that the Big Bang theory could also result in large-scale
structures. If there had not been any anisotropies in the CMB, it would have
been very difficult to explain how gravitational bound objects like clusters
and galaxies could have formed from the Big Bang.

During the late 1990s, several new ground- and balloon-based experi-
ments explored the microwave background, confirming the COBE results
[43, 44, 45, 46, 47]. Such experiments are clearly obstructed by being per-
formed below the atmosphere. The observing conditions are not stable, at
least not compared to space, and the earth’s movement makes it hard to
make observations at large scales. The ground- and balloon-based experi-
ments must make up for the drawbacks they suffer from, compared to space-
based observations, by either observing for a much longer time, by adding
more detectors, or concentrating the observations on a small region of the
sky. The two last options are obviously the easiest to implement, as there are
few places on earth offering stable observing conditions for very long periods
of time, but there is also a financial side when adding many detectors. Due
to the limitations faced on ground, a new, next-generation, space-based ex-
periment was needed. In 2001, NASA [48] launched the WMAP (Wilkinson
Microwave Anisotropy Probe) satellite [49], and in 2003, the first year data
[50] were made public (one is still waiting for the second-year data). The
WMAP observations confirmed the anisotropies found earlier, and they were
measured to a much higher sensitivity and angular resolution than COBE.
The WMAP satellite has provided the first detailed full-sky map of the cos-
mic microwave background, and the official first year WMAP data strongly
supports the so-called concordance model [51]. One could get the impression
that everything about the CMB was now known. This is certainly not true,
but it will become much more true in 2007, when ESA [52] launches the
third-generation CMB satellite, the Planck satellite [52].

The Planck project, named after Max Planck, originally started out
as two mission proposals called COBRAS (Cosmic Background Radiation
Anisotropy Satellite) and SAMBA (Satellite for Measurement of Background
Anisotropies), and as can be seen from the names, these two proposals had
very similar objectives. Therefore COBRAS and SAMBA was merged into
one mission. Beginning back in 1994, these two mission proposals were first
studied by ESA and later ended up as Planck, and part of ESA’s Horizon
2000 scientific program. After take-off, the Planck satellite will eventually
arrive at a the 'L.2” point between the Earth and the Sun. At this point in
space the combined gravity from the Earth and the Sun is so that the satellite
will follow Earth’s rotation around the Sun. Also it will be reasonably far



53

away from the Sun, Earth and the Moon to avoid any undesirable emission.
Using a 1.5m primary mirror the satellite will focus received radiation onto
two detectors, the Low Frequency Instrument (LFI) and the High Frequency
Instrument (HFI). As their names indicate these two instruments will oper-
ate at different frequencies, but they will also perform the measurements in
different ways. When measuring the CMB anisotropies, what we actually do,
is to look at the temperature difference between two points on the sky. Due
to the anisotropies in the CMB radiation being so small, the detectors on-
board Planck will both have to be highly sensitive, and be cooled to such low
temperatures that their own heat emission won’t interfere with the radiation
they are supposed to measure. The two instruments will work using differ-
ent techniques. LFI will receive data at low frequencies, meaning between
30 GHz and 100 GHz. It is unfeasible to cover all frequencies and therefore
the 22 radio receivers making up the LFI will be grouped and tuned to four
frequency channels. To overcome the heat emission the LFI receivers will
be cooled and operated at —253° C. Other than the extreme temperature
and fine-tuning, the LFI instrument works pretty much like your ordinary
transistor radio.

The HFI is using another method to collect data. Designed to operate be-
tween 100 GHz and 857 GHz an array of 52 bolometric detectors will convert
the received radiation to heat, and an electrical thermometer will measure
the amount of heat. One easily sees that with this setup heat emission from
the instrument itself will be even harder to avoid. It is therefore constructed
to work at a temperature of —272.9° C, just one tenth of a degree above
absolute zero [53].

The Planck satellite will have a long integration time when measuring
the CMB, which ensures a high sensitivity. The integration time will be
approximately 30 times that of Boomerang, and 1000 times that of Archeops
[54, 44, 55]. One hope, and expect, that Planck will have the capacity to
map the full sky polarisation of the CMB well enough to put meaningful
constraints on both FE and BB polarisation spectra [54].

Ground- and balloon-based experiments are not necessarily competing
with the satellite projects. The fact is that the different methods complete
each other. Being on earth, means that certain measurements are more
difficult to perform than others, especially large-scale and full-sky surveys are
hard to do from earth. Therefore the ground- and balloon based experiments
often concentrate on very small regions of the sky and make high precision
observations of these. On the other hand, satellites have easy access to
the whole sky, and give us a fairly detailed overview of the full picture (see
figure 4.1). Thus one get accurate observations of both large- and small-scale
anisotropies.
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Figure 4.1: The scales and frequencies observed by the different CMB exper-
iments. Figure obtained from [56].

4.1.2 Extracting information from the CMB

The observed temperature anisotropies are frequently expressed as

or T(0,6)—To

7 (6:9) = Ty

which give the temperature fluctuations as fractions of the mean tempera-
ture Ty, and of angular position on the sky. It is important to realize that
since the CMB originates from the early stages of the Big Bang, it will also
carry the imprint of physical processes, both during, and after its produc-
tion. The observed anisotropies, or level of isotropy in the CMB radiation,
are important in several respects:

(4.1)

e The high degree of isotropy so far uncovered is strong evidence for
large-scale isotropy of the Universe

o [t excludes any model in which the radiation has a galactic origin or is
produced by a random distribution of sources, i.e. steady-state models.

e Observations can provide information about the origin, nature and evo-
lution of density fluctuations which are thought to give rise to galaxies
and large-scale structures in the Universe

There are several sources of anisotropy; primary, secondary and “tertiary”
sources [57, 58, 1]. By primary sources, we refer to physical processes occur-
ing prior to, and at decoupling. Secondary sources are sources that influence
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the CMB photons on their way between the last scattering surface and us.
“Tertiary” sources are sources which are more localized and in the foreground,
such as radio- or IR-point sources, processes in the galactic plane or the solar

system and instrument noise. We do not discuss any “tertiary” sources in

the following treatment.
We now proceed by describing some of the primary and secondary sources

of anisotropy:

1.

The dipole anisotropy: Due to the motion of an observer through a
reference frame, in which the CMB is “at rest”, i.e. the frame where
the CMB appears isotropic, there exists a dipole anisotropy (a variation
on a scale of 180°):

T() =T, (1 + %cos ﬂ) (4.2)

0

The dipole is the result of our galaxy’s movement towards the constel-
lation of Hydra-Centarus, and the measured speed (v &~ 600km/s) can
be used to determine €.

If there are inhomogeneities in the distribution of matter on the surface
of last scattering (see section 1.2), these can produce anisotropies by the
redshift or blueshift of photons from regions of different gravitational

potential. This is called the Sachs-Wolfe effect [59].

. If the material on the last scattering surface (LSS) is moving, the

Doppler effect will cause temperature fluctuations.

Radiation-matter coupling at the LSS may imply that dense regions
are by themselves hotter than underdense regions.

If the material between us and the LSS is inhomogeneously distributed
then inverse Compton scattering of CMB photons by free electrons in
a hot intergalactic plasma may induce anisotropy. This effect is known
as the Sunyaev-Zel’dovich effect [60, 61] and can be used to determine
Hy.

The integrated Sachs-Wolfe effect (ISW) [59] is due to gravitational
potential wells evolving in time along the line of sight. This introduces
a redshift or blueshift to photons travelling through these wells. E.g.
the well could become deeper while the photon is in it and consequently
the photon will be more redshifted as it climbs out of the well than
blueshifted as it entered the well, resulting in a net redshift.
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7. In the case of a time-varying gravitational potential, photons travelling
through this will experience a similar effect to the ISW effect usually
called the Rees-Sciama effect [62]. The CMB photons travel through
local gravitational sources such as galaxies and galaxy clusters on their
way to us. These non-linear perturbations cause the gravitational po-
tential to vary with time. The Rees-Sciama effect is manifested on
smaller scales than the ISW.

When we observe the CMB, we see the inside of an imaginary sphere, and
therefore we expand the temperature fluctuations in spherical harmonics
(analogous to a Fourier expansion of a plane function). The spherical har-
monics are defined as

Yim(0,6) = ,/%Pmcowww (4.3)

where P;* are the associated Legendre functions, and ¢ and m are integers
such that £ > 0 and |m| < £. Furthermore the spherical harmonics have the
following symmetry property:

Yiom = (=1)"Yy, (4.4)

where * denotes complex conjugation. The functions Y7, (6, ¢) form a com-
plete orthonormal set on the unit sphere, and this orthonormality means
that

[ V0,607,000, = 518, (45)
where df) = sin 0dfd¢.

We now define the multipoles ag, of the cosmic microwave background
anisotropy as

67 (¢e)
T = Y amYim(e) (4.6)

Im

where e is the unit vector in the direction we are observing. The monopole
ago 1s unobservable, and the dipole a; 41 is the dipole anisotropy discussed
earlier in this section. The rest of the multipoles, i.e. the ay,,’s with £ > 2,
represents the intrinsic anisotropy of the CMB.

When we later analyze the CMB, we work with the power spectrum,
represented by a dataset of values Cy for each mode /. Some simulated power
spectra can be seen in figure (6.1). The C,’s are related to the multipoles
agm through

< azm ot >= Co0pp O (47)
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It can be shown [2] that the multipoles can be calculated in terms of the
primeval curvature perturbation Ry (equation (2.50)) as

Upm = (;”)Q / Ty, R (k) ed (4.8)

The transfer function Ty(k, ) is independent of m due to invariance under
rotation. Furthermore, we can express the spectrum of the cosmic microwave
background, CY, as

o dk

Cy = 47r/ Tj(k,ﬁ)PR(k)? (4.9)
0

TE o dk

Cg = 4 TQTE(]C,E),PR(]@)? (410)
0

EE = 2 dk
0

BB = 2 dk

CPP = ar | Th(k OyPr(k) - (4.12)
0

(4.13)

where Ty and Ty are transfer functions.
We define the correlation function of the CMB anisotropy as

C(6;,) = <5T;§1) 5T;§2)> (4.14)

where 6, 5 is the angle between e; and e,.

Due to polarization of the CMB radiation and the possibility of gravi-
tational waves, there are four sets of Cy’s. These (,’s are the temperature-
temperature correlation (C/7), the polarization correlation (CF¥), the cross
correlation between temperature and polarization (C7¥), and the tensor cor-
relation (CPPB). The latter is caused by gravitational waves and is very hard
to measure.

The initial density perturbations generated in the early Universe, are the
result of the opposing forces of gravity and radiation. Gravity will cause
over-dense regions to collapse, while radiation pressure, as long as radiation
is tightly coupled to matter, will prevent structures from forming. This
struggle between gravity and radiation generates acoustic oscillations in the
photon-baryon plasma [54, 58], and the acoustic oscillations in turn, causes
peaks and throughs in the anisotropy spatial power spectrum [54]. On scales
smaller than the horizon size the original perturbations will be modified
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by some transfer function. The transfer function depends on the physical
processes behind the acoustic oscillations. Because of these modifications of
the original perturbations, it is possible to learn about the energy density
and the Hubble constant from the observed CMB anisotropies. The energy
density is connected to the relative height of the acoustic peaks, and the
relative height also depends on the strength of the damping term due to
expansion, i.e. it is connected to the Hubble constant. The physical size
of a perturbation is transformed to a angular size when we measure it on
the sky, and the transformation depends on the geometry of space. Thus,
also the curvature and cosmological constant can be derived from the CMB
anisotropies [54].

In the following we discuss polarisation. Polarisation can only be gener-
ated at last scattering. Furthermore, the polarisation depends on the Thom-
son cross section upon the polarisation states of the incoming and outgoing
photons, o1 o |¢;, €]? [54]. This means that a quadrupole in radiation density
at some point at last scattering creates polarisation in a direction perpendic-
ular to that of the maximum of the quadrupole tangentially to the surface of
last scattering [54]. Since polarisation is only generated from quadrupoles,
measurements of polarisation can possibly be used to separate between dif-
ferent sources of anisotropies (monopoles, dipoles, quadrupoles), and thus
hopefully remove some of the degeneracies among cosmological parameters
[54].

We now define the Stokes parameters [63]. The polarisation state of any
incoming transverse electromagnetic wave is completely described in a given
reference frame by the four Stokes parameters I, ), U and V:

= <|E)*>+<|E|*> (4.15)
<|E|* > = < |Ey[* > (4.16)
< E,BEl>+ < EEl > (4.17)
= i(< BBl >+ < E,E]l >) (4.18)

< T QO ~
I

Here E, and F, are Fourier components from a Fourier series in the time vari-
able of the electrical field of a plane-wave arriving at the observer’s position
from the 4z direction [2,page 126]. In the above expressions, one also takes
the average over frequency, and F, and FE, are time-independent amplitudes
[2,page 126]. Furthermore, I represents the total intensity, while ¢ and U
describe the linearly polarised part of the radiation. The last parameter, V|
describes the circularly polarised part of the radiation, and vanishes in this
case, since no V-type polarisation is expected in the CMB [54].
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The measured Stokes parameters depend on the given reference frame.
One can transform from one frame (X, V), to another (X', Y’) [54], through

I 1 0 0 0 1

Q' _ 0 cos2y sin2¢ 0 Q (4.19)
U 0 —sin2y cos2¢y 0 U '

V! 0 0 0 1 V

From this transformation matrix, we see that () and U are defined in a frame
dependent way. If, for instance, we have a reflection y — —y, or z — —=z,

we see that /
( “ ) S ( “ ) (4.20)

which is a parity transformation. The ordinary right-handed coordinate sys-
tem is changed into a left-handed one [2,page 127].

If we rotate the coordinate system (X, Y') by an angle «, the combination
@ + U transforms as

Q £ iU — eF2(Q £iU) (4.21)

Thus @ £ :U can be considered to be the eigenmodes of the “rotation by «o”
operator on the plane, associated to eigenvalues of e¥2 [54]. The eigenmodes
are spin +2 quantities, and we can decompose them on a sphere on the basis
of spin 2 spherical harmonics 45V}, as [54]:

Q0,6) £iU(0,0) = a2 mz2Yim (6, 0) (4.22)

fm

Then the E and B polarisation fields can be expressed as

E o= Y ek Yin(0,6) (123

Im
B =) af}Yim(0,9) (4.24)
Im
where
oF — _futm Tt Oam (4.25)
2
and
af, = i (4.26)

Now the intensity and polarisation of the CMB radiation is described by I,
E. B and V. Furthermore, the spatial power spectrum of the intensity and
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polarisation field of the CMB is given as

CTT CTE g
CTE CEE 0 0

CXV =<afa)l>=| 7 ; 4.27

J4 £ Im 0 0 CZBB 0 ( )
0 0 0 0

All cross terms involving B vanish for parity reasons [54, 64]. Thus the
intensity and polarisation power spectrum of the CMB is fully described, for
each /, by four quantities; CIT, CT® CFF and CPP [54]. It is possible to
calculate all four for a given model, allowing us to compare observations with
theoretical models.

The polarisation signal is much weaker than the temperature anisotropies.
The amplitude of the polarisation fluctuations from scalar modes are ex-
pected to be as low as one tenth of the CMB anisotropies on small scales,
and relatively much lower still on large scales. The contribution from gravi-
tational waves can be as low as an order of magnitude smaller than the scalar
mode polarisation [54].

In the way pattern of peaks and troughs in the polarisation spectra is
connected to cosmological parameters, it can, given a noise free experiment,
tell us approximately the same as the pattern in the temperature power
spectrum. But if instrument noise is dominating the polarisation spectra,
we will in the future still get most of the information from the CI7T data.
Measurements of the polarisation spectra are required if we are to determine
other inflationary parameters other than n, and A,. It is not possible to
get constraints on e.g. the tensor/scalar ratio, or tensor spectral index nr,
from the temperature power spectrum alone. Because B-mode polarisation
is only generated by tensor fluctuations, measurements of B polarisation,
that is obtaining a CP? power spectrum, is the best, possibly the only, way
of putting tight constraints on the inflationary parameters involving tensor

fluctuations, i.e. nr, r and eventually ;&Tk [54].




Chapter 5

Reconstructing the inflaton
potential

5.1 Introduction

Our initial intention with this project was to find a way of “reconstructing”
the inflaton potential, and in this chapter we describe our findings in that
respect.

The traditional approach to the task of reconstructing the inflaton po-
tential has been to apply a perturbative framework [24], and in the following
section (5.2) we describe this framework, and mention what should be pos-
sible to do, using this method. Another way of reconstructing the inflaton
potential is to apply a so-called Monte Carlo reconstruction [30] method,
where we use the method to produce many models with associated observ-
ables, i.e. quantities we can observe today, such as the tensor/scalar ratio
r, the scalar spectral index ns and the “running” of ng; ddl%. If we put
constraints, derived from observational data, on the calculated observables,
we would effectively also be able to find possible inflaton potentials allowed
by current cosmological observations, as the equations leading to the observ-
ables also give the evolution of the potential during inflation. The Monte
Carlo reconstruction scheme is presented in detail in section 5.3, with results
obtained using this method presented in section 5.5. We conclude this chap-
ter with some discussion (section 5.6) concerning the future application of
the Monte Carlo reconstruction method.
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5.2 Traditional approaches to the reconstruc-
tion problem

5.2.1 The perturbative reconstruction framework

The framework of the perturbative reconstruction of the inflaton is based on a
perturbation of the inflaton potential itself [24]. The basics of the framework
will be described in the following. The inflaton rolls slowly down the potential
V() for inflation to take place, and modes leading to observable effects first
crossed the Hubble radius approximately 50 — 60 e-foldings prior to the end
of inflation. Since this crossing takes place during a relatively short period
of time (6N ~ 10) the corresponding change in the inflaton ¢ is small due
to the slow roll. This means the field value ¢ in the potential V(¢) is more
or less constant (¢) during crossing. The idea is then to Taylor expand
the potential about this point (¢o) [65, 66, 67, 68, 69], and from a set of
observables [70], be able to reconstruct the shape of the potential during this
period. One must realize that any observation can only give information
about the potential from this small period of time (Hubble crossing), and
one is thus not able to reconstruct the full potential from observations, only
part of it (see figure 5.1).
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Figure 5.1: The portion of the true inflaton potential which can be accessed
by observations. Figure taken from [24]

The perturbative reconstruction can be based on the slow-roll (SR) ex-
pansion (see section 2.4), and by going to higher orders in SR as the obser-
vational data improve. The dynamics (i.e. the SR-expansion) can be taken
to arbitrary high order, but unfortunately the expansion of perturbations is
only available to next-order [24].
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Taylor expanding the potential V(¢) about the point ¢q yields:

‘ , 1
V(8) = V(do) + V()36 + 5V"(60)d" + ... (5.1)
To second-order the above equation reduces the Hamilton-Jacobi equation(2.13)
to
. 3m?
V(9) = 2 ~H*(9) (5.2)

and thus the expansion of the potential (5.1) can be expressed using the
slow-roll parameters (2.18, 2.19). It then follows that the potential (5.1) can
be written as:

_ 3me 1 — (16m¢o)2 o9 + 47 (eo + no)(éqz) + 0 (@)]

8 mp; mp, mp,
(5.3)

One must note that the subscript 0 does not refer to the present, but instead
implies that quantities should be evaluated at ¢ = ¢q. Hy therefore represents

V(e)

the expansion rate when the scale corresponding to this value of the scalar
field first crossed the Hubble radius during inflation. We define the scalar
and tensor power spectrum A,(K) and Ap(k) as

A (k) = %Pé(k) (5.4)
Ar(k) = %735(1@) (5.5)

where 737%(1@) and Pg%(k) are defined in section (2.5.3). Using the definitions of
the spectra (equation 5.4 and 5.5), the slow-roll parameter definitions (equa-
tion 2.18, 2.19) and the expression for the scalar spectral index (equation
3.3) we write the coefficients in equation (5.3) as [24]:

75mp,

Vio = D2 an, (5.6)
Vig) = -7 mﬁff; (5.7
Vilgo) = mbAb(ke) [o22l0) 3 (55)

Axk) 2

ko being the scale at which the amplitude and spectral indices are determined.

It is clear from the above equations (5.6, 5.7, 5.8) that some measurment
of the gravitational-wave (tensor) amplitude must be made for the pertur-
bative reconstruction framework to succeed. The spectra are also expanded
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about kg in terms of In %:

In A2(k) = I A2(ko) + [(ma(ko) — 1]In o +

ko 1dn k
In AZ(k) = lnAQT(k0)+[(nT(ko)—l]lnk—O—l—§dlnTk 2

where the expansion is continued as far as observations permit, most likely

to In? % in the forseeable future. We assume that As(k) and Ar(k) can be

&

T ) ), which for the scalar perturbations

measured over a range of scales (§ In (

k
ko
tensor perturbations. This range of scales corresponds to the range of the

scalar field §¢ accessible to observations. It is expected that In <i> can be

most likely is =5 < ln< < 5, and unfortunately much shorter for the

ko
greater than unity, meaning equations (5.9) and (5.10) can only converge if
the successive coefficients are smaller than 1. Since the scalar spectral index
ns seems to be close to unity [41], the SR-parameters are small (equation
2.24, 2.25), and thus the expansions (5.9, 5.10) may converge well outside

the observed 4 In (%) This again yields a smooth reconstruction of V(¢)

about ¢, and an extrapolation of V(¢) to regions beyond the observable
range can be considered relatively “safe”.

The expansions, and the expressions obtained from them in this section
are not considered to be sufficient for the next-generation CMB experiments
[24], i.e. WMAP and Planck (see chapter 4.1.1). In those cases, one must
expand to higher orders in all expressions. This will not be discussed here,
but an eager reader can find more information in [24].

5.2.2 Results from the perturbative reconstruction frame-
work

The perturbative reconstruction framework depends, as we saw in the previ-
ous section, on the amplitude A2 of the tensor power spectrum. No current
observational datasets are sensitive enough to put meaningful constraints on
this parameter, and concequently the perturbative reconstruction framework
has not been utilized in any extent. To examine the potential of the method,
one can use simulated datasets, and in [24] two toy models are presented. We
will here briefly outline the procedure and results obtained from these toy
models, and comment on the possible uses of the perturbative reconstruction
framework in the future. The two toy models considered were a power-law
inflation model with index p = 21, a choice which gives ny, — 1 = np = —0.1,
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and a intermediate inflation model [71], which gives a scale-invariant spec-
trum of density perturbations, but still possesses significant gravitational
waves [24]. The two models are of course chosen because they both have
substantial gravitational waves, and hence tensor perturbations. When sim-
ulating the spectra for the two models, only multipoles up to £ = 200 for the
scalar perturbations and to £ = 40 for the tensors, were generated. For the
scalar perturbations, the error bars were consistent with cosmic variance (see
Appendix 8.1), and for the tensor perturbations the error bars were chosen
to reproduce the observational uncertainty in the tensor amplitude suggested
by [72]. A range of A¢ = 200 corresponds to Alnk = 4.6, or approximately
two orders of magnitude in wavenumber k.

Ref. [24] found that for these two toy models it is still hard to get good
constraints on the tensor spectral index np, but still the amplitude of the
tensor perturbations is constrained well enough to obtain a unique recon-
struction, i.e. the lowest order consistency equation (2.104) is satisfied [24].
The derived inflationary parameters are found to be consistent with the in-
put parameters for both models, except ny, — 1 for the second model, and np
for the first. The reconstructed potentials are found to be consistent with
the true underlying potentials when the observational/simulated errors are
taken into account [24].

The next-order reconstruction method did not improve the parameter
constraints significantly compared to the lowest-order reconstruction [24].
Here we would like to note that it could be interesting to test this method
using for instance simulated datasets, extending the range of wavenumber
k accessible to the reconstruction process, i.e. going to higher values of /.
One could use scalar data up to at least £ = 2000, which is expected to be
measured with Planck, and tensor data possibly up to ¢ = 1000, although
the tensor contribution begin to cut of as early as £ ~ 40 [24].

It is even clearer from the use of the above toy models that the per-
turbative reconstruction framework is only effective as long as there is a
considerable, i.e. measureable, B-mode polarisation in the real CMB. If not,
it is almost impossible to get a strong handle on A2 and nr, and the per-
turbative reconstruction framework would fail. So far, the constraints on the
tensor/scalar ratio is just r < 0.90 (at 95 % CL) [41], and no good constraints
on nr either. This clearly indicates that we must at least wait for Planck
data before the perturbative reconstruction framework will be useful.
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5.3 The Monte Carlo reconstruction formal-
ism

One of the main objects of our project is to “reconstruct” the inflaton po-
tential, that is the potential that drives the early period in the history of the
universe through an exponential growth explained in chapter 2. Tt is natural
to take a look at the underlying formalism used to describe such an epoch.

We use the slow-roll formalism derived in chapter 2. Remembering the
infinite hiearchy of slow-roll parameters:

¢ = m—lzgl(H/(qb))Q (5.11)

47
(o) ) (5.12)

= 47
mp | 1 " o 2
= [5 (?) - <F> (5.13)
2 N\ -1 (e+1)
¢ — mp \ (H')"'d H
Au = <4ﬂ> HT dg@ (5.14)

we choose to truncate the series at £ = 6. That means we assume all ‘g
with £ > 6 to be equal to 0. We see that the slow-roll parameters involve
higher derivatives of H with respect to the field.

We are interested in the evolution of the parameters, evolution in time to
be precise, and as we have seen in chapter 2, the number of e-foldings N is
related to time ¢ through the equation N = f:e Hdt, and further related to
the field value ¢ during inflation (equation 2.30). Therefore N is chosen as
our measure of time. From equation (2.30) it is also seen that N increases
as one goes backward in time. The derivative with respect to N is related to
the derivate of ¢ through (see Appendix 8.4):

d _d _mn ood
AN ~dina 2= Y dé

(5.15)

Below we define the “flow” equations (derived in Appendix 8.4). These are
equations that will give the evolution of the SR-parameters during inflation,
and should therefore also tell us something about the potential through the
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relation (2.16).

j—; = ¢lo + 2¢ (5.16)
do a2 9
N = 2°M g — Hoe — 12¢ (5.17)
d(*) (-1
(dNH) = |5 o+ (=2 (‘M) + (5.18)

From equation (5.15) we have

do _ mpr
N - 2ﬁﬁ (5.19)

and we also find that
1 dH

HdN ~ ¢
Thus we have a set of flow equations (5.16, 5.17, 5.18, 5.19 and 5.20) which
can give the inflaton potential V' (¢) via the Hamilton-Jacobi equation (2.13).
To obtain the inflaton potential V(¢), we must solve the flow equations for
initial starting conditions. In the next section we describe the process in
greater detail, but note here that the inital value of ¢ is arbitrary [73, 74],
and we take it to be equal to zero. The Hubble parameter is not arbitrary,
and must be normalized based on observations [75]. We apply the condition

(5.20)

that the density fluctuatuion amplitude, as determined by a first-order slow
roll expression, be of order 10~ [75, 30, 23]:

1) H
o Mg
p 2mmpy/€

This is the basic theory /equations needed, so now we will go on to describe
how the “flow equations” are solved and the inflaton reconstructed.

5.4 The process

The object of the process is to “reconstruct” a potential, V(¢). We will
attempt to follow the procedure of [29, 30], were we say “thal given a path
in slow-roll parameter space the form of the potential is fixred”. The flow
equations will be solved numerically from a set of initial values for the SR-
parameters. Random values will be drawn for the initial conditions, uni-
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formly distributed in the following intervals;

Newitc € [40,70],

¢ € [0.0,0.8],

o € [-0.5,0.5],

"\u € [-0.05,0.05],
Au € [—0.025,0.025],
Mg € [-0.01,0.01],
Mg € [-0.005,0.005],
"Au € [—0.0025,0.0025],
Ay € [-0.001,0.001],
g o= 0

(5.21)

We seek solutions that either end up with a so-called late-time fixed point
(e = “Ag = 0,0 = constant, note however that !\g does not have to be 0,
but must be constant), or inflation ends (e > 1).

There is another possibility of course, the result from the integration does
not give anything sensible, i.e., we integrate from a random N forward in time
(dN < 0) until N = 0, and inflation neither ends nor reaches a late-time fixed
point. These undesirable results will be discarded. We say that N = 0 when
inflation ends or reaches a late-time fixed point. If inflation ends (e > 1),
we will have to evaluate the flow equations backwards in time, that is from
N =0 to some N = N, because scales of the order of the current horizon
size exited the horizon at N ~ 60.

Now we must decide on what to do with our desirable results. We must

see if they are probable in any way, that is, could they give the Universe we
dng
dlnk

see today? SR-parameters are related to the observables r, ny, — 1 and
to second order in slow roll through the equations [30]:

r = 10¢[l — C(o + 2¢)] (5.22)
n—1 = o—(5—30)— i(s _5C)oe + %(3 _ OV ) (5.23)

dn, B 1 dng (5.24)
dink 1—¢/ dN '
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We find 22« to be:

dlnk

dn 1 31 9

== - —12— =04~ 2
dln k — | 50T 7C0)¢ —beo

3 5 3 O
+(2_§6+506+ZO—_Z0—))\H
3 3 9 21 3
— (11 + 30)6 - (Z ‘|‘ ZC)EG —|— 5(3 - C) /\H

Where the constant C' is given as C =4(In2+v) — 5 = 0.0814514 and v
is Euler’s constant.

It is now fairly simple to calculate the observables using our obtained
SR-parameters. After calculating the observables we have to decide if it is a
“desirable” result, i.e. if the observables lie within a specified “window” in
parameter space. Here we take as a starting point the current best estimates

for r, ny— 1 and ;l{szk and allow for values in a range around these estimates,
ending up with:

r € [0,1.5]
n, € [0.5,1.5]
dn,
T g € [—0.05,0.05]

The observable parameter constraints are loose compared to e.g. WMAPdata
[41]. If we end up with allowed values of observables we record those values
and do the whole process as many times as needed.

To sum up the process in a few short steps it is:

1. Pick initial values for the SR-parameters.

2. Evalutate the “flow” equations forward in time until either inflation
ends (¢ > 1) or inflation reaches a late-time fix point.

3. 1If

a) inflation ends, evaluate the “flow equations” N e-folds backward in
time and calculate the observables r, n, — 1 and ddfTSk there

b) inflation reaches a late-time fix point find the observables for that

point.

4. Decide whether or not the calculated observables are in the allowed
window. If they are, record the values, if not, discard them.
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5. Repeat steps 1-4 as many times as wished/needed.

If we find a solution to the flow equation which gives observables in the al-
lowed parameter space, a so-called non-trivial point, the computed potential
is saved so that it is possible to examine this later. In the following section
we describe the computational process in greater detail.

5.4.1 Programming

Solving the problem is relatively easy, but there are of course some obstacles
to be tackled. First of all we choose to code the program in the C language.
There are several methods needed to get the results we seek, and those are;
a method for integrating the initial “flow” equations, a method to evolve the
flow equations backwards in time, should € happen to become larger than
one, and thus end inflation. Furthermore we need a method for calculating
the observables and determining whether they are in the specified window or
not.

To do the integration we rely on a ready-to-use method from Numer-
ical Algorithms Group (NAG) [76] called nag_ode_ivp_rk_onestep, which
is an ordinary differential equations (ODE) solver. It takes a number of
ODE’s, with initial values, and evaluate the equations one time step (in-
creasing N with dN), using a 4th order Runge-Kutta method. The inte-
gration method(integrator) calls the NAG-method as long as needed and
the NAG-method does not return an error message. If we get an error the
program must deal with it, in most cases that is to just discard the cur-
rent calculation and begin over with new initial values. If € gets larger than
one the integration method calls another function(backint), which is basi-
cally the same routine, the main difference is that it integrates forwards in
N, and does of course not choose random initial values as the integrator
method does, except for the number of e-foldings Nyt it should integrate
backwards. The other initial values are taken to be the final values of the
integrator method. When done, backint calls observables, which do the
almost obvious, calculate the observables from the final SR-parameters. The
integrator also calls this method if, instead of € > 1, it reaches a late-time
fixed point. After calculating the observable parameters, the observables
function checks if the parameters are in the allowed window by making a
call to the inWindow function. If that is the case, it adds the results to a
file using a file writer subroutine and the computed potential is written to a
seperate file together with the corresponding values of ¢ and N. The main
function performs this whole procedure as many times as specified, i.e. until
we get enough results to get good statistics.
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5.5 Results

We solve the flow equations numerically for 1000000 iterations. For this first
run we do not compute the potentials for each iteration, as the objective
is to find how the sets of observables (ns, r and %) are distributed in
parameter space. The 10 iterations result in 943721 iterations where a late-
time fixed point is reached, but the observables are outside the parameter
window. Approximately 16320 late-time fixed points give observables within
the allowed parameter space. Furthermore there are 33775 iterations where
e > 1, and of these 5428 give allowed observables. The remaining 6184
points are points where |*Ag| > 100, i.e. one or more of the higher order
slow-roll parameters gets very large, and this is an unwanted behaviour as
we are using approximate expressions, and the slow-roll parameters should
therefore be small. These solutions are discarded.

Plotting the various parameter pairs ((ns,r), (ns, ;ifTsk) and (r, dﬁsk)) we
obtain an overview of the distribution in parameter space. In figure (5.2) we
see that in the ny, — r plane there are allowed models in virtually the whole

plane, but most lie close to r = 0, and values of n, in the entire allowed range,

with perhaps some predominance in the interval ny € [1.1,1.5]. In figure
(5.3) we look at r and the running of the spectral index, j{LTSk, and see that
most of the models end up within a small “box” with sides r € [0.0,0.1] and

dn: 10,01, —0.03]. It is interesting to note that so many of the models have
dn e

dink?
we see that many models have both negative running and a blue spectrum

(ns > 1). But still most models have no running, no significant tensor/scalar
ratio, and no preferrable scalar spectral index.

After establising an overview of the parameter distribution in observable
space, we change focus, and reconstruct the inflaton potential. We tighten
the parameter constraints furhter, and now allow parameters in the ranges

dink
a negative running. From figure (5.4), where we plot ng together with

n, € [0.8,1.1]
r € [0,0.7]
dn,
ok € [-0.05,0.05]

which is in better agreement with current observational constraints [41].

With these constraints, we reconstruct 100 potentials and plot these. In
figure (5.5) we have plotted the potentials with —2_ along the z-axis and

mp1
In (%) along the y-axis. We observe that there are quite a lot of possible
Pl

potentials allowed. We scale the potentials to have the same height at ¢ =0
(figure 5.6) and both same height at ¢ = 0 and % = 1 in figure (5.7).
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From these plots we observe that most of the reconstructed potentials have

qualitatively the same shape.
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Figure 5.2: Models in the allowed parameter window. ngs—1 along the x-axis

and r along the y-axis

Figure 5.3: Models in the allow parameter window. r along the x-axis and

dn .
dlnk

along the y-axis

5.6 Discussion

We have shown that the Monte Carlo reconstruction method proposed by [75]
is capable of reconstructing inflaton potentials which fit current observations.
It is an fairly effective method in that it takes a relatively short amount of
time to produce a large number of reconstructed inflaton potentials. To
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Figure 5.4: Models within the allowed parameter window. n; along the x-axis
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Figure 5.5: Reconstructed potentials in the parameter window 0 < r < 0.7,
0.8 <ng < 1.1 and —0.05 < ddlns < 0.05. The z-axis is ¢/mp; and the y-axis

nk
is log (;(f))
Pl

generate 1000 potentials, satisfying observational constraints, would take no
more than an hour on a standard desktop computer. However, it does suffer
from some possible drawbacks. One is that in itself, the method is inefficient.
As we stated in the previous section, approximately 95 % of every attempted
reconstruction iteration does not lead to a interesting result (other than being
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Figure 5.6: The reconstructed potentials, scaled to have the same height at
¢ = 0. The z-axis is ¢/mp; and the y-axis is (%)
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Figure 5.7: The potentials, scaled to have the same height, and all have
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interesting in that respect). Also a very large proportion (~ 75 %) out of all
non-trivial points stem from a late-time fix point. This is not necessarily a
drawback, but could instead be considered as an indication of a possible need
to fine-tune the initial SR-parameters. We have not investigated this much
further, but it would be interesting to see how the initial SR-parameters
correlate to the observables. One could trace the evolution of the slow-roll
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parameters in time, as has been done in e.g. [73, 75]. This could however be
difficult and time consuming to do for a large number of non-trivial points.

The other possible drawback we will discuss here is the number of possible
potentials. In figure (5.7) we see there are many different shapes and values
for the reconstructed potentials, and the same can be seen in [75, 73, 30]. It
is clear from figures (5.5, 5.6, 5.7) that most of the reconstructed potentials
do possess a common shape, but the reconstruction method is not able to
constrain the energy scale of the inflaton and its potential.

Furthermore we note that we have observed an indication of a dependence
on the starting point Niiial- Ref. [30, 73, 74] suggest that Nipitial be set equal
to a large number, e.g. 1000, and then one evolves the flow equations forward
in time until either inflation ends or a late-time fixed point is reached (or
[*Agr| > 100). This typically means for AN ~ 40 —80. On our first attempts
to implement the Monte Carlo reconstruction method we misunderstood [30],
and used a starting N randomly drawn in the interval Nipitiar € [40,80] and
otherwise followed the same procedure as outlined in section (5.4). It was
then noted that the ratio of late-time fixed points to € > 1 points was more
or less the opposite of what is found when using Njpitia = 1000. This could
be a problem with the ODE solver we have used, and unfortunately we have
not had the possibility to cross-check using another ODE solver (e.g. one
from Numerical Recipies [77]). Alternatively it could be caused by the flow
equations and the solutions to them, although it is not clear to us what should
cause such a behaviour. There should be no dependence on the starting point
Ninitial-

There are several possible sources of error and we comment on some in
the following. Obviously there is a human side, which could misinterpret the
Monte Carlo reconstruction procedure altogether, but after discussions with
W. Kinney [74], we are confident that our understanding of the method is
correct. Furthermore, there could be errors in the software used. As can
be seen in sections (5.3) and (5.4) the flow equations involve many terms,
especially the “Ag equatins. Errors could thus arise from both the derivation
of these, implementation in software, and numerically when the solutions are
found.

However, comparing with [30, 75, 73] we see that our results are qual-
itatively in agreement with the results obtained in previous works. This
strengthens our confidence in that our use of the Monte Carlo reconstruction
method and the results obtained are correct.

As our work in this chapter is based heavily on the article [30], we must
include in our discussion some issues brought up by Liddle in [78] concerning
the inflationary flow equations (5.16-5.18). We have used the flow equations
to generate slow-roll inflation potentials with corresponding observables (n,
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, 5@%). According to Liddle it is fundamentally wrong to use the infla-

tionary flow equations as they are derived by Kinney and relate them to

r

inflationary dynamics. There is actually no connection between the two ac-
cording to Liddle, due to the fact that the flow equations have been derived
without mentioning what Liddle considers “the main dynamical equation of
inflation”, the Hamilton-Jacobi equation (2.13). This equation relates the
expansion rate to the potential V(¢), and should be used to determine the
actual trajectories of the slow-roll parameters in parameter space. The way
the flow equations are defined, through the use of the e-foldings N they are
instead just measures of distance along the trajectory and the inflationary
dynamics do not determine the actual shape of the trajectory. Liddle sum-
marizes the above by saying that solving the flow equations has nothing to
do with solving the inflationary equations of motion. Despite of this, the flow
equations appear to correspond to inflationary models [79, 75, 30]. As we
have seen the flow equations, when solved, produce a function ¢(¢) (or rather
€(N), but that can be transformed to €(¢)), which is less than one as long as
inflation takes place (i.e. inflation ends for ¢(¢) > 1). Normally an inflation
model is specified by V(¢) or alternatively H(¢). From the definition of €(¢)
(2.14) we can obtain:

(o) = o [ Virdo1 22 ) (5.25)

and we also have (2.16):

2

V(g) = ()1 - 2e(9)] (5.26)

T 3

From this it is easy to realize that for any function €(¢) between zero and
unity, it is possible to obtain a slow-roll inflation model with potential V(¢)
which gives that €(¢). So what we have done, according to Liddle, is to use “a
rather complicated algorithm for generating functions €(¢)”, and due to the
constraints put on the flow equations (or the solutions of the flow equations),
these “have the correct general form to be interpretted as inflationary mod-
els”. But the main point remains, that the functions ¢(¢) do not incorporate
the inflationary dynamics in themselves. In fact, if the inflationary dynamical
equations changed, it would not change the trajectories in parameterspace as
found by solving the flow equations. It would change the equation relating
N and ¢ (5.15), but that only introduces a change of the length of the tra-
jectories, i.e. the point corresponding to a given number of e-foldings would
change. This makes it clear that the flow equations are far less responsive
to changes in dynamical assumption than one would wish, one can not say
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anything about the inflationary dynamics based on the flow equations alone.
One should also note that due to the flow equations being “so loosely related
to the inflationary dynamics” (Liddle [78]) the results obtained, specifically
the way inflation models sample different regions of observable parameter
space (figures 5.2, 5.4, 5.4) are not necessarily correct and there is a need for
a more thorough investigation into this.

Is the Monte Carlo reconstruction of the inflaton potential a successfull and
applicable method? As the current situation is concerning cosmological pa-
rameter constraints, the method suffers from its great ability to produce vast
numbers of different potentials base on fairly tight parameter constraints.
There are just too many possible realisations of the inflaton potential that
can be found using the MonteCarlo reconstruction. It is therefore impossible
to claim that the inflaton potential has been found. However, future data
could possibly put such tight constraints on r, n, and ddlzsk that the number
of possible potentials get reduced dramatically, and perhaps a dependence
on initial slow-roll parameters can be found. If that is the case, the Monte
Carlo reconstruction method might be able to tell us something about the
real inflaton potential given that some of the issues brought up in [78] and

discussed above can be resolved.
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Chapter 6

Excluding models

6.1 Introduction

Thrilled by the success of the WMAP-satellite [49], one can imagine that
some time in the future we will have instruments providing new data, with
higher accuracy. One can even imagine datasets with no errors, that is perfect
instruments, measuring perfectly at all scales, and one is able to subtract all
foregrounds and non-CMB sources contributing to the observed data. This
situation will unfortunatley always be restricted to our imagination, but we
can simulate such perfect datasets. Perfect datasets are easier to work with,
as there are many factors one does not have to consider, and in our analysis
we use such simulated datasets.

A cosmological model has a number of parameters determining its evolu-
tion. The complexity of the model determines, in most cases, the number of
parameters needed to describe it. The standard model used to satisfactorily
describe current observations, have 7 base parameters [80]. As observations
improve in the future it might be necessary to add more parameters to find
a model which satisfactorily describes the observed data.

Naively one may then think that it is a simple matter of fitting parameters
in our models until you find a set of parameters that give you exactly the
observed, perfect power spectrum. However, the fact is that no matter how
well we measure, the end result will always have an associated error. Errors
which are impossible to overcome.

These errors in the data are called cosmic variance, and arise from the
fact that we only observe one realisation of the whole universe. That is, if we
believe the observable universe to be a part of a stochastic process, and we
do, then what we see is of course just the outcome of one of these possible
random processes. We get a random value for the observables, and can’t say
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for certain how “true” that value is. An analogy could be to throw dice.
From just one result you can’t say anything about the statistical outcome
of many throws. This cosmic variance is most significant at large scales, i.e.
when we measure temperature correlation between points separated by large
distances. The cosmic variance is (see the appendix 8.1):

2

and we clearly see that for the low multipoles, e.g. £ < 10, the variance is of
the same order of magnitude as the measured C,. It is therefore more difficult
to say whether a measured C; for low / is contradicting the model, or if it
is just due to the cosmic variance. On the other hand, for C;’s measured at
high ¢ the variance is much smaller, and a measured value does not have to
deviate much from a model value before we can conclude that something is
wrong with the model.

6.2 Simulation of data

We wish to examine the possibility of discriminating between different classes
of classes of inflationary models (see chapter 3) based on CMB data. Cur-
rently this is not possible, as the errorbars on the cosmological parameters
of interest, ny and r, are too large [41]. Therefore we will use simulated
datasets since they allow us to effectively control the level of noise in the
power spectra. Concequently we choose to have noise-free data, not very
realistic, but easier to both generate, and work with. We use the software
package CAMB [81] to generate the power spectra for the models we wish to
investigate. CAMB enables us to produce power spectra for a given cosmolog-
ical model within a minute using a reasonable fast workstation. The input
to CAMB is values for the parameters used in the cosmological model, and in
table (6.1) we list the input parameters used in our simulations.

From the input data CAMB produces the power spectra (CIT, CTE CFF
and, if desired, CPP), using a parameterization of the curvature perturbation
spectrum (equation 2.68) and gravitational wave spectrum (equation 2.90):

L (ns—l—}—‘é—sln(ﬁ))
Pr(k) = Pamp (k_> (6.2)
ENT
Pyk) = RProm, (1?) (6.3)

(6.4)
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Parameter | Value | Min (MCMC analysis) | Max (MCMC analysis)
Oyh? 0.022 0.005 0.1
Qg b 0.12 0.01 0.99
Qa 0.7102
Q,, 0.2898
T 0.092 0.01 0.8
Zre 12
Age (Gyr) | 13.59
Hy 70
log[100 A,] 27 1.0
N 0.96 0.5 1.5
nr —0.04 —0.1 0.1
r 0.248 0 2
Ao 0 —0.1 0.1

Table 6.1: Input parameters used in CAMB when simulating CMB power spec-
tra. The power spectra are calculated to ¢ = 2500.

where R = 7;7;((:)) and Pamp 1s the amplitude of the scalar power spectrum.
The other symbols are k, which is a pivot scale taken to be k, = 0.05 Mpc™'.
Furthermore, n; is the scalar spectral index (equation 2.96), a is the running
of ns (equation 2.100), and nr is the tensor spectral index (equation 2.97).
As a special case we consider power-law inflation, and therefore substitute
the above expressions, (6.2) and (6.3), with the exact expressions found in

section (2.5.3):

for the curvature perturbation spectrum and

—-

P (k) =/ =P3 (k) (6.6)

giving the gravitational wave spectrum. In equation (6.5) we have used
that H = %, a = t* and k, = a,H,. The power-law model can, given the
right choice of p, produce power spectra similar to those observed with the
WMAP satellite. This does not mean that the power-law model is a good
model for our Universe, other observations and properties can rule it out;

most importantly the fact that power-law inflation never ends.
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The power spectra produced by CAMB does not take into account cos-
mic variance, and we therefore use a seperate program to introduce a y?*-
distribution to the computed C,’s (see Appendix 8.1). In figure (6.1) one
can see a set of power spectra (total Cy) from different cosmological models,
created using CAMB, whereas in figure (6.2) we see one of the model’s power
spectrum both with and without cosmic variance included. As already men-
tioned in section (6.1), the cosmic variance is clearly largest at low values of

L.

Standard model
Omega_Lambda = 0.5

Omega_Lambda = 1
Omega_b =02
Omega_CDM = 0.96
H_0=90

H_0=50

_— A
e — A \
.‘\\-\\
0.0 L L L A
10 100 1000

Figure 6.1: A log-linear plot of various power spectra created using CAMB.
The z-axis is £, and the y-axis shows the temperature fluctuations 67" in K.
See table (6.2) for input parameters.

COSMOMC [82], the software program we for analysis of the simulated data,
has built in support for a full-sky power spectrum format, all_1_exact [83],
and we utilize this function in our work. In CAMB we therefore set the parame-
ters scalar_amp(1) = 2.3e—9 and CMB_outputscale = 7.4311e12 as suggested
by [83]. This give the value of each C; in p K. Furthermore, the all_1_exact
data format supported in COSMOMC should allow for the inclusion of CB? data
as well, but it has proved impossible to get this to work despite much cor-
respondance with Antony Lewis, one of the creators of COSMOC [84, 83]. In
this respect, it should be noted that A. Lewis has not tried to use data con-
taining B-mode polarisation himself [84], and our findings should be taken
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Parameter | Standard model Qr = 0.5 model | QA =1 moaer | 25 = 0.2 moda
Oh? 0.022 0.023 9.8¢ — 3 0.098
Qcpavh? 0.12 0.22 0 0.049

Qa 0.71 0.5 0.98 0.7

Hy 70 70 70 70
Parameter | Qcpar = 0.96 moder | Hy = 90 moder | Hyg = 50 model

O h? 0.023 0.022 0.022

Qcpah? 0.467 0.12 0.12

Qa 0 0.71 0.71

Hy 70 90 50

Table 6.2: Parameters used when calculating the power spectra in figure
6.1. Only parameters which are different among the models are listed, the

remaining input parameters are the same as in table 6.1

as an indication to check the software for any possible bugs®.

0.0

10 100

1000

Figure 6.2: A cosmological model calculated using CAMB, shown with and

without cosmic variance included. log-linear plot, ¢ along the z-axis, the

temperature fluctuations 7 in K along the y-axis.

'We have already discovered one bug other than the possible bug mentioned here, but
the former has been corrected [84].
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In figure (6.3) we see some of the present observations of the power spec-
trum and readily see that the error bars for these experiments far exceed
the cosmic variance. Future observations will probably have noise-error bars
smaller than the cosmic variance limit, at least for ¢ < 400.

Angular scale in degrees
20562 1 05 0.2 0.1

* BOOMO2
80 |- a VSA " ACBAR |

40:— :F b2

20 -

Temperature fluctuation 6T [uK]

[ Compiled by M Tegmark 2/23/2004 b
ol | I BN RRET FRTRTTm Lo Lo Lo L [ [Im [Im
2 10 40 100200 400 600 800 1000 1200 1400 1600

Multipole 1

Figure 6.3: The measured temperature power spectrum from various CMB
experiments. Figure taken from [56].

In the following analysis we will explore the possibility of model exclusion,
meaning, given good enough data, can we say that the observed data must
be from a specific model or model class?

6.3 A Markov Chain Monte-Carlo exploration
of cosmological parameter space

The MonteCarloMarkovChain (MCMC) method is used as a way to simu-
late posterior distributions [85]. In our work we use the computer package
COSMOMC [86, 82], which apply MCMC to simulate observations from the pos-
terior distribution 73(9|C~'g). Here 6 is a set of cosmological parameters, and
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the event Cy is the observed power spectrum (chapter 4.1.2). The simulated
observations are obtained from Bayes theorem:

P(C,|0)P(6)

P(#IC:) = [P(Cil0)P(0)do

(6.7)

In the expression above, the quantity P(CN'AH) represents the likelihood of
event Cy, given the parameters . Furthermore, P(8) is the prior probability
distribution.

In COSMOC, the Metropolis-Hastings* (MH) algorithm [86] is used to gen-
erate samples from the posterior distribution. The generated samples will
represent a “fair” sample of the likelihood surface [85], and from this sam-
ple it is possible to estimate all quantities of interest about the posterior
distribution (mean, variance, confidence levels).

The MarkovChain (MC) will move from one position 6, i.e. one specific
set of parameters, to a new point 5, with a transition probability 7'(6;, 65)
[86]. The transition probability, also called the transition kernel, is designed
so that the MC after some time will approach a stationary asymptotic dis-
tribution P(8)*, where P(8) is the distribution we want to sample from. In
loose terms one can say that P(6) is the parameter distribution which give
sensible parameters, or a parameter distribution that fits the observed data
well.

There is a fundamental problem with the MCMC method in that not all
areas of the target distribution will be covered by a finite chain, i.e. not all
parameter combinations will be tested. It is therefore crucial to have good
mixing (see section 6.5.1). One will not get correct results if one try to use
a chain which has not fully explored the likelihood surface [85].

The way to ensure that the chain will approach P (), is to use a proposal
density distribution ¢(8,,, 6,,41) such that the proposed new point 6,4, given
the current position 4, is accepted with probability:

. 77(9n+1)q(9n+1, 9n)}
a(6,,0,11) =min< 1, 6.8
( +1) { ,P(en)q(am 9n+1) ( )
The transition kernel is then written as
T(9n79n+1) = a(9n79n+1)Q(9n79n+1) (69)

20ther methods can also be used, but we do not consider them here. For more infor-
mation see e.g. [87, 88]

3By after some time, we mean the burn-in time of a chain. After burn-in all further
samples can be thought of as coming from the stationary distribution(6) [85]
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and this ensures that the detailed balance holds [86]:
P(0,41)T(0141,0,) = P(60,)T(0,,,6,41) (6.10)

and P(0) is the equilibrium distribution of the chain [86].

It is obvious from the above, that the choice of proposal density is im-
portant. The specific choice of proposal density affects the performance of
the Metropolis Hastings algorithm [86]. Therefore it is best to have a pro-
posal density which is of similar shape to the posterior. If this is the case,
then large changes are proposed to parameters along the degeneracy direc-
tions [86]. If we furthermore only change a subset of the parameters for each
step, we will have a faster piecewise movement around parameter space [86].
The parameter set # can be divided in the so-called fast and slow param-
eters. The theoretical C; power spectra are computed using CAMB [89, 90],
and parameters governing the perturbation evolution, such as €, and €.,
are computationally intensive to change, and belong to the slow parameters.
The fast parameters are those that govern the initial power spectra of the
scalar and tensor perturbations, i.e. ng, ny, A, etc. It is quickly done to vary
these, once the transfer function for each wavenumber has been computed
[86].

It is also clear that the choice of base parameters # is important. We want
to use a set of parameters where the parameters have essentially orthogonal
effects on the angular power spectrum. If such a parameter set is found, it
will reduce the degeneracies in the MCMC and also speed up convergence
and improve mixing [85]. We choose our base parameters to be the baryon
density QA% cold dark matter density Q.h?%, optical depth 7, scalar spectral
index ng, tensor spectral index ny, running of the scalar spectral index ddl?fk
and the tensor/scalar ratio r. Furthermore the power spectrum amplitude
parameter In A, is used. Because the small scale amplitude of (', is deter-
mined by A,e™?", the power spectrum amplitude is very well constrained in
linear combination with the optical depth 7 [91]. We do not use the Hub-
ble parameter Hy as a base parameter, but instead derive it from the base
parameter #,.. The parameter 6, is defined as the approximate ratio of the
sound horizon at last scattering to the angular diameter distance at last scat-
tering [85, 91], and 0, is very well constrained by the position of the acoustic
peaks [91].

The choice of base parameters has an effect on the prior; different choices
of base parameters can lead to changes to the posterior constraints [86]. We
have however not investigated how a possible change in base parameters
would affect our results in this thesis.

We now sum up how the MCMC method is implemented in COSMOMC:
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1. Assume a cosmological model to be tested. We assume a flat, adia-
batic ACDM model where neutrinoes are massless, and general rela-
tivity holds. From the simulated data we wish to constrain the base
parameters mentioned above.

2. COSMOMC will start a random walk in parameter space: from the base
parameter set 6 choose initial parameters 6;, then compute, using
CAMB, the power spectra C’thheory and calculate the corresponding like-
lihood £; = E(C;theor”ég) (see appendix (8.3)), where Cy are the

observed/simulated power spectra.

3. The MCMC method takes a random step and find a new set of param-
eters, 6.

4. From #,, the power spectra C;theory and likelihood L5 1s computed.

5. According to expression (6.8), the new point is either accepted or re-
jected.

6. If point is accepted, it is added to the chain and step 2 is started over
with 8, — 6,. If the new point is rejected, step 2 is repeated, but the
parameter set #; is saved as part of the chain.

Step 3-6 is repeated as long as necessary, i.e. until the chain has enough
samples to provide reasonable samples from the posterior distributions [85].

6.3.1 Analysis pipeline

In this section we describe the analysis pipeline we ideally would use for
analyses of the simulated CMB data. The pipeline has some similarities with
a pipeline suggested in [92], though the latter is aimed at testing slow-roll
inflation in particular.

The first step in our pipeline is to analyse the CMB data with respect to
a scale-invariant power spectrum, i.e. ng = 1, np = r = a; = 0, and only
the background cosmological parameters are allowed to vary. The next step
is to check the data using a scale-variant model, but no tensors or running
of the scalar spectral index. After the second step, one should compare the
results from the two steps to see if the parameter estimates have changed, and
what the likelihood values for the two analyses are. Based on a information
criterion (see section 6.5.3), one must decide whether the data requires the
introduction of a new parameter or not. If no, the data is consistent with
the simplest model, and there is not much more to do. If the data supports
the introduction of the new parameter, one goes to step 3 and let ny and
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r also be free parameters. If the data also supports these parameters, that
is the information criterion says the new model is a better fit to the data
than the old, one can go one step further and include a running of the scalar
spectral index, then a running of the tensor spectral index, and so on. At
some point, the information criterion used will say that no more parameters
are needed to accurately describe the data, and a set of best fit parameters
has been found. The required number of steps in this pipeline depends on
the quality of the CMB data.

To accuratley describe the WMAP data, no more than 7 base parameters
are needed [80], i.e. only two steps in our pipeline are needed to deter-
mine the best-fit parameters for the WMAP data. However, as the CMB
measurements improve, it is expected that this rather simple model will be
insufficient, and more steps in the pipeline are needed. This will of course
increase the amount of time and CPU capacity needed.

6.4 Results

Following the procedure outlined in section (6.2), we have generated power
spectra for a power-law model with power index p = 50, and for a model
using the standard CAMB equations. For the latter we set ny = 0.96, ny =
—0.04 and r = 0.248, which should correspond to the power-law model with
p = 50. The two models are then run through the MCMC analysis software
as described in section 6.3. For comparison with current observations, we
have also included an analysis using the first year WMAP data, and an
analysis using the first year WMAP data combined with observational data
from ACBAR, CBI and VSA. The last two analyses have been performed
with no tensors or running of the scalar spectral index in mine, i.e. we set
np=r= ddl?lsk = 0.

Initially we wanted to include B-mode polarisation data in our MCMC
analysis, and a lot of time and effort went into making that work. After

numerous attempts, we had to resign, and conclude that this is currently not
possible (see section 6.5). This was a great disappointment and setback, as
measurements of B-mode polarisation is the best way to constrain tensor re-
lated parameters, such as ny and r. The inability to use B-mode polarisation
can possibly make it impossible to constrain r enough to exclude inflation-
ary parameters based on the ny — r plane, which is one of the objects of this
thesis.

In each MCMC analysis we have let the cosmological parameters vary
according to table (6.1), but for the analyses where we have not considered

tensors an option, we have fixed ny = r = ddlzsk = 0. The simulated model
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Figure 6.4: Parameter estimates and constraints obtained from the analysis
of the first year WMAP data. Tensors and running are not considered, i.e.
nT:O,ﬁT}:Oandr:O

computed using standard CAMB expressions for the power spectra has only
been analysed with respect to ns. We had hoped to analyse this model with
respect to ny and r also, but due to time and computational power being
limited, this has not been done. Parameter constraints from the analysis of
this model are presented in table (6.5) and figures (6.12, 6.8, 6.9). For the
WMAP data analysis, and the combined WMAP, ACBAR, CBI and VSA
analysis, the results are summarized in table (6.3) (WMAP only data) and
table (6.4) (combined analysis), and also in figure (6.4, 6.5) and figure (6.6,
6.7).

We have also conducted an limited analysis where we have used TT, T'K
and FF data from a simulated power-law model (p = 50), to constrain nr,
r and ;l{LTSk in addition to the other cosmological parameters. By limited, we
here mean that the MCMC has only generated a short chain (18361 steps),

which is not ideal (see chapter 4 and ref. [85]).

The results obtained from this last analysis are presented in table (6.6)
and figures (6.10, 6.11, 6.13, 6.14,6.15, 6.16).

Due to the problems with COSMOMC, and limited amount of CPU power

and time available, we have not been able to complete the full data analysis
we had planned (see section 6.3.1 and 6.5). However, it is still useful to
compare the parameter constraints obtained from an ideal experiment to



90

Excluding models

logl10'° A ]

© oW oo
w N b o @

01 02 03 04
T

Figure 6.5: Two dimensional plot of parameter constraints from the analysis

of the first year WMAP data. Tensors and running are not considered, i.e.
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Figure 6.6: Parameter estimates and constraints obtained from the combined
analysis of WMAP, ACBAR, CIB and VSA data. Tensors and running are
not considered, i.e. ny = 0, ddl?lsk =

Oand r =10
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Figure 6.7: Two dimensional parameter constraints from the combined anal-

ysis of WMAP, ACBAR, CIB and VSA data. Tensors and running are not

considered, i.e. ny =0

dng
 dink

=0and r=0

WMAP data only

parameter | best-fit point | 68 % CL 95 % CL

Oy h? 0.0240 0.02043 < QA% < 0.0293 0.0203 < Q,h% < 0.0312
Qeam h? 0.1114 0.0824 < Q.4 h? < 0.1560 0.0724 < Q.4 h* < 0.1600
Qa 0.7575 0.5530 < 2, < 0.8567 0.5548 < 2, < 0.8818

Qo 0.2425 0.1433 < Q,, < 0.4472 0.1182 < Q,, < 0.4452

T 0.1212 0.0103 < 7 < 0.3890 0.0100 < 7 < 0.4308

Zre 13.477 2515 < zpe < 27.513 2.388 < zpe < 27.852

Age (Gyr) | 13.368 12.421 < Age < 14.102 12.09 < Age < 14.147

Hy 74.726 62.194 < Hy < 89.200 62.4176 < Hy < 94.906
log[10'9 A,] | 3.130 2.845 < log[10' A,] < 3.771 | 2.772 < log[10'° A,] < 3.823
N 1.0005 0.9146 < ny < 1.1542 0.9230 < ns < 1.2056
—InL 714.078

Table 6.3: WMAP data analysis - parameter constraints
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Figure 6.8: Parameter constraints from an analysis of simulated, noise-free
data. Only temperature, F-mode polarisation and the T E-cross-correlation

data are used. Tensors and running are not considered, i.e. np = 0, d':llzsk =0
and r =0
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Figure 6.10: Parameter constraints from the limited analysis of simulated
data, allowing tensors and running of the scalar spectral index in the param-
eter estimation.
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Figure 6.11: Two dimensional parameter constraints from the limited anal-
ysis of simulated data, allowing tensors and running of the scalar spectral
index in the parameter estimation.
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Figure 6.12: The scalar spectral index, estimated from simulated, noise-free
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Figure 6.13: The scalar spectral index, estimated from a limited analysis of
simulated, noise-free data. Tensor inflationary parameters, i.e. ny and r,
and running of the spectral index, are free parameters.
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the running of the spectral index, found in

WMAP, ACBAR, CBI and VSA combined analysis

parameter | best-fit point | 68 % CL 95% CL

Oyh? 0.02261 0.02005 < QA% < 0.02654 | 0.01942 < Qh? < 0.02814
Qeam h? 0.1041 0.0811 < Q.gmh? < 0.134 | 0.0772 < Qg h* < 0.1425
O 0.77099 0.62868 < 0, < 0.85225 0.5728 < Q, < 0.87719
Q. 0.2290 0.147747 < Q,, < 0.37132 | 0.12281 < Q,,, < 0.4272

T 0.0865 0.010067 < 7 < 0.3243 0.01003 < 7 < 0.4195

Zre 10.883 24770 < zpe < 24.535 2461 <z < 27.257

Age (Gyr) | 13.6395 12.9233 < Age < 14.1785 | 12.628 < Age < 14.3193
Hy 74.3744 64.494 < Hy < 86.388 62.081 < Hy < 93.243
log[10'° A4 | 3.00 2.80 < log[10' A,] < 3.50 | 2.77 < log[10' A] < 3.70
N 0.95872 0.90602 < ng < 1.0654 0.896 < ng < 1.1258
—InL 725.9968

Table 6.4: WMAP, ACBAR, CBI and VSA data combined analysis - param-

eter constraints
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Simulated data, tensors are not considered

parameter | best-fit point | 68 % CL 95% CL

Qyh? 0.0220 0.02193 < QA% < 0.02212 0.0219 < QA% < 0.0221

Qg b 0.1196 0.11819 < Q.4mh? < 0.12101 | 0.11779 < Qe h? < 0.12149
Qa 0.7119 0.70460 < Q5 < 0.71942 0.70199 < Q, < 0.7216

Qo 0.2881 0.28058 < Q,, < 0.29540 0.2784 < Q,, < 0.2980

T 0.0923 0.08752 < 7 < 0.098004 0.085897 < 7 < 0.0997

Zre 12.0135 11577 < zpe < 12.521 11.4245 < 2z < 12.6570
Age (Gyr) | 13.589 13.574 < Age < 13.604 13.5705 < Age < 13.6085
Hy 70.119 69.562 < Hy < 70.701 69.379 < Hy < 70.877
log[10'9 A,] | 3.0265 3.017 < log[10' A,] < 3.038 | 3.013 < log[10'° A,] < 3.041
N 0.9617 0.95750 < n, < 0.96577 0.9562 < ng, < 0.96697
—InL 1029.68

Table 6.5: CMB data analysis, no tensors - parameter constraints

the constraints from current experiments, to learn what improvements one
can expect in the future. It is natural to compare the results obtained for
the background evolution parameters, as these are free parameters in all
the analyses. From table (6.3), (6.4), (6.5) and (6.6) we see that the ideal,
noise-free data represents a much better way of constraining the cosmological
parameters. For all parameters the reduction in error bars, compared to the
current estimates, are dramatic, and we see that some parameters can be
expected to be determined within 1% of the real values. But still, there are

dns .
T have still

some that cannot be as well defined, specifically ny, r and
rather large error bars.

We see that including ACBAR, CBI and VSA data in addition to the
WMAP data, does not improve the parameter constraints much, but some
parameter estimates are shifted. Perhaps the most noticable is ng, with a
best fit value of 1.00047 in the WMAP only analysis, and best fit value of
0.95872 in the combined analysis. Also the redshift at reionization, z., and
the reionization optical depth 7, are different in the two analyses. The official
WMAP parameter estimates give 7 = 0.17 [41], and such a high value is by
many considered to be a problem. We see that the combined analysis brings
the estimate on 7 down, but still the error bars are large for this parameter.

As we can see from table (6.5) and table (6.6), there is no real improve-

ment in the parameter estimates when including np, r and ddfTsk as free pa-

rameters in the analysis. This could of course be due to the limited analysis
of the simulated data when we included the above parameters. The short

chain has not have time to explore the full parameter space, and thus the
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‘ Simulated data, inflationary tensor parameters included in analysis
parameter | best-fit point | 68 % CL 95% CL
O h? 0.0220 0.0219 < QA% < 0.0221 0.02189 < Qyh? < 0.0221
Qeam h? 0.1200 0.1185 < Q.4mh? < 0.1215 0.1182 < Q.4mh? < 0.1217
Qa 0.7102 0.7023 < Qp < 0.7177 0.7013 < Qx < 0.7192
Q.. 0.2898 0.2823 < Q,, < 0.2977 0.2808 < 2, < 0.2987
T 0.0944 0.08711 < 7 < 0.1040 0.0857 < 7 < 0.1057
Zre 12.2155 11.5545 < z. < 13.057 11.433 < z. < 13.2095
Age (Gyr) | 13.5915 13.581 < Age < 13.604 13.5775 < Age < 13.6078
Hy 69.9945 69.423 < Hy < 70.562 69.3207 < Hy < 70.6683
log[10'9 A,] | 3.140 3.125 < log[10' A,] < 3.160 | 3.124 < log[10'° A,] < 3.164
N, 0.96105 0.95604 < n, < 0.96606 0.95457 < n, < 0.96657
nr 0.01234 0.00612 < nyp < 0.03184 0.00612 < ny < 0.03184
r 1.0676 0.9787 < r < 1.1700 0.96691 < r < 1.1717
ddlzs —0.0019 —0.0072 < ddlzsk < 0.0060 —0.0088 < ddﬁfk < 0.0077
—InL 1262.146

Table 6.6: CMB data analysis, inflationary tensor parameters and running
of the scalar spectral index are free parameters - parameter constraints

statistics are not as good as they should be.

6.5 Discussion

In our work we have shown that for a noise-free CMB experiment, the cos-
mological parameter set (Qth, Qeamh?, Qa, Hy, age of the Universe, n, and
log[10'° A,]) can be estimated to within 2% of the real values. The harder
to constrain parameters 7 and z., should be possible to constrain within
10 %. Although we have been able to costrain and estimate the inflationary
parameters ny, r and oy, the estimates are wrong for ny and r, compared to
the input values. Thus we must conclude that if we are only able to use tem-
perature, F-mode polarisation, and the cross-correlation between the two, it
is at the moment impossible to exclude any class of inflaton potentials, based
on the estimates of n; and r. Of course, this is only true if our analysis have
been conducted correctly. We have had numerous problems with the MCMC
method, and a thorough second analysis should have been conducted, but
this has not been possible due to time limitations.
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6.5.1 The MCMC method and problems faced

When the MCMC method works, it is a great tool or analysing the CMB data,
but as the complexity of the cosmological models we wish to test increase
and the precision of the observational data improves, the MCMC method
requires a large amount of computational power. In the near future it will
also be a need to test cosmological models with B-mode polarisation, but as
of right now, COSMOC does not work with this type of data. This is of course
a great hinderance when it comes to future observational data. We discuss
these issues below.

We apply a Markov Chain Monte-Carlo method because we wish to de-
termine the cosmological parameters behind a given spectrum. It is therefore
essential that the method itself is effective in exploring the whole parameter
space we wish to examine. As explained in greater detail in section (6.3) the
parameter space is explored by first starting at a random point in this space,
computing the spectrum (the C,’s) and the corresponding likelihood £'. We
then take a random step in parameter space and calculate the new likelihood
value, £2. Based on certain criteria we decide if the new parameter set should
be accepted or rejected. If accepted, we save the new parameter set as part
of the chain and take a new random step. It is clear that for this method to
be effective it must not get stuck at one point in parameter space, i.e. taking
the step means a fair chance of finding a “better” point in parameter space
(that is a higher likelihood than for the point we are comparing with). For
WMAP like data the errors in observations are relatively large and finding a
step size that yields a good exploration of parameter space and high accep-
tance factor (see section 6.3) is quite easy. For our simulated data however
we are faced with a quite paradoxical problem; the low errors (only cosmic
variance) actually make it very hard to get an effective MCMC exploration
of parameter space. To understand this we examine the asymptotic distribu-
tion Py, which is the region in parameter space we wish to sample from, and
for data with cosmic variance as the only error, this is a very small region in
parameter space. This means that if the chosen step size is too large, there
is very little chance at actually ending up in Py, or alternatively, if you are
at a 20 point in parameter space it is hard to get to a better point (say
within the 1o bound), if your step size is much larger than 1o, as any step
you take will bring you far away from Py. You get stuck at the relatively
poor fit 20 point. To remedy this, we have to first guesstimate the expected
lo level/error and set the step size to be at least as low as this, preferably
somewhat lower. However this raises another problem. Since we do not know
the true parameter set (of course we do since we are using simulated data, so
we pretend not to know), we can only guess at where in parameter space to
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start. If we are unlucky, and since Py is so small, in most cases we will be, we
would start at a point “far” from Py, and with the small step size it would
take a very long time, i.e. many steps, to find/approach good parameter
values.

We see from the above that data with such a high degree of precision
require enormous amounts of computing power and time. With the WMAP
data you could get good results in a couple of hours on a multi-processor
machine [82], but it will take a minimum of days on the same machine to get
acceptable results for the high precision simulated data.

The above discussion relates to a problem of a practical nature. Time
and computational effort are needed to get an effective MCMC exploration
of parameter space and thus good parameter estimates, when using high ac-
curacy data. However, in the following we will discuss two issues concerning
COSMOMC directly, and not the MCMC method in itself. First is that every
attempt to include B-mode polarisation in our data has failed. We get like-
lihood values of 10%°, and COSMOMC will quit after a short time. The high
likelihood values could indicate that there is something wrong with our data,
and that it is the additional calculation of the C'2B likelihood which is caus-
ing the problem. However, we have checked, and the problem arises before
the CPB likelihood is even calculated. Using our own likelihood routine, and
removing the calculation of CP® does not help either. There seems as though
something is wrong in the way the COSMOMC code handles the calculation and
subsequent inclusion of B-mode polarisation in the MCMC analysis.

The second issue we would like to mention, is that the option in COSMOMC
to calculate the covariance matrix, is not working satisfactoryly with low-
noise data. We have not tested this option exhaustively, and further tests
should be conducted, but we have noticed that there seems to be some con-
nection between how successful this option is, and the type of machine it is
ran on. The covariance matrix is related to the C;’s [64], and the problems
with the C'PB data and the covariance matrix could therefore be connected.

6.5.2 What can be improved?

It is natural to ask what could be improved and changed, compared to our
work. An approach could be to investigate the different MCMC routines
available in COSMOMC, to see if that could help on some of the issues discussed
above. Another approach, which should be performed (we would have done
it if there had been time), is to run through the analysis pipeline without
using B-mode polarisation data, but still noise-free data, and making sure
the MCMC method is effective at each step in the pipeline. Analyses of
simulated data without B-mode polarisation have been conducted, see e.g.



101

[91], but in most cases the simulated data also include some simulated noise
in addition to the cosmic variance. Of course, if one knows the expected
error bars from future experiments, such analyses would give a more realistic
picture of what can be expected from future observations. That has not
been our aim in this thesis. We have aimed at seeing if it is at all possible
to exclude whole classes of inflaton potentials from perfect CMB data alone.
Unfortunately, it has not been possible to reach a firm conclusion on this.

We have seen that the WMAP satellite gives good estimates of the cos-
mological parameters, but it is nonetheless clear that the Planck satellite will
provide another leap forward in terms of precision cosmology. And of special
interest will be accurate measurements of the polarisation spectra, which are
needed of the methods discussed in this thesis are to be successful.

6.5.3 The Bayesian information criterion

The following discussion is not directly connected to the results we have ob-
tained, but if we had been able to follow the analysis pipeline described in
section (6.3.1), the issues we discuss would have had relevance. As seen in
section (6.4), we are able to put quite tight constraints on the cosmologi-
cal parameters, especially the background evolution parameters and n,. If
the analysis pipeline had been completed, we would have ended up with a
set of models. For each model, or parameter set, the likelihood value is a
measurement of how good the parameter fit is.

To illustrate the use of the information criterion, we now assume we
had been able to complete four steps of the analysis pipeline for a power
spectrum with data up to £ = 2500, and have ended up with four parameter
sets, each having a likelihood value £. The first step gave a parameter set
with likelihood —21In £; = 1205, the second step yielded likelihood —21n £, =
1182, the third and fourth step both gave likelihood —21n £34 = 1179. Based
on the likelihood values alone, one would conclude that the third and fourth
step gave an equally good, and the best, fit to the observed data, since
these sets have the highest likelihood £ (lowest —2In £). However, in this
case, this conclusion is wrong. One cannot only compare likelihood values
among different models, since the number of free parameters are different. In
most any case, more free parameters would provide a better fit to the data.
Therefore we should take into account some sort of information criterion
when we assess the results obtained. We apply the Bayesian information
criterion (BIC) [80]:

BIC=-2InL+4+kIn N

where N is the nimber of datapoints used in the fit (in our case N = 2500).
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The number of parameters used in the fit is represented by k. The best
model, or more precisely, the model which gives the most information from
the input data, with the least amount of free parameters, has the lowest
BIC [80]. Adding more parameters will normally give a lower likelihood,
but the BIC will punish the extra parameters. With a large number of
datapoints, more parameters are penalized quite a lot, i.e. we need a real
improvement in likelihood to justify the introduction of extra parameters.
For our toy model results above, we need an improvement in likelihood of
approximately In 2500 ~ 7.8 to justify one additional parameter in a fit.
Furthermore a difference of 6 or more in BIC is considered to be strong
evidence against the model with the larger value [80]. Looking then at our toy
example, we see that the parameter set from the first step in the pipeline has
BIC; = 12054+ 7+ 7.8 ~ 1259.6, the second had BIC,; = 1244.4, the third has
BIC;3; = 1250.2, while the fourth and last parameter step has BIC, = 1257.5.
Thus we see that the second step in the pipeline in this example gave the best
model for the observed data, and that the introduction of new parameters
could not reveal any new information. We point out that the BIC cannot be
used to tell about how models from different datasets compare to each other.
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Summary and final discussions

In this thesis we have looked at the possibility of reconstructing the inflaton
potential from observations of the cosmic microwave background. The Monte
Carlo reconstruction method has been considered in detail, and is found to be
effective in its ability to construct inflaton potentials, but since the method
produces so many possible potentials, it is hard to conclude anything about
the real inflaton potential, if it exists. There is a need for future high accuracy
measurements of the CMB, and we can hope that the Planck satellite will
yield such tight parameter constraints that the Monte Carlo reconstruction
method can be an effective tool in the search for the inflaton potential.

Awaiting the launch of the Planck satellite, we have simulated noise-free
CMB data to see what parameter constraints one can expect in the future,
and if these constraints are tight enough to either allow exclusion of whole
classes of inflaton potentials, or a successful reconstructiong of the inflaton
potential, or possibly a combination of both. We find that the software
commonly used in CMB analysis, COSMOC, is unable to tackle high precision
B-mode polarisation data. This inability to use B-mode polarisation data
is not of concequence for current observational data, but must be addressed
since the launch of Planck should provide measurements of B-mode polar-
isation, if such exists [54]. Therefore there is a need to closer investigate
the software, and possibly devise other methods of parameter estimation.
Our experience with the MCMC method also indicates that, although it is
possible to get fairly tight constraints on the inflationary parameters ny and
r from measurements of temperature anisotropies and K-mode polarisation
alone, the parameter estimates are in many cases wrong. This makes us
certain that future experiments must be sensitive to possible B-mode polar-
isation, and the tools we use must be refined, if we are to come closer to the
true origin of the inflaton potential.

The Monte Carlo reconstruction of the inflaton potential depends on
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thight constrains of the parameters ns and r to be successful, and this also
requires measurements of B-mode polarisation. If such measurements can
be achieved, estimates for the amplitude Ar of the tensor perturbations are
also found, and thus the perturbative reconstruction framework could be a
good alternative to the Monte Carlo reconstruction. The two methods could
also serve as cross-checks of each other.

We are the first to admit that the results from our MCMC analysis in
chapter 6 are imperfect and insufficient. Therefore we would like to point
out that those analyses are not the only ones done, but they are the only
ones leading to somewhat sensible results. All other attempts have produced
what we consider useless chains, i.e. the chains are to short to provide good
statistics since the full parameter space has not been explored. As we have
stated earlier, a lot of time and effort has gone into making the analysis of B-
mode polarisation data work. At first we simulated data and scaled that data
to be compatible with the WMAP data [50], and based on our simulations,
we wrote our own likelihood code. However, we could not get the B-mode
polarisation data to work, and assumed that there was something wrong with
either our data or the likelihood code, or possibly both. We now see that
our problems were caused by the way COSMOC handles B-mode polarisation
data. If this had been realized at an earlier time, more work could have been
directed at finding the bug(s) in COSMOMC, or more thorough analyses of data
not containing B-mode polarisation.

In retrospect it is easy to see that there are numerous aspects of this thesis
which could have been done differently. We should have realized sooner that
our many attempts to make the B-mode polarisation data work with COSMOC
failed due to bugs in COSMOMC, and not because of faults in our data. We could
also hae realized earlier the amount of computing power and time needed to
analyse noise-free, all-sky data. But still, in themself, these are interesting
findings, and should be considered in future work.

As a conclusion we would like to say that these are truly exciting times for
cosmologists, and much research is done to understand the Universe we live
in. Several papers investigate the nature of the inflaton potential [75, 24, 69,
73, 93], and several approaches are considered. However, they all conclude
that tighter constraints on the inflationary parameters ns, ny, r, A; and Ar
are needed. In that respect, there is also much research going into parameter
estimation from the cosmic microwave background [92, 94, 64, 95]. As the
observations of the CMB radiation improves, there is a wealth of subtle non-
linear physical effects one must take into account, e.g. lensing of the CMB.
Lensing will induce non-Gaussianities in the lensed CMB sky, and also change
the power spectra of the perturbations [91]. We once again point out that
the future high precision measurements of the cosmic microwave background
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require a continous research into parameter estimation methodology and a
better understanding of the physical background of the inflation epoch, if we
are to take advantage of this new information.
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Chapter 8

Appendix

8.1 Cosmic variance and the y?-distribution

When simulating data the key ingredient is the dataset’s probability distribu-
tion. As we observe the CMB radiation and the power spectrum C;, we only
see a single realization of the power spectrum. From statistics it is known
that a finite sampling of events generated from a random process, will lead to
a uncertainty in variance, called sample variance. For the power spectrum,
this sample variance is called cosmic variance.

We simulate data by drawing random values from the probability distri-
butions. This means we must find the probability distribution for C; given a
value of /. Remembering the definition of the power spectrum in chapter 2 we
have the observed temperature fluctuations as a sum of spherical functions
Yim (chapter 4):

L) =3 Y amin(0.6) (8.1)
7 \7 —ézom:_é tm Yo (0, @ .

The fluctuations are thus completely characterized by the complex coeffi-
cients agy,. Since 8T =T — Ty, with T being the mean temperature, we see
that the coefficients have mean (value) 0. The simplest models of inflation
predict the as,s to be gaussian. Given a £ value the variance <| ay, |*>= C,
independent of m. For each ¢ there are 2/ + 1 independent m-values, and
this allows us to define the power spectrum as

? (8.2)

£
1
Cop=—— m
=i 2 L

It is possible to show that the real( R) and imaginary (/) parts of as, also are

gaussian with mean 0 and variance % To find the probability distribution
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of €y we are required to find the distribution of a sum of the squared of
two gaussian distributed quantities. The so-called y2-distribution is what we
need and for a continous stochastic variable z (0 < z < 00) is defined as:

1 .,

f(zin) = W(%)ZQ e 2 (8.3)

where n i1s an integer and is called the degree of freedom for z. T' is the
gamma function defined as:

I'(z) = /000 e~ 'to (8.4)

The most important properties the gamma function has are I'(n) = (n — 1)

for integer n, I'(z + 1) = 2I'(z) and T'(3) = /7. The expected value of z:

z:[fzﬂznmm:n (8.5)

and furthermore the variance is given as:

= /OOO(Z —n)?f(z;n)dz = 2n (8.6)

It can be shown that given NV independent gaussian stochastic variables z;
having mean value y; and variance o; then:

ZZEZ@%#X (8.7)

N
=1 g

is y%-distributed with N degrees of freedom. This can be applied tp the
background radiation. Forming the quantity:

(8.8)

we see that this is a sum of 2(2¢ 4 1) independent and Gaussian distributed

stochastic variables of the form given above (8.7). Therefore z is xy*-distributed
with 2(2¢ 4 1) degrees of freedom, and since z is proportional to Cy, then C

will have the same distribution. The expected value is then given as 2(20+1)

which leads to < €, > %ﬁ < z >= (y as it should be. Furthermore the
variance (square of the standard deviation) of z is 2% 2(2¢ + 1) = 4(2¢ + 1),
and this yields the variance of Cj:

1 G N 207
5@_§Q“J>Q%+U_%+l (8.9)
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Thus for a given value of £ there is a relative error in Cy:

§Ce [ 2
Co V241 (8.10)

. . . . _1 . -
We see that the cosmic variance is proportional to /72, which means it is less

significant on smaller angular scales.

8.2 x’-test for goodness of fit

The chi-square test for goodness of fit tests the hypothesis that the distri-
bution of the population from which nominal data are drawn agrees with a
posited distribution. The test compares observed and expected frequencies,
in our case the observed(simulated) C'#* with the C’;heory which COSMOMC is
suggesting. Mathematically it is:

2
e (Ceta(0) = O (1)

o Z o2, (0)

(8.11)

where o, (£) is the variance of C§**(f). The chi-square test will tell us
whether a proposed model is a good fit to the observed data or not. A
theoretical model proposal that gives a chi-square value of approximately
X2 ~ l,nqz is considered to be a good fit to the observed data. If y? is larger
than this, not even by a factor two the theoretical model is considered a poor
fit and one should come up with a new and improved model.

The y2-test was used in our initial work with COSMOMC and the WMAP
data format.

8.3 Likelihood function

The full-sky Gaussian likelihood function £ used in COSMOMC, is obtained
from the assumed Gaussianity of the temperature ansisotropies 7', and F
and B polarisation (see section 4.1.2). We have

~ 1 1 —1
L(Ce) = P(CilCr) = —===e"7"% " (8.12)
\/27|C|
where
crt cre o
C,=| CIP CcPF 0 (8.13)

0 0 CBB
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and d = [ay,] with components consisting of all combinations of ¢ and m.

This yield

—2InL = d'C'd+1n|C]| (8.14)

¢
1 00
= g Ez g ay, e +1In 110 = OCé%H) (8.15)
£ m=—£

where

£
Z azmagm = (25 + 1)ég

m=—£

Thus we find that

(8.16)

where C is the observed (or simulated) power spectrum, while C; represents
the theoretical calculated power spectrum one wish to test [85, 96].

The above equation (8.16) is for temperature only data. If we also include
polarisation, the total likelihood function will be modified, and expressed as

[82]:

2CTECTE

TTEE NTE?
Oz Cz - Oz

CFTCEE 1 OFEGIT

—2InL = ) (20+1)

£

TTHEE _ ATE?
Hn(cg CFE _ (1 )_2]

~TT2 AEE? NTE?
G e =G

(/BB (/BB
T P [
OZBB (BB

£

+3 (20+1)

£

(8.17)

where the last summation term is only included if we look at B mode polar-
isation.



111

8.4 Derivation of the flow equations

It is possible to derive an expression for %. From equation (2.30) we have

te ¢eH
N = / Hdt = —d¢

t ¢ @
4 ¢

H
U Y
mpy Sy, H' ¢
5 ,
— dN = 2y/m d¢
mpej €
d mpj d
— = — 8.18
v T oY (8.18)

where we have used equations (2.15, 2.12). In the following we let m denote
mpj.

We use equation (8.18) when we in the following derive the derivative of e,
n, o and *Ag. For ;l—]; we find:

de  m de
dN T 27" de
R
47 ) H? | H  H?
= 2¢[n — € (8.19)

Which it is trivial to show is equal to €[o + 2¢]. For j—]@ we have:

dn _ o m_ pdy
N AT

B m2 2 o TH" H"H'
~ \4r) H|H  H?

= g —en (8.20)

and it is trivial to then show j—]‘;:
do
— = —(2n—14
AN an (2n—4¢)
= 2°dg —Hoe —12¢ (8.21)
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Finally we derive =3£:
A\ m m>\ [ (0= 1)(H) H"H*"
N
dN 2\/m Am H?*
(H/)ZEHZ—l d(é+1)H
o 12 ] dpE+D)
2N\ £ [ 17y (e-1) (4+2)
H d
() W ,
2/ 4 H¢ dpt+2)
£ _
dd;\VH [5 5 Lot (¢ — 2)6] A + ' Ay (8.22)
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