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1 Introduction

A couple of words before you start reading. This thesis is structured into
two parts, where the first contains an introduction to CMB analysis together
with a quick summary of my work. The second part contains the academic
papers that I have produced, and represents three years of hardship. This
introduction is indented to be readable by everyone, from family members to
cosmologists, from cats and celery to fungi. Here, the history of cosmology
is presented through an empirical perspective. Section 2 is more technical,
and requires prior knowledge of mathematical concepts. This is intended to
be readable for everyone with a background in physics, and might as well be
most interesting for Master students or aspiring PhD students. Section 3,
4, 5 and 6 dive into the technical details of my work, and is probably most
interesting for people who are already well into the field of cosmological
data analysis. Section 7 contains a quick and easy-to-understand summary
explaining what each of my papers are about. Finally, section 8 concludes
the thesis.

1.1 Creation myths

Every civilization in human history has had a say on the dynamics of the
universe. Alas, all previous civilizations have been somewhat incorrect in
their assumptions. However cool it might sound, we know today that Vira-
cocha never emerged from Lake Titicaca and made the moon, the sun and
the stars. The Maoir god Maui did not fish the island Te Ika of New Zealand
out of the sea using his grandmother’s jawbone. And all animals are not
created from clarified butter as Hindu myth boldly claims, but are evolved
through slight mutations from generation to generation. But how can we be
so certain that the old myths are not true, that they have no root in reality?
Well, lack of empirical evidence is a major reason. Today, we have simpler
and more concise theories that not only explain the dynamics in the uni-
verse, but can also give predictions that can be compared with observations.
In this way, scientific cosmology made creation myths obsolete.

But science also differs greatly from myths, as it contains an intrinsic
rule of feedback. Whereas a creation myth tries to explain the origin of
the universe through supernatural means, science does not try to explain
everything at once. Science also reports back to it self when better data is
acquired, such that theories either perish or are strengthened. New theories
are constantly being forged, and compete fiercely with older, more estab-
lished theories. The surviving theories are usually the ones that in simplest
means can explain the greatest variation of phenomena. Modern scientific
cosmology only became possible when theoretical frameworks and empir-
ical data were readily available. However, neither the ancient Greeks, old
Arabic scholars nor Christian medieval philosophers spoke mathematics, the
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language of nature. And, communicating in a strange language one doesn’t
master is not particularly fruitful. In order to unravel the mysteries of our
universe, humanity first needed to develop mathematics.

1.2 Physical theories

While mathematical structures are universally true, proved rigorously by
theorems, lemmas and propositions, the trueness of a physical theory will
forever stay uncertain. This is because all physical theories are approxi-
mations to reality, and are never a complete description of the system it
mimics. If such a theory happens to neatly describe a physical phenomena,
it does not rule out the possibility that there might exist other equally cor-
rect theories describing the same system, but with a different take on the
interpretation.
A physical theory therefore has a space of validity. A complicated theory

Figure 1: Grouped theories. Is theory of everything (TOE) bounded, or is
it contained in another larger theory, theory-of-absolutely-everything?

that has a large space of validity might for certain limits of observables con-
verge to simpler sub-theories with smaller spaces of validity. As an example,
consider the theory of general relativity, which has a larger space of validity
than the more static Newtonian gravity. Newton’s theory isn’t incorrect, but
rather inaccurate when describing systems operating with velocities close to
the speed of light. But for non-relativistic systems, Newton’s theory of grav-
ity is perfectly adequate. It can be shown that general relativity converges
to the Newtonian limit for low-velocity systems. Eventually, general relativ-
ity breaks down for extremely small systems, which marks the boundary of
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its space of validity. However, the physical interpretation of the two theories
differ greatly.

A physical theory is not something that can exist independently from
empirical evidence. Good science is waging a constant war between theory
and empirical data, where every unsuccessful attack by observations on a
model strengthens it. However, when data manages to overturn a theory, it
may become obsolete and wither away. In this sense, data are always correct,
wheras a theory can never be completely verified. Isaac Newton was the first
person who effectively came up with a theory that describes the universe in
a convenient, mathematical way. While the theory of Newton is a limited
description of the universe as a whole, it was a vast improvement to previous
physical theories. With Newtonian mechanics, it was suddenly possible to
predict the movement of heavenly bodies, and show that the mechanics
were in no way different than those on Earth. However, Newtonian physics
had some severe limitations, the most important being that the speed of
light was not constant. During the end of the 19th century, experiments
confirmed that light always propagates at about 300 000 km/s, regardless
of the reference frame. Several people developed new theories by flexing
previous ideas, such that space and time become independent. If the light
speed is constant in all reference frames, something else needs to bend. This
“something else” is space and time, now unified into a single entity called
space-time. No one managed to express this idea as clearly as Einstein.
In 1915, he published his arguably most important work on the theory of
General Relativity. General Relativity is a vast improvement to Newtonian
physics, and corresponds to Newtons theory when going to down-to-earth
limits, as presented in Figure 1. The framework also solved several problems
with the nature of gravity and space-time, doing so by proposing a simple
and elegant solution. The core of general relativity can be expressed with
the following phrase:

Space and time is closely coupled, and is curved by matter. Mat-
ter moves in straight lines through curved space-time.

The implications were profound. Not only is time and space closely coupled,
but can “bend” according to the existence of matter. And matter does not
“feel” gravity, but moves in a straight line through a curved space-time
corresponding to orbits in 3D-space. This is much in the same way an
airplane follows a straight line on the curved surface of Earth (a 2D sphere),
corresponding to great circles in 3D-space.

1.3 The expanding universe

Now that Einstein had the framework of General Relativity, he used it to
calculate some simplified properties of the universe. One of the major results
shocked him: the equations indicated that the universe cannot be static, or
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Figure 2: An illustration of the CMB and the evolution of the universe.
Courtesy of the LAMBDA WMAP site (http://lambda.gsfc.nasa.gov/).

unchangeable. The universe has to either expand or contract, depending on
its contents. Homogeneous matter alone cannot be stable, it either clumps
together or moves apart. This discovery repulsed Einstein, who had strong
philosophical beliefs that the universe was unchangeable, that it had always
existed as it is today. This belief made him introduce a term in the equations,
something he dubbed “the cosmological constant”. The constant forced the
universe to remain static, but at a cost: the solutions were highly unsta-
ble. Some 15 years after Einstein, Hubble discovered through supernova
data that the universe indeed is expanding. This is possible even though
the universe might be infinitely large. If space is expanding now, it must
earlier have been smaller and denser. Going all the way back, there must
have been a time where it was nearly infinitely compact. But how do we
confirm whether this scenario has happened? By observational predictions
and empirical evidence, naturally.

1.4 The Cosmic Microwave Background

If the universe used to be smaller and denser, it must have been hotter. In
fact, going far enough back in time, it should have been so hot and dense
that photons (light) and matter crashed together constantly, acting as one
huge plasma fluid. As the universe expanded and cooled, it eventually be-
came transparent for the photons. This means they no longer collided with
particles, and were free to escape. This would have happened about 400
000 years after the big bang, where the escaping photons defined a sort of



1 Introduction 7

photographic “snapshot” of what the universe looked like back then. In
1964, radio astronomers Penzias and Wilson [19] discovered these remnants
from the early universe, indicating that it used to be hotter and denser.
The photons from this era have since been stretched by the expansion of the
universe, turning them into low-energy microwave radiation. In addition,
this radiation penetrates the whole universe, having nearly the same tem-
perature in every direction. Also, the microwave background has shown to
be the most-precisely measured black body spectrum in nature. The radia-
tion was named the Cosmic Microwave Background (CMB). Suddenly, the
field of cosmology went from being a purely theoretical to having observa-
tional data. This was the birth of a completely new field in science, and the
implications were astonishing. The CMB is probably the most important
cosmological data set we have today.

The temperature of the CMB is today about 2.73 Kelvin, but there exist
small additional fluctuations that are in the order of milikelvin, as depicted
in Figure 4. A schematic presentation of the CMB and the evolution of the
universe is presented in Figure 2. In itself, these small fluctuations in the
temperature are not particularly interesting. However, the real value resides

Figure 3: The best-fit combined WMAP anisotropic tempera-
ture fluctuations map. Courtesy of the LAMBDA WMAP site
(http://lambda.gsfc.nasa.gov/).

in their statistical properties, as we will see in the following section.

1.5 The weird stuff

Today, we have a solid theoretical framework that effectively describes the
dynamics of the universe from right after the Big Bang and up until today.
Theories have a set of initial conditions, something that defines and tunes
the physical effects. That is, the theory has a set of free parameters. As it
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happens, it is possible to implement the equations that govern the universe
numerically, and hence we can simulate what a CMB map should look like for
various parameters. The statistical properties of the simulated data is then
compared with the real data, and from this it one can determine matching
theoretical parameters.

The current best-fit cosmological model is dubbed the ΛCDM model. Λ
(Lambda) represents the cosmological constant that was introduced by Ein-
stein, and describes a yet-unknown energy component that currently dom-
inates the universe. This energy component is not directly visible, but its
effect can be seen in several independent experiments (supernovae, WMAP).
Since we cannot “see” the component, it is nicknamed “Dark Energy”. From
supernovae experiments and the WMAP experiment, we know that about
72 % of the stuff in the universe is dark energy. Dark energy has some
interesting properties, for instance it possesses negative pressure, which ex-
plains the accelerated expansion of the universe. Another property is that it
remains constant in space, so if you increase space-time, there will be more
dark energy. On the other hand, CDM is an acronym for Cold Dark Matter,
representing non-relativistic massive particles that do not interact electro-
magnetically. This means that CDM does not clump like ordinary matter,
and is “invisible”. About 23 % of the energy in the universe is Cold Dark
Matter, and it has never been observed directly, but only indirectly. The re-
maining 4 % of the universe represents normal light, gas, stars and planets.
Hopefully, dark matter will be confirmed at the CERN LHC experiment. If
not, things surely will get interesting.

2 Modern cosmology

This section gives a quick and dirty summary of classic theoretical cos-
mology. The focus of this thesis has been the modern approaches of data
analysis, and will be thoroughly dealt with in the subsequent chapters. In
order to understand how the universe works, one first needs to be familiar
with the equations that govern space-time and matter. The sentence from
the previous section that describes how space-time is curved is called the
Einstein’s field equations, and looks like this;

Rμν − 1
2
gμνR = 8πGTμν . (1)

Here R is the Ricci scalar, and represents the curvature of space-time to-
gether with the Ricci tensor Rμν , while T the energy-momentum tensor and
represents matter and energy. G is the gravitational constant, while gμν is
the metric. It is impossible to solve the exact field equations for a general
universe, so several constraints are needed. By assuming that matter in the
universe is homogeneously (evenly spaced out) and isotropically (looks the
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Figure 4: The general results from the WMAP experiment. Courtesy of the
LAMBDA WMAP site (http://lambda.gsfc.nasa.gov/).

same in all directions) distributed on large scales, it is possible to develop
the Friedmann-Robertson-Walker metric:

ds2 = −dt2 + a(t)2
( dr2

1 − kr2
+ r2dΩ2

)
(2)

where dΩ is a solid angle and k the curvature. This equation describes 3D
space enclosed in 4D-space as either a spherical, hyperbolic or flat surface.
When assuming that the energy components of the universe follow a non-
viscous ideal fluid, the pressure is proportional to energy density, p = wρ.
Einsteins field equations then gives rise to the Friedmann equations:

H2 =
8πG

3
ρ − k

a2
(3)
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ä

a
= −4πG

3
ρ(1 + 3w) (4)

where the Hubble parameter H = ȧ/a measures the expansion rate of the
universe. From these equations, it is possible to calculate the general prop-
erties of the universe by assuming various energy components such as radi-
ation, matter and dark energy. For instance, if we assume the universe is
dominated by a cosmological constant with w = −1, it is straight-forward to
calculate that space-time will expand exponentially. This kind of model is
called a de-Sitter universe, and we believe that the dominating energy com-
ponent today is due to a cosmological constant. However, a cosmological
constant-alike scenario might also have happened in the early stages of the
universe, namely during inflation.

2.1 Inflation

There are some problems with the standard big bang model. For instance,
we observe today a universe that is nearly geometrically flat, without there
being any apparent reason for it to be so. A second problem is that the
universe has inhomogeneities on large scales - a universe that started out
perfectly homogeneous, should continue to stay so. And third, we observe
the CMB to exhibit nearly equal temperature at every directions on the sky.
But within the standard model of cosmology, these areas have never been
in causal contact and have therefore no reason to have the same tempera-
ture. One solution to these problem is to introduce a supplementary model
called inflation. If one assumes that there existed a scalar field in the very
early universe that had some special properties similar to the cosmological
constant, it is possible to get the universe to go through an extremely rapid
expansion right after Big Bang. Even though this sounds a bit ad-hoc, there
are some very good reasons to believe this to have happened:

• Inflation solves the problem of isotropy and temperature equality by
postulating that the observable universe today was once squeezed well
within the particle horizon, enabling causal contact.

• The geometrical flatness problem is also solved; any wrinkles in the
early universe are smoothed by the extreme expansion of space.

• Inflation predicts that quantum fluctuations in the early universe were
blown up to horizon-size perturbations, giving rise to inhomogeneities
that seeded the structure growth during later ages.

• However, there are some major flaws with the theory. A scalar field
has never been directly observed in nature. In addition, the energy
levels needed to reproduce or detect the inflaton scalar field can only
be reproduced during Big Bang energy densities.
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One of the most promising candidates for indirect observation if inflation is
via polarization CMB measurements. However, the signal will be very weak,
and we will have to wait for future experiments in order to test the inflation
hypothesis fully.

2.2 Three CMB Experiments

In 1989, the Cosmic Background Explorer (COBE) satellite was launched
and became the first satellite to detect the anisotropies in the cosmic mi-
crowave background. This made it possible to perform comparison between
cosmological data and early universe-theory. In addition, the FIRAS instru-
ment showed a perfect fit of the CMB and the theoretical curve for a black
body at a temperature of 2.7 K. However, the data were heavily contami-
nated by noise, and it was not possible to map out the angular power spec-
trum to scales higher than � ∼ 30, corresponding to ∼ 1 degrees. In 2001,
the Wilkinson Microwave Anisotropy Probe (WMAP) [2, 15]) was launched.
For eight years, it has been extensively mapping out the anisotropies in the
Cosmic Microwave Background, both the temperature and polarization. The
most important results from the experiment are depicted in Figure 4.

The PLANCK satellite was successfully launched in 2009, and is cur-
rently undertaking observations of the CMB anisotropies, both temperature
and polarization. This experiment will provide us with an extremely de-
tailed CMB data set, and will most likely conclude our investigation of the
temperature fluctuations in the microwave background.

An image of the detail levels in the three different experiments are shown
in Figure 5. However, working with PLANCK data requires much more
finesse than previous CMB experiments. The resolution of the data is ex-
tremely high, and when performing likelihood analyses, computational costs
are much higher. In addition, higher resolution implies more difficulties, as
one needs to seriously take into account high-� systematics. These include
point sources, correlated noise and various foregrounds. A computational
brute-force approach to solving these problems is therefore out of the ques-
tion.

2.3 Anomalies in the CMB

From the concordance model of ΛCDM , the universe is supposed to be
homogeneous on large scales. This is reflected in the cosmic microwave
background, where the data should exhibit statistical isotropy. Measuring
deviances from isotropy is therefore a good test to whether the ΛCDM is
a good model for describing the universe. Since the WMAP data has been
publicly available, there have been reported several anomalies that disagree
with the assumption of isotropy. Here are the most important ones:
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Figure 5: The three CMB experiments and their temperature maps: COBE
(behind), WMAP (middle) and PLANCK (front).

• The � = 2 quadrupole amplitude is low compared to ΛCDM predic-
tions.

• The � = 2 quadrupole and � = 3 octupole are both planar and strongly
aligned.

• The north ecliptic hemisphere seems to have more of power than the
southern, which contradicts isotropy.

• There exists “spots” in the CMB that are much colder than statisti-
cally likely withing the ΛCDM framework, and contradicts isotropy.

• There is a strong signal in the CMB that corresponds to a rotation
feature. However, this is most likely due to systematic effects, and is
one of the things I have been working on in my thesis.

3 CMB analysis

Theoretical physicists all over the world have been working on developing a
mathematical framework for describing the evolution of various energy com-
ponents in the universe from after inflation and up to today. These equations
are commonly referred to as the Boltzmann equations, and are a set of cou-
pled differential equations with free parameters. The free parameters tune
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Figure 6: A flowchart of cosmological data analysis combined with my work.
Red text highlights topics that are featured in my thesis.

the fractions of components in the universe, while the equations describe
how they develop and behave. Examples of parameters are the dark mat-
ter component ΩCDM , the dark energy ΩΛ and the spectral index ns which
measures deviance from primordial scale invariance. Having a theoretical
framework enables the possibility of forecasting, that is simulating specific
data sets given a theory. The ultimate goal is then to compare the simulated
data with experimental observations. This way, one can effectively sort out
which theoretical solutions best fit the data. In CMB analysis, there al-
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ready exists several Boltzmann codes (eg. CAMB [17]) that predict what
an angular power spectrum should look like given the cosmological param-
eters. There also exist codes that uses WMAP data and compares with the
theoretical framework through MCMC-methods (COSMOMC [18]).

3.1 Systematics

Statistically speaking, the only thing we can be sure is completely true when
doing data analysis is the existence of the data itself. A theory might be
flawed, but the data are always data. However, even if we have the data,
we do not necessarily know what information it contains, because data are
usually contaminated by uncertainties, errors and noise. These “bad” things
are called systematics. When measuring the cosmic microwave background,
there are many systematics that contaminate the data. The three most
important systematics are as follows:

Figure 7: The Q1 WMAP raw data with various systematics: noise, the
galaxy and foregrounds being the foremost.

1. Our galaxy covers about 25 % of the CMB map, and needs to be
removed. The galaxy is clearly visible in Figure 7.

2. The WMAP instruments are not perfect, and much of the data visible
in Figure 7 is noise.

3. There are many other closer objects out in space that produce un-
wanted effects in the CMB that needs to be removed, such as uniden-
tified point sources (galaxies, clusters).
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With a theoretical framework numerically implemented, it is possible to
produce completely “perfect” simulations, free from these contaminations.
However, in order to compare with real-life contaminated data, one needs to
either contaminate the simulated data to resemble realistic data or “clean”
the real data and obtain a estimated signal. Both these processes involve
loss of information, and is schematically depicted in Figure 8. In this thesis,
this estimation process is performed by the CMB Gibbs sampler.

Figure 8: Two ways of comparing simulated data with experimental: either
contaminate the simulated data, making it realistic, or try to estimate the
“real” signal from the data.

3.2 The CMB Gibbs sampler

Data d̂ can be modeled as follows:

d̂ = Ad + n, (5)

where d is the signal we are interested in, A is the instrument beam and
n noise. The standard algorithm today is called MASTER [16], and estimates
the the power spectrum 〈Ĉ�〉 and the standard deviation ΔC�. However,
this method is an “approximation” to a full likelihood that can be expressed
as follows:

P (C�|d) =
1√|C|e

− 1
2
dT (C)−1d. (6)
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where C is the combined signal and noise covariance matrix. While it is
fully possible to use MCMC-methods to sample from this distribution, the
calculation of the (C)−1-matrix scales as O(N3

pix), where Npix is the number
of pixels in a map. In the isotropic case, the MASTER method is usually
sufficient in order to estimate the C�s, but it should be noted that it is
only an approximation to a full likelihood analysis. Also, when investigat-
ing anisotropic universe models, one needs to work with full CMB maps.
Calculating the likelihood from equation 6 using the O(N3

pix) method is im-
possible in the high-� regime, and alternative solutions are needed. This
is where the Gibbs sampler helps, by reducing the computational cost to a
O(N1.5

pix) operation in the uniform noise case.

The conditional distributions

The idea behind the CMB Gibbs sampler is to estimate the CMB sky, s and
the angular power spectrum C� together with the covariance parameters
by computing P (θ, s|d), and then subsequently marginalize over s and C�.
Specifically, the algorithm works as follows: first choose any initial guess,
(θ, s)0. Then alternately sample from each of the conditional distributions,

θi+1 ←P (θ|si,d) (7)

si+1 ←P (s|θi+1,d). (8)

The theory of Gibbs sampling then guarantees that the joint samples (θ, s)i

will, after some burn-in period, be drawn from the desired joint distribu-
tion. The remaining step is then simply to formulate sampling algorithms
for each of the two conditionals, P (θ|s,d) and P (s|θ,d). This method is de-
picted in Figure 3.2, and is computationally superior to conventional MCMC
methods.

3.3 Gibbs sampling details

We saw in the previous section how the joint posterior P (C�, s|d) are broken
into two conditional distributions P (C�|s, d) and P (s|C�, d). Gibbs sampling
requires knowledge of these conditional distributions, and luckily, both are
well-known. It can be shown that P (C�|s, d) follows an inverse Gamma
function, and is rather straight forward to implement. However, sampling
from P (s|C�, d) is more complicated, but it is possible to show that the
requirements are met when s are drawn by the following rule:

s = (C−1 + N−1)−1(N−1d̂ + N− 1
2 ω1 + C− 1

2 ω2). (9)

Here, ω1 and ω2 are independent random N(0, 1) variables. This random
map s has mean ŝ and variance (C−1 + N−1), exactly what we are in-
terested in obtaining. Equation 9 can be broken into two separate parts:
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Figure 9: Conditional sampling implies alternating between sampling from
P (θ1|θ2) and P (θ2|θ1), fixing the other parameter.

the Wiener filter (C−1 + N−1)−1(N−1d) and the fluctuation map (C−1 +
N−1)−1(N− 1

2 ω1 + C− 1
2 ω2). In Figure 10, each of these maps are depicted.

The Wiener filter map estimates the fluctuations outside the galaxy sky
cut, where they are heavily constrained by the known data given cosmic
variance and noise. However, within the sky cut, only large-scale fluctua-
tions are possible to statistically pin down, where small-scale fluctuations
are repressed. The fluctuation map simulates the small-scale fluctuations
within the unknown sky cut, and are constrained by cosmic variance and
noise effects. Outside the sky cut, the fluctuation map is constrained by the
data, allowing for only small variations in temperature fluctuations. The
sum of these two maps make up the full CMB estimated signal sample.

3.4 The likelihood

Comparing a model with parameters θ with a CMB data set d is done by
evaluating the likelihood function. Since the CMB is assumed to follow the
distribution of a Gaussian field, the likelihood can be expressed as follows:

−2 lnL = dTC(θ)−1d − ln |C(θ)| (10)

where C(θ) is the model-based covariance matrix and d the data vector. As
presented in Figure 8, it is usual to keep the data without systematics, and
therefore estimate the signal data vector d from the original contaminated
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Figure 10: The two maps that together compose the full estimated signal:
the fluctuation map (bottom) and the Wiener filter (top). Note that within
the sky cut, the Wiener filter successfully estimates the large-scale structures
while the fluctuation map produces random small-scale fluctuations.

data d̂. In this thesis, this estimation process is performed by the CMB
Gibbs sampler.

3.5 The SLAVE framework

In order to uncover the details of the CMB Gibbs sampler, I started devel-
oping a software framework from scratch. The project was dubbed “Slave”,
and consists of two parts [12]. First, the Gibbs sampler itself, and then the
post-processing tools for performing the necessary statistics. The details can
be found in paper 4. Here, I present a quick summary of what the frame-
work includes. As mentioned previously, the CMB Gibbs sampler alternates
sampling the angular power spectrum C� from P (C�|d, s) and a signal s from
P (s|d). Slave is run command-line using a parameter file that is described
in paper 4, and instantly starts producing samples. An example of a set of
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chains from the angular power spectrum C� estimation is presented in Figure
11. SLAVE outputs MCMC samples as text-based files. A post-processing
utility is then run in order to round up all the samples and chains to a binary
file, for efficiency and simpler file handling. All statistics is then performed
using the combined binary file.

Figure 11: A set of C� samples together with the theoretical input power
spectrum (black line). Note how the distribution is Γ for low-� and Gaussian
for high �. Noise also contributes for high �, increasing the power on smaller
scales.

3.6 The Blackwell-Rao (BR) estimator

One of the most important uses of the Gibbs sampler is estimating the best-
fit angular power spectrum Cb

� from the samples of C�s. The C�s in the
angular power spectrum for low � follows an inverse Γ-distribution, and will
for higher �s due to the central limit theorem converge to a Gaussian distri-
bution. Therefore, it is not possible to simply calculate the average peak of
the C� for each �, and a better method is needed. One method is called the
Blackwell-Rao estimator. By using prior knowledge of the distributions of
the C�s, we can build an analytical expression for the distribution for each
C� given the signal power spectrum σ�, or P (C�|σl). Note that since the
power spectrum only depends on the data through the signal and thus σ�,
then

P (C� | s,d) = P (C� | s) = P (C� |σ�). (11)

It is therefore possible to approximate the distribution P (C� |d) as such:

P (C� |d) ≈ 1
NG

NG∑
i=1

P (C� |σi
�) (12)
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where NG is the number of Gibbs samples in the chain. This method of
estimating the P (C� |d) is called the Blackwell-Rao estimator. Now, for a
Gaussian field,

P (C� |σ�) ∝
∞∏

�=0

1
σ�

( σ�

C�

)
e

2�+1
2

σ�
C� . (13)

Taking the logarithm, we obtain a nice expression:

lnP (C�|σl) =
∑ (2� + 1

2

[
− σ�

C�
+ ln

( σ�

C�

)] − lnσl

)
(14)

which is straight-forward to implement numerically. The best-fit BR-estimated
power spectrum is obtained by choosing the maximum likelihood value of
C� for each �. An example of the distribution of C�s together with the
BR-estimated likelihoods for various �s are shown in Figure 12. In paper

Figure 12: The histogram of the C�s for various � (red), together with the
BR-estimated likelihood (black line). The best-fit power spectrum is ob-
tained by choosing the peak value for each of the BR-estimated likelihoods.

5, we improved the standard Blackwell-Rao estimator by introducing a new
likelihood approximation called the Gaussianized Blackwell-Rao (GBR) esti-
mator [21]. This estimator is derived by transforming the observed marginal
power spectrum distributions obtained by the CMB Gibbs sampler into stan-
dard univariate Gaussians, and then approximate their joint transformed
distribution by a multivariate Gaussian. The method is exact for full-sky
coverage and uniform noise, and an excellent approximation for sky cuts
and scanning patterns relevant for WMAP and Planck data. This method
is computationally superior to the previous BR-method. When we applied
this tool to the 5-year WMAP temperature data and re-estimated the an-



3 CMB analysis 21

gular temperature power spectrum, we obtained new cosmological parame-
ters for the standard six-parameter ΛCDM model. The new spectrum was
shown to be in excellent agreement with the official WMAP spectrum, but
we also found slight differences in the cosmological parameters. Most im-
portantly, the spectral index of scalar perturbations is ns = 0.973 ± 0.014,
1.9σ away from unity and 0.6σ higher than the official WMAP result,
ns = 0.965 ± 0.014. This suggests that an exact likelihood treatment is
required to higher l’s than previously believed, reinforcing and extending
our conclusions from the 3-year WMAP analysis.

3.7 Noise mis-estimation

Traditionally, the noise properties used in the Gibbs sampler have been
assumed known to infinite precision. However, in paper 3 we relax this
assumption and introduce a new free parameter, α, that scales the noise
covariance matrix [10]. This way, the noise covariance matrix reads N =
αNfid. Thus, if there is no deviation between the assumed and real noise
levels, then α should equal 1.

The details

The full joint posterior, P (s, C�, α |d), now includes an additional amplitude
parameter α. This is expressed as

P (s, C�, α |d) = P (d | s, α) · P (s, C�) · P (α) (15)

where the first term is the likelihood,

P (d | s, α) =
e−

1
2
(d−s)(αN)−1(d−s)√|αN| , (16)

the second term is a CMB prior, and the third term is a prior on α. Note
that the latter two are independent, given that these describe two a-priori
independent objects. We typically adopt a Gaussian prior centered on unity
on α, P (α) ∼ N(1, σ2

α). We normally choose a very loose prior, such that
the posterior is completely data-driven. The conditional distribution for α
can now be expressed as:

P (α | s, C�,d) ∝ e−
β
2α

αn/2
· P (α) (17)

where n = Npix and β = (d − s)N−1(d − s) is the χ2. Note that the χ2

is already calculated within the Gibbs sampler, as it is used to validate
that the input noise maps and beams are within a correct range for each
Gibbs iteration. Sampling from this distribution within the Gibbs sampler
therefore represent a completely negligible extra computational cost. For
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the Gaussian prior with unity mean and standard deviation σα, we find
that

P (α | s, C�,d) ∝ e
− 1

2
( β

α
+

(α−1)2

σ2
α

)

αn/2
(18)

For large degrees of freedom n, the inverse gamma function converges to
a Gaussian distribution with mean μ = b/(k + 1), where we have defined
k = npix/2 − 1, and variance σ2 = b2/((k − 1)(k − 1)(k − 2)). A good
approximation is therefore letting αi+1 be drawn from a product of two
Gaussian distributions, which itself is a Gaussian, with mean and standard
deviation

μ =
μ1σ

2
2 + μ2σ

2
1

σ2
1 + σ2

2

(19)

σ =
σ2

1σ
2
2

σ2
1 + σ2

2

. (20)

This sampling step has been implemented in SLAVE and we have successfully
tested it on simulated maps. With Nside = 512 and lmax = 1300 and full
sky coverage, we find α = 1.000 ± 0.001. With such high resolution, the
standard deviation on α is extremely low.

We have then applied this method to the 5-year WMAP data, and re-
estimated the noise levels of both the raw and foreground-reduced sky maps.
In doing so, we found that the predicted noise levels for the raw maps are
in acceptable agreement with the predictions, while the noise levels in the
foreground-reduced maps are 0.5 − 1.0% higher than the estimate initially
provided by the WMAP team on LAMBDA. The explanation for this effect
has after the publication of paper 3 been found by the WMAP team simply
to be an error in the results provided on LAMBDA: The quoted values were
derived from the 3-year analysis instead of the 5-year analysis. However, the
correct values were used in their cosmological analysis for the 5-year data,
and no results are therefore compromised by this error. Thus, the method
has already been demonstrated to be both accurate and useful on a practical
example. Further, it carries virtually no extra computational cost within a
Gibbs sampler, since all required quantities are already computed within
this algorithm.

3.8 Conclusion

We have now concluded the statistical part of the thesis, corresponding to
papers 3, 4 and 5. We have also explained some details about the CMB Gibbs
sampler, and summarized the most important new features that we have de-
veloped. While the CMB Gibbs sampler has not previously been a necessity
in CMB data analysis, new high-resolution data from from upcoming CMB
experiments makes it vital to reduce computational cost. This is where the
Gibbs sampler is superior to conventional MCMC methods. We now move
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on to the physically based topics in this thesis, and start by reviewing the
ACW rotational anomaly we detected in the WMAP data. This analysis
would have been near-impossible to perform without the Gibbs sampler.

4 Anisotropic universe models

A firm prediction of inflation is that the observed universe should be nearly
isotropic on large scales. The question of isotropy has received considerable
attention during recent years, due to unexpected signatures observed in the
WMAP sky maps. These data appear to exhibit several significant and
distinct signatures of violation of statistical isotropy. First, de Oliveira-
Costa et al. [4] found a striking alignment between the two largest harmonic
modes in the temperature anisotropy sky, the quadrupole and the octupole.
Second, Vielva et al. [23] pointed out the presence of a very large cold
spot in the southern Galactic sky, apparently incompatible with ΛCDM-
based simulations. Finally, Eriksen et al. [7] found a significantly anisotropic
distribution of power between two hemispheres. The tools developed in the
present paper may be able to constrain specific models relevant for these
observations. In particular, we use these methods to estimate the anisotropy
parameters in the ACW model from the 5-year WMAP temperature data.

Two specific examples are those presented by Ackerman et al. [1] (ACW)
and Erickcek et al. [6]. The first model considers violation of rotational
invariance in the early universe, while the second model describes the effects
on the observed perturbation distribution due to a large-scale curvaton field.

The introduction of anisotropic models poses several problems in terms
of data analysis. The definition of a proper likelihood function may be
non-trivial for a general case, although many models can be described as
multivariate Gaussians with non-diagonal covariance matrices. Both of the
models mentioned above are examples of this. Yet, even in these relatively
simple cases, the numerical evaluation of the likelihood is computationally
unfeasible due to the sheer size of the relevant covariance matrix.

4.1 The ACW-model

ACW considered breaking of rotational invariance by generalizing the spec-
trum of primordial density perturbations P (k) to include a preferred direc-
tion, n̂, as well as wave-number k,

P (k) = P (k)(1 + g∗(k̂ · n̂)2). (21)

Here g∗ is a real number and n̂ = n̂(θ, φ). Further, the correlations in the
coefficients a�m (the covariance matrix) was expressed as

〈a�ma∗�m〉 = C�m,�′m′ = C�δ��′δmm′ + g∗Δ�m,�′m′ . (22)
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where the Δ is a geometric matrix containing Clebsch-Gordon coefficients,
which breaks SU(2)-invariance. The Δ couples different modes:m to m′±1, 2
and � to � ± 2, correlating “local” scales along a preferred axis. In other
words, the ACW model predicts that the isotropic underlying tempera-
ture map contains an additional linear anisotropic contribution, which will
“smear” out (correlate) small scales along the equatorial plane of a preferred
direction. This example is illustrated in Figure 4.1.

Figure 13: A rough example of the ACW-model: the underlying isotropic
CMB map contains an additional linear structure with coupling g∗. This
rotational structure mimic “clouds” that are stretched along the equatorial
plane, while the poles contain less stretching.

4.2 Computational difficulties

The heart of the problem is calculating the expression dTC−1d. To per-
form a Cholesky decomposition and solving this equation is mathematically
straight-forward, but for the WMAP data, the angular resolutions are well
beyond � ∼ 600. The covariance matrix is in general a �2 × �2 matrix, con-
taining roughly 1011 elements. When working with strictly isotropic models,
the covariance matrix is diagonal and without correlations, and the matrix
operations are trivial, scaling as �2. The covariance matrix is not diagonal,
but it is also not dense and has a well-defined shape in harmonic space.
This is good news, and means that what needs to be done is implementing
a framework for sparse matrices. When this was done, we performed several
anisotropic analyses on simulated data. An example of a realization of the
the anisotropic Δ-term can be seen in Figure 14, with a random direction
(θ, φ) = (1.0, 1.0). Circles are drawn on the rotational axis for illustrative
purposes.
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Figure 14: A realization of the ACW signal alone. Note the “smearing”
of local modes in the equatorial plane, and the absence of smearing at the
directional poles.

4.3 Anisotropic CMB Gibbs sampler flow

The next big step is to use the framework not only to produce simulated
anisotropic data, but compare with experimental data. The first step was
implementing the likelihood described in equation 10. The steps for devel-
oping a full code for analyzing real experimental data was as follows:

1. Do a brute-force grid analysis on a low-resolution (Nside=32)) simu-
lated anisotropic map, and reproduce the original input parameters
(g∗, θ, φ).

2. Upgrade the brute-force analysis to a MCMC method on the sphere.
This requires the use of the Metropolis-Hastings algorithm, where
(g∗, θ, φ) are chosen from an uniform cylinder in R × S

2-parameter
space.

3. Go to realistic resolutions such as (Nside=512)) and reproduce the cor-
rect input parameters.

4. Implement the anisotropic ACW MCMC sampler into the Gibbs frame-
work “Commander” to enable sampling from maps that has noise, sky
cut and foreground contaminations. The flowchart is shown in Figure
15.

5. Simulate “realistic” maps with correlated noise, WMAP instrumental
beam and galaxy cut. Use the combined Gibbs/Anisotropic MCMC
sampler to reproduce input parameters.

6. When simulated data is completely “realistic” and the sampler suc-
cessfully reproduces the anisotropic input parameters, do “the old
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switcheroo”: replace the simulated data with real WMAP data.

Figure 15 depicts the general flow chart of the anisotropic Gibbs sampler
used in paper 1 and 2.

4.4 Results and interpretations

The details of the implementation and analyses are described by [8] and
[9]. The final results from all analyses show that there exist a 9σ presence
of the ACW model in the 5-year WMAP W-band data. This is a rather
strong detection, and definitely needed further investigation. However, the
direction of the signal is located very close to the ecliptic poles, and is in
alignment with the solar system. Therefore, the probability that this is a
cosmological signal is minuscule, and is most likely a product of systematic
effects from the satellite. However, the signal might have an impact on
various cosmological parameters, so its origin is important to be resolved.
We considered several systematics candidates that share similarities with
the ACW signal, but have yet to find and source for the signal. Three types
of systematics we have investigated are shown in Figure 16.

An independent analysis [14] also confirmed the anomaly, and claims
that it is most likely not of cosmological origin. The WMAP team also
acknowledged the existence of the signal in their 7-year papers [3], but do
not discuss the matter further.

5 Early universe modifications

Another topic in my thesis has been quantum-gravity corrections to the
equations governing early inflation. In paper 6, we investigate whether gen-
eral quantum gravity corrections to the primordial power spectrum are vis-
ible in the CMB data [11]. The effects contribute to all angular scales, but
exhibit a rather chaotic behavior. It can be shown that, assuming a cutoff
scale Λ, the HZ scale-invariant primordial angular power spectrum can be
expressed as:

P (ε, ξ, k) = P0(k)
(
1 − ξ

( k

kn

)−ε
sin

[2
ξ

( k

kn

)ε])
(23)

where ε and η are the slow roll parameters and k the wave number. This
modification is due to quantum effects in a highly curved space, and is a first-
order approximation only. The two slow roll parameters were implemented
into CAMB, together with the modified primordial power spectrum. A plot
of the corrections are shown in Figure 17. It should be clear that the effects
are in general minuscule, and are mostly well within the cosmic variance.
CosmoMC was then set up to include these parameters, and countless CPU
hours were spent in order to find out whether traces of these effects are
visible in the 3-year WMAP data.
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Figure 15: The flow chart of the anisotropic Gibbs sampler

5.1 Problems with the model..

However, there were some serious problems with the model. The modifica-
tions in general goes as x sin( 1

x), which shows a quite erratic behavior for
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Figure 16: Systematics in the WMAP data that resembles the ACW model,
but does not contribute.

low values of x → 0. This is illustrated in Figure 17, together with the in-
trinsic errors in the ΛCDM power spectrum and the uncertainty of cosmic
variance. On this case, even small variations in the parameters will result
in major changes in the likelihood, and induce oscillations in the angular
power spectrum. This way, the likelihood function ceases to be smooth
and Gaussian, and becomes riddled with local minima. Chains transversing
this likelihood landscape tends to get stuck in any of these local minima,
and conventional MCMC methods break down. In order to illustrate this
problem, we calculated a brute force two-dimensional likelihood surface of
the two transplanckian parameters depicted in Figure 17. This extremely
complex likelihood scenario, together with the overshadowing uncertainty of
cosmic variance, makes the detection of these transplanckian effects near-
impossible.

6 Alternative searches for non-Gaussianity

In paper 7 [22], we developed an independent framework for estimating
deviations from Gaussianity in CMB data based on the methods established
by [5] and [13]. The methods used are model-independent, and do not
share any obvious connections with non-Gaussianity frameworks of physical
origin. By counting the fraction of lakes, hills and saddles in simulated
Gaussian maps while increasing the temperature threshold, we have built
a distribution for what is expected for Gaussian maps. We then compared
experimental data to this distribution, determining the deviation from the
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Figure 17: Left: The small transplanckian oscillations (blue), the WMAP
error bars (red) and the cosmic variance (green). Right: the 2D likelihood
surface of the trans-Planckian parameters. Note that this is riddled with
local minima, and almost nearly impossible to transverse for MCMC chains.

Gaussian assumption. We then considered a combined V + W full-sky
data set with the extended KQ85 and KQ75 mask, and found evidence of
a 2σ deviation from Gaussianity on scales around 3◦. For scales at 1◦ and
5◦, we found only a 1σ presence. We also analyzed the north and south
galactic/ecliptic hemispheres, but discovered no deviation from Gaussianity
greater than 2σ. We went in-depth in order to investigate the 2σ signal, and
analyzed the co-added Q band, V band and W band maps independently,
and found that the deviation is equal in all frequencies. We continued by
performing an analysis on each of the hemispheres centered around a pixel on
a Healpix map with Nside = 2 using the combined V+W data. We produced
directional maps for hills, lakes, saddles using the three scales, and found
no evidence for a preferred direction in either of the maps.

Finally, we calculated the combined χ2 from all our results, which re-
sulted in an overall agreement with Gaussianity. It will be interesting to see
whether any deviations from Gaussianity will be evident in the upcoming
data from the PLANCK experiment.

7 Paper summary

In this section, I have summarized three years of my work in a convenient
manner. A schematic description of the papers can be seen in Figure 6.
Paper 1 and 2 are twin papers, and concerns a specific anisotropic universe
model. Paper 3 and 4 dive into the field of CMB Gibbs sampling, and are
connected. Paper 5 also concerns an advanced topic within Gibbs sampling,
but the topic is more distant from the previous papers. In paper 6, we
investigate whether traces of quantum gravity effect from inflation can be
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seen in the WMAP data, while paper 7 concerns the possible existence of
non-Gaussianity in the CMB.

Paper 1: Detection of a new anomaly in the WMAP data

We implement a numerical framework for testing whether traces of a specific
anisotropic universe model is evident in the 5-year WMAP data. The model
is named “ACW” and introduces a direction along which the CMB can
rotate. When searching WMAP data for a possible trace of an ACW signal,
we find a strong signature corresponding to a 3 − 4σ detection.

Paper 2: Continuing investigating the anomaly

We continue the investigation of the ACW signal in the 5-year WMAP data,
and show that the signal is not affected by several types of systematics.
However, after fixing an initial error in the model equations, the direction
is now aligned with the ecliptic plane, or the plane of the satellite. The now
9σ signal is therefore most likely due to systematics, but we are unable to
resolve which type of systematics.

Paper 3: A new method for estimating noise in CMB data

In this paper, we develop a new near cost-free method for estimating noise
levels in CMB data when using the Gibbs sampler. When applied to the 5-
year WMAP data using the SLAVE Gibbs sampler, we found that the noise
levels in general were 0.5 − 1% off. After the paper review, the WMAP
team explained they had provided incorrect RMS levels, demonstrating the
efficiency of the method.

Paper 4: Introducing SLAVE: A thorough guide to the CMB
Gibbs sampler

This paper serves as a self-contained guide to the details of the CMB Gibbs
sampler. I developed my own CMB Gibbs sampler in C++, and went
through the whole process of deriving the conditional distributions and post-
processing tools like the Blackwell-Rao power spectrum estimator.

Paper 5: An improved method for low-� power spectrum es-
timation

In this paper, we developed an improved Blackwell-Rao method for obtaining
the power spectrum using a Gibbs sampler for low �s. When applying this to
cosmological parameter estimation, we find a minor 0.5σ shift in the spectral
index ns.
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Paper 6: Can specific curvature effects from the early universe
be seen in the CMB today?

Quantum gravity effects are expected to have modified the Bunch-Davies
vacuum during inflation, and could have induced oscillations in the primor-
dial power spectrum. We implemented the model in the CAMB framework,
and searched for evidence in the 3-year WMAP data. However, we ulti-
mately discovered that the oscillations are most likely too small and too
chaotic to ever be observed in the CMB.

Paper 7: Estimating deviations from Gaussianity in the CMB
by counting hills and lakes

Here, we use a well-known method for estimating deviations from statistical
Gaussianity in CMB data by counting the fraction of hills, lakes and saddles
on the sphere. By comparing results from Gaussian simulations, we are
able to test deviances from assumed Gaussianity in the 5-year WMAP data.
The results show that, when using a full covariance matrix, there really isn’t
much non-Gaussianities of this type in the WMAP data.

8 Conclusions

In this thesis, I have mainly been investigating whether traces of alternative
universe models exist in the cosmic microwave background data. Surpris-
ingly, we detected a 9σ anomaly in the WMAP data that resembles an
ACW-rotational effect. However, we have also shown that the anomaly i
most likely due to systematic effects, as it is aligned with the ecliptic plane,
or the rotational axis of the satellite. An independent analysis performed
by another group [14] confirmed the anomaly in WMAP data, and also
claims that it is most likely not of cosmological origin. Even the WMAP
team acknowledged the existence of the signal in their 7-year papers [3], but
conclude that the effect is probably due to asymmetric beams.

We have not yet been able to explain the origin of the systematic effect,
and this will be pursued in future work. Even though the signal contributes
to about 5% of the anisotropies in the CMB, is uncertain whether the effect
gives any contribution to cosmological parameters. New results also confirm
the hypothesis that the effect is of systematic origin, as the signal is not
evident in large-scale structure data [20].

We have also analyzed whether traces of trans-Planckian effects are vis-
ible in the angular power spectrum. However, there were some serious com-
putational problems with this model, and it is currently not feasible to
continue investigations of this kind. Also, we have analyzed whether the
CMB fluctuations deviate from non-Gaussianity, but find only a very weak
signal.



32

A large part of this thesis concerns the development of statistical tools
for analyzing CMB data. In order to uncover the details of the CMB Gibbs
sampler, I have developed a framework called “Slave” for estimating the
CMB signal and angular power spectrum. During the development, we also
implemented a new method for testing noise levels in CMB data. When
applied to the 5-year WMAP data, we found a relatively small deviation in
noise power from what is expected. During the review of the paper, it was
discovered that the deviation was due to incorrect values provided by the
WMAP team. We also developed a new method for low � power spectrum
estimation, and applied it to the 5-year WMAP data. We found a small
shift in the spectral index, significant at 0.5σ. However, the most important
result is the improvement of computational power needed to perform a full-
scale likelihood analysis.
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ABSTRACT
We present a consistent self-contained and pedagogical review of the CMB Gibbs sampler, focusing

on computational methods and code design. We provide an easy-to-use CMB Gibbs sampler named
SLAVE developed in C++ using object-oriented design. While discussing why the need for a Gibbs
sampler is evident and what the Gibbs sampler can be used for in a cosmological context, we review
in detail the analytical expressions for the conditional probability densities and discuss the problems
of galactic foreground removal and anisotropic noise. Having demonstrated that SLAVE is a working,
usable CMB Gibbs sampler, we present the algorithm for white noise level estimation. We then give
a short guide on operating SLAVE before introducing the post-processing utilities for obtaining the
best-fit power spectrum using the Blackwell-Rao estimator.
Subject headings: cosmic microwave background — cosmology: observations — methods: numerical

1. INTRODUCTION
In recent years, increased resolution in the measure-

ment of the cosmic microwave background (CMB) have
driven the need for more accurate data analysis tech-
niques. During the early years of CMB experiments,
data was so sparse and noise levels so high that error bars
in general overshadowed the observed signal. With the
COBE experiment, (Smoot et al. 1992) posteriors were
mapped out by brute force, and the statistical meth-
ods employed were simplistic. This was sufficient, as ad-
vanced statistical methods weren’t needed for analyzing
crude data. However, all this changed with the Wilkin-
son Microwave Anisotropy Probe (WMAP) experiment
(Bennett et al. 2003; Hinshaw et al. 2007). Suddenly,
cosmological data became much more detailed, vastly
improving our knowledge of the universe, but also in-
troduced new problems. Which parts of the signal were
pure CMB, and which were not? The need for knowledge
about instrumental noise, point sources, dust emission,
synchrotron radiation and other contaminations were re-
quired in order to estimate the pure CMB signal from the
data. And, how does one properly deal with the the sky
cut, the contamination from our galaxy? Even harder,
how does one maximize the probability that the result-
ing signal really is the correct CMB signal? A new era
of cosmological statistics emerged.

An important event was the introduction of Bayesian
statistics in cosmological data analysis. Bayesian statis-
tics differs from the frequentist thought by quantizing
ignorance: what one knows and not knows are intrinsic
parts of the analysis. The goal of any Bayesian analysis
is to go from the prior P (θ), or what is known about
the model, to the posterior P (θ|data), the probability
of a model given data. This is summarized via Bayes’
famous theorem:

P (θ|data) =
P (data|θ)P (θ)

P (data)
. (1)

The posterior P (θ|data) tells us something about how

Electronic address: leuat@irio.co.uk
1 Institute of Theoretical Astrophysics, University of Oslo, P.O.

Box 1029 Blindern, N-0315 Oslo, Norway

well a model θ fits the data, and is obtained by multi-
plying the prior P (θ), our assumption of the model, with
the likelihood P (data|θ), the probability that the data
fits the model.

The need for Bayesian statistics becomes evident when
considering that we only have data from one single ex-
periment to analyze. Bayesian statistics merges with fre-
quentist statistics for large number of samples. And, in a
cosmological context, we are stuck with only one sample,
a sample that we are constantly measuring to higher ac-
curacies. This sample is one realization of the underlying
universe model, and we are unable to obtain data from
another sample.

In a standard Metropolis-Hastings (MH) Monte Carlo
Markov chain-approach (MCMC), one samples from the
joint distribution by letting chains of “random walkers”
transverse the parameter space. The posterior is ob-
tained by calculating the normalized histogram of all
the samples in the chains. The posterior will eventually
resemble the underlying joint distribution, or the like-
lihood surface. This is a simple and easy-to-understand
approach, but not without drawbacks. For one, each MH
step is required to test the likelihood value of the chain
at the current position in parameter space up against a
new proposed position. Many of these steps will be re-
jected, and this is where the computational costs usually
reside. The Gibbs sampler provides something new: one
never needs to reject samples, and every move becomes
accepted and usable for building the posterior. This is
done by assuming that we have prior knowledge of the
conditional distributions. These are then sampled from,
each in turn yielding accepted steps.

However, the main motivation for introducing the
CMB Gibbs sampler is the drastically improvement in
scaling. With conventional MCMC methods, one needs
to sample from the joint distribution, which results in
an O(n3) operation. For a white noise case, the Gibbs
sampler splits the sampling process into independently
sampling from the two conditional distributions, which
together yields a O(n1.5) operation. In other words, the
Gibbs sampler enables sampling the high-� regime much
more effective than previous MCMC methods.
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Fig. 1.— C++ class diagram of the SLAVE framework.

The problem of estimating the cosmological signal
s from the full signal by Gibbs sampling was first
addressed in Jewell et al. (2004), Wandelt et al. (2004)
and Eriksen et al. (2004b). The ultimate goal of the
Gibbs sampler is to estimate the CMB signal s from
the data d, eliminating noise n, convolution A, all while
including the sky cut. Today, a great number of papers
have employed the Gibbs sampler since the introduction
of the method (Eriksen et al. 2008a,b; Dunkley et al.
2008; Cumberbatch et al. 2009; Groeneboom et al
2008; Groeneboom et.al. 2009a; Eriksen et al. 2006;
Rudjord et al. 2009; Jewell et al. 2009; Dickinson et al.
2007; Chu 2005; Dickinson et al. 2009; Larson et al.
2007).

In this paper, we review the basics of the CMB Gibbs
sampler, and provide a simple, intuitive non-parallelized
CMB Gibbs software bundle named SLAVE. SLAVE is writ-
ten in C++, and employs object-oriented design in or-
der to simplify mathematical implementation. The OOP
design of SLAVE is presented in figure 1. For instance,
assuming A, B and C are instances of the “real alm”
class (they contain a set of real a�ms), operator over-
loading enables us to directly translate the expression
A = (B + C)−1 by writing

A = (B+C).Invert();

This yields fast code that closely resembles equations,
without having optimized too much for parallel comput-
ing, multiple data sets and other complexities.

1.1. The Master algorithm
One method of likelihood-estimator for obtaining the

best-fit power spectrum for masked CMB data is given by
the MASTER algorithm (Hivon et al. 2002). While Gibbs
sampling estimates the full CMB signal s, the MASTER

method only estimates the power spectrum. This method
does not allow for variations in the estimated signal, ex-
cept for the natural variations from simulating different
realizations from the same power spectrum. However,
the master algorithm estimates the power spectrum with
cost scaling as O(n3), which is slow for high-� operations.

1.2. What do I need the CMB Gibbs sampler for?
Often, people misunderstand the concepts behind the

CMB Gibbs sampler, and what the Gibbs sampler can
be used for. In this section, we try to explain in sim-
ple terms when you should consider employing the CMB
Gibbs sampler.

Assume that you have a theoretical universe model
M(θ), where θ = {θi} is a set of cosmological parameters.
This model might give rise to some additional gaussian
effects in the CMB map, either as fluctuations, altered
power, anisotropic contributions, dipoles, ring structures
or whatever. You now wish to test whether existing CMB
data contains traces of your fabulous new model, and how
significant those traces are. Or maybe you are just inter-
ested in ruling out the possibility that this model could
be observed at all.

In any case, you need to implement some sort of nu-
merical library that generates CMB maps based on your
model. These maps will be “pure”, in the sense that you
have complete control over its generation process and sys-
tematics. Assume that your model has 1 free parameter.
You could now loop over the 1-dimensional parameter
space and calculate the χ2 between a pure CMB signal
map and the map from your model. This would have to
be done for each step in parameter space, before obtain-
ing the minimum. Even better, you could implement a
Monte Carlo Markov chain framework, letting random
walkers traverse a likelihood surface, yielding posteriors.
This would enable support for a larger number of param-
eters, and is superior to the slow brute force approach.

In real-life however, things are not this simple. Data
from any CMB experiment is contaminated by noise and
foregrounds, most notably our own galaxy. This means
that estimating the signal s from the data is not trivial -
one needs to “rebuild”, or make an assumption of what
the fluctuations are within the sky cut and noise limits.
This implies that it really isn’t possible to obtain “the
correct” CMB map, all we can know is that there exist a
statistical range of validity where a simulated map agrees
with the true CMB signal. Therefore, the consideration
that that the estimated CMB signal s is a statistical ran-
dom variable and not a fixed map should be included in
the analysis. Hence, if you have implemented the MASTER
method mentioned in section 1.1, you should test your
model map against a set of realizations from the MASTER-
estimated signal power spectrum.

This is where the Gibbs sampler enters the stage. As
previously mentioned, the Gibbs sampler will estimate
the CMB signal given data, and not only the power spec-
trum. The Gibbs sampler also ensures that every step
in parameter space is always valid, so one never needs to
discard samples. And even better, each of these indepen-
dent steps provide an operation cost for obtaining sam-
ples that are much lower than more conventional MCMC
methods. In order to test whether your model m fits the
data, you therefore include the uncertainty in data by
varying the signal. For example:
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initialize Cl
do
s = the CMB signal given the

power spectrum Cl
m = the CMB signal of your model given

the estimated CMB signal s
Cl = the CMB power spectrum given m
save s, m and Cl

repeat until convergence

In the end, you calculate the statistical properties of s,
m and Cl. Your model parameters have now been esti-
mated, and the process included the intrinsic uncertain-
ties in the signal. This method is not the most rapid -
but it will always yield correct results.

2. THE CMB GIBBS SAMPLER
Throughout this paper, we assume that the data can

be expressed as
d = As + n (2)

where s is the CMB signal, A the instrument beam and
n uncorrelated noise.

The MASTER algorithm estimates the the power spec-
trum 〈Ĉ�〉 and the standard deviation ΔC�. However,
this method is a approximation to a full likelihood that
can be expressed as follows:

P (C�|d) =
1√|S + N |e

− 1
2 dT (S+N)−1d. (3)

where S and N are the signal and noise covariance matri-
ces, respectively. While it is fully possible to use MCMC-
methods to sample from this distribution, the calculation
of the (S + N)−1-matrix scales as n3, where n is the size
of the n× n matrix. This is therefore an extremely slow
operation, and is not feasible for large �s. If we demand
that we sample the sky signal s as well, the joint distribu-
tion becomes P (C�, s|d). This might seem unnecessary
complicated, as one most of the time doesn’t need the
signal s. But when feeding this distribution through the
Gibbs sampler - that is, calculating the conditional distri-
butions P (C�|s, d) and P (s|C�, d), we find that sampling
from both are computationally faster than sampling from
the full distribution in equation 3. The derivations of the
conditional distributions are presented in section 3.

2.1. Review of the Metropolis-Hastings algorithm
The Gibbs sampler is a special case of the Metropolis-

Hastings algorithm. We therefore review the basics of
Monte Carlo Markov (MCMC) chain methods. The
Metropolis-Hastings algorithm is a MCMC method for
sampling directly from a probability distribution. This is
done by letting “random walkers” transverse a parameter
space, guided by the likelihood function, the probability
that the data fits the model for the given parameter con-
figuration. If a proposal step yields a likelihood greater
than the current likelihood, then random walker accepts
the step immediately. If the likelihood is less, then the
walker will with a certain probability step “down” the
likelihood surface. Eventually, the histogram of all the
random walkers will converge to the posterior, the full
underlying distribution.

Assume you have a model with n parameters, θ = {θk}
and you wish to map out a joint distribution from P (θ).

Usually, one calculates the ratio R between the posteriors
at the two steps P (θi+1) and P (θi), such that

R =
P (θi+1)
P (θi)

· T (θi|θi+1)
T (θi+1|θi)

(4)

where T (θi|θi+1) is the proposal distribution for going
left or right. If the proposal distribution is symmetric
(i.e. the probability of going left-right is equal for all
θk), then T (θi|θi+1) = T (θi+1|θi) such that:

R =
P (θi+1)
P (θi)

(5)

The MH acceptance rule now states: if R is larger than 1,
accepted the step unconditionally. If R > 1, then accept
the step if a random uniform variable x = U(0, 1) < R.

2.2. Review of the Gibbs algorithm
Assume you have a model with two parameters, θ1

and θ2, and you wish to map out a joint distribution
from P (θ1, θ2). Now, also presume that you have prior
knowledge of the conditional distributions, P (θ1|θ2) and
P (θ2|θ1). A general proposal density is not necessary
symmetric, and one must therefore consider the asym-
metric proposal term as described in equation 4. How-
ever, we now define the proposal density T for θ2 to be
the conditional distributions:

T (θi+1
1 , θi+1

2 |θi
1, θ

i
2) = δ(θi+1

1 − θi
1)P (θi+1

2 |θi
1). (6)

In words, the proposal is only considered when θi+1
1 = θi

1,
which means that θ1 is fixed while θ2 can vary. If so, the
acceptance is then given as the conditional distribution
P (θi+1

2 |θi
1), which we must have prior knowledge of. The

reason for choosing such a proposal density becomes clear
when investigating the Metropolis Hastings acceptance
rate:

R =
P (θi+1

2 , θi+1
1 )

P (θi
2, θ

i
1)

· T (θi
1, θ

i
2|θi+1

1 , θi+1
2 )

T (θi+1
1 , θi+1

2 |θi
1, θ

i
2)

(7)

Using the conditional sampling proposal (6) one obtains

R =
P (θi+1

2 |θi+1
1 )P (θi+1

1 )
P (θi

2|θi
1)P (θi

1)
· P (θi

2|θi+1
1 )

P (θi+1
2 |θi

1)
δ

δ
(8)

We now enforce the delta-function such that θi+1
1 = θi

1.
This sampling from the conditional distributions is the
crucial step in the Gibbs sampler, such that all terms
cancel out:

R = 1. (9)

This implies that all steps are valid, and none are ever
rejected. Hence one alternates between sampling from
the known conditional distributions, where each step is
independently accepted and can be performed as many
times as needed.

3. THE CONDITIONAL DISTRIBUTIONS
In section 2.2, it was explained how the Gibbs sam-

pler requires previous knowledge about the underlying
conditional distributions. The CMB Gibbs sampler will
alternate between sampling power spectra C� and CMB
signal s, where each proposed step will always be valid.
In order to enable sampling from the joint distribution,
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P (θ2, θ1)

P (θ2)

P (θ1)

P (θ2|θ1)

P (θ1|θ2)

Fig. 2.— Conditional sampling implies alternating between sam-
pling from P (θ1|θ2) and P (θ2|θ1), fixing the other parameter.

we therefore need to derive the analytical properties of
the conditional distributions:

P (C�|s, d) and P (s|C�, d). (10)

The derivations described here were first presented
in Jewell et al. (2004), Wandelt et al. (2004) and
Eriksen et al. (2004b).The full, joint distribution is ex-
pressed as

P (C�, s|d)∝P (d|C�, s)P (C�, s) (11)
=P (d|C�, s)P (s|C�)P (C�) (12)

where P (C�) is a prior on C�, typically chosen to be flat.
The first term, −2 lnP (d|C�, s), is nothing but the χ2.
The χ2 measures the goodness-of-fit between model and
data, leaving only fluctuations in noise. As n = d − s is
distributed accordingly to a Gaussian with mean 0 and
variance N , we find that

P (d|C�, s) ∝ e−
1
2 (d−s)tN−1(d−s). (13)

As we now assume that the signal s is known and
fixed, the data d becomes redundant and P (C�|s, d) =
P (C�|s) ∝ P (s|C�). We therefore first need to obtain an
expression for P (C�|s, d).

3.1. Deriving P (C�|s, d)
Assuming that the CMB map consists of Gaussian fluc-

tuations, we can express the conditional probability den-
sity for a power spectrum C� given a sky signal s as
follows:

P (C�|s, d) =
e−

1
2 sT C−1s√|C| (14)

where C = C(C�) is the covariance matrix. We
now perform a transformation to spherical harmon-
ics space, where s =

∑
�m a�mYlm and Cij =∑

i

∑
j Y i

�′m′C�′m′,�mY j
�m. Then equation (14) trans-

forms to

sT C−1s =
∑
�m

∑
�′m′

a∗
�mY ∗

�mY�′m′C−1Y ∗
�mY�′m′a�′m′ .

(15)
As the spherical harmonics are orthogonal, they all can-
cel out and leave delta functions for δ��′δmm′ such that

sT C−1s =
∑
�m

a∗
�mC−1

� a�m =
∑
�m

a∗
�m

1
C�

a�m. (16)

We now define a power spectrum σ� = 1
2�+1

∑
m |a�m|2

such that
sT C−1s =

∑
�

(2� + 1)
σl

C�
. (17)

Similarly, the determinant is given as the product of
the diagonal matrix C, which for each l has 2�+1 values
of C�. The determinant is thus |C| =

∏
� C2�+1

� . Expres-
sion (14) can now be written as

P (C�|s) =
∏

�

e
− (2�+1)

2
σ�
C�√

C2�+1
�

(18)

which by definition means that the C�’s are distributed
as an inverse Gamma function. In the computational
section, we will discuss how to draw random variables
from this distribution.

3.2. Deriving P (s|C�, d)
Again, we begin with the full, joint distribution:

P (C�, s|d) ∝ P (d|C�, s)P (C�|s). (19)

We now know from equation 18 and 13 that the joint
distribution can be expressed as

P (C�, s|d) ∝ e−
1
2 (d−s)tN−1(d−s)

∏
�

e
− 2�+1

2
σ�
C�

C
2�+1

2
�

(20)

omitting the prior P (C�). Again, note that it would be
nearly impossible to sample directly from the full distri-
bution. We now investigate what happens with equation
20 when C� becomes a fixed quantity. As the C�s in the
denominator vanishes, we use equation 14 to obtain

P (s|C�, d) ∝ e−
1
2 (d−s)T N−1(d−s)e−

1
2 sT C−1s. (21)

We now introduce a residual variable r = d − s, such
that r roughly consist of noise. As noise was uncorre-
lated, we can expect that r follows a Gaussian distribu-
tion with zero mean and N variance. Also, if s is known,
then C� is redundant. We complete the square, and in-
troduce ŝ = (S−1 + N−1)−1N−1d. Equation (21) can
now be rewritten as

P (s|C�, d) ∝ e−
1
2 (s−ŝ)T (C−1+N−1)(s−ŝ). (22)

Hence P (s|C�, d) is a Gaussian distribution with mean
ŝ and covariance (C−1 + N−1)−1. In the computational
section, we will discuss how to draw random variables
from this distribution.

4. NUMERICAL IMPLEMENTATION
In its utter simplicity, the mechanics of the Gibbs sam-

pler can be summarized as follows:

load data
initialize s and cl
loop number of chains
s = generate from p(s | cl, d)
cl = generate from p(cl | s, d)
save s and cl

end loop

We now present the computational methods for drawing
from P (s|C�, d) and P (C�|s, d).
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4.1. P (C�|s, d)
We show that equation 18 is an inverse Gamma dis-

tribution. A general gamma-distribution is proportional
to

PΓ(x; k, θ) ∝ xk−1e−
x
θ . (23)

Equation 18 can be expressed as

P (C�|s) = C
− 2l+1

2
� e−β/C� (24)

where β = 2l+1
2 σi. If we now perform a substitution

y = 1/C�, we see that

P (y|s) = y
2l+1

2 e−βy · y−2 (25)

where the last term is the Jacobian. Hence

P (y|s) = y
2l−1

2 −1e−βy (26)

which is a gamma-distribution for k = 2l−1
2 . We now

show that this particular distribution also happens to be
a special case of the χ2 distribution:

χ(x; k) = xk′/2−1e−
x
2 . (27)

Letting z = 2βy and ignoring the constants, we find that

P (z|s) = zk−1e−z/2 (28)

such that if k′ = 2k = 2l − 1, z is distributed accord-
ing to a χ2 distribution with 2l − 1 degrees of freedom.
A random variable following such a distribution can be
drawn as follows:

zχ =
2l−1∑
i=0

|Ni(0, 1)|2 (29)

where Ni(0, 1) are random Gaussian variables with mean
0 and variance 1. Since z = 2βy = 2β/C�, we find that

C� = (2l + 1)σi/zχ. (30)

Numerically, one can implement this as

for each l
z = 0
for i=0 to 2l-1
z = z+ rand_gauss()^2

end
C(l) = (2l+1)*sigma(l)/z

end

An example of this method can be found in the
SLAVE libraries, within class “powerspectrum” method
“draw gamma”.

4.2. P (s|C�, d)
From equation 22, it is easy to see that P (s|C�, d)

is a Gaussian distribution with mean ŝ and variance
(C−1 + N−1)−1. Instead of deriving a method for draw-
ing a random variable from this distribution, we present
the solution and show that this solution indeed has the
necessary properties (Jewell et al. 2004). Let

s = (C−1 + N−1)−1(N−1d + N− 1
2 ω1 + C− 1

2 ω2) (31)

where ω1 and ω2 are independent, random N(0, 1) vari-
ables. We now show that the random variable s indeed
has mean ŝ and variance (C−1 + N−1). First,

〈s〉 = (C−1 + N−1)−1(N−1〈d〉 + N− 1
2 〈ω1〉 + C− 1

2 〈ω2〉).
(32)

As 〈ω1〉 = 〈ω2〉 = 0,

〈s〉 = (C−1 + N−1)−1N−1〈d〉 = ŝ (33)
by definition.

The covariance is then
〈(s − ŝ)(s − ŝ)T 〉. (34)

Note that in the term s − ŝ, we have (C−1 +
N−1)−1(N−1d − N−1d) = 0, so we are only left with
the terms with the random variables ω:
〈(s − ŝ)(s − ŝ)T 〉=(C−1 + N−1)−2 ·

〈(N− 1
2 ω1 + C− 1

2 ω2)(ωT
1 N−T

2 + ωT
2 C− T

2 )〉
But, as ω1 and ω2 are independently drawn from a
N(0, 1) distribution, then 〈ωiωj〉 = δijI, and we end up
with

〈(s − ŝ)(s − ŝ)T 〉 = (C−1 + N−1)−1 (35)
which shows that a random variable drawn using equa-
tion 31 has the desired properties of being drawn from
P (s|C�, d).

Having implemented a “real alm” class in SLAVE with
operator overloading, it is possible to directly translate
equation 31 into code:

omega1.gaussian_draw(0, 1, rng);
omega2.gaussian_draw(0, 1, rng);
calculate_CNI();
S = CNI* (NI*D + NI.square_root()*omega1

+ CI.square_root()*omega2);

where the code has been slightly optimized: both C−1,
N−1 and (C−1 + N−1)−1 has been pre-calculated for
efficiency. Note that this is only possible to do when
assuming full-sky coverage with constant RMS noise. If
the noise isn’t constant on the sky, then N is a dense off-
diagonal matrix, nearly impossible to calculate directly
for large �. However, it is still possible to perform the
calculation in pixel space, but this requires that we as-
sume N to be an operator instead of a matrix. We will
address this issue in section 4.6.

We have now presented the main simplified Gibbs-steps
for calculating P (s|C�, d) and P (C�|s, d), without convo-
lution, uniform noise and no sky cut. Sampling from
these two distributions is then done alternating between
the two Gibbs steps, and the chain output - s and C� -
are saved to disk during each step.

We now investigate the behavior of these fields, as each
have special properties.

4.3. Field properties
Equation 31 can be broken into two separate parts:

the Wiener filter (C−1 + N−1)−1(N−1d) and the fluctu-
ation map (C−1+N−1)−1(N− 1

2 ω1+C− 1
2 ω2). In figure 3,

each of these maps are depicted. The Wiener filter map
determines the fluctuations outside the sky cut - where
they are heavily constrained by the known data, given
cosmic variance and noise. However, within the sky cut,
large-scale fluctuations are possible to pin down statis-
tically while small-scales are repressed. The fluctuation
map determines the small-scale fluctuations within the
unknown sky cut, and are constrained by cosmic vari-
ance and noise effects. Outside the sky cut, the fluc-
tuation map is constrained by the data, yielding very
low small-scale fluctuations. The sum of these two parts
make up the full CMB signal sample.
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Fig. 3.— The two maps that together compose the full signal:
the fluctuation map (bottom) and the Wiener filter (top). Note
that within the sky cut, the Wiener filter successfully estimates the
large-scale structures while the fluctuation map produces random
small-scale fluctuations.

4.4. Verifying the sample signal: the χ2 test
When the signal is being sampled, it is vital to check

that the input parameters/data maps are correctly set
up. For instance, if you use SLAVE to start a large job,
say, estimating the CMB signal s for a npix = 512 map,
it can be very frustrating when realizing that one of the
input parameters were incorrect, for instance beam con-
volution or noise RMS. The software will continue to run
without errors, but the resulting output files will be in-
correct. We therefore adopt a simple and useful method
for verifying that the estimated CMB signal s for each
Gibbs step really is close to what one would expect.

The trick lies with the noise. As d = As + n, then
n = d − As. Uniform white noise is assumed to be
N(0, σ2

RMS)-distributed, so

N(0, 1) ∼ d − As

σRMS
. (36)

A χ2 distribution is nothing but a sum of squared Gaus-
sian distributions. Hence

χ2
npix

∼
∑
npix

(
d − As

σRMS

)2 (37)

and the χ2 should be close to the number of pixels in
the map plus minus

√
2n. Usually, when an incorrect

parameter is used, the χ2 comes out far away from the
expected value.

Calculating the χ2 is not particularly time-consuming,
but it has other uses as well: the χ2 is used in the esti-
mation of noise, as presented in section 5.

4.5. Convolution

A thing we did not address in the previous section was
the inclusion of the instrumental beam convolution A.
Including this in equation 31, we obtain

(C−1+AT N−1A)s = AN−1d+AN− 1
2 ω1+C− 1

2 ω2. (38)

In SLAVE, the beam is loaded directly from a fits file, or
generated as a Gaussian beam given a full width half-
maximum (FWHM) range. The beam is then multiplied
with the corresponding pixel window, and stored in the
a�m-object A throughout the code.

4.6. The sky cut
Until now, we have only assumed full-sky data sets

contaminated by constant noise. However, in order to be
able to investigate real data, we need to take into account
both the foreground galaxy and anisotropic noise. The
galaxy contributes to almost 20% of the WMAP data,
and needs to be removed with a mask. This means that
the usable pars of the maps becomes anisotropic, giving
rise to correlations in the spherical harmonics a�ms. In
other words, all the previously diagonal and well-behaved
matrices now have off-diagonal elements, which for large
�max is an impossible feat to perform for dense matrices.

One way to get around these problems is to perform the
calculations containing the sky cut mask in pixel space.
This means that every time one needs to take into ac-
count the sky cut, one transforms from harmonic to pixel
space, performs the operation including the sky cut be-
fore transforming back to harmonic space. While this
operation in itself is trivial, equation 31 provides a few
other problems:

(C−1+AT N−1A)s = AN−1d+AN− 1
2 ω1+C− 1

2 ω2. (39)

The right-hand side can easily be calculated, letting N−1

be an operator acting on d and ω1, switching from spheri-
cal harmonics to pixel space and back. However, the left-
hand side is troublesome - one cannot solve this equation
explicitly. First, we need to rewrite 39 a bit:

(1 + C
1
2 AT N−1AC

1
2 )(C− 1

2 s) = (40)

C
1
2 AN−1d + C

1
2 AN− 1

2 ω1 + ω2 = b (41)

The first thing one should note about equation 41 is that
the left-hand term is proportional to (1 + S/N), where
the diagonal parts are just the signal-to-noise ratios of
the corresponding mode. Another nice feature about this
form is that the variance of the signal is kept constant,
that is, Var(s) ∼ �−2, but Var(C−1/2s) ∼ I. Hence we
obtain better numerical stability. In order to solve the
equation (1 + S/N)x = b, we implement a direct-from-
textbook Conjugate Gradient (CG) algorithm presented
on page 40 in Shewchuk (1994). The code looks like this:

b = L*( A*NI(D) + A*NI(map_work2,true)) + omega2;
MI = setup_preconditioner();
x = mult_by_A(x);
r = b - x;
d = MI*r;
r0 = r.norm_L1(r);
do {
Ad = mult_by_A(d);
alpha = r.dot(MI*r) / (d.dot(Ad));
x = x + d*alpha;
rn = r - Ad*alpha;
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beta = rn.dot(MI*rn) / (r.dot(MI*r));
d = MI * rn + d*beta;
r = rn;
norm = r.norm_L1(r);

}
while (norm>r0*epsilon);
S = L*x;

C++ enables the CG algorithm to be translated almost
directly from mathematical syntax to code. Here, the
sky cut mask is taken into account in the NI-method -
one only needs the mask when multiplying with the in-
verse noise matrix. The only other “initial condition” is
the preconditioner. The preconditioner cannot affect the
result, that is, it has nothing to do with the estimated
signal s. The preconditioner only affects the number of
iterations needed for the equation Ax = b to be solved,
and corresponds to a “best guess” of A. Without go-
ing into details, the standard preconditioner in SLAVE is
proportional to (1 + S/n), but there exists many other
suggestions for better pre-conditioners, yielding quicker
convergence. See Eriksen et al. (2004) or Smith et al.
(2007) for more examples.

When the CG search has completed, the signal S has
been obtained, including the sky cut and anisotropic
noise.

4.7. Low signal-to-noise regime
A final thing we need to take into account is the low

signal-to-noise regime. When the noise starts dominat-
ing the signal, the estimated s will fluctuate wildly on
small scales. In addition, the deconvolution will add to
this effect, blowing up noise to extreme values. In itself,
this isn’t a bad thing as we really cannot say exactly
what is going in this regime, but it will affect the overall
correlations between chains. In order to reduce this ef-
fect, we present a simple way to bin multipoles together
on large l, reducing noise variance.

Let N� = σ2
RMS4π/npix be the noise RMS in harmonic

space. The variance is then given as

V ar(N�) =
2

2l + 1
N2

l . (42)

For a single binned set with n multipoles ranging from
�low to �high, the average value of the power spectrum is
given as

D� =
1
n

�high∑
�low

C�. (43)

Similarly for the noise power spectrum,

Nb =
1
n

�high∑
�low

N�. (44)

Thus, the variance of the noise is given as

σ2
N = Var(Nb) =

1
n2

�high∑
�low

Var(N�). (45)

Obviously, σN is reduced as the number of multipoles in
the bin n is increased. We now select bins such that the
noise variance in a single bin is always less than three

0 100 200 300 400 500
Multipole moment l
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4000

6000

8000

C
ll(l

+1
)/2

π 
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03 μΚ
2 )

σl without binning
Input Cl
σl with binning

Fig. 4.— Examples of two estimated σ� without binning (green)
and with binning (red). If the C�s are produced from the binned
σ�s, the fluctuations in the low S/N-regime become less volatile.
The input power spectrum is depicted in black.

times the value of the angular power spectrum, or σn <
3D�.

The only affected part of the code is where one deter-
mines P (C�|s, d). Instead of generating a power spec-
trum C� given a set of σl, the calculation is now per-
formed via a binning class that calculates the binned
power spectrum Cb. That is,

P (Cb|σ) =
�high∏
�low

(
e
− 2l+1

2
σ�
Cb

C
2�+1

2
b

). (46)

Absorbing the product into the exponential, this becomes

P (Cb|σ) =
e
− 1

2Cb

P
�(2l+1)σ�

C
1
2

P
�(2�+1)

b

. (47)

We now sample the signal with flat bins in �(�+1)/(2π),
not in �.

5. GENERALIZING THE MODEL: NOISE
ESTIMATION

In this section, we give a direct example of how one
could extend the data model to the SLAVE Gibbs sampler.
We derive the necessary conditional distribution, explain
how this was integrated, and present some results from
Groeneboom et.al. (2009a), where a full analysis of the
noise levels in the WMAP data was performed using the
SLAVE framework.

Traditionally, the noise properties used in the Gibbs
sampler (e.g., Eriksen et al. 2004) have been assumed
known to infinite precision. In this section, however, we
relax this assumption, and introduce a new free param-
eter, α, that scales the fiducial noise covariance matrix,
Nfid, such that N = αNfid. Thus, if there is no deviation
between the assumed and real noise levels, then α should
equal 1. The full analysis of the 5-yr WMAP data was
presented in Groeneboom et.al. (2009a), with interesting
results. For the foreground-reduced 5-year WMAP sky
maps, we find that the posterior means typically range
between α = 1.005±0.001 and α = 1.010±0.001 depend-
ing on differencing assembly, indicating that the noise
level of these maps are underestimated by 0.5-1.0%. The
same problem is not observed for the uncorrected WMAP
sky maps.



8

0 5 10 15 20 25 30
Gibbs step

0.995

1

1.005

1.01

1.015

1.02

N
oi

se
 a

m
pl

itu
de

 α

Fig. 5.— Even when assuming a large initial value, the noise
amplitude α will quickly converge to the correct value.

The full joint posterior, P (s, C�, α | d), now includes
the amplitude α. We can rewrite this as follows:

P (s, C�, α | d) = P (d | s, α) · P (s, C�) · P (α) (48)

where the first term is the likelihood,

P (d | s, α) =
e−

1
2 (d−s)(αN)−1(d−s)√|αN | , (49)

the second term is a CMB prior, and the third term is
a prior on α. Note that the latter two are independent,
given that these describe two a-priori independent ob-
jects. In this paper, we adopt a Gaussian prior centered
on unity on α, P (α) ∼ N(1, σ2

α). Typically, we choose
a very loose prior, such that the posterior is completely
data-driven.

The conditional distribution for α can now be ex-
pressed as

P (α | s, C�, d) ∝ e−
β
2α

αn/2
· P (α) (50)

where n = Npix and β = (d − s)N−1(d − s) is the χ2.
(Note that the χ2 is already calculated within the Gibbs
sampler, as it is used to validate that the input noise
maps and beams are within a correct range for each
Gibbs iteration. Sampling from this distribution within
the Gibbs sampler represent therefore a completely neg-
ligible extra computational cost.) For the Gaussian prior
with unity mean and standard deviation σα, we find that

P (α | s, C�, d) ∝ e
− 1

2 ( β
α + (α−1)2

σ2
α

)

αn/2
(51)

For large degrees of freedom, n, the inverse gamma
function converges to a Gaussian distribution with mean
μ = b/(k + 1), where we have defined k = npix/2 − 1,
and variance σ2 = b2/((k − 1)(k − 1)(k − 2)). A good
approximation is therefore letting αi+1 be drawn from a
product of two Gaussian distributions, which itself is a
Gaussian, with mean and standard deviation

μ =
μ1σ

2
2 + μ2σ

2
1

σ2
1 + σ2

2

(52)

σ =
σ2

1σ2
2

σ2
1 + σ2

2

. (53)
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Fig. 6.— A typical plot of the C�s obtained from a SLAVE run.
Note that the input power spectrum is presented in black, and that
the noise RMS for this particular run is very low.

This sampling step has been implemented in SLAVE
and we have successfully tested it on simulated maps.
With Nside = 512 and lmax = 1300 and full sky coverage,
we find α = 1.000 ± 0.001. The chains for the noise
amplitude α are shown in figure 5. Note that with such
high resolution, the standard deviation on α is extremely
low, and any deviation from the exact α = 1.0 will be
detected.

6. RUNNING SLAVE
In this section, we quickly review how to use SLAVE.

For a more detailed usage, please see the SLAVE docu-
mentation (when the framework will be released).
SLAVE requires the HEALPIX (Górski et al. 2005) CXX-

libraries installed. Please see the HEALPIX documenta-
tion on this topic. SLAVE is run command-line, and re-
quires a parameter file as command-line parameter. The
most important options in the parameter file are listed
in table 1.

6.1. Post-processing
After the Gibbs sampler has been cooking for a while,

it is time to investigate the results. The main output
of SLAVE are the estimated power spectra C�’s and the
signals s. However, as the signal is assumed to be sta-
tistically isotropic, we instead output the signal power
spectra σ� defined as:

σ� ≡ 1
2� + 1

m=�∑
m=−�

|s�m|2. (54)

The text-files may be plotted directly through software
such as XMGRACE, as presented in figure 6. In addi-
tion, SLAVE outputs the σ�’s as a binary file for each
chain. These binary files can be combined through the
main post-processing software utility for SLAVE called
SLAVE PROCESS. This software will combine the binary
chains into a single file, in addition to removing burn-in
samples. To combine the sigmas into one file, type

slave_process 1 [no_chains] [no_samples]
[burnin] [output sigma_l file]
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TABLE 1

SLAVE parameter table

General parameters

seed int Initial random seed
verbosity int Text output level (0=none)
healpix dir string HEALPIX home directory
output sigmas bool Output σ� or not
output cls bool Output C�s or not
output directory string Output file directory
output chisq bool Output the χ2 or not
output beam bool Output the beam or not
output beam file string Beam output filename

Operations

method string Analysis type: brute force fullsky or CG (normal)
CG convergence double CG Convergence criteria (type 10−6)
preconditioner string Pre-conditioner type: none, static or 3j
init powerspectrum power double Initialized flat power spectrum value
init powerspectrum use file bool Use file instead of flat power spectrum
init powerspectrum file string Initial power spectrum file
samples int Number of Gibbs samples to produce
burnin int Number of burn-in samples to reject

Data

datasets int Number of data sets (only 1 allowed yet..)
data nsideN int nside for data set N = {1, 2, 3, . . . }
data mapN string FITS map for data set N = {1, 2, 3, . . . }
data rmsN string FITS rms map for data set N = {1, 2, 3, . . . }
data maskN string FITS mask for data set N = {1, 2, 3, . . . }
beam fileN string FITS beam for data set N = {1, 2, 3, . . . }
lmax int �max for the analysis
constant rms bool Use constant rms or not
constant rms value double Value of constant rms
gaussian beam bool Use a Gaussian beam or not
gaussian beam fwhm double Value of Gaussian beam

Noise estimation parameters

enable noise amplitude sampling bool Enable noise estimation or not
noise sampling sigma double The noise prior sigma
noise amplitude filename string Output noise filename
noise alpha init val double Initial value for α

Binning

use binning bool Enable binning of power spectrum
binning powerspectrum string Power spectrum used for binning
bins filename string Text output the bins

Note. — The SLAVE parameter names and usage may have changed when the first version is
released.

6.2. C� likelihoods
The first important step is to verify that the output C�s

follow the desired inverse-Gamma distribution for low �,
but converges to Gaussians for larger �. The SLAVE pro-
cessing utility SLAVE PROCESS can generate a set of C�s
from the σ�s and output the corresponding values for a
single �. It is then straight-forward to use a graphical
utility such as XMGRACE to obtain the histogram. Such
histograms are plotted together with the analytical like-
lihoods in figure 7. Note the good match between the
histogram of the C�s and the likelihoods obtained from
the Blackwell-Rao estimator. The analysis for producing
these plots was performed on simulated high-detail data,
in order to verify the validity of the BR-estimator.

To save the cls for a specific �, type

./process 4 [sigma_l file] [l] [generate no cls]
[output textfile]

6.3. The Blackwell-Rao estimator

Our primary objective is obtaining the best-fit power
spectrum from the estimated signal power spectra. If the
C�s were completely distributed according to a Gaussian,
one would only need to select the maximum of the distri-
bution for each C�. However, as we saw in equation 18,
this is not the case, and we need a better way to obtain
the likelihood L(C�) for each �.

Luckily, we can obtain an analytical expression of the
likelihood for the C�s via the Blackwell-Rao (BR) esti-
mator, as presented in Chu et al. (2005). By using prior
knowledge of the distributions of the C�s, we can build
an analytical expression for the distribution for each C�

given the signal power spectrum σ�, or P (C�|σl).
Note that since the power spectrum only depends on

the data through the signal and thus σ�, then

P (C� | s, d) = P (C� | s) = P (C� |σ�). (55)

It is therefore possible to approximate the distribution
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Fig. 7.— The histograms of the C�s (red) and the BR-estimated likelihoods (black) for various �. Note how the distribution converges
to a Gaussian for larger multipoles �. The analysis has been performed on simulated WMAP-like data.

P (C� | d) as such:

P (C� | d)=
∫

P (C�, s | d) ds (56)

=
∫

P (C� | s, d)P (s | d) ds (57)

=
∫

P (C� |σ�)P (σ� | d)Dσ� (58)

≈ 1
NG

NG∑
i=1

P (C� |σi
�) (59)

where NG is the number of Gibbs samples in the chain.
This method of estimating the P (C� | d) is called the
Blackwell-Rao estimator. Now, for a Gaussian field,

P (C� |σ�) ∝
∞∏

�=0

1
σ�

( σ�

C�

)
e

2�+1
2

σ�
C� . (60)

Taking the logarithm, we obtain a nice expression

lnP (C�|σl) =
∑ (2� + 1

2

[
− σ�

C�
+ln

( σ�

C�

)]− lnσl

)
(61)

which is straight-forward to implement numerically. To
output the BR-estimated likelihood for one �, type

./process 3 [sigma_l file] [l]
[output likelihood]

6.4. Power spectrum estimation
The best-fit BR-estimated power spectrum is obtained

by choosing the maximum likelihood value of C� for each
�. To do so, type

./process 2 [sigma_l file]
[output power spectrum file]
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Fig. 8.— The BR-estimated power spectrum (red) versus the
simulated input data power spectrum (green). Note that these two
power spectra agree on large scales. The noise power spectrum is
also shown (blue).

An example of a BR-estimated power spectrum can be
seen in figure 8. In addition, both the input-and noise
power spectra are shown. Note how the BR-estimated
power spectrum is exact on small scales (low �), while
the convolution and noise dominated on higher scales.

7. CONCLUSIONS
We have presented a self-contained guide to a CMB

Gibbs sampler, having focused on both deriving the con-
ditional probability distributions and code design. We
described in detail how one can draw samples from the
conditional distributions, and saw how the Gibbs sampler
is numerically superior to conventional MCMC meth-
ods, scaling as O(n1.5). We have also introduced a
new object-oriented CMB Gibbs framework, which em-
ploys the existing HEALPix (Górski et al. 2005) C++
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package. We presented a small guide to the usage of
SLAVE, including post-processing tools and the Blackwell-
Rao estimator for obtaining the likelihoods and the
best-fit power spectrum. We also reviewed a new
way of estimating noise levels in CMB maps, as pre-
sented in Groeneboom et.al. (2009a). The software pack-
age SLAVE will hopefully be released when it is com-
pleted during 2009, and will run on all operating sys-
tems supporting the GNU C++ compiler. Please see
http://www.irio.co.uk for release details and informa-
tion.
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Quantum gravity effects are expected to modify the primordial density fluctuations produced during
inflation and leave their imprint on the cosmic microwave background observed today. We present a new
analysis discussing whether these effects are detectable, considering both currently available data and
simulated results from an optimal CMB experiment. We find that the WMAP (Wilkinson Microwave
Anisotropy Probe) data show no evidence for the particular signature considered in this work but give an
upper bound on the parameters of the model. However, a hypothetical experiment shows that with proper
data, the trans-Planckian effects should be detectable through alternate sampling methods. This fuzzy
conclusion is a result of the nature of the oscillations, since they give rise to a likelihood hypersurface
riddled with local maxima. A simple Bayesian analysis shows no significant evidence for the simulated
data to prefer a trans-Planckian model. Conventional Markov chain Monte Carlo (MCMC) methods are
not suitable for exploring this complicated landscape, but alternative methods are required to solve the
problem. This, however, requires extremely high-precision data.

DOI: 10.1103/PhysRevD.77.043522 PACS numbers: 98.70.Vc, 98.80.Cq

I. INTRODUCTION

Quantum fluctuations in the scalar field responsible for
driving inflation can give rise to a power spectrum of
primordial density perturbations consistent with what is
required to seed the large-scale structure (LSS) and the
temperature anisotropies in the cosmic microwave back-
ground (CMB) radiation. This fact is probably one of the
main reasons for inflation having become a part of the
concordance model of cosmology today. The quantum
fluctuations are imprinted during the early inflationary
epoch and become classical fluctuations in the gravita-
tional potential as the fluctuations leave the causal horizon.
The standard way of calculating the power spectrum of the
density fluctuations make use of the fact that space-time
becomes Minkowskian in the distant past. However, it has
been argued [1–9] that since a given length scale observ-
able in the Universe today shrinks and becomes smaller
than the Planck length if followed sufficiently far back in
time, effects of quantum gravity will at some point play a
role in setting up the perturbations, and may potentially
leave an observable signature. The primordial density fluc-
tuations in the early universe may have small oscillations
superimposed as a result of quantum gravitational effects.
These effects are due to nonnegligible curvature imposed
by high energy densities in de Sitter space during the early
stages of inflation. Several papers have suggested a generic
shape of these effects [3,4,9] in the form of small oscil-
lations superimposed on the standard, nearly scale-
invariant primordial power spectrum of density fluctua-
tions. A crucial questions is, of course, whether such a
signature is observable in the Universe today. This question
has been investigated in several papers [3–8,10]. The con-

clusion in [10] was pessimistic: the so-called trans-
Planckian effects were found to be unobservable in prac-
tice. However, this conclusion has been called into ques-
tion in [8]. One of the problems pointed out in that work is
that the oscillations require more numerical accuracy than
what is commonly employed in codes like CMBFAST [11]
and CAMB [12].

In this paper, we revisit the question of the observability
of trans-Planckian effects in the CMB, using a more accu-
rate numerical treatment than in [10]. Both present data
and a hypothetical optimal CMB experiment are consid-
ered. Furthermore, we mention alternative sampling algo-
rithms to overcome the numerical problems encountered in
exploring what turns out to be a particularly nasty like-
lihood hypersurface. Section II gives a brief description of
the particular model we consider and the data sets we use.
In Sec. III we discuss some technical details in the numeri-
cal computations undertaken. Section IV then contains
results obtained with currently available data sets, and in
Sec. V we investigate the possibilities with an ideal CMB
data set. The exact likelihood function is described in
Sec. VI, while a Bayesian evidence analysis is performed
in Sec. VII. A discussion of the results and a suggestion for
an improved approach to the search for trans-Planckian
effects can be found in Sec. VIII, and we conclude in
Sec. IX.

II. BACKGROUND

Neglecting the perturbations in the metric during infla-
tion, it is viable to assume that the inflaton scalar field can
be expressed as

 ��x; t� � �0�t�|�{z�}
classical evolution

� ���x; t�|����{z����}
fluctuations

: (1)

The fluctuations in a scalar field �� in a Friedmann-
*nicolaag@astro.uio.no
†oystein.elgaroy@astro.uio.no
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Lemaı̂tre-Robertson-Walker background satisfy the equa-
tion of motion:

 

���� 3H _��� 1

a
�r2����m2�� � 0; (2)

where the dot denotes the derivative with respect to time
and m2 / d2V=d�2, where V��� is the inflaton potential.
Performing a Fourier expansion of the fluctuations,

 ���x; t� � 1����
N

p X
k

uk�t�eikx; (3)

where N is a normalization constant, Eq. (2) becomes

 �u k � 3H _uk �
�
k2

a2
�m2

�
uk � 0: (4)

Assuming de Sitter space, this equation can be rewritten
using a change of variable (uk � ’k=a) and switching to
conformal time (d� � dt=a). This removes the friction
term, and the final equation of motion becomes

 ’00
k �

�
k2 � 2

�2

�
’k � 0; (5)

where 0 denotes derivative with respect to conformal time
�. A detailed derivation of this result can be obtained in
[13]. The general solution for ’k is

 ’k � Ak�����
2k

p e�ik�
�
1� i

k�

�
� Bk�����

2k
p eik�

�
1� i

k�

�
; (6)

where Ak and Bk are Bogoliubov coefficients satisfying
jAkj2 � jBkj2 � 1, � is the conformal time, and k is the
wave mode. The usual choice of vacuum is the Bunch-
Davies vacuum, which corresponds to Ak � 1 and Bk � 0.
Space-time becomes Minkowskian in the infinite past
(� ! �1), where it is feasible to impose initial conditions
on the field equations.

In [4], different possibilities for suitable vacua are dis-
cussed before focusing on a specific choice, the adiabatic
vacuum, for which ak��0�j0; �0i � 0. This vacuum (for a
given �0) is a typical representative of vacua, and corre-
sponds to a minimum uncertainty between field and its
conjugate momentum [14]. When imposing initial condi-
tions, Bogoliubov coefficients are constrained by the rela-
tion [4]

 Bk � ie�2ik�0

2k�0 � i
Ak: (7)

Note that the Bunch-Davies vacuum is restored in the
infinite past: When �0 ! �1, Ak � 1 and Bk � 0. A
discussion of the implications of the choice of vacuum
can be found in [15,16].

When choosing this zeroth order adiabatic vacuum [3],
the primordial curvature spectrum can be expressed as [4]

 P�k� �
�
H
_�

�
2
�
H
2�

�
2
�
1�H

�
sin

�
2�

H

��
; (8)

where � is the (Planck) energy cutoff scale and H the
Hubble parameter. Note that the size of the corrections is
linear [17] in H=�. In [18], it is argued that Eq. (8)
represents a generic effect, regardless of the details in the
(undetermined) trans-Planckian physics. In [4], Eq. (8) is
further parametrized as

 P��; �; k� � P0�k�
�
1� �

�
k
kn

���
sin

�
2

�

�
k
kn

�
�
��

(9)

with variables explained in Table I. Notice how the stan-
dard inflationary power spectrum P0 is restored as the
cutoff � / 1

� ! 0. It is also interesting to note that for
low cutoff values � / 1

� ! 1, the amplitude of the modu-
lation converges to 2 [as limx!1x sin�2=x� � 2]. The am-
plitude of the oscillations never reaches values greater than
2, and only severely impacts P0 for large values of �.
Physically, if the cutoff � / 1

� was enforced at low values
(large �), it should easily be detectable in the cosmic
microwave background, as will be presented in the follow-
ing section. This is, however, not the case, and we know
that the trans-Planckian physics leave imprints at � � 1,
corresponding to a cutoff at high energies. The amplitude
of the oscillations is therefore expected to be very small.

When evolving the modulated primordial power spec-
trum through CAMB, the trans-Planckian imprints for
varying � in the full power spectrum can be seen in

TABLE I. Explaining Eq. (9).

Parameter Value Description

� � � 1 The slow roll parameter
� �=Mpl The trans-Planckian scale

Mpl 1=
����������
8�G

p
The reduced Planck mass

� 4 	 10�4
��
�

p
� A parametrization of H=�

kn kn The largest measurable scale
P0�k� / kns�1 The standard power spectrum
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FIG. 1 (color online). The full power spectrum C‘ for varying
�.
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Fig. 1. The oscillations singled out for varying � are
presented in Fig. 2.

A. A brief summary of recent results

Reference [3] concludes that effects of trans-Planckian
physics are possibly within the reach of cosmological
observations. Equation (9) describes a a generic expression
for how trans-Planckian effects would modify the primor-
dial power spectrum. As seen in the previous section, these
oscillations are caused by a nontrivial vacuum for the
inflaton field [3,4]. As the oscillations are expected to
contribute to the energy density, this could change the
way the Universe expands, and in a worst-case scenario,
the inflationary phase could be destroyed. The authors of
[4] investigate this possibility and conclude that the back-
reaction is under control and fully consistent with inflation,
with a slow roll found to be completely dominated by the
vacuum energy given the parameters suggested in [6].

1. WMAP data and trans-Planckian effects

A previous data analysis [19] concluded that no signifi-
cant signals from trans-Planckian effects are visible in the
CMB. Another analysis [6] claimed that there are some
weak hints in the current data, and these indications have
become slightly stronger with the WMAP3 (Wilkinson
Microwave Anisotropy Probe three-year) data compared
to earlier claims by the same authors [5–8]. The parame-
ters implied by the data suggests oscillations in amplitude
that are periodic in the logarithm of the scale of the CMB
fluctuations, just as predicted from trans-Planckian
physics.

In [5], the authors discuss the so-called cosmic variance
outliers, i.e. points which lie outside the 1	 cosmic vari-
ance error. These outliers are considered interesting as the
probability of their presence is very small [20]. The authors
mention that it has been envisaged that the outliers could
be a signature of new physics, even though the cosmic

variance could be responsible for their presence. The con-
clusion of [5] is that there exists statistical justification for
a presence of oscillations in the power spectrum. It should,
however, be noted that the authors of [5] treat the ampli-
tude of the oscillations as a free parameter, which ensures
the fitting of the cosmic variance outliers with the trans-
Planckian oscillations.

Another paper [10] was less optimistic and concluded
that it is unlikely that a trans-Planckian signature of this
type can be detected in CMB and large-scale structure data.
However, [10] left some technical issues open, and we find
it worthwhile to revisit this problem. We show that the
current WMAP3 data gives weak constraints on the pa-
rameters of the trans-Planckian model using conventional
Markov chain Monte Carlo (MCMC) methods.

2. Simulated data and trans-Planckian effects

The conclusion of [10] was that CMB and LSS data are
in principle sensitive to trans-Planckian modulations in the
primordial power spectrum, but that is practically impos-
sible to make a positive detection even in future high-
precision data. This has to do with the nature of the
oscillations, as the value of the likelihood function is
extremely sensitive to � and �. But what ‘‘extremely
sensitive’’ means was not explained in [10]. We will
show explicit examples of how this sensitive likelihood
function contemplates trouble, and why this renders the
underlying MCMC method in CosmoMC of little use in
estimating the trans-Planckian parameters.

III. NUMERICAL DETAILS

CAMB [12] was modified to include the primordial os-
cillations described in Eq. (9), adding the parameters � and
�. Based on a power spectrum generated using the modified
version of CAMB, a TT data set was simulated by drawing
from a 
2 distribution with 2‘� 1 degrees of freedom. The
data set and model are depicted in Fig. 3, and the choice of
values for � � 0:0004 and � � 0:01 are motivated by the
Horava-Witten model [21] of trans-Planckian physics [4].
In this model, unification occurs at the scale where a fifth
dimension becomes visible [17], resulting in quite opti-
mistic estimates of the energy scale where quantum gravity
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effects are manifested. However, the oscillations for this
low value of � corresponds to very small superimposed
oscillations in the primordial power spectrum, as seen from
Figs. 1 and 2. The remaining cosmological parameters used
for creating the data set (e.g. �b; �; ns) were chosen as
�CDM best-fit values. We continued by creating a simu-
lated TE, EE, and BB data set using the same methods
described here.

The MCMC software package CosmoMC [22] was al-
tered to include the parameters � and �. Based on the
likelihood for ideal noiseless simulated data described in
[23], the WMAP-likelihood code of CosmoMC was ad-
justed to utilize the ideal data instead of the WMAP three-
year data. The TT-only likelihood function is given by

 � 2 logL � X
‘

�
2‘� 1

��
ln
�
C‘

Ĉ‘

�
� Ĉ‘

C‘
� 1

�
; (10)

where C‘ are the theoretical TT power spectra and Ĉ‘ TT
data sets. The same method for creating and using ideal
data with CosmoMC was employed in [24]. The errors in
this ideal data set are only limited by cosmic variance, so
no experiment can give any better estimate of the power
spectrum. Thus, if trans-Planckian effects are not detect-
able in the simulated data, they cannot be detectable with
any future high-precision data. We continued by employ-
ing the full simulated TT, TE, EE, and BB data set using
the likelihood presented in [25]:

 

�2 lnL � X
‘

�2‘� 1�
�
ln
�
CBB
‘

ĈBB
‘

�
� ln

�
CTT
‘ CEE

‘ � �CTE
‘ �2

ĈTT
‘ ĈEE

‘ � �ĈTE
‘ �2

�

(11)

 � ĈTT
‘ CEE

‘ � CTT
‘ ĈEE

‘ � 2CTE
‘ ĈTE

‘

CTT
‘ CEE

‘ � �CTE
‘ �2 (12)

 � ĈBB
‘

CBB
‘

� 3
�
: (13)

Increasing accuracy

Previous papers [7,8] have pointed out that it is neces-
sary to increase the accuracy of the calculated power
spectrum used for estimating the trans-Planckian parame-
ters. The results in [10] might therefore have been partly
due to the inaccuracy in the version of CMBFAST [11]
used in this work. The accuracy of the numerical calcu-
lations was boosted, which increased run time tenfold. The
results can be seen in Fig. 4. However, the accuracy boost-
ing had little or no effect on the WMAP parameter estima-
tion, as will be explained in the following section.

IV. RESULTS FROM WMAP3 DATA

For small values of the trans-Planckian values, the con-
straints on both � and � from the WMAP3 data turned out
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FIG. 4 (color online). The ratio of modulated power spectrum
with low and high accuracy, all three parameters boosted.
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FIG. 5 (color online). Marginalized posterior for � over a
small interval surrounding the original input parameter � �
0:0004 from the Horava-Witten model (vertical line).
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FIG. 6 (color online). Marginalized posterior of � over a larger
interval. The vertical line corresponds to � � 0:0004 from the
Horava-Witten model. Notice how it is possible to estimate an
upper bound: �max 
 0:02. Above this threshold, there are occa-
sional ‘‘bumps’’ in the posterior where the oscillation reaches
zero [ sinx � 0, see Eq. (9)].
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rather poor when running CosmoMC with all standard
cosmological parameters free. This can be seen in Figs. 5
and 7, consistent with the results in [10]. For larger values
of the trans-Planckian parameter �, the increasing ampli-
tude of the primordial power spectrum effectively con-
strains � to the interval [0, 0.02] (recall from Sec. II that
for large �, the amplitude converges to 2). This can be seen
in Fig. 6. This corresponds to a cutoff �
 0:002Mpl 

1016GeV. Everything below this scale (� > 0:02) should
therefore be ruled out by WMAP3 data.

For physically reasonable values of � and � ( � 1), the
amplitude of the modulations are well below 1% of the
total power spectrum. Also, the cosmic variance and the
errors in the WMAP data are several orders of magnitude
greater than the amplitude of the modulations in the power
spectrum, as can be seen from Fig. 8. This explains why

any detection of trans-Planckian effects in the WMAP data
fails for low values of �.

V. RESULTS FROM IDEAL CMB DATA

The WMAP3 data in CosmoMC was replaced by the
optimal data set created from the power spectrum based on
the Horava-Witten model. The ideal TT data are shown in
Fig. 3.

A. Simulated TT data

When performing a parameter estimation of the trans-
Planckian parameters � and � using the TT-data setup, the
Monte Carlo Markov chain method failed to converge to a
stationary distribution. The resulting likelihoods for vari-
ous � and � are presented in Figs. 9 and 10, respectively.
Notice how different initial conditions and varying step
length affect the end result: different initial parameters for
the same parameter results in different distributions. This
suggests that the likelihood function which decides the
path of the random walkers traversing the cosmological
parameter space has some troublesome properties.

B. Simulated TT, TE, EE, and BB data

The marginalized posteriors can be seen in Fig. 11.
Notice how � is restored due to the inclusion of simulated
TE and EE data. The trans-Planckian parameters now
reflect the ruggedness of the likelihood function, and traces
can also be seen in ns and As. As in the TT case, the
original trans-Planckian input parameters are still not pos-
sible to pin down.

Figures 11 and 12 show how the MCMC process fails in
converging, as the marginalized posterior show random
walkers ‘‘trapped’’ in local minima.

VI. THE EXACT LIKELIHOOD FUNCTION

In order to explain why the parameter estimation fails,
we investigated the likelihood function in the case of
noiseless data and different power spectra for fixed cos-
mological parameters except the trans-Planckian � and �.
This was done by grid integration, and no MCMC sam-
pling was involved. The resulting likelihood surfaces for
continuous variations in � and � are seen in Figs. 13 and
15, respectively. A figure of the exact two-dimensional
likelihood surface for both � and � is presented in
Fig. 16. Figures 13–16 are � logL plots, so the best-fit
value corresponds with the global minimum. The likeli-
hood surfaces are riddled with local minima, effectively
rendering the usual MCMC method useless: the random
walkers become trapped in the local holes and will have
problems converging to the correct stationary distribution.
Take especially note of the two-dimensional parameter
space presented in Fig. 16, a landscape reminiscent of
that of an egg container.
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FIG. 7 (color online). Marginalized posterior for �. The verti-
cal line corresponds to � � 0:01 from the Horava-Witten model.
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with mean value at 0:515 	 10�3. Bottom left: Marginalized posterior for � with no peak, almost uniform distribution. Bottom right:
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The shape of the exact likelihood is a result of the nature
of the oscillations: Eq. (9) gives rise to a particularly nasty
behavior of the oscillations [26]. The problem with the
likelihood function is not easily solved. In principle, one

could perform a smoothing of the likelihood, something
which works well in a low-dimensional parameter space,
but is hopelessly inefficient for a realistic number of
parameters.
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FIG. 11. Marginalized posteriors for the full TT, TE, EE, and BB likelihood analysis using Eq. (11).
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Decoupling the amplitude

The amplitude and the frequency of the trans-Planckian
oscillations are linked in the model we have considered so
far. However, it is certainly possible that they might vary
independently, and in [5–8], the authors operate with the
amplitude of the trans-Planckian oscillations as a free
amplitude. We repeated our analysis with frequency and
amplitude decoupled. From Figs. 17 and 18 it should be

clear that freeing the amplitude does not really add any
significance to the likelihood surface: the likelihood still
gives the correct preferred amplitude.

VII. BAYESIAN EVIDENCE

From the logarithmic likelihood in Figs. 13 and 15, it is
obvious that it is impossible to extract the values of the
parameters of our model from the simulated data.
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FIG. 12 (color online). Marginalized posteriors (wide distributions) with smaller bins than in Fig. 11 for the full TT, TE, EE, and BB
likelihood analysis using Eq. (11). The likelihoods correspond with the narrow distributions. Notice how the posteriors completely
failed to converge to a distribution.
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However, one might still ask the question of whether the
data prefer the trans-Planckian model to the standard
power-law primordial power spectrum. In a Bayesian
framework this question is answered by calculating the
evidence ratio of the two models, see [27] for a nice
introduction. Here we fix � � 0:01 and use the evidence
ratio to see whether the data prefer the introduction of the
additional parameter �. We assume that the trans-
Planckian parameter � is not degenerate with any of the
cosmological parameters, designated by the parameter
vector �. This might seem like a strong assumption, but
we have checked that it is reasonable for the model and the
parameters we consider in this paper. Also, the effects of
primordial oscillations have been investigated in [28],

concluding that degeneracies of oscillations with standard
cosmological parameters are virtually nonexistent.

Let � denote the nontrans-Planckian cosmological pa-
rameters and �̂ the best-fit �CDM parameters. The loga-
rithmic evidence is given by

 � lnE � lnE� lnE0; (14)

where E0 is the evidence of the nontrans-Planckian model.
Then

 � lnE � hLi���;�� � hLi���� (15)

 � hL��; ��i���� �L��̂�; (16)

where ���; �� is the prior over ��; �� and ���� is the prior
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FIG. 13 (color online). � logL as a function of � for simulated
trans-Planckian data.
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FIG. 14 (color online). � logL as a function of � for simulated
nontrans-Planckian data. Notice how the nontrans-Planckian
data is preferred to the simulated trans-Planckian data set.
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FIG. 16 (color online). � logL for varying both � and �. The
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� � 0:01 for the simulated data set. Notice how a random walker
would be trapped in any of the other local minima.
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over �. Thus, hLiX denotes the mean likelihood over the
prior space X. The likelihood can be found in Fig. 19,
which is the exponential of the negative values in Fig. 13.
We choose the prior to be � 2 �0; 0:005�. This results in
� lnE 
 �1:5 which shows that the trans-Planckian model
is slightly not preferred. Hence even perfect CMB-
measurements over the whole sky does not give any sig-
nificant evidence for trans-Planckian effects. When con-
straining the prior to reside in � 2 �0; 0:0005�, then
� lnE 
 0:15 and the trans-Planckian model is more or
less equally preferable to the nontrans-Planckian model.
This is hardly surprising, as a continuous constraint of the
prior Pr��� � lim�!0�0; �� results in � lnE � lnE0 �
lnE0 � 0, which corresponds with the standard nontrans-
Planckian model. The evidence never grows larger than

0:15 for any prior constraint on �.

VIII. ALTERNATE MULTILEVEL SAMPLING

There exists a few multilevel sampling methods besides
the standard MCMC/Metropolis-Hastings algorithm that
can tame the ruffled likelihood through a series of optimi-
zations. Reference [29] contains a detailed introduction to

these methods, most notably simulated annealing, um-
brella sampling, and the simulated tempering method.
We proceed by a rough discussion on how some of these
alternate sampling methods work when investigating the
one-dimensional likelihood presented in Fig. 13.

A. Metropolis-Hastings method, 1D

Figure 20 shows the posterior of 10 000 walkers after

22 000 steps each, using the Metropolis-Hastings algo-
rithm. The likelihood is shown in Fig. 13. In theory, the
walkers should converge to a stationary distribution with
the tallest peak located at � � 0:0004, but due to the
ruffled likelihood this will take forever. The initial values
for the walkers was here �0 � 0:0015. This reflects what
we have seen in Figs. 9–12: that the complicated likelihood
surface prevents the posterior to converge to the correct
shape.

B. Modified Metropolis-Hastings method, 1D

Figure 21 shows the posterior of 10 000 walkers after

20 000 steps each, using the Metropolis-Hastings algo-
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FIG. 21 (color online). The posterior of 10 000 MCMC
walkers evaluated after 22 000 steps each in one dimension,
with initial conditions �0 � 0:0015. The posterior shows a clear
contribution around the correct value of � � 0:0004.
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FIG. 19 (color online). Likelihood L��� used in calculating
the significant evidence.
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FIG. 18 (color online). � log likelihood for varying � and
amplitude (different viewing angle).
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FIG. 20 (color online). The posterior of 10 000 MCMC
walkers evaluated after 22 000 steps each in one dimension,
with initial conditions �0 � 0:0015. None of the walkers reached
the correct value of � � 0:0004.
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rithm. In addition, for each step there is a 0.01% chance for
a given walker to perform a ‘‘large’’ jump to a new,
(uniformly) random location. The walkers will therefore
tend to accumulate at the correct location (where the � log
likelihood is lowest, � � 0:0004). This is a slow method
and needs a fair amount of steps to give results. It is also
not especially ‘‘robust,’’ as the accumulation of walkers at
the lowest point is dependent on fine-tuning the large-step
rate (here, 0.01%).

C. Simulated annealing, 1D

Figure 22 shows the result of 10 000 walkers after

6000 steps each, using the simulated annealing algo-
rithm. A description of the simulated annealing (SA)
method can be found in [29]. As in the previous examples,
10 000 random walkers were initialized at �0 � 0:0015.
The distribution spread out evenly as the SA temperature T
was high and started converging to different minima as T
was lowered. As T ! 0, a good portion of walkers ended
up at � � 0:0004. This shows that the SA method can be
successfully used to determine the correct minima for this
type of likelihood landscape.

However, the implementation and investigating of these
alternative methods in CosmoMC is a major undertaking
which we hope to pursue in future work.

IX. CONCLUSION

We have shown that standard MCMC methods are not
suitable for detecting trans-Planckian oscillations in the
CMB. The 3-year WMAP3 data alone gives weak upper
constraints on the trans-Planckian parameters. With the

simulated noiseless data, the results are more ambiguous.
In theory, the estimation of the trans-Planckian parameters
should be possible, but the messy likelihood function
renders conventional MCMC methods of little use. This
is not due to the amplitude of the superimposed oscillations
in the power spectrum alone, but rather reflects the chaotic
behavior of the oscillations for varying trans-Planckian
parameters � and �. Small variations in the parameter
space thus correspond to large variations in the likelihood
function, as presented in Figs. 13 and 15. As in [10], we
conclude that CMB data are highly sensitive to these
modulations in the primordial power spectrum, but it is
virtually impossible to perform a parameter estimation
from WMAP3 data or high-precision simulated data using
conventional MCMC methods. We have also shown, via
Bayesian analysis, that even a high-precision measurement
of the full CMB sky does not give any significant evidence
for trans-Planckian effects. It should, however, be possible
to implement the SA method in CosmoMC when using
simulated high-precision data in order to detect the trans-
Planckian parameters.

We have in this paper shown that it is very unlikely that
CMB data could support the establishment of trans-
Planckian effects, even for models where quantum gravity
is relevant on relatively low energy scales, like in the
Horava-Witten model. There are several reasons for this
lamentable conclusion:

(i) A low quantum gravity scale, for example, the value
� � 0:0004 chosen in our simulations, gives a very
low amplitude of the oscillations in the primordial
power spectrum. Hence, cosmic variance diffuses the
(assumed noiseless) signal.

(ii) Evidence can maximally rise above 0.15, showing
that the trans-Planckian model is only very weakly
preferred when assuming a Horava-Witten universe.

(iii) Even large (and unphysical) values of � will result
in good fits for singular points due to the behavior
of the oscillations (they periodically reach zero
when sinx � 0).

(iv) The conventional MCMC methods in CosmoMC
fails, and we have no current computational meth-
ods implemented for solving the problem of trans-
versing the extremely complicated likelihood
surface.
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