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Preface

This master thesis is part of the large scale research that precedes the Planck1 mission.
In short, Planck is a satellite due to be launched by the European Space Agency
(ESA) in 2007. The satellite is designated to image the anisotropies of the Cosmic
Microwave Background (CMB) radiation over the complete sky. Norway, represented
by the University of Oslo (UiO), is participating with both payload development and
research.

Norway’s scientific contribution will mainly be in the following four areas of re-
search: the angular correlation function, non-Gaussianity, cluster science and galactic
foregrounds caused by late stages of stellar evolution.

During the time I have been working on this thesis, the following people have been
attached to the Planck project at the UiO: Professor Per B. Lilje, Torstein O. Sæbø,
Hans Kristian K. Eriksen and Dmitri Novikov. Professor Per B. Lilje is Norway’s
co-investigator of the Planck project, manager of research and payload development
and the Norwegian representative at Planck meetings. Dmitri Novikov held a post-doc
position on the project, and has non-Gaussianity as his field of research. Torstein O.
Sæbø and Hans Kristian K. Eriksen have both completed their MSc.-theses on CMB
research, Torstein O. Sæbø on the angular correlation function and Hans Kristian K.
Eriksen on N-point correlation functions and non-Gaussianity. H.K.K. Eriksen is now
a Ph.D. student.

Purpose and outline of the thesis

The study of correlation functions is essential in understanding how the large scale
structures we see in the sky are grouped. The description of how they are grouped is
related to the physics of the Universe when it was just about 10−34s old.

Today the most common way of presenting CMB results is through the angular
power spectrum. The angular two-point correlation function is the real space equivalent
of the power spectrum and in search of faster methods to determine the power spectrum
from CMB sky maps, I was encouraged to take a closer look at this function to see if
it might hold the key to a faster, and perhaps at the same time more precise, way of
getting the information we want from the CMB.

The purpose of this thesis is twofold: 1) develop analytical expression to take a
closer look on how binning of data, e.g. in purpose of analysis, might effect the result-

1See Section 1.9.5 for more information about the Planck project



ing correlation function, and 2) investigate the statistical properties of the correlation
function with the intention of using it in maximum likelihood analysis.

In short the outline of this thesis is as follows: Chapter 1 gives a general introduction
to the field of cosmology and the cosmic microwave background, while Chapter 2 makes
the reader acquainted with the two main “characters” of this thesis, the power spectrum
and the two-point correlation function. In Chapter 3 I derive analytical expressions for
the two-point correlation function, and in Chapter 4 the results of the investigation
on how discretisation and limited sky coverage affects the correlation function and
the power spectrum, is presented. The results of the examination of the statistical
distributions of the correlation function is found in Chapter 5 along with an introduction
to maximum likelihood analysis and the derivation of two-point two-point covariance
matrices. In Chapter 6 I give a short summary of the work and results in the thesis,
and also point out some problems that might be worth investigate in future work on
the use of the correlation function in CMB analysis through the maximum likelihood
method.
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Chapter 1

The Cosmic Microwave
Background

In this chapter I will give a general description of the basic physical processes involved
in producing the fluctuations of the Cosmic Microwave Background (CMB), and of the
processes that can cause alterations of the pure CMB signal on its way towards us. I
also give a brief description of various foregrounds, inflation, cosmological parameters,
past and present CMB experiments and computational tools used during the work on
this thesis. But first I will start with a brief introduction to cosmology and the history
of CMB research. Most of this chapter is based on reviews and books by Tegmark
(1995), Partridge (1995), Peacock (1999) and Kosowsky (2002).

1.1 Introduction

Cosmology is the branch of astrophysics which studies the Universe as a whole, its
origin, evolution and fate. It is a relatively new science, but has a history that can be
traced back to the ancient Greek philosophers who challenged the myths of creation
and tried to make sense of the vastness around us.

From the humble beginning in the 1920s and until the mid-1960s, cosmology was at
the periphery of the physical sciences and almost completely starved for data. This
stands in sharp contrast to today’s situation, when the field of cosmology has just
entered the era of precision cosmology. Researchers are streaming to the field, as huge
quantities of data containing a wealth of information about the properties and evolution
of the Universe we live in are coming into the hands of the scientific community. At the
centre of this revolution we find the CMB radiation. Today this radiation is manifested
as a 2.73 K thermal background, but its origin is from when the Universe was merely
300.000 years old and had an overall temperature of 3000 K. As a matter of fact, the
CMB radiation provides a unique direct image of the Universe from almost as far back
in time as we can hope to see.
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The radiation we observe in the microwave background today was once in thermal
equilibrium with the primordial plasma of the Universe. At that time the Universe
was highly, but not perfectly, uniform. Thus, the CMB radiation is extremely uniform,
varying in temperature by only a few parts in 105. Had it been perfectly uniform, then
subsequently no structures would have formed.

At the time imaged by the CMB, the Universe was also very simple, which is
why it is extremely well-described by linear perturbation theory around a completely
homogeneous and isotropic spacetime, and also why the physical processes relevant at
that time are all relatively simple and very well understood. So by studying the small
temperature and polarisation fluctuations in the CMB, we get valuable information
about the variations in density and velocity in the early Universe. This information
enables us to set very precise constraints on the overall properties of the Universe and
makes the CMB a unique astrophysical tool in the quest to understand the Universe
we live in.

1.2 The history of CMB research

This brief historical perspective is based on reviews by Fraser et al. (1995), Partridge
(1995) and Kosowsky (2002).

There are some questions humankind has been asking itself as far back in history as
we can go: How old is the Universe? Does it have any boundaries? How did it form?
The answers to these questions were long only within the realms of philosophy and
religion, but today we are beginning to see the contours of definite answers to these
questions thanks to a few scientists who at the beginning of the 20th century let their
curiosity and intuition guide them off the tracks of mainstream physics and into to the
strange, unfamiliar landscape that was to become cosmology.

In 1927, the Belgian astronomer George Lemâıtre presented a theory of an expanding
Universe that had a beginning in time. He proposed the initial Universe as a highly
compressed state of matter, which he called “l’atome primitif”, and suggested that
the Universe was born in a primordial explosion. The idea was presented in a Belgian
journal, but went unnoticed until Hubble’s discovery of the expanding Universe in 1929.
Although Lemâıtre’s idea differ from modern cosmology in several other respects, he is
rightfully looked upon as the father of the Big Bang theory.

The modern version of Lemâıtre’s idea of a giant primordial explosion was worked
out in the late 1940s by George Gamow, Ralph Alpher and Robert Herman. Gamow
and his colleagues introduced the Hot Big Bang model as a mean to build up elements
heavier than hydrogen in the early Universe, and as a by-product of their work they
realized that the present Universe would be filled with a blackbody relic of the Hot
Big Bang. This blackbody relic would be calculable and of non-zero temperature,
and in 1948 Alpher and Herman predicted that the relic background should have a
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temperature of about 5 K (Alpher and Herman, 1949). Over the next decade Gamow,
Alpher, Herman and their collaborators made a variety of estimates of the background
temperature which spanned from 3 to 50 K (see e.g. Alpher et al., 1953). The lack of a
definitive temperature and of suggestions of its detectability with available technology
long contributed to a lack of interest in the prediction among experimenters, despite
the immense development of microwave technology during World War II.

In the same year Alpher and Herman published their first temperature predictions
of the relics of the Hot Big Bang, Fred Hoyle, Hermann Bondi and Thomas Gold put
forward a totally different idea, the Steady State theory (e.g. Hoyle, 1948). In this
theory the Universe was also expanding, but the idea of an initial explosion was rejected.
The Universe, they said, had always been in a “steady state”, without a beginning, and
without there having to be an end.

In the late 1950s and early 1960s, the fundamental question of whether the Universe
had a beginning in time or not, was debated in full public. The adherents of the Big
Bang cosmology formulated by Gamow and his colleagues, stood acrimoniously against
the supporters of the Steady State model of Bondi, Gold and Hoyle. The controversy
was not ended until the discovery of the CMB gave crucial support to the Big Bang
theory.

In the early 1960s A.G. Doroshkevich and I.D. Novikov (Doroshkevich and Novikov,
1964) emphasised the detectability of a microwave blackbody as a basic test of Gamow’s
Hot Big Bang model, and about the same time, R.H. Dicke and his collaborators at
Princeton University began searching for the radiation.

Two radio astronomers at Bell Laboratories in New Jersey, Arno Penzias and Robert
Wilson, serendipitously discovered the CMB in 1964, using a microwave horn radiome-
ter originally intended for experimenting with telecommunication satellites. During
their research, they detected a uniform noise source they gradually concluded had to
come from the sky. After getting in touch with R.H. Dicke and his collaborators Pee-
bles, Roll and Wilkinson at Princeton, they realized that what they had detected was
the radiation background predicted by Alpher and Herman. Penzias and Wilson pub-
lished their results in a brief paper (Penzias and Wilson, 1965), closely preceded by
a companion paper by the Princeton group explaining the cosmological significance of
the discovery (Dicke et al., 1965).

In 1978 Penzias and Wilson was awarded the Nobel Prize of Physics for their revo-
lutionary discovery.

The announcement of Penzias and Wilson’s discovery was followed by an explosion of
work related to the Big Bang model of the expanding universe. Theorists soon realized
that fluctuations in the CMB temperature would have fundamental significance as a
reflection of the initial perturbations which grew into galaxies and clusters. The first
estimated amplitudes of the temperature fluctuations were one part in a hundred,
but experimenters found no observed fluctuations at that level of sensitivity. Over
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the next twenty-five years, theorists continually revised their estimates downwards as
experimentalists came up with more and more stringent upper limits. By the end of the
1980s, the limits on the fluctuations were well below one part in 104, and in 1990 the
COBE satellite finally detected fluctuations at the level of a few parts in 105 (Smoot,
1992). These results, just consistent with structure formation in inflation-motived Cold
Dark Matter (CDM) cosmological models, were soon confirmed by several ground-based
(Bersanelli et al., 1994; Baker, 1999) and balloon-borne measurements (de Bernardis,
1990; Fischer, 1991).

There could have been made detections of the CMB before Penzias and Wilson,
the first ones in the early 1940s (McKellar, 1940; Adams, 1941). During his work on
molecules in interstellar space, Andrew McKellar observed some characteristically sharp
lines in the violet and ultraviolet region that he could not determine the source of. He
suggested that they might arise from transitions between rotational levels of interstel-
lar molecules at extremely low temperature and calculated the maximum “effective”
temperature to be 2.7 K. McKellar’s discovery was confirmed by W. S. Adams in 1941,
using the Coudé spectrograph of the Mount Wilson Observatory. Unfortunately the
significance of these observations was not understood and the results forgotten.

1.3 The underlying cosmology

After the Big Bang, the Universe expanded and cooled. When the Universe was about
300.000 years old, the temperature had dropped to 3000 K and electrons and protons
started to combine into hydrogen in a process called recombination. Prior to this, the
Universe had been filled with an opaque fluid of coupled baryons, electrons and photons,
called the photon-baryon fluid. The opacity was caused by the very high cross section of
the free electrons to Thompson scattering. But as a consequence of the recombination
process, the photons decoupled from the baryons and began to propagate freely across
the Universe. It is this very first light that we observe as CMB radiation today.

When the CMB radiation began to propagate freely during the recombination era,
the Universe was a conceptually simple place filled with baryons, electrons, neutrinos,
photons and dark matter particles. The Universe was also very close to being ho-
mogeneous and isotropic, with only small perturbations in density and velocity. The
requirement of the unperturbed Universe to be homogeneous and isotropic determines
the background spacetime-metric to be of the standard Robertson-Walker form

ds2 = dt2 − a2(t)
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ)dφ2

]
. (1.1)

In this metric the spatial evolution of the Universe is expressed through the cosmological
scale factor a(t), given by the Friedmann equations:

8πGρ =
3
a2

(
kc2 + ȧ2

)
, (1.2)
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8πGp

c2
= −2ä

a
− ȧ2

a2
− kc2

a2
. (1.3)

Depending on the value of k and the matter density Ω0, the Friedmann-Robertson-
Walker (FRW) spacetime can have three different flavours of spatial curvature: positive,
negative or flat. The question of the spatial curvature of the background spacetime is
important because it determines whether the Universe is finite or infinite, and because
it is connected to the fate of the Universe. The CMB can provide us with the cleanest
and most powerful probe of the geometry of the Universe (Kamionkowski et al., 1994),
and might therefore give us the answer to this fundamental question.

The sound horizon

The fluctuations in the microwave background depend on two basic physical scales, the
sound horizon at last scattering, rs, and the Silk damping scale, τLSS .

The sound horizon at last scattering, rs, is simply the sphere defined by the distance
a sound wave could have propagated in the photon-baryon fluid from the time of Big
Bang until decoupling occurred. Since the photons where coupled to the baryons before
recombination, perturbations evolving in the photon-baryon fluid would set up standing
acoustic oscillations, or sound waves, in the fluid. Thus the sound horizon at last
scattering, rs, represents the largest scale on which any causal physical process can
influence the primordial plasma.

The surface from which we see the photons last scattered when they began propa-
gating freely across the Universe, we call the last scattering surface (LSS). The LSS is a
spherical shell, so any feature in the CMB of a given size will subtend an angle θ on the
sky. Thus, when working with CMB fluctuations it is often convenient to use spherical
harmonic functions Ylm, and in this representation the angular scale equivalent to the
angle θ is given by the multipole l

l � π

θ
. (1.4)

If primordial perturbations were present on all scales prior to recombination, the
resulting CMB fluctuations will appear as a featureless power law at large scales (i.e. at
small l), while the scale at which they began to depart from this behaviour corresponds
to the sound horizon. This is precisely the behaviour observed by current measure-
ments, which show a prominent peak in the power spectrum at an angular scale of a
degree (l � 200). Also, if the CMB power spectrum exhibits acoustic oscillations, then
the acoustic peaks appear at harmonics of the sound horizon. Measurements of the
angular scales that such features subtend on the sky provide a very general and precise
probe of the curvature of the Universe.

Silk damping

Because of Compton scattering of photons off electrons in the photon-baryon fluid, the
coupling between the baryons and the photons was not completely perfect. The large
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number of free electrons in the fluid caused frequent scattering of the photons, and since
the electrons were coupled to the protons through Coulomb interaction, the photons
indirectly dragged the baryons with them as they random-walked out of overdense
regions in the fluid. This way hot and cold regions got mixed and adiabatic baryonic
fluctuations were damped (Partridge, 1995).

During recombination electrons and protons combined to form neutral hydrogen,
causing an enormous decrease in the number of free electrons. Since recombination did
not happen instantaneously throughout the Universe, the LSS is not infinitely thin, but
has a thickness τLSS. As the number of free electrons decreased, the mean free path
of the photons increased until it reached the thickness of the LSS. Thus the effective
Silk damping scale became equal to τLSS, and fluctuations with wavelengths smaller
than the mean free photon path were damped. After recombination the free electrons
vanished and Silk damping ceased.

Projection effect

The thickness of the LSS influences the primordial fluctuations in the CMB not just
through Silk damping. When measuring the CMB temperature in a given direction in
the sky, photons at different distances within the LSS are averaged, hence this can be
looked upon as a projection effect that washes out fluctuations on scales smaller than
τLSS.

1.4 Primary fluctuations

Blackbody radiation in a perfectly homogeneous and isotropic universe must be at
a uniform temperature, by assumption. When perturbations are introduced, three
elementary physical processes can produce a shift in the blackbody temperature of
the radiation emitted from a particular point in space. So when the CMB photons
decoupled from the baryons during the recombination era, they took with them three
different imprints of the region on the LSS from which they last scattered. The effects
of the different processes will be discussed in more detail later in this section, but
first I will take a look at the evolution of first-order perturbations of the underlying
cosmology.

The evolution of first-order perturbations in the metric and the various energy density
components of the Universe are described by the following sets of equations:

• The photons and neutrinos are described by their distribution functions. The
energy density of both components is given by the blackbody distribution, and
the time evolution by the Boltzmann equation.

• The dark matter and baryons are both well described by the Euler and continuity
equations for their densities and velocities.
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• For the metric perturbations, both the evolution and the connection to the matter
perturbations are contained in the Einstein equations.

Setting the correct initial conditions for the perturbations of the CMB involves spec-
ifying the value of each variable in the equations mentioned above in the limit where
the conformal time η, defined by η ≡ ∫

dt
a , goes to zero. Numerically determining the

initial conditions is difficult for two reasons: in this limit the equations are singular,
and they also become increasingly numerically stiff.

A variety of numerical techniques have been developed for evolving the equations
above. Particularly important is the line-of-sight algorithm developed by Seljak and
Zaldarriaga (Seljak and Zaldarriaga, 1996), implemented in the publicly available CMB-
FAST code (see Section 1.10.1, and also <URL: http://ascl.net/cmbfast.html> or
<URL: http://www.cmbfast.org/>).

1.4.1 The Sachs-Wolfe effect

The Sachs-Wolfe effect is the dominant mechanism on large scale for perturbations
of the primordial CMB, and arise from perturbations of the gravitational potential Φ
at last scattering (Sachs and Wolfe, 1967). The perturbations have two effects on the
photons as they climb out of the potential wells: gravitational redshift and time dilation.
Assuming that the Universe started out with adiabatic initial conditions, an assumption
strongly supported by CMB measurements, the combined general relativistic effect of
this is (Hwang et al., 2002)

∆T

T
=

δΦ
3c2

. (1.5)

1.4.2 The Doppler effect

If radiation at a particular point is moving with respect to the observer, the observer will
see a Doppler shift in the wavelength of the radiation. All density perturbations within
the horizon scale are accompanied by velocity perturbations, and these perturbations
appear as oscillations in the photon-baryon fluid. Hence photons last scattered by
matter moving away from us, received a Doppler redshift as they left the LSS. This
effect dominates at intermediate scales and can be written

∆T

T
=

δv · r
c

. (1.6)

1.4.3 The adiabatic effect

This effect dominates on small scales, and is caused by the fact that if the radiation
density increases via adiabatic compression of the photon-baryon fluid, there will be
an increase in the intrinsic temperature of the fluid at that given point in space. As
recombination occurs at a temperature of Trec = 3000K, hot and cold spots in the fluid
recombine at different times. Because they recombine later, the denser spots are less
cosmologically red-shifted, and hence they appear hotter. This is why photons last
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scattered from an overdense region have a higher intrinsic temperature than photons
scattered from less dense regions on the LSS.

Assuming linear growth, the fractional temperature perturbation in the radiation
equals one third of the fractional density perturbation.

∆T

T
=

δ

3
, (1.7)

where δ is given by

δ ≡ δρ

ρ
. (1.8)

The contributions to the temperature fluctuations in the CMB from the three effects
discussed above, are summarised by the equation

∆T

T
=

δΦ
3c2

− δv · r
c

+
δ

3
, (1.9)

where r is the comoving distance to the last scattering surface, and the fields δΦ, δv
and δ are to be evaluated at the time of recombination.

Adiabatic or isocurvature initial conditions

According to whether the gravitational potential perturbations δΦγb from the photon-
baryon fluid is zero or non-zero as conformal time goes to zero, the initial conditions
of the equations mentioned at the beginning of this section can be divided into two
categories: isocurvature or adiabatic, respectively. In cases of purely one or the other
type the calculations of the equations simplifies significantly. Note that in the case of
purely isocurvature initial conditions, the Sachs-Wolfe effect in Equation (1.5) is larger
by a factor of six.

If the Universe started off with adiabatic initial conditions, i.e. with non-zero gravi-
tational potential perturbations δΦγb, the ratio of baryon to photon number densities
is constant in space, and the photon-baryon fluid can be treated as a single fluid. Be-
cause of the tight coupling between radiation and matter in the fluid, matter would feel
a significant pressure that would counteract any tendency for the matter to collapse
gravitationally. As mentioned earlier, perturbations evolving in the density, velocity
and gravitational potential fields in this fluid would set up standing acoustic waves on
scales smaller than the sound horizon, rs. For perturbations on larger scales, we get
the Sachs-Wolfe effect in Section 1.4.1. With adiabatic initial conditions, the location
of the gravitational potential wells and the overdensities also coincide, so that the first
and the third term in Equation (1.9) partially cancel.
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If on the other hand the Universe started off with isocurvature initial conditions,
i.e. with gravitational potential perturbations δΦγb = 0, the baryon and photon num-
ber densities would vary in such a way that they compensate each other. So instead
of evolving in curvature, these perturbations would evolve in entropy. Evolution of
isocurvature perturbations attempts to keep the density constant by making the mat-
ter perturbations decrease while the amplitude of the fluctuations in the radiation field
increase. Hence, in a matter-dominated Universe, the entropy perturbations at late
times are carried entirely by the photons. This leads to an increased amplitude of the
CMB anisotropies in isocurvature models compared to adiabatic ones. Isocurvature
perturbations can arise from causal processes like phase transitions.

1.5 Polarisation

A more detailed discussion of the CMB polarisation and its power spectra is outside
the scope of this thesis, but it is nevertheless worth mentioning.
In contrast to the temperature fluctuations which predominantly reflect density pertur-
bations, polarisation fluctuations mainly reflect velocity perturbations at last scatter-
ing. As electrons at last scattering experienced an anisotropic radiation field, non-zero
polarisation is inevitable. If such polarisation fluctuations are detected, the polarisation
spectra will reveal perturbations of the velocity field, and possible also the presence of
gravitational waves and primordial magnetic fields, present at last scattering. Polari-
sation also proves a much thinner volume at LSS.

1.6 Secondary fluctuations

The effects under this heading is primarily referring to processes that have affected the
CMB photons on their way from the last scattering surface to us.

1.6.1 Integrated Sachs-Wolfe effect

The Sachs-Wolfe effect is often dived into two effects, the effect described in section
1.4.1 and the Integrated Sachs-Wolfe (ISW) effect. The latter arises when gravitational
potentials are evolving with time and has three manifestations: Early ISW, Late ISW
and the Rees-Sciama effect (Tegmark, 1995).

In a matter-dominated universe gravitational potentials remain constant in time as
long as the density fluctuations evolve linearly. Thus in models where the Universe is
matter-dominated during the time the CMB radiation propagates freely, the Integrated
Sachs-Wolfe effect is zero. In models with matter density significantly less than the
critical density (e.g. the ΛCDM models), matter-radiation equality occurs late enough
for the gravitational potentials to evolve when the CMB radiation decouples. This
leads to a non-negligible Integrated Sachs-Wolfe effect.
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The ISW effect on a single photon is given by the integral over Φ̇, the conformal time
derivative of the gravitational potential, at a fixed position in space

∆T

T
=

∫
Φ̇[r(t), t]dt,

where φ̇ is the conformal time derivative of the gravitational potential at a fixed position
in space. The three manifestations of the ISW correspond to the three cases when
Φ̇ �= 0.

Early ISW

Shortly after recombination, the photon contribution to the density of the Universe
was still not altogether negligible. As a result, the gravitational potential decayed
somewhat.

Late ISW

If the cosmological constant Λ > 0, the Universe will eventually become vacuum domi-
nated. If the sum of the total energy density and the cosmological constant Ω+ΩΛ �= 1,
the Universe may become curvature dominated. In both cases spacetime will be
stretched, causing a redshift of the CMB photons. This is known as the late ISW
effect, since vacuum energy and curvature become important only at low redshifts.

The Rees-Sciama effect

Once non-linear structures such as galaxy clusters form, linear perturbation theory
breaks down and the result from linear perturbation theory that φ̇ = 0, is no longer
valid. The contribution to the ISW from non-linear perturbations is called the Rees-
Sciama effect.

Weak gravitational lensing

The ISW effect can be thought of as the gravitational fields giving the photons mo-
mentum kicks parallel to their flight paths, causing a a change in their energy, but not
their paths.

There is also a twin effect to the ISW, where the gravitational fields give the photons
momentum kicks perpendicular to their flight paths. This leaves the energy unchanged,
but deflects the photon trajectories, which means that it is essentially an issue of weak
gravitational lensing. The effect of this angular jumbling is that power is redistributed
from the peaks of the power spectrum to the troughs, preserving the total power in
the fluctuations. Although the effect is small, typically a few percent, it may well be
detectable in the data from WMAP and the upcoming Planck experiment.
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1.6.2 Sunyaev-Zel’dovich effect

The peculiar velocity, v, and density fluctuations, δ, can only influence the CMB pho-
tons after recombination if the baryons become reionized in other ways than ISW,
locally or throughout all of space. Local reionization, confined to for instance hot clus-
ters of galaxies, manifests itself in two ways. Both are known as the Sunyaev-Zel’dovich
(SZ) effect (Sunyaev and Zel’dovich, 1970, 1980; Rephaeli, 1995):

i) If a cluster of galaxies is moving away from us, Thompson scattering of CMB photons
off the hot intra-cluster gas will cause a Doppler redshift in the direction of the
cluster. This corresponds to the impact of v on CMB photons and is known as
the kinematic SZ-effect.

ii) The high temperature of the free electrons will, independent of the cluster velocity,
distort the Planck spectrum by depleting the low frequency tail and overpopulate
the high frequency tail. This, known as the thermal SZ-effect, appears as a
redshift below and as a blueshift above 218 GHz, and corresponds to the impact
of the density fluctuations δ on CMB photons.

Both kinematic and thermal SZ-effect cause spectral distortions of the CMB radi-
ation as it passes through hot ionized regions (Birkinshaw, 1999). The impact on the
CMB can be quite large in the directions of cluster cores, but is likely to be negligible
on the overall CMB power spectrum (Persi et al., 1995).

1.6.3 Reionization

If reionization occurred throughout space, the effects on the CMB power spectrum
would be quite radical. One would get a new last scattering surface where the temper-
ature observed in a given direction on the sky would be the weighted average of the
temperature of part of the z = 1000 last scattering surface.
This smearing would be on an angular scale corresponding to the angle subtended by
the sound horizon at the redshift of the latest scattering. Thus by increasing the effec-
tive Silk damping scale, reionization would suppress temperature fluctuations on scales
smaller than the new rs. D.N. Spergel et al . claim to have found such a signature in
the WMAP data at a redshift of z ∼ 20 (Spergel, 2003).

1.6.4 Non-linear effects

Apart from the Rees-Sciama effect in Section 1.6.1, the discussion has so far assumed
that the CMB power spectrum is perfectly described by linear perturbation theory.
Since the temperature perturbations are so small, linear theory is a very good ap-
proximation. But on small scales non-linear effects become important, and can even
dominate over the linear contributions.
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The most important non-linear effects are the combined effect of the thermal and
kinetic Sunyaev-Zeldovich effect described in Section 1.6.2, the so-called Ostriker-
Vishniak effect (Ostriker and Vishniac, 1986) and gravitational lensing by large-scale
structures (Seljak, 1996). All three effects are measurable and give important additional
constraints on cosmology.

1.7 Foregrounds

Whether the goals of determining the different cosmological parameters to a level of a
few percent can actually be achieved, depends on the level of foreground contamination
and systematic effects (see e.g. Tegmark and Efstathiou, 1996). As foreground effects
tend to depend strongly on multipoles l and on frequency ν, knowledge about how the
different foregrounds depend on both is equally important.

1.7.1 Extragalactic point sources

The l-dependence for point sources is well known, but the frequency dependence in the
microwave region is not. But what is known, is that radio and infrared point sources
contribute to the same range of multipoles l = [103 − 104], but to different ranges of
frequency. Radio point sources contribute mainly to the frequency range of ν = [0−50]
GHz, while infrared point sources contribute to the range ν = [500−1000] GHz. WMAP
and Planck will be observing in the frequency ranges ν = [30− 1000] GHz, so accurate
data about radio point sources above 50 GHz and infrared point sources at the high
frequency end, is badly needed.

1.7.2 Diffuse galactic sources

There are three different major diffuse galactic contaminants: thermal dust, free-free
and synchrotron emission. In addition there is also possibly emission in the microwave
range from spinning and magnetic dust particles. All contaminants are caused by
emission from diffuse blobs of gas.

Dust

Dust radiates significantly at microwave frequencies and is the dominant foreground
emission component on frequencies above 70 GHz. As our galaxy contains large
amounts of dust, the galactic foreground is a severe source of contamination in CMB
observations. Dust emission usually has a spectrum that rises with frequency (see Fig-
ure 1.1), and is not uniformly distributed on the sky, but rather concentrated in the
galactic plane, with fainter, but pervasive, diffuse emission on other parts of the sky.

Free-free and synchrotron emission

Free-free and synchrotron emission also radiates significantly at microwave frequencies.
Free-free emission arise from electron-ion scattering, while synchrotron emission arises
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from the acceleration of relativistic cosmic ray electrons in magnetic fields. Unlike dust,
they have spectra that are falling with frequency, and as can be seen in Figure 1.1, the
synchrotron emission dominates the free-free emission at frequencies below 30 GHz.
But they also have some similarities with dust: in sky maps free-free and synchrotron
emission is found in the galactic plane or as fainter diffuse emission on other parts of
the sky.

The dust, free-free and synchrotron emission spectra cross each other at a frequency
of around 70 GHz (see Figure 1.1), where the amplitude of the foreground emission
is low enough to create a frequency window in which the cosmological temperature
fluctuations dominated the foreground. Since these foregrounds have frequency spectra
that differ from that of the CMB, the foregrounds can be separated from the CMB
signal at other frequencies by measuring in several different frequencies and projecting
out the portion of the signal with non-CMB frequency spectra.

Galactic foregrounds limit the area of clean sky available, thus increasing the error
bars of the estimated CMB power spectrum as the inverse square root of the fraction of
the sky. In addition, foreground subtraction will increase the noise in the CMB maps
and thus cause a further increase in the error bars.

1.7.3 Local sources

Microwaves have wavelengths significant compared to geometric structures in the an-
tenna and instrument, and there will therefore be sidelobes not totally insignificant out
to 180◦. Sidelobes from the Sun, the Moon, the Earth and other planets as well as
electronic receiver noise, are also problems that have to be dealt with in CMB exper-
iments, whether the experiment is ground-based, balloon-borne or a satellite mission.
Groundbased and balloon-borne experiments also have to deal with atmospheric emis-
sion.

1.7.4 Systematic effects

Systematic effects such as sidelobes of the beam, calibration and striping in the maps
from 1/f-noise, also degrade the sensitivity of CMB experiments.

A problem of a somewhat different nature is pixelisation noise. CMB maps are not
continuous, but divided into pixels, which give rise to what is called pixelisation noise.
The pixelisation noise can be described by a power spectrum Cl(ν) and treated on
equal footing with the other contaminants. Most current experiments oversample the
sky with respect to their beam, so the pixelisation noise is negligible.

Discreteness

A problem that resembles that of pixelisation noise, is discreteness. Discreteness enters
when we do the analysis in practice, particularly when dealing with large quantities of
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Figure 1.1: The WMAP frequency bands were chosen to be in a region where the CMB
anisotropy dominates over the Galactic and extragalactic foreground emission. (a) show the
spectra of the CMB and the Galactic emission modelled from the Maximum Entropy Method.
(b) show the foreground power spectra for each WMAP band. The band-by-band point source
fits to an l2 term are shown in the dashed lines on the right. The power spectra are expected
to asymptotically join these lines. Note that the total foreground spectrum (excluding point
sources) go as Cl ∼ l−2. (c) The contour plot shows the ratio of CMB to foreground anisotropy
power as a function of frequency and multipole moment. Reprinted from Bennett (2003a).
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data. In order to handle large data sets, we often have to split the data into smaller
parts of more manageable size. It has long been assumed that making data sets discrete
in this way, have no or very little effect on the results of the analysis. Whether this is
truly the case or not, will be looked into in greater detail in Chapter 4 of this thesis.

1.8 What can the CMB anisotropies tell us?

Before decoupling, the matter in the Universe was tightly coupled to the radiation
and therefore had significant pressure, a pressure that counteracted any tendency for
the matter to collapse gravitationally. During this epoch, density perturbations were
setting up standing waves in the plasma. These waves left a distinctive imprint on
the last scattering surface. Today these imprints can be seen in the power spectrum
of the CMB and provides us with a basis for precision constraints on the cosmological
parameters.

1.8.1 The different cosmological models

The CMB is the probe of cosmology most tightly connected to the fundamental prop-
erties of the Universe and least influenced by astrophysical complications, and thus
has the potential to determine the fundamental cosmological parameters describing the
Universe with percent-level precision. If this potential is realized, the standard model
of cosmology would compare with the standard model of particle physics in terms of
physical scope, explanatory power and detail of confirmation. The cosmological pa-
rameters determined from the CMB are model-dependent, i.e. different cosmological
models predict different values for the different parameters. This is because the phys-
ical mechanisms that can introduce temperature fluctuations into the CMB, behave
differently in the different models, thus leaving a distinct model-dependent imprint on
the CMB.

Cold Dark Matter (CDM) models

The CDM models are the cosmological models most consistent with CMB observations,
and has cold dark matter as the dominant component of the matter density.

In general, the ratio of CDM to the total matter density is assumed to be ΩCDM
Ωm

�
0.7−0.9, and it is also common to assume a Harrison-Zel’dovich spectrum. CDM models
can be both adiabatic and isocurvature, but measurements tend to point towards models
with adiabatic fluctuations. Figure 1.2 shows a typical power spectrum for an adiabatic
CDM model.

The characteristic peaks and troughs in Figure 1.2 are produced by the three effects
described in Section 1.4. The flat region a at low values of l, i.e. at large scales, is that
dominated by the Sachs-Wolfe effect. At smaller scales, θ ≤ 0.5◦ or l ≥ 100, Doppler
perturbation dominate. And at even smaller scales, l ≈ 100−1000, the power spectrum
is dominated by the adiabatic effect.
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Figure 1.2: The angular power spectrum of a standard CDM model (Ω = 1, Ωb = 0.06, h =
0.5, ns = 1). Reprinted from Tegmark (1995).

The classic CDM model was closed and had no energy density except CDM and
baryons, i.e. Ωm = 1.0 and ΩCDM ∼ 0.95. This model has been ruled out by various
constraints, supernovae, and the amplitude of perturbations on large scales compared to
small scales. However, a variant CDM model, the ΛCDM class has become very popular
in the last decade. In these models so-called vacuum energy, also called dark energy,
is the dominant component. This vacuum energy is the modern variant of Einstein’s
cosmological constant Λ, and acts as repulsive force on the Universe to counteract for
the tendency of matter to collapse gravitationally, causing the expansion of Universe
to decelerate.

The other two components that contribute to the present density of the Universe
in this model is baryonic matter and non-baryonic dark matter. Both dark matter and
vacuum energy interacts with gravity, but their interaction with ordinary matter and
radiation is extremely weak, there is slightly any interaction at all.

In the latest data from WMAP the total matter density to the critical density was
found to be Ωm = 0.29± 0.07, with Ωb = 0.047± 0.006 and ΩCDM = 0.24± 0.08, while
the vacuum energy density was found to be Ω = 0.73 ± 0.09 (Spergel, 2003).

Hot Dark Matter (HDM) models

HDM models have hot dark matter, e.g. neutrinos of nonzero mass, as their dominant
density component.

These models predict somewhat larger values of the temperature fluctuations ∆T/T
on degree scales and above, than do comparable CDM models. But compared with
observations, these models produce too little power on small scales compared to the
power on large scales, to explain structure formation on scales of e.g. galaxies.
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Baryon-only models

The earliest predictions of CMB fluctuations, made before dark matter and vacuum
energy came into fashion, were naturally based on cosmological models of a purely
baryonic Universe.

If the CMB fluctuations are as small as observed, the amplitude of the adiabatic fluc-
tuations in the matter found in these models is much smaller than those found in dark
matter models. This is because in the baryon-only models there are no potential-wells
formed by dark-matter perturbations for the baryons to fall into after recombination.
Hence, larger initial perturbations are required in order to produce the fluctuations
observed on the surface of last scattering.

One way to avoid the small amplitudes of the CMB anisotropies predicted in adia-
batic baryonic models, is to assume isocurvature perturbations. As these perturbations
evolve in entropy and entropy perturbations primarily are carried by photons, there
will be smaller matter perturbations and larger fluctuations in the radiation field in
isocurvature models compare to adiabatic ones.

Inflationary models

By definition, inflation is a stage of accelerated expansion in the early Universe that
most likely occurred when the Universe was only 10−34 seconds old. Inflation is not a
precise theory, but rather a mechanism for exponential expansion of the universe which
can be realized in a variety of specific physical models.

A very simple, broad, and well-motivated set of cosmological models are motivated
by inflation: a universe described by a homogeneous and isotropic background with
phase-coherent, power-law primordial perturbations which evolves only via gravita-
tional instability. This set of cosmological models is relatively simple to calculate and
also appears to fit all current data far better than any other proposed models. These
are some of the predictions that the CMB can hope to test:

• The most basic prediction of inflation is that the curvature of the Universe is flat.
The flatness problem was one of the fundamental motivations for considering
inflation in the first place.

• Inflation generally predicts primordial perturbations which have a Gaussian sta-
tistical distribution.

• The simplest models of inflation give adiabatic primordial perturbations. More
complex models of inflation results in dominant adiabatic perturbations with some
admixture of isocurvature fluctuations.
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• Inflation generically predicts primordial perturbations on all scales. Inflation
further predicts that the primordial power spectrum should be close to a scale-
invariant power law.

• Inflationary perturbations results in phase-coherent acoustic oscillations. The
CMB temperature and polarisation power spectrum will together reveal coherent
oscillations.

When inflation was introduced in the early 1980’s, it was commonly believed that
the inflationary scenario would result in the imprint of pure Gaussian fluctuations on
the CMB. Since then it has become clear that in the more complicated models of the
inflationary process, inflation can produce significant levels of non-Gaussianity. But, if
inflation occurred, we will get strongly supporting evidence from the above signatures,
along with precision measurements of the cosmological parameters describing our Uni-
verse. If on the other hand, inflation did not occur, we may not be able to recover
cosmological parameters as precisely, but the CMB will still be equally important in
finding the correct model of our universe. Over the next few years results from WMAP
and the upcoming results from Planck will give the answer to these questions.

1.8.2 The different cosmological parameters

The parameters defining the cosmological model space can be broken down into three
types: background cosmological parameters, parameters describing initial conditions
and parameters for additional physical effects.

Background cosmological parameters

This type of parameters describes the underlying spacetime of the early Universe.

• Ωtot, the ratio of the total energy density to the critical density ρc = 8π
3H2 . This

parameter determines the curvature of the Universe: Ωtot = 1 gives a flat universe,
Ωtot < 1 an open universe and Ωtot > 1 a closed universe. Current measurements
points towards a value close to Ωtot = 1 (Balbi, 2001; Melchiorri, 2000; Spergel,
2003).

• Ωb, the ratio of the baryon density to the critical density. Predictions from pri-
mordial nucleosynthesis and observations of the deuterium abundance at high
redshift puts strong constraints on this parameter (Tytler et al., 2000).

• Ωm, the ratio of the dark matter density to the critical density. The sum of Ωm

and Ωb gives the total matter parameter, Ω0 = Ωm + Ωb. Numerous evidence
points to a value of Ω0 = 0.3 (Balbi, 2001; Melchiorri, 2000; Spergel, 2003).

• ΩΛ, the ratio of vacuum energy density Λ to the critical density. Λ is the famous
cosmological constant, which was reintroduced when an apparent acceleration in
the expansion of the Universe was discovered (Riess, 1998; Perlmutter, 1999).
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• h, the present Hubble parameter. Present estimates gives h = 0.72 km/s/Mpc
with errors in the order of 10% (Plionis, 2002).

In addition to the parameters over, there are parameters describing additional con-
tributions to the energy density of the Universe, from for instance quintessence.

Parameters describing initial conditions

These parameters give the physical conditions at the ‘time’ when the Universe was
born.

• Q, the amplitude of the temperature fluctuations. This parameter was fixed to
high accuracy by COBE (Bennett, 1996).

• ns, the spectral index of initial adiabatic density fluctuations. Comparison of
CMB and large scale structure measurements shows that ns is close to unity.

Other parameters describing departures of the perturbations from a power law or a
small admixture of isocurvature perturbations also belong under this heading.

Parameters for additional physical effects

These parameters describes miscellaneous additional physical effects that may have
affected the evolution of the Universe prior to recombination.

• mν , a cosmologically significant neutrino mass.

• Nν , the effective number of neutrino species.

• zr, the redshift of reionization.

A realistic parameter analysis might include at least eight free parameters. For the
correct model, parameter values should be insensitive to the size of the parameter space
and the particular priors invoked.

Table 1.1 gives an overview of the present values of some of the different parame-
ters in Section 1.8.2. How the different parameters affect the power spectrum will be
discussed in Section 2.3.1.

1.9 CMB experiments

Since the first detection in 1964, the CMB radiation has been measured by a number
of experiments, covering the frequency rage from 1 to 500 GHz. The majority of the
first experiments focused on determining the average radiation temperature and the
precise Planck spectrum. As theoretical progress made it clear that extremely valuable
information about the fundamental properties and the evolution of the Universe lay hid-
den in the CMB anisotropies, focus was shifted towards detecting these anisotropies.
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Parameters Mean and 68% Confidence Errors
Ωb 0.044 ± 0.004
Ωm 0.27 ± 0.04
h 0.71+0.04

−0.03

ns 0.93 ± 0.03
zr 17 ± 4
rs 147 ± 2 Mpc

Table 1.1: Some basic and derived cosmological parameters. The parameters are fitted to the
WMAP, CBI, ACBAR, 2dFGRS and Lyman α forest data. The table is a edited version of
Table 10 in Spergel (2003).

It soon became clear that new and improved technology was needed in order to suc-
ceed in gaining this information. And after years of hard work, measurements of the
anisotropies were finally achieved by the COBE satellite in 1990. However, there is
still need for improvement, particularly concerning resolution and sensitivity, and this
is the primary goal of several upcoming CMB missions.

Present and future CMB experiments will be able to reach the required angular
resolution, sensitivity, sky coverage and reduction of systematic effects to probe the
acoustic features in the CMB spectrum. With this kind of sensitivity, most of the
cosmological parameters of near scale-invariant adiabatic models can be fit to the level
of a few percent (see e.g. Jungman et al., 1996).

Most of this Section is based on the official home-pages of COBE1, BOOMERanG2,
MAXIMA3, WMAP4 and Planck5.

1.9.1 COBE

The COBE (COsmic Background Explorer) satellite was launched in 1989 with two
distinct aims: to measure the CMB radiation temperature to a very high accuracy, and
to try to detect the anisotropies of the CMB radiation field.

In order to achieve the first aim, a polarising Michelson interferometer (FIRAS)
was used. FIRAS detected an almost perfect blackbody radiation at a temperature of
2.725±0.010K, with less than one part in 104 deviation (Hu, 1995). This is the smallest
deviation from a Planck spectrum ever measured, and made a perfect match with the
theoretical expectations. Figure 1.3 shows the Planck spectrum measured by FIRAS.

The second set of measurements were a lot more difficult to achieve. Prior to
COBE, all instruments used in the search for such anisotropies had failed to detect
any up to the level of 10−4 Kelvin. On-board COBE there was an instrument called
DMR, consisting of six differential microwave radiometers with two nearly independent

1<URL: http://space.gsfc.nasa.gov/astro/cobe/cobe home.html>
2<URL: http://cmb.PHYS.cwru.edu/boomerang/>
3<URL: http://cosmology.berkeley.edu/group/cmb/>
4<URL: http://map.gsfc.nasa.gov/>
5<URL: http://astro.estec.esa.nl/Planck/>
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Figure 1.3: Within the precision of the FIRAS instrument on board the COBE satellite, the
Planck spectrum of the CMB is as perfect blackbody spectrum with a maximum deviation of
3 · 10−4. No spectral distortion have been measured to date excluding nearly all options for
its formation except in the early stages of a Hot Big Bang. The intensity is plotted in ergs
cm−2 s−1 sr−1 cm. Reprinted from (Hu, 1995).

channels, each operating at 31.5, 53 and 90 GHz. The DMR aperture was designed to
detect differences in temperature as small as 10−5 degrees Kelvin, a sensitivity which
proved to be high enough to finally prove the existence of anisotropies in the CMB.
The dipole was discovered after just a few months of observations, and when analysing
the completed data sets, the presence of even smaller temperature variations were
confirmed.

The sky maps that COBE produced (see Figure 1.4) consist of only 6144 pixels
(Bennett, 2003a). It was not possible to detect any individual structures in the CMB
radiation because of the low resolution, neither was it possible to measure multipoles
up to the full resolution (l ∼ 20). It was, however, possible to find an almost perfect
power spectrum up to a multipole value of l = 10, corresponding to a resolution of 20
degrees.

For more information on COBE, see the mission’s official home-page:
<URL: http://space.gsfc.nasa.gov/astro/cobe/cobe home.html>.

1.9.2 MAXIMA and BOOMERanG

Detector technology has developed immensely since COBE was built in the 1980s, but
the costs of a new satellite mission was long considered to be too expensive. The
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Figure 1.4: The complete microwave sky temperature maps obtained from each of the
three COBE DMR frequencies - 31.5, 53, and 90 GHz - following dipole subtraction.
The broad, red band at the centre of each sky map is the Milky Way. Reprint of
<URL:http://space.gsfc.nasa.gov/astro/cobe/dmr smooth sum maps.gif>.
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solution became to send balloons up over the lower atmosphere.
MAXIMA 1, the first balloon of the MAXIMA (Millimeter Anisotropy eXperiment

IMaging Array) project, was launched in Texas, USA August 1998. This was the first
of two successive balloon flights of the project. MAXIMA 1 flew for three hours at an
altitude of 36 kilometres, and had a sky coverage of 124 square degrees. MAXIMA 2
was launched June 1999, flew for twelve hours at an altitude of 41 kilometres and had
roughly twice the sky coverage of MAXIMA 1.

Between the two balloon flights of the MAXIMA project, another balloon experi-
ment was initiated. BOOMERanG (Balloon Observations Of Millimetric Extragalactic
Radiation and Geophysics) was launched from Antarctica on December 29, 1998, and
flew for ten days at an altitude of 37 kilometres. The Antarctic was chosen to be the
best suited location for this long-duration flight because of the low infrared atmospheric
radiation in the cold polar areas. The favourable temperature conditions and the high
angular resolutions made it possible to detect fluctuations on angular scales between
0.3 and 3.6 degrees.

The results from the two balloon-born experiments were released in the spring of
2000 (Mauskopf, 2000; Winant, 2000), and the data from the two experiments were
found to be consistent up to calibration uncertainties. The data showed a large peak
in the power spectrum centred around l = 200, clearly delineated and providing good
evidence that the Universe is spatially flat, i.e. Ω = 1 (see Figure 1.6).

Earlier data from the previous year (Miller, 1999) had clearly demonstrated the
existence and angular scale of the first peak in the power spectrum and produced the
first maps of the CMB at angular scales below a degree.

One of the most recent balloon-borne experiments is Archeops. This experiment is
designed to obtain large sky coverage in a single flight, using Planck HFI technology.
Archeops provides the scientific community with the highest noise-to-signal ratio map-
ping of the first acoustic peak and its low-l side, and also covers the largest multipole
range, to date. Results from the flight made February 7, 2002, show CMB signals with
a clear peak at l � 200, consistent with inflationary-motivated cosmological models
and with previous CMB experiments (Benôit, 2003).

1.9.3 Ground-based missions

The balloon-born experiments of MAXIMA and BOOMERanG were soon followed
by several ground-based experiments. In December 2000, The DASI (Degree Angu-
lar Spectroscopic Interferometer) group released their first measurements made at the
Amundsen-Scott South Pole station during December 1999 and January 2000 (Carl-
strom and DASI Collaboration, 2000).

The results from the DASI group were confirmed in 2001 by another ground-based
interferometry experiment called the Cosmic Background Imager (CBI), and the com-
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Figure 1.5: The Archeops power spectrum compared with the results of COBE, BOOMERanG,
DASI and MAXIMA. Reprinted from (Benôit, 2003).

Figure 1.6: The angular power spectrum from MAXIMA, BOOMERanG, CBI
and DASI. The power spectrum is the best fit to the combined results of
the MAXIMA, BOOMERanG, CBI and DASI experiments. The boxes illus-
trates measurements and uncertainties in the different experiments. Reprinted from
<URL:http://background.uchicago.edu/∼whu/physics/tour.html>.
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bined data from the balloon-born and the ground-based experiments let the scientists
see the third peak of the power spectrum for the first time (see Figure 1.6).

The VSA (Very Small Array) is the latest ground-based experiment. The VSA is an
interferometer designed to study CMB anisotropies on angular scales of 2.4 - 0.2 degrees
on the sky, corresponding to multipole values of l = 150−1800. The telescope has been
making observations of CMB fields since September 2000, and the latest results were
released in December 2002 (Grainge, 2002).

1.9.4 The WMAP satellite

In June 2001 NASA launched the Wilkinson Microwave Anisotropy Probe (WMAP)
satellite. This is the first satellite to use the virtual point in space called the 2nd
Lagrangian point (L2) of the Sun-Earth system, an unstable equilibrium position 1.5
million km from Earth in the direction opposite the Sun, as its permanent observing
station. The satellite measures the CMB temperatures accurately over the complete
sky, with high angular resolution and sensitivity. The aim is to be able to measure
the relative CMB fluctuations with an angular resolution of 0.3 degrees or better, a
sensitivity of 20µ K per 0.3 degree square pixel and with systematic effects limited to
5µK per pixel.

In October 2002, the satellite completed its two first full sky observations. The first
sky maps and scientific results were released in February 2003. The resulting power
spectra put strong constraints on several cosmological parameters simultaneously, ruled
out many variants of cosmological models and put significant pressure on the models
outlined in Section 1.8.1 (Hinshaw, 2003; Page, 2003).

More information about WMAP can be found on the mission’s official home-page:
URL: http://map.gsfc.nasa.gov/.

1.9.5 Planck

The most promising of the upcoming CMB experiments is ESA’s (European Space
Agency) Planck satellite mission. The Planck satellite is to be launched in 2007 to-
gether with Herschel, ESA’s next infrared and submillimetre space observatory, and
will operate in an orbit close to the L2 point of the Sun-Earth system. Once in or-
bit, the Planck satellite has a lifetime expectancy of 1.5 years, and during this time
the satellite will map the CMB sky twice at all angular scales larger than 10′′ with
significantly better resolution and sensitivity than the WMAP mission. The goal is to
determine the CMB fluctuations to an accuracy of a few parts in 106. The satellite will
also map nearly all major galactic and extra-galactic sources of microwave emission,
and is expected to detect thousands of new extra-galactic microwave sources in so far
poorly observed frequency ranges.

The instruments on-board the satellite will consist of a telescope with a primary
mirror of 1.5 meters, and a payload which consists of two arrays of highly sensitive de-
tectors called the Low Frequency Instrument (LFI) and the High Frequency Instrument
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(HFI).
The LFI instrument is an array of 56 tuned radio receivers operating at a tempera-

ture of 20 K. These receivers are based on so-called High Electron Mobility Transistor
technology, where the incoming signal is amplified and then converted into voltage, and
will be grouped into three frequency channels centred between 30 and 70 GHz.

The HFI instrument is an array of 48 bolometric detectors, which work by converting
radiation into heat. This heat is then measured by a highly sensitive thermometer,
which in turn is read out and converted into real temperatures in a on-board computer.
The detectors will work in six different frequency channels centred between 100 and
857 GHz, and operate at a temperature of 0.1 K. To achieve such an extremely low
temperature, several complex refrigerators are used on-board the satellite.

The two instruments are designed and built by each their consortium of more than
20 scientific institutes.

The Planck sky maps will use HEALPix pixelisation with ∼ 107 (12 · 10242) pixels,
almost a factor of 104 more than that of the COBE experiment. The primary scientific
target of the Planck mission is to measure an accurate power spectrum up to a multipole
value of l ∼ 1000. Because of foregrounds and noise, it is highly likely that this is the
physical limit for what we can achieve, even if we had infinite resolution.

If Planck fulfils its potential, the mission will provide estimates of all cosmological
parameters to an accuracy of a few percent.

More information about the Planck mission can be found on
URL: http://astro.estec.esa.nl/Planck/.

1.10 Computational tools

As mentioned in Section 1.1, in the past, cosmology was a science where detailed ob-
servations were rare, and data analysis easily manageable. Today data are streaming
in from satellite missions and other experiments, and computers have become an indis-
pensable tool in the data analysis. But the next generation of CMB experiments will
produce such large amounts of observational data that straightforward analysis will
be impossible with the methods in use today. New and more efficient approaches are
therefore vital.

There have been suggested several new and improved computational tools for work-
ing with power spectra and CMB maps theoretically, analytically and numerically, but
so far there are only two that are widely accepted within the scientific society, CMB-
FAST and HEALPix. Most of this chapter is based on Górski et al. (2000), Eriksen
(2002) and information found on the official home-pages of CMBFAST and HEALPix.

1.10.1 CMBFAST

CMBFAST is a computer algorithm that generates power spectra based on different
cosmological models. The algorithm was first developed in 1996 by U.Seljak and M.
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Zaldarriaga, (Seljak and Zaldarriaga, 1996) and has later been revised several times.

The power spectra computed with the CMBFAST are based on integration over the
sources along the photon past light cone. The integral is divided into a time integral
over a geometrical term and a source term.

The source term is model dependent and can be expressed in terms of photon,
baryon and metric perturbations using a small number of differential equations. Be-
cause the source term is a slowly varying function, it only needs to be evaluated in a
small number of points. The geometrical term is a fast varying function and needs to
be evaluated in a large number of points. But since this term does not depend on the
particular cosmological model, it can be computed separately.

This split of the integral allows a significant reduction in the computational time
compared to standard methods, and is what makes the algorithm superior to competing
algorithms.

The CMBFAST algorithm is publicly available at URL:http://www.cmbfast.org/,
and also at URL:http://ascl.net/cmbfast.html.

1.10.2 The HEALPix package

When using computers in data analysis, the information has to be discretised in one
way or another. How we choose to do this depends on what kind of analysis we wish
to perform.

When working on the sphere, HEALPix is one way of dividing the sphere into dis-
crete pixels. HEALPix is short for ’Hierarchical, Equal Area, isoLatitude Pixelisation’,
and as the name implies, has three main features built into the pixelisation:

1. All pixels are organised in an hierarchical system with respect to resolution.

2. All pixels have equal area.

3. The pixel centres lie on rings of constant latitude.

The first feature enables fast nearest-neighbour searches, the second enables fast numer-
ical integration on the sphere, and the third feature is necessary if we want to apply
the Fast Fourier Transform to our maps. This last property will become extremely
valuable for the analysis of the mega-pixel CMB maps from missions like WMAP and
Planck.

As of today HEALPix is the only pixelisation scheme which has been able to in-
corporate all the three features mentioned above. Since HEALPix further comes with
with a set of mature implementations of both basic algorithms and a also number of
special-purpose programs, it is probably the strongest available candidate for a stan-
dard pixelisation scheme at the moment, and for these reasons it has also been chosen to
be the official pixelisation for both the WMAP and the Planck missions. Several other
pixelisations have been suggested during the last years, and there are still others under
development. The strongest competitor is probably Igloo, developed by a Cambridge-
based team led by Crittenden and Turok. But the corresponding software is not as
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Figure 1.7: View of the HEALPix partition of the sphere. Overplot of equator and meridians
illustrates the octahedral symmetry of HEALPix. Light-grey shading shows one of the eight
(four north and four south) identical polar base-resolution pixels. Dark-grey shading shows one
of the four identical equatorial base-resolutions.The different panels show how each of the base-
resolution pixels can be divided into smaller pixels, thus increasing the resolution. Reprinted
from (Górski et al., 2000).

refined, and as a result it has not yet been able to establish itself as a widespread
standard.

Let us take a closer look at how HEALPix actually divides the sphere into pixels.
First the sphere is divided into 12 base pixels of equal area, as shown in the upper left
panel of Figure 1.7. Note that these base pixels all lie on tree rings of constant latitude.

If we want to increase the resolution, each existing pixel is dived into four new
pixels, and the process is repeated until the desired resolution is obtained. The pixel
division process is illustrated in Figure 1.7.

The HEALPix software is divided into three parts:

1. A library of general-purpose routines.

2. Six special-purpose Fortran 90 programs.

3. Several IDL-utilities.

The most important special-purpose Fortran 90 programs for this thesis is without
doubt synfast. This program reads a user-defined power spectrum, Cl, and returns a
Gaussian realization based on that spectrum. The underlying method is quite straight-
forward; for each spherical harmonic coefficient alm synfast draws a random complex
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number from a two-dimensional Gaussian distribution with vanishing mean and vari-
ance given by Cl. Then it sums up all the individual terms for each pixel according to
the formula

∆T

T
=

∑
lm

almWlYlm(Ω). (1.10)

Here Wl is a Gaussian window function of user defined FWHM (full width, half maxi-
mum), and Ylm is the spherical harmonic at the given solid angle Ω = (φ, θ).

The anafast utility is another useful program provided by the HEALPix package.
This program returns the power spectrum Cl from a pixelized map, using Fast Fourier
Transforms.
Other programs included in the HEALPix software package are hotspot (which finds
the maxima and minima of a HEALPix map), map2gif (which produces a gif-image
from a map), smoothing (which convolves a map with a Gaussian beam) and ud-
grade (which translates a map from one Nside to another, using either averages or
interpolation).

The complete HEALPix package can be obtained by sending an email to K. M.
Górski (kgorski@eso.org). For more information about the HEALPix, see the official
HEALPix site: <URL: http://www.eso.org/science/healpix/>.

1.10.3 H.K. Eriksen’s Correlation Suite

The Correlations Suite was created by Hans Kristian Eriksen in 2002 as part of his
master thesis (Eriksen, 2002). The Suite consists of about 20 programs, divided into
two main sub-menus, correlations.pl and analysis.pl, for use in calculations and
analysis of different types of correlations functions and power spectra. I will only give
a brief description of the three programs from the Correlation Suite that I have used
in my thesis:
genmask: generates a suitable mask for the k-block structure.
structures: creates the initial structure of k-blocks.
twopt calc element: calculates a given bin of the two-point correlation func-

tion from the given structure and mapinfo files.
The mapinfo file contains the Nside value of the maps, the number of map files and

a list of all the filenames. All information needed to compute a given bin is contained
in the corresponding k-block.

A more thorough description of the Correlation Suite can be found in Hans Kristian
Eriksen’s master thesis.
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Chapter 2

The power spectrum and the
two-point correlation function

In this chapter I give an introduction to the statistics of the CMB. Then I define the
angular power spectrum Cl, and review how it is affected by the different cosmological
parameters from Section 1.8.2, before I review the mathematical connection between
the power spectrum and the angular two-point correlation function.

2.1 Statistics

Statistics, and particularly the theory of random fields, is a very useful tool in CMB
analysis. Any given cosmological theory will predict an underlying distribution of the
fluctuations in the CMB. The fluctuations are assumed to arise from some random
statistical process, and the exact pattern of fluctuations we observe on the sky is only
one single realization of this process. But we are not interested in the exact pattern of
the realization, just in the underlying statistics. So in this section I will give a brief
introduction to some basic statistical concepts commonly encountered in cosmology,
with weight on two of the most basic statistical properties that describes fluctuations:
the angular temperature power spectrum and its equivalent, the two-point correlation
function.

Statistical properties are often presented through Fourier representation. But since
we observe the CMB as a two-dimensional temperature distribution on the sky, i.e. on
a sphere, it is more common to present the CMB temperature observations through
spherical harmonics. Thus I have tried to use this representation consistently through-
out my thesis.

Most of this introduction is based on Tegmark (1995) and Watts and Coles (2003).

2.1.1 Random fields

A random field is a realization of a stochastic process and is rigorously defined in terms
of the joint probability distribution of its values at any n points, n = 1, 2, 3, . . . Hence,
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a random field δ is defined by specifying all the n-dimensional probability distributions
of [δ(x1), . . . , δ(xn)] for x1, [x1,x2], etc. In CMB applications density perturbations
δρ/ρ, velocity perturbations δv and gravitational potential perturbations δφ represent
three such random fields on the celestial sphere at last scattering. In this thesis I will
mainly be concerned with the measured temperature field, T.

Gaussian random fields

In most popular models for origin of cosmic structure, particularly those involving
cosmic inflation, the initial fluctuations form a Gaussian random field, which are the
simplest of all random fields.

One of the most important properties of Gaussian fields is that they are completely
described by their second-order statistics, like the angular power spectrum Cl or the
two-point correlation function C(χ). This makes analysis of Gaussian fields relatively
straightforward, because their statistical properties are fixed once the two-point corre-
lation function, or equivalently the power spectrum, is determined.

If the hypothesis of primordial Gaussianity is correct, then the cosmological density
fields began with random phases. As the Universe evolved, perturbations grew in mass
and generated non-linear, non-random phases that contain much information about the
spatial patterns of the fluctuations.

Homogeneity and isotropy

The formal definition of strict statistical homogeneity for a random field is that the
joint probability distributions must be invariant under spatial translations for any r
and for all orders. For a Gaussian field to be strictly homogeneous it is a necessary and
sufficient condition that the correlation function C(r) = 〈f(r1)f(r2)〉, where r is the
distance between r1 and r2, is a function of the scalar quantity r ≡ |r1 − r2| only. By
requiring rotational invariance, the fields also becomes statistically isotropic.

All standard cosmologies are based on the Cosmological Principle, which states
that at any given cosmological time the Universe is homogeneous and isotropic on large
scales. Thus, in cosmology the random fields are always assumed to be homogeneous
and isotropic, and hence the 1-point distribution is independent of r1 and the 2-point
distribution only depend on r, i.e. 〈f(r1)〉 = 0 and C(r) = C(r). So if the temperature
perturbations are well approximated as a homogeneous and isotropic Gaussian random
field, as CMB maps so far suggests, then Cl and C(χ) contain all statistical information
about the temperature distribution.

2.2 The two-point correlation function

The statistical properties of the 3-dimensional fluctuations causing the CMB are often
presented through a Cartesian Fourier representation. But what we observe is the two-
dimensional temperature distribution on the sky. Thus the usual approach to presenting
the CMB temperature observations is through spherical harmonics.
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When looking at the temperature fluctuations of the CMB, the two-point correlation
function expresses the correlation between the temperature perturbations at two points
Ωi = (θi, φi) and Ωj = (θj , φj) separated by an angle χij.

In spherical coordinates the temperature fluctuations at a given point (Ω) on the
celestial sphere are given by

∆T = ∆T (Ω) = T (Ω) − 〈T 〉, (2.1)

where T (Ω) is the temperature at the point Ω, and 〈T 〉 is the mean temperature of the
Universe.

In this context, the two-point correlation function is defined as

C(χij) = 〈∆Ti∆Tj〉. (2.2)

When estimating the two-point correlation function from observations, the angle brack-
ets represent the average taken over the observed sky. Estimating the two-point corre-
lation function from theoretical simulations, the angle brackets represent the average
taken over the ensemble.

The correlation function is related to the probability distribution of ∆T : if the
fluctuations form a Gaussian random field then the probability distributions of ∆Ti,
〈∆Ti∆Tj〉, are χ2-distributed with 2l+1 degrees of freedom. For high enough l (l ≥ 20),
〈∆Ti∆Tj〉 will be very close to Gaussian (see Section 5.3).

I have chosen to limit my work to the two-point correlation function, but there also
exist higher-order correlation functions. These contain information about the statistical
distribution and large scale structures, amongst others. For more information on higher
order correlation functions, see e.g. Eriksen (2002) or Eriksen et al. (2002).

The mathematical relation between the power spectrum and the angular two-point
correlation function will be reviewed in Section 2.4.

2.3 The power spectrum

The angular temperature power spectrum Cl reflects the fluctuation power at a given
angular scale. In other words, the angular temperature power spectrum tells us what
the amplitude of the CMB fluctuations is that have a given angular extension on the
sky. Figure 1.2 shows a typical power spectrum for a CDM universe model.

In spherical harmonic representation the expansion of the fluctuations over the sky
can be written as

∆T

T
(Ω) =

∞∑
l=0

m=l∑
m=−l

almYlm(Ω), (2.3)

where alm are the temperature multipole, or spherical harmonic, coefficients.
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In this representation the angular power spectrum is defined as

Cl ≡ 1
2l + 1

∑
m

〈| alm |2〉 . (2.4)

The angle brackets represent averaging over all realization, but as we only can observe
the Universe we live in, we only have one realization to observe. This apparently
unsolvable problem is solved by invoking the fair sample hypothesis, which states that
averages over finite sky patches of the Universe can be treated as averages over some
probability ensemble.

However, there is one problem we cannot get around: the low l modes in Equation
2.4 have only a small number of independent spherical harmonic coefficients, alm, so
that estimates of the angular power spectrum at low l are uncertain even if the whole
sky is available. Since there is nothing that can be done to improve this uncertainty,
this is an irreducible source of uncertainty, which is why it is called ’cosmic’ variance.

The first experimentally determined power spectrum was presented to the scientific
community when the first results from the COBE DMR instrument were published in
1992 (Smoot, 1992).

As the sensitivity of the CMB experiments constantly improves, the information in
the higher peaks is uncovered, providing us with a more accurate measurement of the
different parameters, and hence the assumptions made about the underlying model can
be relaxed. With the latest data from WMAP we seem to have a definite measurement
of the first acoustic peak at l = 220 and a second peak at l ∼ 540. Evidence also points
towards the existence of a third peak at l ∼ 800 (Hinshaw, 2003). Hence the most
interesting power spectrum feature to focus on in upcoming experiments like Planck
will be to confirm the third peak, the possible detection of any higher orders and the
accurate measurements of the positions and amplitudes of all peaks and troughs.

2.3.1 The power spectrum and the cosmological parameters

As pointed out earlier, the CMB offers a completely independent method of determining
the classical cosmological parameters with comparable or significantly higher accuracy
than any other observations and has fewer astrophysical systematic effects to worry
about. One of the main reasons why the CMB has generated such excitement is that
it contains enough information to constrain numerous parameters simultaneously. But
these exciting possibilities only hold if the Universe is accurately represented by a
model (see 1.8.1). Though, when simultaneously using totally different methods (e.g.
clustering of galaxies, supernova luminosity relations etc.) to constrain degeneracies
among parameters, very accurate estimates can in principle be found.

Given a set of power spectrum data, we want to know two pieces of information
about the cosmological parameters:
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Figure 2.1: The WMAP angular power spectrum. The upper panel shows the WMAP tem-
perature (TT) angular power spectrum. The WMAP temperature results are consistent with
the ACBAR and CBI measurements, as shown. The TT angular power spectrum is now highly
constrained. The best fit running index ΛCDM model is shown. The grey band represents the
cosmic variance expected for that model. The WMAP temperature-polarisation (TE) cross-
power spectrum is shown in the lower panel. Reprinted from Page (2003).
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(1) What parameter values provide the best-fit model?

(2) What are the error-bars on these parameters?

I will not go much into details on the error-bars here.

The features in the CMB power spectrum depend on various physical quantities which
can be expressed in terms of combinations of the cosmological parameters presented in
Section 1.8.2. Examples of such quantities are the baryon density Ωbh

2, the total matter
density Ω0h

2, the dark energy density ΩΛ and curvature Ωk = 1 − Ω0 − ΩΛ. Once we
know how these quantities behave in various models, we will be able to retrieve accurate
information on cosmological parameters from the power spectrum, as well as on the
physical scales associated with the formation of primary and secondary anisotropies,
matter-radiation equality, Silk damping and other mechanisms present in the early
Universe.

Curvature, Ωk

In his famous theory of general relativity, Einstein found that curvature of space-time
is equivalent to gravity and hence can be used as a measure of the amount of matter
in the Universe.

In practice the curvature of the Universe is measured by the size of the temperature
anisotropies in the CMB. The anisotropies appear at harmonics of the sound horizon,
which is a fixed physical scale at last scattering, the angular scale that these features
subtend on the sky gives a precise measure of the curvature of the Universe. Since the
natural period of the fluctuations sets the separation between the peaks in models where
the variations in the gravitational potential is slow compared to the natural frequency
of the oscillations, the spacing between the peaks in the power spectrum provides the
most robust test of the curvature (Hu and White, 1996).

Spatial curvature was irrelevant before recombination, i.e. when the fluctuations
in the CMB was created, thus changing the curvature does not effect the shape of the
power spectrum, it merely shift the peaks sideways. But conversion from physical scales
into angular scales depends strongly on how space is curved. Negative curvature (i.e.
positive Ωk) decreases the angle that a feature subtends on the sky and hence shifts
the peaks to towards higher l. Positive curvature (i.e. negative Ωk) makes the peaks
shift towards lower l. The dependence of the power spectrum on the curvature can be
seen in Figure 2.2.
So far I have only considered effects that arise purely from the last scattering surface,

where the presence of the curvature merely scale the features in angular or multipole
space. But foregrounds such as the ISW is also affected by the curvature, because in
addition to shifting the peaks sideways, curvature also cause the fluctuations in the
gravitational field to decrease over time, so that photons passing a potential well will
have an excess blueshift after climbing out of the well. This is the late ISW effect
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Figure 2.2: The Ωk-dependence of the power spectrum. Changing the curvature Ωk shifts the
peaks sideways, but does not effect the shape of the power spectrum. A decrease in curvature
shifts the peaks to towards higher l, while an increase in curvature makes the peaks shift towards
lower l.
Reprinted from <URL: http://background.uchicago.edu/∼whu/metaanim.html>.

described in Section 1.6.1, and shows up as an increase in power at large scales, i.e.
small l.

Changing the curvature, keeping ΩΛ and all the other matter densities fixed, the
Hubble parameter h will also change, since there exists a degeneracy between some of
the parameters.

Matter density, Ω0h
2

Because the gravitational potentials in the CMB only grows during the radiation dom-
inated era, and Ω0h

2 solely determine the time of matter-radiation equality, then the
matter density determines the size of the ISW effects, i.e. the amount of potential
decay due to radiation pressure inside the horizon during radiation domination. This
decay boosts the acoustic peaks, so lowering h and keeping Ω0 constant will increase
this boost by delaying the matter-radiation equality. By changing the expansion rate,
this will also shift the peaks somewhat. How changes in the Hubble parameter affects
the power spectrum when Ω0 is fixed, can be seen in the Figure 2.3.

Ω0h
2 also affects the size of the dark matter fluctuations, since dark matter starts

to collapse gravitationally only after matter-radiation equality.
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Figure 2.3: The dependence of the power spectrum on the Hubble parameter h. Lowering h

and keeping Ω0 constant boosts the acoustic peaks, but also shift the peaks towards higher l’s.
Reprinted from <URL: http://background.uchicago.edu/∼whu/metaanim.html>.

Baryon density, Ωbh
2

The baryon density creates a distinct signature in the acoustic oscillations (Hu and
Sugiyama, 1996). If the oscillations in the photon-baryon fluid were effectively about
the mean temperature, they would be of the same amplitude, and the peaks of the
power spectrum would all have the same height. Without baryons there would be no
acoustic oscillations, so naturally the peaks get higher as the baryon density increases.
But if the baryons contributed a significant mass, then the zero-point of the oscillations
would be displaced, and the odd-numbered peaks, i.e. the peaks in the power spectrum
arising from the positive oscillations, would get boosted more than the even-numbered
peaks, i.e. the peaks arising from the negative oscillations. The physical interpretation
of this effect is that, as baryon density increases, the potential wells deepened and the
plasma within the wells became increasingly compressed. This alternating peak height
signature is a distinctive signature of baryon mass, and helps distinguish baryons from
cold dark matter. Measurement of the heights of the first acoustic peaks thus allows a
precise determination of the cosmological baryon density.

The dependence of the power spectrum on the baryon density can be seen in
Figure 2.4.

Dark energy density, ΩΛ

Like curvature, the cosmological constant Λ was irrelevant at the time of recombina-
tion, so changing ΩΛ does not alter the shape of the power spectrum, it merely shifts
the peaks sideways. This is analogous to increasing the curvature, but the shift goes
in the opposite direction. Because of the parameter degeneracy, the Hubble parameter
h is changed as well, causing a shift, though not as strong as the shift caused by the
alterations in the cosmological constant.
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Figure 2.4: The Ωb-dependence of the power spectrum. Increasing the baryon density boosts
the peaks in the power spectrum. Note that the odd-numbered peaks is boosted more than the
even-numbered peaks.
Reprinted from <URL: http://background.uchicago.edu/∼whu/metaanim.html>.
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Figure 2.5: The dependence of the power spectrum on the cosmological constant Λ. Changing
ΩΛ shifts the peaks sideways, but does not change the shape of the power spectrum. Increasing
the vacuum density, keeping the total density fixed, both lowers the peaks and shifts them
towards higher l’s.
Reprinted from <URL: http://background.uchicago.edu/∼whu/metaanim.html>.
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Keeping the total density fixed and increasing the vacuum density, reduces the
baryon fraction of the Universe and lowers the peaks. Increasing the dark matter con-
tent of the Universe also pushes the time of matter-radiation equality further back in
time, shifting the peaks of the power spectrum towards smaller scales, as well as sliding
the power spectrum upwards.

In addition to shifting the peaks sideways, Λ also causes fluctuations in the gravita-
tional field to decrease over time. Since these extra fluctuations in the photon temper-
ature happen at late times (late ISW effect, see Section 1.6.1), they cause an increase
in the power at large scales, i.e. to the left in the power spectrum.

The dependence of the power spectrum on the cosmological constant can be seen
in Figure 2.5.

The spectral index, ns

Changing the spectral index of the density fluctuations simply tilts the power spectrum,
altering the ratio of small-scale to large-scale power. Increasing ns will raise the right
side of the spectrum relative to the left. This is especially visible in the low-l, Sachs-
Wolfe region of the power spectrum.

If the perturbations were purely adiabatic, the power-law initial conditions are
determined by the parameters Q, ns and rs from Section 1.8.2.

Neutrino species and neutrino masses

There have been made claims that the CMB should be able to constrain the effective
number of neutrino species, Nν . Nν determines the radiation energy density of the
Universe and thus modifies the time of matter-radiation equality, causing a boost in
the power spectrum. This effect can be distinguished from a change in Ω0h

2 because
it affects other physical parameters differently than a shift in either Ω0 or h. The
radiation density is fixed by the current CMB temperature, known from COBE, as well
as from the density of the neutrino backgrounds.

In principle the effect of neutrino masses, mν , can also be extracted from the CMB.
Massive neutrinos have several small effects on the CMB, like slight increase in the
sound horizon rs at decoupling, increase in the monopole perturbations due to free
streaming of massive neutrinos around the time of last scattering and a larger Sachs-
Wolfe effect induced by the delay in matter-radiation equality. This will suppress the
peaks in power spectrum.

Radiation velocities, Silk damping and reionization

In practice one also has to consider the contribution to the power spectrum from radi-
ation velocities. This effect fills in the valleys between the power spectrum peaks. In
addition, the amplitudes of the power spectrum peaks are suppressed by Silk damping.
Early reionization will also suppress the power spectrum, but only at angular scales
l � 10.
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Parameter degeneracy

Note that not all of the parameters discussed above are independent. If Ωb, Ω0, h,
and Λ are taken as independent parameters, there exists degenerate power spectra.
Luckily, other observables not associated with CMB break the degeneracy, for instance
the acceleration parameter q0, which is measured directly by high-redshift supernova
experiments.

There also exist other degeneracies in the temperature power spectrum: one between
Q and rs, and one between zr and ns. The first is illusory and the latter one will be
lifted by the power spectrum of large-scale fluctuations, polarisation measurements and
small-scale second-order temperature fluctuations.

Pixel noise, detector noise and beam width

Given a pixelized map of the CMB sky, one need to determine the contribution of
pixelisation noise, detector noise and beam width to the multipole moments and power
spectrum. Most current experiments oversample the sky with respect to their beam,
so the pixelisation noise is negligible.

A map with pixels of a few arcminutes in size and a signal-to-noise ratio of around
1 per pixel can determine Ωtot, Ω0h

2, Ωbh
2, ΩΛ, Q, ns and zr at a level of a few

percent simultaneously, up to the degeneracy mentioned above (see Bond et al. 1998).
Significant constraints can also be placed on rs and Nν .

The power spectrum and the correlations function

Having seen how the different parameters can be found from the power spectrum, it is
not difficult to understand that a precise estimate of the power spectrum is important
in order to find the correct model of the Universe. The power spectrum can be found di-
rectly from the maps of the observed CMB temperature fluctuations, and have become
the standard way of presenting CMB results, particularly after advances in detector
technology have lead to experiments with increasing sensitivity and hence larger data
sets.

There is in principle no loss of information when calculating the power spectrum
or the two-point correlation function, which is the real-space equivalent of the power
spectrum, from pixel data. Hence calculating the power spectrum from the two-point
function, should in principle not lead to any loss of information either. Thus in search
of faster and more precise methods to determine the power spectrum from CMB sky
maps, it could be that the two-point correlation function is a useful intermediate step
in the transition from pixels to power spectrum representation. And here we are at the
very essence of this thesis, because this is precisely what I wish to examine.



42 The power spectrum and the two-point correlation function

2.4 The equations

In this section I will review some properties of the angular two-point correlation func-
tion.

2.4.1 C(χ), the angular two-point correlation
function on the full sphere

The angular two-point correlation function is defined as

C(χ) ≡ 〈T (Ω1)T (Ω2)〉, (2.5)

where T is the temperature function at a given position Ω = (θ, φ), χ is the angle
between the two directional unit vectors Ω1 and Ω2. Here 〈〉 represents the average
over the sphere.

In principle one can also define the average as an average over an infinite ensemble
of realizations and use that to study the statistical properties of the ensemble. But
when using the correlation function on astrophysical problems, there is only one sky
available, i.e. one realization. One can then invoke the “fair sample” hypothesis which
states that the ensemble average should be equivalent to taking averages over large
enough sample areas.

Expressing the average as an integral over the sphere, the angular two-point corre-
lation function is

C(χ) ≡
∫ ∫

T (Ω1)T (Ω2)δ(cos χ − cos α12)dΩ1dΩ2∫ ∫
δ(cos χ − cos α12)dΩ1dΩ2

. (2.6)

The expression in the denominator comes from the normalisation of the angular
correlation function over the sphere. The angle between Ω1 and Ω2 is in general given
by

cos α12 = cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ1 − φ2). (2.7)

The first step is to show that the denominator in (2.6) equals 8π2. One starts by
looking at the Kroenecker δ-function. This function can be expanded into a sum of
Legendre polynomials,

δ(cos χ − cos α12) =
∞∑
l=0

alPl(cos α12) =
∑

l

alPl(cos α12), (2.8)

using the convention that
∑

l =
∑∞

l=0.
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By multiplying both sides of (2.8) by Pl′(cos α12), integrating over α12 and using the
orthogonality and normalisation relation for Legendre polynomials,∫ 1

−1
Pl(x)Pl′(x)dx =

2δl,l′

2l + 1
, (2.9)

one finds

Pl′(cos χ) =
∑

l

al
2δll′

2l + 1
. (2.10)

From this one gets that the coefficient al is

al =
2l + 1

2
Pl(cos χ). (2.11)

Substituting (2.11) into (2.8), one sees that the Kroenecker δ can be expressed as

δ(cos χ − cos α12) =
∑

l

2l + 1
2

Pl(cos χ)Pl(cos α12). (2.12)

The addition theorem for spherical harmonics says that, for two given direction unit
vectors on the full sphere where the angle between them is given by equation (2.7),

Pl(cos α12) =
4π

2l + 1

∑
m

Y ∗
lm(θ1, φ1)Ylm(θ2, φ2), (2.13)

using the convention that
∑

m =
∑l

m=−l.

Thus the δ-function can be written

δ(cos χ − cos α12) = 2π
∑
lm

Pl(cos χ)Y ∗
lm(θ1, φ1)Ylm(θ2, φ2). (2.14)

The dependence on the two direction vectors are now separated.

Since
Y00(θ, φ) = Y ∗

00(θ, φ) =
1√
4π

, (2.15)

both Y ∗
lm(θ1, φ1) and Ylm(θ2, φ2) are given by

Y
(∗)
lm (θ, φ) =

√
4πY00(θ, φ)Y (∗)

lm (θ, φ). (2.16)

The orthonormality relation for spherical harmonics, (2.9), gives∫ 2π

0

∫ π

0
Ylm(θ, φ) sin θdθdφ =

∫ 2π

0

∫ π

0
Y ∗

lm(θ, φ) sin θdθdφ =
√

4πδl0δm0. (2.17)
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Thus, using that for l = 0 the Legendre polynomial is

P0(x) = 1, (2.18)

the denominator in (2.6) is∫ ∫
δ(cos χ − cos α12)dΩ1dΩ2 = 8π2P0(cos χ) = 8π2. (2.19)

Now it remains to show that the numerator in (2.6) is equal to 2π
∑

lm |alm|2Pl(cos χ).
The spherical harmonic coefficient alm can be written as

alm =
∫ 2π

0

∫ π

0
T (θ, φ)Y ∗

lm(θ, φ) sin θdθdφ. (2.20)

From this one finds the product | alm |2= alma∗lm to be

| alm |2=
∫ ∫

T (Ω1)T (Ω2)Y ∗
lm(Ω1)Ylm(Ω2)dΩ1dΩ2, (2.21)

using the definition dΩ = sin θdθdφ.

Multiplying (2.21) by 2πPl(cos χ) and taking the sum over all l’s and m’s, one finds

2π
∑
lm

Pl(cos χ) | alm |2= 2π
∑
lm

∫ ∫
Pl(cos χ)T (Ω1)T (Ω2)Y ∗

lm(Ω1)Ylm(Ω2)dΩ1dΩ2.

(2.22)
Using (2.14), the numerator in (2.6) becomes∫ ∫

T (Ω1)T (Ω2)δ(cos χ − cos α12)dΩ1dΩ2 = 2π
∑
lm

| alm |2 Pl(cos χ). (2.23)

From (2.19) and (2.23), one sees that the angular two-point correlation function on
the full sphere is given by

C(χ) =
1
4π

∑
lm

| alm |2 Pl(cos χ). (2.24)

This relation was applied to astronomy for the first time by Peebles (1973).

〈C(χ)〉, the average angular two-point correlation function on the full sphere

When averaging over infinitely many realizations, e.g. infinitely many universes, the
angular two-point correlation function on the full sphere is

〈C(χ)〉 =
1
4π

∑
l

(2l + 1)ClPl(cos χ) (2.25)

where Cl is the angular power spectrum, and the average 〈〉 is taken over all realizations.
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This can be seen in the following way: When taking the average of Equation (2.6),
only the temperature functions T (Ω) are affected. Thus the denominator is unaffected
by the average and is given by Equation (2.19). The numerator is given by∫ ∫

〈T (Ω1)T (Ω2)〉δ(cos χ − cos α12)dΩ1dΩ2 = 2π
∑
lm

〈| alm |2〉Pl(cos χ). (2.26)

The relationship between the power spectrum and the spherical harmonic coefficients
alm is

〈alma∗l′m′〉 = δll′δmm′Cl, (2.27)

and the angular power spectrum, Cl, is defined as

Cl ≡ 1
2l + 1

∑
m

〈| alm |2〉, (2.28)

since there are (2l + 1) m-modes for each l-mode.

Using (2.28), the average angular two-point correlation function on the full sphere is

〈C(χ)〉 =
1
4π

∑
l

(2l + 1)ClPl(cos χ). (2.29)
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Chapter 3

Deriving the correlation functions

The exact equations that connect Cl and C(χ) reviewed in Chapter 2 build on two
assumptions: 1) The field T (Ω) is a continuous field making the integrals real integrals,
and 2) the field T (Ω) is defined over the whole sphere, so that the orthogonality of
the spherical harmonics can be exploited. In real world applications, none of these
assumptions are fulfilled. In any CMB experiment the temperature will be measured in
discrete pixels on the sky. And the correlations functions must be evaluated in bins, by
multiplying and adding the pixel values for all pixel pairs with an angular separation
that is within the limits of each bin. With this discretisation, integrals must be replaced
by sums. Furthermore, quite large parts of the sky are polluted by foregrounds and
must be cut out before the estimation of the correlations function. Also, when there is
little interest in the largest scales, one may divide up the sky in many patches, estimate
C(χ) on each patch and then average them. One main goal of this dissertation is to
study the effect on Cl-estimation from measuring C(χ) in bins in χ and from basing
the estimate on non-complete parts of the sky.

In this chapter I will derive analytically the connection between Cl and C(χ) when
C(χ) is estimated in bins in χ, both for complete sky and when only circular patches
or rings are accessible on the sky.

3.1 The binned two-point correlation function

3.1.1 Full sky coverage

The binned two-point correlation function for a bin with lower limit χ1 and upper limit
χ2 is given as the average of 〈∆T (Ω1)∆T (Ω2)〉 where the angle between Ω1 and Ω2 is
in the range χ1 < |Ω1 − Ω2| < χ2. For full sky coverage it can easily be seen that by
replacing the Dirac-delta function in Equation (2.6) with a step function S(cos α12)

µ2
µ1 ,

where µ1 = cos χ1 and µ2 = cos χ2 limits the bin, the binned two-point function is
given by

C(χ)χ2
χ1

=
∫ ∫

T (Ω1)T (Ω2)S(cos α12)
µ2
µ1dΩ1dΩ2∫ ∫

S(cos α12)
µ2
µ1dΩ1dΩ2

. (3.1)
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Since all functions, given some qualifications, can be written as a sum of Legendre
polynomials, I expand the step-function into such a sum with coefficients bl

µ2
µ1

:

S(cos α12)µ2
µ1

=
∑

l

bl
µ2
µ1

Pl(cos α12). (3.2)

I then multiply both sides of Equation (3.2) with Pl′(cos α12), and integrate over
cos α12:∫ 1

−1
S(cos α12)µ2

µ1
Pl′(cos α12)d(cos α12) =

∑
l

bl
µ2
µ1

∫ 1

−1
Pl(cos α12)Pl′(cos α12)d(cos α12).

(3.3)
Using the orthogonality and normalisation relation for Legendre polynomials (2.9),

I find that ∫ 1

−1
S(cos α12)µ2

µ1
Pl′(cos α12)d(cos α12) =

∑
l

2
2l + 1

bl
µ2
µ1

δll′ . (3.4)

From this I find that the coefficients can be written

bl
µ2
µ1

=
2l + 1

2

∫ 1

−1
S(cos α12)µ2

µ1
Pl(cos α12)d(cos α12). (3.5)

Using the addition theorem for spherical harmonics (Eq. (2.13)) on Equation (3.2),
I can write the step function in terms of spherical harmonics,

S(cos α12)µ2
µ1

=
∑

l

4π
2l + 1

bl
µ2
µ1

∑
m

Y ∗
lm(Ω1)Ylm(Ω2). (3.6)

By redefining the set of coefficients with a more convenient normalisation

kl
µ2
µ1

≡ 4π
2l + 1

bl
µ2
µ1

, (3.7)

I can write the step-function as

S(cos α12)µ2
µ1

=
∞∑
l=0

l∑
m=−l

kl
µ2
µ1

Y ∗
lm(Ω1)Ylm(Ω2). (3.8)

The new coefficients kl
µ2
µ1

, which I call the Legendre transform, are hence

kl
µ2
µ1

=
8π2

2l + 1

l∑
m=−l

∫ 1

−1
S(cos α12)µ2

µ1
Y ∗

lm(Ω1)Ylm(Ω2)d(cos α12). (3.9)

The angle α12 between the directional unit vectors Ω1 and Ω2 is given by Equation
(2.7).
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From (2.13), I see that kl
µ2
µ1

can be written

kl
µ2
µ1

= 2π
∫ µ2

µ1

Pl(cos α12)d(cos α12), (3.10)

since

S(cos α12)µ2
µ1

=
{

1 for µ1 ≤ cos χ ≤ µ2,
0 otherwise.

In Equation (3.10) cos α12 is an arbitrary variable, so I choose to change the variable
to µ. Thus the Legendre coefficient is given by

kl
µ2
µ1

= 2π
∫ µ2

µ1

Pl(µ)dµ. (3.11)

Replacing S(µα)µ2
µ1 with (3.8) in Equation (3.1) gives

C(χ)χ2
χ1

=

∑
lm kl

µ2
µ1

∫ ∫
T (Ω1)T (Ω2)Y ∗

lm(Ω1)Ylm(Ω2)dΩ1dΩ2∑
lm kl

µ2
µ1

∫ ∫
Y ∗

lm(Ω1)Ylm(Ω2)dΩ1dΩ2
. (3.12)

Using (2.17), the denominator in Equation (3.1) becomes

4π
∑
lm

kl
µ2
µ1

δl0δm0 = 4πk0
µ2
µ1

. (3.13)

By expanding T (Ω) into a sum of spherical harmonics

T (Ω) =
∑
lm

almYlm(Ω), (3.14)

and using that T (Ω) = T ∗(Ω), the numerator in (3.1) becomes∑
l,l′,l′′

∑
m,m′,m′′

kl
µ2
µ1

al′m′a∗l′′m′′

∫
Y ∗

lm(Ω1)Yl′m′(Ω1)dΩ1

∫
Ylm(Ω2)Y ∗

l′′m′′(Ω2)dΩ2

=
∑
lm

kl
µ2
µ1

| alm |2 . (3.15)

since ∫
Y ∗

lm(Ω)Yl′m′(Ω)dΩ = δll′δmm′ . (3.16)

From Equations (3.13) and (3.15) I find that the binned two-point correlation func-
tion on the full sphere is

C(χ)χ2
χ1

=
1

4πk0

∑
lm

kl
µ2
µ1

| alm |2, (3.17)

where the Legendre transform kl
µ2
µ1

is given by Equation (3.11).
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The average binned two-point correlation function
- full sky coverage

When taking the average of Equation (3.17) over all realizations, only the alm’s are
affected. This gives

〈C(χ)χ2
χ1
〉 =

∑
lm

kl
µ2
µ1
〈| alm |2〉. (3.18)

Using the definition of the power spectrum in Equation (2.28), I find that the binned
correlation function is given in terms of the power spectrum Cl by

〈C(χ)χ2
χ1
〉 =

1
4πk0

∑
l

(2l + 1)Clkl
µ2
µ1

. (3.19)

3.2 The angular two-point correlation function
- partial sky coverage

Most CMB experiments observe smaller patches of the sky, and even experiments scan-
ning the full sky will, because of various foregrounds, never be able to observe the CMB
radiation from the complete celestial sphere. On the cut sphere the Legendre polyno-
mials are no longer independent or normalised, since Equation (3.16) is only valid on
the full sphere. This makes Equations (2.24) and (2.29), and their binned equivalents
(3.17) and (3.19), invalid in cases of partial sky coverage.

3.2.1 The angular two-point correlation function
- disk-shaped sky patches

In this section I derive the two-point correlation functions in the case where the sky
patches are shaped like disks of various sizes. The unbinned equations were derived
independently by Torstein O. Sæbø and myself, while the binned equations are based
on the equations I derived in Section 3.1.

First I review the unbinned case. From the Equations (2.6), (2.14) and (2.15) it is
easy to see that, independent of sky coverage, the denominator can be written as

∫
δΩ

∫
δΩ

δ(cos χ − cos α12)dΩ1dΩ2

= 8π2
∑

l

Pl(cos χ)
∑
m

∫
δΩ

Y00(Ω1)Y ∗
lm(Ω1)dΩ1

∫
δΩ

Y00(Ω2)Ylm(Ω2)dΩ2.(3.20)

The integrals are taken over the surface area δΩ of the observed sky patch.
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On a circular patch of the sphere with radius θmax, the normalisation of the spherical
harmonic functions Ylm are no longer given by Equation (3.16). In order to obtain a
new normalisation, I use the fact that the Ylm’s can be written as a function of the
associated Legendre polynomials

Ylm(Ω) = AlmPlm(cos θ)eimφ, (3.21)

where

Alm =

√
(2l + 1)

4π
(l − m)!
(l + m)!

. (3.22)

Hence∫
δΩ

Ylm(Ω)Y ∗
l′m′(Ω)dΩ = Amm′

ll′

∫ θmax

θmin

Plm(cos θ)Pl′m′(cos θ) sin θdθ

∫ 2π

0
ei(m−m′)φdφ

= 2πAmm′
ll′

∫ θmax

θmin

Plm(cos θ)Pl′m′(cos θ) sin θdθδmm′ (3.23)

where

Amm′
ll′ =

√
(2l + 1)(2l′ + 1)

2

√
(l − m)!
(l + m)!

(l′ − m′)!
(l′ + m′)!

. (3.24)

Defining the integral Imm′
ll′ ,

Imm′
ll′ = 2π

∫ cos θmin

cos θmax

Plm(µ)Pl′m′(µ)dµ, (3.25)

the normalisation on a circular patch of the sphere is:∫
δΩ

Ylm(Ω)Y ∗
l′m′(Ω)dΩ = Amm′

ll′ Imm′
ll′ δmm′ . (3.26)

As the position of the sky patch on the sphere is unimportant, I have chosen the
orientation of the sphere so that the patch I look at is centred on the north pole/one
of the poles, thus obtaining azimuthal symmetry. This means that m = m′, and the
expressions Imm′

ll′ and Amm′
ll′ reduces to Im

ll′ and Am
ll′ respectively. For the denominator,

this gives
8π2

∑
l

Pl(µ)
∑
m

(A0
l0I

0
l0)

2 = 2π2
∑

l

(2l + 1)Pl(cos χ)I2
l (3.27)

where
A2

l = (A0
l0)

2 =
2l + 1

4
, (3.28)

and

Il = I0
l0 =

∫ cos θmin

cos θmax

Pl(µ)dµ, (3.29)

having used the Legendre property of Equation (2.18).
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The expression for the denominator for a circular patch can be simplified even further.
Setting θmin = 0 and θmax = r, we see that for l ≥ 1, the integral over Pl(µ) is

∫ 1

cos r
Pl(µ)dµ =

(Pl−1,0(cos r) − Pl+1,0(cos r))
2l + 1

= − sin rPl,−1(cos r), (3.30)

where I have used the following recursion formulas for Legendre and associated Legendre
polynomials:

(2l + 1)Pl(x) =
d

dx
Pl+1(x) − d

dx
Pl−1(x) (3.31)

and
Pl−1,m(x) − Pl+1,m(x)

(2l + 1)
=

√
1 − x2Pl,m−1(x). (3.32)

Note that both recursion formulas are only valid for l≥ 1.

Thus, for disk-shaped sky patches with radius r, the integral Il is

Il =
∫ 1

cos r
Pl(µ)dµ =

{
1 − cos r for l = 0,
− sin rPl,m=−1(cos r) for l ≥ 1.

(3.33)

The denominator in this case therefore becomes∫
δΩ

∫
δΩ

δ(cos χ−cos α12)dΩ1dΩ2 = 2π2(1−cos r)2+sin r2
∞∑
l=1

(2l+1)Pl(cos χ)[Pl,−1(cos r)]2).

(3.34)

From Equations (2.6) and (2.14) it is easy to see that independent of sky coverage
the numerator can be written as∫

δΩ

∫
δΩ

T (Ω1)T (Ω2)δ(cos χ − cos α12)dΩ1dΩ2

= 2π
∑

l

Pl(cos χ)
∑
m

∫
δΩ

T (Ω1)Y ∗
lm(Ω1)dΩ1

∫
δΩ

T (Ω2)Ylm(Ω2)dΩ2. (3.35)

By using that T (Ω) = T (Ω)∗ and expanding the temperature function T (Ω) into a
sum of spherical harmonic, this becomes�

δΩ

�
δΩ

T (Ω1)T (Ω2)δ(cos χ − cos α12)dΩ1dΩ2 (3.36)

= 2π
�
lm

Pl(cos χ)
�
l′m′

al′m′

�
δΩ

Yl′m′(Ω1)Y
∗

lm(Ω1)dΩ1

�
l′′m′′

a∗
l′′m′′

�
δΩ

Y ∗
l′′m′′ (Ω2)Ylm(Ω2)dΩ2.
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One way of proceeding is to use the pseudo power spectrum defined by E. Hivon, B.
Wandelt and K. Gorski (Wandelt et al., 2001),

C̃l =
1

2l + 1

∑
m

ãlmã∗lm, (3.37)

where the pseudo spherical harmonic coefficient is

ãlm =
∑
l′m′

al′m′

∫
δΩ

Yl′m′(Ω)Y ∗
lm(Ω)dΩ. (3.38)

Note that all dependence on the geometry of the sky patch is contained in the ãlm’s.

Using the notation above, the numerator (Eq. 3.36) can be written

2π
∑

l

Pl(µ)
∑
m

| ãlm |2= 2π
∑

l

(2l + 1)C̃lPl(cos χ). (3.39)

Thus the angular two-point correlation function in the case of disk-shaped sky patches,
is

C(χ)disk = l(2l+1)C̃lPl(cos χ)
D(χ) , (3.40)

or equivalently

C(χ)disk =
∑

lm Pl(cos χ)ãlmã∗lm
D(χ)

, (3.41)

where D(χ) in the case of azimuthal symmetry is

D(χ) = π

[
(cos r − 1)2 + sin2 r

∞∑
l=1

(2l + 1)Pl(cos χ) [Pl,−1(cos r)]2
]

, (3.42)

and the ãlm’s are found by using Equations (3.26) and (3.38).

The average angular two-point correlation function
- disk-shaped sky patches

Taking the average of Equation (3.41) over all realizations, only the ãlm’s are affected.
The denominator is given by (3.42).

The average equivalent to the pseudo power spectrum in (3.37) is

〈C̃l〉 =
1

2l + 1

∑
m

〈ãlmã∗lm〉. (3.43)
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Replacing the average ãlm’s with (3.43), the average two-point correlation function
in the case of disk-shaped sky patches becomes

〈C(χ)disk〉 =
∑

l(2l + 1)〈C̃l〉Pl(cos χ)
D(χ)

, (3.44)

where D(χ) is given by Equation (3.42).

3.2.2 The binned two-point correlation function
- disk-shaped sky patches

In the case of partial sky coverage, the binned two-point correlation function is given
by

C(χ)χ2

χ1,partial =

∫
δΩ

∫
δΩ T (Ω1)T (Ω2)S(µα)µ2

µ1dΩ1dΩ2∫
δΩ

∫
δΩ S(µα)µ2

µ1dΩ1dΩ2
, (3.45)

where the step function S(µα)µ2
µ1 is given by Equation (3.8). The integrals are taken

over the surface area δΩ of the observed sky patch.

I combine the procedures of Sections 3.1.1 and 3.2.1. First I take a look at the
denominator in (3.45). To exploit azimuthal symmetry, I split the spherical harmonic
Ylm in a polar and and azimuthal part. Using this and Equation (3.8), I find that�

δΩ

�
δΩ

S(µα)µ2
µ1dΩ1dΩ2 =

�
lm

kl
µ2
µ1A2

lm

�
δΩ

�
δΩ

Plm(µ1′)Plm(µ2′)e
im(φ1−φ2)dµ1′dµ2′dφ1dφ2, (3.46)

where µi′ = cos θi.
In (3.46) µi′ are arbitrary variables, and the integrals over φi equals zero unless

m = 0. Thus the integrals can be written

∫
δΩ

∫
δΩ

S(µα)µ2
µ1

dΩ1dΩ2 = 4π2
∑

l

kl
µ2
µ1

A2
l

[∫ cos θmin

cos θmax

Pl(µ)dµ

]2

. (3.47)

A2
l is given by (3.28).

Looking at a disk with radius r on the sphere, this becomes

4π2
�

l

kl
µ2
µ1A2

l

�� cos θmin

cos θmax

Pl(µ)dµ

�2

= 2π2

�
k0

µ2
µ1(cos r − 1)2 +

∞�
l=1

(2l + 1)kl
µ2
µ1 [

� 1

cos r

Pl(µ)dµ]2
�

.

(3.48)

Using (3.33), the denominator in Equation (3.45) becomes
�

δΩ

�
δΩ

S(µα)µ2
µ1dΩ1dΩ2 = 2π2

�
k0

µ2
µ1(cos r − 1)2 + sin2 r

∞�
l=1

(2l + 1)kl
µ2
µ1 [Pl,−1(cos r)]2

�
. (3.49)
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I now look at the numerator: When I replace T (Ω) with the sum of harmonics (3.14),
and use that T (Ω) = T ∗(Ω), the numerator becomes�

δΩ

�
δΩ

T (Ω1)T (Ω2)S(µα)µ2
µ1dΩ1dΩ2 (3.50)

=
�

l,l′,l′′

�
m,m′,m′′

kl
µ2
µ1

�
δΩ

al′m′Yl′m′(Ω1)Y ∗
lm(Ω1)dΩ1

�
δΩ

a∗
l′′m′′Y ∗

l′′m′′(Ω2)Ylm(Ω2)dΩ2.

From Equation (3.23) I see that when integrating over δΩ, only m = m′ = m′′ con-
tributes to the sums over all m′ and m′′. Hence, using Equation (3.38), the numerator
in (3.45) becomes ∑

l

kl
µ2
µ1

∑
m

ãlmã∗lm =
∑

l

kl
µ2
µ1
〈C̃l〉, (3.51)

with the pseudo power spectrum C̃l from Equation (3.37).
I therefore find that in the case of partial sky coverage with disk-shaped sky patches,

the two-point pseudo correlation function on the sphere is

〈C(χ)χ2

χ1,disk〉 = l(2l+1)C̃lkl
µ2
µ1

2πD(χ)bin
, (3.52)

or equivalently

〈C(χ)χ2

χ1,disk〉 =

∑
l kl

µ2
µ1

∑
m | ãlm |2

2πD(χ)bin
. (3.53)

In the case of azimuthal symmetry D(χ)bin is

D(χ)bin = π

[
k0

µ2
µ1

(cos r − 1)2 + sin2 r

∞∑
l=1

(2l + 1)kl
µ2
µ1

[Pl,−1(cos r)]2
]

. (3.54)

The average binned two-point correlation function
- disk-shaped sky patches

When taking the average of Equation (3.53) over all realizations, once again only the
ãlm’s are affected and the denominator is given by Equation (3.49).

Using the expression for 〈|ãlm|2〉 from Equation (3.43), the numerator becomes∫
δΩ

∫
δΩ

T (Ω1)T (Ω2)S(µα)µ2
µ1

dΩ1dΩ2 =
∑

l

(2l + 1)〈C̃l〉kl
µ2
µ1

. (3.55)

So when averaging over infinitely many realizations, e.g. infinitely many universes or
disk-shaped sky patches of equal size, the binned two-point pseudo correlation function
becomes

〈C(χ)χ2

χ1,disk〉 = l(2l+1)〈C̃l〉kl
µ2
µ1

2πD(χ)bin
. (3.56)

Equivalently

〈C(χ)χ2

χ1,disk〉 =

∑
l kl

µ2
µ1

∑
m〈ãlmã∗lm〉

2πD(χ)bin
. (3.57)
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3.2.3 Ring-shaped sky patches

There is a relatively natural further step in the development of the these equations, and
that is the case of ring-shaped sky patches. I will not investigate this case any further
in my thesis, but have included the expressions for completeness.

The two-point pseudo correlation function - ring-shaped sky patches

The only difference from circular patches is that a ring on the sphere will have an inner
radius r1 so that the lower limit of the bin is θmin = r1 instead of 0. Thus the two-point
correlation function in the case of ring-shaped sky patches with azimuthal symmetry is

C(χ)ring =
∑

l(2l + 1)C̃lPl(cos χ)
E(χ)

, (3.58)

and the average pseudo correlation function

〈C(χ)ring〉 =
∑

l(2l + 1)〈C̃l〉Pl(cos χ)
E(χ)

. (3.59)

In the case of azimuthal symmetry E(χ) is

E(χ) = π

�
(cos r2 − cosr1)

2 +
∞�

l=1

(2l + 1)Pl(cos χ)[sin r2Pl,−1(cos r2) − sin r1Pl,−1(cos r1)]
2)

�
. (3.60)

The binned two-point correlation function - ring-shaped sky patches

In the case of binned ring-shaped sky patches, the two-point pseudo correlation function
is

C(χ)χ2

χ1,ring = l(2l+1)C̃lkl
µ2
µ1

2πE(χ)bin
, (3.61)

and the average pseudo correlation function is

〈C(χ)χ2

χ1,ring〉 =

∑
l(2l + 1)〈C̃l〉kl

µ2
µ1

2πE(χ)bin
. (3.62)

In the case of azimuthal symmetry E(χ)bin is

E(χ)bin = π

�
k0

µ2
µ1(cos r2 − cosr1)

2 +
∞�

l=1

(2l + 1)kl
µ2
µ1 [sin r2Pl,−1(cos r2) − sin r1Pl,−1(cos r1)]

2)

�
.

(3.63)



Chapter 4

Work and results

In chapter 3, I derived analytic formulae for the unbinned and binned angular two-
point correlation functions, both for full sky coverage and for the case when only a disk
or a ring of the sky is available for analysis. In this chapter I use these formulae to
test whether binning is important and needs to be taken into account when the power
spectrum is derived, and how these results are affected by limited sky coverage.

4.1 Full sky coverage

I start my analysis with the case with the least complications: complete sky coverage.
Then I can isolate and do a detailed study of the effect of binning the data, making it
easier to distinguish the binning effect from the effects of partial sky coverage later on.

Figure 4.1: Plot showing the input power spectrum used in the calculations.
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Figure 4.2: The unbinned and binned analytical two-point correlation functions for Nbins = 500
and Nbins = lmax = 1000 at full sky coverage. In the left panel it is impossible to distinguish the
three functions. The panel in the middle shows a close-up of the region around 2◦, where the
binned two-point function with Nbins = 500 depart from the unbinned two-point function. In
the right panel is a close-up of the region where the binned two-point function with Nbins = 1000
begin to depart from the unbinned two-point function. Comparing the two close-ups, one can
see that the fewer the bins are, the larger the deviations between the binned and the unbinned
two-point functions become.

4.1.1 The binned and unbinned correlation function

To do a first analytical comparison of the binned and the unbinned two-point correlation
functions, I calculated the average unbinned and binned analytical two-point correlation
functions of Equations (2.29) and (3.19), using a fixed power spectrum pre-calculated
with CMBFAST to fit the theoretical expectations of a CDM model, as input power
spectrum. A plot of the input spectrum, which contains 1000 multipoles, is shown in
Figure 4.1. The results of the correlation function calculations are shown in Figure 4.2.

In the left panel of Figure 4.2 I have plotted the binned and the unbinned correlation
functions for multipoles up to lmax = 1000. At first glance there does not seem to be
any difference between the two functions, but a close-up of the plots shows a less
comfortable reality. The panel in the middle shows a plot of the unbinned two-point
function and the binned function with 500 bins (Nbins = 500). Here one can clearly
see that the largest differences appear in the first few bins, in this particular case at
angles smaller than 2 degrees. This is as expected, since the bins have little sensitivity
to features that are smaller than the bin size, the binning will have largest effect at
small scales. The smallest features will simply be smoothed out. Unfortunately, these
features are often also the cosmologically most interesting ones. So, in other words, the
binning effect is largest at precisely those angles were we need the uncertainty to be as
small as possible. Since the bin size sets the lower limit on how small a feature can be
before it becomes undetectable, the differences between the binned and the unbinned
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functions decrease as the number of bins increase, and hence the bin size is decreased.
In this process, the number of differing bins between the two functions naturally also
did decrease. When the number of bins equal the number of multipoles (Nbins = lmax)
only the bins containing pairs with angular separation of less than 0.6 degrees, differed
(see the right panel of Figure 4.2).

For reasons concerning sky coverage, as mentioned earlier, I have no way to com-
pare the analytical full sky results with real CMB data. I could have simulated maps
and calculated the average correlation function from them for comparison, but since I
already in this first analytical examination found that it was difficult to read out any
informative trends or details about the binning effect apart from the positive effect
of increasing Nbins, I decided that the calculations would take up too much CPU time
with the necessary map resolution (Nside ≥ 128) compared to the little new information
I would gain from the results.

4.1.2 The rederived power spectrum

In order to retrieve a more ’easy-to-read’ picture of the loss of information caused
by the binning, I decided instead to numerically rederive the power spectrum from
the correlation functions to compare with the input spectrum. To rederive the power
spectrum from the correlation function I chose to use Gauss-Legendre integration

Crecalc
l = 2π

� π

0

C(χ)binnedPl(cos χ) sin χd(cos χ) � 2π

Nbins�
i=1

wiC(arccos µi)binnedPl(µi), (4.1)

where µi = cos χi, Nbins are the number of bins in the correlation function and wi are
weight functions estimated at the roots of Legendre polynomials (Press et al., 1992).
For a more thorough discussion on the numerical integration of (4.1), see e.g. Sæbø
(2002).

I also added both a beam and a pixel window to the rederived power spectra to
get results that were closer to the results expected from satellite observations. Both
the beam and the pixel window are window functions, i.e. functions that correct for
effects that arises in the observation because of the choice of set up in the experiment,
like beam geometry or pixelisation scheme. The rederived power spectra are shown in
Figure 4.3, and compared with the input power spectrum.

We see that when the number of bins is smaller than the maximum number of
multipoles present in the input spectrum, Nbins < lmax, it is difficult to regain much
information about the input spectrum (see upper left panel of Figure 4.3). As the num-
ber of bins increase, the rederived power spectrum begins to more and more resemble
the input spectrum, and already at Nbins = lmax/2 it is possible to recognise some of
the features from the input spectrum in the rederived spectrum.

When the bin size is too large compared to the structures we are looking at, we are
unable to gain any information about the object. In this case the structures are pixel
pairs separated with an angular distance χ, so I will be unable to gain any information
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Figure 4.3: Comparison of the input power spectrum and the binned power spectra with differ-
ent Nbins values for full sky coverage. The upper left panel shows the binned power spectrum for
Nbins � lmax. Although some of the features from the input spectrum are recognisable in the
rederived spectrum, most of the information from the input spectrum is lost. The upper right
panel shows the binned spectrum of Nbins = lmax versus the input spectrum. All features from
the input spectrum are now recognisable, but the rederived spectrum still has less power than
than the original spectrum. The lower left panel shows different binned power spectra where
Nbins ≥ lmax versus the input power spectrum. The rederived spectra move asymptotically
towards the input spectrum as the number of bins increase, and at Nbins = 4lmax the difference
between the input and the binned spectrum is almost negligible. The lower right panel shows
the ratio of the binned power spectrum to the input spectrum for four different values of Nbins.
Here one can see that at most the Nbins = 4000 spectrum differs 2% from the input spectrum.
An analytical expression for the relation CBinned

l /CTheory
l will give a binning window function

Wb that can correct for the binning effect.
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about the pairs unless the bin size is larger that the angular separation of the pixels.
Knowing this, the observed behaviour in the rederived spectrum is just as expected,
since the average bin size decreases as the number of bins increases.

The lower limit on the bin size is given by the pixel size used in the particular
experiment, since the bins cannot be smaller than the pixels themselves. But how many
bins do we need to retrieve all information in the input spectrum? This is much the same
problem that the Nyquist sampling theorem is dealing with. The Nyquist theorem is
related to Fourier transforms, and states that you need at least twice as many sampling
points, or in my case bins, as there are ’input points’ to get a good reproduction of
the input data (Press et al., 1992). I am working with Legendre polynomials, so I
cannot use the theorem directly, but since all functions, under some assumptions, can
be written as Fourier series, it will still be of relevance. One factor that plays a role when
using the Legendre polynomials, is where I position the sampling points. Torstein O.
Sæbø investigated this matter in his master thesis and found that the best results were
obtained when sampling at the angles χ where the derivate of Legendre polynomials
with respect to χ became zero (Sæbø, 2002). Using this sampling regime, I have found
that it is possible to reproduce a power spectrum once Nbins ≥ lmax, i.e. when the
number of bins is equal to or higher than the maximum number of multipoles (lmax) in
the input spectrum, as can be seen in Figure 4.3.

Naturally, I also found that the rederived power spectra are consequently lying
below the input spectrum, since the information loss that the binning causes naturally
leads to less power in the rederived power spectra. When the number of bins increased,
this loss decreased, and I got the observed asymptotic movement of the rederived power
spectra towards the input spectrum, as seen in the lower left panel in Figure 4.3. When
Nbins ≥ 4lmax, the difference between the rederived spectrum and the input spectrum
is less than 2% (see the lower left panel of Figure 4.3), so in this case the binning effect
is so small that we need not take it into account when the power spectrum is calculated
from the correlation function. For lower Nbins values a correction is needed, and a
binning window function Wb can be developed from the relation CBinned

l /CTheory
l . The

relation between the binned and the analytical power spectrum is plotted for different
Nbins values in the lower right panel of Figure 4.3.

Conclusions

For full sky coverage the conclusion are the following: From an analytical comparison
of the binned and the unbinned two-point correlation functions the two correlation
functions were found to differ most at those scales where the features in the CMB was
approximately equal to or smaller than the bin size, since the bins have little or no
sensitivity at these scales.

If the input power spectrum is defined up to lmax, most of the information in
the higher l’s are lost if the correlation function is measured with Nbins < lmax. If
Nbins � 4lmax, the rederived power spectrum differs very little from the input power
spectrum. This shows that in this case the binning makes a very small effect and need
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Figure 4.4: The binned and unbinned analytical two-point correlation functions at partial sky
coverage. The left panel shows the binned and unbinned correlation functions for Rmax = 30◦

(blue), 90◦ (red) and 150◦ (green), with Nbins = Nopt
bins Nopt

bins is the number of bins necessary to
obtain less than 1% difference between the binned and the unbinned rederived power spectra.
The panel in the middle shows the binned (dotted line) and the unbinned correlation function
(solid line) for Rmax = 30◦. As seen in the left and the middle panel, the two functions are
apparently indistinguishable. The right panel shows a close-up of the smallest angles, where a
small difference between the two functions is detectable at small angles. For Rmax = 30◦ the
two correlation functions only begin to differ at χ < 0.3◦ when Nbins = Nopt

bins.

not be taken into account when the power spectrum is calculated from the correlation
function using Gauss-Legendre integration, but for lmax ≤ Nbins ≤ 4lmax it is probably
a good idea to use e.g. a binning window Wb to correct for the binning effect. Because
of time limitation, I have not been able to look further into this matter.

4.2 Partial sky coverage

To get a more realistic picture of how the binning effect affects CMB experiments, the
next step was to examine the behaviour of two-point correlation functions in the case
of partial sky coverage.

4.2.1 The binned and unbinned correlation function

I calculated the unbinned and the binned analytical correlation functions from Equa-
tions (3.44) and (3.57), using the same original input power spectrum as in the case of
full sky coverage. These correlation functions are shown in Figure 4.4. Apart from the
cut off in the functions caused by the partial sky coverage (see the left panel in Figure
4.4), it is difficult to see any new features of the binning effect in these results.
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4.2.2 The rederived power spectra

As for the case with full sky coverage, I rederived the power spectrum from the binned
correlation functions in the same way as in Chapter 4.1.2. The results are shown in
Figures 4.5 and 4.6. The number of bins necessary to obtain less than 1% difference
between the binned and the unbinned rederived power spectra is called Nopt

bins. For more
on how Nopt

bins is found and how it is related to sky coverage and lmax, see Section 4.2.3. I
have also compared the pseudo power spectrum, calculated from Equation (3.37), with
the input power spectrum. These results can be seen in Figure 4.7.

For all values of lmax, the unbinned and the binned power spectra clearly oscillate
around the pseudo-Cl’s at partial sky coverage (see Figures 4.5 and 4.6). Both the
wavelength and the amplitude of the oscillations depend on the sky coverage (i.e. Rmax),
but is independent of the number of bins and multipoles l, as can be seen in Figure 4.6.

The oscillations are caused by the cutoff in the correlation function due to the fact
that we have partial sky coverage, and were also seen by Torstein Sæbø during the work
on his master thesis (Sæbø, 2002). In his thesis he suggests to correct for this by letting
the “missing” part of the correlation function be represented by a constant. Instead of
correcting for the oscillations by inserting a constant in the correlation functions, I will
in Section 4.2.3 try to remove the oscillation from the rederived power spectra through
filtering, first using a Fast Fourier Transform (FFT) filter and then a running average
filter.

Whether correcting the two-point function or filtering of the power spectra as men-
tioned above is the correct thing to do in the light of further use and analysis, is a
subject for further investigation. If it turns out that not correcting for this gives in-
correct results in a maximum likelihood analysis, or other types of data analysis, we
end up with wrong conclusions for the Universe. If so, the need for a correction is
definitively present.

Since both the binned and unbinned power spectra are oscillating, it is difficult
to read anything from them without filtering out the oscillations (see Figures 4.5 and
4.6). But the pseudo power spectrum and the input power spectrum are naturally not
affected by the oscillations, since they are neither binned nor sampled, and are thus
readable without filtering. A comparison of the input and pseudo spectrum can be
seen in Figure 4.7. The input spectrum is naturally constant, since it is not affected
by any of the processes involved. The pseudo spectrum is unaffected by the binning,
but vary slightly with Rmax because of the coupling between the alm’s (see Figure 4.7).
The smaller Rmax is, the larger the coupling between the alm’s become, and hence the
larger the deviation between the input spectrum and the pseudo spectrum.

As can be seen in Figure 4.7, the pseudo-Cl’s follow the input-Cl’s very well, partic-
ularly near the peaks (see the upper panels in Figure 4.7). The most prominent devia-
tions are in the troughs between the peaks, like in the multipole range l ∼ [300 − 450]
seen in the lower right panel in Figure 4.7. There is also a small visible difference be-
tween the two power spectra for the very lowest multipole values, l = [0,∼ 5] (see the
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Figure 4.5: Plots of the oscillations in the rederived binned and unbinned power spectra at
partial sky coverage (Rmax = 30◦, Nbins = 1000, lmax = 1000). In both panels the rederived
binned spectrum (dotted green line) and unbinned spectrum (solid black line) are seen to be
oscillating around the pseudo power spectrum (solid red line). In the left panel the amplitude
of the oscillations is seen to increase towards higher l, but as the close-up of the region around
the first trough in the right panels shows, the wavelength remains constant for all l.

lower right panel in Figure 4.7) and for the very highest multipole values, l = [0,∼ 5]
and l = [∼ 990, 1000], where the pseudo-Cl is over- and underestimated respectively,
compared to the input spectrum.

4.2.3 Filtering

As seen in the last section, recomputing the power spectrum by integrating over the
binned or the unbinned correlation function gives power spectra that oscillate strongly
at all Rmax values. In order to remove the oscillations, I tried out two different filters,
a Fast Fourier Transform filter and a running average filtering.

FFT filtering The FFT filter was applied by using the following procedure: first I
found the Fast Fourier Transform of the power spectrum using a predefined IDL pro-
cedure. Then I located the frequencies of the oscillations, manually removed these,
and then used the IDL procedure to calculate the inverse FFT of this adjusted Fourier
transform. If the frequency of the oscillations was successfully removed, the resulting
power spectra would be smooth. But in most cases the frequencies were not properly
removed and the resulting power spectra still inhabited oscillations, though profoundly
reduced compared to the original oscillations. As I needed the oscillations to be com-
pletely removed in order to properly distinguish between the effects of binning and the
effects of partial sky coverage, I would have to repeat the FFT filtering over and over
until the oscillations were completely removed. As can be seen in the lower left panel
of Figure 4.8, the resulting power spectra follows the pseudo spectrum quite well and
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Figure 4.6: Plots of the unfiltered power spectra at partial sky coverage with lmax = 1000 and
Nbins = Nopt

bins. The solid red line is the pseudo power spectrum. The binned and the unbinned
power spectra are indistinguishable since Nbins = Nopt

bins, and the spectra hence only differ by 1%
or less. The amplitude and wavelength of the oscillations are seen to vary with sky coverage,
but seem to be independent of the number of bins used. The wavelength is also independent of
the multipoles, while the amplitude show a slight increase with increasing l.
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Figure 4.7: Plots of the input and pseudo power spectra at partial sky coverage with
lmax = 1000 and Rmax = 30◦ (black), 90◦ (green) and 150◦ (blue). The upper left panel
shows the input spectrum (red) versus the three pseudo spectra. The different spectra are
almost indistinguishable. The upper right panel shows a close-up of the first top, note how
well even the pseudo spectrum from Rmax = 30◦ follows this top. The lower left panel shows
a close-up of the first 50 multipoles, and the lower right panel a close-up of the first trough.
Here there is a noticeable difference between the input spectrum and the pseudo spectrum from
Rmax = 30◦, while the two other pseudo spectra still follow the input spectrum quite well.

has lost little power through the filtering process. But considering the inconvenience
in having to remove the oscillations manually and also the many iterations needed to
obtain a satisfactory result, the FFT filter is a rather ineffective and inaccurate filter
for the purpose of removing the oscillations in the rederived power spectra.

Running average filtering This method was a lot simpler than FFT filtering, as I
just had to give the number of multipoles to be used as filter width before I applied a
predefined IDL1 procedure that calculated the running average filtered power spectra.
Not only was this a simpler filtering method, it gave better results as well. But only if
the filter width, i.e. the number of multipoles taken into account in each convolution

1Interactive Data Language.
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Figure 4.8: FFT vs. running average filtering. The upper left panel shows the unfiltered binned
power spectrum (black) at 90o sky coverage (lmax = 1000). The red line imprinted on the binned
spectrum is the pseudo power spectrum. The upper right panel shows the Fourier transform of
the binned spectrum. The imposed oscillations from partial sky coverage is revealed by the two
peaks at l = 250 (real) and l = 750 (imaginary). The lower left panel shows the resulting binned
power spectrum after the two peaks at l = 250 and l = 750 have been removed, and an inverse
FFT has been performed. Even after repeated use of the FFT filter, there are still oscillations
present at the multipoles l � 100 and l � 900. The lower right panel shows the resulting binned
power spectrum after running average filtering. Here the oscillations are completely removed,
but some small errors due to truncation can be seen at the very lowest and the very highest
multipoles. When comparing the two lower panels, it is easy to see that the running average
filter gives the best results.

was chosen optimally.
The optimal value of multipoles to be used in the filter, Nopt

conv, depends on the sky
coverage Rmax, or to be more precise, on the wavelength λosc of the oscillations at the
given sky coverage, and is independent of the l-resolution and the number of bins. The
wavelength λosc is given by the simple relationship:

λosc =
360◦

Rmax
, (4.2)
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Figure 4.9: Plots of the running average filtered power spectra at partial sky coverage for
lmax = 1000, Nbins = Nopt

bins, and Nconv = Nopt
conv. The red lines imprinted on the running average

filtered power spectra, is the pseudo power spectrum. The binned and the unbinned spectra
are indistinguishable since Nconv = Nopt

conv. For practically all Rmax ≥ 30◦, the oscillations are
completely removed with the running average filter. The first exceptions is Rmax = 20◦, where
the filter width is set to only one wavelength λosc to avoid severe loss of information. The
second exception is Rmax = 170◦ where the filter width, for the same reason as for Rmax = 20◦

is set to ≈ 10 · λosc. Since the filter width then do not strictly contain an integer number of
wavelengths, the filter is not able to remove the oscillations completely. Note that, depending
on the sky coverage, the running average filtered spectra are either over- or underestimated
compared to the pseudo spectrum.
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Rmax[◦] λosc [l] Nopt
conv[l]

10 36 36
20 18 18
30 12 12
40 9 18
50 36

5 36
60 6 12
70 36

7 36
80 9

2 18
90 4 12

100 18
5 18

110 36
11 10

120 3 12
130 36

13 36
140 18

7 36
150 12

5 12
160 9

4 18
170 36

17 21
180 2 arbitrary

Table 4.1: The relation between sky coverage, wavelength of the oscillations imposed on
the rederived power spectrum and the convolution width necessary to satisfactory remove the
oscillations from the power spectrum. Nopt

conv is chosen so that it is equal to the the smallest
number of wavelengths that give an integer number of 10 or more. For Rmax < 30◦ the
wavelengths are longer than 10l, so not too lose to much information in the filtering, Nopt

conv was
set to one wavelength in these cases.

where λosc is in units of l and Rmax is the sky coverage given in degrees. The optimal
convolution width at different sky coverage is given in Table 4.1. How well the running
average filter perform depends on how close the filter width is to n ·λosc, where n is an
integer ≥ 2 I have chosen to use Nopt

conv equal to the the smallest number of wavelengths
that gives an integer number of 10 or more, which for most Rmax means two wavelengths
or more. But for Rmax < 30◦ the wavelengths are longer than 10l, so in order not to
lose too much information in the filtering, I set Nopt

conv equal to one wavelength in these
cases. For the same reason I also chose to use filter widths that were only approximately
an integer number of λosc for some Rmax where λosc was a fractional number.

Having applied the running average filter on the rederived spectra, I found that if
Nbins was lower than 5% of Nopt

bins, it was impossible to reconstruct the underlying input
power spectrum from the binned Cl’s (see the upper left panel in Figure 4.10). If Nbins

was between 5 and 15% of Nopt
bins, then the unbinned and binned Cl’s fell off rapidly as

the number of bins decreased, and even obtained negative values (see the upper right
panel in Figure 4.10). The behaviour of the power spectra is explained by the fact that
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Figure 4.10: Comparison of the binned and unbinned power spectra at 90◦ sky coverage after
convolution for Nbins ≤ Nopt

bins (Nopt
bins = 7963, lmax = 1000, Nconv = Nopt

conv). The upper left panel
shows the binned and the unbinned power spectra for Nbins ≤ 0.05Nopt

bins ≪ Nopt
bins. Practically

all information about the input spectrum has been lost, and hence it is impossible to retrieve
any of the original information about the spectrum. The upper right panel shows the two
spectra for Nbin ≤ 0.15Nopt

bins � Nopt
bins, where the spectra begin to resemble the input spectrum,

though the information about the higher l’s is still lost. In the lower left panel, the two-point
spectra with Nbins = 3000 (green), Nbins = 5000 (red) and Nbins = Nopt

bins = 7963 (blue) are
plotted against the pseudo spectrum (black). As expected the rederived spectra have less power
than the input spectrum, but all features from the input spectrum are now retrieved. The lower
right panel shows a close up the spectra in the lower left panel for multipoles l = [740, 800], and
here we get a clear demonstration of how the two rederived spectra move towards each other
and at the same time away from the input spectrum.
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when Nopt
bins  Nbins, the average bin size is so large compared to the smallest angular

separations of the pixel pairs that the information they carry with them is completely
lost, and instead the pixel value is picked more or less at random. This is basically the
same as what we found for full sky coverage in Section 4.1.2.

For Nbins larger than 15% of Nopt
bins, the two power spectra moved towards each other

as the number of bins increased. But as long as Nbins < Nopt
bins, the resulting binned

power spectrum was lower than the resulting unbinned spectrum (see the two lower
panels in Figure 4.10). This was as expected, since more information has been lost
in both the calculation of the correlation function and the rederived power spectrum
and in the filtering because of the binning, than in the process of obtaining the un-
binned rederived spectrum. When the rederived binned and unbinned power spectra
only differed by 1% or less Nbins = Nopt

bins per definition, and the two power spectra be-
came visually indistinguishable (see Figure 4.9). But note that as the number of bins
increased, the two power spectra do not necessarily move towards the pseudo power
spectrum. I have not been able to find an explanation for this behaviour. Because of
truncation at both ends of the spectra in the filtering process, the maximum number
of multipoles possible to retrieve after filtering is, for any Nconv, given by

lmax
retr = lmax − 2Nconv (4.3)

and will be in the range l = [Nconv, lmax − Nconv]. If the number of bins used is less
than the optimal number of bins, i.e. Nbins < Nopt

bins, then the number of multipoles
possible to retrieve after filtering lretr will be less than lmax

retr .

During my work with the running average filtered power spectra I noticed that there
seemed to be a relationship between sky coverage, lmax and the optimal number of bins.
I examined the behaviour of Rmax and Nopt

bins a little more closely for lmax = 400, 600
and 1000, and from the results (see Tables 4.2-4.4) I found the following relationship

Nopt
bins = A

(
Rmax

180◦

)
lmax, (4.4)

where A is a parameter in the range of [10,20] when the difference between the binned
and unbinned filtered power spectra is set to be 1.0% or less, Rmax is the sky coverage
in degrees, Nopt

bins the number of bins needed to obtain the desired maximum difference
between the binned power spectrum, and lmax is the maximum multipole value in the
input spectrum. In general the number of bins necessary to obtain the desired accuracy
increases with Rmax, but note that as Rmax gets close to 180◦ then Nopt

bins decreases even
though Rmax continues to increase. This trend can be seen for all lmax (see Tables
4.2-4.4).

For a given sky coverage, Equation (4.4) can be used to find the number of bins
necessary to retrieve a given number of multipoles, or to find the highest number of
multipoles one can hope to retrieve information about with a given number of bins. In
the first case, it is advisable to use A = 20 in order to obtain a high enough number of
bins, while it in the latter case is more advisable to use A = 10 to get a reliable estimate
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of lmax. Equation (4.4) can also be used to find the smallest sky coverage necessary to
obtain information about multipoles up to a given lmax with a given number of bins.
In this case we have to use a small value of A, i.e. A = 20.

Conclusions

For partial sky coverage the conclusion are the following: As in the case of full sky cov-
erage, the analytical comparison of the binned and the unbinned two-point correlation
functions were found to differ most at those scales where the features in the CMB was
approximately equal to or smaller than the bin size. The partial sky coverage naturally
also caused a cut-off in the correlation function at χ = Rmax.

For partial sky coverage the rederived power spectra inhabit strong oscillations
induced by the cut-off in the two-point correlation function. These oscillations have to
be removed since they mask the information contained in the spectra.

FFT filtering is too cumbersome and inaccurate to be useful for the purpose of
removing the oscillations, while a running average filter is much easier. This filtering
gives very good results, provided that the filter width is the appropriate filter width
for the given sky coverage.

Once the oscillations are removed we can see that, if the input power spectrum is
defined up to lmax, most of the information in the higher l’s are lost if the correlation
function is measured with fewer bins than the optimal Nbins < Nopt

bins. The optimal
number of bins to be used at a given sky coverage in order to retrieve information
about the desired number of multipoles is given by Equation (4.4). If Nbins � Nopt

bins,
the rederived power spectra differs very little. But they might still differ severely from
the input power spectrum, so in the case of partial sky coverage the binning effect have
to be taken into account when the power spectrum is calculated from the correlation
function. One way to correct for the binning effect could be to develop a binning
window Wb from the relation Cl

Binned
Partial sky/Cl

Theory
Partial sky, but due to time limitations this

has not been looked into in this thesis.
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Rmax[◦] Nopt
bins A

20 852 19.17
30 1330 19.95
45 1976 19.76
60 2490 18.68
90 3485 17.43

120 4511 16.92
135 4657 15.52
150 4798 14.39
170 4365 11.55

Table 4.2: Relation between sky coverage, the number of bins necessary to obtain the desired
accuracy and the parameter A for lmax = 400.

Rmax[◦] Nopt
bins A

20 1206 18.09
30 1795 17.95
45 2709 18.06
60 3600 18.00
90 5399 18.00

120 6000 15.00
135 6499 14.44
150 6547 13.09
170 5914 10.44

Table 4.3: Relation between sky coverage, the number of bins necessary to obtain the desired
accuracy and the parameter A for lmax = 600.

Rmax[◦] Nopt
bins A

20 2010 18.09
30 2300 13.80
45 3401 13.60
60 6001 18.00
90 7963 15.93

120 9035 13.55
135 10197 13.60
150 10309 12.37
170 9593 10.16

Table 4.4: Relation between sky coverage, the number of bins necessary to obtain the desired
accuracy and the parameter A for lmax = 1000.
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Chapter 5

Preparing for maximum
likelihood analysis

In this chapter I will first give a brief general introduction to the maximum likelihood
method, the basic concepts connected to this method and how they are related to the
two-point correlation function. Then I develop a general analytical expression for the
covariance matrix, before I develop analytical expressions for the covariance matrix for
the two-point correlation functions. At the end of the chapter I comment on the effect
of the altered power spectrum on the covariance function, before I draw some lines for
future work on the possible use of the two-point correlation functions in CMB analysis.

5.1 Introduction

Most of this introduction is based on a paper by Douspis et al. (2001).

The extraction of information from the CMB is a classic problem of model testing
and parameter estimation, one of the main goals being to constrain the cosmological
parameters from an assumed model and to decide if the best fit parameter values is a
good description of the data.
CMB analysis can be divided into four levels, each with a more compressed data set
than at the previous level:

1. Time series of data (TODs)

2. Pixel maps

3. Power spectrum

4. Cosmological parameters

We could in principle develop a method that would take us directly from 1) to 4), but
the step-by-step approach is found to give more information because each level is found
to contain interesting information about the CMB, not just about the cosmological
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parameters, but also on fields like non-Gaussianity and nucleosynthesis. In this thesis I
have chosen to focus on how to get from from 2) to 3) in the analysis, examining whether
the two-point correlation function might offer a useful intermediate step between pixel
maps and the power spectrum.

The power spectrum has become the standard way of reporting CMB results, both
because it is a very good visual way to understand the data and because it is what is
actually calculated in the cosmological models. It has also become generally excepted
in the CMB community as the intermediate step from pixel representation to the pa-
rameter room, since there in principle is no loss of information when using the second
order moments as a “radically compressed” representation of the pixel data, provided
that the CMB temperature fluctuations are Gaussian (Bond et al., 2000). In many
ways the power spectrum is an interesting result on its own, but it is also needed in
other CMB analyses.

One of the methods often used for analysis of CMB data is the maximum likelihood
method, but estimating the power spectrum directly from pixel data using this method
is complicated by the complexity of the model calculations and not least by the size
of the data sets (Bond et al., 1998). The million-pixel maps from WMAP and from
the upcoming Planck experiment are too large to be analysed by this method in any
practical way. Using maximum likelihood analysis directly on the pixel data simply
takes up too much CPU-time even on the fastest computers available today, so there
is a strong need to find more efficient methods. Over the last decade much effort has
been put into this field in search for such methods (see e.g. Bond et al., 2000; Wandelt
et al., 2001; Wandelt and Hansen, 2003).

Almost without exception, the present methods use band-power estimates as their
starting points. Band-power is simply signal power over a finite range of multipoles,
and is commonly estimated with likelihood analysis. The problem is that a set of band-
powers do not fully describe the data (Douspis et al., 2001). The correlation function
can be calculated directly from the pixel maps without using maximum likelihood, and
in principle also without loss of information, which gives the correlation function an
advantage compared with the power spectrum. The fact that the correlation function is
rotationally invariant does also come in extremely handy when dealing with partial sky
coverage, where power spectrum estimation suffer from bias and the effect of coupled
alm’s.

5.1.1 General functions and properties

The common approach to CMB analysis is, as mentioned above, through the maximum
likelihood method. In this method the probability distribution of the data is maximised
as a function of the model parameters, given the observed data set. Once found, the
best model is then tested on its ability to account for the data. This is a very general
method for statistical analysis which is not particularly connected to the CMB, but
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has since the early days of anisotropy searches been found to be very useful in CMB
research (Readhead et al., 1989; Bond et al., 1991; Dodelson and Jubas, 1993).

The maximum likelihood method is based on a fundamental tool in statistical analysis
called the likelihood function L. Given a set of data, the likelihood function relates
the predictions of a particular model to the observations: The best possible estimate
of the set of parameters obtained from the data, is the set of parameters that gives the
largest L, i.e. the set Θ that maximises the likelihood function, hence the name of the
method.

The likelihood function is simply the probability density function (pdf) for obtaining
a set of observed data, represented by a data vector d, given a set of parameters Θ that
we wish to constrain

L(Θ) ≡ Pdf(d|Θ). (5.1)

Since we are working with the transition from level 2) to level 3) in the CMB analysis,
d represents the set of Npix observed sky temperatures or temperature differences (i.e.
the map) and the parameters we wish to constrain is the power spectrum. Hence the
likelihood in our case can be written

L(Θ) ≡ Pdf(d|Cl) (5.2)

Likelihood functions can be constructed for all types of statistical distributions, but
the many favourable properties of Gaussian distributions make Gaussian maximum
likelihood analysis desirable. One particularly favourable feature of Gaussian distribu-
tion is the fact that the variates are independent, and hence only need to be computed
once, which saves a lot of time compared with distributions where the variates are
dependent and have to be computed for each entry in the ensemble.

Since inflation predicts Gaussian temperature fluctuations, the observed pixel tem-
peratures are expected to be well described by random variables following a multivariate
Gaussian distribution, with a covariance matrix that is given as a function of the power
spectrum, in addition to a noise term.

The covariance function is simply the second order statistical moments of the tem-
perature fluctuations, i.e. the two-point correlation function. If we use the spherical
harmonic coefficients alm found from the pixel maps to calculate the power spectrum,
then Cl is also second order moments of the temperature fluctuations. For Gaussian
theories these second order moments are all that is needed to construct the appropriate
likelihood function L. It is through the dependence of the covariance matrix C on C(χ)
that the power spectrum Cl enters the likelihood.

Assuming that the data have a multivariate Gaussian distribution, the likelihood
function is given by

L(Θ) =
e−

1
2
dT ·C−1·d

(2π)Npix/2(det C)1/2
, (5.3)

where C is the pixel-pixel covariance matrix

Cij ≡ 〈didj〉 = C(χ)signal
ij + Nij. (5.4)
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The average is taken over the theoretical ensemble of all possible universes realizable
with the same set of parameters. The signal part of the covariance matrix, C(χ)signal

ij ,
is the two-point correlation functions reviewed and developed in Section 2.4 and Chap-
ter 3. Having assumed Gaussian, i.e. uncorrelated, noise, the noise contribution to the
covariance matrix, Nij, is diagonal.

The main problem when computing (5.3), is the extremely time consuming com-
putation of the inverse covariance matrix, C−1. For WMAP the covariance is a
3 · 106 × 3 · 106 matrix, and an iterative inversion of this matrix alone takes a mil-
lion years. For Planck, the same matrix is 5 · 107 × 5 · 107, and since matrix inversion
scales as O(N3), the inversion will take approximately 4 · 109 years! Cosmologists are
in other words in strong need of faster methods to find the power spectrum from the
pixel maps.

5.2 Parameter estimation with compressed data sets

Once the power spectrum is estimated, the Monte Carlo Markov Chains method is used
to estimate the cosmological parameters. Ideally maximum likelihood would have been
used to estimate the parameters, but Markov Chains are faster, simpler and give very
good results (Christensen et al., 2001; Verde, 2003). With Monte Carlo Markov Chains
the transition from the power spectrum to parameter space is considered to be solved
(Christensen et al., 2001). So the critical issue is to find a fast and precise transition
from pixel representation to representation through the power spectrum.

One possible solution, which is the motivation behind this thesis, might be found in
the two-point correlation function, since the two-point function is the real-space equiv-
alent of the power spectrum, and there in principle is no loss of information when going
from one of these two second order statistical moments to the other. If this is to be
an attractive way to estimate the power spectrum, then the calculation of Cl from the
two-point correlation function have to be efficient and give good results. To estimate
the power spectrum using direct integration of the two-point correlation function, like
I did in Chapter 4, might introduce bias. The maximum likelihood method do not,
which is why we wish to use this method to estimate the power spectrum.

There are two effects that can make the two-point correlation function highly un-
desirable, or even unfit, for these calculations. First, if the two-point function has a
non-Gaussian distribution, we will have to use a non-Gaussian likelihood function where
the variates are correlated. These variates will then have to be estimated iteratively,
which is time consuming and would make the correlation function a highly undesirable
intermediate step.

Second, if the covariance matrix is singular then the covariance matrix will be non-
invertible no matter how small it is. With the compressed data set that the binned
correlation function form, the covariance matrix can be reduced to a � 104×104 matrix,
which is considerably less time-consuming to invert than the full pixel-pixel covariance
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matrix. Since matrix inversion scales as O(N3), inverting the two-point two-point corre-
lation matrix M will take a maximum of 280 hours, or less than 12 days. But this does
not matter much if we are not be able to perform the maximum likelihood analysis at all.

The questions of statistical distribution and inversion of the covariance function will
be investigated in more detail in Section 5.3 and 5.5 respectively, but for as long I will
assume that the correlation function is both Gaussian distributed and non-singular.

5.2.1 The likelihood functions

Using the two-point function to constrain the power spectrum, the likelihood function
is defined as

L(Cl) ≡ Pdf(C(χ)|Cl). (5.5)

Here C(χ) is the two-point correlation function calculated for Nbins different angles χi

from the pixel map. The likelihood function is then

L(Cl) =
e−

1
2
C(χ)T ·M−1·C(χ)

(2π)Nbins/2(det M)1/2
, (5.6)

where M is the two-point two-point covariance matrix

Mij ≡ 〈C(χ)iC(χ)j〉 = M signal
ij + Nij. (5.7)

The average is taken over the theoretical ensemble of all possible universes realizable
with the same power spectrum. The signal part of the covariance, M signal

ij , can be
expressed as a function of the power spectrum, while the noise contribution to the
covariance matrix, Nij , is diagonal. Explicit functions for Msignal

ij will be developed in
Section 5.4.

Partial sky coverage

In the sections above full sky coverage have been assumed. As mentioned earlier, the
spherical harmonic coefficients alm become coupled in the case of partial sky coverage,
and the likelihood function must be rewritten (Douspis et al., 2001)

L(Θ) ≡ Prob(d̃|Θ) ∝ e−
1
2
d̃T ·[C(χ)partial+Ñ]−1·d̃

|C(χ)partial + Ñ|1/2
, (5.8)

where d̃ is
d̃ = ΩpixΨT · d. (5.9)

Here Ωpix represents the the solid angle subtended by the pixel elements, and Ψ is the
new basis functions made of linear combinations of the orthonormal set of spherical
harmonic functions Ylm that spans the full sphere.

The noise is given by
Ñ = Ω2

pixΨ
T · 〈d · dT 〉 · Ψ. (5.10)
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Using the two-point correlation function as a compressed representation of the pixel
data and assuming a multivariate Gaussian distribution, the likelihood function used
to estimate the power spectrum is written

L(Cl) ≡ Prob(C(χ)partial|Cl) ∝ e−
1
2
C(χ)T

partial·[C(χ)partial+Ñ]−1·C(χ)partial

|C(χ)partial + Ñ|1/2
, (5.11)

where C(χ)partial is the estimated two-point function, and the noise is diagonal. Ana-
lytical expressions for the covariance matrix Mpartial

ij will be derived later in Section 5.4.

Equation (5.11) is a lot simpler to work with than Equation (5.8) since the partial
sky coverage is incorporated in the correlation functions, and we hence do not have to
define a new basis to correct for this. The same is the case for binning, so using the
two-point function is less likely to suffer from bias and coupling of the alm’s.

5.3 Statistical distribution

If there is to be any point in using the two-point correlation function in CMB anal-
ysis, we need the computations of the power spectrum to be fast and to give good
results. Both these requirements can be achieved using the Gaussian maximum likeli-
hood method, but before using this method, we have to be certain that the distribution
truly is Gaussian. Thus in this section I examine the distribution of the two-point func-
tion.

5.3.1 Full sky coverage

To investigate the statistical distribution of the two-point correlation function, I first
simulated 10.000 maps with a resolution of Nside = 128, using the the map-making
routine in correlations.pl of the Correlation Suite. I then used the structures and the
twopt calc element routines of the Suite to calculate the values of the two-point cor-
relation function at three different angles, χ = 0.6◦, 1.0◦ and 3.6◦, corresponding to
the multipoles l = 50, 200 and 300. The angles were chosen so that I checked the
distribution of C(χ) at the area around the first peak, the first through and the low-l
Sachs-Wolfe plateau. The results are shown in Figure 5.1.

From Figure 5.1 it was easy to see that the two-point function did not have the
favourable Gaussian distribution, but were instead χ2-distributed (see the upper panels
in Figure 5.1). If we take a look at the analytical expressions in Equation (2.29) and
(3.19), this is not really a surprise. Knowing that Cl is quadratic (with 2l+1 degrees of
freedom) and that (2l+1)·Cl goes as l−1, it is easy to see that the χ2-distribution of the
lower multipoles will be dominating the Gaussian distribution of the higher multipoles.
Hence the total two-point correlation function also becomes χ2-distributed.
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Figure 5.1: Statistical distribution of C(χ) at given angles χ with full sky coverage. The
histograms in the upper panels show the statistical distribution of C(χ) at χ = 3.6◦(l =
50), 1.0◦(l = 200) and 0.6◦(l = 300). The χ2-fit to the distributions are plotted in red, and
the solid black lines are the distributions expected if C(χ) had been Gaussian distributed. The
χ2-distribution is shown to be a good fit to the data. The histograms in the lower panels show
the statistical distribution of C(χ) at the same angles after the multipoles l = [0, 20] have been
removed from the input spectrum. Here the red lines are the Gaussian fit to the distributions.
The Gaussian distribution is shown to be a very good approximation to the data after the
removal of the lower multipoles.

But if the two-point correlation function was to be used in a Gaussian maximum
likelihood analysis, it had to be Gaussian distributed. Since the χ2-distribution comes
from the lower multipoles which are already well known from previous experiments like
COBE, and the information we seek is contained in the higher multipoles, I decided to
try to remove the multipoles l = 0− 20 from the input power spectrum and look at the
distribution again. This I could do because a continuous, asymmetric distribution with
a single peak and not to heavy tail, like the χ2, is well approximated by a Gaussian
distribution for 60 or more degrees of freedom (Bhattacharyya and Johnson, 1977). In
the case of the two point correlation function, I only needed 40 degrees of freedom for
the Gaussian distribution to be a good approximation. A comparison of the two-point
correlation function resulting from the original and the altered input power spectrum
is shown in Figure 5.2. As can be seen in the figure, the removal of the multipoles
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Figure 5.2: Plot comparing the two-point correlation function C(χ) calculated from the original
input power spectrum (black) and the same function calculated from an input spectrum where
the multipoles l = [0, 20] have been removed (red), in the case of full sky coverage. In the
two-point function resulting from the altered input spectrum, the features are compressed and
shifted towards smaller angles and the decline at the very smallest angles is steepened.

results in a correlation function where the features are compressed and shifted towards
smaller angles, and where the decline at the very smallest angles is steepened.

Once again I simulated 10.000 maps, but this time with the altered input spectrum.
Then I calculated the two-point function for the same angles χ as for the maps with the
original input spectrum. A comparison of the analytical full sky two-point correlation
function C(χ) calculated with the original and the altered power spectrum, can be
seen in Figure 5.2, while the resulting distribution after the removal of the first twenty
multipoles can be seen in the lower panels of Figure 5.1. When I looked at the statistical
distributions this time, it was very close to Gaussian.

5.3.2 Partial sky coverage

I used almost the same approach to find the statistical distribution of C(χ) in the case
of partial sky coverage, as in the case of full sky coverage: I simulated 10.000 maps
with Nside = 128 using the original, unaltered input power spectrum, calculated the
two-point function at χ = 0.6◦, 1.0◦ and 3.6◦. But since I was interested in looking at
the distribution of C(χ) at various degrees of sky coverage, I also used the genmask
routine of H.K.K. Eriksen’s Correlation Suite to generate masks fitting sky coverage
in the range Rmax = [20◦, 170◦]. The distributions of C(χ) with partial sky coverage
can be seen in Figure 5.3. As expected from both the results for full sky coverage and
the shape of the two-point correlation functions in Equations (3.40) and (3.52), the
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Figure 5.3: Statistical distribution of C(χ) at partial sky coverage. The histograms show the
distribution of C(χ) at the angle χ = 1◦ (l = 200) for different values of Rmax. The red lines
are the χ2-fit to the distributions, and the solid black lines are the distributions expected if
C(χ) had been Gaussian distributed. The χ2-distribution is shown to be a good fit to the data.
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Figure 5.4: Statistical distribution of C(χ) after the multipoles l = [0, 20] have been removed
from the input spectrum. The histograms show the distribution of C(χ) at the angle χ = 1◦

(l = 200) for different values of Rmax. The red lines are the Gaussian fit to the distributions,
and shows that the Gaussian distribution is a very good approximation to the data after the
removal of the lower multipoles.
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distributions were χ2 also in this case.

In an effort to make probability distributions Gaussian, I once again removed the
multipoles l=[0,20] from the input spectrum, simulated 10.000 new maps with the al-
tered input spectrum and examined the distributions again. The resulting distributions
can be seen in Figure 5.4. Like in the case of full sky coverage, the removal of the lower
multipoles made the distributions clearly indistinguishable from Gaussian distributions.

5.4 The covariance matrix - analytic approach

In this section I derive a general analytic expression for the covariance matrix.

5.4.1 General analytic expression

As the measured correlation function will be fluctuating around an average value and
the correlation function in a given point can be written on the form

Ci = 〈Ci〉 + δCi, (5.12)

the covariance matrix can be written

Mij = 〈CiCj〉
= 〈Ci〉〈Cj〉 + 〈Ci〉〈δCj〉 + 〈δCi〉〈Cj〉 + 〈δCiδCj〉
= 〈Ci〉〈Cj〉 + 〈δCiδCj〉, (5.13)

since 〈δCi〉 = 0.

5.4.2 The covariance matrix of the correlation functions

In this section I develop analytical expressions for the covariance matrix to be used in
a maximum likelihood analysis to extract the true power spectrum from the observed
pseudo-power spectrum.

Full sky coverage

The covariance matrix in the case of full sky coverage is given by:

M(χ1, χ2) = 〈C(χ1)C(χ2)〉 = 〈〈T (Ω1)T (Ω2)〉〈T (Ω3)T (Ω4)〉〉, (5.14)

where the inner 〈〉 is the average over the sphere and the outer 〈〉 is the average over
all realizations.

Replacing 〈C(χi)〉 with Equation (2.24) in (5.14) gives

M(χ1, χ2) =
1

(4π)2
∑
ll′

Pl(µ1)Pl′(µ2)
∑
mm′

〈alma∗lmal′m′a∗l′m′〉. (5.15)
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In order to evaluate the expectation value 〈alma∗lmal′m′a∗l′m′〉 in Equation (5.15), I
apply a well-known result from statistical theory which states that if xi, i = 1, 2, 3, 4,
are Gaussian random variables with vanishing mean, then

〈xixjxkxl〉 = 〈xixj〉〈xkxl〉 + 〈xixk〉〈xjxl〉 + 〈xixl〉〈xjxk〉. (5.16)

By using Equation (5.16) on the alm’s, I find

M(χ1, χ2) =
1

(4π)2
∑
ll′

Pl(µ1)Pl′(µ2)[
∑
m

〈alma∗lm〉
∑
m′

〈al′m′a∗l′m′〉

+
∑
mm′

〈almal′m′〉〈a∗lma∗l′m′〉 +
∑
mm′

〈alma∗l′m′〉〈al′m′a∗lm〉]. (5.17)

With the power spectrum from Equation (2.28), and the relationship between the
power spectrum and the harmonic coefficients given by Equation (2.27), I find that

M(χ1, χ2) =
1

(4π)2

�
ll′

Pl(µ1)Pl′(µ2)

�
(2l + 1)(2l′ + 1)ClCl′ + 2ClCl′δll′

�
mm′

δmm′

�

=
1

(4π)2

�
l

(2l + 1)ClPl(µ1)
�

l′
(2l′ + 1)Cl′Pl′(µ2) +

1

8π2

�
l

C2
l Pl(µ1)Pl(µ2).(5.18)

With the full sky correlation function averaged over all realizations given by Equation
(2.27), I get that in the case of full sky coverage, the covariance is

M(χ1, χ2) = 〈C(χ1)〉〈C(χ2)〉 +
1

8π2

∑
l

C2
l Pl(µ1)Pl(µ2). (5.19)

This is precisely the form ’predicted’ in Section 5.4.1.

Partial sky coverage - disk-shaped sky patches

Looking at disk-shaped sky patches, the covariance is

M(χ1, χ2)disk = 〈C(χ1)diskC(χ2)disk〉 = 〈〈T (Ω1)T (Ω2)〉disk〈T (Ω3)T (Ω4)〉disk〉 (5.20)

where 〈〉 is the average over all realizations, and 〈〉disk is the average taken over the
disk-shaped sky patches.

Replacing C(χi)disk with Equation (3.40) in (5.20), I get

M(χ1, χ2)disk =
∑

ll′ Pl(µ1)Pl′(µ2)
∑

mm′〈ãlmã∗lmãl′m′ ã∗l′m′〉
D(χ1)D(χ2)

. (5.21)

where D(χi) is given by Equation (3.42).
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Since the ãlm’s are Gaussian random variables I can use Equation (5.16), which gives

M(χ1, χ2)disk =

	
ll′ Pl(µ1)Pl′(µ2)

D(χ1)D(χ2)
(5.22)

×
�
mm′

[〈ãlmã∗
lm〉〈ãl′m′ ã∗

l′m′〉 + 〈ãlmãl′m′〉〈ã∗
lmã∗

l′m′〉 + 〈ãlmã∗
l′m′〉〈ãl′m′ ã∗

lm〉] .

The average pseudo power spectrum is given by Equation (3.43), and in the case of
partial sky coverage I have that

〈ãlmã∗l′m′〉 =
∑
l′′

W m
ll′′Cl′′W

m′
l′l′′δmm′ . (5.23)

Here
W m′

l′l′′ = Am′
l′l′′I

m′
l′l′′ , (5.24)

where Am′
l′l′′ is given by Equation (3.24), and Im′

l′l′′ by Equation (3.25).
Thus the covariance is

M(χ1, χ2)disk =

	
ll′ Pl(µ1)Pl′(µ2)

D(χ1)D(χ2)
×
�
(2l + 1)(2l′ + 1)〈C̃l〉〈C̃l′〉 + 2

�
m

��
l′′

W m
ll′′Cl′′W

m
l′l′′

�2�
,

(5.25)

where D(χi) is given by Equation (3.42).

For disk-shaped sky patches, the average correlation function is given by Equation
(3.52). This gives

M(χ1, χ2)disk = 〈C(χ1)disk〉〈C(χ2)disk〉 +
2
	

ll′ Pl(µ1)Pl′(µ2)
	

m


	
l′′ W m

ll′′Cl′′W
m
l′l′′
�2

D(χ1)D(χ2)
, (5.26)

where W m
l′l′′ is given by Equation (5.24).

Partial sky coverage - ring-shaped sky patches

The covariance in the case of ring-shaped sky patches is given by

M(χ1, χ2)ring = 〈C(χ1)ringC(χ2)ring〉 = 〈〈T (Ω1)T (Ω2)〉ring〈T (Ω3)T (Ω4)〉ring〉 (5.27)

where 〈〉 is the average over all realizations, and 〈〉ring is the average over the ring-shaped
sky patches.

The derivation of the covariance in the case of ring-shaped sky patches is almost
identical to the derivation in the case of disk-shaped sky patches. By replacing C(χ)ring

from Equation (3.58) in (5.27), I get

M(χ1, χ2)ring =
∑

ll′ Pl(µ1)Pl′(µ2)
E(χ1)E(χ2)

×
∑
mm′

〈ãlmã∗lmãl′m′ ã∗l′m′〉, (5.28)

where E(χi) is given by Equation (3.60).
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Using Equation (5.16) on the ãlm’s and the pseudo power spectra from Equation
(3.37) and (3.59), with 〈ãlmã∗l′m′〉 given by Equation (5.23), the covariance matrix in
the case of ring-shaped sky patches becomes

M(χ1, χ2)ring = 〈C(χ1)ring〉〈C(χ2)ring〉 +
2
∑

ll′ Pl(µ1)Pl′(µ2)
∑

m

(∑
l′′ W

m
ll′′Cl′′W

m
l′l′′

)2

E(χ1)E(χ2)
.

(5.29)

5.4.3 The covariance matrix for binned correlation functions

Full sky coverage

The covariance matrix for two binned correlation functions in the case of full sky cov-
erage is given by

M(χ1, χ2)binned = 〈C(χ1)χB
χA

C(χ2)χD
χC

〉 (5.30)

where the average is taken over all realizations.

From Section 3.1.1 I have that

C(χ)χB
χA

=
1

4πk0(χ)χB
χA

∑
lm

kl(χ)χB
χA

| alm |2

and
〈C(χ)χB

χA
〉 =

1
4πk0(χ)χB

χA

∑
l

(2l + 1)Clkl(χ)χB
χA

.

Using these two equations and the same approach as in the Section 5.4.2, I get

M(χ1, χ2)binned = 〈C(χ1)χB
χA

〉〈C(χ2)χD
χC

〉 +
∑

l C
2
l kl(χ1)

χB
χAkl(χ2)

χD
χC

8π2k0(χ1)
χB
χAk0(χ2)

χD
χC

. (5.31)

Partial sky coverage - disk-shaped sky patches

The covariance matrix for two binned correlation functions in the case of disk-shaped
sky patches is given by

M(χ1, χ2)binned disk〈= C(χ1)
χB
χA,diskC(χ2)

χD
χC ,disk〉. (5.32)

From Section 3.2.2 I have that

C(χ)χB
χA,disk =

∑
lm(2l + 1)kl(χ)χB

χA |ãlmã∗lm|2
2πD(χ)χB

χA

and

〈C(χ)χB

χA,disk〉 =
∑

l(2l + 1)kl(χ)χB
χA

∑
m〈ãlmã∗lm〉

2πD(χ)χB
χA

.
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Using these two equations, I get

M(χ1, χ2)binned disk = 〈C(χ1)
χB

χA,disk〉〈C(χ2)
χD

χC ,disk〉

+
∑

ll′ kl(χ1)
χB
χAkl′(χ2)

χD
χC

∑
m

(∑
l′′ W

m
ll′′Cl′′W

m
l′l′′

)2

4π2D(χ1)
χB
χAD(χ2)

χD
χC

. (5.33)

Partial sky coverage - ring-shaped sky patches

The covariance for two binned correlation functions in the case of ring-shaped sky
patches is given by

M(χ1, χ2)binned ring = 〈C(χ1)
χB
χA,ringC(χ2)

χD
χC ,ring〉, (5.34)

where the average is taken over all realizations.

From Section 3.2.3 I have that

C(χ)χB
χA,ring =

∑
lm kl(χ)χB

χA |ãlm|2
2πE(χ)χB

χA

and

〈C(χ)χB
χA,ring〉 =

∑
lm kl(χ)χB

χA 〈alma∗l′′m〉
2πE(χ)χB

χA

,

where kl(χ)χB
χA is given by Equation (3.11) and E(χi)

χB
χA by Equation (3.60).

Using the same approach as in the sections above, I get that

M(χ1, χ2)binned ring = 〈C(χ)χB
χA,ring〉〈C(χ)χD

χC ,ring〉

+
∑

ll′ kl(χ1)
χB
χAkl′(χ2)

χD
χC

∑
m

(∑
l′′ W

m
ll′′Cl′′W

m
l′l′′

)2

4π2E(χ1)
χB
χAE(χ2)

χD
χC

. (5.35)

5.5 Conclusions

Both in the case of full and partial sky coverage, I found that the two-point correlation
function had a χ2-distribution around its mean for each bin. Since Cl is quadratic
and (2l + 1) · Cl goes as l−1, it is easy to see from the analytical expressions for the
two-point correlation functions that the χ2-distribution of the lower multipoles will be
dominating the Gaussian distribution of the higher multipoles, and the total two-point
function hence will be χ2-distributed.

From χ2 to Gaussian distribution

By removing the multipoles that dominated the distribution, i.e. l = [0, 20], from the
input power spectrum, the two-point functions became indistinguishable from Gaussian
distributions.
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With the alteration of the input spectrum, the features of the correlation function
became compressed and shifted towards smaller angles, and the decline at the very
smallest angles became correspondingly steepened. What consequences this alteration
might have for the maximum likelihood analysis have to be looked into in further work.

It is possible to perform a χ2 maximum likelihood analysis using the correlation
function with the unaltered input power spectrum, but it would be much more time
consuming compared to perform a Gaussian maximum likelihood analysis, because in
the χ2 case the variates are coupled and have to be calculated iteratively.

The covariance matrix M

If the exclusion of the first 20 multipoles from the calculations of the two-point cor-
relation function is found to have no effect on the maximum likelihood analysis, the
possible use of the correlation function in CMB analysis looks promising.

But before we can make a final conclusion on this subject we have to take a closer
look at the covariance matrix M . If the 〈Ci〉〈Cj〉 term in M is non-singular and dom-
inates over the 〈δCiδCj〉 term, then the overall covariance matrix is non-singular and
the correlation function can be used to estimate the power spectrum using maximum
likelihood.

If the 〈Ci〉〈Cj〉 term in Mij is singular and also dominates over the 〈δCiδCj〉 term,
then the overall covariance matrix becomes singular and it will be impossible to use
maximum likelihood to estimate the power spectrum from the correlation function. In
that case the correlation function will be highly unfit for use in CMB analysis through
the maximum likelihood method.



Chapter 6

Summary

After much work I have finally arrived at the end of this thesis, and it is time to take
a look at what I have accomplished.

6.1 A short review of the thesis

First lets take a short review of the main subjects of this thesis.

6.1.1 The two-point correlation function

I have developed analytical expressions for the two-point correlation function in the
cases of limited sky coverage and of binned data.

In the case of full sky coverage the two-point correlation function is (Peebles, 1973)

〈C(χ)〉 =
1
4π

∑
l

(2l + 1)ClPl(cos χ),

while the equivalent two-point correlation function at partial sky coverage is given by

〈C(χ)disk〉 =
∑

l(2l + 1)〈C̃l〉Pl(cos χ)
D(χ)

,

where C̃l is the pseudo power spectrum defined by E. Hivon, B. Wandelt and K. Gorski
(Wandelt et al., 2001)

C̃l =
1

2l + 1

∑
m

ãlmã∗lm,

and the pseudo spherical harmonic coefficients ãlm is given by

ãlm =
∑
l′m′

al′m′

∫
δΩ

Yl′m′(Ω)Y ∗
lm(Ω)dΩ.
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In the case of azimuthal symmetry D(χ) is

D(χ) = π

[
(cos r − 1)2 + sin2 r

∞∑
l=1

(2l + 1)Pl(cos χ) [Pl,−1(cos r)]2
]

.

Note that all dependence on the geometry of the surface area δΩ of the observed sky
patch is contained in the pseudo spherical harmonic coefficients ãlm.

In the case where the data are binned the two-point correlation function at full sky
coverage is

〈C(χ)χ2
χ1
〉 =

1
4πk0

∑
l

(2l + 1)Clkl
µ2
µ1

,

where the coefficient kl is given by

kl
µ2
µ1

≡ 4π
2l + 1

bl
µ2
µ1

.

The equivalent two-point correlation function at partial sky coverage is given by

〈C(χ)χ2

χ1,disk〉 =

∑
l(2l + 1)〈C̃l〉kl

µ2
µ1

2πD(χ)bin
,

where D(χ)bin in the case of azimuthal symmetry is

D(χ)bin = π

[
k0

µ2
µ1

(cos r − 1)2 + sin2 r

∞∑
l=1

(2l + 1)kl
µ2
µ1

[Pl,−1(cos r)]2
]

.

At both full and partial sky coverage analytical comparisons of the binned and the
unbinned two-point correlation functions showed that the largest differences between
the two correlation functions appeared at small scales, since the bins have little sen-
sitivity to features smaller than the bin size. At partial sky coverage the limited sky
coverage naturally also caused a cut-off in the correlation function at χ = Rmax.

Apart from the positive effect of increasing the number of bins, it was difficult to
read out any informative trends or details about the binning effect from the two-point
functions.

6.1.2 The rederived power spectrum

To obtain a more ’easy-to-read’ picture of the binning effect, I numerically rederived
the power spectra from the correlation functions, using Gauss-Legendre integration.

For full sky coverage, if the input power spectrum is defined up to lmax, most of
the information in the higher l’s are lost if the correlation function is measured with
Nbins < lmax. If Nbins � 4lmax, the rederived power spectrum differs very little from
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the input power spectrum, hence the binning effect need not be taken into account.
But for lmax ≤ Nbins ≤ 4lmax, the binning effect results in suppression of the power
in the rederived spectra and need to be taken into account when rederiving the power
spectrum from the correlation function.

For partial sky coverage the rederived power spectrum inhabit strong oscillations
induced by the cut-off in the two-point correlation function. To read the information
contained in the spectra, the oscillations have to be filtered out.

Once the oscillations are removed I found that most of the information in the higher
l’s is lost if the correlation function is measured with Nbins < Nopt

bins. The optimal
number of bins to use at a given sky coverage in order to retrieve information about
the desired number of multipoles, is given by

Nopt
bins = A

(
Rmax

180◦

)
lmax,

where A is a parameter in the range [10,20] when the maximum deviation between the
binned and the unbinned power spectrum is set to 1%.

If Nbins � Nopt
bins, the rederived power spectra differs very little. But they might still

differ severely from the input power spectrum, so in the case of partial sky coverage the
binning effect should be taken into account for all Rmax, when using Gauss-Legendre
integration to rederive the power spectrum from the correlation function.

One way to correct for the binning effect at both full and partial sky coverage is to
develop a binning window Wb from the relation Cl

Binned/Cl
Theory.

6.1.3 Filtering

When working with partial sky coverage, the rederived power spectrum inhabits an
extra oscillation, where the wavelength is given by the sky coverage through the simple
relationship:

λosc =
360◦

Rmax

where λ is in units of l, and Rmax is sky coverage in degrees.

The oscillations can successfully be filtered out by using a running average filter
with filter width ≥ 2λosc. For Rmax ≤ 30◦ it is advisable to use a filter width equal to
one λosc, otherwise the rederived power spectra will be suppressed.

FFT filtering was also tried, but was rejected because it was too cumbersome and
did not remove the oscillations properly.

6.1.4 Statistical distribution

Both in the case of full and partial sky coverage, the two-point correlation function is
found to have a χ2 distribution.
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The χ2 distribution comes from the fact that Cl is quadratic and that (2l + 1) · Cl

goes as l−1, and hence the lower multipoles are dominating the Gaussian distribution
at the higher multipoles so that the total two-point correlation function becomes χ2

distributed.

By removing the first 20 multipoles of the input power spectrum, it is possible to
make the distribution of the two-point function Gaussian.

6.1.5 Alteration of the input power spectrum

When removing the first 20 multipoles from the input spectrum, the features of the
correlation function become compressed and shifted towards smaller angles, and the
decline at the very smallest angles is steepened correspondingly. This is highly likely to
affect the rederived power spectrum and might also have consequences for the maximum
likelihood analysis. Exactly how the alterations will affect the rederived power spectrum
and which consequences it might have for the analysis have to be examined further.

6.1.6 The two-point two-point covariance matrix, M

The general analytic expression for the two-point two-point covariance matrix M can
be written

Mij = 〈Ci〉〈Cj〉 + 〈δCiδCj〉.
From the two-point correlation function in Section 2.4 and the equations I derived

in Chapter 3, I have developed analytical expressions for the covariance matrix M : In
the case of full sky coverage M is given by

M(χ1, χ2) = 〈C(χ1)〉〈C(χ2)〉 +
1

8π2

∑
l

C2
l Pl(µ1)Pl(µ2).

With only limited sky coverage available, the covariance matrix is

M(χ1, χ2)disk = 〈C(χ1)disk〉〈C(χ2)disk〉 +
2
∑

ll′ Pl(µ1)Pl′(µ2)
∑

m

(∑
l′′ W

m
ll′′Cl′′W

m
l′l′′

)2

D(χ1)D(χ2)
,

where W m
l′l′′ is given by Equation (5.24) and D(χi) is the same as D(χ) in the correla-

tion function with partial sky coverage.

In the binned cases the equivalent correlation matrices are

M(χ1, χ2)binned = 〈C(χ1)χB
χA

〉〈C(χ2)χD
χC

〉 +
∑

l C
2
l kl(χ1)

χB
χAkl(χ2)

χD
χC

8π2k0(χ1)
χB
χAk0(χ2)

χD
χC

,

and

M(χ1, χ2)binned disk = 〈C(χ1)
χB

χA,disk〉〈C(χ2)
χD

χC ,disk〉

+
∑

ll′ kl(χ1)
χB
χAkl′(χ2)

χD
χC

∑
m

(∑
l′′ W

m
ll′′Cl′′W

m
l′l′′

)2

4π2D(χ1)
χB
χAD(χ2)

χD
χC

,
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where D(χi)
χb
χa is the same as D(χ)bin in the binned correlation function with partial

sky coverage.
All these four expressions for M are of the same form as the general analytic ex-

pression above.

When using the Gaussian maximum likelihood to estimate the power spectrum
from the correlation function, the two-point two-point correlation matrix M must be
inverted, and in order to do this the matrix must be non-singular. Because of time
limitations I have not been able to examination this matter further, so whether M is
invertible or not will have to be a subject for future investigation.

It is possible to perform a χ2 maximum likelihood analysis using the correlation
function with the unaltered input power spectrum, but in this case the variates are
coupled and have to be calculated iteratively. Compared to the Gaussian variates which
are independent and thus only need to be calculated once, this is a time consuming
process and could make the correlation an undesirable component in CMB analysis.

6.2 Problems for future work

During my work with this thesis there are two important questions that have emerged,
but which I, because of time limitations, have not been able to answer within the scope
of this thesis.

First, what happens when parts of the power spectrum is not included in the calcu-
lations of the two-point correlation function? We have already seen how this alters the
shape of the correlation function, but not including all multipoles in the calculations
of the two-point function is highly likely to affect the rederived power spectrum as
well, and might also have consequences for the maximum likelihood analysis. How the
alterations will affect the rederived power spectrum, and even more important, which
consequences it might have for the maximum likelihood analysis is a subject for future
work.

Second, if there is to be any point in using the two-point correlation function as an
intermediate representation of the pixel data in CMB analysis, we need to be able to
perform a Gaussian maximum likelihood analysis to estimate the power spectrum from
the correlation function. This means that the two-point two-point correlation matrix
M must be invertible, i.e. non-singular. To find out if whether M is invertible or not,
we need to calculate M analytically, using one of the four expressions I have developed
in this thesis.

It could also be of interest to develop a binning window Wb from the relation
Cl

Binned/Cl
Theory, since I found that in the more realistic case of partial sky coverage,

the binning effect should be taken into account in experiments where the number of
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bins available is less than Nopt
bins. For experiments like WMAP and Planck, though, with

arc minute resolution and full sky coverage, the binning effect will be insignificant.



Appendix A

Properties of spherical harmonics

Orthonormality function∫ 2π

0

∫ π

0
Y ∗

l′m′(θ, φ)Ylm(θ, φ) sin θdθdφ = δl,l′δm,m′ . (A.1)

The addition theorem for spherical harmonics for two given direction unit vectors on
the sphere

Pl(cos α12) =
4π

2l + 1

∑
m

Y ∗
lm(θ1, φ1)Ylm(θ2, φ2). (A.2)

The angle between the two unit vectors is

cos α12 = cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ1 − φ2). (A.3)

Spherical harmonics as a function of associated Legendre polynomials

Ylm(Ω) = AlmPlm(cos θ)eimφ, (A.4)

where

Alm =

√
(2l + 1)

4π
(l − m)!
(l + m)!

. (A.5)

Special functions

Y00(θ, φ) = Y ∗
00(θ, φ) =

1√
4π

. (A.6)
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Appendix B

Properties of Legendre
polynomials

Orthogonality and normalisation relation∫ 1

−1
Pl(x)Pl′(x)dx =

2δl,l′

2l + 1
. (B.1)

Recursion formula for Legendre polynomials

(2l + 1)Pl(x) =
d

dx
Pl+1(x) − d

dx
Pl−1(x) (B.2)

for l ≥ 1.

Recursion formula for associated Legendre polynomials

Pl−1,m(x) − Pl+1,m(x)
(2l + 1)

=
√

1 − x2Pl,m−1(x) (B.3)

for l ≥ 1.

Special functions
P0(x) = 1. (B.4)
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