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Chapter 1

Introduction

The black, empty space between the stars in the sky contains a very faint
radiation that was first detected in 1964. It had no relation to any known
source, and no matter which direction one looked the same type of radiation
could be observed. It was everywhere. This radiation was named the Cosmic
Microwave Background radiation, or CMB for short.

The CMB is the afterglow of the Big Bang. In the beginning the universe was
a hot, dense soup of elementary particles and radiation, and impenetrable to
light. Then, after about 300.000 years the universe suddenly got transparent,
and light was finally able to shine through space. Some of this light has
continued to pass through the expanding universe unhindered for the last
13.7 billion years until it hit our telescopes, and this is the CMB we are
observing today.

The CMB is remarkably uniform, showing almost exactly the same temper-
ature in all directions. Almost. There turned out to be small fluctuations
present. Some of these variations were on a small scale, some stretched over
large parts of the sphere. Looking at figure 1.1 it is possible to notice this
effect. The figure shows an image of the variations in the CMB, as observed
by the WMAP project [2]. We clearly see the tiny fluctuations, but we also
get a sense of warmer and colder areas stretching over larger scales.

By statistical studies of the variations, it is possible to characterize the power
of these fluctuations on different scales, leading to what we call the power
spectrum. The power spectrum estimated from the WMAP results is shown

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The CMB anisotropies as seen in WMAP. The grey mask covers
areas to remove unwanted radiation from the galaxy and various sources.

in figure 1.2, and here we see the power of the variations for the first 1000
scales. The scales are known as multipoles.

The power spectrum is a tremendously important tool in cosmology. It can be
used to test cosmological models and make constraints on the cosmological
parameters. The observed variations in the CMB was created by sound
waves traveling through the cosmic fluid that existed right after the big bang.
These sounds were created and influenced by the behaviour and detailed
composition of the early universe. The exact shape of the power spectrum is
therefore heavily dependent on what the universe was like in the beginning,
and the CMB is an observational window into this earliest time.

To make the best possible estimates we want better images of the CMB. The
extraction of the power spectrum from these images are not a trivial matter
however. It involves computationally heavy statistical calculations, and with
an increasing amount of data to analyze we are rapidly approaching the limits
of what we are able to handle with conventional, brute-force methods. New
experiments are already underway to give even better resolution images, and
to be able to handle these we need more efficient techniques to be able to
estimate the power spectrum in a computationally reasonable time.
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Figure 1.2: The WMAP power spectrum up to ℓ = 1000.

One such technique is to use needlet transformations. Needlets belong to a
special family of functions, known as wavelets. The needlets are constructed
to be able to pick out selected scales from the CMB maps. Due to the
special properties of the needlets it may be possible to create algorithms
that promises to be much simpler and faster than conventional methods for
estimating the power spectrum.

In this thesis we will look at one specific algorithm for estimating the power
spectrum, developed by Oh, Spergel and Hinshaw [9]. This algorithm will
be combined with needlet transformations, and it is then hoped that we will
be able to get good, fast estimates for the power spectrum.
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Chapter 2

Background

Before we begin with actually trying to make estimates of the power spec-
trum, it is useful to take a look at the cosmological model. We will examine
what the model predicts, and why the power spectrum is such a useful char-
acteristic. We will also look closer at how to get statistical information from
the CMB maps.

2.1 Cosmology

The birth of modern cosmology took place in the first decades of the 20.
century. In 1915 Einstein presented his theory of General Relativity, making
it possible to describe the gravitational evolution of the timespace contin-
uum. And in 1929 Hubble discovered evidence of an expanding universe.
The galaxies in the universe were all moving away from us, and at a rate
proportional to their distance from us. Combined these lead to the familiar
Big Bang theory we have today.

With the discovery of the Cosmic Microwave Background radiation in 1964
it has become possible to gain information about the details of the birth and
evolution of the universe. From the CMB we are able to extract the power
spectrum, and this is greatly influenced by the details of the cosmological
model. The following is based on [3] and [4].

5



6 CHAPTER 2. BACKGROUND

2.1.1 Cosmological models

From observations we have evidence for a homogeneous, isotropic universe
that is expanding uniformly. On large scale the mass seems to be evenly
distributed, and this we call homogeneity. By isotropy we mean that every-
thing looks the same in every direction, there are no directions in the sky
that stands out.

Hubble discovered that the universe was expanding uniformly, and it is com-
mon to describe this by using the scale factor a(t). The scale factor describes
how the distances in the universe vary with time, and by using it we can set
up a coordinate system known as a comoving grid. This is a coordinate sys-
tem that follows the expansion of the universe. To illustrate the usefulness
of the comoving grid we may compare it with what happens in real space.
Figure 2.1 shows the expansion of the universe as we see it in real space.

Figure 2.1: The expansion of the universe in real space

As the scale factor increases the distances in the universe grow. Figure 2.2
shows how this looks in the comoving grid. Nothing particular happens as
the scale factor increases, and the comoving distance r between two galaxies
remains the same as long as they do not have any proper motion relative to
each other. To find the proper distance dP at any time we would then need
to multiply by the scale factor a.

dP = a(t)r (2.1)

It is common to use subscript zero to indicate values at present. Thus, t0
means present day, and a0 is the scale factor today. It is convenient to use
a0 = 1. In the past, the scale factor was smaller than one since the universe
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Figure 2.2: The expansion of the universe in comoving coordinates

has been expanding. If we assume continued expansion, the scale factor will
be larger than one in the future.

Hubble discovered that the galaxies were moving away from us at a rate
proportional to their distance. He did this by measuring their redshift. This
is an effect similar to the doppler effect, where the frequency of sound or
light is perceived as lowered for the observer when the object emitting it is
moving away from the observer. The radial velocity (vr) at which two points
moves away from each other is then given as

vr =
d

dt
dP = ȧr

=
ȧ

a
dP (2.2)

The radial velocity is proportional to a factor ȧ/a, and we define this rate as
the Hubble parameter:

H(t) =
ȧ

a
(2.3)

and the radial velocity can be written as

vr = H(t)dP (t) (2.4)

The radial velocity at which anyting moves away from us is then the product
of it’s proper distance and the Hubble parameter. The further away anything
is, the faster it moves away from us.

In it’s most compact form, the Einstein equations can be written as

Gµν = 8πGTµν (2.5)
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Here Gµν is the Einstein tensor, describing the space-time geometry; Tµν is
the energy-momentum tensor, describing the energy content of the universe;
and G is Newton’s constant.

To solve the Einstein equations we need a description of the geometry of
spacetime, in the form of a line-element or a metric. In the case of an ex-
panding universe we use the following line-element, known as the Friedmann-
Robertson-Walker line-element:

ds2 = −c2dt2 + a2(t)

[
dr2

1 − kr2
+ dΩ2

]

(2.6)

This basically describes a spacetime geometry where the spatial part is scaled
by the scale factor, and it includes the possibility for curvature of space via
the parameter k.

Using Einstein’s theory of General Relativity and the assumption of a ho-
mogenous and isotropic universe, it is then possible to develop the Friedmann-
equations:

(
ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ (2.7)

ä

a
= −4πG

3

(

ρ +
3p

c2

)

(2.8)

(2.9)

and the adiabatic expansion:

ρ̇ = −3
ȧ

a

(

ρ +
p

c2

)

(2.10)

These equations describe the evolution of the scale factor a with respect to
the energy density ρ, the pressure p of the various components in the universe,
and the curvature of space, k. These equations are not independent. Any
one of the equations can be derived from the other two. Since they contain
three different variables we need a way to get rid of one of them. Luckily
pressure can be expressed as a simple equation of state, relating the pressure
to the energy density as: p = wρc2. Here w is a constant and will depend on
the exact nature of the particle we are describing.

The Friedmann equations will have very different solutions depending on
what kind of particles we put into the model. A model of a universe consisting
of radiation, matter and a cosmological constant would have to consider the
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energy density of each component, and we would write this as ρ = ργ+ρm+ρΛ

in the equations. Each of these would have a pressure component as well.

As we have seend the Hubble parameter is defined as H(t) ≡ ȧ/a, and
inserting this into eq. 2.7 for present time we get

1 +
kc2

a2
0H

2
0

=
8πG

3H2
0

ρ0

Since the term
3H2

0

8πG
have the unit of density, we define this as the present

value of the critical density, written as ρc0. Further, we define a new measure
of densities in units of the critical density as

Ω0 ≡
ρ0

ρc0

and the curvature density parameter as

Ωk0 = − kc2

a2
0H

2
0

(2.11)

and this leads to this simplified version of eq. 2.7:

Ω0 + Ωk0 = 1 (2.12)

For a universe with no curvature we have Ωk0 = 0, and the energy density
has to be equal to the critical density today.

The most well known particles we include in the models are of course radia-
tion and baryonic matter, but recent observations have lead to the inclusion
of more exotic elements as well. To explain some observed features of galac-
tic rotation we include dark matter, a kind of matter with the property that
it does not interact electromagnetically, and this renders it virtually unde-
tectable. It does however interact gravitationally, and has an impact on large
scale structures like galaxies and matter distribution in the universe.

Using standard candles, sources of light of which we know the luminosity
and therefore the distance to, and comparing this with their redshift, it
appears that in the last few billion years the expansion rate of the universe
has accelerated. To explain this we postulate the existence of dark energy.
This energy must have the property of negative pressure, and a common way
to include this in the Friedmann equations is by describing it as a cosmological
constant.
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The result of trying out different parameters and components leads to widely
different models for the evolution of the universe. It is possible to have a static
solution, the one that was preferred by Einstein and the rest of the scientific
community before Hubbles discovery. Other models include universes that
are expanding exponentially, leading to eternal universes with no beginning
and no end; universes with a definite ending like the big rip or a collapse back
to a singularity; or the one most cosmologists today belive is the correct one,
a universe with a definite beginning in the Big Bang and eternal expansion
afterwards.

The reason for having landed on this model is of course by matching models
with observations. Using eq. 2.12 it can be expressed as

0.3Ωb + 0.7ΩΛ = 1

This describes a spatially flat universe where about 70% of the energy con-
tent comes from the cosmological constant, and the rest comes from matter,
mostly in the form of dark matter. There is some radiation present as well,
but the contribution is vanishingly small, with a value Ωr0 = 8.4 · 10−5.

It should be evident that we have a lot of freedom in choosing what param-
eters we want to populate our equations with. We clearly need to be able
to find a reliable observational test for which model to prefer. The CMB
gives us a very solid way of finding bounds for the many parameters we are
working with, and we will look at where the CMB came from next.

2.1.2 Recombination

Combining the Friedmann equations (eqs.2.7 to 2.10) with the Hubble expan-
sion and the measured energy content of the universe, we have come to accept
the Big Bang theory as the preferred model. In this theory the universe must
have started out in a very dense, very hot state. This state can be described
as a cosmic fluid consisting of elementary particles and radiation. At this
early time the electrons are not bound to protons, and electromagnetic in-
teractions takes place between various particles all the time. This means
that photons can only move a short distance before hitting the very large
electromagnetic cross-section of a free electron, and will then be bounced in
a different direction.

When the universe expands this cosmic fluid becomes less dense and cool off.
At a sufficiently low temperature, when the universe has expanded enough,
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the electrons no longer have enough kinetic energy to be able to escape the
protons and will instead be bound to them, forming the first atoms. An
effect of this is the neutralization of the cosmic fluid. The photons are now
free to move and the universe has suddenly become transparent.

This is the event known as recombination, and the radiation surviving from
this time is what we observe as the CMB. Another name for this event is last
scattering surface, since this represents a boundary of how far back in time
we are able to observe. The last scattering surface is a star-like surface that
sent out the CMB radiation, and we are unable to see beyond this boundary.

Using eq. 2.10 we may relate the energy density to the scale factor today.
For matter this leads to

ρm = ρ0m

(a0

a

)−3

(2.13)

and for radiation we get

ργ = ρ0γ

(a0

a

)−4

(2.14)

This means that as the scale factor a increases, the energy density of both
matter and radiation decreases. But because of the difference in power, the
energy density of radiation decreases much faster than for matter. Today
we measure the energy density of matter to be dominant, while radiation is
vanishingly small. By reversing the process however, it is clear that at some
point the two must have been equal, and before this time radiation must have
been the dominant factor. Setting eqs. 2.13 and 2.14 equal to each other
we find the scale factor at equality as aeq =

ρ0γ

ρ0m
=

Ω0γ

Ω0m
. In astronomy an

unambiguous way to measure time or distance is using redshift. The higher
the redshift, the more remote in time and space the event measured is. The
redshift z is given as

1 + z =
a0

a
(2.15)

and using this we find that the matter-radiation equality took place at z ≈
3570.

The temperature of the CMB has been precisely measured to T = 2.725 ±
0.002K and behaves like almost perfect black body radiation. Because of this
the energy density can be calculated as

ργ = 2

∫
d3p

(2π)3

1

ep/T − 1
p (2.16)

leading to

ργ =
π2

15
T 4 (2.17)
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Since we know from eq. 2.14 that radiation scales as a−4, the temperature
must scale as a−1. This makes it possible to calculate the scale factor at
recombination. We know that this process takes place at about T∗ = 3000K,
and are able to find the scale factor a∗ at recombination. We have a∗/a0 =
T0/T∗, and using a0 = 1 we get:

a∗ =
T0

T∗
≈ 2.73

3000
∼ 10−3

The visible universe has expanded to a size about 1000 times greater than
at recombination, and this event took place at z ≈ 1100.

2.1.3 Inflation

The speed limit of the universe is given by the speed of light, c. By dividing a
distance dP by c we get the time it would take for light to reach us. Looking
at equation 2.4 we see that this is also the inverse of the Hubble parameter.
This quantity, 1

H
, is known as the Hubble-radius, and it sets a limit to what

distances can be causally connected at present. This radius describes a sphere
called the Hubble sphere, and any signal sent from outside this sphere would
have to move at a speed greater than c to be able to reach us at present.

Looking at figure 2.3 we see the light from two points on opposite sides of
the Hubble sphere, their light just reaching us now. But there is a problem

Figure 2.3: Our Hubble sphere at present.

here. The CMB from both directions are remarkably similar, but they are
not within each others Hubble radius, and there is no way information from
point A could have gotten to point B in the lifetime of the universe. Since the
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points can not have been causally connected, there is no good explanation
for why the two points are as similar. The temperature measured from two
very different points at the last scattering surface should not be as similar
unless they somehow were in equilibrium at some point in time.

The basic idea behind the theory of inflation is that shortly after the Big
Bang, a very rapid expansion took place. During a period of time much
shorter than a second the universe expanded at such a rate that a volume
the size of an atom would blow up to astronomical scale. This ensures that
points that are currently not causally connected could have been at an early
stage. Let’s look at what happens to the Hubble radius by rewriting eq. 2.3
as

da

a
= Hdt (2.18)

If we assume that inflation took place in a very short period of time we may
assume the Hubble radius to be constant, and the solution becomes

a(t) = aee
H(t−te) (2.19)

where te is the time at the end of inflation and ae is the scale factor at this
time. As long as the duration of the inflation period is much smaller than
the Hubble radius we can have a period of exponential growth of the scale
factor.

Figure 2.4: Inflation in real space.

The result of the rapid expansion would be that spatial distances blew up,
while the Hubble radius remained constant. Regions that previously had time
to get into equilibrium, would now be moved outside the Hubble radius and
no longer be causally connected, as seen in figure 2.4. The separate points
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would continue to evolve according to the same physical laws however, and
this explains the smoothness we observe at present when these points reenter
our Hubble sphere. In figure 2.5 we see the effect in comoving coordinates.

Figure 2.5: Inflation in comoving coordinates.

Here the distances between different points never changes, but inflation has
the effect that the Hubble radius is shrinked down drastically. As the Hubble
sphere slowly grows again after inflation, these points reenter our Hubble
sphere and we can observe the smoothnes that was caused by inflation.

There is an added bonus in these inflationary models. Since the observable
universe existed on a sub-atomary scale before inflation, it was also governed
by quantum mechanics. In quantum mechanics you cannot have completely
determined states, there would exist small fluctuations in position and move-
ment, and therefore in density. During inflation these fluctuations were blown
up to cosmological scales. Over time the fluctuations developed into regions
of lesser or greater density, and at the time of recombination these variations
caused varying gravitational potentials that the radiation forming the CMB
had to move out of. This we observe as fluctuations in the temperature of
the CMB today. The small over- and underdensities that existed at recom-
bination has since developed into galaxies and the large scale structures we
see in the universe today.

With a single mechanism we have explained both the smoothness of the
CMB and the small fluctuations we observe. Furthermore, using known
physical laws, we are able to determine how these fluctuations develop, and
this makes it possible to determine how the cosmological parameters influence
the observed CMB.
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A problem with this inflationary model is that we know no real mechanism
that could have caused it. It is however the most successful explanation we
have, and can be used to establish initial conditions when we want to describe
the developent of the fluctuations in the CMB.

2.1.4 Anisotropy

Inflation produces inhomogenities in the cosmic fluid of the universe, which
eventually lead to the formation of galaxies. Today we are able to observe
these inhomogenities as anisotropies in the CMB, small fluctuations in tem-
perature depending on which direction we look. We need to be able to
describe how the fluctuations develop into the observed CMB, and a way to
do this is described by Dodelson in his book Modern Cosmology [3]. I will
make a short overview of the derivation here.

To begin with, we modify the line-element given by eq. 2.6. We assume a flat
universe and include small perturbations to the Newtonian potential, Ψ, and
the spatial curvature, Φ. These perturbations are set up in the inflationary
epoch. In cartesian coordinates we get the metric tensor:

g00(~x, t) = −1 − 2Ψ(~x, t)

g0i(~x, t) = 0

gij(~x, t) = a2δij(1 + 2Φ(~x, t)) (2.20)

The metric tensor is an alternative description of the geometry of spacetime.
This is the Friedmann-Robertson-Walker metric for a universe with no spatial
curvature, describing a homogenous and isotropic universe governed by the
scale factor a, in addition to the small perturbations.

Einstein’s field equations tells us how the spacetime geometry determines
the movement of it’s content. At the same time, all energy content influ-
ences how the spacetime geometry changes. To be able to use first-order
perturbation theory and determine the effect of the perturbations, we need
to know a great deal about all the particles that constitute the universe.
This means knowing how radiation, electrons, protons, neutrinos and dark
matter behaves. To do this we have to develop the Boltzmann equation for
each of these components. The Boltzmann equation is used to describe the
number density and momentum for a particle given the rate of producing
and eliminating that specie of particle.
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In the case of photons we expect the Bose-Einstein distribution, with a small
perturbation.

f(~x, p, p̂, t) =

[

exp

{
p

T (t)[1 + Θ(~x, p̂, t)]

}]−1

(2.21)

Here Θ represent the temperature fluctuations, and they are dependent on
direction of momentum as well as position and time.

For studies of the anisotropies in the CMB it is convenient to expand the
fluctuations Θ into multipoles Θℓ. A multipole is defined by the following
transformation:

Θℓ ≡
1

(−i)l

∫ 1

−1

dµ

2
Pℓ(µ)Θ(µ) (2.22)

This is a Legendre transform, where P is the Legendre polynomial, and µ is
the angle between the direction of the photon and the direction in which the
temperature is changing. Θ0 is known as the monopole, Θ1 is the dipole, Θ2

the quadrupole and so on.

I will not get into the details of the derivations, they may be found in Do-
delson’s book [3]. In short, we have to determine the Boltzmann equation
for each particle, and use the perturbed metric on the Einstein equations to
determine the relation between the perturbed potentials and these compo-
nents. It is then shown how we can develop a set of differential equations
connecting all of the variables involved. Stealing from Dodelson we get the
following:

Θ̇ + ikµΘ = −Φ̇ − ikµΨ − τ̇

[

Θ0 − Θ + µvb −
1

2
P2(µ)Π

]

(2.23)

Π = Θ2 + ΘP2 + ΘP0 (2.24)

Θ̇P + ikµΘP = −τ̇

[

−ΘP +
1

2
(1 −P2(µ))Π

]

(2.25)

δ̇ + ikv = −3Φ̇ (2.26)

v̇ +
ȧ

a
v = −ikΨ (2.27)

δ̇b + ikvb = −3Ψ̇ (2.28)

v̇b +
ȧ

a
vb = −ikΨ +

τ̇

R
[vb + 3iΘ1] (2.29)

Ṅ + ikµN = −Φ̇ − ikµΨ (2.30)
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Using the perturbed metric on the Einstein equations 2.5 leads to

k2Φ + 3
ȧ

a

(

Φ̇ − Ψ
ȧ

a

)

= 4πGa2[ρmδm + 4ρrΘr,0] (2.31)

k2(Φ + Ψ) = −32πGa2ρrΘr,2 (2.32)

In these equations all time derivatives use conformal time, defined as η ≡
∫ t

0
cdt′

a(t′)
. In addition, they have been Fourier transformed. The signal is split

into different Fourier modes, each with a wavenumber k.

There are a lot of variables involved here. We are dealing with density per-
turbations and velocities for both dark matter and baryonic matter (δ and
δb), various multipoles in the temperature perturbations, including polariza-
tion (Θ0, Θ1, Θ2, ΘP0 and ΘP2), and perturbations in the neutrino radiation
(N ). I will make no attempt to deal with everything here. The point is that
through these equations we are able to relate many cosmological parameters
to each other, to the perturbations Ψ and Φ in the metric, and most impor-
tantly for our purpose, to the perturbations in photon distribution, via the
parameter Θ.

Using assumptions about the earliest times after the Big Bang, it is possible
to relate all the variables to the potential Φ. We may then use assumptions
about the earliest times and ideas from inflation to establish initial conditions
for Φ. As an example of this we can take a closer look at eq. 2.23.

We consider times so early that for any k-mode we are interested in, kη ≪ 1.
The first term in eq. 2.23 is of order Θ/η, while the second term is of order
kΘ. The first term must then be much larger than the second , and we can
use the same argument for all terms multiplied by k. At this early time
we also assume a uniform sky, meaning we only get contributions from the
monopole. We also assume the optical depth to vary slowly, leading to τ̇ ≪ 1.
The equation can then be written as

Θ̇0 + Φ̇ = 0

In similar ways we relate all the cosmological parameter to perturbations
in the gravitational potential. Using quantum mechanical assumptions with
the theory of inflation we may then set up initial conditions for Φ and the
equations become solvable.

Before recombination the photons were tightly coupled with the free electrons
and protons, and this makes it possible to approximate their interactions as
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a fluid. In this approximation the only non-negligible moments of Θ are
the monopole Θ0 and dipole Θ1. This means we only need to consider the
anisotropies for these two moments before recombination.

In the end, we are able to calculate the perturbations in any multipole as

Θℓ(k, η0) ≃[Θ0(k, η∗) + Ψ(k, η∗)]jℓ[k(η0 − η)]

+ 3Θ1(k, η∗)

(

jℓ−1[k(η0 − η∗)] −
(ℓ + 1)jl[k(η0 − η∗)]

k(η0 − η∗)

)

+

∫ η0

0

dηe−τ
[

Ψ̇(k, η) − Φ̇(k, η)
]

jℓ[k(η0 − η)] (2.33)

The term jℓ is the Bessel function. Here we note that any multipole today
is essentially given by the monopole and dipole at recombination.

2.1.5 Power spectrum

The anisotropic solution gives us the answer to what we expect the tempera-
ture fluctuations to be in terms of multipoles Θℓ in the Legendre transformed
functions. What we need to do is relate this to actual measurements on the
sky.

We observe the temperature fluctuations in the CMB today from the center
of a sphere, where the wall of the sphere forms the last scattering surface.
The temperature field can be written as

T (t0, θ, φ) = T (t0)[1 + δT (t0, θ, φ)] (2.34)

To be able to handle this we use spherical harmonics to transform the vari-
ations. The spherical harmonics will be described in section 2.2.1, but I
will use some of its properties here. When we transform the temperature
fluctuations as we see them today to spherical harmonic space we get

δT (θ, φ) =

∞∑

ℓ=1

l∑

m=−l

aℓmYℓm(θ, φ) (2.35)

Here the coefficients aℓm describes the amplitudes of the variations in an
orthogonal basis, described by Yℓm. By using the orthogonality property of
the spherical harmonics,

∫

dΩYℓm(θ, φ)Y ∗
ℓ′m′(θ, φ) = δℓℓ′δmm′ (2.36)
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we are able able to invert the expansion. This is done by multiplying both
sides by Y ∗

ℓm(θ, φ) and integrating, and leads to

aℓm =

∫

dΩY ∗
ℓm(θ, φ)δT (θ, φ) (2.37)

Now we are able to express the variations in terms of spherical harmonic
coefficients, aℓm. These coefficients characterize the fluctuations in the CMB,
and if the underlying temperature fluctuations are Gaussian, the aℓm will also
have a Gaussian distribution. The mean of the coefficients will then be zero,
but they will have a nonzero variance. In spherical harmoinc space this gives
a very simple relation:

〈aℓma∗
ℓ′m′〉 = δℓℓ′δmm′Cℓ (2.38)

The variance of aℓm is given by Cℓ, this is known as the power spectrum.

By using the spherical harmonic transform on the analytical expression for
Θℓ given in eq. 2.33 we will again get the power spectrum, and in this
way we can relate the theoretical power spectrum to the one we get from
observations.

A typical power spectrum is shown in figure 1.2, and we see some character-
istic features. The cosmological parameter influence the exact shape of the
power spectrum. Baryon density has an effect on the heights on the differ-
ent peaks in the figure, while the cosmological constant influences at what
multipoles we find the various peaks. This makes studies of the power spec-
trum an excellent tool for estimating and finding bounds for the cosmological
parameters we are interested in.

We saw the definition of the power spectrum in eq. 2.38, and when using
sums it can be recovered as:

Cl = 〈aℓma∗
ℓm〉

=
1

n

n∑

m

aℓma∗
ℓm

=

ℓ∑

m=−ℓ

aℓma∗
ℓm

2ℓ + 1
(2.39)

The last line holds since we sum over all m from m = −ℓ to m = ℓ, which is
a total of 2ℓ+1. This expression will be useful later when we want to recover
the actual power spectrum in a random realization of aℓm’s.
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The power spectrum is usually scaled as Cℓℓ(ℓ + 1). By using eq. 2.33 on
large scales (aka small multipoles) we are able to make some simplifications.
These scales were not affected by any causal physics, and only the monopole
contributes to the anisotropy for these scales. When we find the analytical
power spectrum using these simplifications it can be shown that the power
spectrum scales as

Cℓ ∼
1

ℓ(ℓ + 1)
(2.40)

This is known as the Sachs-Wolffe effect.

2.2 Making maps of the CMB

We now turn to the observations of the CMB. Simply put, the CMB is a
picture of the variations in the density of the universe at the moment of
recombination. What we want to do is to make quantitative statements
about this signal, and that means finding the power spectrum. To be able
to do this, we need some convenient tools, and we need to know something
about observational limits. The following is based on [6] and [9].

2.2.1 Spherical harmonic transform

We have already seen the spherical harmonic transform in action. Its useful-
ness comes from the fact that the signals we are dealing with are projected
on a spherical surface. We are after all observing the CMB in every direction
on the sky, and we need a mathematical tool to decompose this signal to a
convenient form. The solution is a generalization of the Fourier transform
able to handle a two-dimensional signal on a spherical surface.

When we do Fourier transforms, we get in return coefficients characterizing
the original function in a basis consisting of sines and cosines. Similarly,
in spherical harmonics, we get a set of complex coefficients, aℓm’s on a set
of basis vectors Yℓm(θ, φ). Here θ and φ denotes the direction on the sky in
spherical coordinates. In a sense, you then get the original image decomposed
into stationary waves on the sphere. The ℓ describes the size of of the wave,
while the m describes the angle.
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The Yℓm(θ, φ) is an orthonormal set, and the following applies:

∫

dΩYℓm(θ, φ)Y ∗
ℓ′m′(θ, φ) = δℓℓ′δmm′ (2.41)

To get the spherical harmonic coefficients in this basis we solve the integral

aℓm =

∫

dΩf(θ, φ)Yℓm(θ, φ) (2.42)

To get back the original function, we can do the reverse operation. For our
use it is not realistic to use integrals. Since any real observations will be
limited in the number of sample points it can make on the sky, what we need
is a limited set of aℓm’s. We convert the integrals to sums, and the function
can then be recovered as a sum

f(θ, φ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

aℓmY ∗
ℓm(θ, φ) (2.43)

A useful identity in spherical harmonics is:

ℓ∑

m=−l

Y ∗
ℓm(θ, φ)Yℓm(θ′, φ′) =

2ℓ + 1

4π
Pℓ(cos ∆θ) (2.44)

where ∆θ is the angle between (θ, φ) and (θ′, φ′), and Pℓ is the Legendre
polynomial of degree ℓ.

2.2.2 Correlation

The signal we observe in the CBM is a random signal, but the physics behind
it ensures some distinct features, such as a characteristic power spectrum. For
any given multipole we expect the fluctuations to evolve in a given way from
recombination up to present. This means the way the variation looks at one
place in the sky will be similar to the way they look in a different direction.
We could even have predicted this by examining figure 1.1. Looking at the
image it is easy to notice large scale sturctures in the signal. Some areas are
overall warmer and others are overall colder than the average.

In theory the amount of information we could get from the sky would be
infinite. Real observations are limited however, both by optical limitations
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and the storage medium. The area we wish to observe has to be divided into
small units, known as pixels. This gives us a finite amount of data to handle,
and a basis for our analysis. In any given pixel we measure a value, and from
all the pixels together we then get a data-vector which can be described as:

m = δt + n + g + f (2.45)

Here δt is the signal from CMB, n is noise from the dectector, g is systematic
error, and f is foreground radiation from our galaxy and other sources that
lies between us and the last scattering surface. The area where this foregroud
radiation contaminates the most is shown as grey areas in figure 1.1. The
last two factors in the data will be ignored for the rest of this thesis. We
assume we are able to remove all foreground, and noise in one pixel will not
influence noise in another, thereby getting rid of systematic error.

We now have a pixelized map of the CMB, and it is finally time to do some
statistical analysis. To measure what effect variations on different scales have
on each pixel, we have to find the covariance matrix. This is defined as

Cij = 〈xixj〉 − 〈xi〉 〈xj〉 (2.46)

where xi is the measured quantity we are looking at in pixel number i. For
the CMB we are measuring the variations in the temperature, and when
we remove the mean temperature and the effect from our galaxy’s proper
motion, the expression simplifies to Cij = 〈xixj〉.

The covariance matrix describes the connection any given pixel has to an-
other. To get a clearer picture of what the covariance actually describes, it is
convenient to normalize it. This produces a new matrix which is called the
correlation matrix. The correlation matrix is given as Cij = σij/σiσj , where
σij = 〈xixj〉 − 〈xi〉 〈xj〉 is the standard deviation.

The correlation is a number with absolute value between 0 and 1, and de-
scribes to what degree the two measures depended on each other. When
examining multiple sets of data, a high correlation would mean a high prob-
ability of the two measure points to have connected values. A correlation
of 1 means that one measurement would be completely dependent on the
other, while a correlation of 0 means that the two measured values had no
connection with each other at all. A pixel compared with itself will always
have a correlation of 1, but the correlation with other pixels depends on the
underlying principles forming the image.

As we can see in eq. 2.45 our signal consists of various components, and this
might lead to complications. Even with a mixed signal consisting only of noise
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and the true signal, we would mathematically still expect cross-correlations
between the different components.

〈
mmT

〉
=
〈
(δt + n)(δt + n)T

〉

=
〈
δtδtT + nnT + δtnT + nδtT

〉

This is simplified by the fact that the correlation is a measure of the real
connection between different parts of the signal. It would not make sense
to expect any correlations between the CMB sent out over 13 billion years
ago, and the noise in our telescope. Therefore we may safely assume that the
full covariance matrix consists of a sum of completely separate covariance
matrixes, one for each component.

For the CMB, when we ignore foreground and systematic errors, we then
have

C = S + N (2.47)

where S =
〈
δtδtT

〉
and N =

〈
nnT

〉
.

The covariance of the CMB will depend on what configuration space we use
to represent the signal. If we use pixel space representation we do not expect
any correlation between the noise in different pixels as long as we do not have
any systematic errors in our observational equipment. In the pixel basis the
noise matrix must then be diagonal, Nij = σ2

i δij , where σi is the rms noise
in pixel i.

If we want to convert our data to spherical harmonic space the noise corre-
lation will become more complex, but here the signal correlations is much
simpler. We have already seen the result ineq.2.38 , Sℓm = δℓℓ′δmm′Cℓ. In
other words, the covariance matrix for the signal in spherical harmonic space
is diagonal and consists of the elements in the power spectrum. For pixel
space the full covariance matrix will consist of these elements:

C =






S11 · · · S1j
...

. . .

Si1 Sij




+ δijσ

2
i

while in the spherical harmonic space it will look like:

C = δℓℓ′δmm′Cℓ +






N(10)(10) · · · N(10)(ℓm)
...

. . .

N(ℓm)(10) N(ℓm)(ℓm)





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The covariance matrices are constructed from a large sampling values, and
this poses a problem. All we have is a single observation, the CMB of our
own universe. This is just a single sample of δt drawn from a Gaussian
probability distribution during inflation, and we simply do not have enough
data to construct a covariance matrix. This does after all require an average,
which we cannot find with only one sample. There is a way to handle this
statistically however.

For the Gaussian probability distribution we know the following:

P (x) =
e−

(x−a)2

2σ2

√
2πσ2

(2.48)

Here x is our variable, a is the mean value and σ is the standard deviation,
and it gives us the probability P for getting the value x.

If we wanted to find the value of x with the highest probability, we could try
several things. We could test out different values and see what happened, or
we could take the derivative and set it equal to zero and solve for x. But in
this simple equation the answer is easy to see. The function must be at it’s
maximum when x = a.

For a case with multiple variables, like the CMB, the multidimensional dis-
tribution of N elements is generalized to

P (m) =
e−

1
2
(m−a)T

C
−1(m−a)

√

(2π)NdetC
(2.49)

Here the vector m is the data we are testing for, the vector a is the average
for each element, and C is the covariance matrix. What we now have is the
probability of getting a particular vector m if we have a given covariance
matrix C.

In the case of CMB we may ignore the vector a, since we have an average of
zero, and the equation can be written as

L(Cℓ|m) =
exp

(
−1

2
mT C−1m

)

(2π)N/2 (detC)1/2
(2.50)

This function is known as the likelihood function, and gives the probability
that a given experiment would give the data it did (m) given a chosen theory
(Cℓ). The theory in our case is in the form of the power spectrum, and is
hidden inside the covariance matrix.
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As in the one-dimensional case we would like to maximize our probability,
in other words finding the power spectrum most likely to produce the set of
data we have. And now we are closing in on one of the major difficulties of
CMB analysis.

The amount of information we can extract from an image of the CMB is
related to the pixel-resolution we are working with. The covariance matrix
is also related to the pixel-resolution; a data-set of n pixels would give a
covariance matrix consisting of n2 elements. In addition we note that in
the likelihood function we need the inverse of the covariance matrix as well.
To construct this takes an operation O(n3) [10], so depending on how much
information we want to extract, the computational demands increase rapidly.

Beginning in the next chapter, we will look at a specific method for maximiz-
ing the likelihood function based on the Newton-Rhapson approximation, and
try to simplify the the complexity of the covariance matrix by using needlets.

2.2.3 The HEALPix-package

An especially useful tool we will make use of is the HEALPix-package [5].
This is a set of tools that consists of programs, libraries and extensions to
IDL which enables us to quickly and efficiently transform back and forth
between pixel space and spherical harmonic space. In addition it contains a
specific pixelization scheme, ideally suited for dividing the spherical sky into
discreete units. The parameter used to describe the resolution of any image
in this scheme is the notion of Nside.

Looking at figure 2.6 we see the lowest possible resolution available in HEALPix.
The sphere is divided into 12 pixels that cover the same amount of area. This
resolution is called Nside = 1, meaning that each side on each pixel is undi-
vided.

To increase the resolution we divide each of the pixels in a specific way.
Dividing up each pixel into four equal areas we get the resolution Nside = 2.
Each side has now been divided by two, hence the name Nside. To get the
next resolution we divide each of these smaller pixels into four equal areas,
getting Nside = 4 The choices we have for nside is then {1, 2, 4, 8, 16, · · · },
and the number of pixels for a given Nside is given as

pixels = 12 · N2
side (2.51)
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Figure 2.6: Mollweide projection of a map with Nside = 1

Figure 2.51 shows the effect of increasing the resolution to Nside = 2 and
Nside = 4.

The HEALPix package gives us access to functions making the transforma-
tion back and forth between pixel space and spherical harmonic space fast
and efficient. Additionally it gives us the ability to make simulated universes
from a given power spectrum. Remember, the power spectrum is describing
the variance for the coefficients in spherical harmonic space, and this enables
us to make random aℓm’s with a Gaussian distribution. This is perfect for
testing out our algorithms later on.

2.2.4 Some observational limitations

Going from a presumably limitless amount of information in the real world,
to our limited pixelation of the sphere brings a few complications to the
analysis of the power spectrum.

First off, the coefficients in the power spectrum are functions of ℓ. The
ℓ’s correspond roughly to an angular scale, and for higher ℓ’s you get finer
details. The relation to angular scale is given approximately as π/ℓ. The
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Figure 2.7: The effect of increasing resolution to Nside = 2 and Nside = 4

quadrupole (ℓ = 2) will then describe variations on about a quarter of the
sphere.

Assuming for a moment that each of the pixels are quadratic, we may find an
approximate angular size of each pixel by the following. The total angular
area of a sphere is 4π, so dividing by the number of pixels we get the angular
area per pixel as

4π

12Nside
2 =

π

3Nside
2

With the assumption that each pixel is quadratic the angular length of a side
should then be

∆θ ≈
√

π

3Nside
2

As noted, the multipole is related to an angular scale as π/ℓ. Combining this
with our expression for the angular size of a pixel, we get

π

ℓ
> ∆θ

>

√
π

3N2
side

The smallest possible difference we would be able to measure would then be
the distance between two pixels, or equivalently the length of the side of one
pixel. Any variations occuring on smaller scales would correspond to higher
ℓ’s, and would be lost inside the pixel. If we now approximate π ≈ 3, we get

ℓ < 3Nside

In practice it is safe to use
ℓmax = 2Nside (2.52)
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Looking for a moment at figure 1.2 we see a typical power spectrum with
it’s most prominent features. This power spectrum ranges from ℓ = 2 to
about ℓ = 1000, and to capture this amount of detail we would want to use
Nside = 512. This in turn leads to about 3 · 106 pixels, and a covariance
matrix consisting of 9 · 1012 elements.

There are further complications arising from pixelisation. When making a
measurement we have a finite size pixel representing the data in a specific
direction. But we do not get the exact measurement of an infinitely small
area in that exact direction. Instead we get an average of all the informa-
tion covered by that pixel. The effect is an amount of degradation of the
information, depending on the size of the pixel. This can be accounted for
however, by using a pixel-window function wℓ. The pixel-window function is
a function of ℓ and leads to a gradual weakening of the power spectrum for
higher ℓ’s. The effect is given as

Cℓ(observed) = Cℓw
2
ℓ

When looking at a real signal we would like to remove this effect. To handle
it we reverse the operation, dividing the observed power spectrum by wℓ.
This effect will be dependent on the resolution of our image, and in the case
of the HEALpix pixelization scheme the effect has been precalculated for
different Nside.

There is one more effect we need to account for. The optical nature of
observations are such that we don’t get measurements from just the exact
direction we are looking at. We will always get an amount of stray light from
nearby points as well. Since this will somewhat obscure the data we really
want from the measured direction, it has to be taken into consideration as
well. This effect is known as the beam, and to counter it we use the beam
function.

The exact effect of the beam is determined by the design of the telescope,
but in most cases it can be modeled by a Gaussian function. In spherical
harmonic space a Gaussian beam function can be written as

bℓ = e−ℓ(ℓ+1)σ2

where σ is a measure of the angular width of the beam given in radians. The
angular width is known for the instrument we are using. It is usually given
as Full Width at Half Maximum (FWHM) in degrees. The relation between
σ and FWHM is then given as

σ = FWHM/
√

8 ln 2
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In the case of WMAP we know FWHM=7 arc minutes, and have to convert
this to degrees.

Again the effect on the power spectrum is

Cℓ(observed) = Cℓb
2
ℓ

When we need to account for both effects we finally have

Cℓ(observed) = Cℓb
2
ℓw

2
ℓ (2.53)

To get the real power spectrum from observed data we of course reverse the
process, getting Cℓ = Cℓ(observed)/b2

ℓw
2
ℓ .

Later on when we will do simulations of the power spectrum, it is necessary
to include these effects. We want the algorithm to work on real data, and
it would be nice to know it works with the pixel-window and beam effects
included as well. In addition we will have to cut off our signal somewhere,
and if we do this abruptly it may cause unwanted effects in the analysis later.
The beam and pixel-window effects serve as a way to naturally taper off the
real signal and removing any abrupt cut-offs we might otherwise have had.
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Chapter 3

Method

The power spectrum is a very useful tool for estimating the cosmological
parameters. We have already seen how we are able to start from these pa-
rameters, using the theory to make models and give predictions about what
the power spectrum should look like.

What we want to do now is doing it the other way round. We have an
image of the CMB, and we want to estimate which set of parameters Cℓ is
the best fit to the observations we have. To be able to do this we need to
establish an algorithm we can use. Starting from the likelihood function we
will make an iterative method that is able to make precise estimates of the
power spectrum.

In addition we will make use of a special kind of transformation, the needlet
transformation. The hope is that needlet transformations will simplify some
of the computationally heavy problems that arise in our algorithm.

3.1 Oh-Spergel-Hinshaw algorithm

This algorithm was initially described by Oh, Spergel and Hinshaw [9], and
in the following I will make a detailed outline of their derivation of the algo-
rithm.

31
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3.1.1 Developing the algorithm

We have already seen the likelihood function,

L(Cℓ|m) =
exp

(
−1

2
mT C−1m

)

(2π)N/2 (detC)1/2

and it is common to rewrite it as

f = −2lnL

This makes the entire function a lot easier to handle, and if we should ever
need the real value it is easy to exponentiate our results. In this treatment
however, we don’t ever need to recover the likelihood. What we are after is
simply trying to find what parameters Cℓ gives a maximum, and all we are
interested in is finding when we hit this maximum, not the exact value of L.

To find this extremal point, we go about the usual way, derivating the func-
tion and finding when it is equal to zero. In the case of the likelihood function
we may safely assume we find a maximum by this method, since the function
itself by definition will have to go to zero at very unlikely configurations, and
the maximum likelihood will have to be finite. We are not guaranteed to find
the global maximum, but we will assume that our underlying model does not
have any local maxima that will throw us off.

The parameters of interest to us are the Cℓ’s, so to determine when the
likelihood function is maximized with respect to these parameters, we find
the derivative of the function and sets it equal to zero.

∂ f

∂Cℓ

=
∂

∂Cℓ

(

−2ln

(

exp

(

−1

2
mT C−1m

))

+ 2ln (detC)1/2

)

= mT ∂ C−1

∂Cℓ

m +
∂

∂Cℓ

ln (det C) (3.1)

Here we note that the only term dependent on Cℓ is the matrix C and it’s
inverse, C−1. The real work lies in deciding how this matrix have to be
constructed to maximize the likelihood.

To find the derivative of the first part of this equation we need to be able
to derivate the inverse of the matrix C. We know from elementary matrix
operation that we get the identity matrix as

C−1 C = I (3.2)
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Since this is a constant, it follows that ∂
∂cl

I = 0. Let’s se what happens when

we do the derivative of C−1 C. Using the product rule for the derivative we
get the following:

∂

∂Cℓ

(
C−1 C

)
= 0

∂ C−1

∂Cℓ
C = −C−1 ∂ C

∂Cℓ

∂ C−1

∂Cℓ
CC−1 = −C−1 ∂ C

∂Cℓ
C−1

∂ C−1

∂Cℓ
= −C−1PlC−1 (3.3)

In the third line we have multiplied both sides by C−1, and in the last line
we have defined Pl ≡ ∂ C

∂Cℓ
. This result is very helpful in that we no longer

need to find the derivative of the inverse of the matrix, it has instead become
a matrix product.

To solve the second half of equation 3.1 we use Jacobi’s formula[12], stating:

d

dx
[det (A)] = Tr

(

adj(A)
dA

dx

)

(3.4)

Again using the product rule, we find:

∂

∂Cℓ

[ln (det C)] =
1

detC
Tr
(
adj(C)Pℓ

)
(3.5)

Since the determinant is a scalar, we may move it inside the trace. In addition
a basic theorem from linear algebra states the identity C−1 = 1

detC
adj(C),

and this gives us

∂

∂Cℓ
[ln (detC)] = Tr

(
C−1 Pℓ

)
(3.6)

This gets rid of the complicated task of calculating the determinant of C, at
the cost of finding the trace of a matrix, a much simpler operation.

The full differentiated likelihood function now reads

∂ f

∂Cℓ
= −mT C−1PℓC−1m + Tr

(
C−1 Pℓ

)
(3.7)
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We will soon see that it is useful to have the second derivative of our likelihood
as well. More specifically we want to calculate 1

2
∂2f

∂Cℓ∂Cℓ′
. We get

1

2

∂2f

∂Cℓ∂Cℓ′
=

1

2

∂

∂Cℓ

(

−mTC−1Pℓ′C−1m + Tr(C−1Pℓ′)
)

=
1

2

(

− mT
∂C−1

∂Cℓ

Pℓ′C−1m −mTC−1Pℓ′ ∂C−1

∂Cℓ

m

+ Tr

(
∂C−1

∂Cℓ

Pℓ′
))

We have already seen the solution to ∂C
−1

∂Cℓ
from equation 3.3. It is now simply

a matter of substitution every time it occurs in our equations. Continuing
the calculations, we get:

1

2

∂2f

∂Cℓ∂Cℓ′
=

1

2

(

−mT(−C−1PℓC−1)Pℓ′C−1m

−mTC−1Pℓ′(−C−1PℓC−1)m

+ Tr((−C−1PℓC−1)Pℓ′)

)

=
1

2

(

mTC−1PℓC−1Pℓ′C−1m + mTC−1Pℓ′C−1PℓC−1m

− Tr(C−1PℓC−1Pℓ′)

)

We expect our likelihood function to be well behaved, in such a way that
∂2f

∂Cℓ∂Cℓ′
= ∂2f

∂Cℓ′∂Cℓ
. Since this is what determines the index of P, the order of

ℓ and ℓ′ does not matter. We then just change the order in one of the two
first terms and may add the two together. This finally gives

1

2

∂2f

∂Cℓ∂Cℓ′
= mTC−1PℓC−1Pℓ′C−1m− 1

2
Tr(C−1PℓC−1Pℓ′) (3.8)

It is also useful to know the expectation value of equation 3.8. Using the
expression we just calculated we get:

〈
1

2

∂2f

∂Cℓ∂Cℓ′

〉

=

〈

mTC−1PℓC−1Pℓ′C−1m − 1

2
Tr(C−1PℓC−1Pℓ′)

〉

=
〈

mTC−1PℓC−1Pℓ′C−1m
〉

− 1

2
Tr(C−1PℓC−1Pℓ′) (3.9)
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Since the only varying quantity in the expression is the vector m, we can
move the brackets indicating the mean to only include the term involving m.
To be able to see what happens inside the brackets, it is useful to look closer
at the first term in component form.

〈

mT
i C−1

ij P ℓ
jkC

−1
kmP ℓ′

mnC
−1
no mo

〉

= C−1
ij P ℓ

jkC
−1
kmP ℓ′

mnC
−1
no

〈
mom

T
i

〉

The definition of the covariance matrix is C =
〈
mmT

〉
, so on component

form this means we get
〈
mom

T
i

〉
= Coi. Using the identity matrix on com-

ponent form, C−1
no Coi = δni, we get

C−1
ij P ℓ

jkC
−1
kmP ℓ′

mnC
−1
no Coi = C−1

ij P ℓ
jkC

−1
kmP ℓ′

mnδni

= C−1
ij P ℓ

jk C−1
km P ℓ′

mnδni
︸ ︷︷ ︸

mi
︸ ︷︷ ︸

ki
︸ ︷︷ ︸

ji
︸ ︷︷ ︸

ii

What happens here is that the delta function picks out which components
survive, and we are in the end left with a quantity that evidently is only the
sum of the diagonal elements ii. But this is simply the trace of the matrix,
so we can simplify to

〈

mTC−1PℓC−1Pℓ′C−1m
〉

= Tr(C−1PℓC−1Pℓ′)

and continuing from equation 3.9 we now get
〈

1

2

∂2f

∂Cℓ∂Cℓ′

〉

= Tr(C−1PℓC−1Pℓ′) − 1

2
Tr(C−1PℓC−1Pℓ′)

=
1

2
Tr(C−1PℓC−1Pℓ′)

≡ Fℓℓ′ (3.10)

This quantity is defined as the Fisher matrix, Fℓℓ′. The Fisher matrix is a
very interesting quantity in that it gives some important statistical limits to
the equation. The Cramer-Rao inequality states that no method can measure
the parameters with errors smaller than what is given by the Fisher matrix
[3].

To develop the algorithm for estimating the power spectrum, we now find
the Taylor expansion of our original likelihood function f , to second order

f = f +
∑

l

∂f

∂Cℓ

∣
∣
∣
∣
Cℓ

(Cℓ −Cℓ) +
∑

ℓ,ℓ′

1

2

∂2f

∂Cℓ∂Cℓ′

∣
∣
∣
∣
Cℓ

(Cℓ −Cℓ)(Cℓ′ −Cℓ′) (3.11)
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To maximize the likelihood, we differentiate this expression, sets it equal to
zero, and throws away any terms higher than second order. To see what is
going on with this equation, we may use a test-spectrum, C

(0)
ℓ . The derivative

of the likelihood function in the neighborhood of C
(0)
ℓ can then be written as

∂f

∂C ′
ℓ

∣
∣
∣
∣
Cℓ

+
∑

ℓ

∂2f

∂Cℓ∂Cℓ′

∣
∣
∣
∣
Cℓ

(Cℓ − C
(0)
ℓ ) = 0 (3.12)

We will assume the second derivative can be approximated with it’s expec-
tation value given by eq. 3.10. This leads to:

∂f

∂Cℓ′
+ 2

∑

ℓ

Fℓℓ′(Cℓ − C
(0)
ℓ ) = 0 (3.13)

For any particular multipole ℓ we now get

(Cℓ − C
(0)
ℓ ) = −1

2

∑

ℓ′

F−1
ℓℓ′

∂f

∂Cℓ′

Cℓ = C
(0)
ℓ − 1

2

∑

ℓ′

F−1
ℓℓ′

∂f

∂Cℓ′
(3.14)

This is our final iterative method for estimating the power spectrum,

C
(n+1)
ℓ = C

(n)
ℓ − 1

2

∑

ℓℓ′

F−1
ℓℓ′

∂f

∂Cℓ′

∣
∣
∣
∣
C

(n)

ℓ′

= C
(n)
ℓ − 1

2

∑

ℓ′

F−1
ℓℓ′

(

−mTC−1Pℓ′C−1m + tr(C−1Pℓ′)
)

(3.15)

where

P ℓ ≡ ∂C

∂Cℓ

For this algorithm to give the correct result, the covariance matrix and it’s
inverse have to be exact. For the Fisher matrix however the demands are not
as stringent. An approxmiate Fisher matrix will do to make the algorithm
converge.

There are a few challenges facing us in this algorithm. Our data set is
very large, leading to even bigger covariance matrices, and they need to be
inverted. However, there are tools to help overcome these problems. We will
look at them next.
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3.1.2 Conjugate Gradient method

To be able to calculate the term C−1m we need to invert the covariance
matrix. An efficient technique for doing this is using the Conjugate Gradient
method.

The conjugate gradient method is an iterative method of solving the linear
equation

Cz = m

where z is an unknown vector, while the vector m and matrix C are known.

A good explanation of this method is given by [11], and I will not go into
the details here. The method works by creating a new basis for the matrix
involved, and making the set of linear equations into a problem of minimizing
the derivative of the equations. It starts from any chosen point and searches
along one of the basis vectors for minimum points. The remaining error after
one of these searches is known as the residual, and the method is guaranteed
to look for any minima along one basis vector only once. In this way there
are a maximum number of steps the algorithm has to take to get an answer,
and since it also makes the biggest steps initially it is possible to terminate
the search when the residual becomes small. This often leads to the method
having to do considerably fewer iterations than the maximum required. The
method converges fast and is very memory efficient.

To improve the convergence of the method, it is useful to include a precondi-
tioner M in the algorithm. The equation we try to solve will then have the
form

M−1Cz = M−1m

The preconditioner is a matrix that approximates C but is easier to invert. In
the original OSH-algorithm much of the work consists of trying to construct
a sufficiently good preconditioner. When we use needlet transformations we
will later see we get a useful preconditioner almost for free.

The Conjugate Gradient method puts some demand on the matrix involved.
For the method to be efficient, the matrix C should be sparse. In addition it
is required to be symmetric, and positive-definite. Our covariance matrix is
obviously symmetric, but we will have to test the conjugate gradient method
with a needlet transformed matrix to determine if it is sparse or positive-
definite.
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3.1.3 Calculating trace and Fisher matrix

The Conjugate Gradient method takes care of the inverse covariance matrix
in the first term, but C−1 appears in the trace-term and the Fisher matrix
as well, and here it is of no direct use. There is a workaround however.

Starting from any given power spectrum we are able to generate a random
universe. In this universe we are able to calculate the result

q = mTC−1Pℓ′C−1m

which is simply the term we have already calculated with the help of the
CG-method.

We may now use the fact [9] that the trace can be calculated as

tr(C−1Pℓ) =
〈

mTC−1Pℓ′C−1m
〉

= 〈q〉

To get this we then use Monte Carlo-simulations to generate random uni-
verses given our previously guessed power spectrum, and this should give us
the trace after a sufficient number of realizations.

In addition we can use the same set of simulations to calculate the Fisher
matrix, given that:

F =
1

4

〈
(q − 〈q〉)(q − 〈q〉)T

〉

In this way we have been able to use the Conjugate gradient method when
calculating the trace and Fisher matrix as well.

The Monte Carlo simulations required to obtain the trace and Fisher matrix
in this way can make the algorithm quite time consuming. To counter this
somewhat it is suggested in the original paper to use simplified inverse ma-
trixes directly for the first few iterations of the algorithm, and only use the
full Monte Carlo simulations when the largest steps in the algorithm have
been done and better precision is required.

3.2 Needlets

In recent years wavelets have become a popular tool in many different fields of
signal processing. Various types of wavelets have been developed for different
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needs. The one we will look at here has been made for analysis of the CMB
and is known as spherical needlet transformation.

In the OSH-algorithm we have to work with very large matrices, and it is
hoped that the special properties of the needlet transformation will make it
possible to construct much simpler matrices.

3.2.1 The sound analogy

Needlets are a kind of wavelet, a special mathematical transformation de-
signed to pick out a specific range of the original signal, and a good analogy
can be found in the treatment of a sound signal.

Sound is basically waves in air, and easily recorded by a microphone, thereby
making an electrical or digital signal that varies through time. We may
Fourier-transform this signal, getting it on a new form that contains infor-
mation about different frequencies in the original sound.

When processing the transformed sound we may be interested in picking
out only a small range of frequencies in the signal, for example only the
frequencies below 100 Hz. This is what would be called filtering the signal
in sound processing, in this case we are dealing with a low-pass filter.

The fluctuations in the CMB are really an image of the fluctuations in the
cosmic fluid at recombination. The spherical harmonic transformation of this
signal is then analogous to determining what frequencies appear in the signal.
Using needlets on the transformed signal can be compared to filtering out a
specific range of frequencies, picking out only a certain range of multipoles.

3.2.2 Definition of Needlets

Needlets are a special type of wavelets constructed to be used on the two-
dimensional sphere, and this makes it especially useful when studying the
CMB. They are mathematically described by [1], and the use combined with
the CMB is described by [8]. They have excellent localization properties in
both pixel-space and spherical harmonic space, and can be seen as a kind of
midway point between the two representations.
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When making needlet coefficients we are basically taking a limited range
of multipoles from the original signal and turning them into a new map.
This map is known as a j-scale, and the original map can be decomposed
into many different scales, each with it’s own Nside resolution. The detailed
constructin is as follows:

βjk =
√

λjk

∑

ℓ

g

(
ℓ

Bj

) ℓ∑

m=−ℓ

aℓmYℓm(ξjk)

Here the ξ represents points on the sphere, and λ is a weighting of these
points. When using the points defined by the pixelization scheme in HEALPix,
the weighting function can be set to 1. The needlet coefficient β is a real
number, and we get one for each scale j and pixel k.

The most important part of the construction is the function g(·), which acts
as a window function that picks out the multipoles we want to include in
each j-scale. It is a function of the parameters ℓ and B, where B is used to
control the range of ℓ’s to be included in each scale j. It can be considered a
parameter that controls the bandwidth of the scales. Each j-scale will then
contain information related to the ℓ’s from Bj−1 to Bj+1. In this way we are
able to choose the resolution and range of ℓ’s we want to look at.

Figure 3.1 shows the window functions for scales j = 3, j = 4 and j = 5, with
B = 2.0. The needle-like shape of the window function is what has given
the needlets their name. We see here some notable features. Each scale has
an overlap with it’s neighbouring scale, but no other scales. Each scale has
a range in multipole from Bj−1 to Bj+1. As an example, scale j = 5 has a
range from multipole ℓ = 16 to ℓ = 64. The endpoints are set to zero, so
they do not contribute to the scale. We should note that when the B has
been chosen, the number of multipoles included in each scale will increase
exponentially for each scale.

In the implementation with HEALPix the needlet coefficients are given as

βjk =
∑

ℓ

gℓj

ℓ∑

m=−ℓ

aℓmYℓm(k) (3.16)

The only thing we need to provide is the window function gℓj. As we can
see from figure 3.1 this seems to be a fairly simple function, going from 0
to 1. All that needs to be done is some scaling along the multipole axis
to include the relevant ℓ’s. A detailed instruction of how to construct the
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Figure 3.1: Window functions gℓj for B = 2.0. Here we see the windowfunc-
tions for scales j = 3, j = 4 and j = 5

window function is given by [8], and in this thesis I have made use of a
Fortran function provided by my supervisor.

When used on the spherical harmonic transformed signal, the needlet trans-
form does not give an orthogonal representation of the original signal, but a
so-called tight frame. This kind of semi-orthogonality we write as:

〈βjkβj′k′〉 = δkk′δj|j′−1| (3.17)

As we can see from this expression, the β-coefficients are orthogonal in k,
while the scales do have overlap with the neighbouring scales.

It is this feature that motivates our attempt at using needlets in the first
place. If we can make use of the needlet transformation on our CMB and
get a set of coefficients that obey this simple relation, the construction and
inversion of the covariance matrix will become very easy. This will help
keeping the size of C down, even if the amount of data increases, and the
inversion process will also be simplified. We will explore in some detail how
feasible this is in reality when combining needlets with the OSH-algorithm.
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3.2.3 Needlets and HEALPix

We should now be able to construct the necessary window functions gℓj,
and by combining them with the built-in functions in the HEALPix-package
we may generate new maps of the needlet-coefficients in the desired ranges.
Each individual map then represent one scale and can be given it’s own
Nside-resolution.

Figure 3.2: Visual result of needlet-transformations.

The visual result of the needlet-transformation is shown in figure 3.2. Here
a simulated CMB-map is transformed into maps on scales j = 3 and j = 5,
each with nside=32. Now the map for j = 3 contains information about
multipoles 4 to 16, while the map for j = 5 contains information about
multipoles 16 to 64.

3.2.4 Covariance matrix with needlets

A very important quantity in the study of the CMB is the covariance matrix,
and in the case of needlets we are able to generate it analytically. The
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covariance matrix for needlet coefficients is constructed in the usual way,
and since they are real numbers we may write the correlation matrix as

Cjk,j′k′ = 〈βjkβj′k′〉 =
〈
βjkβ

∗
j′k′

〉

where the ∗ indicates the complex conjugated. This is possible since the
needlet coefficients are real numbers. We may now insert equation 3.16 and
solve.

〈
βjkβ

∗
j′k′

〉
=

〈
∑

ℓ

gℓj

ℓ∑

m=−ℓ

aℓmYℓm(k)
∑

ℓ′

gℓ′j′

ℓ′∑

m′=−ℓ′

a∗
ℓ′m′Y ∗

ℓ′m′(k′)

〉

=

〈
∑

ℓ

gℓj

ℓ∑

m=−ℓ

aℓmYℓm(k)
∑

ℓ′

gℓ′j′

ℓ′∑

m′=−ℓ′

aℓ′m′Y ∗
ℓ′m′(k′)

〉

=

〈
∑

ℓ

∑

ℓ′

ℓ∑

m=−ℓ

ℓ′∑

m′=−ℓ′

gℓjaℓmYℓm(k)gℓ′j′aℓ′m′Y ∗
ℓ′m′(k′)

〉

=
∑

ℓ

∑

ℓ′

ℓ∑

m=−ℓ

ℓ′∑

m′=−ℓ′

〈aℓmaℓ′m′〉 gℓjYℓm(k)gℓ′j′Y
∗
ℓ′m′(k′)

=
∑

ℓ

∑

ℓ′

ℓ∑

m=−ℓ

ℓ′∑

m′=−ℓ′

δℓℓ′δmm′CℓgℓjYℓm(k)gℓ′j′Y
∗
ℓ′m′(k′)

=
∑

ℓ

Cℓgℓjgℓj′

ℓ∑

m=−ℓ

Yℓm(k)Y ∗
ℓm(k′)

=
∑

ℓ

Cℓgℓjgℓj′
2ℓ + 1

4π
Pℓ(cos ∆k) (3.18)

Here Pℓ is the Legendre polynomial and ∆k is the angular distance between
k and k′. The second line holds because aℓ−m = (−1)ma∗

ℓm, and since we
sum over all m the minus signs gets elliminated. The fourth line holds since
the only varying quantity are the aℓm coefficients, and furhter we expect the
relation 〈aℓmaℓ′m′〉 = δℓℓ′δmm′Cℓ. Finally the last line uses the identity from
eq. 2.44.

Before we go ahead and make use of this result we should examine if it holds.
The alternative to constructing the covariance matrix analytically is doing
it with Monte Carlo simulations. By making simulations we may test how
well the analytical expression fares compared to a set of randomly generated
universes.
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Figure 3.3: Left: Simulated covariance for a single pixel. Right: Analytical
covariance for the same pixel.

Figure 3.3 shows the covariance for a pixel using a Monte Carlo simulated
covariance matrix on the left, and the same results from an analytically
constructed covariance matrix on the right. The central peak of each plot
is the variance of the pixel. The simulation has been done with 100.000
realizations, and apart from some small amount of noise there is hardly any
difference between the two. In fact we would be hard pressed to notice any
differece between the two plots at all.

Looking at figure 3.4 we see the absolute error between these two matrixes
plotted in black. In this case the absolute error of the two plots has a max-
imum magnitude of 6. Compared to the maximum value of the covariance
matrix this is a relative error of about 2%. The relative difference is in most
cases small, but breaks down in places, since the covariance approaches zero
for several pixels.

When we try to compare with even more realizations we get even better
results. Looking at figure 3.4 we also have the absolute error when comparing
the analytical result with a simulation of 10 million realizations. As we can
see from the figure the absolute error has decreased drastically, and it seems
safe to assume that even more simulations would bring the analytical and
simulated covariance matrices even closer together. The analytical expression
given by eq. 3.18 seems to be holding up.
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Figure 3.4: Comparison of absolute errors for analytical versus simulated
covariance. Black line indicates a simulation with 100.000 realizations, red
line a simulation with 10 million realizations.

3.2.5 Noise correlation with Needlets

We expect the noise to be uncorrelated with the signal, and this means we
may consider the noise-correlation in needlet-space separately, just as in pixel
space. If we naively consider the noise-component of the CMB to be isotropic
white noise, Gaussian random variables, we expect the power spectrum to
be

〈nℓmnℓ′m′〉 = δℓℓ′δmm′C

where C is a constant and independent of both ℓ and m.

Using the same procedure as in the analytical expression for signal correla-
tion, we would then expect the noise correlation to be

〈nℓmnℓ′m′〉 = C
∑

ℓ

gℓjgℓj′
2ℓ + 1

4π
Pℓ(cos ∆k)

where C is a constant describing the power of any multipole in the white
noise.
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Sadly, for the real CMB-map, this doesn’t really hold. Looking at figure 3.5
we see the standard deviation of the noise for WMAP [2]. As we can clearly

Figure 3.5: Standard deviation of noise σi for each pixel i in the WMAP
V-band channel. The units are in milliKelvin.

see, the noise is heavily dependent on which direction we are looking at. This
is a property of the method of observation and limits in the instruments, and
we are unable to circumvent it.

A simulated test confirms this. Looking at figure 3.6 we see the absolute
error of a simulation consisting of 10 million realizations versus the analytical
expression with a single power coefficient C. Although the absolute error is
not large, we do see a difference in the errors when comparing with figure 3.3.
There is some kind of systematic error in the left part of the graph in figure
3.6 and the variation it the errors does not seem to be evenly distributed.
We do get discrepancies and we therefore have to make proper simulations if
we wish to incorporate noise in our analysis.

3.2.6 P ℓ with Needlets

So far we have an analytical expression for the signal part of the covariance
matrix C. In the Oh-Spergel-Hinshaw algorithm we previously defined the
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Figure 3.6: Results when comparing analytical and simulated noise covari-
ance using data from WMAP.

quantity P ℓ = ∂C

∂Cℓ
, and this makes it possible to obtain an analytical expres-

sion for P ℓ as well. Since the noise correlation matrix is independent of the
power spectrum it has no effect on the partial derivative, we only need the
signal part. The full P ℓ in needlet space then becomes

P l =
∂C

∂Cℓ′

=
∂

∂Cℓ′

∑

ℓ

Cℓgℓjgℓj′
2ℓ + 1

4π
Pℓ(cos ∆k)

=
∑

ℓ

∂Cℓ

∂Cℓ′
gℓjgℓj′

2ℓ + 1

4π
Pℓ(cos ∆k)

=
∑

ℓ

δℓℓ′gℓjgℓj′
2ℓ + 1

4π
Pℓ(cos ∆k)

= gℓjgℓj′
2ℓ + 1

4π
Pℓ(cos ∆k) (3.19)

We should now be equipped with what we need to implement needlets in the
Oh-Spergel-Hinshaw algorithm.
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Chapter 4

Results

Having developed the Oh-Spergel-Hinshaw algorithm and examined needlets,
we are now able to put the method to the test using needlet transformed sig-
nals. We will begin by looking at the general shape of the algorithm and what
we can expect to gain from it. We will also test the needlet-transformation
to check that the transformation back and forth between pixel space and
needlet space works, and also to see if there is any dependence on resolution
Nside. Then we will finally look at the results when we actually implement
needlets in the OSH-algorithm. The hope is that needlet transformations
will make it possible to use simpler covariance matrices, and thereby making
the algorithm quicker for large amounts of data.

In the rest of this thesis we will work with simulated signals that does not
contain noise. This does not correspond to a realistic case, but makes it
possible to use purely analytical matrixes in the algorithm, avoiding the
need for making time-consuming simulations of the noise correlation.

4.1 Implementing needlets with OSH algo-

rithm

We will begin by examining closely the structure of the OSH-algorithm when
implementing needlets, and also test the transformation back and forth be-
tween real space and needlet space. We will also make sure the Conjugate
Gradient method works as expected.

49
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4.1.1 The structure of the algorithm

As we found in eq. 3.15 the Oh-Spergel-Hinshaw algorithm has the following
form:

C
(n+1)
ℓ = C

(n)
ℓ − 1

2

∑

ℓ′

F−1
ℓℓ′

(

−mTC−1Pℓ′C−1m + tr(C−1Pℓ′)
)

(4.1)

In this algorithm there are several elements involved, and to implement
needlets we have to ensure that all elements are properly transformed to
needlet space.

Starting with the data vector m,

m =








m1

m2
...

mN








where each pixel has been numbered up to the maximum N determined by
the resolution of the map (eq. 2.51).

When transforming to needlet space we have to decide the bandwidth of
the needlet window-function (the B-parameter), the Nside resolution of each
j-scale, and what number of j-scales to include. Each of these choices will
affect what information we can gain in our analysis, and we will come back
to the details later.

By doing the needlet transformation on our data vector we get








m1

m2
...

mN








→




























β1,1

β2,1
...

βN1,1

β1,2

β2,2
...

βN2,2

...
β1,j

β2,j
...

βNj ,j



























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The result is a set of needlet coefficients β for each scale, and each coefficient is
indexed by the scale it belongs to and the pixel number it is given, determined
by the resolution. Each scale has a maximum number of pixels given by Nj .
Clearly the data vector gets much larger.

This also means that the matrixes involved will have to be larger, and so
far it does not look like we are getting a simplification of the method. But
we do have to remember that needlets are supposed to obey the relation
〈βjkβj′k′〉 = δkk′δj|j′−1|, and this would lead to tridiagonal matrices.

When constraining ourselves to looking at a pure signal wihtout any noise,
we have already found an analytical expression for the covariance matrix in
eq. 3.18. Figure 4.1 shows the covariance matrix containing four j-scales.
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Covariance matrix for j=1 to j=4

Figure 4.1: Covariance matrix containing scales j = 1 to 4.

Each scale has a resolution Nside = 1, which leads to each scale contain-
ing 12 needlet coefficients. The diagonal in this matrix represents the self-
correlation δkk′ , and this is clearly dominant. But particularly for the scale
j = 1, which is representend by elements 1 to 12, we have a lot of non-zero
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values in the off-diagonal elements as well. This is easier to see in figure 4.2
where we are looking at a top-down view of the same matrix.
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Figure 4.2: A top-down view of the covariance matrix shown in fig. 4.1

Here the color-coding indicates to what degree the pixels correlate, and there
are big variations in the correlations between pixels 1 to 24. In the figure we
can also see traces of the tridiagonal structure of the matrix, stemming from
the term δj|j′−1|.

The plots of this matrix indicates that the diagonal elements belonging to a
particular scale has the same value, and looking at eq. 3.18 we can see that
this is true. The equation gives the signal part of the covariance matrix as

C =
∑

ℓ

Cℓgℓjgℓj′
2ℓ + 1

4π
Pℓ cos(∆k)

The only part of the equation dependent on the pixels are the Legendre
polynomials, Pℓ(cos ∆k). When we look at the diagonals, we are seeing the
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variance of each pixel. In this case ∆k = 0, leading to Pℓ(cos 0) = 1 for every
ℓ. The only other dependence we have in the analytical expression is then
the sum over ℓ, and this will be the same for every k in a given j-scale. This
means that for a matrix where the relation δkk′ holds, we only need a single
number per element Cjj to characterize the covariance matrix, given by

Cjj′ =
∑

ℓ

Cℓgℓjgℓj′
2ℓ + 1

4π

The same argument holds for the large off-diagonal elements coming from
the term δj|j′−1|. If we can use this either as an approximation or as the true
covariance matrix, we need only a matrix of dimension j × j,

Cjj′ =











C11 C12 0 · · · 0

C21 C22 C23 0
...

0 C32 C33
. . . 0

...
. . .

. . . Cj−1,j

0 · · · 0 Cj,j−1 Cjj











and this matrix would be symmetric and tridiagonal. This would lead to
a drastic decrease in complexity, particularly when we need to invert the
covariance matrix.

From eq. 3.19 it should be clear that the structure of Pℓ is the same as for
the covariance matrix. This leads to a simple tridiagonal matrix in this case
as well.

The shape of the fisher matrix Fℓℓ′ is dependent on how we decide to construct
our covariance and Pℓ matrices. Looking at figure 4.3 we see the diagonal
elements of the Fisher matrix for two different cases. The continuous line
shows the diagonal elements constructed from the full C−1 and Pℓ matrices,
while the dotted line is constructed from the tridiagonal simplified matrices.
Here we have again used resolution Nside = 1, and using other resolutions will
also affect the result. What this means for our analysis is not immediately
clear, and we will have to look into the detailed estimates to possibly get a
better idea of the effect it has.

In the final algorithm we do not want to use simplified matrices. Remember,
the algorithm is only correct with exact covariance matrices. But we may
be able to perform the first steps of the algorithm using simplified matrices,
and using the full matrices only when precision is required.
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Figure 4.3: Diagonal elements of the Fisher matrix constructed from a full
matrix(continuous line), and from a tridiagonal matrix(dotted line)

Let’s finally look at one of the simplest possible ways to set up our algorithm.
If we want to estimate only ℓ = 2, it is a simple matter to construct the
needlets in such a way that only one scale is needed. Using B = 2.0 leads
to ℓ = 2 being described solely by j = 1, when we remember that any
scale covers Bj−1 to Bj+1. The endpoints are set to zero, so for j = 2 the
endpoints would be ℓ = 2 and ℓ = 8, meaning that this scale dose not contain
any infromation about ℓ = 2. With this choice we get gℓ=2,j=1 = 1.0, and
assuming δkk′ holds we can express the variance as:

C =
∑

ℓ

Cℓgℓjgℓj′
2ℓ + 1

4π
Pℓ cos(∆k)

= C2
5

4π

and the inverse may immediately be written as C−1 = 4π
5C2

. From eq. 3.19

we get P2 = 5
4π

. This leads to C−1P2 = 1/C2. The Fisher matrix given by
eq. 3.10 turns out to be F22 = 1/2C2

2 and the inverted Fisher must then be
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F−1
22 = 2C2

2 . When inserting this into our algorithm (eq. 4.1) we get:

C
(n+1)
2 = C

(n)
2 − 1

2
F−1

2,2

(
−mTC−1P2C−1m + tr(C−1P2)

)

= C
(n)
2 − 1

2
2C

(n)2
2

(

− 4π

5C
(n)3
2

mTm +
1

C
(0)
2

)

= C
(n)
2

(

1 −
(

−4πmTm

5C
(n)2
2

+ 1

))

=
1

C
(n)
2

4π

5
mTm

The algorithm have to converge at some point, leading to C
(n+1)
2 = C

(n)
2 , and

inserting this we finally get

C2
2 =

4π

5
mTm (4.2)

We have now ended up with a simple result where C2 is given by the inner
product of the original data vector. We can test this out by generating a
random needlet transformed data vector using the above paraeters. Using
eq. 2.38 we find the true powerspectrum as C2 = 122. The simple result
in eq. 4.2 gives C2 = 33. This is obviously not a very good estimate of the
power spectrum, and we may suspect some of the assumptions we made to be
wrong. It does however illustrate how much simpler the algorithm becomes
by using the needlet transformation with the assumptions. It also gives some
insight into how the more complex constructions of the covariance matrix
behaves in needlet space.

In the following we will constantly refer to the various elements involved in
the algorithm. For simplicity I will from now on use mc-term when refering
to the −mTC−1P2C−1m-term, and tr(C−1P2) will be called the trace-term.
The Fisher matrix should be unambiguous.

4.1.2 Testing the derivatives

As we have seen in the development of the Oh-Spergel-Hinshaw algorithm,
the various elements entering into eq. 4.1 corresponds to the first and second
derivatives of the original likelihood function. This means we have a way of
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testing the validity of the algorithm by doing the derivatives numerically. In
the following we have used

f ′(x) =
f(x + ∆x) − f(x − ∆x)

2∆x
(4.3)

as our numerical derivation.

To test the first derivative, we know we can write the logarithm of the like-
lihood function as

f = −1

2

(
mTC−1m + ln(detC)

)

There is a constant term as well, but we may ignore it since it disappears
when we do the derivative. The first term in the parenthesis leads to the
term −mTC−1Pℓ′C−1m of our algorithm, while the second term gives us the
trace-part. To calculate the determinant of C we need some way to calculate
it numerically. In general C is too large to do this directly, but here we
will look at some very small cases in order to test the code. I have used an
LU-decomposition algorithm described by [10] to find the determinant.

What we have to do now is to compare the results calculated by each term
in the algorithm by the numerical results found by using equation 4.3 on our
undifferentiated likelihood function, doing a small variation around a chosen
Cℓ. I have chosen to look at ℓ = 2 and ℓ = 8.

We will examine the results for two different versions of the algorithm. Both
versions use the Conjugate Gradient method to construct the inverse covari-
ance, and they both use Monte Carlo simulations to determine the trace and
Fisher-terms. The algorithm named Tridiagonal uses a tridiagonal version of
the covariance matrix, as shown in eq. 4.1.1, while Full uses the full analyt-
ical covariance matrix given by eq. 3.18. I have then used 1000 realizations
for the Monte Carlo simulations to calculate the trace and Fisher.

Table 4.1: First derivatives for ℓ = 2.
Mc-term Trace-term

ℓ = 2 Numerical Analytical Numerical Analytical

Tridiagonal −7.9220 · 10−4 −9.2631 · 10−4 7.324 · 10−3 1.477 · 10−4

Full −3.8617 · 10−4 −3.8617 · 10−4 4.505 · 10−3 3.843 · 10−3

Looking at table 4.1 we see the results of the first derivative test for ℓ = 2. In
this case we use only the scale j = 1, with an ℓmax = 3. The resolution used
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is Nside = 1. The results are stable when we vary the ∆Cℓ in the numerical
derivative, or when changing the precision of the Conjugate Gradient method.

For the algorithm using the full covariance matrix, the terms seems to be
in good agreement between analytical and numerical derivatives. In the mc-
term there is no difference between the two results for the precision given in
table 4.1. The trace term shows somewhat larger discrepancy. The analytical
term does not vary much if we use a higher amount of realizations for the
Monte Carlo simulations, and it has been tested with 10.000 and 100.000
realizations. The numerical version of the trace term makes use of the natural
logarithm of the determinant of C. The algorithm I have used to calculate
the determinant returns very large or small results, ranging in order of 1022

to 10−122, and when we take the logarithm of these numbers there is reason
to suspect we pick up some rounding-off errors on the way. This may be the
explanation for the discrepancy between the numerical and analytical result
for the results for full matrix.

In the case where we have used a tridiagonal matrix in the algorithm, the
discrepancies are much larger. For the trace term the relative error is about
14% when comparing the numerical to the analytical result, and for the trace
term the relative error is almost 50%. This seems to indicate that the use of
simplified matrices is not valid in this case.

Table 4.2 shows the results for ℓ = 8. Here we have used scales j = 1 to
4, with resolutions Nside = 1, 2, 4 and 8, with ℓmax = 16. This results in a
matrix with dimensions 1020 × 1020 and this was too big to handle for the
algorithm calculating the determinant. Thus we did not get a result for the
trace term in the numerical derivatives.

Table 4.2: First derivatives for ℓ = 8.
Mc-term Trace-term

ℓ = 8 Numerical Analytical Numerical Analytical

Tridiagonal -0.8613 -2.9715 - 2.9558
Full -0.21493 -0.21495 - 0.22086

For the algorithm using a tridiagonal covariance matrix we note that the
numerical and analytical results are far apart for the mc-term. The algorithm
using the full matrix again shows excellent agreement between the numerical
and analytical results. We have no numerical results to compare with the
analytical results for the trace term. Note however that the analytical results
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are of the same order as the mc-term. For the OSH-algorithm to converge
this has to be true, so this is at least an indication that nothing is particularly
wrong with the analytical trace-term for the algorithm using the full matrix.

We are able to test the calculation of the Fisher matrix as well. When looking
at the definition in equation 3.10 it is obvious that we should use the trace
term in the algorithm to numerically calculate the second derivative, and this
should correspond with the Fisher matrix in the algorithm.

Table 4.3: Second derivative for ℓ = 2 and ℓ = 8.

ℓ = 2 Numerical Analytical ℓ = 8 Numerical Analytical

Tridiagonal 3.244 · 10−6 2.638 · 10−5 −6.551 · 10−3 0.2473
Full 1.504 · 10−6 1.462 · 10−6 1.458 · 10−3 1.364 · 10−3

Results for numerical and analytical second derivatives for ℓ = 2 and ℓ = 8
are given in table 4.3. The scales and resolutions for the two cases are the
same as for the first derivative tests.

The tridiagonal case gives results where the numerical and analytical versions
wildly disagrees. This is further indication that using the tridiagonal approx-
imation for the covariance does not produce very exact results. When using
the full covariance matrix we see much better agreement between numerical
and analytical results.

From these derivative tests we see that the use of a full covariance matrix
produces good results for the test cases used. This is good, since it is ab-
solutely necessary to use covariance matrices that are exact at some point
in our algorithm. The tridiagonal matrix does not work well however. This
means that, at least for the parameters tested here, the tridiagonal matrices
do not represent the exact covariance matrices. The relation given by eq.
3.17 does not hold for the parameters we have used. As an approximation
it may still be useful for the first steps in the algorithm, but when we need
the precise calculation of the power spectrum, a full covariance matrix is
required.
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4.1.3 Testing the Conjugate Gradient method

We have not yet examined if the needlet transformed covariance matrix works
with the Conjugate Gradient method. In our algorithm, the CG-method is
used to calculate the term C−1m where C is the covariance matrix, and m

is the data vector describing the pixels in needlet-space. The result is a new
vector given as

C−1m ≡ z

It is then obivous that

Cz = m

and we should be able to compare the result of the Conjugate Gradient
operation with our original data, simply by multiplying the resulting vector
from the CG-method with the full covariance matrix.

Figure 4.4: Absolute error of original datavector versus data reconstructed
from the Conjugate Gradient method.

Figure 4.4 shows the absolute error when comparing the original data with
data reconstructed from the result of the Conjugate Gradient method. Here
the needlet-transformation is using scales j = 1 to 4, with resolutions Nside =
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1, 2, 4 and 8. When using the Conjugate Gradient method we also need to
set a tolerance, and in this case I have used ǫ = 0.0001.

Many of the elements in the data vector approaches zero, so trying to find
the relative error does not work very well. But the elements in the vector ar
of order 100 to 101, so compared with the absolute error the results of the
comparison are very good. The small absolute errors we see in figur 4.4 can
be attributed to small round-off errors.

A few words about the preconditioner. To make the algorithm more efficient
we use a preconditioner, a matrix similar to the covariance matrix but easier
to invert. Because of the relation given by eq. 3.17 a suggestion for the
preconditioner gives itself. We should be able to use only the diagonal or
possibly the tridiagonal matrix given by eq. 4.1.1 as a preconditioner. In
this thesis I have used only the diagonal information from C.

For the data vector used in figure 4.4 the number of elements included in the
vector is 1020. In a worst case scenario this is the number of basis vectors
the CG-method would have to search along to get a satisfactory result. In
our case the CG-method has converged after about 30 iterations, only 3% of
the total number of possible iterations needed. The algorithm may converge
even faster if we use the tridiagonal information, but this has not been tested
in this thesis.

From section 3.1.2 we remember the demands for a sparse and positive-
definite covariance matrix for the Conjugate Gradient method to work. The
needlet transformed C is clearly sparse. Looking back at figure 4.1 and 4.2
we see that the dominating elements in the matrix are the diagonals, with
most off-diagonal elements very small. In fact, the construction of the needlet
window function gℓj ensures that all matrix elements not fulfilling the δj|j−1|

assumption are set equal to zero.

We have not tested directly whether the covariance matrix is positive-definite
or not, but since the Conjugate Gradient-method produces good results the
matrix fulfulls this requirement. In conclusion it seems like the CG-method
works well with needlet transformed C, and should work as intended for our
purpose.
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4.1.4 Getting maps from needlet-coefficients

The needlet transformation of our signal must retain all information con-
tained in the original map, and we would expect to regain the complete
original signal when we do the reverse operation. When using HEALPix the
transformation from needlet coefficients back to spherical harmonic space
looks like

aℓm =
∑

j

gℓjβlm (4.4)

where

βlm =
∑

k

βjkY
∗
lm(k)

In practice this means doing a spherical harmonic transformation of each
scale, getting spherical harmonic coefficients for the needlet transformed sig-
nal. These coefficients then needs to be weighted by the needlet window
function and summed over all scales. We are now left with a spherical har-
monic realization of the orignial signal and may convert it to a map or extract
the power spectrum.

A very important requirement we want to examine is the limit of information
we can obtain from an image based on the resolution. We remember from
section 2.2.4 the arguments for the maximum multipole in an image as ℓmax =
2Nside. We will now look at the resolution dependence when using needlet
transformations.

We construct a signal using ℓmax = 1024. In pixel representation we will
then need to use Nside = 512. From this orignial signal we extract the power
spectrum using eq. 2.39, and the result is shown as black in the right plot of
figure 4.5.

For the needlet transformation of this signal we use bandwidth B = 2.0. To
include the entire sighal up to ℓmax = 1024 we have to use 10 j-scales. For
each scale the resolution has been set to Nside,j = 1

2
Bj+1, except for scale

j = 10. The reason for this is that using the above formula for finding the
resolution, we should have used Nside = 1024. Since the signal only goes
to ℓmax = 1024 we only need to use Nside = 512 for j = 10. After having
used these parameters for the transformation we use eq. 4.4 to get back
the original spherical harmonic coefficients, and extract the power spectrum.
The results are plotted in red in figure 4.5.
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Figure 4.5: Left: Power spectrum for original image(black) and needlet-
transformet image(red). Right: Relative error of the transformed vs. original
image.

As we see from the figure, both power spectras seems to be in agreement,
it is hardly possible to se the plot of the untransformed power spectrum
beneath the transformed one. The right plot in figure 4.5 shows the relative
error between the two power spectras. As we see the error is small. Some of
the larger errors appear for multipoles lower than ℓ = 50, but even here the
difference is less than 1%. For high ℓ’s the relative error grows as well, but
this is due to round-off error, since there is very little signal left to compare
with.

Figure 4.6: Left: Power spectrum for original image(black) and needlet-
transformet image(red). Right: Relative error of the transformed vs. original
image.

Let’s now examine more closely what happens if we change one parameter
of the needlet transformation. We use the same setup as above, but for scale
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j = 7 we change the resolution. In the first test we used Nside = 1
2
Bj+1 = 128,

since this scale includes multipoles from ℓ = 64 to ℓ = 256. If we now change
the resolution of j = 7 to Nside = 64 we get the result shown in figure 4.6.
Looking at the left plot there is now a clear difference between the original
spectrum (in black) and the transformed spectrum (in red). The right plot
shows the relative error in this case, and we see a large error in exactly the
multipoles spanned by j = 7.

From this it seems we have the same constraints to resoultion for the j-scales
as for a regular temperature map. There is a limit to how low a resolution
we are able to use while still retaining information about the multipoles, and
the resolution we have to use is given as

Nside,j =
1

2
Bj+1 (4.5)

4.1.5 Dependence on pixel-resolution

Given the lower boundary in resolutions, the question is now if this resolution
is able to fulfill the expectation given by eq. 3.17. In words, we need to
examine if the term δkk′ holds for the resolutions we are required to work
with.

Using the analytical expression for the covariance matrix, we may look a bit
closer at the angular dependency for δkk′. For scale j = 1 we have a multipole
range of ℓ = 1 to ℓ = 4 when using B = 2.0. Since the factor gℓj sets the
endpoints to zero, the only contributing multipoles for this scale are ℓ = 2
and ℓ = 3. The covariance matrix is given by eq. 3.18 as

C =
∑

ℓ

Cℓgℓjgℓj′
2ℓ + 1

4π
Pℓ(cos ∆k)

and when only using the relevant multipoles we get

Ckk′ = Cℓ=2g
2
ℓ=2,j=1

5

4π
Pℓ=2(cos ∆k) + Cℓ=3g

2
ℓ=3,j=1

7

4π
Pℓ=3(cos ∆k)

We get the values for the power spectrum from the WMAP results [2], giving
C2 ≈ 1279 and C3 ≈ 591. For the needlet parameters used here we get
g2,1 = 1.0 and g3,1 = 0.707. Inserting these values we get approximately

Ckk′ ≈ 511P2(cos ∆k) + 177P3(cos ∆k)
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The covariance matrix has become a weighted sum of two Legendre polyno-
mials. The Legendre polynomials are known functions, and the covariance
becomes a weighted sum of these polynomials of relevant order. Looking at

Figure 4.7: Left: The Legendre polynomials P2(black) and P3(dotted) plot-
ted with the weighted values for scale j = 1. Right: The sum of the two
polynomials.

figure 4.7 we see each of the weighted Legendre polynomials (left) with P2

in black and P3 as a dotted line. To the right we see the sum of the two.
As expected the highest covariance is at cos θ = 1.0, which corresponds to
angular distance zero, or the variance of the pixel. We also notice a fairly
high correlation between points at the opposite side of the sphere. In fact, if
we had a scale consisting of only ℓ = 2 (we could get this by setting B = 1.5)
the correlation on the opposite side of the sphere would be of the same shape
as the plot of P2 on the left side in figure 4.7. The correlation would be
as high as the self correlation, and the needlet transformed CMB would be
spherically symmetric.

Lets look at the case for scale j = 2. The multipole window now ranges from
ℓ = 2 to ℓ = 8, so only ℓ = 3 to ℓ = 7 contribute. By inserting the relevant
values for Cℓ and gℓj, the expression for the covariance matrix now becomes

Ckk′ ≈ 165P3 + 235P4 + 157P5 + 71P6 + 15P7

Again we can look up the expressions for these Legendre polynomials, mut-
liplying them with the weights, and add them together. The result is plotted
in figure 4.8. The correlations on the opposite side of the sphere are now
largely suppressed. Closer to our test pixel however, we do get significant
negative correlation. Since this scale goes to ℓ = 8 we should not use a lower
resolution than Nside = 4. Using healpix we can find the typical distance be-
tween two neighbouring pixels at this scale. This turns out to be an angular
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Figure 4.8: Sum of the weighted Legendre polynomials for scale j = 2

distance of cos θ ≈ 0.1. The pixels closest to the testpixel would then be
found at cos θ ≈ 0.9 in the figure. At this point in the plot, the correlation
is still about 30% of its maximum. In addition we have pixels at a distance
cos θ ≈ 0.7 which shows even larger, negative correlations.

There are two possibilities for getting a covariance matrix that really fullfills
the expected δkkδj|j−1| relation. We can reduce the resolution of the scales so
the angular size of the pixels are larger than the variations close to cos θ = 1.0.
The other way is to increase the bandwidth of each scale to include more
multipoles.

For all multipoles the Legendre polynom will give the value 1 for cos θ = 1,
which corresponds to self-correlation. At the opposite end, for cos θ = −1,
the value will alternate between −1 and 1, depending upon whether ℓ is even
or odd. The more polynomials we sum together, the more we will suppress
all values except at cos θ = 1. We would presumably end up with a delta-
function δ(cos θ − 1) when summing over an infinite number of multipoles.
This would in our case correspond to a CMB image of infinite resolution,
with a single scale j containing all the multipoles. A finite set of multipoles
included in a scale will approximate this.
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In the previous section we examined the demand for a minimum Nside to
retain maximum information of the multipoles. Now we see that to get
an exact covariance matrix fullfilling the δkk′ relation we need to use lower
resolutions. These two demands work in opposite, and for the example we
used in this section they are incompatible. The general trend, based on
earlier simulations [7] seems to be that the relation δkk′ does not hold for the
Nside we have to use given eq. 4.5.

The other option is to increase the bandwidth, and we will get back to this
when we start using needlets with the Oh-Spergel-Hinshaw algorithm.

4.2 Estimating the power spectrum

We should now have some idea of the limitations when using the Oh-Spergel-
Hinshaw algorithm in needlet space. Specifically we have to take into account
the minimum resolution we have to use for a given scale.

The algorithm includes the option to use simplified versions of the covariance
matrix. The intent is then to use these in the first iterations of the algorithm
to make some rough steps in the right direction, then switch to exact matrices
when greater precision is required for the final convergence. We will therefore
examine how well the algorithm works with different approximations and
with full matrices.

In each case we have to decide on the bandwidth of the needlet-window
function, adjusted by the parameter B, what scales j we want to include,
and what resolution Nside,j we will use for each scale. This in turn decides
what multipole ℓmax we can expect to learn something about, given that
any j-scale has an ℓ-range going from Bj−1 to Bj+1. The largest ℓ in any
given scale determines the minimum Nside we can use to make sure that
the information for the power spectrum is retained. This is then given as
Nside,j = 1

2
Bj+1 for any given scale. Whith all this in mind, we are now ready

to make use of the algorithm.

In the following we are using HEALPix to generate a random set of spheri-
cal harmonic coefficients aℓm based on the estimates of the power spectrum
given by the WMAP results [2]. Any of these specific realizations will not
necessarily give the same power spectrum back, they will only give a Gaus-
sian distributed random set. We will therefore use eq. 2.39 to find the actual
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power spectrum contained in any specific realization, and compare the esti-
mated results with this. None of the estimates include the noise covariance,
but all make use of the pixel window functions and beam as described by
section 2.2.4. For the beam we have used the result from WMAP, with
FWHM=7 arc minutes.

4.2.1 Diagonal covariance without CG-method

We will begin by examining simplified versions of the covariance matrix. One
of the simplest assumptions we can make is

〈βjkβj′k′〉 = δjj′δkk′ (4.6)

where we are ignoring the correlations between neighboring scales. Unless we
are able to find situations where this describes the true covariance matrix,
this can only be a usable approximation in the initial iterations of the OSH-
algorithm. For a proper estimate we will have to use a complete covariance
matrix.

The above assumption leads to a diagonal covariance matrix C, and we do
not need any special methods to find the inverse, we may simply calculate
it directly by inverting the values on the diagonal of C. In addition the Pℓ-
matrix also becomes diagonal, and the calculation of both the first term and
the trace in the algorithm becomes the simple operation of multiplying the
diagonals of the various matrices together. Let’s see where this simplification
takes us.

Figure 4.9: Left: Estimated power spectrum with ℓmax = 3, B = 2.0. Right:
Relative error for estimate vs. expected power spectrum.
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Figure 4.9 shows the result when using B = 2.0, scales j = 1 to 2, and ℓmax =
3. In this case the algorithm is extremely fast, and the whole estimation
process is done in less than a second. The estimates converges quickly. After
3 iterations of the algorithm the estimates for the Cℓ’s has converged to the
11. decimal. The dotted line in the figure, which is hardly visible at all,
represents the actual power spectrum given by using equation 2.39, and as
we can see the estimates come quite close. The right figure shows the relative
error, giving the error of the estimate of the quadrupole at about 1.7% of the
actual signal. For the octopole the error is even smaller. These results seem
promising, and it would be interesting to see the results when estimating a
large number of universes.

By repeating the algorithm and finding the mean, we get the results shown
in figure 4.10. Here we see the results of doing 1000 estimates. The results

Figure 4.10: Left: Mean estimated power spectrum for ℓmax = 3, B = 2.0.
Right: Relative error for estimates vs. WMAP values.

are scaled and compared with the values from WMAP, and again we see very
good agreement. The relative error is largest for the quadrupole, at 1.3%.

So far the algorithm seems to be working perfectly. Let’s try to expand the
estimates to include ℓ = 4. Since scales j = 1 and 2 includes all we can
know about ℓ = 2 to 4 we do not need to change the setup from the previous
estimate.

Table 4.4 shows results when trying to do the estimates up to ℓmax = 4.
Clearly something went very wrong here. Let’s take a closer look at the
details of the estimates. The algorithm basically consists of three distinct
parts that need to be calculated. We are separately calculating the mc-term
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Table 4.4: Expected and estimated values when using lmax=4, B=2.0
ℓ expected result

2 235.4 9.9 · 10118

3 685.5 1.4 · 10119

4 493.1 5.5 · 10118

and the trace term of the algorithm, and in addition we need to find the
inverse Fisher matrix.

We will first look at the mc-term and the trace term. When using B = 2.0
and ℓmax = 3 we got good estimates. Table 4.5 shows the development of the

Table 4.5: Development of the terms for ℓmax = 3
Iteration 1 2 3

ℓ = 2, mc-term −1.24 · 10−2 −8.01 · 10−2 −7.92 · 10−2

ℓ = 2, tr.term 3.14 · 10−2 7.96 · 10−2 7.91 · 10−2

ℓ = 3, mc-term -0.116 -0.134 -0.132
ℓ = 3, tr.term 0.113 0.133 0.132

terms iteration for iteration for this case. We remember that the algorithm
converged after three iterations, and from the table we can see why. The two
terms have converged towards each other, cancelling each other out, and this
means there will be almost no corrections to the Cℓ’s in further iterations.

Let’s see what happens for ℓmax = 4. Looking at table 4.6 we see a quite dif-

Table 4.6: Development of the terms for ℓmax = 4
Iteration 1 2

ℓ = 2, 1.term −1.24 · 10−2 1.57 · 10−31

ℓ = 2, 2.term 3.14 · 10−2 −1.11 · 10−16

ℓ = 3, 1.term −6.40 · 10−2 −2.93 · 10−31

ℓ = 3, 2.term 6.33 · 10−2 1.52 · 10−016

ℓ = 4, 1.term 0.130 4.45 · 10−31

ℓ = 4, 2.term 0.100 −1.85 · 10−16

ferent development of the terms compared with the previous case. Although
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all the terms start out with values comparable to the ℓmax = 3 case, they are
driven towards very small values in only one iteration. The results from table
4.4 showed that the estimates grew extremely large, and since the terms at
first iteration seems to be comparable to the case for ℓmax = 3, we should be
suspicious about the inverse Fisher matrix.

Let’s compare the Fisher matrices for ℓmax = 3 and ℓmax = 4 to see if we can
explain the very different developments after only one iteration. Starting
with the Fisher matrix for ℓmax = 3 after one iteration we get:

F =

(
3.52 · 10−5 2.42 · 10−5

2.42 · 10−5 3.11 · 10−4

)

Inverting this gives us the following matrix:

F−1 =

(
29944 −2333
−2333 3392

)

Each of the elements here is of an order of magnitude that closely match
the parenthetical terms in the algorithm, leading to small corrections of the
initial guess.

In the case of ℓmax = 4 we get something quite different, however. Looking
first at the Fisher matrix, we have:

F−1 =





3.52 · 10−5 2.42 · 10−5 0.0
2.420 · 10−5 6.95 · 10−5 1.32 · 10−4

0.0 1.32 · 10−4 3.33 · 10−4





Nothing seems out of the ordinary here, and the terms seems to match the
ones we got for ℓmax = 3. When we invert however, the results become
completely different:

F−1 =





−1.2 · 1020 1.9 · 1020 −8.2 · 1019

1.9 · 1020 −2.9 · 1020 1.2 · 1020

−8.2 · 1019 1.2 · 1020 −5.4 · 1019





Here we see that the elements in the matrix do not match the terms at first
iteration at all. Summing the parenthetical terms from table 4.6 together
would at most lead to values approximately in the order of 10−1 to 10−2.
Multiplying this with the elements of the inverse Fisher matrix would lead
to very large corrections of the power spectrum, and in the next iteration we
would get even more inaccurate estimates. The estimates simply explode to
very large powers, just like we saw in table 4.4.
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The problem is the invertibility of the matrix. A simple way to test how the
inversion went is finding the matrix product of the Fisher matrix and it’s
inverse, which should give the result FF−1 = I. In the case for ℓmax = 3 we
get:

FF−1 =

(
1 1.11 · 10−16

1.38 · 10−17 1

)

The off-diagonal elements are not exactly equal to zero, but they are so small
as to not create any problems in the algorithm. In other words, we got an
approximate identity matrix.

For ℓmax = 4 we get something completely different:

FF−1 =





1 0.69 0.00022
0 0.40 1.00013

6.77 · 10−21 −0.00013 −0.00033





This result is very far from an identity matrix, and since our algorithm
depends on the invertibility of the Fisher matrix, we can not expect to get
any reliable results in this case. It seems the Fisher matrices in needlet-space
are very unreliable.

The suspicion is strengthened by looking at two different attempts at esti-
mation, each using the same data. One was programmed by me in Fortran,
the other implementation was provided by my supervisor and programmed
in IDL. For the case of using ℓmax = 3 with scales j = 1 and 2, the two
methods produced comparable results:

Fortran :C2 = 235.46, C3 = 685.53

IDL :C2 = 235.33, C3 = 684.78

with the results of the inverted fisher-matrixes being

Fortran :F−1 =

(
60.38 −26.77
−26.77 38.24

)

, IDL :F−1 =

(
60.26 −26.71
−26.71 38.16

)

As we can see the two methods produced approximately the same results.
The differences comes from variations in the details of the code leading to
slightly differend round-off errors.

An interesting thing happens whe we attempt estimating up to ℓmax = 7.
In this case the IDL code was still able to make an estimate of the power
spectrum, while the Fortran code was not.
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After one iteration however, the two methods produced almost the same
result for the mc-term and the trace term in our algorithm. Even the Fisher
matrix agreed up to 7. decimal in the two cases. But in the matrix inversion
process, the IDL code produced matrices where each element was in the range
of 107 to 1010, while the Fortran code gave elements in the range of 1015 to
1018. This huge difference in the inverse Fisher matrix is what is causing the
problems, and the reason for it seems to be small differences in the rounding
off in the different implementations. The inversion of the Fisher matrix is
very unstable, and minor differences in the 8. decimal of the elements in
the Fisher matrix decides if we are able to invert the matrix or not. The
non-invertible Fisher matrix is what has caused our problems.

So far we have used B = 2.0 when constructing the needlet coefficients. As we
have seen before, the B-parameter controls how many multipoles are included
in each scale in the needlet transformations. Let’s try setting B = 1.5, which
leads to a smaller bandwidth and fewer multipoles included in each scale.

Figure 4.11: Left: Estimated power spectrum for ℓmax = 6, B = 2.0. Right:
Relative errors for estimate vs. expected value.

Figure 4.11 shows the result of trying this with ℓmax = 6. In this case we need
scales up to j = 5 to retain all information about the multipoles. Again the
method converges quickly, beeing stable to the 11. decimal after 3 iterations.
The relative error is less than 1%, as seen from the right plot. The Fisher
matrix is invertible in this case, and producing an identity matrix when we
do the matrix operation FF−1.

In figure 4.12 we see a simulation with 1000 estimates compared with the
accepted values for the power spectrum, and again we see good agreement
with relative errors less than 3%. So by reducing the bandwith, leading to
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Figure 4.12: Left: Mean estimated power spectrum for ℓmax = 6, B = 2.0.
Right: Relative errors for estimate vs. WMAP values.

Table 4.7: Expected and estimated values when using lmax=7, B=1.5
ℓ expected result

2 235.4 234.1
3 685.5 690.4
4 493.1 −4.4 · 10112

5 268.1 −1.4 · 10117

6 141.3 −1.8 · 10117

7 88.7 −5.1 · 10116

more scales included, with fewer multipoles in each scale, we are able to geet
good estimates for higher ℓmax.

But again we hit a ceiling in the stability of the algorithm. Since Bj ≈ 7.5
when using B = 1.5 and j = 5, we need only 5 scales if we want to make
an estimate with ℓmax = 7 . In essence, we only have to include one more
multipole when running the algorithm. Table 4.7 shows results after ten
iteration when trying to estimate up to ℓmax = 7, and we see the same
problem we had earlier. In this particular case the estimates for C2 and C3

are still good, but again the inverted Fisher matrix has pushed the results for
the higher multipoles in a very wrong direction. The matrix product FF−1

does not produce an identity matrix, and the conclusion is that the Fisher
matrix was non-invertible in this case.

Presumably it should be possible to get estimates to even higher multipoles
by narrowing the bandwidth through the B-parameter. This does go against
what we found in section 4.1.5 however. By including fewer multipoles in
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each scale we are effectively getting further away from the the assumption
made at the beginning of this section, and the diagonal case can not be a
true covariance matrix. Even for doing initial estimates the algorithm fails,
except for very low multipoles.

4.2.2 Tridiagonal covariance without CG-method

We will make use of the simplified matrix once more, so this will not be a
preferred matrix for the final estimates in our algorithm. But just as for the
diagonal case we will check if it could be useful in the first few steps.

The original expectation for needlet coefficients was given as 〈βjkβj′k′〉 =
δkk′δj|j′−1|, and we will try to implement this directly. By assuming no corre-
lation between the needlet-coefficients, δkk′, we have previously seen that we
get a single number characterizing each scale. This means we can essentially
construct a covariance matrix C with dimensionality given by the number of
scales j we are using. This matrix should be easy to handle directly, making
the calculations of the trace and Fisher matrix quite simple.

When calculating C−1m we have to be to keep track of which element in m

corresponds to which scale. For a simplified case with two scales, each scale
having a resolution of only three pixels, we would have to make the following
transformation of the matrix:

(
C11 C12

C21 C22

)











a1

a2

a3

b1

b2

b3











⇒











C11 · · C12 · ·
· C11 · · C12 ·
· · C11 · · C12

C21 · · C22 · ·
· C21 · · C22 ·
· · C21 · · C22





















a1

a2

a3

b1

b2

b3











The same applies to C−1 and P ℓ.

We begin by testing with parameters B = 2.0 and ℓmax = 6. The results
are shown in figure 4.13, and they have converged to 8. desimal after 3
iterations. This works fine with highest relative error at approximately 7%
for the highest multipole. The Fisher matrix is invertible in this case.

In figure 4.14 we see the mean estimates after 1000 realizations. Again we
see good agreement with accepted values for the power spectrum, with the
largest relative error a little over 3%.
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Figure 4.13: Left: Estimated power spectrum for ℓmax = 6, B = 2.0. Right:
Relative error for estimate vs. expected value.

Figure 4.14: Left: Mean estimated power spectrum for ℓmax = 6, B = 2.0.
Right: Relative error for estimate vs. WMAP values.

But once again the algorithm fails when we try to do estimates of higher
multipoles. Just as we saw in the diagonal case, the Fisher matrix is no longer
invertible, and we get the by now familiar results of exploding estimates that
do not converge.

Just as in the case of diagonal covariance matrices, we get slightly better
results when we try to decrease the amount of multipoles in each scale. Figure
4.15 shows the result when using B = 1.5. In this case we are able to get
results up to ℓmax = 9. The relative error seems to be growing with larger ℓ,
and ending up at about 14% for the highest multipoles, but looking at figure
4.16 we get a much better result. Here we see the mean after 1000 simulations
compared with accepted values for the power spectrum. The largest relative
error here is just above 3%.
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Figure 4.15: Left: Estimated power spectrum for ℓmax = 9, B = 1.5. Right:
Relative error for estimate vs. expected value.

Figure 4.16: Left: Mean estimated power spectrum for ℓmax = 9, B = 1.5.
Right: Relative error for estimate vs. WMAP values.

A test with ℓmax = 1024 has been tested to see if the solutions are more
unstable when only dealing with a few multipoles, but we get the same
problem as before. The estimates after only a few iterations quicly grow
to exponential values, just as we saw in table 4.4, and the Fisher matrix is
non-invertible.

4.2.3 Full covariance with CG-method

So far we have not made use of the Conjugate Gradient method in our algo-
rithm, and we have not used the full analytical covariance matrix given by
eq. 3.18. In this section we will look at the results for using these.
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To get correct results when using the OSH-algorithm we will have to use
correct covariance matrices, and we will then expect to get a correct result.
Using the CG-method we will find an approximate invers covariance matrix,
and Monte Carlo simulations will be used to calculate the trace and Fisher
terms. The preconditioner used is the diagonal of C.

As before we will use a bandwidth B = 2.0. We set ℓmax = 12, and have to
include 4 j-scales, with resolutions up to Nside = 8 for the last scale. The
results of the estimation are shown in figure 4.17. The expected values of

Figure 4.17: Results for ℓmax = 12, B = 2.0. Full line shows estimate, broken
line shows expected value, and dotted line shows initial guess.

the simulation are shown as a broken line, while the estimates are shown as
a full line. The dotted line indicates our initial guess in the algorithm, and
uses the values of the power spectrum estimated from WMAP.

As we can see from the figure the estimation is a success. The algorithm has
converged after 3 to 4 iterations. In figure 4.18 we see the relative error for
the estimate compared with the expected values of the power spectrum. As
we can see the errors are small, in the range of 1 − 2%.
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Figure 4.18: Relative error for expected vs.estimated power spectrum.

The results for ℓmax = 12 represents the current best results obtained when
using needlet transformations. This is not due to failure of the algorithm
when trying to do higher estimates, but simply due to time constraints. When
using the full matrix, the dimensions grows quickly when we include more
multipoles and scales. This makes particularly the Monte Carlo simulations
time consuming. It should not pose any problems to implement some sort of
parallellization to the algorithm. We could then do many simulations at the
same time, and get the results quicker.

4.2.4 Tridiagonal covariance with CG-method

As a final test we want to examine what happens if we use the previously
described tridiagonal version of the covariance matrix and combine this with
the Conjugate Gradient method and Monte Carlo simulations. Even if this
can not be used as a final algorithm it may be useful for the first few iterations
of the OSH algorithm.

We use a setup of the needlet transformations with B = 2.0, ℓmax = 4, with
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Table 4.8: Estimated values for ℓmax = 7, B = 1.5, tridiagonal matrix.
Iteration C2 C3 C4

1 1279.2 633.3 317.7
2 1282.4 671.1 310.4
3 1285.5 703.7 303.5

30 1351.3 1021.3 239.1
100 1430.7 1114.7 238.9

Expected 1393.3 1068.4 237.6

Table 4.9: Estimated values for ℓmax = 7, B = 1.5, full matrix.
Iteration C2 C3 C4

1 1446.2 865.5 241.9
2 1416.1 1015.9 244.2
3 1417.3 1097.2 243.7

Expected 1393.3 1068.4 237.6

two scales at Nside = 2. Results for a varying amount of iterations is shown
in table 4.8. There are a few things to note in these results. First off, every
iteration takes a very small step, and we can compare this with the results
of the same setup using the full covariance matrix. The results for this is
shown in table 4.9. The two algorithms use the same starting guess for the
first iteration, and the algorithm using the full covariance matrix has taken
much bigger steps toward the expected values of the power spectrum. The
tridiagonal algorithm takes much smaller steps, and if we are going to use it
to quickly iterate the first few steps in the algorithm it doesn’t look like it is
going to get us much closer to a better estimate.

The second thing to note from table 4.8 is that it’s not clear if the algorithm
is converging at all. Although the value for ℓ = 4 seems to have stabilized
after 100 iterations, the other two have continued past the expected values
and does not show signs of converging to any value.

In conclusion the tridiagonal covariance matrix combined with CG-method
and Monte Carlo simulations does not show great promise in getting quick
estimates. It seems we are better of just using the full matrix in the first
place.
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4.3 Discussion of the results

We have now looked at several different version of combining needlet trans-
formations with the OSH-algorithm. In this algorithm we are required to use
exact covariance matrices to get exact results, but are allowed to use simpli-
fied versions to make some initial estimates. When using OSH in pixel space
or spherical harmonic space, it was not necessary to have an exact Fisher
matrix. From our results this seems to be very different in needlet space.

The two algorithms that made use of diagonal or tridiagonal matrices were
only viable for very low ℓ. They were then able to make quite accurate
estimates of the power spectrum, and were converging quickly. But they
both come to a point where their Fisher matrices become non-invertible, and
the algorithm fails. It seems there is need for a more exact Fisher matrix
in these cases for the algorithm to work. This is very different from the
original OSH-algorithm, where the demands on the Fisher matrix were not
very strict. If the algorithm does not work at all it can certainly not be used
for the first iterations.

We did have some success in reducing the bandwidth of each scale when
using the simplified covariance matrixes. However, as we have already seen
this directly contradicts the relation given by eq. 3.17, and the simplified
covariance matrix will look less like the true covariance the fewer multipoles
we include in each scale. In this thesis we have not explored the results of
drastically reducing the bandwidth.

When using the Conjugate Gradient method to calculate C−1m and indi-
rectly finding the trace and Fisher, we had better results. Using the full
covariance matrix produced good estimates, and with the limited amount of
testing done it did not show any signs of failing. The tridiagonal matrix did
not work particularly well with the CG-method however. It did not show
clear signs of converging, and in our test the changes per iteration were to
small for this method to be usable for first steps in the OSH-algorithm.

Finally we must conclude with the following: Using needlet transformations
in combination with the OSH-algorithm for estimating the power spectrum
does not make the estimation process faster or simpler. The only method that
shows signs of being reliable is by using the full covariance matrix, and using
this to get the trace and Fisher matrix through Monte Carlo simulations.
Because of the relation between resolution and multipoles, we end up with a
larger covariance matrix in needlet space than in pixel space. We will always
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have at least one j-scale with the same resolution as the original signal,
and depending on the bandwidth we use in our needlet transformations we
get many other scales as well. As a consequence of this the size of the full
covariance matrix will then increase instead of decrease, the computations
will become heavier, and the motivation for using needlet transformations in
the first place is lost.
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Chapter 5

Conclusion

The formation of the Cosmic Microwave Background radiation has left us an
imprint of the density fluctuations in the early universe. By using statistical
tools we are able to characterize these fluctuations with a power spectrum,
and this is of major importance when trying to establis the values and bounds
of the cosmological parameters, enabling us to better understand the content
and evolution of the universe.

The power spectrum describes the variations in the CMB on different angular
scales, known as multipoles. The better resolution we have in our data, the
higher multipoles we are able to get. As the size of the CMB-data increases
the pressure to find effective algorithms to extract the power spectrum grows
as well.

Oh, Spergel and Hinshaw has developed an algorithm for extracting the
power spectrum from the observed CMB. An important characteristic of the
CMB in this algorithm is the covariance matrix, a description of the statistical
connections between different parts of the signal. With increased resolution
of the CMB observations the dimensions of the covariance matrix grows as
well, and this eventually leads to computational challenges. In this thesis we
have examined the possibility of using needlet transformations to reduce the
complexity of the covariance matrix.

Needlet transformations are able to pick out smaller ranges of multipoles and
arrange them in a new way. They create a set of needlet coefficients βjk with a
pixel number k and a j-scale number, and these contain the information from
the included multipoles. The attraction of using needlets lies in the relation
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〈βjkβj′k′〉 = δkk′δj|j′−1|. This relation tells us that the needlet coefficients we
get from the transformation are orthogonal to each other, and only correlate
with a few neighbouring j-scales. If this relation holds for use in the OSH-
algorithm, it will allow us to simplify the covariance matrix. This wil make
it possible to have very fast algorithms for estimating the power spectrum.

In the thesis we have examined the properties of needlets combined with the
OSH-algorithm, and what information we can expect to get under different
conditions. Some problems with the approach have been indicated. The
situation can be described as shown in figure 5.1. We have seen the the
need for a high enough resolution of the CMB image to be able to extract
a certain detail in the multipoles. To be able to get tridiagonal covariance

Resolution

Multipoles

Tridiagonal
Needlets

Figure 5.1: Non-overlapping solutions

matrices we have seen two possible solutions; either using lower resolutions
for the images, or using more multipoles in each of the j-scales. As indicated
on the figure these solutions do not overlap, and because of this we are not
able to get good estimates of the power spectrum when we use simplified
covariance matrices. The solutions we want for the power spectrum lies in
the cross-section between resolution and multipoles, and we are unable to
make use of tridiagonal needlets in this case.

The needlet transformations do work with the OSH-algorithm however. We
get converging solutions when we make use of more complex needlet trans-
formed covariance matrices. The problem with using this is that we end up
with larger matrices than we started out with before the transformations.
The estimation becomes more computationally heavy, not less, and this is
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not any solution to our initial problem.

When working with this thesis, a lot of work was done in trying to get the
algorithm to produce results before realizing the needlets themselves were
causing the problems. Therefore, many possibilities have gone untested.
What would happen to the invertibility of the Fisher matrix if we included
the instrumental noise? How would the estimates have looked if we included
the galaxy mask to remove unwanted signal? Is it possible to include a large
amount of multipoles in a few j-scales and still use a fairly low resolution, to
obtain triangular matrices?

These questions remain unanswered in this thesis, and some of them may
provide a solution to simplifying the CMB signal for use with the OSH-
algorithm. From the results found in this thesis however, it seems that the
use of needlet transformations combined with the OSH-algorithm is not a
viable approach to estimating the power spectrum.
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