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Abstract
Peptide– lipid interactions play an important role in defining the
mode of action of drugs and the molecular mechanism asso-
ciated with many diseases. Model membranes consisting of
simple lipid mixtures mimicking real cell membranes can pro-
vide insight into the structural and dynamic aspects associated
with these interactions. Small-angle scattering techniques
based on X-rays and neutrons (SAXS/SANS) allow in situ
determination of peptide partition and structural changes in
lipid bilayers in vesicles with relatively high resolution between
1-100 nm. With advanced instrumentation, time-resolved
SANS/SAXS can be used to track equilibrium and nonequi-
librium processes such as lipid transport and morphological
transitions to time scales down to a millisecond. In this review,
we provide an overview of recent advances in the under-
standing of complex peptide– lipid membrane interactions
using SAXS/SANS methods and model lipid membrane
unilamellar vesicles. Particular attention will be given to the
data analysis, possible pitfalls, and how to extract quantitative
information using these techniques.
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Introduction
A large group of biologically relevant peptides are
considered to be surface active, interacting with lipid cell
membranes of either host cells. Examples include amy-
loid peptides linked to human diseases like Alzheimer’s

disease and Parkinson’s disease [1], and/or invading
pathogens, for example, antimicrobial peptides (AMPs),
a class of amphiphilic and mostly cationic peptides that
amongst other target negatively charged bacterial
membranes [2]. Studies of peptideelipid interactions
with high structural resolution is thus important to reveal
the mechanism behind several human diseases as well as
the mode of action of a range of peptides [3].

Small-angle X-ray/neutron scattering (SAXS/SANS)
techniques provide in situ nanostructural resolution in

solution and are therefore well-suited to study pepti-
deelipid interactions. In particular, SAXS/SANS are
useful to resolve both the overall morphological changes
(e.g., shape and size from the scattering at low angles
that correspond to length scales of a few hundred nm) as
well as resolving the more local membrane structure,
including the detailed density profiles across the lipid
bilayer and chain conformations at larger scattering
angles, corresponding to length scales of a few�A [4e7].
With the emergence of more powerful neutron and
synchrotron sources, these techniques can also be used

to study systems at low (physiologically relevant) con-
centrations and with temporal resolution starting from a
few milliseconds using time-resolved SAXS/SANS
[4,5,7]. Neutron scattering is particularly useful because
of the sensitivity of neutrons to isotopes, in particular
hydrogen (H) and deuterium (D). This can be exploited
for contrast variation, which allows structural features
(parts of peptide, lipid etc.) or specific kinetic processes
to be selectively studied.

A challenge in using small-angle scattering (SAS) to

study lipidepeptide interaction in real cells is that the
measured signal usually consists of a convoluted average
of all components and features in the cell. This makes it
hard to resolve the detailed structure of the highly
intricate membrane of real cells that consist of a
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complex mixture of molecules that are structured in an
hierarchical manner. Taking bacteria as an example this
already includes a diverse group of membrane proteins,
nucleic acids, lipopolysaccharides (LPS) (specifically
important constituents of the outer membrane of Gram-
negative (G(�)) bacteria), and a vast number of
different lipids, where phospholipids are the most
abundant. Nevertheless, several groups have explored

the possibility of determining structural information of,
for example, live bacterial cells from SAS data. Semeraro
et al. determined the ultrastructure of live Escherichia coli
bacteria using ultra-SAXS and detailed modelling [8],
while Nickels and coworkers have used SANS and
contrast variation to characterise the membrane het-
erogeneities of live Bacillus subtilis [9]. Although these
studies show that a great deal can be learnt, it is chal-
lenging to pinpoint the effects on a detailed molecular
level due to the complexity. Thus, there is a need for
simplified model systems, where the specific effects of

an added compound can be differentiated.

Model lipid membranes, that is, reconstituted,
simplistic bilayer membranes that only consist of a few
controllable ingredients, allow for a more facile analysis
of the interactions. Although the composition is simpler,
the key ingredients including the lipids components can
be chosen according to the relevancy of the problem at
hand. A recent critical review of the relevancy and lim-
itations of model membrane can be found in Ref. [10].
Planar model lipid membranes should be prepared for

surface sensitive methods by using supported or free
floating bilayers [11]. However, the presence of the
interface may alter the membrane properties, for
example, spontaneous fluctuations and rigidity, and/or
interfere with the interactions, for example, by adsorp-
tion of the peptide to the substrate etc. [7] Alterna-
tively, the model membranes can be obtained by making
vesicles with rather well-defined and tuneable size.
Using well-established protocols, lipid vesicles can be
prepared into various structures and are generally
divided into unilamellar vesicles (ULVs) consisting of a
spherical single bilayer, and multilamellar vesicles

(MLVs) that are stacks of spherical bilayers.

For the purpose of small-angle scattering, ULVs are
particularly suitable as model system because of the
rather well-defined structure and the free accessibility
for the peptides to the bilayer membrane. ULVs can also
be made asymmetric with differential composition on
each leaflet, which thus more closely resembles real
cytoplasmic membranes [12,13]. By varying the lipid
composition, or using lipid extracts from real cells,
substantial insight into complex processes involving

membrane interactions can be mapped in more detail.

In this work, we review the latest development and
progress in the studies of peptideelipid interactions
using small-angle scattering techniques, particularly
Current Opinion in Colloid & Interface Science 2023, 66:101709
focussing on well-controlled vesicular model systems.
We will provide an overview of recent work where SAS
has been used in combination with model membranes to
reveal insight into molecular interactions focussing on
the structural and dynamic aspects of peptideelipid
membrane systems. We will briefly review the most
relevant theoretical framework before discussing rele-
vant experimental advances highlighting the strengths

and possible pitfalls of these techniques.
Small-angle scattering from lipid vesicles
with inserted peptides
Following their increased use as models for biological
membranes, many different approaches have been put
forward in the last few decades on how to describe
SAXS and SANS data from ULVs. Broadly, these models
can be categorised into either spherical shell models,
where one or several shells are used to describe the

vesicles [14e18], or radial density profile models where
the radial distribution of the various components of the
bilayers is taken into account [19e23]. The present
work will consider both of these approaches, and in
particular focus on how the insertion of peptides into
the bilayer of ULVs can be incorporated into the
models. In all cases it is crucial, in particular for SAXS
analysis, that the change in contrast (e.g., electron
density) caused by the peptides is included. Without
this modification changes in the scattering pattern
caused by simple contrast changes may be falsely

interpreted as severe structural alterations of the
membrane itself [24]. Furthermore, while increasing
the complexity of the analytical models can allow for
more detailed descriptions of the bilayer, peptide
insertion and the overall structural characteristics of
the vesicle, the increased number of parameters
introduced can easily lead to overparameterisation if
care is not taken. Although a comprehensive treatment
of this nuanced topic is outside the scope of the pre-
sent review, some important considerations are high-
lighted. Crucially, most of the introduced parameters

should not be freely varied, but restricted by using the
intensity on an absolute scale and impose molecular
constraints. This can be achieved through comple-
mentary measurements, and use of literature values
(e.g., lipid and peptide volumes), to calculate e.g,
scattering length densities, compositions and concen-
trations. The remaining free parameters (e.g., vesicle
size, bilayer thickness and peptide position in the
bilayer) should in the fitting procedure be restricted to
physically meaningful ranges. The model credibility
further increases if it can describe the data over a sig-

nificant Q range, pertaining to both the overall vesicle
shape, size and contrast at low Q and the finer bilayer
structure at intermediate to high Q. Similarly, simul-
taneously fitting multiple experimental data sets (e.g.
joint SAXS and SANS analysis [22,24]), while varying
only the relevant parameters further reduces the risk of
www.sciencedirect.com
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Probing peptide-lipid membrane interactions Nielsen et al. 3
overfitting. In addition, statistical evaluation of the
model through the reduced c2 or correlation maps is
likely prudent [25,26].

The concentric shells model
In the simplest case, the vesicle can be modelled as a
single spherical shell [15]. This, however, does not
take into account the different contrast to lipid tail
and head groups, which in particular for SAXS analysis
is very significant with tails having negative and heads
having positive contrast towards water. A more

reasonable description can be achieved by using mul-
tiple concentric shells to describe the different
quasimolecular lipid fragments in the bilayer. With the
”three-shell” model [14,17,18], three different shells
are used to describe the inner head group, the central
Figure 1

a. Illustration of a vesicle with peptides (Cecropin A used as example) inserte
membrane. b. Illustration of the “three-shell” model showing the definition of th
the bilayer parsing into outer head group (OHG), inner head group (IHG), meth
the SDP model. Here a mix of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (D
lipids are used as an example. As the two lipids differ in the region comprising t
lipids is used to determine the volume and number of electrons of the OHG in
of DMPC (80 mol%) and DMPG (20 mol%), with and without inserted peptide
vesicle + peptide curve is scaled by factor 10 for visibility. Experimental data (s
”-three-shell” model (grey lines). e. Electron density (ED) profiles with and witho
”three-shell” model to the experimental data in D. Dotted lines correspond to v
13% is in the HC shell and 87% in outer head shell. f. Electron density (ED)
molecular lipid fragments (bottom) resulting from fitting the experimental data

www.sciencedirect.com
tail region and the outer head group, respectively
(Figure 1b). Additional shells can be introduced for a
finer subdivision of the bilayer, for example by using
separate shells for the inner and outer tail groups as in
the ”four-shell” model [16], or more for even finer
bilayer parsing [14,19]. However, the number of shells
should be increased with care, due to the risk
of overparametrisation.

For a polydisperse concentric shells model, the macro-
scopic differential scattering cross section can be writ-
ten as:

dS ðQÞ ¼ f
ZN

GðR Þ,A ðQ;R Þ2dR ; (1)

dU Vdry

0

i CS i i
d in the interfacial region between head and tails in the outer leaflet of the
e three concentric shells in relation to the bilayer structure. c. Illustration of
ylene (CH2) and methyl (CH3) quasimolecular fractions commonly used in
MPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-(10-rac-glycerol) (DMPG)
he outher head group, an average weighted by the molar fraction of the two
the SDP model. d. SAXS curves from ULVs in aqueous solvent comprised
(Cecropin A in a 1:10 peptide:lipid molar ratio). The intensity of the
cattered points) is analysed using both the SDP model (red lines) and the
ut peptide (top) and shell volume profiles (bottom) resulting from fitting the
esicle only, while filled curves correspond to vesicle with peptide, of which
profiles with and without peptide (top) and volume profiles of the quasi-
in D with the SDP model.
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where, f is the volume fraction and Vdry is the ”dry” volume

of a single vesicle, corresponding to the combined total

volume of the lipids and/or peptides per vesicle without the

solvent. G(Ri) is the polydispersity distribution (for

example Gaussian) as function of the inner radius of the

vesicle, Ri, and ACS(Q, Ri) is the ”concentric-shell” ampli-

tude defined as:

ACSðQ;RiÞ ¼
XNS ¼ 3;4

j¼ 1

Drj,Vj,Ashell ðQ;Rj;Rj�1Þ; (2)

where NS is the number of shells in the model and Ashell(Q)
is the scattering amplitude of a spherical shell:

Ashell ðQÞ ¼ 1

Vj

�
VsðRjÞ,AsðQ;RjÞ,DW ðQ; sjÞ �

VsðRj�1Þ,AsðQ;Rj�1Þ,DW ðQ; sj�1Þ
�
;

(3)

with As(Q) defined as the well-known solid
sphere amplitude:

AsðQ;RjÞ ¼ 3sinðQRjÞ,QRj cosðQRjÞ
ðQRjÞ3

: (4)

In the above expressions, Vj is the volume of shell j, while
Rj andRj�1 are the outer and inner shell radii respectively,
and are defined in terms of the inner vesicle radius Ri and
the thickness t of each concentric shell up to j. Vs(Rj) is
the volume of a sphere of radius Rj. The DebyeeWaller
factor, DW ðQ; sjÞ ¼ expð� Q2s2j =2Þ, accounts for a
diffuse border between the shells [27], and stems from
convoluting the sharp radial shell density with a Gaussian,
to obtain the smooth profiles shown in Figure 1e. It is

worth mentioning that both size polydispersity (eq. (1))
and thermal fluctuations result in a smearing of the
scattering curve features. However the effects are mostly
affecting different Q regimes, while thermal fluctuations
mostly affects the high to intermediate Q, at low Q,
polydispersity effects predominates [28].

The amplitude of each shell is scaled by the difference
(ie. contrast) between the shell and water scattering
length densities (SLDs), rj and rS respectively, as
Drj = rj � rS. The shell SLD is dependent on the lipid
fragment, the amount of inserted peptide, and the

degree of hydration of the shell. Defining the number of
lipids per vesicle (ie. the lipid aggregation number) as
Plip, and the stoichiometric ratio of peptide to lipids as
rPL = nP/nL, the number of peptides per vesicle is given
by Ppep = Plip , rPL , cP, where cp = 1 � fP,free and fP,free
are the fractions of bound and free peptide in solution
respectively. Furthermore, the number of peptides in
shell j is given by Ppep,f

P
j , where f

P
j is the fraction, out of

total bound peptide, that is in shell j. Thus there can be
Current Opinion in Colloid & Interface Science 2023, 66:101709
a different amount of peptide in each shell, however,P
j f
P
j ¼ 1 needs to be introduced as a neces-

sary constraint.

Assuming no solvent penetration and no voids, the
central hydrocarbon shell should be completely filled
with lipid tails and potentially peptides. Under this
assumption Plip can be determined from the shell

volume, (given by the outer shell radius, Rj, and shell
thickness, tj) and the combined volume of a lipid tail and
associated peptide as:

Plip ¼ 4p½ðRjÞ3 � ðRj � tjÞ3�
3ðVtail þ rPLcPf

P
HCVPÞ

; (5)

where VP and Vtail are the peptide and lipid tail volumes,

respectively. However, as there is less volume in the inner

bilayer leaflet it will contain fewer lipids compared to the

outer leaflet. If the tail region is described by a single shell,

as in the ”threeshell” model, the number of lipids in each

leaflet can be expressed as Plip,c
L
leaf , with

cLouter ¼ ðR3
j � ðRj � tj=2Þ3Þ=ðR3

j � ðRj � tjÞ3Þ for the

outer leaflet and cLinner ¼ 1� cLouter for the inner, with j= 2

in this case.

Using Plip, the volume fraction of the lipid fragment

(head or tail), fL
j , peptide fP

j and solvent fS
j in each

shell can be determined as:

fL
j ¼

�
Plip,c

L
leaf,V

L
j

�.
Vj

fP
j ¼

�
Plip,c

L
leaf,rPL,c

P,f Pj ,VP
�.

Vj

fS
j ¼ 1� f

lip
j � fP

j

(6)

where VL
j is the volume of the lipid fragment. It is

emphasised that for the single hydrocarbon shell (j = 2) in

the ”three-shell” model, cLleaf ¼ 1, and fS
2 ¼ 0, as

fL
2 þ fP

2 ¼ 1 per definition. If different shells are used for

the inner and outer tail groups (ie. the ”four-shell” model),

equation (5) can be used to compute separate lipid ag-

gregation numbers. The SLD of each shell is then calcu-

lated as:

rj ¼ fL
j r

j
L þ fP

j rP þ fS
j rS; (7)

where r
j
L, rP and rS are the “dry” SLDs of the lipid frag-

ment, the peptide and the solvent, respectively. Finally,

Vdry = PlipVlip þ PpepVP, which is used in equation (1) to

determine the number of scatterers. The free fitting pa-

rameters are therefore the geometrical parameters of the

shells (inner radius and polydispersity, thickness of each

shell and the smearing parameter s in the DW factor) as

well as the fractions of peptide in each shell, together with

the fraction of free peptide. The remaining parameters are

either independently determined, or directly derived from

the aforementioned parameters. It bears mentioning that
www.sciencedirect.com
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as the insertion of peptide in the inner and outer head

group shells can displace the solvent, a restriction should

be introduced to prevent negative solvent fractions.

Experimental SAXS data of vesicles comprised of 1,2-
dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and
1,2-dimyristoyl-sn-glycero-3-phospho-(10-rac-glycerol)
(DMPG) in a 80:20 M ratio, with and without inserted
peptide (Cecropin A in a 1:10 peptide:lipid molar ratio),
analysed with the ”three-shell” model are shown in
Figure 1d with the resulting shell volume probabilities
and electron density profiles shown in Figure 1e. In this
case the model fits reasonably well, especially for the
scattering from pure vesicles, but does not fully explain
the scattering with added peptide, particularly the
minimum at intermediate Q. With only three shells the
model presents a coarse-grained description of the
bilayer structure with limited asymmetry as both tails

are described by a single shell, and limited resolution of
the peptide insertion, which might be particularly
challenging in the case of Cecropin A which is shown to
have a very broad and asymmetric distribution in the
bilayer [29]. Higher resolution of the bilayer structure
can potentially be achieved by increasing the number of
shells, like in the case of the ”four-shell” model used by
Qian et al. to describe SANS data of vesicles with pep-
tide induced asymmetry [16]. Care has to be taken
however, as increasing the number of shells rapidly in-
creases the number of free parameters, especially if the

peptide distribution is allowed to vary between
the shells.

The scattering density profile (SDP) model
In order to provide a more realistic description of the
peptide insertion, the radial density profile of the pep-
tide and lipid components in the bilayer can be
described by a continuous function rather than discrete
shells. Although explicit radial density profiles can be
introduced and the total scattered intensity computed
via a 3D Fourier transform [15], the description is
significantly simplified by assuming that the bilayer is
locally flat. This is a valid approximation when curvature
is low, that is, when the inner vesicle radius, Ri is suf-

ficiently large compared to the bilayer thickness t, with
t/Ri < 0.5 [15]. Under these circumstances the radial
and lateral scattering contributions can be treated
independently using the separated form factor (SFF)
approximation: [15,30].

IðQÞxSðQÞ,jFTS ðQÞj2,jFFB ðQÞj2 (8)

where S(Q) is the structure factor, FTS ¼ 4pR2sinðQRÞ
QR is

the form factor of an infinitely thin spherical shell with

radius R, and FFB is the form factor of a flat bilayer sheet

which contains information about the distribution of the

lipid components across the bilayer. Brzustowicz and

Brunger showed that the scattering from asymmetric ves-

icles can be described using a smooth SLD model function

[20]. In this case the SLD is described by a sum of three
www.sciencedirect.com
Gaussian functions, one each for the head groups and one

for the tail groups. It is important to point out that for small

vesicles, curvature effects may lead to asymmetric SLD

profiles even for vesicles with uniform lipid compositions at

both leaflets [28]. The flat bilayer formfactor can then be

described as:

jFFBj ¼
����
ZDo

�Di

Dr expðiQzÞdz
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF2

cos þ F2
sin Þ

q
; (9)

where Fcos ¼ RDo

�Di
Dr cosðQzÞdz and Fsin ¼ RDo

�Di

Dr sinðQzÞdz are the real and imaginary terms of FFB, with

the integrals extending from the innermost distance Di to

the outermost distance Do in the bilayer.

This is followed by the scattering density profile (SDP)
model, presented by Ku�cerka and coworkers [21,31,32],
where the bilayer is described by one-dimensional
Gaussian volume probabilities of quasimolecular lipid
fragments (with a typical parsing shown in Figure 1c):

PiðzÞ ¼ ci

ð2pÞ1=2
exp

"
� ðz� ziÞ2

2s2i

#
; (10)

where i represents the specific quasimolecular lipid frag-

ment, while zi is the position and si the width of the dis-

tribution, and ci = Vi/(ALsi), with Vi and AL defined as the

volume of the lipid fragment and area per lipid, respec-

tively. It is important to stress that for the SLD or electron

density to be determined quantitatively, the specific vol-

umes of each component (lipid and peptide) must be

determined separately, through, for example, volumetric

measurements and/or the use of literature data [33,34].

Alternatively, only the relative profiles can be determined

[35]. To account for the potential asymmetry in the inner

and outer hydrocarbon tail regions and to enforce that no

water is present in the bilayer core, the hydrocarbon region

can be described by a half-period squared sine/cosine

function rather than by additional Gaussians, as described

by Eicher et al.: [22].

PHCðzÞ ¼

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

sin2
�
p

2
,
z� zMNi

þ sHCi

2sHCi

	
;

for zHCi
� sHCi

� z < zHCi
þ sHCi

1;

for zHCi
þ sHCi

� z < zHCo
� sHCo

cos2
�
p

2
,
z� zHCo

þ sHCo

2sHCo

	
;

for zHCo
� sHCo

� z < zHCo
þ sHCo

(11)

where zHCi;o
is the 0.5-probability value for the HC group

and 2sHCi;o
is the width of the squared sine/cosine
Current Opinion in Colloid & Interface Science 2023, 66:101709
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functions. The probability function for the CH2 groups is

then determined as PCH2
ðzÞ ¼ PHCðzÞ� PHC3

ðzÞ. Finally,
space filling is ensured by calculating the solvent proba-

bility last as PsðzÞ ¼ 1� P
iPiðzÞ [32]. The volume

probability profiles (Figure 1f) are then scaled by the SLDs

of the corresponding fragments, using either the number of

electrons (for SAXS) or the total coherent neutrons scat-

tering length (for SANS), also allowing for joint analysis.

The insertion of peptide can be described by adding the
peptide as an additional Gaussian (eq. (10)) scaled by
the peptide volume, Vp, total volume fraction, fp of
added peptide and by the fraction of peptide associated
with the bilayer cP, with cp = (Vpfpc

P)/(ALsp) as shown
by Nielsen et al. [24]. The peptide partitioning in the
bilayer can with this be varied continuously, allowing for
a more detailed description of its insertion and position

in the bilayer [24,29]. However, the change in SLD is
dependent on the fraction of peptide in the tail and
head regions respectively, which has to be taken into
account. The contrast contribution from the peptide
can be described as:

DrPðzÞ ¼ fp;tail,ðrP � rHCÞ þ ð1� fp;tail Þ,ðrP � rSÞ;
(12)

where rP, rHC and rS are the peptide, hydrocarbon tail, and

solvent SLDs respectively, while fp,tail is the fraction of

peptide in the tail region and is defined as the integral of

the overlap with the hydrocarbon volume probability:

fp;tail ¼

Z zint

zp�5sp

PHC dzþ
Z zHCþsCH2

zint

PP dzZ N

�N
PP dz

; (13)

where PHC and PP are the volume probability functions,

with the corresponding positions zHC, zP and uncertainties

sHC, sP of the hydrocarbon region and peptide respectively.

zint is the intersect between the two overlapping proba-

bilities and can be determined numerically, for example,

using the well-known Brent-Dekker method. For the

analytical solution for the flat bilayer form factor in equa-

tion (9) with inserted peptide it is referred to Ref. [24].

Experimental SAXS data for vesicles with and without

peptide are analysed with the SDP model (Figure 1d) with

the resulting volume and electron density profiles shown

in Figure 1f.

A complication arises when the peptide not only inserts,

but also solubilises the membrane. This is prone to
happen at high peptide:lipid (P:L) ratios for, for
example, AMPs [36,37] or a-synucleins [38], and de-
mands the introduction of coexistence models that also
include micellar aggregates. This can often be detected
as a decrease in the overall intensity of the broad peak of
the bilayer scattering and additional contributions at
intermediate Q [18]. Since this introduces a significant
Current Opinion in Colloid & Interface Science 2023, 66:101709
amount of free parameters, care must be taken in the
analysis to avoid ambiguities, it is therefore in most
cases preferable to work at lower P:L ratios.
Probing the nanostructure: peptide and
lipid membrane interactions
Antimicrobial peptides
There are many relevant questions that relates to how
AMPs interact with cell membranes that can be
addressed by SAS techniques. Examples includes how
AMPs affect the membrane structure (thickening/
thinning), peptide insertion and position in the mem-
brane and thus whether AMPs can create pores in the

cytoplasmic membrane. Other relevant questions re-
lates to whether the AMPs disturb the packing, solubi-
lise the lipid membrane or cross the membrane for
intracellular targets [2].

Recently Semeraro et al. reported the real-time response
of E. coli to lactoferricin-derived AMPs using TR-SAXS
experiments [39]. SAXS together with electron micro-
scopy (EM) data revealed how the AMPs rapidly
permeabilise the cytosolic membrane within less than 3 s,
and damage of the cell envelope occurred even at sub-

lethal peptide concentrations, implying that the impair-
ment of the membrane barrier is a necessary but not
sufficient condition for microbial killing by lactoferricins.
This study shows the information that can be gained by
careful analysis of SAS data even in ”live” cells.

Despite this recent breakthrough in the ability to study
membrane interactions even in live bacterial cells using
SAS, most of the available studies are done using model
membranes such as lipid vesicle systems. This has the
benefit that also more subtle membrane effects of AMPs
can be resolved. In many of these studies bacterial

membranes are crudely mimicked by mixtures of anionic
and zwitterionic lipid mixtures, which roughly corre-
sponds to the net charge of a typical bacterial cell
membrane. However, positively charged peptides, such
as AMPs, will often cause vesicles to aggregate and/or
fuse leading to unstable colloidal suspensions that may
form a variety of structures such as MLVs or large non-
lamellar phases, which may also precipitate out of so-
lution [40]. While such phenomena may be relevant as
an important mechanism to how bacteria are disrupted,
the information on insertion and structuring of AMPs

within the bilayer will be obscured. One method to
prevent this is to add a small amount of PEGylated
lipids, which provide entropic repulsion between the
vesicles [24,29,41]. In this way, the (unilamellar)
membrane is accessible for the peptide while at the
same time the bilayer structure remains intact allowing
for more accurate quantitative analysis.

The a-helical AMP LL-37 is the only human cath-
elicidin, and is therefore one of the most well studied
www.sciencedirect.com
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AMPs. LL-37 has pleiotropic properties, as a key player
in the human innate immune system with broad spec-
trum antimicrobial activity, immunomodulation abilities
etc. Sevcsik et al. first showed how LL-37 can solubilise
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)
lipid vesicles resulting in a co-existence of two popula-
tions of membrane structures (discs and extended bi-
layers) [36,37]. Freire et al. suggested that, depending on

the peptide:lipid (P:L) ratio, cylindrical mixed micelles
were formed in 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholin (POPC)/1-palmitoyl-2-oleoyl-sn-glyc-
ero-3-phospho-(10-rac-glycerol) (POPG) lipid vesicles
[42]. Nielsen et al. further showed that these effects are
both dependent on the P:L ratio as to be expected [29],
but also to the composition of the lipid bilayer, where
bilayers composed of PE/PG-lipids are solubilised at a
lower LL-37 concentration than bilayers with PC/PG-
lipids [41]. Similarly, Freire et al. observed a structural
transformations from vesicles to mixed cylindrically

shaped micelles upon addition of LL-37 in increasing
amounts to pure PG vesicles, as observed by SAXS
together with dynamic light scattering (DLS), trans-
mission electron microscopy (TEM) and molecular dy-
namics (MD) simulations [42]. These SAS results seen
together support a potential detergent like mode of
action of LL-37 when present in high concentrations.
However, at lower L:P ratios the peptide inserts into the
membrane without causing solubilisation, pointing to-
wards less invasive membrane effects, for example the
interface activity model where peptide induced changes

in the lipid packing is related to membrane leakage [43],
pore formation, changes in lipid dynamics [29], in
addition to known intracellular effects of LL-37 [44].

Indolicidin, is another cathelicidin peptide, originating
from bovine neutrophils. Contrary to most AMPs, it is
mainly unstructured monomeric in aqueous solution, as
confirmed by SAXS [24]. Using different model mem-
branes and by developing an advanced theoretical
model, based on the existing SDP model, to describe
the scattering from different contributions of the lipid/
peptide components Nielsen et al. demonstrated that

indolicidin is preferentially located at the interface be-
tween the tail and head groups on the outer leaflet,
consistent with the interface activity model described
above, at a range of physiologically relevant concentra-
tions without causing solubilisation of the membrane as
observed for LL-37 [24]. This approach of detailed
model analysis of the peptide position in a lipid mem-
brane was verified to be accurate by comparing the re-
sults directly to data from neutron reflectometry (NR)
using the same lipid composition, indolicidin batch and
lipid to peptide ratios [45].

Defensins are another potent class of AMPs found in
humans. By using SAXS Schmidt et al. investigated the
interactions between liposomes mimicking either
www.sciencedirect.com
bacterial membranes or eukaryote membranes, and
various members of the defensin subfamilies, a-defen-
sins, b-defensins, and q-defensins [46]. The results
revealed that these AMPs selectively permeabilise the
bacterial model membranes, and generate negative
Gaussian membrane curvature, referred to as saddle-
splay. This is a necessary condition for processes such
as pore formation, blebbing, budding, and vesicularisa-

tion, and SAXS data in this way gives new insight into
the mode of action of this group om AMPs.

Peptides isolated from frogs form a substantial class of
AMPs, which have been extensively studied for their
membrane effects by SAS. One example is peptidyl-
glycylleucine-carboxyamide (PGLa), from South Afri-
can clawed frogs, which was found by Pabst et al. using
SAXS and WAXS to change the structure and fluidity of
lipid membranes at different temperatures [47]. From
the analysis using the SDP model they were able to

determine a 1e2 Å increase in the thickness of 1,2-
dimyristoyl-sn-glycero-3-phospho-(10-rac-glycerol)
(DMPG) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(10-
rac-glycerol) (DPPG) vesicles as induced by the pep-
tide, when the lipids where in the fluid phase [47].
They later compared the membrane effect of L18W-
PGLa to that of magainin II, another AMP sourced
from frogs. In this study they did SANS, SAXS, nuclear
magnetic resonance (NMR) and molecular dynamics
(MD) simulations to obtain a detailed picture of how
the two AMPs either alone or in synergy insert into lipid

membranes. In this case they observed membrane
thinning for both AMPs as a result of a change in the
lipid packing, as well as a stronger penetrative effect
upon dimerisation of the peptides as confirmed by MD
simulations, fitting better with the experimental SAS
data, illustrating the power of combining SAS and MD
simulations [48]. Further they showed that these pep-
tides cause vesicle adhesion and fusion within a few
seconds [40], resulting in a growth of the vesicles that
similarly has been observed, in a concentration depen-
dent matter, for other AMPs like indolicidin [49].

Nielsen et al. used SAXS to compare the membrane
effect of a range of natural AMPs directly using the same
instrument, analysis, lipid vesicle system and lipid:-
peptide ratio. The AMPs include magainin II, aurein
2.2, lacticin Q, cecropin A, colistin and LL-37 (results
previously discussed above). By using a similar approach
as for indolicidin as described above, detailed analysis of
the SAXS data revealed that the membrane effects and
insertion of these peptides varied significantly. While for
example magainin II, cecropin A and lacticin Q inserted
in the outer leaflet of the membrane, aurein 2.2 rather

inserted transmembrane [29,41]. The transmembrane
positioning can correlate with a traditional pore forma-
tion mechanism of bacterial killing, however the other
AMPs that are found to position in the outer leaflet do
Current Opinion in Colloid & Interface Science 2023, 66:101709
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not. In these cases a different mechanism of disturbed
lipid packing (as supported by changes in the lipid phase
transition temperature) that could result in fluid or ion
leakage [43] or changes in lipid dynamics as discussed in
the next chapter seems more likely.

The peptide melittin, is derived from a honey bee (Apis
mellifera) venom, and is often referred to as an AMP

although it lacks selectivity towards microbial cells.
Using aligned multistacked lipid membranes where the
peptide is prepared with brominated lipids, White and
coworkers showed that melittin causes minimal pertur-
bation of the lipid membrane at low concentrations, but
larger effects on the membrane are observed when a
high concentration of peptide is added [50]. Using the
same method, Lee et al. also suggest that stable pores
only are formed above a critical peptide-to-lipid ratio
[51]. Using ULVs and SANS, Heller and coworkers
suggested that the membrane thickness can be both

thicker or thinner in response to peptide exposure
depending on concentration and lipid composition [17].

Colistin (polymyxin E) is an AMP produced by the soil
bacterium Bacillus polymyxa. It is currently used in clinics
as a last-resort treatment for multidrug-resistant Gram-
negative (G(�)) infections, and has therefore been
extensively studied by a range of different techniques
including SAS. SAXS on hydrated multi-stacks of lipid
bilayers was used by Dupuy et al. to determine the in-
teractions of colistin (polymyxin E) with model mem-

branes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphoethanolamine (POPE)/POPG/cardiolipin and
POPG/1,2-dioleoyl-3-trimethylammonium-propane(-
DOTAP)/POPE/cardiolipin to mimic the cytoplasmic
membrane of G(�) bacteria and gram-positive (G(þ))
bacteria, respectively [52]. They found that the peptide
inserts in the interfacial area between head and tail in
both cases, and partitions more deeply into the inner
membrane of G(�), locating right under the headgroup,
while remains in the headgroup region in the G(þ)
mimicking membrane [52]. While Nielsen et al. found
using ULVs rather than multi-lamellar stacks, but with a

simpler lipid composition of only DMPC/DMPG and
1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine
(DMPE)/DMPG that colistin did not interact with the
liposomes over a range of concentrations [29,41].

Natural AMPs is not the only class that has been studied
using SAS, also de novo designed AMPs and peptide-
mimics have been subject of investigation using SAS.
Hamley, Castelletto and coworkers have done extensive
work in this field using a combination of TEM and
SAXS. For example, they found that the lipid vesicle

interaction of surfactant-like arginine-rich peptides
highly depends on the number of arginine residues in
Current Opinion in Colloid & Interface Science 2023, 66:101709
the peptide structure. They also describe peptide
induced formation of multilamellar vesicles [53,54].
Further they found using SAXS, that peptides that
contain blocks of symmetric charged (arginine) and
hydrophobic (phenylalanine) residues interact with
lipid bilayers by inducing correlation between bilayers
(R3F3), or by causing an increase in polydispersity of
the vesicle wall thickness (R4F4) [55].

All-D-AMP peptides have been studied for their
increased in vivo enzymatic stability over the natural
occurring L-AMP counterparts. Lone et al. determined
by SAXS how their library of all-D-peptides had a lower
membrane bound amount when comparing with previ-
ously studied L-peptides. In addition to the membrane
effects, SAXS was also used in this paper to compare the
propensity of the peptides to self-assemble into defined
nanoparticles of hollow tubes, and sheets, which could
be relevant for their in vivo activity, showing the diversity
of the technique in the study of peptides [56]. While
Heinrich et al. used SAXS on oriented stacks of lipid
membranes in combination with NR to compare the
membrane effect of two peptides WLBU2 and D8 (all 8
valines are the D-enantiomer), revealing that both
peptides cause membrane thinning and dual location in
the membrane headgroup and hydrocarbon region [57].

Cyclisation of peptides is another strategy for improve-
ment of enzymatic stability of AMPs. Recently, Lone
et al. described how the cyclic version of incolicidin in-

serts into the bilayer of lipid vesicles very similarly as the
natural linear peptide suggesting a comparable mecha-
nism of action [58].

SAS has further been used to study de novo designed
self-assembling AMPs, in order to investigate how the
presence of lipid membranes may affect the physical
stability of the self-assembled structures. One example
is the beta-sheet nanofibers based on the general
Kx(QL)yKz motif, which self-assembles into elongated
fibres consisting of two stacked beta sheets, held
together by hydrophobic interaction of the leucine res-

idues, as shown by amongst other SAXS [59]. By using
SANS and contrast matched liposomes Nielsen et al.
showed that the fibres are exceptionally stable even in
the presence of lipid membranes, indicating that the
fibres in themselves have antimicrobial activity [60].

Von Gundlach et al. has developed a method using SAXS
data on E. coli cells treated with different antibiotics
including AMPs as a high-throughput method for
screening of mode of action of the substances by
distinguishing the changes in the SAXS curves of several

antibiotics with well-known mode of action by principal
component analysis. This enables them to distinguish
www.sciencedirect.com
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AMP drug candidates with novel mode of actions from
the established antibiotics for further development in
the matter of minutes rather than days or weeks as
conventional tests to identify the mode of action used
today [61].

Amyloid forming peptides
Amyloid oligiomerisation and fibrilisation has been
extensively researched over the past decades because of
their link to disease development, and suggested role in
the innate immune system. These amyloid forming

peptides are also considered surface active, and may
perturb both the structure and the integrity of lipid
membranes, as well as the presence of lipid membranes
has been found to trigger amyloid formation [1].

Using a combination of SANS on peptideevesicle mix-
tures, analysed using a three-shell model Rai et al.
Figure 2

a. SANS data on DMPG liposomes and DMPG liposomes mixed with Ab pept
reproduced from Ref. [17]. b. SANS data on DPPC/Ab25−35 membrane organ
describe the SANS curves are indicated with corresponding colours in the illu
SANS method used to obtain data presented in figure d, utilising contrast matc
on peptide induced changes in the lipid bilayer discs. Created with BioRender.
D2O, and of the changes induced after addition of aS, and best fit with a paral
and a length of longer edge b = 550 nm. Figure is reproduced from Ref. [64]

www.sciencedirect.com
revealed how b-amyloids (Ab), which are linked to
Alzheimer’s disease, inserts into charged DMPG bi-
layers in the interfacial region between water and hy-
drocarbon chain (Figure 2a), similarly to a series of
AMPs, while it doesn’t penetrate deeply into the bilayer
[17]. While, Dante et al. determined using SANS and
the SDP model that Ab1e42 causes an increase in the
liposome radii which they explained by vesicle fusion.

Carrotta et al. used SAXS data to study how Ab inter-
action with lipid vesicles changes with addition of
varying amounts of sphingomyelin, ganglioside and
cholesterol to the lipid vesicle composition [65]. Ivan-
kov et al. has used SANS to characterise spontaneous
reformation of ULVs to discoidal bicelle-like structures
and small ULVs with increasing temperature to above
the thermodynamic phase transition of the lipids,
selectively in the presence of the Ab25�35 peptide as
shown in Figure 2b [62].
ide in 100%. D2O with respective fits using the three-shell model. Figure is
isations as a function of increasing temperature. The best fit model to
stration above. Figure is reproduced from Ref. [62]. c. Illustration of the
hing of 75% deuterated aS protein (PDB:1XQ8 [63]) to extract information
com. d. Scattering profiles of a pure lipid bilayer disc dispersions in 100%.
lelepiped (illustration inset) model with a length of shorter edge a = 13 nm
.
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Olsson and coworkers recently presented data revealing
that the structure of a-synuclein (aS) fibrils, which has
been linked to development of Parkinson’s disease,
composed of two photofibrils is not affected by coag-
gregation with lipids [66], similar results was found in a
study on the central protein fragment NACore [67].
However, using time resolved SANS (TR-SANS) in
combination with deuterated aS proteins (Figure 2c),

they obtained the needed contrast between the amyloid
and lipid membrane and were able to determine that the
shape of the lipid nanodiscs is highly depended on the
interaction with the amyloid protein and its oligomer-
isation state (Figure 2d). Previously circular discs trans-
formed into elongated parallelepiped shapes upon
absorption of nonfibrillated aS as confirmed by cryo-EM,
but upon aS fibrilisation the amyloid molecules desorb
from the bilayer and the circular discs regain their orig-
inal shape [64]. A recent study by Galvagnion et al. on aS
fibrilisation confirmed that aS cause solubilisation and

structural transformation of vesicles. However, they
suggest that the lipids take an active role in the process
of nucleation of fibrils beyond simply acting as surface
catalysts. They find using TR-SAXS and a stopped-flow
apparatus (SFA) that the binding of the protein to the
vesicles induces a very rapid structural transition (less
than 2e3 ms) into lipidepeptide nanoparticles of disc-
like and/or cylindrical shape, which after incubation for
several hours further transitions into traditional amyloid
fibril formation, but where the lipids are incorporated
into the fibrils [38].

Using contrast variation and SANS Martel et al. found
that the aggregates formed by human islet amyloid poly
peptide (IAPP), which is a peptide linked to the
development of type 2 diabetes, where larger in presence
of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine
(POPC) lipids than the aggregates formed in its
absence. They estimated based on these data that the
aggregates are constituted of 70% peptide and 30% lipids
[68], indicating that the peptide and lipids co-aggregate
similarly to what Galvagnion et al. found for aS [38].

Beyond the natural amyloid peptides, SAS has further
been used to explore the amyloid like fibril formation of
short model peptides in model membranes. Gerbelli
et al. determined how two amyloid forming short pep-
tides, [RF] and [RF]4 (where R = arginine and
F = phenylalanine) caused changes in the structure of
DPPC membranes with increasing peptide concentra-
tion, including formation of MLVs and increased thick-
ness of the bilayer [69].

pH responsive peptides
The effect of peptides that selectively interact with
lipid membranes upon changes in pH can also be probed

by SAS. Narayanan, Reshetnyak, Engelman and co-
workers studied the pH Low Insertion Peptides
Current Opinion in Colloid & Interface Science 2023, 66:101709
(pHLIP) derived from bacteriorhodopsin, which show a
pH dependent coilehelix transition that is accompanied
by a change in the insertion mechanism into lipid bilayer
membrane using SAXS and unilamellar POPC liposomes
[70]. They showed that at low pH, the peptide inserts
into the membrane in a transmembrane like fashion,
while at higher pH values, the inner hydrophobic part of
the electron density profile has a similar shape as in pure

POPC liposomes, indicating that the peptide molecules
were residing at the outer leaflets of the membranes.
The transition, which can be used to target (more
acidic) tumour cells, is driven by aspartic acid residues
which become neutralised at low pH thereby facilitating
alpha-helix formation and transmembrane insertion.
Probing kinetics: from structural
transformations to lipid diffusion
Cell membranes are not static entities and exhibit rather
rich dynamic behaviour, from larger scale shape fluctu-
ations to local diffusion of individual molecules. For
example, it is well-known that lipid vesicles undergo
shape fluctuations and membrane undulations that can
be conveniently studied by neutron spin-echo (NSE)
spectroscopy [71]. Shape fluctuations will also affect the

static (average) SAS data in a manner that is challenging
separate from polydispersity [28]. In response to
changes in temperature, pH, salt etc, or by addition of
surface active molecules such as detergents or peptides,
vesicles may undergo morphological transitions
[36,37,40,72,73]. SAS can be used to probe various ki-
netic processes [4,5]. In particular, by taking advantage
of the high brilliance of the X-ray beams in synchrotrons,
allowing structural resolution of processes down to a few
milliseconds [4,5,74]. TR-SAXS has been used to
investigate nonequilibrium kinetics associated with
structural transformation of lipid vesicles exposed to

detergents [73], osmotic shocks [75], and AMPs [76].
The latter study showed that nonsterically stabilised
liposomes (POPE/POPG/cardiolipin) form MLVs and
eventually phase separate on time scales of a few mi-
nutes after peptide exposure.

In addition to nonequilibrium structural transitions, TR-
SANS allows us to probe the dynamics of lipid mem-
branes at equilibrium. Using a method originally devel-
oped for micellar systems [4], both the transversal
exchange between leaflets, lipid ”flip-flop,” and ex-

change between vesicles can be probed [7,77,78]. The
method, illustrated in Figure 3a, is based on hydrogen/
deuterium (H/D) contrast variation where deuterated
and proteated vesicles are mixed in a solvent that
matches the average SLD of the two. Upon mixing on
the molecular scale, the intensity will drop rendering the
kinetics visible (Figure 3b). Contrary to other methods
such as fluorescence and temperature-jump experi-
ments, this method does not require labelling with bulky
chemical groups or perturbation from equilibrium.
www.sciencedirect.com
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Figure 3

a. Illustration of the TR-SANS utilising the zero-average contrast variation to extract the lipid dynamics. In short, H- and D-vesicles is mixed in a buffer
solution that matches the average H/D composition. b. TR-SANS data showing the decay in time for DMPC/DMPG vesicles with corresponding fits. c. The
decay in the overall contrast, R(t), for the same vesicles with and without addition of indolicidin. d. Corresponding Arrhenius plots. All data reproduced
from Ref. [49].
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The technique was first successfully applied to extract
lipid flip-flop and exchange in unilamellar DMPC vesi-

cles [77]. The results can be quantified by the relaxa-
tion function, R(t) = (I(t)� IN)/(I(t= 0)� IN), where
I(t) is the (integral) time-dependent intensity, while
I(t = 0) and IN are the intensities at the beginning and
after complex (molecular) mixing, respectively
(Figure 3c). Alternatively, the complete TR-SANS data
can be analysed with time-dependent scattering model
[4,49,79,80] from which we can extract the fraction of
”labelled” lipids per vesicles, f(t) as a function of time,
0 � f(t) � 1. Both can be described by a double expo-
nential function reflecting the two possible diffu-
sion processes:

RðtÞ ¼
�
1

2
� kf

X

	
exp

�
� kex þ 2kf þ X

2
t

	
þ
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where X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2f þ k2ex

q
, kf and kex are the rate constants for

flip-flop and exchange respectively.
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It has been shown that additives such as methanol or
simple changes in curvature of ULVs accelerate the lipid

kinetics. Nielsen et al. investigated the dynamics of
DMPC/DMPG lipids in ULVs stabilised by small
amounts of h-DMPE-PEG, and exposed the vesicles to a
series of natural AMPs with different degree of inter-
action with the membrane. The data showed that all
AMPs except colistin (polymyxin E) significantly
enhanced the rate of both flip-flop and exchange ki-
netics between the vesicles. The effect was similar even
though insertion varied from creating a transmembrane-
like structure to preferential location in the head/tail
group interface [29]. Interestingly by selectively label-
ling the DMPC, it was deduced that DMPG lipids flip

slightly faster than DMPC but are similarly affected by
the peptide [49]. The lack of interactions with colistin
was also found for DMPE/DMPG/DMPE-PEG vesicles,
in contrast to lipid membranes used in other studies
[52,81]. Here aurein 2.2, indolicidin, LL-37 and lacticin
Q significantly accelerated the lipid kinetics while
colistin did not. Through a more detailed Arrhenius
analysis of the rate constants it was found, perhaps
surprisingly that neither indolicidin nor LL-37 affected
Current Opinion in Colloid & Interface Science 2023, 66:101709
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the activation energy for flip-flop, Eflip
a , significantly

[29]. However, the data showed an increase in the
prefactor that can be attributed to an increase in the
transition entropy showing that the AMPs disorder the
membrane leading to acceleration. For the exchange
kinetics, however, it was observed that LL-37 reduces
the activation energy, Eex:

a , while it remained essentially
unaltered in the case of indolicidin. This might indicate

that LL-37, which solubilises the membrane at higher
P:L ratios [36,37], is able to form complexes with indi-
vidual lipids leading to more rapid exchange. Nguyen
et al. investigated the effect of a methanol solution
containing the AMP, alamethicin and melittin, on the
dynamics of DMPC vesicles using TR-SANS [82]. They
found that both peptides accelerated the flip-flop and
exchange processes compared to the vesicles in a
methanol solution. Interestingly, both the addition of
methanol and in particular the peptides, increased the
activation energy for flip-flop that is compensated by

entropic factors that lead to more rapid process overall.

More recently, TR-SANS was used to isolate and study
lipid flip-flop in asymmetric vesicles with protoeated
and deuterated lipids on the inner and outer leaflets
respectively. The vesicles are prepared using a protocol
involving cyclodextrin to facilitate selective exchange of
lipids at the outer leaflet. Using this technique Nguyen
et al. found consistently faster kinetics for POPC by
addition of the AMPs, melittin and alamethicin
dissolved in small volume of methanol [82]. POPC with

a C18 tail show exceedingly slow flip-flop rates but with
addition of peptides, the half time, t1/2, decreased from
about 140 h to a few hours. Similarly Marx et al. studied
mixed POPE/POPG ULVs which were mixed with
various amounts of the AMPs; frog sourced peptides
L18W-PGLa and magainin II, as well as the lactoferricin
derivative LF11-215 in a buffer solution [83]. They
found that L18W-PGLa caused the strongest effect with
significant faster flip-flop rates, while magainin II cause
less dramatic effects in a manner correlated with their
membrane partition. On the other hand, LF11-215,
which has the highest antibacterial activity (lowest

MIC), caused essentially no change in the lipid dy-
namics despite that it is found to be able to translocate
through the bacterial envelope of E. coli. This suggests
that the ability to cause flip-flop and translocation
through membranes are not necessary correlated.

In a study, Nielsen et al. investigated the combined lipid
dynamics and structural evolution following the TR-
SAXS data over the whole Q range after exposure of
AMPs [49]. It was found, using both dynamic light
scattering (DLS) and TR-SANS, that AMPs lead to a

concurrent increase in the vesicle size which was
attributed to an enhanced Ostwald ripening-like effect
which occurred during an initial homogenisation process
while the peptides are redistributed between vesicles
Current Opinion in Colloid & Interface Science 2023, 66:101709
after a rapid wms insertion. Comparing the kinetics of
pre-inserted peptides, that is, when the AMPs are
incubated with the labelled vesicles prior to mixing, it
was shown that after pre-equilibration the kinetics is
slightly slower but the two processes can be deconvo-
luted if the whole time dependent scattering curves are
analysed. This study showed that care must be taken in
the analysis of TR-SANS when structural relaxation

occurs in parallel with lipid exchange processes.

Taken together, the results of the effect of AMP on the
lipid dynamics are rather intriguing as it shows even
weakly interacting and non-penetrating (non-trans-
membrane) peptides may have a rather dramatic effect.
This brings into discussion the mode of action of AMPs
and whether pores in the classical sense are necessary to
compromise the integrity of the cell. Disordering the
lipid packing and acceleration of flip-flop kinetics might
lead to scrambling of lipid compositions, transient pores

and enhanced ion transport at physiologically rele-
vant concentrations.
Conclusion and outlook
The aim of this short review is to give an overview of
studies on peptide-lipid membrane interactions focus-
sing specifically on the level of information that can be
extracted using small-angle scattering techniques.
Using model lipid membranes, specifically well-defined
unilamellar vesicles, X-rays combined with advanced

data modelling, give unique insight into insertion and
spatial distribution of peptides within the membranes.
Neutron techniques are on the other hand able to isolate
individual components using contrast variation, and
monitor kinetic processes associated with the transport
of lipids and potentially other biomolecules. A limita-
tion, as well as the strength of these techniques, is
related to the ensemble average, that is, the experi-
ments average over very large number of particles in the
scattering volume, which creates challenges for hetero-
geneous, ill-defined and complicated mixtures of

structures. This can, for example, occur when peptides
solubilise parts of the vesicle and create new (meta)
stable mesophases. Complementary methods are
important, in particular cryo-TEM is useful in mapping
structural pathways and in pin-pointing complex struc-
tures [84], while DLS and/or Nanoparticle tracking
analysis can provide information on size changes and
distribution of sizes outside of the Q-range of SAS. Zeta-
potential measurements (“Zetasizers”) can provide in-
formation on the changes in the surface charge of the
vesicles upon peptide insertion. Computer simulations

techniques are also essential for understanding the
interplay of interactions, structure and kinetic pathways
in self-assembled systems including lipid membranes.
Advances in coarse-graining methods combined with
SAXS/SANS biased simulations offer exciting
www.sciencedirect.com
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possibilities to study large systems/long time scales that
give new unique insight into rather complex processes
and mechanisms in these systems [85].These advances
will also help to understand dynamic properties, for
example, lipid flip-flop and membrane fluctuations and
elucidate the mechanism for transient pore-formation
facilitating ion transport.

With new advances in instrumentation and powerful
sources such as spallation and free electron/synchrotron
sources, a new window of opportunity is opened where
extremely fast processes and small sample volumes
with low concentrations can be probed reliably. In
combination with imaging techniques such as coherent
X-ray and electron microscopy techniques, scattering
techniques are expected to be increasingly used to get
detailed insight into “real” biological systems such as
living cells and microorganisms. So far only live bacteria
have been probed by SAS, but in the future also pep-

tide effect on virus envelopes or parasite membranes
using real cells could be studied by SAS, providing new
information on potential targets for drugs. Neutron
scattering with contrast variation schemes through ge-
netic and chemical manipulation of the live organisms,
has already been shown to be able to detect subtle
structural details such as membrane domains (rafts) in
living bacteria [9]. With more advanced biochemical
techniques that allow for selective deuteration,
neutron scattering will allow for more targeted inves-
tigation of the mechanism of peptide based drugs on

micro-organisms.

In conclusion, advances in X-ray/neutron techniques
combined with quantitative analysis, including com-
puter simulations lead the way to deeper understanding
of complex interactions in membrane systems that will
be crucial for new drug and vaccine design as well as
molecular understanding of many diseases.
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