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Chapter 1

Introduction

Simulations of the solar atmosphere began in the sixties when decent com-
puting power started to become available. This enabled for complex, but
time independent, physics to be addressed. The capacity of computers has
since then grown, and solar simulations have become both time dependent
and multi-dimensional. The codes of today provide valuable tools in the
interpretation of modern observations.

Still, however, even the most advanced codes have to utilize simplifying
assumptions and approximations in order for them to execute on reasonable
time scales. The radiative transport of energy is especially difficult, making
it the most relevant ingredient to simplify in a code. The equation of state is
affected by this since occupation numbers (atomic level population numbers)
depend on the radiation field. The proper treatment of the occupation
numbers in a dynamic atmosphere includes keeping track of changes due to
both advection and atomic transitions. This is very demanding in terms of
computing power and computing time due to the non-local nature of the
radiation field. It is common to assume local thermodynamic equilibrium
(LTE), making the occupation numbers available through the well known
equilibrium relations.

The instantaneous equilibration of thermodynamic quantities is not a very
realistic assumption, especially in the chromosphere. Carlsson & Stein
(2002) showed that the equilibration time for hydrogen ionization and re-
combination under chromospheric conditions range from 103-105 s except
in shocks where it goes down due to an increase in temperature and mass
density. They showed that this leads to a higher hydrogen ionization degree
between shocks than predicted by LTE. As hydrogen is the most abundant
element in stellar material, this greatly affects the electron density. The
work of Carlsson & Stein (2002) was based on one-dimensional simulations
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2 CHAPTER 1. INTRODUCTION

where the radiation field was treated in detail. Leenaarts & Wedemeyer-
Böhm (2006) solved the hydrogen rate equations within the framework of
the CO5BOLD hydrodynamics code (Wedemeyer et al., 2004). This was
made possible by an approximate treatment of the radiation field, devel-
oped by Sollum (1999). In Leenaarts & Wedemeyer-Böhm (2006) the state
of the hydrogen did not couple back to the equation of state to partake
in the determination of the hydrodynamics, but the results confirmed the
general picture found in Carlsson & Stein (2002), showing similar electron
densities. Leenaarts et al. (2007) studied the time dependent equation of
state within the Oslo Stagger Code (Hansteen et al., 2007). They solved the
rate equations for hydrogen in two dimensions with the same approximation
as the one used in the 2006 paper, but also coupled this to the internal en-
ergy density of the system. They found that temperature fluctuations in the
chromosphere are high and electron density fluctuations are low, due to a
much more constant hydrogen ionization degree than what is given by LTE.

The OSC has in the last few years been rewritten. The new version (Bifrost)
is a fully MPI parallel code that can run on large clusters with a distributed
memory architecture (Gudiksen et al., 2010), thus enabling high resolution
3d models. Leenaarts’ realistic equation of state was also transferred to the
new code but was never properly debugged and tested and was as such not
fully operational.

The focus of this work has been to bring Leenaarts’ equation of state into a
condition fit for production runs. The chapters 2 and 3 cover the underlying
theory of magnetohydrodynamics and radiative transfer, chapter 4 outlines
the strategy of solving the radiation magnetohydrodynamics equations nu-
merically, in chapter 5 the hydrogen’s special role is covered, in chapter 6
the code Bifrost is covered with special emphasis on Leenaarts’ equation of
state, in chapter 7 results of a three-dimensional simulation is presented,
and finally in chapter 8 a conclusion and outlook is given.



Part I

Physics of the solar
atmosphere
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Chapter 2

Magnetohydrodynamics

When studying many-particle dynamics, if the mean free path of the parti-
cles is much shorter than the typical length scale of the phenomena under
consideration, a continuum or fluid approach is justified. The mean free
path is a measure of how far a particle is able to move between two succes-
sive interactions with neighbouring particles in which momentum is being
transferred.

In this study of the solar atmosphere, the typical length scale is of the order
of tens of kilometers. The mean free path in the atmosphere ranges from
a few centimeters in the photosphere to a few kilometers in the corona, so
the condition for a fluid approach is met, at least in the photosphere and
chromosphere.

In section 2.1 a derivation of the equations governing a non-conducting fluid
flow is given. From section 2.2 and out, the equations are generalized for a
conducting fluid.

2.1 Hydrodynamics

Consider a volume, V, with a surface S sitting fixed in a fluid flow u (figure
2.1). Let Q be a conserved quantity with density q = ∂Q/∂V . The amount
of Q contained within the volume V will change due to fluid flow transporta-
tion through the volume walls as well as due to quantity-dependent sources
or sinks.

5



6 CHAPTER 2. MAGNETOHYDRODYNAMICS

V

z
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y
S

u

n

Figure 2.1: Fixed volume V with boundary surface S and surface element
dA = n dA, where n, is the surface unit normal, placed in a fluid flow u.

2.1.1 Conservation of mass

Mass is a conserved quantity and its density is ρ. Consider the mass con-
tained in the volume V. It may only change due to the fluid flow transporta-
tion through the surface boundary,

d

dt

∫

V
ρ dV = −

∮

S
ρuknk dA. (2.1)

By the use of Gauss’s integral theorem the surface integral may be trans-
formed into a volume integral and one obtains the conservation of mass
equation in differential form,

∂ρ

∂t
= −

∂

∂xk
(ρuk) . (2.2)

2.1.2 Conservation of momentum

Newton’s second law states that a particle’s change of momentum will be
due to forces acting on it,

∑

Fi = dpi/dt. The total momentum contained
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in the volume V will change due to the fluid flow transportation through the
surface boundary and due to the various forces acting on it.

d

dt

∫

V
ρui dV = −

∮

S
(ρui)uknk dA+

∮

S
Piknk dA+

∫

V
ρgi dV, (2.3)

where Pik is the force per unit area acting on the inside from the outside
of the volume in the i-th direction across a face whose normal is oriented
in the k-th direction and gi is the i-th component of the gravitation. By
transforming all surface integrals into volume integrals, the differential form
of the equation is found,

∂

∂t
(ρui) = −

∂

∂xk
(ρuiuk) +

∂

∂xk
(Pik) + ρgi. (2.4)

Pij - pressure and viscous stress

Pij can be split into two parts, Pij = −pδij + πij, where p is the thermo-
dynamic pressure, δij is the Kronecker delta function and πij is the viscous
stress tensor. The viscous stress tensor is usually associated with the velocity
gradient, see e.g. Mihalas & Mihalas (1984).

2.1.3 Conservation of energy

Energy is never destroyed, it only changes from one form to another. This
means that,

d

dt

∫

V
E dV =

−

∮

S
Euknk dS +

∮

S
uiPiknkdA+

∮

S
F cknkdA+

∮

S
F rknkdA, (2.5)

where E is the energy density of the fluid, both kinetic and internal, E =
ρukuk/2+ρǫ. The first term on the right hand side represents the energy be-
ing transported through the surface boundary by fluid flow, the second term
represents the viscous work (friction) and the work done on the surround-
ings due to expansion or contraction of the fluid, the third term represents
the heat conduction and the fourth term represents the transport of energy
through radiation. The energy flux due to heat conduction is proportional
to the temperature gradient, Fc = −K∇T , where K is a constant (F ck are
the components of Fc). This is known as Fourier’s law. Radiative transfer
is covered in chapter 3.
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By the usual integral transformation one obtains the differential form of the
energy equation,

∂E

∂t
= −

∂

∂xk
(Euk) +

∂

∂xk
(uiPik) +

∂

∂xk
(F ck + F rk ). (2.6)

2.2 Conducting fluid

If the temperature reaches certain heights, the particles making up the fluid
will become charged due to ionization, and it will become a conducting fluid
or a plasma. In this situation electromagnetic forces come into play, altering
the equations of hydrodynamics. There will be an extra force term in the
momentum equation (2.3) corresponding to the Lorentz force and an extra
heating term in the energy equation (2.5) corresponding to ohmic heating.

2.2.1 Lorentz force term in momentum equation

In a multi-component fluid the electron density ne is given by

ne =
∑

k,j

jnj,k, (2.7)

where ni,j is the number density of species i in ionization stage j (charge
neutrality is assumed). The m-th component of the Lorentz force acting on
the volume V (figure 2.1) where E and B are the electric and magnetic field,
respectively, then takes the form

Lm =

∫

V
e

(

(
∑

k,j

(jnj,k(Em + (uj,k × B)m)) − ne(Em + (ue ×B)m)

)

dV

=

∫

V
e

{

(
∑

k,j

jnj,k − ne)Em +

(

(
∑

k,j

jnj,kuj,k − neue) × B

)

m

}

dV

=

∫

V
((jion + je) × B)m dV

=

∫

V
(j × B)m dV, (2.8)

where e is the electron charge, uj,k is the velocity of the k-th species in the
j-th stage of ionization, ue is the velocity of the electrons, jion is the ion
current density, je is the electron current density and finally j = jion + je is
the total current density. The term associated with the electric field falls
out due to the assumption of charge neutrality.
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2.2.2 Current density

Define

nion =
∑

k,j

nj,k, (2.9)

Z =

∑

k,j jnj,k

nion
and (2.10)

uion =

∑

k,j jnj,kuj,k

Znion
, (2.11)

where nion is the total ion density, Z is the mean ionization stage and uion
is the mean ion velocity. With these definitions the current density takes
the form

j = e(nionZuion − neue)

= −ene(ue − uion)

= −eneu
′
e, (2.12)

where u′
e = ue − uion is the electron velocity in the rest frame of the ions

and the charge neutrality condition (eq. 2.7) was used to eliminate the ion
charge density. By identifying this as a Galilean transformation to the rest
frame of the ions, it is clear that the electron current density in the ion rest
frame is the same as the current density in the laboratory frame, j′e = j.

The electron current density in the ion rest frame, j′e, can, according to
Ohm’s law, be expressed

j′e = σE′, (2.13)

where σ is the conductivity. In the absence of strong spatial gradients in the
magnetic field strength, the conductivity can be expressed as σ = nee

2/meνc,
where me is the electron mass and νc is the mean collisional frequency as-
sociated with momentum transfer between the electrons and ions (see Shu,
1992, page 294).

2.2.3 Ohmic heating term in energy equation

The electron inertia is very small compared to the general ion inertia, and
it will thus carry the vast majority of current in the fluid. The large inertia
of the ions make them hard to move and they are therefore approximated
to be in sync with the fluid flow, uion = u.
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Consider the work, dW = F·dx, done on the electrons by the electromagnetic
force in the ion rest frame,

dW = −ene(E
′ + u′

e × B′) · u′
e dV dt

= j′e ·E
′dV dt. (2.14)

By combining this result with Ohm’s law (eq. 2.13) and the fact that the
electron current density in the ion rest frame equals the current density in
the laboratory frame, the work done by the electromagnetic forces can be
expressed as

dW =
j2

σ
dV dt, (2.15)

and hence the ohmic heating term to appear in the energy equation 2.5 is

∫

V

j2

σ
dV. (2.16)

2.2.4 Induction equation

What remains now is to determine the evolution of the magnetic field, B.
Maxwell’s equations are given by

∇ ·E =
ρe
ǫ0
, (2.17)

∇× E = −
∂B

∂t
, (2.18)

∇ · B = 0 and (2.19)

∇× B = µ0j + µoǫ0
∂E

∂t
, (2.20)

where ρe is the total charge density and µ0 and ǫ0 are the permeability of free
space and permittivity of free space, respectively. The last term in equation
2.20, containing the time derivative, may in the non-relativistic case safely
be set to zero. By letting l0 and t0 represent the typical length- and timescale
of the system one finds that this term is proportional to l20/t

2
0c

2 ∼ v2/c2.

In the non-relativistic limit the electromagnetic fields transform between
reference frames,

B′ = B and (2.21)

E′ = E + u ×B. (2.22)
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Since j′e = j and uion = u, the current density is j = σE′ = σ(E + u × B).
Isolating E gives E = j/σ − u × B. Inserting this into eq. 2.18, and
eliminating j by eq. 2.20 gives

∂B

∂t
= ∇× (u× B) −∇× (η∇× B), (2.23)

where η = (σµ0)
−1 is the resistivity. This is known as the induction equa-

tion.

2.2.5 Heat conduction

The description of heat conduction changes when the material is ionized.
Fourier’s law given in section 2.1.3, Fc = K∇T , no longer holds. On a
microscopic scale the transfer of energy by conduction is due to neighbouring
particles colliding and exchanging momentum with each other. The nature
of these processes change when particles carry an electric charge, and it is
found that the energy flux in this case is

Fc = κ0T
5/2∇T, (2.24)

where κ0 is a constant. See Spitzer (1967) for further details.

2.2.6 Magnetic pressure and plasma beta

The Lorentz force in the momentum conservation equation (eq. 2.8) can be
decomposed:

L = j × B =
1

µ0
(∇× B) × B

=
1

µ0
(∇ · B) −

1

2µ0
∇B2. (2.25)

The second term can be teamed together with the pressure in the momentum
equation,

∂ρu

∂t
= −∇

(

p+
B2

2µ0

)

+ . . .

= −∇

[

B2

2µ0
(β + 1)

]

+ . . . (2.26)

where the term B2/2µ0 is commonly referred to as the magnetic pressure,
and β, known as the plasma beta parameter, is the ratio of gas pressure to
magnetic pressure.
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2.3 Summary

Stated below are the equations of hydrodynamics modified for the conduct-
ing fluid, known as the magnetohydrodynamic equations expressed in dif-
ferential vector form:

∂ρ

∂t
= −∇ · (ρu) (2.27)

∂ρu

∂t
= −∇ · (ρuu) −∇p+ ∇ · π + ρg +

1

µ0
(∇× B) × B (2.28)

∂E

∂t
= −∇ · (Eu) +

∂

∂xk
(uiPik) + ∇ · (Fc + Fr) + ηµ0j

2 (2.29)

∂B

∂t
= ∇× (u× B) −∇× (η∇×B) (2.30)

2.4 Equation of state

The above eight equations (eq. 2.27, 2.28, 2.29 and 2.30) contain ten vari-
ables: the mass density, the energy density, the three components of the
velocity, the three components of the magnetic field, the pressure and the
temperature. In order to close the system, two more relations are needed.
These are the pressure equation and the expression for the internal energy
density (ρε),

p = kT (
∑

k

nk + ne) (2.31)

ρǫ =
1

2
kT (

∑

k,j

fknj,k + 3ne)

+
∑

k

(
∑

j

(χj,knj,k +
∑

i

χi,j,kni,j,k))

+
∑

k=molecules

ξknk, (2.32)

where ni,j,k is the number density of the i-th excited state of the j-th ion-
ization stage of the k-th species, nj,k is the number density of the j-th
ionization stage of the k-th species, nk is the number density of the k-th
species, fk is the number of degrees of freedom for the k-th species, χi,j,k is
the excitation energy of the i-th excited state of the j-th stage of ionization
of the k-th species, χj,k is the energy required to ionize species k from the
(j − 1)-th to the j-th stage of ionization and finally ξk is the dissociation
energy of (molecule) species k. Energies of the different levels of excitation
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and ionization of the species are found from atomic physics and are available
in online tables such as TOP (Cunto et al., 1993) or NIST1.

In equations 2.31 and 2.32 new variables are introduced. These are ni,j,k,
nj,k, nk and ne. In order to determine them one can do one of two things:
make an assumption or treat exact. How to perform the exact treatment is
covered in chapter 3. In the next section the classic local thermodynamic
equilibrium (LTE) assumption is covered.

2.4.1 Local thermodynamic equilibrium (LTE)

A closed system of particles is said to be in thermodynamic equilibrium (TE)
if its thermodynamic variables no longer change in time. This corresponds to
a situation where the particles have exchanged information through collisions
for a time, τe, long enough to have come to an agreement on a state to
collectively occupy. τe is often referred to as the equilibration time. When in
TE, the system will be totally determined by two thermodynamic variables
and the following relations are valid:

• Maxwell’s velocity distribution for a particle species k with mass mk,

nk(v) dv = nk

(

mk

2πkT

)3/2

e−mkv
2/2kT 4πv2 dv. (2.33)

• Boltzmann’s excitation equation relating the two excitation levels ni,j,k
and nl,j,k with statistical weights gi,j,k and gl,j,k,

ni,j,k
nl,j,k

=
gi,j,k
gl,j,k

e−(χi,j,k−χl,j,k)/kT . (2.34)

• Saha’s equation

ni,j,k
n0,j+1,k

= ne
gi,j,k
g0,j+1,k

(

h2

2πmekT

)3/2

e(χj+1,k−χi,j,k)/kT . (2.35)

• A relation for the number densities of two successive stages of ioniza-
tion,

nj,k
nj+1,k

= ne
Uj,k(T )

Uj+1,k(T )

(

h2

2πmekT

)3/2

eχj+1,k/kT , (2.36)

1National Institute of Standards and Technology, http://www.nist.gov/physlab/data/.
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where Uj,k is the partition function for the j-th ionization stage of the
k-th species and is defined as

Uj,k =
∑

i

gi,j,ke
−χi,j,k/kT . (2.37)

Approximate analytical fits to the partition function of different ele-
ments, suitable for numeric work, are available in e.g. Cardona et al.
(2010).

When assuming local thermodynamic equilibrium, one is effectively assum-
ing that each point in the domain under consideration is a system of particles
in thermodynamic equilibrium. The systems have an equilibration time, τe,
which is infinitely small, i.e. they equilibrate to changes instantaneously
and ni,j,k, nj,k, nk and ne are readily available by equations 2.34 and 2.35 if
T (r) and ρ(r) are known (the mass density ρ gives the total number density
of a species k once the gas composition is known).



Chapter 3

Radiative transfer

A star emits large amounts of radiative energy, all of which has to pass
through its outer layers. The radiation is coupled to the matter and will
therefore affect the gas dynamics. To properly model this coupling, extra
terms must be added to the magneto-hydrodynamic equation set (2.27, 2.28,
2.29 and 2.30). The radiative effects that come into play are radiative pres-
sure and radiative heating and cooling. When studying solar-like stars the
radiative pressure is insignificant compared to the gas pressure and the mag-
netic pressure, hence it is left out of this text. The radiative heating and
cooling is significant and a derivation of the term appearing in the energy
equation (2.29) is given in section 3.2.

3.1 Specific intensity and the equation of transfer

The specific intensity is the primary quantity of radiative transfer. The
energy emitted as radiation through a surface element dA with unit normal
n in position r in the direction s in the frequency range (ν, ν + dν) into a
solid angle dΩ in a time interval dt is given as (see figure 3.1 for geometry)

dEν = I(r, s, ν, t) cos θ dAdν dΩ dt, (3.1)

where θ is the angle between n and s. The constant of proportionality,
I(r, s, ν, t), is defined as the specific intensity.

15
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s

n

dA

dΩ

Figure 3.1: Specific intensity

3.1.1 Obtaining the specific intensity

Extinction coefficient

An element of material with cross-section dA and length ds will remove from
a beam with specific intensity I(r, s, ν, t) propagating into a solid angle dΩ
in a time interval dt an amount of energy

δE = κ(r, s, ν, t)I(r, s, ν, t) dAds dΩ dν dt, (3.2)

where κ(r, s, ν, t) is defined as the extinction coefficient in the direction s for
frequency ν at position r at time t.

Emission coefficient

An element of material with cross-section dA and length ds will release in
direction s into a solid angle dΩ within a frequency range (ν, ν + dν) in a
time interval dt an amount of energy

δE = j(r, s, ν, t) dAds dΩ dν dt, (3.3)

where j(r, s, ν, t) is defined as the emission coefficient in position r in direc-
tion s for the frequency ν at time t.
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Equation of transfer

The change in the amount of radiative energy travelling in direction s
through a material element of cross-section dA and length ds into a solid
angle dΩ in frequency range (ν, ν + dν) in a time interval dt is

dI dAdΩ dν dt = j dAds dΩ dν dt− κI dAds dΩ dν dt, (3.4)

where argument listing has been omitted for clarity. Also the cosine factor
is not here since the beam is travelling along the normal of the cross-section
area dA. Noting that

dI =
∂I

∂t
dt+

∂I

∂s
ds

=

(

1

c

∂

∂t
+ s · ∇

)

I ds, (3.5)

where c is the speed of light, it follows that
(

1

c

∂

∂t
+ s · ∇

)

I = j − κI, (3.6)

which is formally known as the equation of transfer. Obtaining the specific
intensity requires solving it. When working with a solar-like atmosphere,
which is safely placed in the non-relativistic regime, the time dependent
part can safely be left out. The equation is then reduced to,

s · ∇τI = S − I, (3.7)

where ∇τ = ∇/κ and S is the source function defined as S = j/κ.

3.2 Radiative heating

The radiation interacts with matter, either heating it or cooling it. This gives
rise to a term in the energy equation (2.29). When the specific intensity is
known, the flux can be obtained,

Fr(r, t) =

∮

sI(r, s, t) dΩ. (3.8)

Consider again the fluid element in figure 2.1. The heating rate of the
element is

Qr =

∮

S
Fr · dA

=

∫

V
∇ · Fr dV . (3.9)
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3.3 Matter in thermodynamic equilibrium

An introduction to TE and valid relations was given in section 2.4.1. Here
a relation between the emissivity and extinction coefficients is added to the
list.

• The Kirchhoff-Planck relation,

j = κB, (3.10)

where B is the Planck function,

B(T, ν) =
2hν3

c2
1

ehν/kT − 1
, (3.11)

where h, c, k and T are Planck’s constant, the speed of light, Boltz-
mann’s constant and the temperature, respectively.

3.4 Atomic transitions

Contributions to the radiation field, both positive and negative, will be due
to interaction between photons and the particles making up the medium
they are travelling through. These particles are electrons, atoms, ions and
molecules. The interactions include exchange of momentum between elec-
trons and photons and energy transitions in the atoms releasing or removing
a photon. The atoms can absorb a photon from the radiation field and use
its energy to make a transition to a higher energy level or it can make a
transition to a lower energy level and release a photon. The latter can hap-
pen either spontaneously or by the stimulation of a photon. Transitions
involving a photon are referred to as radiative transitions. The transitions
that are due to collisions between the particles making up the medium are
referred to as collisional transitions.

3.4.1 Bound-bound radiative transitions

Einstein coefficients

The probability of a transition between two bound energy states in a quan-
tum mechanical system, such as an atom, are given by the Einstein coef-
ficients (see e.g. Griffiths, 1995) for the particular transition of the system
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under consideration. There are three different types of transitions: sponta-
neous de-excitation, radiative (induced) de-excitation and radiative excita-
tion corresponding to Einstein’s Aji, Bji and Bij , respectively.

Aji is the probability of a spontaneous de-excitation from energy level j to
the lower energy level i per unit time per atom residing in upper energy

level j. BijJ
φ
ij is the probability of a radiative excitation from energy level i

to energy level j per unit time per atom residing in the lower energy level i,

where J
φ
ij is the profile integrated mean intensity defined in equation 3.12.

BjiJ
χ
ij is the probability of a radiative or induced de-excitation from energy

level j to energy level i per unit time per atom residing in the upper energy
level j.

The profile integrated mean intensity is

J
f
ij =

∫ ∞

0
f(ν − νij)J dν

=

∫ ∞

0
f(ν − νij)

1

4π

∮

I dΩ dν, (3.12)

where f is the profile function of the transition between i and j, νij is the
photon frequency corresponding to the energy difference between the two
energy levels, Ej − Ei = hνij (h is Planck’s constant). There are three dif-
ferent profile functions: φ, χ and ψ, corresponding to absorption, stimulated
emission and spontaneous emission, respectively.

The Einstein coefficients are related, and the relations can be derived by
assuming TE. When TE holds, transitions from the lower level, i, to the
upper level, j, are expected to balance which means that

niBijJ
φ
ij = nj(Aji +BjiJ

χ
ji), (3.13)

where ni and nj are the population densities of the i and j energy level,

respectively. Also (in TE) the profile integrated mean intensity, J
f
ji, will be

equal to the Planck function (eq. 3.11). This leads to the Einstein coefficient
relations,

Aji
Bji

=
2hν3

ij

c2
(3.14)

Bij
Bji

=
gj
gi
, (3.15)

where gi and gj are the statistical weights (which the number of quantum
mechanical states with the same energy) for the i-th and j-th energy level
respectively. The TE relation, equation 2.34, is used to eliminate the oc-
cupation number ratio and exponential factors in eq. 3.15. Note that the
Einstein coefficients are quantities depending on the atom alone, hence the
relations above are valid also outside TE.
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Line source function

The line emission coefficient and the line extinction corresponding to a tran-
sition between energy levels i and j are

j(ν) =
hν

4π
njAjiψ (3.16)

κ(ν) =
hν

4π
(niBijφ− njBjiχ) , (3.17)

hence the line source function is

S(ν) =
j

κ
=

2hν3

c2
ψ

χ

1
ψ
χ
gj

gi

ni

nj
− 1

. (3.18)

The source function quickly reduces to the Planck function when complete
redistribution (i.e. φ = χ = ψ) and TE holds.

3.4.2 Bound-free radiative transitions

Einstein-Milne relations

Analogs to the Einstein coefficients for the bound-bound transitions exist
for bound-free transitions, and relations between these coefficients are called
the Einstein-Milne relations. Let pν be the probability of a photoionization
of an atom by a photon in the frequency range (ν, ν + dν). pν is related
to a photoionization cross-section, α = hνpν . For hydrogen (and other one-
electron atoms and ions) this cross-section is given by Kramer’s formula
(Rutten, 2003)

αic(ν) = 2.815 × 1029 Z
4

i5ν3
gic, (3.19)

where i is the bound level and principal quantum number, Z is the number
of protons in the atom and gic is the Gaunt factor, a quantum mechanical
correction factor of order unity. Now, armed with pν , the number of pho-
toionizations from level i per unit time done by photons in the frequency
range (ν, ν + dν), ∂npi/∂t, can be expressed

∂npi(ν)

∂t
= nipνIν dν, (3.20)

where ni is the number density of atoms residing in energy level i. The
photon energy exceeding the ionization energy, χI , will be transferred into
kinetic energy for the freed electron,

hν = χI +
mev

2

2
. (3.21)
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Furthermore, let F and G be associated with the spontaneous and induced
recombination probabilities, respectively, so that the total number of recom-
binations done by electrons in the velocity range (v, v + dv) per unit time,
∂nrec/∂t, is

∂nrec(v)

∂t
= ncne(v)[F +GIν ]v dv, (3.22)

where nc denotes the ion number density. nrec might equally well be ex-
pressed as a frequency dependent quantity, by making use of the relation
between v and ν given in equation 3.21. In TE the matter is in its most
probable state, the number of photoionizations balance the number of re-
combinations and the specific intensity is equal to the Planck function (eq.
3.10), hence,

B(T, ν) =
F

G

1
nipνme

ncne(v)Gh − 1
(3.23)

=
2hν3

c2
1

ehν/kT − 1
,

giving rise to the Einstein-Milne relations for the continuum (by the help of
eq. 2.33 and 2.35),

F

G
=

2hν3

c2
(3.24)

pν
G

= 8πv2 gc
g0

(

me

h

)2

. (3.25)

Again, these relations depend only on the atom and are therefore also valid
when the conditions for TE are not met.

Continuum source function

The continuum emission coefficient and the continuum extinction coefficient
corresponding to a transition between energy level i and the continuum c
are now obtainable:

j(ν) = hν

(

ncne(v)F
h

me

)

= nc

[

ni
nc

]∗ 2hν3

c2
e−hν/kTαic(ν), (3.26)

where [ni/nc]
∗ is the TE ratio given in the Saha equation (eq. 2.35) and

κ(ν) = hν [nipν − ncne(v)Gh/me]

=

(

ni − nc

[

ni
nc

]∗

e−hν/kT
)

αic(ν), (3.27)
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This means that the source function becomes

S(ν) =
j

κ
=

2hν3

c2
1

ni

nc[ni/nc]
∗ ehν/kT − 1

. (3.28)

As was also found with the line source function (eq. 3.18), the continuum
source function reduces to the Planck function (eq. 3.11) under TE condi-
tions.

3.5 Free-free processes

Important free-free processes, such as bremsstrahlung and Thomson scatter-
ing, are treated in detail in standard literature ,e.g. Rybicki & Lightman
(1986) and Shu (1991). In this text it suffices to say that emission and ex-
tinction are typically linear in the electron density. This is due to the nature
of the processes - a photon and an electron interacting in some way.

3.6 Local thermodynamic equilibrium

Usually in radiative transfer problems, the temperature is allowed to vary
(together with all other thermodynamic variables). This is also true in a
stellar atmosphere, hence TE is not a valid approximation when solving
such problems. However, one could let the TE relations be valid locally. For
instance if the thermodynamic variables in the model are the temperature
and mass density, then all the other thermodynamic variables, such as the
occupation numbers, would be obtainable locally based on the local values
of the temperature and mass density, thus giving the local emission and
extinction coefficients, enabling the solution of the transfer equation. This
approximation is referred to as local thermodynamic equilibrium or LTE.

By making the LTE assumption one is letting the matter reach its equilib-
rium state instantaneously - in other words, all particle-particle interaction
happens on a timescale infinitesimally small. Unfortunately this is not the
case in real life. A change in one variable will lead to a change in other vari-
ables as the particles interact with each other through collisions happening
locally and it takes some time before the particles will agree on what state
to collectively occupy. Matter’s intricate coupling to the radiation field (i.e.
absorption, photoionization, stimulated emission and stimulated recombi-
nation) lets the global state affect the local state. In order to increase the
level of realism in the model, the LTE approach must be abandoned and
non-local time dependent effects taken into account. Handling the radiative
transfer in this more general case is the subject of section 3.7.
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3.7 Time dependent non-LTE

The radiation field in a stellar atmosphere will affect the matter it is passing
through and the matter will in turn affect the radiation field. The incoming
radiative energy can be absorbed and hence exciting or ionizing the matter
and the matter can de-excite or recombine, adding photons to the radiation
field. Consistent treatment requires keeping close track of all the occupation
numbers.

3.7.1 The rate equation

Consider figure 2.1 and let ni denote the number density of the i-th excited
level of a general atom. Then the rate of change of the total number of the
atom’s i-th excited level is

d

dt

∫

V
ni dV = −

∮

S
niu · n dA

+

∫

V





∑

j 6=i

njPji − ni
∑

j 6=i

Pij



 dV, (3.29)

where u is the velocity and Pij is the number of transitions from the i-th to
the j-th level per particle per unit time. By use making use of the divergence
theorem, eq. 3.29 can be written,

∂ni
∂t

= −∇ · (niu) +
∑

j 6=i

njPji − ni
∑

j 6=i

Pij . (3.30)

The first term on the right is the advection term, the second is the rate term
with transitions from all other levels to the i-th level and finally the third
term is the rate term containing the transitions out of the i-th level.

3.7.2 Rate coefficients

The rate coefficients, Pij , appearing in the rate equation (eq. 3.30) can be
split in two parts. The first part is due to radiative transitions and the
second one is due to collisions between the particles making up the gas,
Pij = Rij +Cij .
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Radiative rate coefficients

In the bound-bound case, the radiative rate coefficients are given by the
Einstein coefficients. The number of upward transitions from level i to level

j is BijJ
φ
ij and the number of downward transitions is Aji + BjiJ

χ
ij (see

section 3.4.1), hence the bound-bound radiative rate coefficients are

Rij = BijJ
φ
ij (3.31)

Rji = Aij +BijJ
χ
ij (3.32)

In the bound-free case, the radiative rate coefficients are given by pν , F
and G defined in section 3.4.2. The rate of photoionizations are found by
integrating equation 3.20 over all frequencies. Likewise, the total number of
recombinations is given by eliminating the v dependency in equation 3.22
by use of the Einstein-Milne relations (eq. 3.24 and 3.25) and integrating
over all frequencies. The rate coefficients between the bound state i and the
continuum c are then

Ric = 4π

∫ ∞

νic

σic(ν)

hν
Jν dν (3.33)

Rci = 4π

[

ni
nc

]∗ ∫ ∞

νic

σic(ν)

hν

(

2hν3

c2
+ Jν

)

e−hν/kT dν, (3.34)

where νic is the ionization threshold frequency from level i. The recombina-
tion rate coefficient consists of two terms corresponding to spontaneous and
induced recombination, respectively.

Collisional rate coefficients

The electrons, atoms, ions and molecules making up the gas in a stellar at-
mosphere may very well collide causing energy level transitions. The prob-
ability of a collision is proportional to the flux of particles, and due to the
fact that the electron mass is about one thousandth of the proton mass, the
electron flux will be dominate and electron-atom collisions will be the most
important collisional process (Mihalas, 1978, page 132).

The electron collisional rate coefficients used for this study are based on
Johnson (1972). Other collisional processes are ignored.
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Numerical modelling
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Chapter 4

Radiation-MHD simulations

The interpretation of observations of the solar atmosphere must be done
on the basis of theory. One way to go forward is to compare numerical
simulations to observations, altering the conditions for which the simulation
is to be carried out, hopefully being able to identify from this the physical
processes and their relevance for various phenomena and ultimately quantify
them.

By the spatial and temporal discretization of reality (i.e. the variables defin-
ing the state of the system) the equations governing the system (eq. 2.27,
2.28, 2.29, 2.30 and the appropriate equation of state and radiative transfer
machinery) can be reduced to computer friendly form. Solving these new
reduced equations with sensible boundary conditions provides the researcher
with time series of the variables for exploration and analysis.

4.1 Simulations with no radiative transfer

Equation of state and radiative transfer problems set aside, the equations
that are to be solved are partial differential equations. Typically they are
of the form,

∂y

∂t
= f1(r) + f2(r) + . . .+ fn(r), (4.1)

where the right hand side terms (fi) may contain spatial derivatives. The
strategy is to compute the right hand side and advance the variables by
numeric integration. This is fairly straight forward: spatial derivatives are

27
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numerically obtained by local variable differences, dy/dx ∼ ∆y/∆x, and the
time integration is in principle simple,

y(t+ ∆t) ≈ y(t) +
∂y

∂t
∆t. (4.2)

The problem is reduced to looping through the computational domain, com-
pute and add up various spatial derivatives, perform time integration and
repeat the above - quick and effective. Both spatial derivatives and time
stepping procedures can be refined to higher orders of accuracy. The Bifrost
code (chapter 6), for instance, uses sixth order derivative operators and a
predictor-corrector setup for time stepping.

4.2 Simulations with radiative transfer

For physical systems where radiative transfer does not play an important
physical role the above strategy is a good one. Unfortunately, difficulties
arise when radiation is taken into account, such as it must in the solar at-
mosphere. While changes in the variables in the non-radiative case were
characterized by the local spatial derivatives, and hence are locally deter-
mined, the radiation transfer couples to the matter in a global fashion. Heat-
ing and cooling of the material is dependent on the specific intensity (see
section 3.2) which is found through the solution of the transfer equation (eq.
3.7). The solution of the transfer equation is basically the source function
integrated over the whole atmosphere, and the source function is dependent
on the occupation numbers. The occupation numbers are generally known
through the solution of the rate equations (eq. 3.30).

The inclusion of detailed radiative transfer in solar atmospheric simulations
without simplifying approximations is a very demanding task in terms of
computing time. There is one rate equation per atomic state possible within
the mixture of gas employed in the simulation. The rate coefficients are
depending on local conditions as well as the mean intensity in enough fre-
quencies to be able to solve the frequency integrals (section 3.7.2), and the
mean intensity requires the knowledge of the specific intensity in enough
angles to be able to solve the angle integral.

4.2.1 LTE, an extreme simplification

The general type of solar atmospheric simulations as described above has
to date only been possible to perform in one spatial dimension (see e.g.
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Carlsson & Stein, 1992, 1995, 1997, 2002). In three dimensions comput-
ing time exceeds present day computing power and simplifying assumptions
are required. One important simplifying assumption is that the material
state is fully determined locally, i.e. two thermodynamic variables (such as
mass and energy density) provides all relevant thermodynamic information
(which is the occupation numbers, pressure, temperature and electron den-
sity) through the LTE relations presented in section 2.4.1. No rate equations
need solving and the source function is always equal to the Planck function,
hence the solution of the transfer equation can be obtained at a far lower
computational cost than it would in the general case.

In the next chapter it is shown that LTE is not a good assumption for
chromospheric conditions and a refined approximation is presented.
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Chapter 5

Non-equilibrium hydrogen
ionization

The state variables link together in the equations of state (see section 2.4)
through the occupation numbers. The evolution of the occupation numbers
is determined from the rate equations (eq. 3.30) where changes occur due
to the fluid flow and the collisional and radiative atomic transitions. In
traditional modelling the occupation numbers are set to obey their equilib-
rium partitioning, known as the LTE assumption. In section 5.1 it is shown
that hydrogen is not generally found to be in LTE and that the element
completely dominates the equation of state. In section 5.2 a quasi realistic
treatment of hydrogen is presented.

5.1 Hydrogen’s important role

The degree of ionization in the solar atmosphere is important in setting the
temperature, pressure and the extinction and emission coefficients. Of all
the different elements composing the atmospheric material, hydrogen is the
most important, accounting for about 90% of the atomic nuclei (e.g. Grevesse
& Sauval, 1998). Being so abundant, its state should be monitored closely.

Electron density

Figure 5.1 explicitly displays the relative importance of hydrogen, helium
and other metals in setting the electron density in solar material under
LTE conditions. At temperatures below 5000 K, metals are the dominating
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Figure 5.1: LTE electron contribution ratios, jnj,k/ne, in solar material.
Shown here are H II (solid), He II (dotted) and He III (dashed). At low
temperatures metals are the dominating electron contributors. In the tem-
perature range 5000−10000K hydrogen dominates. This dominance weakens
as helium ionizes at temperatures above 10000K.
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electron donor, while ionized hydrogen is the dominant contributor to the
electron density above this point. From 10000 K and up, 10-20% of the
electrons are coming from ionized helium. This is set into context in figure
5.2, showing various quantities for the Val3C model atmosphere (Vernazza
et al., 1981). The upper panel shows the temperature- and mass density
structure of the classic model. The middle panel shows the electron density
and hydrogen ionization degree for two different scenarios: all elements in
LTE and all elements in LTE but hydrogen which is in statistical equilib-
rium. The difference in ionization degree in SE and LTE is seen to have a
serious impact on the electron density. The lower panel displays the relative
importance of hydrogen (in both the SE and LTE case), helium and metals
(both in LTE) in setting the electron density. From just above the temper-
ature minimum, at 0.7 Mm, hydrogen is the dominant electron contributor.
Below this height, the metals are providing the most electrons. Deep in the
atmosphere, where the temperature rises, hydrogen is again being ionized
and starts to dominate the contributions to the electron density.

Internal energy

The ionization degree plays an integral part of the energetics of the system.
The internal energy density is given by (eq. 2.32)

ρǫ =
1

2
kT (

∑

k,j

fknj,k + 3ne)

+
∑

k

(
∑

j

(χj,knj,k +
∑

i

χi,j,kni,j,k))

+
∑

k=molecules

ξknk,

where the first term represents the thermal energy, the second term repre-
sents ionization and excitation energy and the third term represents molecule
dissociation energy. Under solar atmospheric conditions molecule formation
is mostly insignificant and the energy will mainly go into thermal motion
(corresponding to the first term) or into ionizing and exciting the material
(corresponding to the second term).

The contributions from the different terms in eq. 2.32 are displayed for the
Val3C atmosphere in figure 5.3. All elements are treated in LTE except for
hydrogen which is treated in both SE (upper panel) and LTE (lower panel).
The internal energy is not the same for the two cases, but in the upper
chromosphere the contribution due to hydrogen ionization is the dominant
one in both the SE and the LTE case. At all other heights, the thermal
energy term is the dominating one. In other words, the temperature in the
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Figure 5.2: Various quantities of the Val3C model atmosphere. Upper panel:
temperature (solid, scale to the left), mass density (dashed, scale to the
right). Middle panel: electron density (scale to the left) where hydrogen is
in statistical equilibrium (SE) and other elements in LTE (solid), where all
elements are in LTE (dotted), ionization degree (scale to the right) of hy-
drogen in SE (dashed), of hydrogen in LTE (dashed-dotted). Lower panel:
electron density contributions, jnj,k/ne, of hydrogen in SE (solid), of hy-
drogen in LTE (dotted), of helium in LTE (dashed), of all other elements in
LTE (dashed-dotted).
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Figure 5.3: Energy contributions in the Val3C atmosphere. Upper panel: all
elements in LTE but hydrogen which is in SE, lower panel: all elements in
LTE. Total internal energy (solid), thermal contribution (dotted), ionization
energy contribution due to hydrogen (dashed) and due to other elements
(dashed-dotted).
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upper chromosphere will be set by the hydrogen ionization degree. Larger
levels of ionization causes the thermal motion term in eq. 2.32 to compen-
sate, i.e. adjust the temperature down. When ionization levels are low, the
temperature is adjusted up.

5.1.1 Dynamic atmosphere

Dynamic atmosphere models are different from the Val3C model presented
above. The static picture is not, however, worthless, as it displays that the
non-local effects (i.e. interaction of radiation field) will in general strive to
produce a different ionization degree than predicted by the LTE assumption.
Although only hydrogen was allowed to interact with the radiation field, it
was seen to be the dominant term in the equation of state, hence insight is
gained by treating it in a detailed fashion (solving its rate equations) even
though all other elements are treated in LTE.

According to the one-dimensional dynamic atmosphere studies presented in
Carlsson & Stein (1992, 2002), chromospheric shock wave structure differs
significantly in the LTE and non-LTE case. This is due to the timescales of
the rates. Equilibration time scales for the ionization and recombination are
of the order ∼ 103-105 s while the chromospheric state conditions change on
timescales ∼ 102 s. One consequence of these time scales is that hydrogen is
ionized in shock fronts propagating through the chromosphere as tempera-
ture and density increase. The shocks pass through too frequently to let the
hydrogen equilibrate to local conditions (which would not have been LTE,
but SE). This means that between shocks, the ionization degree is higher
than local conditions predict, hence there are more electrons and the tem-
perature is lower as more of the internal energy is tied up in ionization (see
fig. 5.3).

5.2 The Sollum approximation

Reducing the number of rate equations that are to be solved in the general
case would save enormous amounts of computing time. For instance, grant-
ing hydrogen its importance, a good choice would be to only solve the rate
equations for hydrogen and treat all other elements as if they were in LTE.
As seen in section 5.1, hydrogen is dominating the equation of state, and
therefore such an omission would give the best payoff in terms of realism
per equation solved, resulting in a limited error in the description of im-
portant state variables such as temperature, pressure and electron density
would only be. Nevertheless, the presence of the non-local component in the
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rate equations (the mean intensity in the radiative rate coefficients) makes
the exact solution of even this reduced set of rate equations impossible on
today’s computing facilities.

By approximating the mean radiation field, Espen Sollum found a way
around this problem (Sollum, 1999). He recognized that the mean inten-
sity in frequencies relevant for hydrogen transitions decouples from local
conditions in the photosphere and remains approximately unchanged above
this point. The consequence of this is that the rate equations for hydrogen
become local and can be solved like the other MHD equations (see section
4.1).

5.2.1 Background

The radiation decoupling from local atmospheric conditions is displayed in
figure 5.4. Statistical equilibrium is computed for a Radyn simulation snap-
shot (Carlsson & Stein, 1992) and the figure shows the gas temperature
(solid), the radiation temperature of the Lyα line core (dotted) and the
radiation temperature of the Balmer ionization edge (dashed). These two
radiation temperatures illustrate nicely the two types of typical behavior of
radiation in the hydrogen transitions in a solar-like atmosphere: decoupling
in the photosphere and decoupling in the chromosphere. Investigation of
all the possible line and continuum transitions (available in a model atom
with a limited number of energy levels) shows that decoupling from local
conditions happen in the photosphere except for Lyman transitions which
have some coupling in the upper chromosphere. However, the Lyman transi-
tions are to a good approximation found to be in detailed radiative balance
(niRij = njRji) everywhere except for just below the transition region.

5.2.2 Approximation

The radiation field

The photons escaping the photosphere due to transitions in hydrogen in-
teract very little with the gas travelling through the atmosphere. Since the
photospheric density and temperature conditions have a slow rate of change,
these photons make up a stable outgoing energy flux (see Balmer ionization
edge in fig. 5.4). The stability of this flux makes it a good parameter choice
when approximating the radiation field. Espen Sollum recognized this and
he let the radiation temperature at the line core and ionization edge frequen-
cies determine the approximated radiation field in a given model atmosphere
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Figure 5.4: Various temperatures as functions of column mass. Temper-
ature (solid), radiation temperature Lyα at line center (dotted) and ra-
diation temperature Balmer continuum at ionization edge (dashed). The
Balmer continuum is seen to decouple from atmospheric temperature in the
photosphere. This implies that photons originating here are able to travel
unhindered outward and ultimately escape. Coupling between atmosphere
and Lyα photons is evident, and in the upper parts of the chromosphere, the
radiation temperature rises above atmospheric temperature indicating non-
LTE conditions where photons originating non-locally are present. Above
the transition zone the atmosphere turns optically thin due to the fact that
practically all hydrogen is ionized.
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vertical column,

Jij(νij ,mc) =







B(νij , Tij)

[

1 +
(

mc

mcrit

)Hij

]

if mc < mcrit

B(νij , T (mc)) if mc > mcrit,
(5.1)

where the subscript ij specifies the transition under consideration. B is
the Planck function (eq. 3.11), Tij is the radiation temperature input pa-
rameter corresponding to the observed average intensity in the line core or
ionization edge of the transition ij, Hij a parameter which Espen Sollum
has determined for solar-like atmospheres (Sollum, 1999). mc is the column
mass,

mc(z) = −

∫ ∞

z
ρ(z′) dz′, (5.2)

and mcrit, the critical column mass, is the column mass at the lowermost
height where 2B(νij , Tij) = B(νij , T ) is satisfied.

Radiative rate coefficients

By assuming that the mean intensity is frequency independent across the
profile functions, the bound-bound radiative rate coefficients (eq. 3.31 and
3.32) are trivially obtained. The frequency integrals needed for the bound-
free radiative rate coefficients (eq. 3.33 and 3.34) can be solved exactly
when the radiation field is the Planck function (Sollum, 1999) and the cross
section is given by Kramer’s formula (eq. 3.19).

The Lyman transitions

The radiation field is found to be less predictable in the Lyman transitions
(fig. 5.4) which complicates its a priori description. However, the Lyman
transitions are found to be in detailed radiative balance in relevant parts
of the atmosphere and the radiative rate coefficients going to or from the
ground level can because of this all be set to zero in the rate equations.
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Chapter 6

The Bifrost code

Bifrost is an MPI parallelized computer code that is set up to solve the
magnetohydrodynamic equations (eq. 2.27, 2.28, 2.29 and 2.30) in Cartesian
coordinates on a staggered grid using 5th order interpolation operators and
6th order derivative operators. The code includes heat conduction along the
magnetic field lines (section 2.2.5) and solves the radiative flux divergence
needed in the energy equation (section 3.2) (Hayek, 2008). Scattering is
taken into account (Skartlien, 2000) and the frequency integral is handled by
grouping together extinction coefficients based on their strength (Nordlund,
1982). The extinction coefficients are determined by assuming matter to be
in LTE. The fundamental variables in the code are the three components
of the momentum (px, py and pz), the three components of the magnetic
field (Bx, By and Bz) and the two thermodynamic variables mass density
(ρ) and internal energy density (E).

The boundaries are periodic on the lateral sides. In the top and bottom
boundary, different setups are in use, including setting symmetric, antisym-
metric and extrapolated values. These boundaries are governed by charac-
teristic equations, enabling the separation of incoming and outgoing infor-
mation (Thompson, 1987, 1990).

The code is based on the Oslo Stagger Code (Hansteen et al., 2007) for which
the parallelization worked on a shared memory system, whereas Bifrost
works on distributed memory systems, thus enabling more extensive sim-
ulations. The schematic grid setup for a distributed memory system is
shown in figure 6.1. The white regions are the subdomains and together
they make out the full computational domain. The grey regions are copies
of the neighbouring points from the neighbouring core. The grey points
are referred to as ghoszones. These are necessary to solve the equations
properly in the subdomain boundaries, and the number of ghostzones are

41
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Figure 6.1: Schematic grid on a distributed memory system. Each of the
squared represent one core, and the cores work on separated parts of the
grid. Equations are solved in the white region. The grey points equal the
neighbouring points in the neighbouring core and are necessary to work out
derivatives, fluxes etc. The grey points are referred to as ghostzones.
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dependent on which order is being used for the interpolation and derivative
operators (i.e. how many neighbouring points needed to perform interpola-
tion or compute a derivative). Every time the variables are updated (in the
subdomains), ghostzone values must be communicated between the working
cores to ensure a consistent solution along the subdomain boundaries.

With the exception of the numerical treatment of the equation of state found
in the remainder of this chapter, more information on the code can be found
in Gudiksen et al. (2010) and the references therein.

6.1 Equation of state

The code has three equation of state options, in order of increasing realism:
perfect gas neglecting ionization, perfect gas with LTE ionization and perfect
gas with LTE ionization except for hydrogen for which the rate equations are
solved (time dependent non-LTE). The perfect gas with no internal degrees
of freedom is mainly used for development purposes. The LTE option is the
option used for most production runs. This option employs a precomputed
table containing the gas pressure, the temperature, the electron density and
the extinction coefficients for the various bins as functions of mass density
and internal energy.

6.2 Time dependent non-LTE hydrogen treatment

In order to couple the time dependent state of hydrogen to the thermody-
namics of the system, six new variables are introduced: the occupation num-
bers ni, where i = 1, 2, 3, 4, 5, represents the five lowermost bound states of
hydrogen and n6 represents the number density of ionized hydrogen. Track-
ing the evolution of these new variables requires integration of the rate
equations (eq. 3.30) and this is made possible by defining the radiation field
prior to computation with the Sollum approximation. The rate equations
are solved in two steps: first, the advection part, and second, the rate part.
This technique is known as operator splitting (Press et al., 1992).

The occupation numbers couple to the temperature (T ), the electron density
(ne) and the mass density (ρ) through the internal energy balance (eq. 2.32),
charge conservation (eq. 2.7) and the conservation of hydrogen nuclei (ntotH =
Aρ, where A is depending on the gas composition). It is thus necessary to
solve eight extra equations. These equations are, in computer friendly form:

F1 = 1 −
n6 + ntotH nnoHe

ne
= 0 (6.1)
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F2 = 1 −
1

ei

{

3kBT

2

(

ne + ntotH nnoHother + nH2 +
6
∑

i=1

ni

)

+ ntotH enoHi + nH2(ξH2 + eH2) +
6
∑

i=1

niχi

}

= 0 (6.2)

F3 = 1 −
1

ntotH

(

6
∑

i=1

ni + 2nH2

)

= 0 (6.3)

Fi′+3 =
ni

nt0i
−

∆t

nt0i





6
∑

j=1,j 6=i

njPji − ni
∑

j=1,j 6=i

Pij



− 1 = 0, (6.4)

where F1, F2 and F3 represent the equation of charge conservation, energy
conservation and hydrogen nuclei conservation, respectively. Fi′+3 repre-
sents 5 rate equations (i′ = 1, 2, 3, 4, 5). The sixth rate equation is re-
placed by the hydrogen nuclei conservation equation to increase stability
and convergence rate (see section 6.2.1) of the equation system (the rate
equations become linearly dependent for statistical equilibrium). The new
variables introduced here, nnoHe = nnoHe (ne, T ), enoHi = enoHi (ne, T ), nnoHother,
nH2 = nH2(ni, T ), eH2 = eH2(T ) and ξH2 correspond to the number density
of electrons coming from elements other than hydrogen per hydrogen nuclei,
the excitation and ionization energy of elements other than hydrogen per
hydrogen nuclei, the number density of elements other than hydrogen per
hydrogen nuclei, the number density of H2 molecules, the internal energy
(rotational and vibrational) per H2 molecule and the dissipation energy of
the H2 molecule, respectively. nnoHe , enoHi and nnoHother are dependent on the
gas composition, and their values are read from a precomputed table. nH2

and ξH2 are determined from polynomial fits with coefficients found in Tsuji
(1973) and Vardya (1965), respectively.

The above equations (eq. 6.1, 6.2, 6.3 and 6.4) are solved with the Newton-
Raphson method explained in section 6.2.1.

Boundaries

At the lower boundary occupation numbers, and thereby temperature, elec-
tron density and pressure, are set to their LTE values consistent with the
mass density and internal energy. These boundary conditions are justified
since mass the density is high enough for non-local coupling due to radiation
to be minimal.

At the upper boundary the advection is turned off and the rate equations (eq.
6.4) are solved as usual. Consistency with mass density is enforced through
hydrogen nuclei conservation (eq. 6.3). Since the coronal equilibration time
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is short (Carlsson & Stein, 2002) compared to its dynamics, this approach
will generate coronal equilibrium-like conditions.

6.2.1 The Newton-Raphson method

The eight extra equations (eq. 6.1, 6.2, 6.3 and 6.4) constitute a non-linear
equation set. A correction to a guessed solution can be found based on
the linearization of these equations. The corrected guessed solution then
serves as the new guess and a new correction can be found. This procedure
is known as Newton-Raphson iteration and its detailed description is given
below.

For a set of n equations, Fi(x) = Fi(x1, x2 . . . xn) = 0, the linearization
is just the first order Taylor polynomial about the guessed solution x(0) =

(x
(0)
1 , x

(0)
2 . . . x

(0)
n ),

F1(x) ≈ F1(x(0)) +
∂F1

∂x1
δx

(0)
1 +

∂F1

∂x2
δx

(0)
2 + . . . +

∂F1

∂xn
δx(0)

n

F2(x) ≈ F2(x(0)) +
∂F2

∂x1
δx

(0)
1 +

∂F2

∂x2
δx

(0)
2 + . . . +

∂F2

∂xn
δx(0)

n

...

Fn(x) ≈ Fn(x(0)) +
∂Fn
∂x1

δx
(0)
1 +

∂Fn
∂x2

δx
(0)
2 + . . .+

∂Fn
∂xn

δx(0)
n ,

where δx
(0)
i = (xi − x

(0)
i ) are the absolute corrections. Since all of the

equations have a zero right hand side, Fi(x) = 0, the above equation set can
be expressed as a matrix equation,
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F1(x(0))

F2(x(0))
...

Fn(x(0))













.

Defining the derivative matrix as J(0), the correction vector as δx(0) and the
function values on the right hand side as −F(0), this matrix equation takes
the simpler form,

J(0)δx(0) = −F(0). (6.5)

When dealing with very large and very small numbers, it is convenient and
numerically more precise to work with relative changes. The equivalent
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equation for the relative correction is

(J(0)X(0))(X
−1
(0)δx(0)) = −F(0)

J′
(0)δx

′
(0) = −F(0), (6.6)

where

X(0) =















x
(0)
1 0 . . . 0

0 x
(0)
2 . . . 0

...
. . .

0 0 . . . x
(0)
n















. (6.7)

Solving equation 6.6 provides the relative corrections, δx′
(0). Updating the

guessed solution (x(0)) and repeating the above algorithm is likely to produce
a smaller correction the second time. The solution to the original equation
set, Fi, is found by repeating until convergence occurs, i.e. corrections drop
below some defined maximum limit.

The update of the solution is an important step and typically is

x
(j+1)
i = x

(j)
i (1 + pδx

′(j)
i ), (6.8)

where p is a factor controlling the length of the Newton step δx
′(j)
i . Ideally

p = 1 but sometimes it is useful to let p < 1 and a good choice is

p =
1

1 + d|δx
′(j)
i |

, (6.9)

where d is a damping parameter. Setting d = 0 will allow for the full Newton
correction, while d > 0 will decrease the corrections if they are large and
have less of an impact when corrections are small. d is an input parameter in
the code. Small values will generally give faster running code, but this comes
at the cost of a higher risk of failed convergence. Simulations presented in
section 7.3 were produced with d = 5.

The Newton-Raphson method requires the derivatives of all the equations
that are to be solved (eq. 6.1, 6.2, 6.3 and 6.4). These are not listed here,
but can be found in Leenaarts et al. (2007).

6.2.2 Algorithm

Bifrost advances its fundamental variables with a Hyman time stepper (Hy-
man, 1979) generalized to time steps of different lengths. This is a two step
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process consisting of a prediction step followed by a correction step. The
time stepping of the rate equations for the hydrogen is also done in two
steps, but uses an Euler predictor corrector setup. The full algorithm of the
time dependent hydrogen with the operator splitting then looks like this:

*************************************************

( .. fundamental variables predicted ... )

call get_fluxdivergence

! dndt contains the fluxdivergence

do i=1,6

nsave(i) = n(i) + 0.5*dndt(i)*dt

n(i) = n(i) + dndt(i)*dt

end do

call newtonraphson(e,r,dt)

call compute_pressure

( ... fundamental variables corrected ... )

call get_fluxdivergence

do i=1,6

n(i) = nsave(i) + 0.5*dndt(i)*dt

end do

call newtonraphson(e,r,dt)

call compute_pressure

*************************************************

The arguments sent into the Newton-Raphson solver illustrates the equa-
tions dependency on these. The pressure is computed in the subroutine
compute pressure (eq. 2.31). The flux divergence is computed in two
steps: first the flux and then the divergence. Due to the regular occurrence
of extreme occupation number gradients, a basic first order upwind scheme
is used to compute the flux. Second order spatial derivatives of this flux are
used to compose the divergence.

6.3 Initial state of the time dependent non-LTE
EOS

The time dependent non-LTE treatment of hydrogen described above, hereby
referred to as the Hion-package, was implemented but it had yet to be tested
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within the new framework of Bifrost. This new implementation was very
similar to that of Bifrost’s predecessor Oslo Stagger Code that had been
tested in two dimensions and gave nice results (Leenaarts et al., 2007). The
Newton-Raphson solver did initially not produce convergence, causing pro-
gram execution to end.

6.3.1 Debugging

The reason for failure in the Newton-Raphson solver was an error in the
interpolation routine for the collisional rate coefficients. Later it was also
found that the pressure (needed for the equation of motion 2.28) was not
being updated in the ghost-zones causing visibility of the sub-domain bound-
aries as discontinuities in the variables. The interpolation-fix enabled the
program to advance some time steps, but convergence issues were still per-
sisting. A self-inflicted error in a collisional rate coefficient derivative was
the primary reason for the convergence failure and weird looking results (see
fig. 6.2). The methods used to deal with failing convergence are described
in section 6.4.

Another type of error revealed itself when the Newton-Raphson solver was
stable enough to simulate a few minutes of solar time. Figure 6.3 displays
the symptons, stripes and large cold unmoving chunks in the chromosphere.
The solutions to this problem are discussed in section 6.5

6.4 Failed convergence

6.4.1 Averaging variables

The easiest way to deal with failed convergence is to accept and continue
with a more or less appropriate set of variable values that do not necessarily
have to satisfy the equations. Still it should contribute to a continuous feel
in the variables’ local distributions. One obvious choice is the average value
of neighbouring points. It’s possible to refine the method so that one or
two average values are adjusted in order to enforce the satisfaction of one
or two of the equations. Typically these are the highest occupation number
and the electron density enforcing hydrogen nuclei conservation and charge
conservation.
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Figure 6.2: Illustration of error due to failed convergence. Number density of
hydrogen ground state (upper panel) with a magnification of a region where
the Newton-Raphson solver is about to fail. The black dots correspond to
points that have converged to a wrong solution. These points would for the
most part be taken care of by averaging variables, but new ones would pop
up. Another problem was the discontinuous temperature structure (lower
panel). The features that are magnified correspond to points and regions
that had converged but clearly were erroneous due to their uneven appear-
ance and lack of movement due to the ambient flow.



50 CHAPTER 6. THE BIFROST CODE

Figure 6.3: Illustration of error occurring after a few minutes of simulated
solar time. Temperature with a zoom in on a problematic region: long
lived stripe patterns are formed in the chromosphere. When they fade out,
new ones develop elsewhere. Below the magnification is a cool region about
to become fixed in space, confined by the very sharp edge around it from
x = 5.5 Mm to x = 9 Mm.
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6.4.2 Backtracking

Another way to deal with failed convergence is to let the factor p, controlling
the length of the Newton step (eq. 6.9), be determined in a way that ensures
the new solution, x(i+1), to always provide a better fit to the equations,
F(x) = 0. This method will be referred to as the backtracking method. A
summary of the method is presented here. More information is found in
Press et al. (1992).

The aim of the Newton-Raphson solver is to find a solution that satisfies
F(x) = 0 as much as possible within the numeric limit. By defining

f =
1

2
F2, (6.10)

this aim can be reformulated to satisfying f = 0 within this limit. The
Newton step (δx) is always orientated in a direction that reduces f :

∇f · δx′ = (FTJ′)(−
[

J′
]−1

F)

= −F2 ≤ 0. (6.11)

Although the initial rate of change of f is negative, it may become positive
along the track of the Newton step since the equations are not linear. The
full Newton step is in other words not guaranteed to decrease the value of f ,
but small steps in the Newton direction are. A successful Newton-Raphson
iteration can be stated mathematically as follows:

f(x(i+1)) < f(x(i)) where (6.12)

x(i+1) = x(i)(1 + pδx(i)).

The strategy is to use as large a p as possible for fast convergence. If it does
not decrease f , a smaller Newton step is used, making sure f decreases before
accepting the step. The criterion for accepting a step can not, however, be
limited to the satisfaction of the above inequality (eq. 6.12), as convergence
to a minimum of f might fail for two reasons. First, f may not decrease
sufficiently relative to the step lengths, and second, step lengths could be
too small relative to the initial rate of decrease of f . The second problem is
solved simply by defining a minimum limit for p. The first problem is solved
by requiring that the average rate of decrease of f must be a fraction α of
the initial rate of decrease:

f(x(i+1)) ≤ f(xi) − α∇f · (xi+1 − x(i)). (6.13)

A good value for α is 10−4 (Press et al., 1992).

After computing the corrections (eq. 6.6) the variables are ready to be
updated. The first step length is usually p1 = 1, but since the variables
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are electron density, temperature and occupation numbers, all of which may
never have a value less than 0, p1 must in some cases be adjusted to ensure
the absence of negative variable values. This is necessary only if relative
changes are less than −1.

If the first step length, p1, fails to satisfy eq. 6.13, backtracking commences.
Let

g(p) = f(x(1 + pδx)) so that (6.14)

g′(p) = ∇f · δx′. (6.15)

Now g(p1) is available together with g(0) and g′(0) (the latter of which is
easily computed). This is enough information to model g(p) as a quadratic
polynomial,

g(p) ≈ ap2 + bp+ c where (6.16)

a =
[

g(p1) − g′(0)p1 − g(0)
]

/p2
1,

b = g′(0) and

c = g(0).

The p resulting in the smallest g is the solution to g′(p) = 0,

p2 = −
g′(0)p2

1

2 [g(1) − g′(0)p1 − g(0)]
. (6.17)

If the criterion (eq. 6.13) is satisfied for p2, the step is accepted and a new
set of corrections is computed. If not, g is modeled as a cubic polynomial.
Available now are g(0), g(p2), g(p1) and g′(0). The polynomial is

g(p) ≈ ap3 + bp2 + cp + d where (6.18)
(

a
b

)

=
1

p2 − p1





1
p22

− 1
p21

−p1
p22

p2
p21





(

g(p2) − g′(0)p2 − g(0)
g(p1) − g′(0)p1 − g(0)

)

c = g′(0)

d = g(0).

The minimum p is the positive solution to the second order equation g′(p) =
0:

pmin =
−b+

√

b2 − 3ag′(0)

3a
. (6.19)

If equation 6.13 is not yet fulfilled, a new cubic polynomial approximation is
applied with the most recent information available on g. This process goes
on until convergence occurs or p becomes smaller than the set minimum
value. If it does, the backtracking is not successful.
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6.4.3 Cutting the time step

A shorter time step will produce less change in the variables and hence give
the Newton-Raphson solver an easier time converging the equation set. The
time dependent equation of state couples to the mass density and energy
density through the equations 6.2 and 6.3. These fundamental variables are
made available in the time step cuts by linear interpolation.

Consider a cell not converging from the time ti to the time ti+∆t, where ∆t
is the time step length. The time step is cut into ncut pieces so the Newton-
Rapshon solver is set to work the intervals (ti, ti+∆t/ncut), (ti+∆t/ncut, ti+
2∆t/ncut) . . . (ti + [ncut − 1]∆t/ncut, ti + ∆t). When the Newton-Rapshon
solver starts, the fundamental variables have already been determined. In
order to get their previous value, backward first order integration is used,

ρold = ρnew − ∆t
∂ρ

∂t
(6.20)

ei,old = ei,new − ∆t
∂ei
∂t
. (6.21)

The setup is then:

deltat=dt/ncut

do i=1,ncut

frac=i/ncut

e_tmp=eold*(1.0-frac) + enew*frac

r_tmp=rold*(1.0-frac) + rnew*frac

call newtonraphson(e_tmp,r_tmp,deltat)

end do

6.5 Numeric noise

The stripes shown in figure 6.3 are caused by the numeric treatment in
the solver. The equation representing the hydrogen nuclei conservation (eq.
6.3) replaces one of the rate equations. The rate equation removed is the
one for the level with the highest valued occupation number. Since the
terms in the discretized equation (eq. 6.4) are normalized by the occupation
number, this choice represents the smallest throwaway of information due
to the computer’s finite real number precision.

However, by removing a level’s rate equation, its occupation number is
bounded by less restrictions. Generally the hydrogen nuclei conservation
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equation is not satisfied when the Newton-Raphson solver starts, and the
removed level’s occupation number is the most likely candidate for change
in order to gain satisfaction. The initial dissatisfaction of equation 6.3 has
two reasons: first, the hydrogen is advected with a first order upwind setup
while the mass density is treated by a fifth order interpolation sixth order
derivative setup causing disproportional advection, and second, as temper-
ature gets low, the formation of hydrogen molecules comes into play. Since
the molecule formation is assumed to be in (instantaneous) LTE, the num-
ber density is may change a lot from one time step to the next. Ideally
advection and a rate equation for the hydrogen should be solved. Now,
for each ionized hydrogen atom added to satisfy equation 6.3, 13.6 eV are
moved from the thermal energy term and placed in the ionization energy
term, causing a decrease in temperature.

The stripes formed in places where the ionization degree was high and had
a steep gradient.

6.5.1 Scaling the occupation numbers

By scaling the occupation numbers after the advection treatment, the dis-
crepancy between them and the mass density is minimized causing less nu-
meric noise. The scaling factor, c, is

c =
Aρ

∑

i ni + 2nH2
, (6.22)

where ni are the advected occupation numbers. nH2 is the most recent
molecule density and Aρ is the total number density of hydrogen atoms.

6.5.2 Use all of the rate equations

By removing the hydrogen nuclei conservation equation and replacing it by
the last rate equation, none of the occupation numbers are less bounded by
restrictions (other than that of the numeric noise). This makes it likely that
the adding and removing of protons is handled more balanced.

Applying all rate equations should only be done in regions with a high
ionization degree and where its gradient is steep, which is where the stripes
form).
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6.5.3 Add extra heating term

By adding artificial heating if temperature goes below some predefined limit,
the molecule formation problem can be avoided by simply setting the lowest
allowed temperature high enough for molecule formation to be less potent.
This will lead to less problems with the hydrogen nuclei conservation equa-
tion.

6.5.4 Diffusion

By smearing out the occupation numbers, the stripes would follow and be
washed away faster than they would grow. The implementation is something
like this:

call get_fluxdivergence

do i

do j

do k

ntmp=sum(nold(i-1:i+1,j-1:j+1,k-1:k+1)-nold(i,j,k))/8.0

n(i,j,k) = (1-a)*n(i,j,k) + a*ntmp + dndt(i,j,k)*dt

end do

end do

end do

where a is a parameter controlling the diffusion strength.

6.6 Hion modifications

All of the above methods to deal with problems have been tried out with
varying levels of success. The scaling of the occupation numbers, which in
some sense can be thought of as adding diffusion, removed very many stripes,
but not all. By also adding the artificial heating term, setting the lowest
allowed temperature to 2400 K, all discontinuity problems have vanished.

The direct diffusion (with scaling) worked too fast, and smeared out too
much, even with very small a-values. Using all of the rate equations proved
effective, but the loss of consistency between the mass density and hydrogen
was not acceptable. In the worst cases, there would be 1.5 times more
hydrogen than the density allowed.
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Even though the program with these modifications run quite smoothly, the
Newton-Raphson solver still fails to converge from time to time, forcing ex-
ecution to a halt. When this happens the solver cuts the time step and tries
again. If this fails, the solver will remove the hydrogen nuclei conservation
equation and replace it with the last rate equation. If all of this fails, the
variables are averaged and simulation continues. Most of the time cutting
the time step is enough to give convergence. In 10-20% of the cases this is
not enough and all rate equations are used. In about 1% of the cases the
variables are averaged.

The backtracking method has not shown any success on failed convergence,
and It is not recommended for further use.

6.7 Performance

6.7.1 The Hion package

The Hion-package introduces eight additional equations to the eight original
MHD equations. These are non-linear and and their simultaneous solution
is found with the Newton-Raphson method. As described in section 6.2.1,
this requires the evaluation of eight functions (eq. 6.1, 6.2, 6.3 and 6.4),
their derivatives with respect to all the involved variables and the inversion
of an 8×8-matrix for every iteration in each cell.

The extra computing time introduced by the solver can roughly speaking be
split into three equal parts. One third is spent on inverting the 8×8-matrix,
one third is spent on evaluating the rate equations and their derivatives
and the last third is spent on what’s left (including advection, the last
three equations, administration etc.). The matrix inversions are done with a
gaussian elimination routine from the LAPACK1-package which means that
there is probably not much to gain (in terms of efficiency) by editing it. The
third representing the evaluation of the rate equations and their derivatives
can again be split into three roughly equal parts: obtaining the collisional
rate coefficients, obtaining the radiative rate coefficients and summing up
the rates in the equations. The collisional rate coefficients are found with
fifth order polynomial fits to values based on Johnson (1972). The evaluation
of the radiative rate coefficients include a lot of unavoidable if-testing inside
loops, due to the fixed/unfixed radiation temperature setup of the Sollum
approximation. It was, however, found some efficiency gain potential in the
last part. Summing up rates manually in loops, instead of by the use the
intrinsic function matmul, decreased the extra Hion-time by about 5-10%.

1http://www.netlib.org/lapack/
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Update
ghostzones

1

2

3

1

Figure 6.4: Ghostzones that can be trusted after the different steps in the
algorithm. Ghostzone with reliable values (light grey), ghostzone with un-
reliable values (dark grey) and subdomain (white). 1: Before prediction. 2:
After prediction. 3: After correction.

The single most time consuming routine in the last third is the interpolation
needed to obtain enoHi , nnoHe and their derivatives. The default is a standard
bilinear interpolation setup. In the Newton-Raphson solver, however, this
interpolation routine provides values that are not always varying as smoothly
as required to obtain convergence. When this happens, the solver starts
over with a bicubic interpolation setup which costs a lot more, but provides
smoothly changing variables.

6.7.2 Reducing communication

When high order spatial derivative setups are employed, the ghostzones
values need to be updated after every step (here a step means either the
prediction or the correction). Since there are five ghostzones and the Hion
advection setup is of low order only, communication can be limited to after
every correction step. Less communication comes at the cost of solving the
Hion-equations in the innermost ghostzones after each prediction step. Fig-
ure 6.4 shows schematically in one dimension which of the ghostzones that
can be trusted after each step of the algorithm. 1: Ghostzones just updated.
2: After the prediction step. It would have been possible to have three safe
ghostzones instead of two, but that would only provide extra computing
time and no gain. 3: After correction step only the subdomain cells contain
reliable values and ghostzones must be updated before continuing with a
new prediction step.

Less communication will be advantageous only if communication is slower
than the Hion solver. Some communication must take place between the
two steps, so the possible cpu time spent on waiting in MPI-calls for other
cores (load imbalance) will in general not be reduced. The communication
speed will depend on the machine on which the code is being run, and an
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input parameter has been added to the code in order to easily be able to
switch between the two communication setups. On both the local machines
at ITA and on the Notur Hexagon system the most efficient way to run the
code was found to be with communication after every step (see figure 6.5).

6.7.3 Speedtest

Figure 6.5 gives an impression on how the Hion-package performs on a vary-
ing number of cores. There is a discontinuity in both the upper and lower
panels separating the two different machines used: the typical machine at
the Institute of Theoretical Astrophysics (ITA, UiO) and the Notur Hexagon
system. The upper panel shows the average time per simulated time step
for Hion with full communication (solid), for Hion with reduced communi-
cation (dashed), for Hion with bicubic interpolation (see section 6.7.1) and
full communication (dash-dotted), and finally the average time per time step
with Hion switched off, using the equation of state lookup table (dotted).
The Bifrost code without Hion runs about double as fast on Hexagon than
on the ITA machines using 16 cores. Some improvement in performance is
seen also with the Hion-package going from ITA machines to Hexagon, but
not as much. Less communication does not increase speed for any number
of cores on any of the machines tested. When using only bicubic interpola-
tion, the average time per time step is doubled on Hexagon but only slightly
increased on ITA’s machines. The reason for this different behavior on the
two types of machines is not known. Some of the explanation seem to lie in
the bicubic interpolation routine’s use of Fortran’s intrinsic function matmul.
Doing the matrix multiplication manually seem to improve performance, but
not nearly enough to explain the large difference in the two interpolation
methods.

The lower panel of figure 6.5 shows the efficiency number, defined as the
average time per time step with the Hion-package switched on divided by
the average time per time step with the equation of state lookup table (which
is the dotted line in the upper panel). The line types correspond to the ones
used in the upper panel. Here it becomes very clear that the efficiency loss
due to bicubic interpolation on the ITA machines is very small compared to
what is the case on Hexagon. Running the code with the Hion-package on a
large number of cores will give the best efficiency. The test simulations used
to produce figure 6.5 was done on a grid with 256×128×160 points. When
running on 160 cores (which is the maximum value in the figure), the cores
have a subdomain with 32×32×32 points each.

These measurements show that the optimum performance for the Hion-
package is by running it on a large number of cores. The computing time
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Figure 6.5: Upper panel: Average time per time step. Hion with full com-
munication (solid), Hion with reduced communication (dashed), Hion with
bicubic interpolation and full communication (dash-dotted) and without
Hion (dotted). The discontinuity at 16 cores separate local machines at
ITA from the Notur Hexagon system. Lower panel: Corresponding effi-
ciency numbers, defined as Hion-time divided by the no-Hion time. Legends
are the same as in the upper panel and again the discontinuity at 16 cores
is due to the different machines on which the code was run in the test.
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will be factor 2-3 higher than when the equation of state lookup table is
used.



Part III

Numerical results
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Chapter 7

Simulation results

7.1 Computing details

Two three-dimensional radiation magnetohydrodynamic simulations have
been performed with the stellar atmosphere code Bifrost. Both simulations
were carried out on Notur’s Hexagon system which is a Cray XT4 distributed
memory system that consists of 1388 quad-core nodes (for a total of 5552
cores) interconnected with a high-bandwidth low-latency switch network
(SeaStar2).

The two simulations start from the same initial snapshot, but evolve some-
what differently as one of the simulations employs the LTE equation of state
and the other employs the Hion equation of state.

The simulation box spans a region 16x8x15 Mm stretching from the convec-
tion zone to the corona distributed on 256x128x160 grid points. The points
are equally distributed along the x-axis and y-axis with a point separation
of 65 km. Along the z-axis more grid points are concentrated towards the
lower parts of the atmosphere with a point separation of 32 km. Further
up in the coronal regions of the atmosphere, where the physical phenomena
typically has a larger spatial extent, less grid points are needed and the
spacing is expanded to 440 km.

The LTE simulation covers 32 solar minutes and was done on 128 cores in
72 hours, which is equivalent to about 9200 cpu hours. The Hion simulation
was significantly more expensive on the computational side. It covers 34
solar minutes and clocked in at 265 hours working on 160 cores. This is
effectively about 42000 cpu hours. Table 7.1 contains more information
about the simulations. The computing time per time step of the non-LTE
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Simulation data

EOS LTE Hion

Solar time [min] 32 34

Number of time steps 260000 190000

Number of cpus 128 160

Simulating time [h] 72 265

Cpu time [h] 9200 42000

Cpu time per timestep [s] 127 796

Table 7.1: Simulation data. Simulations carried out with the non-LTE
equation of state produces more realistic results at a higher computational
cost. In this case the non-LTE simulation time exceeded that of LTE by a
factor 6.3.

simulation was a factor 6.3 larger than that of the LTE simulation (- the
simulations were carried out before the discovery of the code’s sensitivity to
the choice of interpolation method, see figure 6.5).

7.2 Initial model

Both simulations start from the same initial state. The snapshot is in a state
of dynamic equilibrium where the hydrogen ionization is taken to be in LTE.
Figure 7.1 shows the mass density and temperature in four horizontal layers,
z = {5.00, 2.04, 1.00, 0.20} Mm. Figure 7.2 shows the degree of hydrogen
ionization (Fi = nHII/(nHI + nHII)) and the electron density at the same
heights.

The lower slice (0.20 Mm) corresponds to the photosphere. A vague granular
pattern is visible in all the variables (at lower z it is more pronounced). All
are fairly constant except for the hydrogen ionization degree which has a
range of nearly 8 orders of magnitude. At z = 1.00 Mm this range is even
larger, covering almost 15 orders of magnitude. The large range can be
attributed to the exponential temperature dependence in the Saha equation
(eq. 2.35). The electrons present at this height are coming from the metals,
except for in the red spots where the hydrogen ionization level is high enough
to dominate electron contribution (this happens approximately when Fi >
10−4, see fig. 5.2).

Typical changes in the lower two heights are occurring on a sub-Mm length
scale. Higher up in the atmosphere, changes increase their spatial extent.
At x = 6 and x = 13 Mm a low density height temperature structure spans
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Figure 7.1: Mass density (ρ, left column) and temperature (T , right column)
at four atmospheric heights. From top to bottom: z = 5.00 Mm, z = 2.04
Mm, z = 1.00 Mm and z = 0.20 Mm. The line in upper left panel (y = 1.30
Mm) indicates the position of the vertical slices displayed in figure 7.3.
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Figure 7.2: Degree of ionized atomic hydrogen (Fi = nHII/(nHI + nHII),
left column) and electron density (ne, right column) at four atmospheric
heights. From top to bottom: z = 5.00 Mm, z = 2.04 Mm, z = 1.00 Mm
and z = 0.62 Mm.
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the y-dimension. These are the foot points of a loop, visible in figure 7.3.
The loop forms a tunnel parallel to the y axis.

In the tunnel top, the temperature is never below 23000 K. In such temper-
ature regimes virtually all hydrogen and helium are ionized causing them to
become the dominating electron donors (see fig. 5.1). Consequently every
gram of mass contributes with the same amount of electrons and as a result
the electron density is proportional to the mass density.

7.3 Results

7.3.1 Time evolution of the two simulation runs

Figure 7.4 displays the time evolution of the (top to bottom) hydrogen
ionization degree, temperature and electron density in the column (x, y) =
(13.0, 6.5) Mm for both simulation runs (non-LTE: left, LTE: right). Other
columns have been looked at and the thermodynamic behaviour is similar.
Figure 7.5 display the time evolution of the same variables, but this time
in a horizontal row located at (y, z) = (1.30, 1.45) Mm. At this height the
differences between the two simulation runs really stand out.

Already after the first shock has passed the time dependent hydrogen ion-
ization level seems to have found its dynamic equilibrium or relaxed state.
The system as a whole seems to reach such a state only after about 15
minutes entering a somewhat more chaotic phase especially visible in the
temperature structure.

From the height-time plots it is clear that the hydrogen ionization degree is
deviating from its LTE value in the chromosphere, while the LTE treatment
seems to be a good approximation to photospheric and coronal conditions.
LTE ionization levels adjust instantly to local changes of energy density
causing large temporal variations over a scale of a few minutes. Hydrogen is
ionized in the shocks propagating through the atmosphere and recombines
between them as energy density decrease. In the non-LTE run recombination
happens on finite timescales long enough for hydrogen to remain ionized even
between the shocks.

As a result of the higher and less varying level of hydrogen ionization (which
means small variations in the ionization energy), the temperature will have
an increased sensitivity to changes in the energy density. This is seen in
figures 7.4 and 7.5 where the temperature in the non-LTE case fluctuates
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Figure 7.3: Clockwise from top left: mass density, degree of hydrogen ion-
ization, electron density, plasma beta and temperature. All panels display
the same vertical slice of the initial model (y = 1.30 Mm, indicated on up-
per left panel of fig. 7.1). The over-plotted arrows in the plasma beta panel
indicates the direction and magnitude (proportional to arrow length) of the
magnetic field projected onto the vertical slice.
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Figure 7.4: Time evolution of atomic hydrogen ionization degree
(top),temperature (middle) and electron density (bottom) for non-LTE (left)
and LTE (right) equation of state. Evolution is shown in the vertical col-
umn (x, y) = (13.0, 6.5) Mm and the color scale is adjusted to span identical
ranges for a variable’s two panels. Large scale features and dynamics are
similar in the two runs. Major differences are seen in the chromosphere
where the hydrogen ionization level, in the non-LTE run, is found to be
approximately constant while adjusting on an infinitely small timescale in
the LTE run causing larger fluctuations.
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Figure 7.5: Time evolution of atomic hydrogen ionization degree
(top),temperature (middle) and electron density (bottom) for non-LTE (left)
and LTE (right) equation of state. Evolution is shown in the horizontal col-
umn (y, z) = (1.30, 1.45) Mm and the color scale is adjusted to span iden-
tical ranges for a variable’s two panels. Large scale features and dynamics
are similar in the two runs. Less change in ionization levels result in large
temperature variations and small electron density variations in the non-LTE
run. In the LTE run large changes in the ionization levels result in small
temperature variations and large electron density variations.
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more than in the LTE case giving more small structures and larger varia-
tions. Generally it is true to say that energy density changes in the non-LTE
run will alter the temperature while keeping the ionization levels more con-
stant. The opposite is true in the LTE case where ionization levels fluctuate
while temperature is kept stable. This was also pointed out by Leenaarts
et al. (2007).

Electron densities in the chromosphere follow the hydrogen ionization de-
gree as hydrogen is the dominant electron contributor. Less fluctuations are
present in the non-LTE run than in the LTE run as the ionization level vari-
ations are smaller. The two runs have similar electron densities in the shock
fronts since the equilibration time, τe (see section 2.4.1), here is becoming
small enough for local conditions to determine the ionization state. Phys-
ically this corresponds to gas compressing and increasing the importance
of the collisional transition rates. Between the shocks electron densities are
sustained in the non-LTE run and decrease due to recombination in the LTE
run.

7.3.2 At 25 minutes

The mass density at various heights after 25 minutes of solar time is shown
in figure 7.6. The left column holds the result obtained from the non-LTE
run and the right column values are obtained from the LTE run. The two
runs have produced similar densities and most structures (especially those
that are of large scale) are common and can be identified in both runs.
This is consistent with what was found in section 7.3.1 with the large scale
features developed in both simulation runs. There are still some differences,
and inspection of the photospheric oscillations in figure 7.4 (wave form at
z ≈ 0 Mm) shows exactly four periods after 25 minutes in the non-LTE
run and slightly above 4 periods in LTE-run. This gives the impression of
the LTE-obtained densities as being slightly more developed than non-LTE
densities. Viscosity coefficients were adjusted during the simulation and this
may very well be the cause of the small difference in period. It is less likely
that the non-LTE treatment of the hydrogen would give this effect as the
oscillations are driven from the convective motions below the photosphere -
a region where LTE is a good approximation (fig. 7.4).

The hydrogen ionization degree at heights z = 3.96 Mm, z = 2.04 Mm, 1.00
Mm and z = 0.20 Mm is shown in figure 7.7. The left column displays values
obtained from the non-LTE run and the right column displays the values
obtained from LTE relations consistent with the mass density and internal
energy from the non-LTE run. Note that the color scales are adjusted to
display differences better.
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Figure 7.6: Mass density for the non-LTE run (left) and the LTE run (right)
after 25 minutes of solar time at heights from top to bottom: z = 3.96 Mm,
z = 2.04 Mm, z = 1.00 Mm and z = 0.20 Mm. The color scale is adjusted
to span an equal range for the two runs at each height. The two runs have
not evolved identically, but semi-large and large scale features (such as in
the two upper panels) are very similar. Also the vague granular patterns
are the same.
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Hydrogen ionization levels are not found to be in LTE in any of the featured
heights. In the z = 3.96 Mm slice the ionization degree varies from about
40% to 100%. Temperatures are large (see fig. 7.8) and the instantaneous
ionization level is generally higher than predicted by the non-LTE run.

At height z = 2.04 Mm structures are very similar except for the two dark
spots at x = 7 Mm where the non-LTE hydrogen ionization degree is about
ten orders of magnitude higher than the corresponding LTE value. It is not
easy to read it off the figure itself, but by numeric inspection it is found
that the LTE ionization degree on average (at z = 2.04 Mm) is 21% higher
than the corresponding non-LTE values. At the next height, z = 1.00 Mm,
deviations from LTE are easily spotted, with LTE values spanning about
ten orders of magnitude more than the non-LTE values. Some features
are common while others are only found in the LTE values. The z = 0.20
Mm panels both show granular patterns. Again the LTE values show greater
variation than those of non-LTE. However, the differences are here occurring
in a range where hydrogen plays an insignificant role both as an electron
donor and in the energy balance (eq. 2.32) and as such the electron density
and temperature will be very near their LTE values.

Figures 7.8 and 7.9 show for both non-LTE and LTE the temperature and
electron density, respectively, at the four heights z = 3.96 Mm, z = 2.04
Mm, z = 1.00 Mm and z = 0.20 Mm. The left columns display the values
obtained from the non-LTE simulation run and the right columns display
the values obtained from LTE relations consistent with the mass density and
internal energy from the non-LTE run.

The non-LTE temperature is generally higher than that of LTE except in
the z = 0.20 Mm layer. A lot more structure is present in the non-LTE
values. The upper chromosphere (corresponding to the blue parts of the
z = 3.96 Mm layer) has a temperature of about 8000-10 000 K. The LTE
value is about 6000 K. In the corona (corresponding to the red parts of the
upper panels) temperature rises to a few hundred thousand degrees. Here
hydrogen is completely ionized leading to a match in the non-LTE and LTE
values. The same qualitative (and quantitative!) behaviour is found in the
z = 2.04 panels with the exception that there is far less coronal gas present
at this height. At z = 1.00 Mm small temperature fluctuations are present.
These are due to instabilities propagating through the atmospheric layer
that have not yet been washed out or become large scale. The low temper-
ature fluctuations are indicated also in the LTE temperature while the high
temperature ones only appear with non-LTE treatment. The electron den-
sity in the high slice show the same structure in both non-LTE and LTE but
it is on average about 5% greater in LTE. This is because of instantaneous
ionization in the high temperature regions. At z = 2.04 Mm much of the
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Figure 7.7: Ionization degree obtained from the non-LTE simulation run (left
column) and the LTE values obtained from the mass density and internal
energy from the same (non-LTE) snapshot (right column) after 25 minutes
of solar time at various heights: z = 3.96 Mm, z = 2.04 Mm, z = 1.00 Mm
and z = 0.20 Mm. The color scale is adjusted to span an equal range at
each height. Note that the scale in the three upper rows is concentrated
to the higher values. In none of the heights is hydrogen ionization levels in
LTE but it is fairly near in the regions corresponding to photospheric and
coronal conditions.
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Figure 7.8: Temperature after 25 minutes of solar time. Values obtained
from the non-LTE simulation run (left column) and LTE values consistent
with the mass density and internal energy from the non-LTE run (right
column) at the four heights: z = 3.96 Mm, z = 2.04 Mm, z = 1.00 Mm
and z = 0.20 Mm. The color scale is consistent for each height. Only in the
lowermost slice is LTE seen to be a precise approximation.
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same is true. The non-LTE ionization level is lower than it is in LTE causing
a lower electron density. This difference is particularly pronounced in the
local temperature maxima. An important non-LTE correction is shown at
y = 6 where electron density is about ten times higher than in LTE. At
z = 1.00 Mm the non-LTE electron density show a smoother and less ex-
treme behaviour than that of LTE due to the temperature sensitivity of the
LTE approximation. In the z = 0.20 Mm layer the density is high enough
for collisions to dominate particle interactions, which gives good agreement
between non-LTE and LTE.

7.3.3 General picture

Figure 7.10 sums up the overall result. An instability has has developed into
a shock and is propagating up through the atmosphere. Some of the energy
the shock is carrying goes into ionizing hydrogen, and some goes into the
thermal energy, increasing the temperature. The increase in ionization also
results in an increase in the electron density.

LTE values are shown in dotted lines. They show that the energy that is
being transported by the shock will much rather go into ionizing the material
than it will increase temperature (which has a smooth variation), if local
conditions were to decide. Behind and in front of the shock the ionization
degree drops below time dependent values due to instantaneous adjustment
to the local conditions, also visible in the electron density. In the upper
chromosphere below the transition region the extra internal energy is spent
on keeping the ionization level high, preventing a temperature rise. When
there is no more hydrogen left to ionize and nowhere to store the internal
energy, temperature quickly rise to coronal values where time dependent
and instantaneous local values unite.

This difference in shock structure in LTE and non-LTE resembles that of
Carlsson & Stein (1992) where an exact treatment of the hydrogen radiation
transfer was employed.
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Figure 7.9: Electron density after 25 minutes of solar time. Values obtained
from the non-LTE simulation run (left column) and the LTE values consis-
tent with the mass density and internal energy from the same run (right
column) at the four heights: z = 3.96 Mm, z = 2.04 Mm, z = 1.00 Mm
and z = 0.20 Mm. The color scale is consistent for each height. Differences
between non-LTE and LTE values follow the ionization degree (fig. 7.7).
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Figure 7.10: Hydrogen ionization degree (upper panel), temperature (middle
panel) and electron density (lower panel) after 29 minutes and 50 seconds.
Curves indicate non-LTE values (solid) and LTE values consistent with the
mass density and internal energy from the non-LTE simulation run (dashed).



Chapter 8

Conclusion and outlook

The Bifrost code now contains a functional time dependent non-LTE hydro-
gen solver, providing a more realistic equation of state than the standard
precomputed LTE table. This added realism comes at a high, but reason-
able computational cost (a factor 2-3 more than with the precomputed LTE
lookup table). The solver has been tested and is found to provide results
consistent with earlier work (Carlsson & Stein, 2002; Leenaarts et al., 2007).
Due to long time scales for ionization and recombination of hydrogen, its
ionization degree will differ significantly from LTE values in chromospheric
regions. Here, hydrogen dominates the equation of state and this leads
to larger temperature fluctuations and smaller electron density fluctuations
than predicted by LTE. The large scale dynamics are found to be less sen-
sitive to the choice of equation of state.

8.1 Shortcomings

8.1.1 The Sollum-approximation

The radiative transfer of the Sollum-approximation was developed in a one-
dimensional setting and its use in three-dimensional simulations might not
be very accurate. The Sollum-approximation also assumes all Lyman tran-
sitions to be in detailed radiative balance. This is true up until just below
the transition region, so the results here may very well be off.
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8.1.2 Radiative energy flux divergence

The radiative heating term in the energy equation is based on matter in LTE,
reading opacities and scattering coefficients from a table based on the mass
and energy density. The more accurate temperature and electron densities
from the Hion simulation should be employed as lookup variables to improve
the realism of the radiative transfer. More electrons in Hion simulation may
give more H−-heating that might give way for a reduction in the use of the
artificial heating term (section 6.5.3) in the cool pockets of the simulation.

8.2 Future work

In the study of the chromosphere, results from simulations carried out with
the realistic equation of state are interesting, as their temperature and elec-
tron density structures (generally not predictable by assuming LTE), enable
for production of improved synthetic spectra of chromospheric lines. Figure
8.1 shows an observation of Hα which is such a line. A lot of structure is
visible here that is not yet being reproduced in synthetic spectra.

The direct use of the occupation numbers from an Hion simulation to com-
pute the emergent Hα intensity would not show any structure at all as the oc-
cupation numbers were computed by assuming the emergent intensity to be
constant. Figure 1 of Leenaarts (2010) shows the statistical equilibrium ver-
tically emergent Hα line core intensity computed from the non-equilibrium
temperature and electron density from the two-dimensional simulation pre-
sented in Leenaarts et al. (2007). The intensity shows a granular pattern
with superimposed shockwave structure. This is not consistent with obser-
vations where the granulation patterns in general do not show (figure 8.1).

Whether or not the third dimension in the Hion simulations has significance
must be determined by solving the statistical equilibrium also for new re-
sults (such as those presented in chapter 7). The statistical equilibrium
assumption may in itself be erroneous. It would be better to solve the time
dependent radiative transfer problem assuming hydrogen to be a minority
species, based on a time series of state variables from an Hion simulation
(where of course the hydrogen is treated as a majority species). In addition
to improvements of the already mentioned shortcomings, these are problems
that should be addressed in the future.
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Figure 8.1: Hα image. Observed June 11th 2008 with with the CRisp Imag-
ing SpectroPolarimeter (CRISP) instrument on the Swedish 1-m Solar Tele-
scope (SST). The field of view is 66.6x68.3 arcseconds and there is a lot of
filamentary structure as well as a small sunspot in the middle.
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