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A short explanation of the
abbreviations and terms used
in the thesis

ECG is the abbreviation for electrocardiogram and is the term used for the
12-lead ECG. ECG is also used for the recording in a single channel of the
12-lead ECG.

12-lead is another term for the standard ECG recording.

BSPM is an abbreviation for body surface potential mapping, which is a col-
lection of electrical potential differences recorded at many points on the
upper body. In this thesis a 64 channel BSPM is used. The term BSPM
will also be used on single channels in the 64 channel BSPM.

WCT is the abbreviation for the Wilson Central Terminal.
Electrode is the term used for a single recording node used in BSPM /ECG.

Channel is used for the recording in one of the electrodes of an ECG/BSPM
that have been modified by the WCT.

Lead is the term used for a combination of electrode recordings. For the BSPM
recordings in this thesis, a lead will be the same as a channel.

V is often used as the term for a channel of the BSPM. V? is then the ith
channel out of the 64 channels.

Vji is often used as the term for the jth heartbeat of the ith channel of a BSPM.
Vji is then a vector containing the measurement of one channel V* between
onset value j and j + 1.

ST segment is a segment of the heartbeat. In this thesis, shifts in the ST
segment between a rest and exercise recording is used as an indication of
ischemia.

BSSTM is an abbreviation for body surface ST segment mapping. This is a
mapping of the difference in ST segment shifts at the spatial locations of
the channels of the BSPM.



Chapter 1

Introduction

1.1 Ischemia and the electrocardiogram (ECG)

Ischemic heart disease is the single most frequent cause of death in the world
today [42]. It occurs when the oxygen demand of the heart muscle exceeds
the supply, often caused by an occlusion in the blood vessels. Diagnosing is-
chemia is a difficult task, with the illness being undetected in many patients
[15]. Even the tiniest improvement of the methods for diagnosing this disease
will have great effect on the number of people receiving treatment in time. The
electrocardiogram (ECQ) is the most commonly used tool for diagnosing heart
diseases, including ischemia. The ECG is a recording of the electrical activity
in the heart at selected points on the body surface.

1.1.1 ST shift measurement

ECG exercise testing can be used to detect ischemia by comparing a rest and
exercise ECG recording of a patient. A shift in a part of the heartbeat called
the ST segment is used as an indication of the presence of ischemia [15]. In the
standard ECG, three limb electrodes in addition to six electrodes placed close
to each other on the chest is used. The small number of measuring points in the
traditional 12-lead ECG limits it’s diagnostic capabilities [22]. The use of an
ECG vest, more commonly called a body surface potential mapping (BSPM),
which has more electrodes spread over a greater area of the upper body provides
better detection and localisation properties than the traditional ECG [25, 43].
In addition, cardiac computation methods using such ST segment shifts as input
values will benefit from the BSPM as it measures the ST segment shifts at points
spread out on the upper body.

Before these ST segment shifts can be measured precisely, the raw data
recorded in a BSPM must be processed. While the ECG is a standardised
and well researched tool, there exists, to the author’s knowledge, no complete
BSPM post processing algorithm. In this thesis an automatic algorithm for
post processing and measuring ST segment shifts in a 64 lead BSPM has been
developed. Both methods developed in this thesis, and modifications of existing
ECG processing methods will be made. These will utilise the increased spatial
information provided by the BSPM.
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1.2 BSPM signal processing

The BSPM is a body surface recording of the electrical activity originating from
the heart. However, not only the signal from the heart will be recorded in a
BSPM. A simple model for the content of a recorded BSPM is made:

BSPM = BSPM,ignai + BSPMgise + BSPMyift.

The model classifying the contributing parts of a BSPM as a signal originating
from the heart, noise or baseline drift (slow varying changes in the recording).
The noise and baseline drift will result in inaccurate and sometimes even false
measurements of the BSPM characteristics if computed from the raw data. Post
processing BSPM recordings is a task of reducing the amount of BSPM,,;se
and BSPMgy;¢+ while at the same time keeping BSP Mg;gnq: unchanged.

10|

9.5

mVv
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26 27 28 29 30 31 32 33 40 45 50 55 60
seconds seconds

Figure 1.1: Two examples of raw data recordings in a BSPM.

1.3 Development of automatic algorithm

Manual processing and ST segment shift measurement of BSPM raw data is
time consuming and can be inaccurate. This motivates the need for a complete
automatic algorithm for post processing BSPM data. An automatic BSPM
processing algorithm is developed in this thesis. It will use raw data recordings
as input, and produce both the processed BSPM and computed ST segment
shifts as output. Methods are developed and tested to both remove a priori
known noise content, and unclassified disturbances in the signal.

The following methods have been developed, implemented and tested as part
of the algorithm: First, noise reduction methods using frequency based filtering
techniques was implemented and tested. Second, an algorithm for detecting the
BSPM signal peaks was developed. This method was used to locate the inter-
esting parts of each heartbeat. Third, methods for removing the baseline drift
is discussed. Four methods were selected, implemented and evaluated against
each other. A method using cubic spline interpolation as an approximation to
the drift was deemed best and used in the automatic algorithm. Even after
this initial processing, there may be noisy or corrupted signal parts present in
a BSPM. Hence a framework for removing such parts of the BSPM was devel-
oped as the fourth step of the algorithm. In the fifth step, a robust method for
computing the ST segment shifts at each electrode location from a processed
BSPM was made. Finally, a tool for visualising these shifts was created.



4 Introduction

1.4 Outline of results

The algorithm developed in this thesis was applied to BSPM recordings of real
patients. Before processing, it was not possible to compute neither reliable nor
correct ST segment shifts from these recordings. In addition most recordings
showed variations between neighbouring points on the body too great to be
physically possible. After the automatic algorithm was applied to these record-
ings, all BSPMs became smoother with neighbouring ST segment shift values
being relatively close to each other in value. The visualisation tool developed in
this thesis, can also be used to confirm that the processed BSPMs are physically
possible.

A comparison between the standard ECG and processed BSPM was made.
Finally, each processed BSPM could be recognised as belonging to either a
healthy patient or an ischemic patient. With the exception of one unclear BSPM,
the decisions on the presence of ischemia or not in a patient were all correct.

Each step of the automatic algorithm developed has been evaluated and
discussed. In addition, the algorithm shows promising results when applied to
real life BSPMs. However, only a small number of BSPMs were available for
testing in this thesis. The results found by applying the algorithm to these
BSPMs are therefore not statistically significant, but rather an indication to
the effectiveness of the algorithm developed.



Chapter 2

Electrical activity in the
heart, the ECG and the
BSPM

This thesis will have it’s focus on post processing body surface potential map-
pings. Differences in certain segments of the BSPM of patients during rest and
exercise is computed from these for use in detecting ischemia. Before atten-
tion is turned to these problems, a description of the background for the later
computations will be given. The physiology and electrophysiology of the heart
is briefly described. The 12-lead ECG has for decades been the leading tool
for recording the electrical activity in the heart, and still is today. The ECG
will be described as a motivation for the body surface potential mappings that
have been used in this study. The BSPM and the recordings used will then be
introduced to the reader. This chapter will be rounded off by a description of
ischemic heart disease, and its effect on the recordings of the electrical activity
from the heart.

2.1 The physiology and electrical activity of the
heart

In this section an introduction to the physiology and electrical activity in the
heart will be given. This will serve as a background for the computations on
the electrical signals originating in the heart that will be described later. [20,
37, 5] all contain chapters on the subject, and can be read for a more thorough
introduction.

2.1.1 The physiology of the heart

The heart contains four chambers, divided into two upper chambers called the
atria, and two lower chambers called the ventricles. Each of these is also divided
into left and right sides (see Figure 2.1). A typical heartbeat starts in the
sinoatrial node (SA node) located just above the right atrium. It initiates the
contraction of the atria, pushing blood into the ventricles. When the atrial
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Figure 2.1: A schematic figure of the human heart. (Figure from [4].)

contraction is finished, the ventricles contract. The left ventricle pushes blood
rich on oxygen into the arterial system, while the right pushes blood to the
lungs. Then the heart muscles relax, allowing the atria and ventricles to be
refilled with blood.

The contractions of the heart muscles during a heartbeat is controlled by a
series of electrical signals which will be described in the next section.

2.1.2 Electrical activity in the heart

The pumping of the heart is controlled by a system of electrical signals origi-
nating in the SA node. The cells in the SA node are autonomous oscillators,
which means that they create electrical action potentials without any external
sources. The heart muscle cells (myocardium) has the ability to carry an action
potential (conduct electricity), which means that the electrical signals initiated
in the SA node can be carried throughout the heart muscles. Heart muscle cells
in their resting state have a negative potential. The action potential initiated
in the SA node spreads across both atria as a wave of depolarisation, causing
them to contract. The atria and ventricles are separated by a septum (layer) of
non-excitable cells, so the action potential does not spread directly to the ventri-
cles'. Instead it is passed through the only conductive passage between the two
layers; the atrioventricular node (AV node) located at the bottom of the atria.
The propagation of electricity through the AV node is quite slow, so there is a
small delay between the signal propagating through the atria and reaching the
ventricles. This allows the ventricles to be filled with blood before contracting.
The action potential exits the AV node through it’s distal portion, called the
atrioventricular bundle or the bundle of His, and into the ventricles. At last the
muscles of the heart relax and repolarise, readying for the next heartbeat.

IThis is the case in the majority of hearts. Heart conditions or illnesses such as ventricular
fibrillation will result in different electrophysiological behaviour



2.2 The electrocardiogram 7

2.2 The electrocardiogram

2.2.1 History

The electrical potential that cause the heart to pump, spread through the body
and can be measured at the body surface. The electrocardiogram (ECG) records
the difference of this potential at the body surface. The first ECG was pub-
lished in 1887 by Augustus D. Waller. He recorded the electrical potential
differences in the paws of his bulldog using a capillary electrometer. 14 years
later Willem Einthoven invented a better and more sensitive device called the
string galvanometer. He also assigned the letter P,Q,R,S and T to the different
deflections in the ECG, which are still used today (see Section 2.2.3). Einthoven
used electrodes on the left and right arm and the left leg to produce three bipolar
leads, where each lead is the potential difference between two electrodes. (see
Section 2.2.2 for more info). In 1933 Wilson introduced the concept of unipolar
leads by tying the three limb leads together to create a common reference point
for all leads. The ECG has been standardised and improved over several decades
after this. In the last decades, digital computers have been used to a greater
and greater extent to process the ECG signals. Today the ECG is a well known
and much used tool around the world for monitoring the electrical activity in
the heart.

2.2.2 The standard 12-lead ECG

During the course of a heartbeat, the electrical current spreading form the heart
throughout the body changes in orientation and magnitude. The human body
functions as a passive volume conductor. While not producing any electrical
potential of its own, it allows the electrical signals originating from the heart to
travel to the surface. By measuring the potential difference between electrodes
at the body surface, one can approximate this electrical activity.

The measurement of the potential difference between electrodes is called a
lead. Two types of leads will be described below; bipolar and unipolar leads.
Unipolar leads are the potential difference between a point and a constructed
reference potential. Einthoven used his three electrodes on the right arm (RA),
left arm (LA) and left leg (LL) called Vga, Via and Vi, respectively to form
three leads. These leads measure the potential difference between two points,
and are called lead I, IT and III. Leads measuring the potential difference between
two points are called bipolar.

I =Via—Vga
111 =V, —Via.

The standard ECG used in hospitals worldwide consists of three or four limb
electrodes and six chest electrodes. These are combined to form 12 leads (see
Figure 2.2) called I, II, ITI, AVR, AVL, AVF and V1-V6. Ounly lead I, IT and IIT
are bipolar, the others are unipolar. Differing from the three bipolar leads, the
unipolar ones are not the potential difference between just two points. Instead,
they are electrodes referenced to a constructed "neutral” potential. Table 2.1
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Figure 2.2: The electrode placement in the standard 12-lead ECG. Figure taken
from [5]
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[37] gives an overview of the electrodes and reference potentials used to produce
each lead. For leads V1-V6 the reference potential is the arithmetic average of
the three limb electrodes Vza, V4 and Vi, and is called the Wilson Central
Terminal (WCT). The idea is to create a ”zero” electrode which ideally has small
changes during a heartbeat.

Lead electrode reference

I Via Vra

IT Vir Vra

III Vit Via

aVR Vra Via and Vi,
aVL VLA VRA and VLL
aVF VLL VRA and VLA
V1-V6 1-6 VRA, VLA and VLL

Table 2.1: The construction of the leads in 12-lead ECG

Hence, the unipolar leads referenced to the WCT approximately describes
the electronic potential changes in each electrode. In the BSPM used in this
study, all leads used will be unipolar leads referenced to the Wilson Central
Terminal.

2.2.3 The ECG signal

Figure 2.3 shows the characteristics of a typical heartbeat, plotted with time on
the horizontal axis and potential difference on the vertical axis. The straight
line segments represents periods of time when there are no sources of electrical
activity in the heart, and are referred to as the baseline or isoelectric line. The
waveform deflections from the baseline are caused by electrical activity in the
heart tissue. Each phase in the ECG represents a certain electrical activity in
the heart. A detailed description is given below. In practice, the magnitude,
duration and orientation (positive vs. negative deflections) will wary over dif-
ferent leads, and not all characteristics are sure to be present in the ECG of
every lead.

P wave : The electrical activity of a heartbeat starts with the propagation
of action potential from the SA node through the atria. This triggers
depolarisation of the atria, resulting in a contraction. This depolarisation
produces the P wave. The normal duration of a P wave is 100 ms, and
the magnitude is low relative to the QRS complex and T wave.

PR interval : The PR interval is the period starting with the onset of the P
wave, and ending with the onset of the QRS complex. It normally has a
duration of 120-200 ms.

PR segment : The PR segment is the period between the offset of the P
wave and the onset of the QRS complex. This segment should be on the
baseline, as no electrical activity normally occurs in this segment.

QRS complex : The QRS complex is caused by the depolarisation of the
ventricles, and the repolarisation of the atria. The deflection caused by
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repolarisation of the atria is small relative to the deflection from depolari-
sation of the ventricles. The complex is quite steep because of high velocity
of propagation of the electrical signals through the ventricles. It also is
the part of a heartbeat with the largest magnitude (normally around 1-3
mV) due to the great muscle mass of the ventricles. Normal duration for
the QRS complex is 60-100 ms.

ST segment : The ST segment is the period from the offset of the QRS com-
plex to the onset of the T wave. It corresponds to the time between
depolarisation and repolarisation in the ventricles, a time period in which
there is little to none electrical activity in the heart. Typical duration of
the ST segment is 120 ms or less.

T wave : The T wave is a result of repolarisation of the ventricles, where the
cells return to their resting potential. It has longer duration (normally 200
ms or less) than the QRS complex since repolarisation is a slower process
than depolarisation. It has a magnitude of up to 0.5 mV, and usually is
larger than the P wave.

QRS

| Complex

ST
PR Segment T

P Segment

PR Interval

S

QT Interval

Figure 2.3: Schematic representation of ECG during one heart cycle. Time
along the horizontal axis, voltage along the vertical axis. The figure is from [7].
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2.3 Body surface potential mappings

For several decades ECG has been, and still is, the number one tool for recording
the electrical activity in the heart at the body surface. Even though the 12-
lead ECG is a well standardised and known test to medical personnel, it has it’s
limitations. Since the ECG only records the body surface potential differences in
six locations on the thorax it’s spatial coverage limits it’s ability to detect several
heart diseases, such as ischemia [26, 22]. The BSPM covering an extensive area
of the upper body provides better spatial sampling and is also more sensitive
in detecting ischemia [38, 17], even in patients with no characteristic findings in
the standard 12-lead [26]. The BSPM may also prove better suited for localising
an ischemic region of the heart [26]. This motivates the use of BSPMs for early
diagnosis of ischemia. It is also a useful tool for cardiac computations and inverse
problems, as the increased spatial sampling provides more data. From a signal
processing point of view the increased amount of data and spatial sampling
compared to the 12-lead is an advantage that will be used in this thesis.

2.3.1 Outline of the BSPM

So far in this chapter, the traditional 12 lead ECG has been described. This
standard ECG mapping uses six electrodes placed at the chest as shown in
Figure 2.2 in addition to the reference electrodes. The standard 12 lead ECG
will not be used in this thesis. Instead a 64 lead BSPM will be used. The BSPM
consists of 64 electrodes placed evenly in strips on the torso, in addition to three
reference electrodes placed at the limbs (see Figure 2.4 and 2.5). While the

Figure 2.4: The 32 front leads in the 64 lead Body surface potential mapping
used in this thesis.
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Figure 2.5: The 32 back leads in the 64 lead Body surface potential mapping
used in this thesis.

traditional ECG only records the electric action potential originating from the
heart at six points on the chest, the BSPM records the action potential at both
the front and back of the upper body. 32 electrodes are placed in four strips of
eight at the front of the torso, and 32 electrodes are placed in four strips of eight
at the back. These totals to 64 channels that will be denoted V?, i =1,...,64
throughout the thesis.

As written in Section 2.2.2, the leads of a BSPM are unipolar leads. This
means that each lead of a BSPM is the difference between the recording at the
current electrode, and the WCT (Remember that the WCT is the arithmetic
average of the three limb electrodes Vi 4, Vga and V). Each of the BSPM
leads measure a signal similar to those in a traditional ECG (both cases are
recordings of the electrical potential difference at points on the body surface).
Although each lead will have the characteristics illustrated in Figure 2.3, the
variation in shape and amplitude between some of the leads in a BSPM will be
greater than for 12 lead ECG due to the large difference in spatial placement
between some of the electrodes.

2.3.2 The equipment and recordings used in this study

Throughout the study, BSPMs of real patients will be presented and used. The
BSPMs have been recorded at Rikshospitalet [1] in cooperation with Simula
research laboratory [2]. The equipment used for the recording of the BSPMs,
is the Biosemi ActiveTwo Mk2-system [8]. Two 4 x 8 electrode panels shown in
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Figure 2.6 are used; one on the front and one on the back of the upper body.

Figure 2.6: The 4 x 8 electrode strips that are attached to the front and back
of the torso for the BSPMs used in this thesis. Picture is from [3].

Electrical signals spread continuously through the body. To do computa-
tions on these signals, they have to be recorded and stored digitally. Thus,
the continuous electrical action potentials that reach the electrodes at the body
surface are sampled in time by the BSPM measuring equipment. A sampling
rate of 2048 H z is used, which means that the continuous analog signal is stored
as a discrete digital signal with 2048 data values (samples) per second. All of
this is done by the Biosemi system. The output of the equipment is a matrix of
numbers, where each column is a recording of a BSPM channel in time.

The focus of this thesis is to calculate information about the ST and PR
segments of the BSPM of a patient for usage in diagnosing ischemia. To get the
information needed, a BSPM of each patient has to be recorded both during rest
and during exercise. For these recordings, the electrodes are first attached to the
patient. For some time, the patient sits without moving to get the "rest’-data.
Then, without stopping the measurements, the patient mounts a stationary
bicycle and starts cycling. When the patient reaches a certain heartbeat rate
(220 minus age beats per minutes, adjusted by clinical decisions by the medical
personnel), or starts to feel pain in the chest, the time is noted and the following
part of the recording is termed the “exercise’-data. Throughout the rest of the
thesis, when terms like "recording during rest” and "BSPM of the patient during
exercise” are used, they refer to these time periods.

Due to alimited set of recordings available, this thesis will be limited to using
six different BSPMs. Two of these are recordings of healthy patients? (which
will be called patient5 and patient6), and four are recordings of patients with
ischemic heart disease diagnosed by additional medical testing (called patientl,
patient2, patient3 and patient4).

2.4 Heart diseases

The electrical signals generated by the heart change in response to different heart
conditions. Heart diseases and their effect on ECGs/BSPMs is a large field, and
many diseases with corresponding changes to the ECG has been surveyed. This
makes the ECG a powerful diagnostic tool, as different heart diseases can be
recognised by characteristic changes in the signal recorded at the body surface.

2The two healthy patients were not actually patients, but volunteers which with certainty
did not suffer from ischemia. For the sake of convenience though, they will be referred to as
patients for the rest of the thesis.
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There exist a great number of different heart diseases and conditions, and
so a multitude of effects on ECG signals. Attention will soon be turned to
ischemia, which is the disease this thesis will focus on. First a few examples
of ECG abnormalities as a result of illnesses will be given [5], to illustrate that
heart conditions can change ECG recordings in many different ways: Heartbeat
rhythms deviating from normal heartbeat rhythm (60-100 regularly spaced beats
per minutes) are called arrhythmias. These come in many forms, like changes
and irregularities in heartbeat rate, missing heartbeats, changes in P wave,
T wave and QRS complex morphologies. In the extreme case of ventricular
fibrillation, the normal ECG waveform seen in Figure 2.3 is unrecognisable in the
ECG. Tllnesses like pericarditis and hyperkalemia will change the morphology
of the ST phase and T wave, while illnesses like hypertrophy changes the P
wave. Also, a range of other diseases and heart conditions will produce other
variations in the ECG morphology. Thus a patient suffering from heart diseases
other than ischemia can complicate the detection of ischemic heart disease in
the BSPM. Compensating for individual other heart diseases in the processing
of BSPM data for ischemia detection falls beyond the scope of this master’s
thesis. Instead the BSPM processing algorithms used and developed will be
designed to be robust against various changes in the electrocardial morphology.

Myocardial infarction and ischemic heart disease will also show characteristic
changes in the ECG, although not always easy to detect. A further description
of ischemia and it’s effect on BSPMs is given below.

2.4.1 Ischemia

Ischemic heart disease, or ischemia, is a mismatch between demand and supply
of oxygen to heart muscle cells. This is most often the case when an occlusion
or narrowed part in one or more of the coronary arteries is present. Such an
occlusion will result in diminished blood supply to the heart muscle, and so
insufficient oxygen supply. In many cases this will happen when the oxygen
demand in the heart muscle increases, for example when the heart is exposed to
increased stress because the patient exercises. The lack of oxygen supply leads
to changes in the electrophysiological behaviour in the myocardial cells, which
can be recorded in a BSPM or ECG.

An oxygen demand greater than the supply in heart muscles for longer peri-
ods of time will result in injury. This will eventually lead to myocardial infarc-
tion, which is the death of heart muscle cells.

2.4.2 Changes in BSPM caused by ischemia

Since the electrophysiological behaviour of the myocardium is changed for a
person with ischemia, there will also be changes in the electrical signal recorded
at the body surface using a BSPM. These changes can in many cases be seen
as changes in the ST segment of each heartbeat. In a healthy heart, the ST
segment, is the time between ventricular depolarisation and repolarisation. Thus,
no electrical activity should occur during this time, and the BSPM recording
should be on level with the baseline. However, ischemia causes a delay in the
depolarisation and repolarisation of the myocardial cells. This delay results in
shifts in the ST segment of the BSPM.
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The shifts in the signal from a patient with ischemia can be seen as elevations
or depressions in the ST segments, as seen in Figure 2.7. These shifts is present
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Figure 2.7: To the left is a heartbeat of a patient suffering from ischemia during
rest. To the right is a heartbeat of the same channel of the same patient during
exercise. Note that the ST segment is depressed relative to the PR segment
during exercise while it is not during rest. This is a characteristic change in the
BSPM/ECG of a patient with ischemia.

in the BSPM of a patient with ischemia when the blood supply to the heart
muscle is insufficient. This leads to the following conclusion: A patient with a
heart that gets sufficient blood supply during rest, but insufficient during stress
should have a "normal” BSPM during rest and ST segment shifts during stress.
This is common in patients with early stages of ischemia, where some arteries
may be partially obstructed. It is then possible to find indications of ischemia by
measuring the difference in ST segment elevation in BSPMs recorded during rest
and and stress. It is not the ischemia itself that is detected this way, but the ST
segment shifts that usually is a consequence of the ischemia. Other conditions
or circumstances may also cause shifts in the ST segment. Thus there may
occur false diagnostications no matter how well the BSPM is processed, if ST
segment shifts alone is used.

Shifts in the ST segment in the BSPM of a patient with ischemia will not be
present in all channels of the BSPM. The size and location of the ischemic zone
varies with which arteries are narrowed, and to what extent. The position and
number of channels with ST segment depression and elevation in a BSPM will
also vary. Since each channel is "looking” at the heart from different directions,
the locations of ST segment changes may be used to determine the location of
the ischemic region of the heart [26]. In traditional 12-lead ECG, there are only
six electrodes placed on the chest in addition to the reference electrodes. This
limits the 12-lead’s usefulness in detecting the region of ischemia. In some cases,
the ST segment shifts will only be present in electrodes placed at other locations
on the torso than where the 12-lead electrodes are placed. These two factors
makes the BSPM an attractive tool for detecting ischemia. The BSPM can
record ST segment shifts that may not be present in traditional ECG because
of the spatial location of the electrodes, and also provides data that is better
suited for determining the location of the ischemia. A further description of
measuring the ST phase differences to detect ischemia will be given in Section
3.2.



Chapter 3

Working with real data, and
theoretical background

In the previous chapter the electrophysiology of the heart and the concept of
body surface potential mappings were introduced. This chapter will further
describe the problems involved when working with real life BSPM data, and
the processing needed. Measuring of ST segment shift differences between rest
and exercise recordings to detect ischemia will be further addressed. Finally an
introduction to the Discrete Fourier Transform and the filtering techniques used
in this thesis will given.

3.1 Noise, drift and artefacts in BSPM record-
ings

When thinking about ECG, most people will think of a smooth graph with
spikes every second or so, such as in Figure 3.1. If the only electrical activity

Hh Iy Y

0 1 2 3 4 5
seconds

Figure 3.1: Plot of an ideal ECG recording

recorded had been the one originating from the heart, this would indeed be
what the ECG of a healthy person looks like. However, in real life recordings
this is not the case. Figure 3.2 shows some real ECGs contaminated by noise in
different ways. Clearly, most of these signals can’t provide information helpful
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in diagnosing deceases in their raw form, and need to be processed first to get
useful results. Some channels, like the lower right in Figure 3.2 will not provide
any information at all even after processing, and need to be removed. There are
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Figure 3.2: Plot of ECGs distorted by noise in different ways. The upper left
ECG is a result of loss of contact between the electrode and the skin of the
patient. Note the magnitude on the y-axis. The upper right ECG is a typical
example of an ECG with lots of 50Hz and white noise present. The lower
left figure, is an ECG with lots of drift, varying differently in time. Note the
magnitude of the axis on the lower right figure. This signal has no characteristics
of an ECG.

many sources of noise that can degrade the signal. The most important ones
and their effect on the recordings will be discussed in Section 3.1.2.

3.1.1 Noise and drift in the measured BSPM

The measurement in a channel of a BSPM consists of the actual electrical signals
originating from the heart combined with noise and baseline drift. Written in
another way:

BSPM = BSPM,ignai + BSPMpise + BSPMayif. (3.1)
Equation (3.1) is composed of:
e BSPM is the measurement of one channel in a BSPM.

o BSPMgigna is the part of the measurement that consists of the electri-
cal signals from the heart. The amplitude of BSPMg;gnq usually varies
within a range of 1-3 mV.
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o BSPMgyipe is the slow varying high amplitude parts of the measured
BSPM. The magnitude of the drift can be many times the magnitude of
BSPMgignai- A more thorough description of drift and its impact on the
BSPM is given in Section 3.1.3.

® BSPMyise consists of every part of the measurement that is not BSPMg;gnai
nor BSPMgyifi. The noise varies much in both form and amount, which
means that BSPMs even from the same patient can look complete differ-
ent. See Section 3.1.2 for a classification of different noise sources.

To illustrate how drift and noise can affect the signal, a set of synthetic data
has been generated. A synthetic BSPM signal has been generated using the tech-
nique described in [24]. Random noise and baseline drift have been generated
separately from the signal. This noise and drift have been given typical charac-
teristics, i.e. high amplitude and low frequency for the drift, and low amplitude
and high frequency for the noise. These three parts have been added together
according to (3.1). The resulting BSPM can be seen in Figure 3.3. This is
what a real life BSPM may look like. In this illustrating example, BSPM;gnai,
BSPMgyift and BSPMpisc as seen in Figure 3.4 have been added to produce
the BSPM. The inverse process of splitting a BSPM measurement into these
three parts is much more complex.

seconds

Figure 3.3: A typical looking BSPM signal created by adding BSPMgignai,
BSPMgyife and BSPMyeise. Each of the three synthetically generated compo-
nents of this BSPM can be seen in Figure 3.4.

All measured channels in a BSPM will be such a combination of signal, drift
and noise in many variations. Because all the diagnostic information in a BSPM
lies in the BSPMg;gnq parts, an important task in BSPM post processing will
be to separate the information in a signal from the contaminating noise and
drift. Due to the randomness and the complexity of drift and noise in real
measurements, this is a nontrivial task. In a measured BSPM, one does not
know what parts of the measurements that are signal, noise or drift, as was the
case in Figure 3.3 and Figure 3.4. There are especially two problems connected
to reducing the noise and drift in a BSPM: One is that some noise and drift may
be difficult to remove, and hence will still be present in the BSPM after drift and
noise reducing algorithms have been applied. The other is that drift and noise
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Figure 3.4: These three figures show synthetically generated BSPM signal, drift
and noise. The upper left is a plot of BSPMg;gnai, the upper right is BSPM gy f+
and the lower is BSPM,isec-

reducing algorithms can distort the signal part of the BSPM measurement.
Reducing noise and drift in BSPM measurements, while minimising the two
problems described above will be an important part of this thesis.

3.1.2 Description of noise sources, and their impact on
the BSPM

A short description of the most common noise and drift sources and how they
affect the ECG is given in [14]. Experimental testing with real BSPM recordings
has also been performed. Below is an overview of the noise sources that may be
present in a BSPM recording. An illustration of some of these can be seen in
Figure 3.2 and Figure 3.5:

Power line interference consists of 50 Hz harmonics, with amplitude of up
to 50% of BSPM amplitude. Often these characteristics will not change
much during a recording.

Muscle contraction noise is caused by artificial potentials generated by mus-
cle contractions. The signals resulting from muscle contractions can sim-
plified be viewed as zero mean band-limited Gaussian noise. Typical pa-
rameters are; standard deviation of 10 % of BSPM amplitude and fre-
quency content of up to 10 kHz.

Electrode contact noise is interference caused by loss of contact between
electrode and skin. This may happen temporarily, or during the whole
recording. The amplitude may be over 100 times that of normal BSPM
amplitude.

Patient movement produce transient baseline changes caused by variations
in the electrode skin impedance when the electrode moves. These changes
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are sometimes slow varying, and can have amplitudes many times as high
as normal BSPM amplitude.

Baseline wandering/BSPM amplitude variation due to respiration. The
amplitude of the BSPM may vary by about 15 %, and slow baseline wan-
dering occur due to respiration by the patient.

Instrument noise generated by electronic devices used in signal processing
may disturb the recorded signal.

Electrosurgical noise will destroy the signal, since it normally consists of
large amplitude noise with frequencies between 100 kHz and 1 MHz. The
aliasing effect caused by lower sampling rate than this, will disturb the
signal.

Other sources such as perspiration, flawed electrodes, coughing or talking
during recording etc. will also distort the recorded signal.

Some of the noise sources tested experimentally in a BSPM recording can
be seen in Figure 3.5 with a corresponding plot of their respective frequency
responses in Figure 3.6.

As described above, noise artifacts may occur in many different forms and
magnitudes, making it an important task to reduce the noise in the BSPM where
possible. Noise may also be so dominating in a channel that it is impossible to
retrieve any real information from it. In these cases, the channel should be
removed from the BSPM all together. In the next section, the most important
task, drift reduction, will be discussed.

3.1.3 Description of the baseline drift removal problem

In ideal conditions, the parts of the BSPM where there are no sources of electrical
activity in the heart (e.g. the PR and ST segments) should have zero amplitude
(see Figure 2.3 on page 10). As described in Section 3.1.2 there are several
sources to high amplitude slow varying noise (see the lower left plot in Figure
3.2). This type of noise in a signal will be referred to as baseline wander, baseline
drift, or simply drift. The baseline wander can add several hundred millivolts
to the amplitude of the signal. Since the pure BSPM amplitude normally varies
within 1-3 mV, it is clear that the drift will have to be removed if the recording
is to be of any use.

Removing baseline drift is a task of removing the drift without distorting
the signal. When baseline wander is present in a signal, portions of the signal
such as the PR segment that should have zero amplitude, will have amplitude
equal to the amplitude of the drift at those parts. But at the other parts of
the signal, such as the P and T wave and the QRS complex, it is not clear how
much of the measurement is drift and how much is the actual signal.

3.2 Measuring ST and PR segment differences in
rest and exercise recordings

As described in Section 2.4.1, some channels of the BSPM of a patient will
change when the demand for blood exceeds the supply. This is often the case in



3.2 Measuring ST and PR segment differences in rest and exercise

recordings 21
rest heavy breathing
-15 -145
> -15.5 >
E E -15
-16
-15.5
0 5 10 15 20 5 10 15
seconds seconds
muscle contractions coughing
-14.5
> -15
€
-15.5
-16
0 5 10 15 2 4 6 8
seconds seconds

Figure 3.5: Upper left corner: a chest channel of the BSPM of a healthy patient
during rest can be seen. Upper right corner: the same channel when the pa-
tient is breathing heavily. A regular oscillation of the signal in phase with the
breathing can be observed. Lower left corner: the recording of the same patient
contracting and relaxing chest and arm muscles. The BSPM has more noise
content than the upper left one due to potentials generated by muscle contrac-
tion. The lower right corner: the recording when the patient is coughing. The
coughing introduces disturbances to the BSPM, but it returns to normal when
the patient settles down.
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Figure 3.6: These figures show the frequency spectrums of the BSPM signals
displayed in Figure 3.5. The upper left figure is the frequency spectrum of the
BSPM during rest. The upper right shows when the patient is breathing. No
significant additional high frequency content is added by the breathing. Lower
left corner: notice how the magnitude of almost all the frequencies displayed is
increased when the patient contracts his muscles. Lower right corner: a similar
effect is seen in the frequency spectrum when the patient is coughing.
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a person with ischemia during stress. The occluded arteries will provide enough
blood to the heart muscles during resting periods, but not when the heart is
working hard. Computing the difference in ST segment elevation/depression
between rest and exercise can distinguish recordings of a patient with ischemia
and a patient without.

QRS onset J point

286 2.8 3 32 3.4 36
seconds

Figure 3.7: This figure shows two heartbeats from a BSPM of a healthy patient
during rest. The onset of the QRS complex, and the J point right after the QRS
complex is marked on the figure. The p value for this channel is computed as
the mean of the area marked red right before the QRS complex onset. The s
value for this channel is the mean of the marked area right after the J point.

The ST segment shifts are computed by subtracting a value on the baseline
from a value in the ST segment. This segment is often defined relative to the
J point, which is the point where the BSPM/ECG curve flattens between the
QRS complex and the ST segment (see Figures 3.7 and 3.8). The value to use
for the ST segment varies in the literature; [36, 31, 15, 5] respectively uses the
points 60, 63, 60 — 80 and 40ms after the J point. In this thesis, the mean of
the signal in the period 50 — 70ms after the J point is used, with the J point
being defined as 40ms after the QRS complex peak. The value on the baseline
is computed by taking the mean of the signal in the period 30 — 10ms before
the QRS complex onset. This section is used since it lies in the PR interval,
and will in most cases not include values from the P wave or the QRS complex.

The BSPM recordings used in this thesis, were done on patients both during
rest and while exercising on a stationary bike. The BSPM of a patient consists
of 64 channels. These channels are called V*, with i = 1,...,64 denoting the
locations of the channels (see Figure 2.4 and Figure 2.5). The vector containing
the jth heartbeat of channel 7 will be named VJZ For each heartbeat in a channel,
a number s;'» representing the ST segment elevation/depression and a number
pj» representing the PR segment elevation/depression will be computed. The
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Figure 3.8: This figure shows two heartbeats from a BSPM of a patient with
ischemia during stress testing. The onset of the QRS complex, and the J point
right after the QRS complex is marked on the figure. The p value for this
channel is computed as the mean of the area marked red right before the QRS
complex onset. The s value for this channel is the mean of the marked area
right after the J point. These heartbeats have depressed ST segments, which is
characteristic for the BSPM of a patient with ischemia.
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difference between these will be termed d;:

L
s; = 7 Z X ), with z, € {50 — 7T0ms after the J point of VZ}
p. = T Z oot (Tn), with @, € {30 — 10ms before QRS onset of V;'}
dy = s — p;.. (3.2)

In the above equations, L is the number of data points in the ST and PR
segments. At this step, the mean difference between the ST and PR segment of
channel 7 is created:

. 1 2
zstate) = ﬁ Zd-z] (33)
j=1

H is the number of heartbeats in the channel V¢. The calculations in (3.2)
and (3.3) are done for all channels V%, in the rest recording, and V!, in the
exercise recording. This results in two vectors d,.s; and de,. with respective
elements d’, , and d’,. withi=1,...,64.

The vector dyes; is then subtracted from de,. to get the differences between
the recordings during exercise and the recordings during rest:

d =deze — drest. (34)

After these computations on the BSPM of a patient, the resulting vector d =
[d',d?,...,d5%] contains the differences in ST segment shifts between exercise
and rest for each of the 64 channels in the BSPM. These values will later be
used to get an indication of whether a patient suffers from ischemia or not (see
Section 2.4.2 and Chapter 6).

3.3 The Discrete Fourier Transform(DFT) and
sampling

The electrical signals originating from the heart spread through the body contin-
uously in time. Since computers work with discrete numbers, and not analog,
the continuous analog signals need to be translated into discrete digital sig-
nals. To digitally process the analog electrical potentials recorded at the body
surface, they need to be digitised. In this process the continuous signals are
sampled at discrete time instants at a sampling frequency f;. The resulting
BSPM recording then consists of fs discrete values per second. In this study,
the BSPMs where recorded with a sampling frequency of fs = 2048 Hz. Ac-
cording to Shannons sampling theorem [32] (page 28), the highest frequency
that can be contained in a digital signal with sampling frequency fs, is £&. This
means that the highest frequencies contained in the BSPM recordings used in
this thesis is f = % = % = 1024 Hz. All of this is done in the recording
equipment described in Section 2.3.2, and will not be discussed further.

When working with BSPM signals, much of the modification and analysis
will be on the frequency characteristics of the signal. When doing frequency
analysis, it is convenient to convert the time-domain signal sequence to an
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equivalent frequency-domain representation of the signal. This is done using
the Discrete Fourier Transform(DFT). The DFT of a discrete time sequence
x(n) of length L is given by:

X(w) = Z x(n)e”n, 0<w<2r (3.5)

where w is the normalized frequency variable. Now, X (w) is a discrete func-
tion sampled at equally spaced normalized frequencies wy = 27k/L , k =
0,1,2,...,L — 1.

Returning to (3.5), the frequencies f on the interval 0 < f < f5/2 corre-
sponds to the normalized frequencies w on the interval 0 < w < 7. Due to the
symmetry properties of the DFT, X (w) on the interval 7 < w < 27 is just a

mirror image of X (w) on the interval 0 < w < 7. Using the relation w = Q;f,
(3.5) can be rewritten as ’
L-1
X(f) =" x(m)e ™I/ 0<f< S (3.6)
=0

In fact, f is a discrete variable sampled at discrete points fj, where fi, = kfs/L,
k=0,1,2,...,L —1. X(f) represents the amplitude and phase of the different
frequency components of the time sequence z(n). |X(f)| is the amplitude of
the frequency components of z(n). A plot of |X(f)| over all frequencies f is
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Figure 3.9: A 20 second segment of a BSPM recording, and its corresponding
frequency spectrum. The right plot is the frequency spectrum zoomed in on
frequencies in the interval 0 < f < 150 since most of the frequency content in a
BSPM recording are low frequencies.

called the frequency spectrum, and shows how much of each frequency f the
signal 2(n) is composed of. A plot of a BSPM-recording and its corresponding
frequency spectrum can be seen in Figure 3.9. For more reading on Discrete
Fourier Transforms and sampling, see an introductory book on digital signal
processing, for instance [32].

3.3.1 Filtering techniques

Throughout the thesis, frequency-selective linear time invariant (LTT) filters will
be applied to the BSPM recordings. The filter characteristics of a digital LTI-
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filter is determined by its impulse response h(n). A filter with input z(n) has
output

o0
y(n) = h(n) xx(n) = Z h(k)xz(n — k),
k=—o00

where * is the convolution operator. This is the time domain representation
of a filter with impulse response h(n). Since frequency-selective filters will be
used, it is more convenient to express the output of a filter in the frequency
domain. A property of convolution is the convolution theorem that states that
convolution in the time domain is equivalent to multiplication in the frequency
domain [32] (page 283). The frequency domain expression of the output of a
digital filter is then

Y(w) = Hw)X (w), (3.7)

where Y (w), H(w) and X (w) are the Discrete Fourier Transforms of y(n), h(n)
and x(n) respectively.

When designing a frequency-selective filter, the desired frequency charac-
teristics is given by the frequency response H(w). Filters applied to BSPM-
recordings need to have linear phase to avoid phase distortions in the output of
the filter.

LTI filters with linear phase can be implemented both with Finite Impulse
Response (FIR) or Infinite Impulse Response (IIR) characteristics. A filter of
both of the two types could be designed for the tasks in this thesis. However,
FIR filters are inherently stable, and much easier to design with linear phase
characteristics. A drawback with FIR filters is that they generally require many
more coefficients than an IIR filter, and hence are more computationally de-
manding. The advantages of using FIR filters was deemed greater than the
disadvantages, and hence all filters used in this thesis will be FIR.

Ideal filters, i.e. filters that has infinitely sharp cut off frequencies such as

_J L |w<we
H(“’){o, we <w <M,

cannot be realized in a FIR filter in practice due to the Paley-Wiener theorem
[32] (page 656). An important result from the Paley-Wiener theorem is that
such filters will require an infinite length impulse response h(n), and hence
be noncausal. To make a filter realizable, the infinite length impulse response
need to be truncated at some point. A FIR filter of length M can be made by
multiplying the desired impulse response hq(n) (infinite length) with a "window”
w(n) (finite length). w(n) has the property that w(n) = 0 for n > M — 1 and
n < 0. This yields the impulse response

h(n) = ha(n)w(n) (3.8)

of length M.

The ideal filter hg(n) with infinitely sharp cut off frequnecy is in this thesis
approximated using windowing techniques (3.8). There are two main conse-
quences of using a causal approximation h(n) to the noncausal hq(n): First, the
transition between frequencies passed through the filter and frequencies removed
is not infinitely sharp, but will change gradually. As an effect of this, there will
be a band of frequencies, called the transition band, that are increasingly atten-
uated between the passed and stopped frequencies. Second, small disturbances
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or ripples will be introduced in the frequency spectrum of both the passed and
stopped frequencies of the filter. Thus, some parts of the “stopped” frequencies
will be let through, and parts of the passed frequencies will change in amplitude.
Designing filter windows is a task of reducing these ripples, and sharpening the
transition band.

3.3.2 Filtering with Kaiser windows

In this thesis the window functions w(n) used, will be Kaiser windows. This
window type is chosen for its flexibility in adjusting the amount of ripples in
the stop and pass bands, and the sharpness of the transition band. A length M
Kaiser window used in designing the FIR filter impulse response h(n) in (3.8),
has time domain sequence

NE )]
S e

0, elsewhere,

0<n<M-1 (3.9)

and frequency domain sequence

0 s o — (WE12)")

W(w) =

(3.10)

Here Iy is the zeroth order modified Bessel function of the first kind, « is a
parameter determining the shape of the window and M is the length of the
window.

Generally, an increase in the filter length M will narrow the transition band.
An increase in « will lower the amount of ripples in the pass and stop bands,
but will also widen the transition band. Hence, the design of the filter is a
compromise between the narrowness of the transition band, and the amount of
disturbance in the kept and attenuated frequencies.



Chapter 4

Methods and algorithms

This chapter contains a description of many of the methods used and developed
in this thesis. A combination of a selection of these will at a later point be
made to form an automatic algorithm for processing BSPM recordings making
them ready for ST segment shift measurements. The methods described serves
different purposes:

Noise reduction: Notch filtering and lowpass filtering algorithms described in
Section 4.1 were designed to reduce the noise content in a BSPM. These
methods make use of frequency analysis and a priori knowledge of the
noise frequency characteristics in a signal.

Drift reduction: Baseline drift is present in all BSPMs. Four different algo-
rithms for removing this drift from a BSPM is described in Section 4.2

Removing corrupted signals: Some channels in a BSPM, or parts of a chan-
nel in a BSPM may still be too corrupted by noise or bad recording that
no information can be extracted, even after noise and drift reduction algo-
rithms have been applied. Section 4.3 contains description of algorithms
to remove these signals.

QRS detection: Different parts of the BSPM signal need to be recognised.
The QRS detection algorithm outlined in Section 4.4 is designed to find
the QRS peaks in a BSPM. Other important features of the signal can be
found once the QRS peaks are known.

The algorithms described in this chapter will be combined to form a complete
method for improving BSPM signals.

4.1 Noise reduction algorithms

As described in Section 3.1.2, there are many sources of noise that can distort
the recorded BSPM. Most of the distortions not classified as drift, are 50 Hz
noise and white noise which will be present in all frequencies of the signal. It is
these parts that make up the BSPM,,,;se part of (3.1):

BSPM = BSPM,ignai + BSPMigise + BSPMyift.
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In many BSPM recordings, the most prominent noise is the 50 Hz power-
line interference. Therefore the most important features of the noise reduction
algorithms is to remove this powerline interference while causing minimal dis-
turbance in the BSPM. In the algorithms described below; parts of a BSPM
will be removed based on the assumptions of the frequency contents of signal
and noise. Two algorithms are proposed; a notch filter for removing only 50 Hz
contents of the BSPM, and a lowpass filter for removing all frequencies greater
than a desired cutoff frequency.

It is assumed for simplicity that BS P M, ;se is made up of three components:
noisesom, and noiseypite and noiseyther. The 50 Hz component should always
be removed, as it may disturb the signal to a great degree if it is of large
amplitude. Also, the removal of a small frequency band around 50 Hz will not
disturb signals uncontaminated by 50 Hz noise, as will be seen in Section 5.1.1.
As much of the rest of the noise, namely noisepite, is assumed to be white it will
be of equal magnitude throughout the frequency spectrum. This means that the
more frequencies are removed, the more of this noise is removed. For instance,
a lowpass filter with cutoff frequency of 100 Hz will remove ~ 1% of the white
noise in the signal, since the frequency content is in the interval 0 — 1024 Hz.
Applying a lowpass filter to the signal may result in the filter removing important
information contained in the BSPM. Choosing the correct cutoff frequency of a
lowpass signal is therefore a compromise between the amount of noise removed,
and the amount of distortions introduced to the BSPM.

These filters were designed using Kaiser windows as described in Section
3.3.1. Designing filters to remove parts of the signal with certain frequency
components, is a compromise between sharpness of the transition band, and
ripples in the pass and stop band of the filter. The two parameters o and M in
(3.9) and (3.10), with M being the filter length, will determine the characteris-
tics of the filter. The width of the transition band of the filter is the same as
the distance from the peak to the first zero in the window’s frequency domain
sequence.

4.1.1 Use of notch filter to remove 50 Hz powerline noise

As proposed in [41] a notch filter can be used to remove 50 Hz powerline noise.
The notch filter is a bandstop filter, which means that it will remove an interval
of frequencies from the signal and keep the rest. A filter with stop band of 49-
51 Hz will be used. The parameters o and M in the Kaiser window (3.9) and
(3.10) is selected so that the transition bands in both the lowpass and highpass
parts of the the filter is less than 1 Hz. With a filter of length M = 1400 and
a = 1.5, the above requirements are fulfilled. The 50 Hz component will in
this example be removed, while frequencies between 49H z and 51Hz will be
attenuated. The frequency components less than 49H z and greater than 51 H z
will remain almost unchanged. If there is 50H z powerline noise present in the
signal, there will also be noise with frequency content as multiples of 50H z,
i.e. 100,150, ... Hz. Similar notch filters for removing these frequencies are also
applied to the signal.
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4.1.2 Lowpass filter to reduce high frequency noise

While the notch filter will remove the 50H z powerline noise, it will do nothing
with the disturbances from the other high frequency noise sources. A lowpass
filter will remove all frequencies greater than a cutoff frequency feutofr, and keep
the lower frequency components of the signal. The problem with using such a
filter, is that all non-noise components of the BSPM with frequency higher than
feutogr also will be removed. According to [5, 39, 21] P and T wave frequencies
generally lies between 0 and 10H z, and QRS complex spans over a greater range
of frequencies, with most of the signal components in the range 4 to 20Hz. [21]
also states that most of the diagnostic information in ECGs is contained below
100H z in adults, with the highest of these frequencies being in the QRS complex.
Since the highest frequency contents of a BSPM signal is in the QRS complex,
the removal of these should not affect the ST segment. Hence, removal of the
higher frequencies, including some frequencies below 100H z, should improve the
Signal to Noise Ratio (SNR) of the ST segment. Although the American Heart
Association (AHA) [21] recommends a high-frequency cutoff of at least 150H z,
lower feyiof¢ frequencies will be used, since this thesis primarily focuses on the
diagnostic information contained in the ST segment.

A low pass filter with parameters « = 2 and length 1000 in equations (3.9)
and (3.10) is an adequate FIR lowpass filter for this purpose. This filter will be
tested on real BSPMs with different, cutoff frequencies.

4.2 Drift reduction algorithms

In Chapter 3 the problem of baseline wander or drift in the BSPM recordings
was described. Many ways of removing the drift in an ECG has been proposed
in the literature. Four promising methods have been applied to the BSPM data
in this thesis. Each of these will be described in this section, and evaluated in
Section 5.2.

4.2.1 Drift reduction using splines

A spline is a function defined piecewise by polynomials. In spline interpolation,
data points are connected by defining the spline to be equal to the data points,
with polynomials connecting them. In this thesis splines will be used to make
an approximation to the drift in the BSPM. This approximation will then be
subtracted from the signal, producing a new BSPM with drift reduced. For
further reading on spline interpolation, see e.g. [27, 23].

To get an approximation of the drift, the splines will be connected at one
point per heartbeat called the knots. The points selected are in the PR segments
30ms before the onsets of the QRS complexes. Hence there should theoretically
be no electrical sources in the heart creating baseline deviation at the knots.
The magnitude of the BSPM here consist of baseline drift and noise, and should
therefore be removed. The intervening values between the knots should be
adjusted in a way that do not distort the signal, but still removes the baseline
drift. The splines used are defined as follows:

The spline approximations are computed for the channels V¢, i = 1,...,64
of a BSPM one at a time. Let N be the number of data points in a channel
Vi of a BSPM. Vi is then a collection of data values defined on an index set
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I =[1,2,...,N]. A channel V' containing H heartbeats will have H knots
given by the partition A = [z1,...,2j,...,zy] with 1 < 2 < ... < zp,
x; € I. One knot value is used per PR segment of the signal, as seen in Figure
4.1. The spline s approximating the drift is chosen to be the function described
by s(A) = Vi(A), and

so(z) L,z <m

sj(x)  Lxj <z < (4.1)
sp(x) ,zp <z

s(z) =

where each s; is a polynomial, and s;_1(z;) = s;(z;).
Two types of spline interpolation will be used to remove the baseline drift,
and will be described in the next sections.

Linear splines

With linear splines, the spline connecting the knots will be a collection of straight
lines (linear polynomials). The functions s; in (4.1) are then on the form:

N Vi(xjp) = Vi(xy)

Ti+1 — 5

sj(@) = Vi(z;)

(z — ;).

These linear splines will interpolate the signal as shown in Figure 4.1. The drift
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Figure 4.1: Linear spline approximation of the drift in a channel V? of a BSPM.
V' is visualised in solid line, the approximation of the drift is marked with a
dashed line. The knots [x1, 2, ...,xy] are marked as circles on the x axis. The
knot values used are marked as circles connecting the linear functions in the
drift approximation spline.

is now approximated by s. The drift is removed from V? by subtracting the
spline s from V¢ Using (3.1), this produces a new collection of data points
BSPMimpToved:

BSPMimpro’ued = BSPMsignal + BSPMnoise + BSPMdTift - S

Now, if s & BSPMgyift then BSPMimproved = BSPMgignai + BSPMpoise.
In real recordings however, there will never be a true equality. Some drift will
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always be present in BSPM;mproved, and artifacts may also be introduced due
to bad drift approximation.

Cubic splines

With cubic splines, the spline connecting the knots will be a collection of cubic
polynomials satisfying the conditions given in Section 4.2.1. The functions s;
in (4.1) are chosen to be cubic polynomials on the form

sj(w) = a;a® + bja® + cjx + d;.

While the linear splines s needed no conditions other than those given in
(4.1), some more restrictions will be given to the cubic splines. The cubic splines
s are required to have two continuous derivatives, in other words s € C?(R).
Right sided derivatives are used, with the following definition:

s(x ,n=20
S(n)(x) = { ( ) s(”’fl)(erh)fs(”’*l)(x)
h

limy, g+ ,n=12

with s(") () being the n-th derivative of s. Now the conditions set in (4.1) are
expanded for the cubic splines to be:

(n)

sy (z), z<ax
sW@) =1 V@), 3 <z<ain (4.2)
5(1_7) (), zm<w

for n = 0,1,2. A cubic spline s created with the conditions given in (4.1) and
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Figure 4.2: Cubic spline approximation of the drift in the channel of a BSPM.
The approximation to the drift is visualised in a dashed line, with the knot
values appearing as circles.

(4.2) will be an approximation to the drift in the channel V¢ which it is based
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on. These cubic splines will interpolate BSPMs in the way shown in Figure 4.2.
Returning again to (3.1), a new dataset BSP My proved 18 created by subtracting
s from the channel V%

BSPMimpro’ued = BSPMsignal + BSPMnoise + BSPMdTift - S

If s is a good approximation to BSPMgrift, BSPM;improved = BSPMgignai +
BSPMnoise-

Both the linear and cubic spline methods use the same knot values A when
approximating the drift. In most cases the value of s between the knot values
will be different in linear and cubic splines, since they use different polynomials.
Generally, the cubic spline makes a smoother approximation to the drift, while
the linear spline will make a more even approximation through each heartbeat.

Determining knot values

Even though the knots used in the two spline interpolation algorithms described
above are chosen in the PR segment where there should ideally be no baseline
deviation, low amplitude high frequency noise is present. This will influence the
spline approximation to the drift, and this disturbance will be directly transfered
to BSP Mimproved- Two methods have been chosen to reduce this problem. The
chosen methods are lowpass filtering, and using the mean of chosen neighbouring
values of a knot point.

The lowpass filter is implemented using the lowpass filtering methods de-
scribed in Section 4.1.2. A cutoff frequency of 49H z is used to both reduce
random white noise, and any 50H z noise present in the signal.

Because of the noise present in all parts of the signal, the use of knot points
as described in Section 4.2.1 will introduce a small randomness to the drift
approximation. By instead using the median value of neighbouring points in
close proximity to the original knot value (which is the point 30ms before the
QRS complex onset) as the knot value, this randomness can be reduced (see
Figure 4.3). 51 data points are used in the computation of the median value.
Since the sampling rate is 2048 Hz, 51 points corresponds to ﬁ ~ 25ms.
With this time window the data points used in the calculation of the median
knot value will in most cases be in the PR segment.

4.2.2 Highpass filtering

The spline interpolation methods described above removes the drift by sub-
tracting an approximation of the drift from the BSPM. How precise the drift
removal is, depends on the selection of knot points and the intervening polyno-
mials. Highpass filtering is an alternative method to spline interpolation. Since
the drift consist of slow varying high amplitude changes in the recorded signal,
removing the low frequencies from the BSPM will reduce the drift. Unfortu-
nately, parts of BSPMgignq also contains low frequency components. Thus,
filtering out low frequencies from the recorded signal can damage or change
important information in the signal. The American Heart Association (AHA)
[21]recommends a cutoff frequency below 0.5 Hz. This cutoff frequency will be
used in the highpass filtering methods.

The highpass filter is designed using the techniques described in Section
3.3.1. Since the cutoff frequency is 0.5H z, the filter will need a transition band
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Figure 4.3: The selection of a knot value. The median of 51 data points is
computed, and used as the knot value. The 51 data points are marked with
’x’s, while the computed knot value is marked with an ’o’.

width of less than 0.5Hz. A decrease in « and an increase in length M of the
filter’s window functions (3.9) and (3.10) will narrow the transition band. With
a = 0 the window will equal a rectangular window. To obtain a transition
bandwidth of less than 0.5 Hz, the filter length has to be at least 4100. If
« instead is set to 1 the filter will have smaller ripples in the passband, but
will require a longer filter length. The window parameters for Equations (3.9)
and (3.10) were selected to be length M = 5000 and o = 1. This results in
a FIR filter which removes frequencies below 0.5H z while introducing minimal
distortions to the frequency content higher than 0.5H z.

4.2.3 Filtering using Discrete Wavelet Transform

As an alternative to spline or highpass drift removal, other methods have been
used in the literature. For instance Time-Varying Filtering [34], Short Time
Fourier Transform [30] and Wavelet Transform based methods [6, 9, 40]. Of
these the Wavelet Transform based methods seem most promising. A Wavelet
Transform based baseline drift removal algorithm will therefor be implemented,
and tested alongside the three other drift removal algorithms described in the
above sections. A short description of the wavelet transform filter applied in this
thesis is given below. Details on wavelet decomposition can be found elsewhere,
for instance in [16, 11].

The wavelet transform filter bank works on each channel of a BSPM at a
time. First, two symmetric filters are created from a mother wavelet. These
filters splits the BSPM signal into a low frequency component and a high fre-
quency component using lowpass and highpass filters and downsampling each
part by a factor two. These components are represented by a scaling coefficient
co corresponding to the low frequency components of the signal, and a detail
coefficient dy corresponding to the high frequency components of the signal.
This process is repeated by splitting ¢, into a low frequency component c3 and
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a high frequency component ds and so on. This process is sketched in Figure
4.4 (a) and Figure 4.5. The process is repeated until the scaling coefficients
represents sufficiently small frequencies, which can then be removed by setting
the coefficient to zero.
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Figure 4.4: The decomposition (a) and recomposition (b) procedure of wavelet
transformation.
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Figure 4.5: The frequency content of the scaling (a) and detail (b) subspaces at
steps k, k+1, k+2 of the wavelet transform decomposition of the signal. The
interval [0, 7] is the scaled frequency range of cy.

In this thesis, the sampling frequency of the BSPM recordings used is 2048 H z,
so the highest frequency contents possible in the signal (the Nyquist frequency)
is 20882 — 1024 H 2. As each step of the wavelet signal decomposition splits the
signal’s frequency components in two, the scaling coefficients co and do has fre-
quency bands of width 512Hz. With each step splitting the frequency band of
¢k, in two, with cgy1 containing the lower half of the frequency content, c15 will
with this sampling frequency have a frequency content between 0 and 0.5H z.
These frequencies are removed, in accordance with the AHA recommendations
[21], by setting the scaling coefficient c;2 to zero. The BSPM signal is then
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reconstructed by setting c¢11 = dia (since ¢12 = 0), combining ¢17 and di; to
form c19 and so on until the BSPM signal is reconstructed with the frequen-
cies between 0 and 0.5H z removed. This reconstruction scheme is illustrated in
Figure 4.4 (b). In the wavelet decomposition scheme used in this thesis, symlet
wavelets are used.

4.3 Removal of corrupted signals

Some parts of a BSPM recording may be so corrupted that no usable informa-
tion can be extracted from them. Including these parts in further calculations
will only reduce the overall quality of the BSPM, and hence they should be re-
moved. Both short time periods of a channel in a BSPM or a whole channel may
need to be removed. The main causes of these corruptions are electrosurgical
noise, malfunctioning equipment and loss of contact between skin and electrode.
Figure 4.6 is an example of the latter.
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Figure 4.6: A BSPM recording destroyed by loss of contact between electrode
and skin. Note the magnitudes on the y-axis.

The methods in this section were designed to completely remove BSPM
channels or parts of BSPM channels so destroyed by noise that no information
about the electrical activity in the heart could be extracted from them. This
is the case when, after drift reduction and noise reduction has been applied to
the signal, BSP M, ;s is still the dominating part in BSPM = BSPMg;gna +
BSPM,0isc + BSPMgris:. In some cases, the recording may not contain elec-
trical signals from the heart at all, and BSPM ~ BSPMyoise + BSPMgyife.
This is the case for instance when there is loss in contact between skin and elec-
trode, or when an electrode is malfunctioning. Four algorithms for removing the
useless parts of BSPMs has been developed, and will be described next. Each
algorithm takes a different approach to removing disturbances in a BSPM. A
combination of these four algorithms will be made to get a complete method
for identifying and removing bad parts of a BSPM. Drift and noise reduction
must be applied to the signals before any of these four algorithms are applied
to obtain the best results.
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4.3.1 Removing destroyed channels

Some channels, like the one seen in Figure 4.6, are obviously of no use, since
no information of the ECG characteristics can be found in them. A simple
algorithm that makes use of the many channels in a BSPM and the fact that
the characteristics in each channel should be similar is described in this section.

The ith channel of a BSPM will be denoted V. The median, Vi,edian, of all
channels in a BSPM is created by

Vinedian (x) = mediani:17,,,,64(Vi(x)) forz=1,2,...,N,

where NN is the number of data points in each channel of the BSPM. Now, each
channel V? is tested to see if it deviates more from V,eqian than an preset
tolerance § (See Figure 4.7). If it does, the channel is removed from the BSPM
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Figure 4.7: The middle graph of this figure shows parts of a channel of a BSPM.
The upper and lower lines in this figure shows the tolerance of the test. If the
BSPM signal at some point is greater than the upper line or lower than the
lower line, the channel will be removed from the data set.

by setting it to zero:

i Vi7 if ||VZ - Vmedian”oo < 4]
vi= { 0, N[V = Viosian|low > 0 (4.3)
Here, || - ||oo is the supremum norm defined by
e = s, {ua)} (44

where u is an arbitrary vector with elements u(x) and length N.

This algorithm is a fast and easy way to eliminate the worst channels in a
BSPM, but is not suited to do a finer search for channels or parts of channels
that need to be removed. More refined methods for doing this is described in
the next sections.

4.3.2 Removal of varying segments

For each heartbeat VJ’ of a channel V' of a BSPM, the shifts in the ST segment
will be measured by calculating the difference in amplitude of 20ms segments
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of the ST segment and the PR segment. The segments used are the same as the
ones described in Section 3.2. These segments should normally not vary much
during the 20ms segment, but will in some measurements do because of noise,
T /P wave interruption and so on. The method described in this section will
remove heartbeats Vji containing ST or PR segments with too large variation,
as this probably is caused by noise or interference with T or P waves.

The method is simple: For each heartbeat Vji of a BSPM, the standard
deviations o, and oy, of the ST and PR segment is computed. If these exceeds
a tolerance value §, the heartbeat is removed from the BSPM. Expressed more
mathematically, the standard deviations are for each heartbeat:

o5 = y/Var(Vi(X))

opr = 4/ Var(V/(Y)), (4.5)

with X and Y being index sets defined on the ST and PR segments of VJZ Then,
the current heartbeat is kept if these standard deviations does not exceed the
tolerance:

Vi = { Vi, if max{og,0p} <6 (4.6)

J 0, if max{ost,0p} >0

4.3.3 Removal based on drift approximation

The changes in a BSPM labelled as drift can sometimes be quite abrupt, for
example if the patient coughs or makes sudden movements. These and other
disturbances in the BSPM can reduce the accuracy of the drift approximations.
This section describes a method for removing the parts of a BSPM that have a
too abrupt changing drift approximation created by the methods described in
Section 4.2.1. Thus, this algorithm will only be applied to signals that have had
the drift removed using a spline interpolation method. The method tests if the
second derivatives of the drift approximation is greater than a given tolerance
0. If this is the case, these parts of the signal are removed while the parts with
second derivatives smaller than § are kept.

Using the QRS detection method described in Section 4.4.2 the indexes of the
beginning of each heartbeat in the BSPM have been found. These are labelled
A =[z1,...,24,...,2H], with H being the number of heartbeats in the BSPM.
These knot points were used when making a spline based approximation to the
drift. For each channel V¢ i = 1,...,64 of the BSPM, the splines in (4.1)
were tied together at the knot values V¢(A) (Actually, values slightly differing
from these were computed using the method described in Section 4.2.1, but this
notation is used for notational convenience). A simple form of second derivative
D®)(.) is calculated on these knot values:

D(Vi(zj)) = V'(z;) = V'(xj-1)
DOVi(z;) = DDV'(x) =
= V'(z;) + V'(zj-2) — 2V (1) (4.7)
These second derivatives are computed for j = 3,..., H. Then the absolute

value of each second derivative is tested to see if it exceeds the set tolerance 6.
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If [D®(Vi(z;))| > d, the heartbeats Vj_, and V} | are removed from the data

set. This algorithm will remove heartbeats with too abrupt changes in the drift,
and also artefacts introduced by the drift reduction algorithms.

4.3.4 Use of spatial information to test quality of signal

The electrical potential spreading from the heart through the body does so
without discontinuities or abrupt changes. This is why the body can be viewed
as a volume conductor. A consequence of this fact is that neighbouring channels
should record similar signals. These properties of the BSPM is the background
for the algorithm for identifying and removing noisy/bad signals described in
this section. The spatial information provided by the BSPM is used to determine
if the heartbeats VJZ of each channel V? fits in with the rest of the BSPM. For
each heartbeat ij in each channel the neighbouring channels will be used to
predict several values from which ij should not deviate more than a given
tolerance 6. If VJZ deviates from all these predicted values, it is considered a bad
signal.

The algorithm works on one channel V' at a time. For each channel, the
algorithm is applied to each heartbeat VJ’ of that channel. The current heartbeat
that the channel is working on will be called ¢ for simplicity. The two channels
above c¢ are called o; and oz, the two channels below are called u; and us, the
two channels to the left are called I; and ls and the two channels to the right
are called r; and r2. Of course, not all these neighbours are available for all
channels. The heartbeats V' of channel V3! will for example only have the
neighbours o; = V3%, 0 = V2, uy = V2, 1) = V?® and Iy = V}!®, see Figure 2.4
and Figure 2.5. Figure 4.8 shows the example where a heartbeat from channel
V20 is the current channel c.

Now a number s for the ST segment and a number p for the PQ segment
of ¢ is computed, as described in Section 3.2. This is also done for each of the
neighbours of ¢, with their corresponding numbers being s(uq), s(u2), p(u1),
p(u2) and so on. From each available direction, a predicted value of s and p is
now computed in the following way, illustrated with s(uq) and s(us):

s(u1) + w, if both s(u1) and s(ug) available
ds(u) = ¢ s(uy), if only s(uq) available
s+ 26, if neither s(uy) nor s(uz) available
(4.8)

Similar computations are done with the other neighbours and the p values. This
produces a set of two to four predicted s values for the channel ¢ and two to
four predicted p values, depending on the spatial location of ¢. The values s
and p should now correspond with these predicted values. A test is applied to
see if this is true:

e = min{|s — ds(u)|,|s — ds(0)|,|s — ds(l)], |s — ds(r)],
lp = dp(u)l, |p — dp(o)|, [p — dp(D)], |p — dp(r)], }-

If now € > §, the heartbeat ¢ does not fit in with any of the predicted values
from the neighbours, and is removed from the data set. If ¢ < §, the ST or PQ
segment of ¢ fits in with at least one of the predicted values of the neighbours,
and the heartbeat is kept.

(4.9)
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Figure 4.8: An illustration of the values used in the algorithm of Section 4.3.4.
The channel marked c is the current channel. The channels marked o are the two
neighbouring channels above c¢. The channels marked [ are the two neighbouring
channels to the left of ¢ and so on. The closest of the two are given a subscript
1, the next a subscript 2.
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4.3.5 Temporal quality test of PQ and ST segments

This method will make use of the principle that heartbeats occurring close to
each other in time in the same channel should be similar. It creates median
ST and PQ segments for each channel V? of the BSPM, and compares the ST
and PQ segment of each heartbeat VJZ with their respective median. Heartbeats
that contain ST or PQ segments that deviate more than a tolerance § will be
removed from the data set. This algorithm is to be implemented recursively,
with each iteration possibly sorting out additional parts of the BSPM. The
original channel V' of the BSPM before any iterations of this algorithm has
been run will be termed O°.

The algorithm works on each individual channel O at a time. First, the
reference ST and PR segment values are created from the ST and PR segments
of each heartbeat in the channel V?. These are created by first computing the
mean value of the ST and PR segment of each heartbeat:

ms
=
T
~
] =

N Vf(:cn), with z,, € the ST segment of VJZ (4.10)

n

1

MH:

pi(V) = i V}(yn), with y,, € the PR segment of V;, (4.11)

Il
-

and N, M being the number of data points in the ST and PR segments of the
heartbeat respectively. Now median ST and PR segment values s* and p’ are
created, and their difference computed:

Si = medianj:l ..... H(S;(V))
p' = median;—1, H(p; V)
di = Si - piv

with H being the number of heartbeats in the channel. Now that the reference
numbers s’ and p’ have been created, the ST and PR segment numbers of each
heartbeat O} can be tested. These values s%(0) and p’(O) are created analogous
to (4.10) and (4.11), using O} instead of V. The difference d} between the ST
and PR segment of each heartbeat is computed, and compared to the median
difference d’:

d;- = sj—(O) —pj—(O).

If d; deviates from d’ by more than a given tolerance d, the heartbeat is removed

from the BSPM:
Vjiz O,i %f|d%—d:|>(5 .
Vi if|ds —d'l <6

4.3.6 Recursive combination of methods

In the above sections, four stand-alone algorithms for identifying and removing
parts of a BSPM that contain too much artefacts or variation or deviates too
much from the rest were described. As each method has their strengths and
weaknesses, a combination of the above methods is formed. Below, an outline of
the algorithm combination is given in a Matlab/Octave-like environment. In this
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outline, remove_second_derivative and delta_1 refers to the algorithm and
corresponding tolerance described in Section 4.3.3. remove_varying_segments
and delta_2 refers to Section 4.3.2, remove_spatial and delta_3 refers to
Section 4.3.4 and remove_temporal and delta_4 refers to Section 4.3.5.

remove_spatial and remove_temporal are implemented in a loop, with
each element of the vectors delta_3 and delta_4 being stricter than the previ-
ous. These two algorithms compare the current signal to neighbouring signals
in space and time. For each iteration of the loop, outliers of the BSPM has been
removed. Thus, the heartbeats the signal is compared to have been improved
for each iteration of the loop.

The method for removing deviating and corrupted channels is as follows:

remove_second_derivative(V,delta_1);
remove_varying_segments(V,delta_2);

0=V;

for i=1:5
V=remove_spatial(V,delta_3(i));
V=remove_temporal(0,V,delta_4(i));
end

V=remove_sparse_channels(V);

When a BSPM is used as the input V of the recursive algorithm, the output
will be the BSPM with parts of the signal removed. The last step called
remove_sparse_channels will remove channels in which only % or fewer of
the heartbeats are left after the corrupted heartbeats are eliminated.

4.4 QRS detection

An important task in ECG and BSPM signal processing is QRS complex de-
tection. Since the QRS complex is the most prominent feature of the BSPM,
it is used to locate the other signal characteristics. It is also used in a variety
of BSPM signal processing algorithms and as diagnostic information. Knowing
the QRS complex location is therefore of prime importance! An ideal algorithm
for detecting QRS complexes should detect all QRS peaks in a BSPM, without
returning any false peaks. Real BSPM recordings come with a great variety in
shape, frequency and noise content. This makes it necessary for a QRS detec-
tion algorithm to be robust with respect to these variations. In this section,
some results from the literature on QRS detection will be reviewed, and a new
algorithm will be described.

4.4.1 Literature on QRS detection

A large number of QRS detection schemes are described in the literature. Friesen
et al [14] tested nine different algorithms with respect to a variety of noise. No
single algorithm in that study was clearly superior, but two algorithms were
deemed better than the rest. The first of these is an algorithm based on digital



44 Methods and algorithms

filtering, and is an adaption of the algorithm developed by Engelese and Zee-
lenberg [12]. Tt applies a differentiator and bandpass filtering to the signal, and
scans it for amplitudes greater than a given threshold value. The second algo-
rithm uses squaring of the signal and derivatives before scanning for parts that
exceeds the threshold value. Qi Gao [33] tested eight different QRS detection
algorithms, concluding that the algorithms based on amplitude and derivatives
performed best.

Kannathal et al [5] suggests a QRS detection algorithm based on the com-
monly used algorithms developed by Pan et al [29] and the further development
by Hamilton et al [18]. These algorithms are similar to the ones that performed
best in the tests by Friesen et al [14] and Qi Gao [33]. These detection schemes
were based upon analysis of slope, amplitude and width of the ECG. Common
for these three articles is to propose an algorithm involving the following five
steps: First, the ECG is bandpass filtered with a 5-15 Hz passband. Second, the
signal is differentiated (using a five point derivative) to get information about
the slope of the signal. Third, the signal is squared to make the signal positive
and amplify the high frequencies. Then a moving integrator is applied to the
signal to detect the QRS complexes. Last, the QRS peaks are detected us-
ing adaptive thresholds. The adaptive thresholds detect peaks above the given
value, and adjusts this value to detect QRS complexes with different amplitudes.

Chen et al [10] proposes a simpler algorithm that makes use of bandpass
filtering, squaring and a moving summation window, but no derivatives. The
correct detection rate of this algorithm was about the same as the ones described
in [5] (~ 99.5%).

[39] concluded that a bandpass filter with centre frequency of 17 Hz max-
imises the QRS energy relative to other disturbances.

4.4.2 A proposed QRS detection algorithm

The algorithms mentioned in the previous section were designed for traditional
12-lead ECG. Many of them were also intended for real time usage, which limits
the computational complexion of the algorithms. The QRS algorithm proposed
in this thesis is inspired by the ones in described in [5], [14], [10]. This algorithm
is not intended for real time usage. Hence more computationally demanding
methods can be used to improve the algorithm. Moreover, advantage of the
increased number of channels in a BSPM will be taken. A 7 step QRS detection
algorithm was developed. The input to the algorithm is an unmodified BSPM.
A sample channel of an unmodified BSPM can be seen in Figure 4.9. The output
of the algorithm is a vector containing the QRS values. All the changes made
to the BSPM during these seven steps are temporary, and only the QRS values
will be used in further processing.

Step 1: Lowpass filtering is applied to all the channels in the BSPM. This
lowpass filter is described in Section 4.1.2, and has a cutoff frequency of
49 Hz. This filter removes the high frequency noise content of the BSPM.
Although a 5-15 Hz bandpass filter is used in many of the most popular
algorithms, it will not be used in this one. One reason for this is that the
AHA [21] states that the QRS complex contains higher frequencies than
this. (In addition, both averaging and smoothing will be applied to the
signal in later steps.)
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Figure 4.9: A channel of a BSPM before any processing steps has been applied.
It is clear from this figure that automatic detection of QRS complexes in this
channel is difficult without modifications to the BSPM.

Step 2: Highpass filtering is applied to all the channels. In addition to re-
moving the drift and DC component in the BSPM, the highpass filter is
intended to increase the magnitude of the QRS complex relative to the
other parts of the BSPM. Since the T-wave primarily consists of frequen-
cies in the range 1-2 Hz [21] and the QRS complex primarily consists of
frequencies in the range 5-20 Hz [21], [39] a highpass filter with cutoff
frequency 5 Hz is used. The highpass filter used is the same as the one
described in Section 4.2.2, but with filter length M = 3000 and a different
cutoff frequency. The result of the two first steps on the sample channel

4 5 6 7 8 9 10
seconds

Figure 4.10: This figure shows the BSPM channel from Figure 4.9 after step 1
and step 2 of the QRS detection algorithm has been applied.

of a BSPM can be seen in Figure 4.10. Although this channel is suited
for detecting QRS complexes, not all channels in a BSPM will be. The
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next step is therefore to identify and remove those channels when using
the QRS detection algorithm.

Step 3: Removal of disturbing channels. Some channels in a BSPM will be too
noisy to provide information about the location of the QRS complexes.
The step after this one will involve creating an average BSPM sequence
from the channels in the BSPM. Channels with too much noise and too
high amplitude, such as the one in Figure 4.6 will aggravate this average.
For this reason, all channels too deviant from the median of the BSPM will
be removed from the dataset before the rest of the algorithm is applied.
The method described in Section 4.3.1 is used for this step.

Step 4: Absolute value and averaging. The absolute value of each channel
that passed through the previous step is now computed to make all the
data points in the signal positive. The electromagnetic signals originating
from the heart propagates at high speed through the body. The sig-
nals will therefore reach the electrodes at different places on the body
surface at, for all practical and computational purposes, the same time.
Thus each channel of the BSPM will have the QRS complexes at the
same times, which is shown in Figure 4.11. The average BSPM is cre-
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Figure 4.11: This is a plot of a single heartbeat from all 64 channels in a BSPM.
Although both the form and amplitude varies much from channel to channel,
all QRS complexes occur roughly at the same time.

ated from all the channels V' that by now contains only positive values:
BSPMayerage(z) = % vazl Vi(z), where N is the number of channels
included in the computation of the average and V*(x) is the channel ¢ of
the BSPM at index z. This average will have differences in amplitude
in the QRS complexes reduced, and will also have less random variations
than each individual channel. At this point, the QRS complexes have
been amplified and equalised, while the other parts of the signal has been
suppressed.

Step 5: Moving average filtering. A moving average filter is applied to the
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Figure 4.12: The Vyyerqge computed by applying steps 1-4 of the QRS detection
algorithm.

BSPM returned from the previous step of this algorithm, to create a new
signal sequence BSP Mgnmoothea- The duration of a normal QRS complex
is 60-100 ms. The length of the moving average filter is selected to be 101
points, which with a sampling rate of 2048 Hz corresponds to 49.3 ms.
This is long enough to keep the high QRS peaks, without the high values
from the QRS peaks creating falsely high P and T waves. This smoothing
will, in addition to further evening the amplitude of the QRS complexes,
remove many local maxima that could disturb the detection of the QRS
complexes.
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Figure 4.13: The smoothed average BSPM obtained by applying step 1-5 of the
QRS detection algorithm to a BSPM. The horizontal line is the threshold value
of 0.4 - max(BSP Mgmoothed)-

Step 6: Finding values larger than the threshold value. Now the smoothed
BSPM is searched for values exceeding a preset threshold value to find
potential QRS candidates. The threshold value is chosen to be 0.4 -
max(BSP Mgmoothea) and is frequently used in other QRS detection al-
gorithms [33], [14], [18]. Both averaging over the BSPM channels and
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smoothing of the average have evened the amplitude of the QRS peaks,
so a QRS complex is unlikely to be lower than 0.4 times the largest QRS
complex in any dataset. The algorithm searches for periods where all con-
secutive data points in BSP M g,00theq for 40ms or more is higher than the
threshold value. When such a period is found the algorithm stores it as
intervalsiqare. Then it starts to search for 40ms of consecutive data points
which is lower than the threshold value and stores it as intervale,q. This
produces an interval with high values of BSPMgmoothed, Where a QRS
value is located. Now the max value of BSPMgyerage is found in that
interval, and the index in the vector BSPM,yerage in which this max
value is located is stored in A(4). In other words, the vector A is the in-
dexes of the maximum elements of BSPMgyerage in all the found intervals
[intervalsiare, intervalsiop)-

After a QRS complex is found, the algorithm continues it’s search 200ms
after that QRS complex , since there is a physiological refractory period
about this long [18]. After this search has been conducted on the entire
signal, the QRS complexes of BSP Mgyerage has been found. The elements
of the vector A then contains the temporal location of the QRS complexes.
Since the QRS complex occurs at the same time for all channels of a BSPM,
these QRS complexes are the QRS complexes of each channel of the BSPM
as well (See Figure 4.11). Figure 4.14 shows the same time segment of the
BSPM channel from Figure 4.9 , with the QRS complexes marked. Note
that although the correct QRS complexes has been identified, they have
not been located exactly at the peak of the complex in this case. Although
the electric signal reaches each channel at the same time, the channels will
record the signals differently.
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Figure 4.14: This is a short time segment of a BSPM, with the found QRS com-
plex values marked with a dot. As the figure shows, the correct QRS complex
was found even when there were neighbouring peaks of high amplitude.

Step 7: Although the six previous steps will find all the QRS complexes in a

BSPM in most cases, abnormal T waves or other unpredicted sources may
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produce false positives. These need to be sorted out. This last step of the
QRS detection algorithm will make use of the fact that the time between
each heartbeat should be about the same length'.

The median distance between the detected QRS complexes is computed,
and is termed L. The temporal location of the QRS complexes found in
step 6 of the algorithm is collected in the vector A, with each element of
A being the estimated location of a QRS complex. In this last step of the
algorithm, two candidates for each QRS complex is tested against each
other: The previously found values in A, and predicted values using the
median distance L. The new vector consisting of the locations of the QRS
complexes is given the name A,¢q, -

The first element is set equal to the one found using step 1-6; Ay (1) =
A(1). Determining the rest of the QRS complex values is a bit more com-
plicated. Assuming A, (i) is found, A, (i + 1) is found the following
way: Two candidates for the value is computed. The first, called A, is
picked from the previously found set of QRS complex locations A at a
suitable location:

Ao = min [AG) > (Anew(i) +300)}, (4.12)

where H is the number of QRS complexes in A. This essentially picks
the first value of A located 300 data points or more after A,y (7). The
second candidate A, for Aye, (i + 1) is predicted using the knowledge of
the median distance between the previously found QRS complexes:

A, = the index of m[aui}{BSPMauemge(z)}
re|a,
with a = Apew(?) + L — 200
andb = Apnew(i) + L + 200. (4.13)

Thus, the value A, found in (4.13) is the temporal location of the maxi-
mum value of BSPMgyerage, int the interval where a QRS complex should
occur.

Now the two candidates A, and A, for the QRS complex location Ay,ey, (i+
1) has been found. A,y (i+1) is then set equal to A, if BSPMyerage (Do)
> BSPMgyerage(Ap), and equal to A, otherwise.

This is continued for increasing values of ¢ until the end of the signal
BSPMgyerage is reached. Aye, now contains the final QRS complex lo-
cations that will be used in later computations. This last step of the
algorithm will work well in correcting sets of found QRS complexes in
which there are a few false positives or undetected QRS complexes.

The output of the QRS detection algorithm is a vector containing the QRS
peak’s temporal location . All the steps in the algorithm was just steps toward
obtaining the QRS values. Thus all changes made to the BSPM during the QRS
detection algorithm were temporary, and will not be used in further processing
of the BSPM.

I This is only the case in patients with normal heart rhythm. Patients with heart conditions
such as arrhythmia will have heartbeats of uneven duration. This algorithm is designed to
work in these cases as well.




Chapter 5

Evaluation of methods and
algorithms

In Chapter 4 a number of algorithms for performing several BSPM processing
tasks were presented. This chapter contains an evaluation of the performance
of these algorithms. Where multiple algorithms for performing the same task
were presented, a comparison will be made. It is important to note that all the
algorithms have been evaluated with one goal at hand: To improve BSPMs for
detecting ischemia by measuring differences in ST segment shifts.

5.1 Noise reduction in signal

Two algorithms were proposed to remove high frequency noise from BSPMs. A
notch filter was designed to remove the 50 Hz powerline noise that is present
in some BSPMs. A lowpass filter was also designed to remove all frequencies
above a desired cutoff frequency. These filters were applied to several real patient
recordings. The results of applying the filters to BSPMs is given below, together
with a description of what these results indicate.

5.1.1 Notch filter to remove powerline noise

The notch filter has been tested on BSPMs with little to none 50 Hz powerline
noise. Figure 5.1 shows a plot of a channel of such a BSPM before and after
the notch filter has been applied. As expected, the BSPM is almost identical
before and after the filter was applied. This is because there was very little
50 Hz frequency present in the BSPM before filtering, and removing these very
small parts of the recording will only result in minor changes.

In Figure 5.2 the notch filter was applied to a BSPM with much 50 Hz
powerline noise present. The figure shows a smoother BSPM with less random
fluctuations after the notch filter has been applied. A look at Figure 5.3 confirms
that only the frequency components close to 50 Hz has been removed, and thus
the Signal-to-Noise Ratio has been improved.
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Figure 5.1: The dashed line shows a channel of a BSPM with little 50 Hz power
line noise. The solid graph shows the BSPM after a notch filter has been applied
to remove the 50 Hz components of the BSPM. They are clearly almost identical.
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Figure 5.2: The blue graph shows a channel of a BSPM contaminated with 50
Hz power line noise. The red graph shows the BSPM after a notch filter has
been applied to remove the 50 Hz components of the BSPM.
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Figure 5.3: Parts of the frequency spectrum of a BSPM contaminated by 50
Hz powerline noise. The blue graph shows a BSPM contaminated with 50 Hz
power line noise. The red graph shows the BSPM after a notch filter has been
applied to remove the 50 Hz components of the BSPM. As the figure shows, the
notch filter causes near to no distortions in other frequencies than those in the
immediate neighbourhood of 50 Hz.
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5.1.2 Lowpass filter to remove high frequency noise

The lowpass filter with cutoff frequency 49H z has been applied to the same
nice signal as was used in Figure 5.1. Little of the content of the BSPM was in
frequencies above 50 Hz, and removing these frequencies should therefore result
only in minor changes in the BSPM. The result can be seen in Figure 5.4. It
is clear that the lowpass filter produced no significant distortions in this nice
BSPM.
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Figure 5.4: The dashed line shows a BSPM with little 50 Hz power line noise
or other high frequency noise. The solid line shows the BSPM after the low-
pass filter with cutoff frequency of 49 Hz has been applied to remove the high
frequency components of the BSPM. They are clearly almost identical.

In Figure 5.5 the lowpass filter was applied to a BSPM with much high
frequency content. The result of the filtering is a much smoother BSPM with
less abrupt variations in amplitude. Not only is this much nicer visually, it is
also more useful for doing calculations on the different phases of the signal since
the randomness has been reduced. The danger with applying this lowpass filter
is that it is difficult to know if only noise is removed, or if parts of BSP Mgigna
also is removed. That the lowpass filter introduces no significant changes to
BSPMs with low noise contents like the one in Figure 5.4, is a good indication
that it will not introduce significant changes in the BSPMj;4q; part of BSPMs
with higher noise content. Similar results were achieved when applying the
lowpass filter with a cutoff frequency of 49 Hz to other BSPMs as well.

5.1.3 Results from noise reduction

To test the noise reduction algorithms further, six real BSPMs were used, with
both exercise and rest recordings from each of the six. The recording in channel
i of a BSPM will be called V?. As a validation that the noise removed does not
contain important information about BSP Mgignai, the noise will be correlated
with a reference signal. The reference signal is chosen to be the median heartbeat

i of each channel V?. An illustration of such a V;'L can be seen in

median

Figure 5.6.

edian
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Figure 5.5: The blue graph shows a BSPM with much high frequency content.
The red graph shows the BSPM after the lowpass filter with cutoff frequency of
49 Hz has been applied to remove the high frequency components of the BSPM.
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Figure 5.6: The median heartbeat of a BSPM in solid line, and a randomly
selected heartbeat from the same BSPM in the dashed line. As can be seen, the
abrupt random variations is reduced in the median heartbeat.
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Before the noise reduction algorithms were applied, the drift was removed
from the recordings using the highpass filtering methods described in Sec-
tion 4.2.2. Thus, each recording used consisted mainly of BSPMg;gna and
BSPM,s. before noise reduction was applied. Also, the recordings in which
no useful information could be contained were removed.

For each heartbeat Vji, the noise removal algorithms removed a part n; that
was labelled as noise. To test if this really was noise, or contained informa-
tion important to BSPMgignal, ng was correlated with the reference heartbeat
Vl

T edian i the following way:

H
1 . )
pi = E Z COT?‘(H;, Vr;edian)’
J

where H is the number of heartbeats in the current channel i. The correlation
number p = 6%1 Z? pi, with 64 being the number of channels in a BSPM, was
computed for each patient. Each p describes how correlated the noise removed
from the BSPM is with the medians of the corresponding channels. This resulted
in correlation numbers representing how correlated the noise removed is with
the median heartbeats, and can be seen in Table 5.1.

Patient | state notch fil- | lowpass lowpass
ter filter 50 | filter 100
Hz Hz
patientl | rest 0.0715 0.1102 0.0010
patientl | exercise | 0.0085 0.0169 0.0017
patient2 | rest 0.0340 0.0764 0.0157
patient2 | exercise | 0.0024 0.0102 0.0026
patient3 | rest 0.0444 0.0799 0.0185
patient3 | exercise | 0.0052 0.0118 0.0054
patient4d | rest 0.0018 0.0192 0.0000
patientd | exercise | 0.0728 0.0177 0.0013
patientd | rest 0.0122 0.0084 0.0058
patientd | exercise | 0.0076 0.0051 0.0025
patient6 | rest 0.0148 0.0210 0.0107
patient6 | exercise | 0.0112 0.0190 0.0064

Table 5.1: The correlation number between the noise removed from the signal,
and the median heartbeat. As can be seen, there is not much correlation between
the median heartbeats and the noise removed.

As Table 5.1 shows, both the notch filter and 100 Hz cutoff lowpass filter
removes elements that are very little correlated with the median heartbeat. This
indicates that the parts that are removed consists mainly of random noise, and
not signal. Also the 50 Hz cutoff lowpass filter removes elements that are little
correlated with the median heartbeat. In some cases, the correlation number
between the median and the parts removed with 50 Hz lowpass filter shows some
degree of correlation. Since the highest frequencies contained in BSPMg;gnal is
in the QRS complex, the parts removed will probably not introduce disturbances
to the ST segment.
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5.2 Drift reduction

The four drift reduction algorithms discussed in Section 4.2 were tested on
various BSPM recordings. Since there is such large variations in the drift in
different BSPM recordings, this section will take a look at the performance
of the four methods on a large range of different BSPMs. The most desired
properties of a drift reduction algorithm is that it will work equally well on all
kinds of BSPMs. It should also introduce minimum distortions to the ST and
PR segments while removing as much of the drift as possible.

In all the following tests in this section, 20 second segments of recording will
be used. Some figures will display smaller parts of the segments for illustra-
tional purposes. Testing the performance of the drift reduction algorithms on
real BSPM recordings is difficult, since there is no a priori knowledge on how
the drift should be in each case. Therefore the results will be analysed in many
representative cases, and a conclusion will be drawn on the all round perfor-
mance. As a minimum requirement the algorithms should be able to remove
slow varying drift from a nice and tidy signal.

5.2.1 Drift reduction on nice BSPMs

If an algorithm performs poorly when removing the simplest forms of drift, it will
probably not be good at more complex cases. This section will take a look at the
performance on BSPMs with little noise disturbances. Since it is easiest to see
the precision of the drift approximation in the simplest cases, bad performance
here will be a good indication of bad performance in more complex cases. Figure
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Figure 5.7: The four different drift reduction algorithms’ approximation to the
drift in a nice BSPM channel from a healthy person.
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5.7 is a typical example of a nice BSPM with slow varying drift. The drift
has been approximated by the four drift reduction algorithms, and plotted on
the BSPM. There is a difference in the amount of drift removed between the
frequency based and the spline based drift approximations. However, the four
plots of the drift approximations are close to parallel, which means that they
will give similar results when calculating ST PR differences.
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Figure 5.8: The approximation of the drift by the four different drift reduction
algorithms in a nice BSPM from a healthy person during exercise.

Figure 5.8 shows the drift approximations to the drift in a nice BSPM channel
from a healthy person during exercise. The heartbeat rate is greater than the one
in Figure 5.7. Small deviations from the baseline with a period of a heartbeat
or less will therefore not be caught up by the frequency based algorithms, since
these use a cutoff frequency of 0.5 Hz. When the heartbeat rate is this high,
the spline methods will give a straighter baseline after drift reduction, while the
frequency based methods will remove a smoother drift approximation from the
BSPM. This can also be seen in Figure 5.9, where the spline drift approximations
follow the abrupt parts of the drift to a greater degree than the frequency drift
approximations does.

5.2.2 Drift reduction on noisy BSPMs

As seen above, the drift reduction algorithms all worked quite well on BSPMs
with little high frequency noise present. Since the algorithms need to work well
on all kinds of BSPMs, they have also been tested on noisier BSPM recordings.
Figure 5.10 shows the drift approximations to a BSPM with much noise present.

As expected, the spline methods’ drift approximations are more sensitive to
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Figure 5.9: The four different drift reduction algorithms’ approximation to the
drift in a BSPM with little noise and much drift.

high frequency noise. The deviation from baseline in the knot values increases
as the amount of high frequency noise increases, and results in a decrease in
the precision of the splines’ drift approximations. The frequency based drift
approximation methods’ performance will not be affected by the noise present,
since they operate purely on the low frequencies of the BSPM.

The drift reduction algorithms was also applied to noisy BSPMs with more
complex drift. Much noise present in a BSPM can reduce the precision of
the spline based drift reduction algorithms, though not much. Because of the
method used when calculating the knot values in the splines, the algorithms can
handle much noise before anything more than minor faults occur (see Figure
5.12) Still, this illustrates the importance of removing the high frequency noise
from the BSPM before applying spline based drift reduction algorithms.

5.2.3 The impact of drift reduction on phase difference
calculations

So far, the precision of the four drift reduction algorithms has been tested and
discussed. Extra focus will now be turned to the property of the algorithms
that is of most importance to this study. The processed BSPMs will be used
to calculate ST PR differences to diagnose ischemia. Hence it is vital that the
ST and PR segments of the BSPM is preserved as true as possible after drift
reduction has been applied. The BSPM of a patient with ischemia with drift
removed using the four methods can be seen in Figure 5.13. An important
property for the drift reduction algorithms to have, is that they do not distort
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Figure 5.10: A BSPM channel with a lot of high frequency noise present, and
a slow varying drift. The drift approximations computed by the four drift re-
duction algorithms are displayed on top of the BSPM. It is clear that the drift
computed by the two spline based algorithms deviates randomly from the actual
drift at some points. This decrease in precision is a result of the high frequency
noise present, and will only affect the spline based algorithms



60 Evaluation of methods and algorithms

12f —ecg signal
linear spline
11.8f cubic spline
— highpass filtering
11.6f —— wavelet transform filtering
114 4
11.2 k
>
e 11 4
10.8 R
10.6 R
104 4
10.2 k
10 1 1 1 1 1 1
2 4 6 8 10 12 14

seconds

Figure 5.11: The same BSPM as in Figure 5.10, but with noise removed us-
ing a 49 Hz cutoff lowpass filter. With the high frequency noise removed, an
improvement in the two spline based drift approximations can be seen.
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Figure 5.12: An BSPM with high frequency noise present, and a complex drift.
Approximations to the drift is shown on top of the BSPM. The noise causes
minor disturbances to the spline base drift approximations, but they still yield
good results.
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Figure 5.13: The drift reduction algorithms has been applied to the exercise
BSPM of a person with ischemia. The characteristic lowered ST segments are
preserved with all of the four algorithms.

the ST and PR segments of the signal. In most cases, like in Figure 5.13, the four
methods performed equally well. In some other cases, like those seen in Figure
5.9 and 5.8 the frequency based algorithms will not give a good approximation to
the faster varying drift, which may cause some segments of the signal to deviate
more from the baseline than it should. In the following section, a method will
be picked in favour of the three other.

5.2.4 Conclusions on drift reduction

All of the four drift removal algorithms implemented in this thesis made good
approximations to the drift in BSPM signals. Two frequency based algorithms
(highpass filtering and wavelet transform filtering) and two spline interpolation
based algorithms (linear and cubic) were used to approximate the drift in a
signal. The frequency based algorithms had similar performance, and the two
spline based performed similar to each other while different from the frequency
based algorithms.

The major advantage of the frequency based algorithms is that their perfor-
mance will not be affected by higher frequency noise in the BSPM. They will
also remove exactly the same frequencies from all BSPMs. Their drawback is
their inability to remove drift with frequency components higher than 0.5H z
that is often present in BSPMs recorded during exercise. Thus, when the ap-
proximated drift has been removed from the BSPM, there will still be some
baseline deviations in some signals.
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The spline based algorithms will deal better with this problem, as the approx-
imation created by them will follow the drift in the signal to a greater degree.
Thus a BSPM improved with one of the spline based drift removal algorithms
will have a straighter baseline with fewer deviations. The major drawback of
the spline based methods, is that their performance relies on the selection of
knot values right before the onset of each QRS complex. A robust QRS complex
detection algorithm and good methods for removing high frequency and 50H z
noise components will minimise the effect of this drawback.

All over, the four algorithms performed well. Each algorithm has advantages
and drawbacks compared to the others. While it is difficult to draw a definite
conclusion, there were some indications that some algorithms performed better
than others. The cubic spline interpolation method is considered the best of the
four in the tasks required for this thesis. The ability to approximate drift with
faster variations than 0.5H z was the ability weighted the most. Also, the cubic
version was selected over the linear because of its smoother approximations
to the drift. This makes it the most robust of the four methods, as it will
perform well on BSPMs with fast heartbeat rates as well as slow ones. The
good performance of the QRS complex detection algorithm and noise reduction
algorithms were helping factors in this decision.

5.3 Results from removing corrupted signals

Even after noise and drift reduction algorithms have been applied to a BSPM,
there will often be noise and artefacts present. In Section 4.3 four different
methods for removing corrupted and deviating parts of a BSPM were presented.
All of these methods improve the recorded BSPM by removing parts that is
deemed corrupted with respect to a given tolerance. It is obvious that the
amount of signals classified as corrupted depends on the strictness of the set
tolerance.

With the limited number of BSPMs available for testing, it is not possible to
provide ideal parameters for these methods. Parameters that result in the best
removal of corrupted or noisy heartbeats of the BSPMs available at this point,
may not be ideally fit for other BSPMs. When determining the parameters
used in this thesis, the six available BSPMs where split into training and test
sets. A training set of four BSPMs and a test set of two were used. The
parameters were selected to fit the four datasets in the training set, and tested
to see if they fitted the test sets. Then new test and training sets consisting of
different permutations of BSPMs were formed. This procedure was repeated,
and suitable parameters were found. Not using too strict tolerances was deemed
most important in this process.

With a larger number of BSPMs available than at the present time, the
parameters performing best on an arbitrary BSPM can be found. A similar
method of using training and test sets is a possible way of doing this. With
these sets being significantly larger than at this point, one can be more certain
that the found parameters fits BSPMs recorded at a later point.
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Figure 5.14: An example of a channel in which the whole channel was removed
by the sorting algorithm.

5.3.1 Results from Removing destroyed channels

In this section, the method described in Section 4.3.1 will be evaluated. The
method removes whole channels if parts of it deviates too much from the me-
dian of all channels. Some QRS complexes in otherwise nice signals can have
amplitude several mV greater than the average QRS complex. Thus a large
tolerance should be used with this method. When the algorithm is used as one
of the first steps in the QRS detection algorithm, a tolerance of about 5mV
should do. This way, most signals will be kept while corrupted channels and
channels with abnormally high QRS complex peaks will be removed. While this
is a good method for sorting out channels in one of the first steps of a QRS
detection algorithm, other less coarse methods will be better in improving an
arbitrary BSPM.

5.3.2 The performance of the combined sorting algorithm

In Section 4.3.6 a recursive combination of the four methods described in Sec-
tion 4.3 (excluding that of Section 4.3.1) was proposed. As mentioned earlier,
too few body surface potential mappings were available to determine the ideal
tolerances. Instead, some examples of the performance of the combined sorting
algorithm will be given. The tolerances were found using training and testing
sets from the few date sets available.

In the combined sorting algorithm, four tolerances were used. After testing,
these were set to tol_1 = 2, tol_2 = 0.05, tol_3 = [0.7,0.6,0.5,0.4,0.3]
and tol_4 = [0.14,0.13,0.12,0.11,0.10]. Some illustrations of the algorithm’s
performance is given in Figure 5.14 - 5.16.

The parameters used was a good combination for keeping as much informa-
tion as possible, while also sorting out the too noisy or corrupted heartbeats.
If less than % of the original number of heartbeats in a channel was left after
the sorting, the whole channel was removed. The choice of this value was a
compromise between having enough heartbeats left in a channel to get a reli-
able measurement of the ST segment and the need to have ST segment shift
values for as many points on the body surface as possible. By increasing this
number, ST segment shifts from fewer channels of the BSPM may be computed,
but these will in turn be more trustworthy. The sorting algorithm was applied
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Figure 5.15: An example of two heartbeats (dashed line) that have been removed
because their ST and PR segment deviates too much from the rest of the BSPM
channel (solid line).

L L L L L L L L L
51.2 514 516 518 52 522 524 526 528 53 53.2
seconds

Figure 5.16: In this figure, an abnormally wide QRS complex resulted in an
artificial shift in the signal was introduced by the spline drift removal algorithm.
The two heartbeats plotted with a dashed line was removed by the method based
on the drift approximation’s second derivatives.
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to six real BSPM recordings. In the "nicest” of these only two channels were
completely removed. In the BSPM with the noisiest or worst signals, 9 whole
channels were completely removed.
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Figure 5.17: The mean ST segment shift values of the 32 first channels both
during rest and during exercise, with corresponding standard deviations. This is
the mean ST segment shifts of a patient computed before the sorting algorithm
has been applied. Note the high standard deviations in most channels.
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Figure 5.18: The mean ST segment shifts of both exercise and rest recording
with corresponding standard deviations. This is the values for the same patient
as is plotted in Figure 5.17, but after the sorting algorithm has been applied.
Note that the standard deviations has been greatly reduced.

By removing the noisy, corrupted and deviating heartbeats, the standard
deviation in the measured ST segment shifts is greatly reduced. Figure 5.17
and Figure 5.18 shows the mean ST segment shift of the 32 front channels of
the noisiest of the six BSPMs. The figures show both the ST segment shift
and the channels standard deviation, for both rest and exercise recordings. By
reducing the standard deviation this much, the sorting algorithm provides more
correct measures of the ST segment shift.
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5.4 QRS detection on real BSPMs

And now to something completely different: In Section 4.4.2 a QRS detection
algorithm was proposed. Here the performance of this algorithm will be dis-
cussed, and some results presented. Step 1 to 6 of the algorithm detects QRS
complexes in a wide range of BSPM signals. Abnormally large P or T waves,
or high amplitude noise may produce false positives. Step 7 of the algorithm is
designed for correcting this, by making use of information about when a QRS
complex should occur.

The QRS detection algorithm was applied to both the rest and exercise
recording of the six BSPMs available. From each patient, 60 seconds of exercise
recording and 60! seconds of rest recording was used. This made a total of 690
seconds of BSPM recordings for the QRS detection algorithm to be tested on.
The algorithm detected 1287 out of 1289 QRS complex peaks, and produced
no false positives. In this limited test, the algorithm thus had a sensitivity of
99.8% and a specificity of 100% (specificity being the percentage of detected
QRS peaks that are real QRS peaks). These are promising results, but testing
on much larger data sets is required to confirm the effectiveness of this algo-
rithm. For the purpose of detecting ischemia from ST segment shift differences,
a high specificity is more important than the sensitivity. A falsely detected QRS
complex may lead to a false ST segment shift being computed. An undetected
QRS complex however, will only reduce the number of heartbeats available for
ST segments measuring by one. Thus, if later testing shows a decrease in speci-
ficity, measures should be taken to increase it. Increasing the treshold value or
using adaptive thresholds may increase the specificity, but may also lead to a
decrease in sensitivity.

LFor one of the patients, only 30 seconds of rest recording were available.



Chapter 6

The complete algorithm and
results

In Chapter 4 many algorithms for performing different processing tasks on a
BSPM were presented. In Chapter 5 these algorithms were evaluated one at
a time. In this chapter a discussion is made on how these algorithms are put
together to form a complete BSPM processing algorithm. The complete BSPM
processing algorithm is automatic, so it takes raw data as input. The output of
the algorithm is a vector of numbers describing the differences in ST segment
elevation/depression. These numbers can, when viewed properly, give an indi-
cation on whether a patient suffers from ischemia or not. Among other things,
the output can also be used as input to methods computing the electrical ac-
tivity in the heart, as an inverse problem. Manual choosing of ST segment shift
differences is very time consuming and inaccurate. This is the main reason for
creating an automatic algorithm for doing this, utilising the methods developed
in this thesis.

The processed BSPMs will be inspected to see if they provide good data for
recognising signs of ischemia in a patient. The processed data provide clearer
and more trustworthy data for this kind of testing, as will be seen towards the
end of this chapter.

6.1 The final BSPM processing algorithm

When there is suspicion that a patient suffers from ischemia, a BSPM of that pa-
tient can be recorded. The recording is done of the patient both during rest and
exercise. The difference in ST segment between these two recordings can give
an indication of whether the patient suffers from ischemia or not. The BSPM
is a recording of the potential differences in the electrical signals propagating
from the heart to 64 points on the body surface. Unfortunately, a variety of
other signals are also recorded. These are classified as noise and baseline drift.
The total recording in a BSPM has been modelled as (3.1):

BSPM = BSPM,ignai + BSPM,pisc + BSP M.

The main goal of the automatic BSPM processing algorithm is to minimise
the amount of BSPM,,4isc and BSP Mg, ¢+ present in all kinds of BSPM record-



68 The complete algorithm and results

ings, while keeping BSPMg;gnq unchanged. The algorithm is a combination
of methods developed and discussed earlier in this thesis, and will produce an
improved recording called BSP M;mproved- A simplified model of the algorithm
is given:

BSPMimproved = BSPMsignal + BSPMnoise + BSPMdrift

6.1
_Anoise - Adrift - Adeviantsa ( )

where Appise and Agpipe are approximations to the noise and drift in the signal
and Ageviants 18 the corrupted channels and heartbeats that is removed. When
the BSPM has been cleaned of artefacts and noise, ST segment shift differences
is calculated from BSPM;mproved-

All the methods included in the automatic algorithm has been described in
detail in previous chapters. Hence, this section will only include an overview of
how these methods are combined. The process of the algorithm is split into five
steps, each producing an output that is used as input to the next step.

6.1.1 Noise reduction

The first step of the automatic BSPM processing algorithm is noise reduction.
The performance of the noise reduction methods is not affected by the other
steps in the algorithm, but several of the other steps perform better if noise
reduction has been applied first. The algorithms described in Sections 4.1.1 and
4.1.2 are applied. The lowpass filter will use a cutoff frequency feutorr = 49H 2.
All changes made in the BSPM by this step of the algorithm is kept for the
later stages. This improves the BSPM recording by removing parts of the signal
A, vise Classified as noise:

BSPMnoiseimpro’ued = BSPMsignal + BSPMnoise + BSPMdrift - Anoise-

6.1.2 QRS complex detection

After noise reduction has been applied to the BSPM, the time has come to detect
the QRS complexes. All the later steps of the BSPM processing algorithm
require information about the location of the QRS complexes or heartbeats.
The method used for detecting the QRS complex peaks of each heartbeat is
described in detail in Section 4.4.2. Although the BSPM is modified in different
ways to detect the QRS complex peaks, none of these modifications are kept for
later stages of the BSPM processing algorithm. The output of this step in the
algorithm is the location of the QRS peaks, and from this information of where
each heartbeat in the channels of the BSPM starts and ends.

6.1.3 Drift removal

The cubic spline interpolation method for removing drift in the BSPM was
deemed the best of the four methods for drift removal tested in this thesis.
Using the output of the last step in the BSPM processing algorithm, the cubic
spline interpolation method for drift removal described in Section 4.2.1 can now
be applied. The method makes an approximation Ag;f; to the drift in the
BSPM, and subtracts it from the data:

BSPMdTiftimproved = BSPMnoiseimpro’ued - Adrift .



6.2 Comparison of BSPM and ECG 69

The changes made to the BSPM during this step of the algorithm are kept for
later stages.

6.1.4 Identifying and removing corrupted parts of signal

At this stage in the algorithm, both noise reduction and drift removal has
been applied. If Aypise = BSPMyoise and Agrife = BSPMgrife, the signal
BSPMgyiftimproved used at input to this step of the algorithm is

BSPMdTiftimproved ~ BSPMsignal-

Unfortunately this is rarely the case. In most BSPMs there will be parts of
individual channels, or even whole channels, which are still distorted by noise
or simply do not contain any heart signal information at alll These parts of the
BSPM are removed in this step of the algorithm. For removing the corrupted
and deviant parts of BSPMayiftimproved, the recursive algorithm described in
4.3.6 is used. After this step is applied, the final BSPM;mproved in (6.1) is
obtained.

6.1.5 Computing the ST segment elevations/depressions

The output BSP M;mproved of the previous step of the algorithm is the BSPM
signal with noise and drift reduced, and corrupted and deviating parts of the
signal removed. As BSPM;mproved 18 & cleaner dataset that is more close to
the actual BSPM;gna than the recorded raw data. BSPM;mproved can, with
some modifications, be used in many tasks where a processed BSPM dataset is
required. In this thesis, the processing algorithm is applied to both recordings
BSPMTt during rest and recordings BSPM®*¢ during exercise for each pa-
tient, creating two processed datasets BSPM[e*  _; and BSPMgre | . For
each patient, these two datasets will be used in computing the ST segment shift
differences between rest and exercise. The method described in Section 3.2 is
used for this. Equation (3.4) in this method produces a vector d of length 64.
Each element d?, i = 1,...,64 is a number representing the difference in ST
segment shift between rest and exercise for the channel ¢ of the BSPM.

6.2 Comparison of BSPM and ECG

The traditional 12-lead ECG consists of six electrodes placed on the chest, with
corresponding leads called V1-V6, in addition to the reference limb electrodes.
Of these six leads, V1, V3 and V5 are placed at approximately the same position
as V20 V13 and VO respectively in a BSPM (see Figure 2.2 and Figure 2.4).
The ECG of one of the two healthy patients has been recorded, and will be
compared to the processed resting BSPM of the same patient. The ECG and
BSPM of the three channels placed at approximately the same position on the
thorax can be seen in Figure 6.1. In this patient, the BSPM electrode V20
was placed approximately 3cm away from the location of electrode V1 of the
ECG. The other two pair of electrodes were closer to each other, but still with
deviation in location. Generally, these three pairs of electrodes from ECG and
BSPM are the ones placed closest to each other. In addition to the electrodes
being placed at slightly different spatial locations, the difference in the recording
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Figure 6.1: The left column contains the ECG of channel V1, V3 and V5 of a
healthy patient. Along the right column is the resting BSPM of channel V20,
V13 and V° of the same patient. As each pair of ECG and BSPM recording
are recorded by electrodes placed at approximately the same position on the
chest and both recordings are rest recordings, each pair should show similar
ECG/BSPM morphology. The ECGs are quite similar to their corresponding
BSPMs. Notice the difference in amplitude in the two lower pairs. The am-
plitude of the BSPM channel V13 is almost twice that of ECG channel V3.
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equipment and signal processing may also be a cause of differences in the ECG
and BSPM recordings. In this example, the recordings were done with over
a year in between. As expected, the ECG and BSPM recordings were quite
similar. There are some changes in morphology that may have been caused
by the above mentioned or other reasons. One interesting difference is the
amplitude differences, especially between V3 of the ECG and V'3 of the BSPM.

For this patient, the difference between the ST and PR segments was com-
puted in the above mentioned electrode locations using (3.2) and (3.3). The

ECG BSPM
V1| 0.08mV | V20 | 0.06mV
V3| 0.15mV | VI3 | 0.3mV
V5 | 0.13mV | VO | 0.18 mV

Table 6.1: The ST segment shifts in the ECG and BSPM of a healthy patient
during rest in three corresponding locations at the chest.

results can be seen in Table 6.1. Comparing the amplitude of the channels
(Figure 6.1) and the magnitude of the ST segment shifts in the table, it seems
that the larger amplitude in the BSPM channels results in a higher magnitude
in the ST segment elevations in this recording. The amplitude of the exercise
BSPM is similar to that of the resting BSPM for this patient, indicating that no
falsely high ST shift difference between rest and exercise should be introduced
by this. The most important sources for the deviation between the ECG and
BSPM recording is the difference in recording equipment and spatial placement
of the electrodes, as there are only small differences in morphology other than
the amplitude of the signal. The recording in these leads in the BSPM and ECG
should be similar, as they are recordings of essentially the same kind done at
about the same locations. On this one patient, these expected similarities were
present with some deviations. There will always be deviations between different
recordings like these, due to the above discussed or other reasons. Despite the
differences, channel V2%, V13 and V' will be considered equivalent to the ECG
channels V1, V3 and V5 for the remainder of this thesis.

6.3 Visualisation of results

An informative way of visualising the differences in ST segment depression/
elevation of a patient between rest and exercise computed as shown in equations
(3.2), (3.3) and (3.4) on page 25 will be introduced in this section. The output
of the automatic BSPM processing algorithms described in Section 6.1 is 64
numbers d*, i = 1,...,64, each describing the difference in ST segment shift
in a point on the body surface. These numbers are assigned colours according
to their value, and plotted at their correct location at the body surface. An
example of this visualisation is shown in Figure 6.2.

Although the visualisation of the ST segment differences in Figure 6.2 shows
the differences d’ at their location on the upper body, other visualisations may
be better for seeing the BSPM results as a whole. In Figure 6.3 the same vector
d as in Figure 6.2 has been used. The values in d has been connected using
linear interpolation to better see the floating differences between the numbers
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Figure 6.2: The ST segment shift difference between the rest and exercise record-
ing has been computed for each of the 64 channels in a BSPM. Each of these
values are assigned a colour according to their value. These values are plotted
at the location of the electrodes at the body surface.

d’ of each electrode. These smooth coloured mappings of the ST segment shift
differences in a patient will from this point on be termed "Body Surface ST
segment Mapping” (BSSTM). This BSSTM has been laid upon a picture of a
patient wearing the recording equipment for the purpose of illustration. Figure
6.4 is the same BSSTM, without the illustrating picture of the upper body. This
way of visualising the ST segment shift differences can be valuable both as a
tool for evaluating BSPM signal processing algorithms, and as a diagnostic tool.

The BSSTM of a patient will show the changes in ST segment elevation/
depression between rest and exercise at both the front and back of a patient.
With knowledge of which degrees of difference at which points is characteristic
for a patient with ischemia, this mapping can be viewed to easily get an idea
of whether the patient suffers from ischemia or not. Since the body has the
property of a volume conductor, signals should propagate smoothly through the
body. Thus, signals recorded at the body surface should not differ much from
other points recorded in close proximity. If too abrupt changes are present in
the BSSTM of the body surface (such as in Figure 6.8), there is probably much
noise present in some of the channels since the signals from the heart itself will
not produce such a BSSTM. This is useful in evaluating the performance of the
complete BSPM processing algorithm. A good algorithm will be able to sort
out changes that are too abrupt and produce a smoother BSSTM.
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Figure 6.3: The Body Surface ST segment Mapping shown in Figure 6.4 laid
upon a picture of a patient wearing the BSPM recording equipment. Note which
parts of the colourmap corresponds to which channels of the BSPM.
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Figure 6.4: An example Body Surface ST segment Mapping. This is the same
mapping as shown in Figure 6.3 and consists of the 32 first values of d’. These
values has been interpolated to create a smooth mapping of the ST segment
shift differences in the BSPM.
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6.4 Results on real data

The automatic algorithm outlined in Section 6.1 has been implemented on sev-
eral real BSPM recordings. These results are presented in this section. As
there is only a limited number of BSPM recordings available for testing, the
algorithm’s performance on these data sets can not serve as a statistical ”proof”
that it will work well on all BSPMs. But the performance on these actual
recordings will be an indication to it’s accuracy on future BSPM recordings.
For each patient, a 60! seconds of consecutive recording has been used as the
rest recording, and 60 seconds as the exercise recording. In Appendix A, the
BSSTMs of all the BSPMs processed by the automatic algorithm are shown.
These are the plots of the vector d computed by (3.2),(3.3) and (3.4) for each
patient. An example of a healthy patient and a patient with ischemia will be
viewed in the next two sections for illustration.

6.4.1 Algorithm tested on a healthy patient

This is a discussion of the algorithm’s performance on one of the healthy pa-
tients. Since this patient is not suffering from any heart conditions, it is expected
that the vector d computed in (3.4) in the last step of the automatic algorithm
should have values close to zero. The elements of d should not differ much
from each other. In Figure 6.5 the vector d has been computed using the raw
data of the patient as the input BSPM;mproved to the last step of the auto-
matic algorithm (See Section 6.1.5). The BSSTM is quite smooth, but with
maximum ST shift —0.129mV in channel 2. By visually inspecting the BSPM
plots of each channel of this recording, it has been confirmed that the recording
consists mainly of nice BSPM signals with little noise and artefacts present.
Hence, the automatic BSPM processing algorithm should not make many al-
terations to these data. The BSSTM of the same patient after the automatic
algorithm has been applied is shown in Figure 6.6. In this figure, the data has
been processed by the algorithm described in Section 6.1 and the new vector
d is displayed in the BSSTM. It is clear that there is little difference between
Figure 6.6 and Figure 6.5. Only the channels which differed much from the rest
of the BSSTM in the raw data has been altered more than a few uV in the
processed version. Thus the algorithm performed very well on this BSPM. It
removed some deviating channels, while the rest of the channels remained nice.
After processing, the maximum ST shift is of —0.09mV in channel 13. The shift
of —0.129mV in channel 2 that was present in the raw data has been reduced
to a mere —0.035mV shift in the processed version.

6.4.2 Algorithm tested on a patient with ischemia

The algorithm has also been tested on several patients with confirmed ischemia,
with results displayed in Appendix A. In this section, one of these will be stud-
ied closer as an example of the automatic algorithm’s processing of an ischemic
patient. First, the vector d containing the differences in ST segment shift be-
tween rest and exercise is computed from the raw data in the same way as was
done in Section 6.4.1. This d has been visualised in a BSSTM shown in Figure

IExcept patient4, which had only 30 seconds of rest recording available.
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Figure 6.5: The BSSTM of the front of a healthy patient. The raw data record-
ings has been used when making this BSSTM. It is quite smooth even before

any processing has been done. Only the 32 front channels are included in this
BSSTM.
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Figure 6.6: The front BSSTM of processed data of the same patient as in
Figure 6.5. The BSPM and BSSTM of this patient where quite nice before
any processing algorithms were applied, and hence few changes has been made.
Notice that some of the channels was deemed too bad to be included in the final
BSSTM.



78 The complete algorithm and results

6.8. Several abrupt changes and irregularities can be seen in the figure, espe-
cially in the left part. Figure 6.7 shows the vector d from the raw data of the
patient computed from one randomly selected heartbeat instead of the mean
heartbeat of each channel. The abrupt changes in ST segment shift, differences
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Figure 6.7: The BSSTM of a randomly selected heartbeat of the front of a
patient suffering from ischemia. This is the BSSTM of the raw data recorded,
and irregularities and abrupt changes in the BSSTM are visible.

in neighbouring channels seen in these two figures is not physically possible.
Hence there is much noise and artefacts present in several of the channels in
this BSPM.

The automatic BSPM processing algorithm has been applied to this BSPM,
and the output of the algorithm can be seen in Figure 6.9. Several changes
from the BSSTM of the raw data (Figure 6.8 and especially the BSSTM of
one heartbeat shown in Figure 6.7) can be seen. The algorithm deemed several
channels too distorted to be included in the data set. All the deviating channels
has been either removed or corrected so that they fit in with the rest of the
BSPM. This leaves a smoother BSSTM, which fits better with the physical
model of electrical signals propagating from the heart through the body. There
is still a region in the lower right area of the processed BSSTM with large
(greater than 0.2mV) differences in ST segment shifts between the rest and
exercise recording. It is mainly in this area that the ischemia is visible in this
BSPM. Thus the algorithm managed to sort out much of the corrupted parts of
the signal, while at the same time keeping the information that makes it possible
to diagnose the patient.
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Figure 6.8: The BSSTM of the front of a patient suffering from ischemia. This
is the BSSTM of the raw data recorded. The mean ST and PR segments of each
channel has been used in computing the differences in ST shift between exercise
and rest, resulting in a smoother surface than the one in Figure 6.7. Although
some of the random effects have been removed by using the mean channels of
the raw data instead of a randomly selected heartbeat, abrupt changes and
unnaturally high ST shift values are clearly visible. The upper corners of the
BSSTM and an area to the lower left shows signs of being contaminated by high
noise or baseline drift levels.
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Figure 6.9: This is the BSSTM of the processed data of the same patient as in
Figure 6.8. Note how the areas that were "unphysical” in Figure 6.8 and Figure
6.7 have been either corrected, or removed from the BSPM. Note also the great
depression in the lower right part of the BSSTM, which is different from the
rest of the BSSTM. This is characteristic for a patient suffering from ischemia.
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6.4.3 Data produced by the automatic algorithm

It is a difficult task to evaluate the correctness of the complete BSPM processing
algorithm developed in this thesis. There are no given answers to how the BSPM
recordings should be after processing, as the only information available is the
raw BSPM data and the knowledge of whether the patient has an ischemia or
not. Each step of the algorithm has been evaluated earlier in Chapter 5, but
here, light will be shed on the complete output. In Section 6.5 a discussion will
be made of whether or not it is possible to separate the processed BSPM of a
healthy patient from that of an ischemic patient. First, the processed BSPMs
will be investigated for strengths and weaknesses in the processing algorithm.

In the two example patients discussed above (see figures 6.5 - 6.9), the
BSPMs became smoother after processing. The same can be seen on all the
processed BSSTMs presented in Appendix A. There are no channels deviating
much from the rest, and most ST shift values in neighbouring areas are similar.
This is coherent with the laws of physics that implies that the signal spreading
from the heart through the body should not deviate much in locations close to
each other. Thus the outputs of the automatic algorithm are BSPM datasets
that are physically closer to what the electrical signals from the heart should
look like on the body surface, than the raw data is.

All the processed BSPMs have a quite small standard deviation in all chan-
nels not removed by the algorithm (see Appendix A). Assuming that the mea-
sured ST shifts are Gaussian distributed around the measured mean, the ma-
jority of the measured values are close to this value. Also, a large amount of
data are still present after processing, making the computed values for the ST
segment shifts trustworthy.

6.5 Using output to separate healthy and ischemic
patients

ST shifts in exercise ECG testing is a well known method of detecting ischemia.
The criteria for a positive test of ischemia varies in the literature [25, 22, 19,
15, 31]. The most common criteria, the one in the American Heart Association
guidelines, is depression or elevation of at least 0.1mV in one or more of the
ECG leads. Other propose a maximum shift of 0.2mV or more, or require a
shift in several consecutive channels of a BSPM.

Data from all the BSPMs processed by the automatic algorithm are pre-
sented in Table 6.2. In Section 6.2 it was established that channels V20, V13
and V¢ of the BSPM are located at approximately the same positions as V1,
V3 and V5 of the 12-lead ECG. Applying the > 0.1mV criteria to these three
channels of each patient’s BSPM, the following is found: Both healthy patients
will be recognised as healthy (though just barely for one of them), while three of
the four ischemic patients will be recognised as ischemic. The fourth ischemic
patient is not recognised, but the ST shift difference value of channel V' is
missing since the channel was sorted out by the processing algorithm.

Looking at the maximum ST shift in each patient, the maximum shift of
one of the healthy patient’s BSPM shows some depression. Three of the four
ischemic patients show a depression greater than —0.2mV’, while the fourth also
have a quite large depression of —0.154mV. With a criteria to the magnitude
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Patient ST shift difference between exercise and rest in mV

V20 Vi3 Ve min ST shift | max ST shift
patient5 | 0.003 | 0.090 | -0.033 | -0.062 in V31 | 0.090 in V13
patient6 | -0.061 | -0.098 | -0.013 | -0.119 in V' | 0.043 in V?

patientl - — -0.254 | -0.254in V% | 0.067 in V°7
patient2 | -0.012 | -0.154 | -0.138 | -0.154in V3 | 0.108 in V17
patient3 - -0.063 | -0.216 | -0.328 in V7 | 0.241in V8
patient4® | 0.071 | 0.026 - -0.216 in V16 | 0.105 in V30

%Due to a recording error, no resting BSPM was available for this patient. The BSPM
recording done a couple of minutes after the exercise have been used as a substitute for the
rest recording for this patient. This may have resulted in falsely low differences between the
rest and exercise ST segment shifts, since it takes some time for the BSPM signal to normalise
after a stress test.

Table 6.2: This table shows ST segment shift differences between exercise and
rest recordings as computed by (3.4). All data are from the BSPMs processed by
the automatic algorithm. Along each row is the ST shift differences in selected
channels of a patient. The first three data columns show the shift in the three
channels V29, V13 and V¢ which are located at approximately the same positions
as the 12- lead ECG leads V1, V3 and V5 respectively, as mentioned in Section
6.2. The two last columns shows the greatest depression and elevation in each
BSPM.

of the maximum ST shift > 0.1mV, all ischemic and one of the healthy patients
will be identified as ischemic. With ST shift > 0.15mV all the ischemic and
healthy patients will be identified correctly, while a criteria of ST shift > 0.2mV
will identify three of the four ischemic patients correctly and the rest as healthy.
Table 6.3 summarises the outcome of some of the criteria applied to the pro-
cessed BSPMs. As seen in Table 6.3, it is possible to separate the healthy and

Patient Outcome of test (Positive(P)/Negative(N))
ST shift> | max ST shift > | max ST shift > | True
0.1mV in V20, | 0.1mV 0.2mV values
V13 or V6
patientd | N N N N
patient6 | N P N N
patientl | P P P P
patient2 | P P N P
patient3 | P P P P
patient4 | N P P P

Table 6.3: This table summarises the response of the processed BSPMs to three
different criteria. A positive (P) response means that the BSPM fulfils the
criterion, while a negative (N) means that it does not.

ischemic patients using different criteria to the computed ST segment shift dif-
ferences. In addition to set criteria like these, the BSPM opens the possibility
of looking for whole areas of the torso with ST segment depression/elevation.
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6.5.1 The performance of the automatic algorithm

In the previous section, the ST shift values of all the processed BSPMs were
discussed. These were correctly identified as either ischemic or healthy, with the
exception of one healthy patient ’patient6’ which showed ST depressions slightly
larger than what would be expected from a healthy patient. The insecurity of
this patient could either be due to weaknesses in the automatic algorithm, an
occurrence of a healthy patient with correctly measured relatively large ST
depression, or some other causes. Which of these reasons that contribute to the
large ST depressions in this patient is investigated below:

The performance of each step of the automatic algorithm was evaluated in
Chapter 5. If the ST shift differences of this patient were introduced by the
automatic algorithm, it most likely must have been the drift removal step as
the other steps only removes outlying or noisy parts of the signal. While this
is a possibility, it is unlikely. Neither the parts of the patient’s BSPM with
smaller ST shift nor any of the other patients’ BSPMs show signs of artefacts
being introduced by the drift removal method.
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Figure 6.10: The BSPM morphology of selected channels of the two healthy
patients. Comparison of BSPM morphology between rest and exercise in the
channels with the greatest ST shift between rest and exercise. The left column
displays plots of the resting BSPMs, while the right column displays the exercise
BSPMs. The upper pair is the mean channels of patient6, while the lower pair
is the mean channels of patient5.

Another possibility is that these ST segment shift differences between rest
and exercise naturally occurs in this patient’s BSPM. The AHA summarised
from 58 studies of exercise ECG testing that the mean sensitivity of these tests
was 67%, and the specificity 72% [15] (sensitivity being the percentage of pa-
tients with a disease having an abnormal test, and specificity the percentage of
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Figure 6.11: The BSPM morphology of selected channels of the four ischemic
patients. Comparison of BSPM morphology between rest and exercise in the
channels with the greatest ST shift between rest and exercise. The left column
displays plots of the resting BSPMs, while the right column displays the exercise

BSPMs.

patient3 and patient4.

The plotted pairs are, from top to bottom, of patientl, patient2,
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healthy patients having a normal test). It is thus quite common that healthy
patients show ST shift larger than 0.1mV in exercise tests. In Figure 6.10 and
Figure 6.11, the rest and exercise BSPM channel with the largest ST shift differ-
ence of the healthy and ischemic patients are displayed. Now, the morphology
of the signal with the highest ST segment shift for patient6 and the ischemic
patients can be compared. It can be seen that the ST segment difference of
~ 0.1mV between rest and exercise in patient6 is due to an elevation during
rest that has been reduced during exercise. The BSPM of e.g. patient3 has a
distinct morphology characteristic of ischemia during exercise, while the BSPM
of patient6 has similar morphology during both rest and exercise. Inspection
of the data shows that patient6 most likely is processed correctly. Large ST
segment, shifts is recorded in healthy patients from time to time, and this is one
such occurrence.

Inspecting Figure 6.10 and Figure 6.11 further, it can be seen that the
BSPMs of the healthy patients does not show much change in morphology be-
tween rest and exercise. The BSPMs of the ischemic patients on the other
hand, all show a clear change in morphology between rest and exercise. Both
the ST segments and the QRS complexes in the displayed channels of the BSPMs
changed between rest and exercise.

6.6 Summary of results

At the start of this chapter, the automatic algorithm for processing BSPM
data was formed using the methods developed in Chapter 4 and evaluated in
Chapter 5. A tool, named the BSSTM, for visualising the ST segment shift
differences between rest and exercise was introduced. All the processed BSPMs
are presented in Appendix A, and two example BSPMs were discussed more
thoroughly. Finally, the data was investigated, to see if the BSPMs of ischemic
patients could be distinguished from those of healthy patients.

Before processing, it was not possible to know which channels of a BSPM
could be trusted, and which was noisy or filled with artifacts. There was a
high standard deviation in many measured ST shifts. Some channels contained
very high ST shifts, and there were great differences between some neighbouring
channels of several BSPMs. This makes the information obtained from the raw
data faulty and insecure, and it is also difficult to distinguish a BSPM of a
healthy patient from that of an ischemic patient.

After processing by the automatic algorithm presented in this chapter, all
BSPMs have become smoother and more physically realistic. Channels deviating
too much from their neighbours have been removed or corrected. The standard
deviations in the ST shift measurements have been decreased to an acceptable
level, though it is still quite high for most of the BSPM channels. Looking at the
BSSTMs of the processed data, clear spatial trends can be seen as depressions
or elevations in neighbouring channels. This in addition to the relatively low
standard deviations is a good indication that the ST shift values can be trusted.
The large number of data points in each BSPM confirms this further.

After processing, the BSPMs can be distinguished as healthy or ischemic by
looking at the ST shift differences. Both magnitude and spatial distribution
of the ST shifts provide information that can be used to get an indication of
ischemia in the patient. The six BSPMs processed in this thesis separated
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correctly into two groups of healthy and ischemic. The distinction was not very
clear though, with some degree of ST shift also in the healthy subjects. As
discussed in this chapter, this can be attributed to the ST shift measurement
not being a precise measure of ischemia. There are good indications toward
that the ST segment shifts measured in each processed BSPM are close to the
actual signals sent from the heart. The ST shifts measured after processing are
definitively better than those measured from the raw data. It is not possible to
exclude that the algorithm introduces artifacts or fails to remove noisy or false
signals. The results from the six tested BSPMs indicate that such weaknesses
in the algorithm are small if present at all. With a larger dataset available
for testing, more secure results on the performance of the algorithm can be
obtained. The ability of the computed ST segment shifts to separate ischemic
and healthy patients could also be tested more extensively.

6.6.1 Advantages and disadvantages in BSPM over ECG

Although the ECG is the traditional instrument for exercise testing of patients
to detect ischemia, there are several advantages in the BSPM over the 12-lead
ECG confirmed by the results found in this thesis: The increased spatial sam-
pling lessens sensitivity to noise and drift, as each channel can be compared
to spatially neighbouring channels. This has been used to sort out deviating
heartbeats from BSPM datasets. Also, the sensitivity of an ECG recording suf-
fers even with only a couple of channels removed due to noise. Two channels
removed from a BSPM will not significantly change it’s diagnostic power as the
missing channels can be replaced by neighbouring values. In four of the six
BSPMs, the greatest ST shifts were at other locations than the location of 12-
lead electrodes. Thus the BSPM can detect changes of greater magnitude than
the ECG and possibly improve the diagnostication of ischemia. When viewing
results from a BSPM recording, one can look for areas of ST shifts rather than
a few single leads as is done with ECG recordings. This makes the BSPM a
much more robust device, and it greatly improves the possibility of looking for
consecutive points with ST shift as a sign of ischemia.

There are some potential disadvantages in using BSPM instead of ECG.
First, the BSPM equipment consists of a great number of electrodes which
makes it more time consuming to put on and take off compared to the practical
12-lead ECG. Second, the traditional ECG provides sufficient information in
many applications, for instance monitoring the heartbeat rate. Thus the use
of a BSPM over an ECG is not preferable in many applications. Third, the
BSPM is relatively new compared to the ECG. While the ECG is a well known
and much used tool for most medical personnel around the world, the BSPM is
not. Finally, ECG recording equipment is cheaper than BSPM equipment, and
is already available in most hospitals and medical institutions.

6.6.2 The reliability of ST shift as measure of ischemia

In the above sections, the results obtained by applying the automatic post pro-
cessing algorithm to real BSPMs have been discussed. The results indicate that
the algorithm does not introduce significant errors in these BSPMs. Assum-
ing that the algorithm processes the data correctly, the presence of ST shift
differences > 0.1mV in a healthy patient means that ST shift differences is
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not an accurate measure of ischemia. This has been discussed elsewhere in the
literature [15, 22, 19].

There is additional information other than the ST segment shifts in the pro-
cessed BSPM that can improve the detection of ischemia. As seen in Figure 6.10
and Figure 6.11, there was no significant change in morphology between rest and
exercise in the healthy patients’ BSPM, while in ischemic patients’ BSPM there
will most likely be change in the channels with the most ST shift. Looking
at the BSPM morphology of the channel with the largest ST shift difference
will help separating ischemic from healthy patient in the six BSPMs used in
this thesis, and it will probably improve the distinction also in future BSPM
recordings. The slope of the ST segments can also improve the diagnostication
of ischemia from a processed BSPM [15]. In most cases of ischemia the BSPM
will show an alteration in the slope of the ST segment, while a healthy patient’s
ST slope should show no significant changes. Information beyond what is in a
BSPM recording will also improve the diagnostication. [13] states that proba-
bility before the test, the subject’s age, time since last meal, known diseases,
symptoms and use of medication should be taken into account when drawing
conclusions based on an ECG stress test.

The BSPMs of different patients are recordings of signals that have travelled
through different bodies before reaching the recording electrodes. This results
in differences in the BSPMs due to differences in the bodies of the patients in
addition to the heart signals being different. One result of this is differences
in signal amplitude between patients, as the signal amplitude depends on the
distance between the heart and the electrode [35]. Viewing the ST shift differ-
ences relative to the amplitude of the signal (measured at the QRS complex, T
wave or otherwise) can to some degree cancel this effect, possibly increasing the
differences between the ST shift measurements of healthy and ischemic patients.
This may also introduce errors in form of falsely high or low ST shift values.
A much bigger dataset than the six BSPMs available at this point is needed to
test if this can improve the detection of ischemia.

While some improvements to the methods of using BSPM data and ST shifts
to detect ischemia were suggested above, these need to be tested on bigger data
sets to be confirmed. The processing algorithm developed in this thesis will
provide equally good output for the ischemia detection methods discussed above,
as it does for the computation of ST segment shifts used here. Processed BSPM
data and ST segment shifts are also useful as input to cardiac computation
methods, such as inverse problems [28], which does not utilise the additional
information provided for example by the slope or morphology of a BSPM. Thus,
post processing and ST segment shift computation has been the focus of this
thesis.



Chapter 7

Conclusions and further work

7.1 Summary of the thesis

The body surface potential mapping has been proposed as a better tool than
traditional 12-lead ECG in detecting ischemia using ST segment exercise testing.
As the raw data of a BSPM recording contains noise and artefacts, a post
processing algorithm was developed in this thesis to provide more accurate and
secure ST segment shift measurements. A quick review of the designed and
tested methods is given:

First the noise, baseline drift and artefacts present in a BSPM recording were
classified. A simple model of the content of a BSPM recording was proposed:

BSPM = BSPM,;ignai + BSPMgisc + BSPMyif.

Noise and drift reduction methods were developed and tested to improve the
quality of the recording, by using the knowledge of the noise and drift content in
a BSPM signal. A QRS detection algorithm was developed, and used to split the
signal into individual heartbeats and finding important segments of the BSPM.
For the final step of improving a BSPM recording, heartbeats still dominated
by noise or artifacts are removed. For doing this, several methods were designed
and tested, and put together in a recursive algorithm. Finally a visualisation
tool for viewing the ST segment shifts over the upper body was presented. From
the processing methods tested throughout the thesis, a complete BSPM post
processing algorithm was formed. The algorithm is designed to be automatic,
by taking the raw data of an exercise and rest BSPM as input. As output,
both the processed BSPM and it’s corresponding ST segment shift differences
are provided.

7.1.1 The automatic BSPM processing algorithm

An outline of the automatic BSPM processing algorithm developed in this thesis
is given, step by step:

o As the first step of the BSPM processing algorithm, a lowpass filter is ap-
plied to remove high frequency content of the recording. It was concluded
that a lowpass filter with cutoff frequency of 49H z is best suited for this.
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e Next, the QRS complex peaks are detected, and used both for splitting
the signals into heartbeats and locating the PR and ST segments of each
recording.

e To remove the baseline drift, an approximation to the drift using cubic
spline interpolation is made and subtracted from the recording. The cubic
spline interpolation method was chosen to be the best of the four drift
removal methods tested.

e Heartbeats too deviating in a temporal or spatial sense are sorted out from
the data set, leaving a more consistent BSPM free of severe artifacts.

e After the processing part is complete, the ST segment shift differences
between the rest and exercise recording are computed.

e These shifts are visualised as body surface ST segment maps, and both
the processed BSPM and ST segment shifts are given as output of the
algorithm.

7.1.2 Discussion of the algorithm

Each step of the automatic algorithm has been evaluated and discussed. A
summary of these discussions is given:

Noise reduction: The noise reduction part will work on all kinds of BSPMs
and for all purposes. It introduces no artifacts or distortions to the kept
frequency band of the signal. With the current cut off frequency though,
parts of the QRS complex will be removed. The cut off frequency should
be increased if the method is applied in a setting where the QRS complex
morphology is important.

QRS complex detection: A good algorithm for the task of processing BSPMs
for ischemia diagnostication. It proved to be a robust method detecting
the QRS peaks in BSPMs with various noise and heartbeat rates. It de-
tected 1287 out of 1289 QRS complex peaks with no false positives in the
testing set. More testing on a larger dataset is required to get statistical
significant proof that the algorithm works well. Adaptive thresholding or
derivative based detection could be added to the method, but are unlikely
to improve the performance significantly.

Baseline drift removal: The drift removal algorithm performed well on the
tested data, and was deemed a robust method for drift removal. It is
though dependent on good selection of knot values, and shows a slight
reduction in performance when applied to noisy data. All drift reduction
algorithms may introduce artefacts and distortions to the signal, but this
algorithm was deemed best out of the four tested with respect to this.
This step also requires more testing on a larger dataset to confirm it’s
good performance.

Sorting out corrupted heartbeats: With the chosen parameters the out-
liers and corrupted parts of the testing BSPMs were removed, while keep-
ing a sufficient amount of information. With a larger data set, training
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and testing sets can be used to obtain the optimal parameters fitting var-
ious demands on the outcome. The spatial sorting can be more refined,
as can the temporal, e.g. with least squares surface fitting prediction to
sort out spatial outliers.

Computing ST segment shift differences: A more refined way of choosing
PR and ST segments could be made. In this thesis, the segments used
were defined as a fixed distance from the QRS peak. With a good QRS
detection algorithm, this provides a robust method prone not to compute
false ST and PR segment values.

7.2 Results of the algorithm applied to six test
BSPMs

Six BSPM recordings of real patients were available for testing. Of these, four
were known to suffer from ischemia, while two were healthy. Using the computed
ST shift differences from the automatic algorithm, it was possible to classify
each patient as either healthy or ischemic. While it was possible to classify the
patients using only the electrode locations of the 12-lead ECG, the increased
number of sampling points of the BSPM provide more information. Four of the
six patients had maximum ST shift values in locations outside the traditional
ECG lead locations. The limited number of leads makes the standard ECG
vulnerable to noise and corrupted channels. When looking for signs of ischemia
using ST shifts, both the magnitude and locations of these shifts provided by the
BSPM should be utilised for maximum effect. In the four BSPMs of ischemic
patients it was possible to see clear signs of the presence of ischemia, while
the BSPMs of the two healthy patients showed indications that they belonged
to healthy patients. This is a sign of strength in the processing algorithm.
Regardless of noise level in the raw data, all the processed BSPMs were both
smooth and rich enough on data to make decisions based on them.

The distinction was not very clear however, especially with one healthy pa-
tient showing ST segment depressions close in magnitude to those of the ischemic
patients. No signs were found in the processed BSPM that these shifts were due
to weaknesses in the processing algorithm, but rather a not so uncommon oc-
currence of a healthy patient with ST shifts in exercise testing. This patient’s
BSPM had no change of morphology between rest and exercise that is charac-
teristic for an ischemic patient. This indicates that ST shift differences alone
is not the ideal measure of ischemia, which has been supported in the litera-
ture [13, 22, 15]. It should rather be combined with other information such
as the ST slope, T wave amplitude, shift relative to signal amplitudes, infor-
mation about the patient’s health and age etc. On the other hand, a simple
matrix of numbers, such as the ST shifts, is required in many applications or
cardiac computation methods, such as solving inverse problems. A method for
automatically computing these from raw BSPM data is therefore necessary.
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7.3 Conclusions

Shifts in the ST segment of an exercise ECG test is a sign of ischemia. The
BSPM is a better suited tool for these tests, as the increased spatial sampling
provides richer information than the traditional 12-lead ECG. In this thesis,
a complete automatic algorithm for post processing BSPM recordings was de-
veloped. The algorithm was applied to the BSPM recordings of two healthy
and four ischemic patients. The algorithm made the BSPMs more consistent,
greatly reduced the deviations in the measured ST shift values and returned
a more physically realistic BSPM for all the six data sets. After processing
it was possible to separate the BSPMs into recordings of healthy patients and
recordings of ischemic patients solely based on the ST shift values computed
by the automatic processing algorithm. However, there was no clear distinction
between the ischemic and healthy patients. It was judged that this is a diag-
nostic weakness of measuring ST segment shifts, rather than false values being
introduced in the processing. While this shows that the developed algorithm
performed well on this limited set of six patients, further testing with bigger
data sets is required to confirm the results of this thesis.

It was found that the magnitude of ST segment shifts between rest and
exercise recordings alone is not the ideal way of diagnosing ischemia based on
a BSPM exercise recording. Other morphological signs in a BSPM recording
that can improve the detection of ischemia were described. The computation
of reliable ST segment shift differences is important in other applications as
well. Solving inverse problems for locating ischemic regions in the heart [28§]
for instance, utilise the magnitude of ST segment shifts alone when identifying
ischemic heart disease.

7.4 Further work

The algorithm developed in this thesis showed promising results on the six
BSPM recordings available. Further testing on a larger dataset is required
to get statistical significant results on the performance of the algorithm. A
larger set of BSPMs also opens for other interesting research, some ideas will
be presented here: Other methods of improving the detection of ischemia, as
discussed in Section 6.6.2, could be evaluated. With a bank of BSPMs from a
diversity of patients available, a BSPM could be compared to the BSPMs in this
bank for instance by using adaptive filtering techniques to see which BSPM in
the bank it is closest to. The patient could then be diagnosed the same.

To better the use of spatial information to sort out deviating and corrupt
channels, least mean square surface fitting on the ST segment values can be
used to predict the ST value a channel should have according to the surrounding
channels. The same techniques can be used to replace ST segment values for
channels that have been removed from the data set.

The algorithms developed in this thesis have not been optimised with re-
spect to computational demands. At this point, the CPU time needed by the
automatic algorithm is of no importance, but it may be in some later applica-
tions. Another interesting project would be to redesign the whole or parts of
the algorithm for real time implementation. In doing this the accuracy of some
of the methods may need to be toned down, but a functioning adaption made
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for real time implementation should be possible.
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Figure A.1: The BSSM of patient5 after the BSPM has been processed. The
left figure shows the front of the patient, the right figure shows the back of the
patient.
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Figure A.2: The ST shifts in the processed rest and exercise recordings of pa-

tient5 plotted on top of each other. The standard deviation in the ST shift
measurement, is included. This is the 32 channels on the front of the patient.
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Figure A.3: The ST shifts in the processed rest and exercise recordings of pa-
tient5 plotted on top of each other. The standard deviation in the ST shift
measurement is included. This is the 32 channels on the back of the patient.
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Figure A.4: The BSSM of patient6 after the BSPM has been processed. The
left figure shows the front of the patient, the right figure shows the back of the
patient.
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Figure A.5: The ST shifts in the processed rest and exercise recordings of pa-
tient6 plotted on top of each other. The standard deviation in the ST shift
measurement, is included. This is the 32 channels on the front of the patient.
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Figure A.6: The ST shifts in the processed rest and exercise recordings of pa-
tient6 plotted on top of each other. The standard deviation in the ST shift
measurement, is included. This is the 32 channels on the back of the patient.
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Figure A.7: The BSSM of patientl after the BSPM has been processed. The
left figure shows the front of the patient, the right figure shows the back of the
patient.
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Figure A.8: The ST shifts in the processed rest and exercise recordings of pa-

tient1 plotted on top of each other. The standard deviation in the ST shift
measurement is included. This is the 32 channels on the front of the patient.
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Figure A.9: The ST shifts in the processed rest and exercise recordings of pa-
tient1 plotted on top of each other. The standard deviation in the ST shift
measurement is included. This is the 32 channels on the back of the patient.
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Figure A.10: The BSSM of patient2 after the BSPM has been processed. The
left figure shows the front of the patient, the right figure shows the back of the
patient.
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Figure A.11: The ST shifts in the processed rest and exercise recordings of
patient2 plotted on top of each other. The standard deviation in the ST shift
measurement, is included. This is the 32 channels on the front of the patient.
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Figure A.12: The ST shifts in the processed rest and exercise recordings of
patient2 plotted on top of each other. The standard deviation in the ST shift
measurement, is included. This is the 32 channels on the back of the patient.
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Figure A.13: The BSSM of patient3 after the BSPM has been processed. The
left figure shows the front of the patient, the right figure shows the back of the
patient.
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Figure A.14: The ST shifts in the processed rest and exercise recordings of
patient3 plotted on top of each other. The standard deviation in the ST shift
measurement is included. This is the 32 channels on the front of the patient.
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Figure A.15: The ST shifts in the processed rest and exercise recordings of
patient3 plotted on top of each other. The standard deviation in the ST shift
measurement is included. This is the 32 channels on the back of the patient.
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Figure A.16: The BSSM of patient4 after the BSPM has been processed. The
left figure shows the front of the patient, the right figure shows the back of the
patient.
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Figure A.17: The ST shifts in the processed rest and exercise recordings of
patient4 plotted on top of each other. The standard deviation in the ST shift
measurement, is included. This is the 32 channels on the front of the patient.
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Figure A.18: The ST shifts in the processed rest and exercise recordings of
patient4 plotted on top of each other. The standard deviation in the ST shift
measurement, is included. This is the 32 channels on the back of the patient.
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