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A short explanation of theabbreviations and terms usedin the thesisECG is the abbreviation for eletroardiogram and is the term used for the12-lead ECG. ECG is also used for the reording in a single hannel of the12-lead ECG.12-lead is another term for the standard ECG reording.BSPM is an abbreviation for body surfae potential mapping, whih is a ol-letion of eletrial potential di�erenes reorded at many points on theupper body. In this thesis a 64 hannel BSPM is used. The term BSPMwill also be used on single hannels in the 64 hannel BSPM.WCT is the abbreviation for the Wilson Central Terminal.Eletrode is the term used for a single reording node used in BSPM/ECG.Channel is used for the reording in one of the eletrodes of an ECG/BSPMthat have been modi�ed by the WCT.Lead is the term used for a ombination of eletrode reordings. For the BSPMreordings in this thesis, a lead will be the same as a hannel.V is often used as the term for a hannel of the BSPM. V i is then the ithhannel out of the 64 hannels.
V i

j is often used as the term for the jth heartbeat of the ith hannel of a BSPM.
V i

j is then a vetor ontaining the measurement of one hannel V i betweenonset value j and j + 1.ST segment is a segment of the heartbeat. In this thesis, shifts in the STsegment between a rest and exerise reording is used as an indiation ofishemia.BSSTM is an abbreviation for body surfae ST segment mapping. This is amapping of the di�erene in ST segment shifts at the spatial loations ofthe hannels of the BSPM.



Chapter 1Introdution1.1 Ishemia and the eletroardiogram (ECG)Ishemi heart disease is the single most frequent ause of death in the worldtoday [42℄. It ours when the oxygen demand of the heart musle exeedsthe supply, often aused by an olusion in the blood vessels. Diagnosing is-hemia is a di�ult task, with the illness being undeteted in many patients[15℄. Even the tiniest improvement of the methods for diagnosing this diseasewill have great e�et on the number of people reeiving treatment in time. Theeletroardiogram (ECG) is the most ommonly used tool for diagnosing heartdiseases, inluding ishemia. The ECG is a reording of the eletrial ativityin the heart at seleted points on the body surfae.1.1.1 ST shift measurementECG exerise testing an be used to detet ishemia by omparing a rest andexerise ECG reording of a patient. A shift in a part of the heartbeat alledthe ST segment is used as an indiation of the presene of ishemia [15℄. In thestandard ECG, three limb eletrodes in addition to six eletrodes plaed loseto eah other on the hest is used. The small number of measuring points in thetraditional 12-lead ECG limits it's diagnosti apabilities [22℄. The use of anECG vest, more ommonly alled a body surfae potential mapping (BSPM),whih has more eletrodes spread over a greater area of the upper body providesbetter detetion and loalisation properties than the traditional ECG [25, 43℄.In addition, ardia omputation methods using suh ST segment shifts as inputvalues will bene�t from the BSPM as it measures the ST segment shifts at pointsspread out on the upper body.Before these ST segment shifts an be measured preisely, the raw datareorded in a BSPM must be proessed. While the ECG is a standardisedand well researhed tool, there exists, to the author's knowledge, no ompleteBSPM post proessing algorithm. In this thesis an automati algorithm forpost proessing and measuring ST segment shifts in a 64 lead BSPM has beendeveloped. Both methods developed in this thesis, and modi�ations of existingECG proessing methods will be made. These will utilise the inreased spatialinformation provided by the BSPM.



1.2 BSPM signal proessing 31.2 BSPM signal proessingThe BSPM is a body surfae reording of the eletrial ativity originating fromthe heart. However, not only the signal from the heart will be reorded in aBSPM. A simple model for the ontent of a reorded BSPM is made:
BSPM = BSPMsignal + BSPMnoise + BSPMdrift.The model lassifying the ontributing parts of a BSPM as a signal originatingfrom the heart, noise or baseline drift (slow varying hanges in the reording).The noise and baseline drift will result in inaurate and sometimes even falsemeasurements of the BSPM harateristis if omputed from the raw data. Postproessing BSPM reordings is a task of reduing the amount of BSPMnoiseand BSPMdrift while at the same time keeping BSPMsignal unhanged.
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Figure 1.1: Two examples of raw data reordings in a BSPM.1.3 Development of automati algorithmManual proessing and ST segment shift measurement of BSPM raw data istime onsuming and an be inaurate. This motivates the need for a ompleteautomati algorithm for post proessing BSPM data. An automati BSPMproessing algorithm is developed in this thesis. It will use raw data reordingsas input, and produe both the proessed BSPM and omputed ST segmentshifts as output. Methods are developed and tested to both remove a prioriknown noise ontent, and unlassi�ed disturbanes in the signal.The following methods have been developed, implemented and tested as partof the algorithm: First, noise redution methods using frequeny based �lteringtehniques was implemented and tested. Seond, an algorithm for deteting theBSPM signal peaks was developed. This method was used to loate the inter-esting parts of eah heartbeat. Third, methods for removing the baseline driftis disussed. Four methods were seleted, implemented and evaluated againsteah other. A method using ubi spline interpolation as an approximation tothe drift was deemed best and used in the automati algorithm. Even afterthis initial proessing, there may be noisy or orrupted signal parts present ina BSPM. Hene a framework for removing suh parts of the BSPM was devel-oped as the fourth step of the algorithm. In the �fth step, a robust method foromputing the ST segment shifts at eah eletrode loation from a proessedBSPM was made. Finally, a tool for visualising these shifts was reated.



4 Introdution1.4 Outline of resultsThe algorithm developed in this thesis was applied to BSPM reordings of realpatients. Before proessing, it was not possible to ompute neither reliable nororret ST segment shifts from these reordings. In addition most reordingsshowed variations between neighbouring points on the body too great to bephysially possible. After the automati algorithm was applied to these reord-ings, all BSPMs beame smoother with neighbouring ST segment shift valuesbeing relatively lose to eah other in value. The visualisation tool developed inthis thesis, an also be used to on�rm that the proessed BSPMs are physiallypossible.A omparison between the standard ECG and proessed BSPM was made.Finally, eah proessed BSPM ould be reognised as belonging to either ahealthy patient or an ishemi patient. With the exeption of one unlear BSPM,the deisions on the presene of ishemia or not in a patient were all orret.Eah step of the automati algorithm developed has been evaluated anddisussed. In addition, the algorithm shows promising results when applied toreal life BSPMs. However, only a small number of BSPMs were available fortesting in this thesis. The results found by applying the algorithm to theseBSPMs are therefore not statistially signi�ant, but rather an indiation tothe e�etiveness of the algorithm developed.



Chapter 2Eletrial ativity in theheart, the ECG and theBSPMThis thesis will have it's fous on post proessing body surfae potential map-pings. Di�erenes in ertain segments of the BSPM of patients during rest andexerise is omputed from these for use in deteting ishemia. Before atten-tion is turned to these problems, a desription of the bakground for the lateromputations will be given. The physiology and eletrophysiology of the heartis brie�y desribed. The 12-lead ECG has for deades been the leading toolfor reording the eletrial ativity in the heart, and still is today. The ECGwill be desribed as a motivation for the body surfae potential mappings thathave been used in this study. The BSPM and the reordings used will then beintrodued to the reader. This hapter will be rounded o� by a desription ofishemi heart disease, and its e�et on the reordings of the eletrial ativityfrom the heart.2.1 The physiology and eletrial ativity of theheartIn this setion an introdution to the physiology and eletrial ativity in theheart will be given. This will serve as a bakground for the omputations onthe eletrial signals originating in the heart that will be desribed later. [20,37, 5℄ all ontain hapters on the subjet, and an be read for a more thoroughintrodution.2.1.1 The physiology of the heartThe heart ontains four hambers, divided into two upper hambers alled theatria, and two lower hambers alled the ventriles. Eah of these is also dividedinto left and right sides (see Figure 2.1). A typial heartbeat starts in thesinoatrial node (SA node) loated just above the right atrium. It initiates theontration of the atria, pushing blood into the ventriles. When the atrial



6 ECG and BSPM

Figure 2.1: A shemati �gure of the human heart. (Figure from [4℄.)ontration is �nished, the ventriles ontrat. The left ventrile pushes bloodrih on oxygen into the arterial system, while the right pushes blood to thelungs. Then the heart musles relax, allowing the atria and ventriles to bere�lled with blood.The ontrations of the heart musles during a heartbeat is ontrolled by aseries of eletrial signals whih will be desribed in the next setion.2.1.2 Eletrial ativity in the heartThe pumping of the heart is ontrolled by a system of eletrial signals origi-nating in the SA node. The ells in the SA node are autonomous osillators,whih means that they reate eletrial ation potentials without any externalsoures. The heart musle ells (myoardium) has the ability to arry an ationpotential (ondut eletriity), whih means that the eletrial signals initiatedin the SA node an be arried throughout the heart musles. Heart musle ellsin their resting state have a negative potential. The ation potential initiatedin the SA node spreads aross both atria as a wave of depolarisation, ausingthem to ontrat. The atria and ventriles are separated by a septum (layer) ofnon-exitable ells, so the ation potential does not spread diretly to the ventri-les1. Instead it is passed through the only ondutive passage between the twolayers; the atrioventriular node (AV node) loated at the bottom of the atria.The propagation of eletriity through the AV node is quite slow, so there is asmall delay between the signal propagating through the atria and reahing theventriles. This allows the ventriles to be �lled with blood before ontrating.The ation potential exits the AV node through it's distal portion, alled theatrioventriular bundle or the bundle of His, and into the ventriles. At last themusles of the heart relax and repolarise, readying for the next heartbeat.1This is the ase in the majority of hearts. Heart onditions or illnesses suh as ventriular�brillation will result in di�erent eletrophysiologial behaviour



2.2 The eletroardiogram 72.2 The eletroardiogram2.2.1 HistoryThe eletrial potential that ause the heart to pump, spread through the bodyand an be measured at the body surfae. The eletroardiogram (ECG) reordsthe di�erene of this potential at the body surfae. The �rst ECG was pub-lished in 1887 by Augustus D. Waller. He reorded the eletrial potentialdi�erenes in the paws of his bulldog using a apillary eletrometer. 14 yearslater Willem Einthoven invented a better and more sensitive devie alled thestring galvanometer. He also assigned the letter P,Q,R,S and T to the di�erentde�etions in the ECG, whih are still used today (see Setion 2.2.3). Einthovenused eletrodes on the left and right arm and the left leg to produe three bipolarleads, where eah lead is the potential di�erene between two eletrodes. (seeSetion 2.2.2 for more info). In 1933 Wilson introdued the onept of unipolarleads by tying the three limb leads together to reate a ommon referene pointfor all leads. The ECG has been standardised and improved over several deadesafter this. In the last deades, digital omputers have been used to a greaterand greater extent to proess the ECG signals. Today the ECG is a well knownand muh used tool around the world for monitoring the eletrial ativity inthe heart.2.2.2 The standard 12-lead ECGDuring the ourse of a heartbeat, the eletrial urrent spreading form the heartthroughout the body hanges in orientation and magnitude. The human bodyfuntions as a passive volume ondutor. While not produing any eletrialpotential of its own, it allows the eletrial signals originating from the heart totravel to the surfae. By measuring the potential di�erene between eletrodesat the body surfae, one an approximate this eletrial ativity.The measurement of the potential di�erene between eletrodes is alled alead. Two types of leads will be desribed below; bipolar and unipolar leads.Unipolar leads are the potential di�erene between a point and a onstrutedreferene potential. Einthoven used his three eletrodes on the right arm (RA),left arm (LA) and left leg (LL) alled VRA, VLA and VLL respetively to formthree leads. These leads measure the potential di�erene between two points,and are alled lead I, II and III. Leads measuring the potential di�erene betweentwo points are alled bipolar.
I = VLA − VRA

II = VLL − VRA

III = VLL − VLA.The standard ECG used in hospitals worldwide onsists of three or four limbeletrodes and six hest eletrodes. These are ombined to form 12 leads (seeFigure 2.2) alled I, II, III, AVR, AVL, AVF and V1-V6. Only lead I, II and IIIare bipolar, the others are unipolar. Di�ering from the three bipolar leads, theunipolar ones are not the potential di�erene between just two points. Instead,they are eletrodes referened to a onstruted �neutral� potential. Table 2.1



8 ECG and BSPM

Figure 2.2: The eletrode plaement in the standard 12-lead ECG. Figure takenfrom [5℄



2.2 The eletroardiogram 9[37℄ gives an overview of the eletrodes and referene potentials used to produeeah lead. For leads V1-V6 the referene potential is the arithmeti average ofthe three limb eletrodes VRA, VLA and VLL, and is alled the Wilson CentralTerminal (WCT). The idea is to reate a �zero� eletrode whih ideally has smallhanges during a heartbeat.Lead eletrode refereneI VLA VRAII VLL VRAIII VLL VLAaVR VRA VLA and VLLaVL VLA VRA and VLLaVF VLL VRA and VLAV1-V6 1-6 VRA, VLA and VLLTable 2.1: The onstrution of the leads in 12-lead ECGHene, the unipolar leads referened to the WCT approximately desribesthe eletroni potential hanges in eah eletrode. In the BSPM used in thisstudy, all leads used will be unipolar leads referened to the Wilson CentralTerminal.2.2.3 The ECG signalFigure 2.3 shows the harateristis of a typial heartbeat, plotted with time onthe horizontal axis and potential di�erene on the vertial axis. The straightline segments represents periods of time when there are no soures of eletrialativity in the heart, and are referred to as the baseline or isoeletri line. Thewaveform de�etions from the baseline are aused by eletrial ativity in theheart tissue. Eah phase in the ECG represents a ertain eletrial ativity inthe heart. A detailed desription is given below. In pratie, the magnitude,duration and orientation (positive vs. negative de�etions) will wary over dif-ferent leads, and not all harateristis are sure to be present in the ECG ofevery lead.P wave : The eletrial ativity of a heartbeat starts with the propagationof ation potential from the SA node through the atria. This triggersdepolarisation of the atria, resulting in a ontration. This depolarisationprodues the P wave. The normal duration of a P wave is 100 ms, andthe magnitude is low relative to the QRS omplex and T wave.PR interval : The PR interval is the period starting with the onset of the Pwave, and ending with the onset of the QRS omplex. It normally has aduration of 120-200 ms.PR segment : The PR segment is the period between the o�set of the Pwave and the onset of the QRS omplex. This segment should be on thebaseline, as no eletrial ativity normally ours in this segment.QRS omplex : The QRS omplex is aused by the depolarisation of theventriles, and the repolarisation of the atria. The de�etion aused by



10 ECG and BSPMrepolarisation of the atria is small relative to the de�etion from depolari-sation of the ventriles. The omplex is quite steep beause of high veloityof propagation of the eletrial signals through the ventriles. It also isthe part of a heartbeat with the largest magnitude (normally around 1-3mV) due to the great musle mass of the ventriles. Normal duration forthe QRS omplex is 60-100 ms.ST segment : The ST segment is the period from the o�set of the QRS om-plex to the onset of the T wave. It orresponds to the time betweendepolarisation and repolarisation in the ventriles, a time period in whihthere is little to none eletrial ativity in the heart. Typial duration ofthe ST segment is 120 ms or less.T wave : The T wave is a result of repolarisation of the ventriles, where theells return to their resting potential. It has longer duration (normally 200ms or less) than the QRS omplex sine repolarisation is a slower proessthan depolarisation. It has a magnitude of up to 0.5 mV, and usually islarger than the P wave.

Figure 2.3: Shemati representation of ECG during one heart yle. Timealong the horizontal axis, voltage along the vertial axis. The �gure is from [7℄.



2.3 Body surfae potential mappings 112.3 Body surfae potential mappingsFor several deades ECG has been, and still is, the number one tool for reordingthe eletrial ativity in the heart at the body surfae. Even though the 12-lead ECG is a well standardised and known test to medial personnel, it has it'slimitations. Sine the ECG only reords the body surfae potential di�erenes insix loations on the thorax it's spatial overage limits it's ability to detet severalheart diseases, suh as ishemia [26, 22℄. The BSPM overing an extensive areaof the upper body provides better spatial sampling and is also more sensitivein deteting ishemia [38, 17℄, even in patients with no harateristi �ndings inthe standard 12-lead [26℄. The BSPM may also prove better suited for loalisingan ishemi region of the heart [26℄. This motivates the use of BSPMs for earlydiagnosis of ishemia. It is also a useful tool for ardia omputations and inverseproblems, as the inreased spatial sampling provides more data. From a signalproessing point of view the inreased amount of data and spatial samplingompared to the 12-lead is an advantage that will be used in this thesis.2.3.1 Outline of the BSPMSo far in this hapter, the traditional 12 lead ECG has been desribed. Thisstandard ECG mapping uses six eletrodes plaed at the hest as shown inFigure 2.2 in addition to the referene eletrodes. The standard 12 lead ECGwill not be used in this thesis. Instead a 64 lead BSPM will be used. The BSPMonsists of 64 eletrodes plaed evenly in strips on the torso, in addition to threereferene eletrodes plaed at the limbs (see Figure 2.4 and 2.5). While the

Figure 2.4: The 32 front leads in the 64 lead Body surfae potential mappingused in this thesis.
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Figure 2.5: The 32 bak leads in the 64 lead Body surfae potential mappingused in this thesis.traditional ECG only reords the eletri ation potential originating from theheart at six points on the hest, the BSPM reords the ation potential at boththe front and bak of the upper body. 32 eletrodes are plaed in four strips ofeight at the front of the torso, and 32 eletrodes are plaed in four strips of eightat the bak. These totals to 64 hannels that will be denoted V i, i = 1, . . . , 64throughout the thesis.As written in Setion 2.2.2, the leads of a BSPM are unipolar leads. Thismeans that eah lead of a BSPM is the di�erene between the reording at theurrent eletrode, and the WCT (Remember that the WCT is the arithmetiaverage of the three limb eletrodes VLA, VRA and VLL). Eah of the BSPMleads measure a signal similar to those in a traditional ECG (both ases arereordings of the eletrial potential di�erene at points on the body surfae).Although eah lead will have the harateristis illustrated in Figure 2.3, thevariation in shape and amplitude between some of the leads in a BSPM will begreater than for 12 lead ECG due to the large di�erene in spatial plaementbetween some of the eletrodes.2.3.2 The equipment and reordings used in this studyThroughout the study, BSPMs of real patients will be presented and used. TheBSPMs have been reorded at Rikshospitalet [1℄ in ooperation with Simularesearh laboratory [2℄. The equipment used for the reording of the BSPMs,is the Biosemi AtiveTwo Mk2-system [8℄. Two 4× 8 eletrode panels shown in



2.4 Heart diseases 13Figure 2.6 are used; one on the front and one on the bak of the upper body.
Figure 2.6: The 4 × 8 eletrode strips that are attahed to the front and bakof the torso for the BSPMs used in this thesis. Piture is from [3℄.Eletrial signals spread ontinuously through the body. To do omputa-tions on these signals, they have to be reorded and stored digitally. Thus,the ontinuous eletrial ation potentials that reah the eletrodes at the bodysurfae are sampled in time by the BSPM measuring equipment. A samplingrate of 2048Hz is used, whih means that the ontinuous analog signal is storedas a disrete digital signal with 2048 data values (samples) per seond. All ofthis is done by the Biosemi system. The output of the equipment is a matrix ofnumbers, where eah olumn is a reording of a BSPM hannel in time.The fous of this thesis is to alulate information about the ST and PRsegments of the BSPM of a patient for usage in diagnosing ishemia. To get theinformation needed, a BSPM of eah patient has to be reorded both during restand during exerise. For these reordings, the eletrodes are �rst attahed to thepatient. For some time, the patient sits without moving to get the �rest�-data.Then, without stopping the measurements, the patient mounts a stationarybiyle and starts yling. When the patient reahes a ertain heartbeat rate(220 minus age beats per minutes, adjusted by linial deisions by the medialpersonnel), or starts to feel pain in the hest, the time is noted and the followingpart of the reording is termed the �exerise�-data. Throughout the rest of thethesis, when terms like �reording during rest� and �BSPM of the patient duringexerise� are used, they refer to these time periods.Due to a limited set of reordings available, this thesis will be limited to usingsix di�erent BSPMs. Two of these are reordings of healthy patients2 (whihwill be alled patient5 and patient6), and four are reordings of patients withishemi heart disease diagnosed by additional medial testing (alled patient1,patient2, patient3 and patient4).2.4 Heart diseasesThe eletrial signals generated by the heart hange in response to di�erent heartonditions. Heart diseases and their e�et on ECGs/BSPMs is a large �eld, andmany diseases with orresponding hanges to the ECG has been surveyed. Thismakes the ECG a powerful diagnosti tool, as di�erent heart diseases an bereognised by harateristi hanges in the signal reorded at the body surfae.2The two healthy patients were not atually patients, but volunteers whih with ertaintydid not su�er from ishemia. For the sake of onveniene though, they will be referred to aspatients for the rest of the thesis.



14 ECG and BSPMThere exist a great number of di�erent heart diseases and onditions, andso a multitude of e�ets on ECG signals. Attention will soon be turned toishemia, whih is the disease this thesis will fous on. First a few examplesof ECG abnormalities as a result of illnesses will be given [5℄, to illustrate thatheart onditions an hange ECG reordings in many di�erent ways: Heartbeatrhythms deviating from normal heartbeat rhythm (60-100 regularly spaed beatsper minutes) are alled arrhythmias. These ome in many forms, like hangesand irregularities in heartbeat rate, missing heartbeats, hanges in P wave,T wave and QRS omplex morphologies. In the extreme ase of ventriular�brillation, the normal ECG waveform seen in Figure 2.3 is unreognisable in theECG. Illnesses like periarditis and hyperkalemia will hange the morphologyof the ST phase and T wave, while illnesses like hypertrophy hanges the Pwave. Also, a range of other diseases and heart onditions will produe othervariations in the ECG morphology. Thus a patient su�ering from heart diseasesother than ishemia an ompliate the detetion of ishemi heart disease inthe BSPM. Compensating for individual other heart diseases in the proessingof BSPM data for ishemia detetion falls beyond the sope of this master'sthesis. Instead the BSPM proessing algorithms used and developed will bedesigned to be robust against various hanges in the eletroardial morphology.Myoardial infartion and ishemi heart disease will also show harateristihanges in the ECG, although not always easy to detet. A further desriptionof ishemia and it's e�et on BSPMs is given below.2.4.1 IshemiaIshemi heart disease, or ishemia, is a mismath between demand and supplyof oxygen to heart musle ells. This is most often the ase when an olusionor narrowed part in one or more of the oronary arteries is present. Suh anolusion will result in diminished blood supply to the heart musle, and soinsu�ient oxygen supply. In many ases this will happen when the oxygendemand in the heart musle inreases, for example when the heart is exposed toinreased stress beause the patient exerises. The lak of oxygen supply leadsto hanges in the eletrophysiologial behaviour in the myoardial ells, whihan be reorded in a BSPM or ECG.An oxygen demand greater than the supply in heart musles for longer peri-ods of time will result in injury. This will eventually lead to myoardial infar-tion, whih is the death of heart musle ells.2.4.2 Changes in BSPM aused by ishemiaSine the eletrophysiologial behaviour of the myoardium is hanged for aperson with ishemia, there will also be hanges in the eletrial signal reordedat the body surfae using a BSPM. These hanges an in many ases be seenas hanges in the ST segment of eah heartbeat. In a healthy heart, the STsegment is the time between ventriular depolarisation and repolarisation. Thus,no eletrial ativity should our during this time, and the BSPM reordingshould be on level with the baseline. However, ishemia auses a delay in thedepolarisation and repolarisation of the myoardial ells. This delay results inshifts in the ST segment of the BSPM.



2.4 Heart diseases 15The shifts in the signal from a patient with ishemia an be seen as elevationsor depressions in the ST segments, as seen in Figure 2.7. These shifts is present

Figure 2.7: To the left is a heartbeat of a patient su�ering from ishemia duringrest. To the right is a heartbeat of the same hannel of the same patient duringexerise. Note that the ST segment is depressed relative to the PR segmentduring exerise while it is not during rest. This is a harateristi hange in theBSPM/ECG of a patient with ishemia.in the BSPM of a patient with ishemia when the blood supply to the heartmusle is insu�ient. This leads to the following onlusion: A patient with aheart that gets su�ient blood supply during rest, but insu�ient during stressshould have a �normal� BSPM during rest and ST segment shifts during stress.This is ommon in patients with early stages of ishemia, where some arteriesmay be partially obstruted. It is then possible to �nd indiations of ishemia bymeasuring the di�erene in ST segment elevation in BSPMs reorded during restand and stress. It is not the ishemia itself that is deteted this way, but the STsegment shifts that usually is a onsequene of the ishemia. Other onditionsor irumstanes may also ause shifts in the ST segment. Thus there mayour false diagnostiations no matter how well the BSPM is proessed, if STsegment shifts alone is used.Shifts in the ST segment in the BSPM of a patient with ishemia will not bepresent in all hannels of the BSPM. The size and loation of the ishemi zonevaries with whih arteries are narrowed, and to what extent. The position andnumber of hannels with ST segment depression and elevation in a BSPM willalso vary. Sine eah hannel is �looking� at the heart from di�erent diretions,the loations of ST segment hanges may be used to determine the loation ofthe ishemi region of the heart [26℄. In traditional 12-lead ECG, there are onlysix eletrodes plaed on the hest in addition to the referene eletrodes. Thislimits the 12-lead's usefulness in deteting the region of ishemia. In some ases,the ST segment shifts will only be present in eletrodes plaed at other loationson the torso than where the 12-lead eletrodes are plaed. These two fatorsmakes the BSPM an attrative tool for deteting ishemia. The BSPM anreord ST segment shifts that may not be present in traditional ECG beauseof the spatial loation of the eletrodes, and also provides data that is bettersuited for determining the loation of the ishemia. A further desription ofmeasuring the ST phase di�erenes to detet ishemia will be given in Setion3.2.



Chapter 3Working with real data, andtheoretial bakgroundIn the previous hapter the eletrophysiology of the heart and the onept ofbody surfae potential mappings were introdued. This hapter will furtherdesribe the problems involved when working with real life BSPM data, andthe proessing needed. Measuring of ST segment shift di�erenes between restand exerise reordings to detet ishemia will be further addressed. Finally anintrodution to the Disrete Fourier Transform and the �ltering tehniques usedin this thesis will given.3.1 Noise, drift and artefats in BSPM reord-ingsWhen thinking about ECG, most people will think of a smooth graph withspikes every seond or so, suh as in Figure 3.1. If the only eletrial ativity
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Figure 3.1: Plot of an ideal ECG reordingreorded had been the one originating from the heart, this would indeed bewhat the ECG of a healthy person looks like. However, in real life reordingsthis is not the ase. Figure 3.2 shows some real ECGs ontaminated by noise indi�erent ways. Clearly, most of these signals an't provide information helpful



3.1 Noise, drift and artefats in BSPM reordings 17in diagnosing deeases in their raw form, and need to be proessed �rst to getuseful results. Some hannels, like the lower right in Figure 3.2 will not provideany information at all even after proessing, and need to be removed. There are
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Figure 3.2: Plot of ECGs distorted by noise in di�erent ways. The upper leftECG is a result of loss of ontat between the eletrode and the skin of thepatient. Note the magnitude on the y-axis. The upper right ECG is a typialexample of an ECG with lots of 50Hz and white noise present. The lowerleft �gure, is an ECG with lots of drift, varying di�erently in time. Note themagnitude of the axis on the lower right �gure. This signal has no harateristisof an ECG.many soures of noise that an degrade the signal. The most important onesand their e�et on the reordings will be disussed in Setion 3.1.2.3.1.1 Noise and drift in the measured BSPMThe measurement in a hannel of a BSPM onsists of the atual eletrial signalsoriginating from the heart ombined with noise and baseline drift. Written inanother way:
BSPM = BSPMsignal + BSPMnoise + BSPMdrift. (3.1)Equation (3.1) is omposed of:

• BSPM is the measurement of one hannel in a BSPM.
• BSPMsignal is the part of the measurement that onsists of the eletri-al signals from the heart. The amplitude of BSPMsignal usually varieswithin a range of 1-3 mV.



18 Working with real data, and theoretial bakground
• BSPMdrift is the slow varying high amplitude parts of the measured

BSPM . The magnitude of the drift an be many times the magnitude of
BSPMsignal. A more thorough desription of drift and its impat on theBSPM is given in Setion 3.1.3.

• BSPMnoise onsists of every part of the measurement that is not BSPMsignalnor BSPMdrift. The noise varies muh in both form and amount, whihmeans that BSPMs even from the same patient an look omplete di�er-ent. See Setion 3.1.2 for a lassi�ation of di�erent noise soures.To illustrate how drift and noise an a�et the signal, a set of syntheti datahas been generated. A syntheti BSPM signal has been generated using the teh-nique desribed in [24℄. Random noise and baseline drift have been generatedseparately from the signal. This noise and drift have been given typial hara-teristis, i.e. high amplitude and low frequeny for the drift, and low amplitudeand high frequeny for the noise. These three parts have been added togetheraording to (3.1). The resulting BSPM an be seen in Figure 3.3. This iswhat a real life BSPM may look like. In this illustrating example, BSPMsignal,
BSPMdrift and BSPMnoise as seen in Figure 3.4 have been added to produethe BSPM. The inverse proess of splitting a BSPM measurement into thesethree parts is muh more omplex.
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Figure 3.3: A typial looking BSPM signal reated by adding BSPMsignal,
BSPMdrift and BSPMnoise. Eah of the three synthetially generated ompo-nents of this BSPM an be seen in Figure 3.4.All measured hannels in a BSPM will be suh a ombination of signal, driftand noise in many variations. Beause all the diagnosti information in a BSPMlies in the BSPMsignal parts, an important task in BSPM post proessing willbe to separate the information in a signal from the ontaminating noise anddrift. Due to the randomness and the omplexity of drift and noise in realmeasurements, this is a nontrivial task. In a measured BSPM, one does notknow what parts of the measurements that are signal, noise or drift, as was thease in Figure 3.3 and Figure 3.4. There are espeially two problems onnetedto reduing the noise and drift in a BSPM: One is that some noise and drift maybe di�ult to remove, and hene will still be present in the BSPM after drift andnoise reduing algorithms have been applied. The other is that drift and noise
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Figure 3.4: These three �gures show synthetially generated BSPM signal, driftand noise. The upper left is a plot of BSPMsignal, the upper right is BSPMdriftand the lower is BSPMnoise.reduing algorithms an distort the signal part of the BSPM measurement.Reduing noise and drift in BSPM measurements, while minimising the twoproblems desribed above will be an important part of this thesis.3.1.2 Desription of noise soures, and their impat onthe BSPMA short desription of the most ommon noise and drift soures and how theya�et the ECG is given in [14℄. Experimental testing with real BSPM reordingshas also been performed. Below is an overview of the noise soures that may bepresent in a BSPM reording. An illustration of some of these an be seen inFigure 3.2 and Figure 3.5:Power line interferene onsists of 50 Hz harmonis, with amplitude of upto 50% of BSPM amplitude. Often these harateristis will not hangemuh during a reording.Musle ontration noise is aused by arti�ial potentials generated by mus-le ontrations. The signals resulting from musle ontrations an sim-pli�ed be viewed as zero mean band-limited Gaussian noise. Typial pa-rameters are; standard deviation of 10 % of BSPM amplitude and fre-queny ontent of up to 10 kHz.Eletrode ontat noise is interferene aused by loss of ontat betweeneletrode and skin. This may happen temporarily, or during the wholereording. The amplitude may be over 100 times that of normal BSPMamplitude.Patient movement produe transient baseline hanges aused by variationsin the eletrode skin impedane when the eletrode moves. These hanges



20 Working with real data, and theoretial bakgroundare sometimes slow varying, and an have amplitudes many times as highas normal BSPM amplitude.Baseline wandering/BSPM amplitude variation due to respiration. Theamplitude of the BSPM may vary by about 15 %, and slow baseline wan-dering our due to respiration by the patient.Instrument noise generated by eletroni devies used in signal proessingmay disturb the reorded signal.Eletrosurgial noise will destroy the signal, sine it normally onsists oflarge amplitude noise with frequenies between 100 kHz and 1 MHz. Thealiasing e�et aused by lower sampling rate than this, will disturb thesignal.Other soures suh as perspiration, �awed eletrodes, oughing or talkingduring reording et. will also distort the reorded signal.Some of the noise soures tested experimentally in a BSPM reording anbe seen in Figure 3.5 with a orresponding plot of their respetive frequenyresponses in Figure 3.6.As desribed above, noise artifats may our in many di�erent forms andmagnitudes, making it an important task to redue the noise in the BSPM wherepossible. Noise may also be so dominating in a hannel that it is impossible toretrieve any real information from it. In these ases, the hannel should beremoved from the BSPM all together. In the next setion, the most importanttask, drift redution, will be disussed.3.1.3 Desription of the baseline drift removal problemIn ideal onditions, the parts of the BSPM where there are no soures of eletrialativity in the heart (e.g. the PR and ST segments) should have zero amplitude(see Figure 2.3 on page 10). As desribed in Setion 3.1.2 there are severalsoures to high amplitude slow varying noise (see the lower left plot in Figure3.2). This type of noise in a signal will be referred to as baseline wander, baselinedrift, or simply drift. The baseline wander an add several hundred millivoltsto the amplitude of the signal. Sine the pure BSPM amplitude normally varieswithin 1-3 mV, it is lear that the drift will have to be removed if the reordingis to be of any use.Removing baseline drift is a task of removing the drift without distortingthe signal. When baseline wander is present in a signal, portions of the signalsuh as the PR segment that should have zero amplitude, will have amplitudeequal to the amplitude of the drift at those parts. But at the other parts ofthe signal, suh as the P and T wave and the QRS omplex, it is not lear howmuh of the measurement is drift and how muh is the atual signal.3.2 Measuring ST and PR segment di�erenes inrest and exerise reordingsAs desribed in Setion 2.4.1, some hannels of the BSPM of a patient willhange when the demand for blood exeeds the supply. This is often the ase in
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Figure 3.5: Upper left orner: a hest hannel of the BSPM of a healthy patientduring rest an be seen. Upper right orner: the same hannel when the pa-tient is breathing heavily. A regular osillation of the signal in phase with thebreathing an be observed. Lower left orner: the reording of the same patientontrating and relaxing hest and arm musles. The BSPM has more noiseontent than the upper left one due to potentials generated by musle ontra-tion. The lower right orner: the reording when the patient is oughing. Theoughing introdues disturbanes to the BSPM, but it returns to normal whenthe patient settles down.
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frequenvy (Hz)Figure 3.6: These �gures show the frequeny spetrums of the BSPM signalsdisplayed in Figure 3.5. The upper left �gure is the frequeny spetrum of theBSPM during rest. The upper right shows when the patient is breathing. Nosigni�ant additional high frequeny ontent is added by the breathing. Lowerleft orner: notie how the magnitude of almost all the frequenies displayed isinreased when the patient ontrats his musles. Lower right orner: a similare�et is seen in the frequeny spetrum when the patient is oughing.



3.2 Measuring ST and PR segment di�erenes in rest and exerisereordings 23a person with ishemia during stress. The oluded arteries will provide enoughblood to the heart musles during resting periods, but not when the heart isworking hard. Computing the di�erene in ST segment elevation/depressionbetween rest and exerise an distinguish reordings of a patient with ishemiaand a patient without.

Figure 3.7: This �gure shows two heartbeats from a BSPM of a healthy patientduring rest. The onset of the QRS omplex, and the J point right after the QRSomplex is marked on the �gure. The p value for this hannel is omputed asthe mean of the area marked red right before the QRS omplex onset. The svalue for this hannel is the mean of the marked area right after the J point.The ST segment shifts are omputed by subtrating a value on the baselinefrom a value in the ST segment. This segment is often de�ned relative to theJ point, whih is the point where the BSPM/ECG urve �attens between theQRS omplex and the ST segment (see Figures 3.7 and 3.8). The value to usefor the ST segment varies in the literature; [36, 31, 15, 5℄ respetively uses thepoints 60, 63, 60 − 80 and 40ms after the J point. In this thesis, the mean ofthe signal in the period 50 − 70ms after the J point is used, with the J pointbeing de�ned as 40ms after the QRS omplex peak. The value on the baselineis omputed by taking the mean of the signal in the period 30 − 10ms beforethe QRS omplex onset. This setion is used sine it lies in the PR interval,and will in most ases not inlude values from the P wave or the QRS omplex.The BSPM reordings used in this thesis, were done on patients both duringrest and while exerising on a stationary bike. The BSPM of a patient onsistsof 64 hannels. These hannels are alled V i, with i = 1, . . . , 64 denoting theloations of the hannels (see Figure 2.4 and Figure 2.5). The vetor ontainingthe jth heartbeat of hannel i will be named V i
j . For eah heartbeat in a hannel,a number si

j representing the ST segment elevation/depression and a number
pi

j representing the PR segment elevation/depression will be omputed. The
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Figure 3.8: This �gure shows two heartbeats from a BSPM of a patient withishemia during stress testing. The onset of the QRS omplex, and the J pointright after the QRS omplex is marked on the �gure. The p value for thishannel is omputed as the mean of the area marked red right before the QRSomplex onset. The s value for this hannel is the mean of the marked arearight after the J point. These heartbeats have depressed ST segments, whih isharateristi for the BSPM of a patient with ishemia.



3.3 The Disrete Fourier Transform(DFT) and sampling 25di�erene between these will be termed di
j :

si
j =

1

L

L
∑

n=1

V i
j (xn), with xn ∈ {50 − 70ms after the J point of V i

j }

pi
j =

1

L

L
∑

n=1

V i
rest(xn), with xn ∈ {30 − 10ms before QRS onset of V i

j }

di
j = si

j − pi
j . (3.2)In the above equations, L is the number of data points in the ST and PRsegments. At this step, the mean di�erene between the ST and PR segment ofhannel i is reated:

di
(state) =

1

H

H
∑

j=1

di
j . (3.3)

H is the number of heartbeats in the hannel V i. The alulations in (3.2)and (3.3) are done for all hannels V i
rest in the rest reording, and V i

exc in theexerise reording. This results in two vetors drest and dexc with respetiveelements di
rest and di

exc with i = 1, . . . , 64.The vetor drest is then subtrated from dexc to get the di�erenes betweenthe reordings during exerise and the reordings during rest:
d = dexc − drest. (3.4)After these omputations on the BSPM of a patient, the resulting vetor d =

[d1, d2, . . . , d64] ontains the di�erenes in ST segment shifts between exeriseand rest for eah of the 64 hannels in the BSPM. These values will later beused to get an indiation of whether a patient su�ers from ishemia or not (seeSetion 2.4.2 and Chapter 6).3.3 The Disrete Fourier Transform(DFT) andsamplingThe eletrial signals originating from the heart spread through the body ontin-uously in time. Sine omputers work with disrete numbers, and not analog,the ontinuous analog signals need to be translated into disrete digital sig-nals. To digitally proess the analog eletrial potentials reorded at the bodysurfae, they need to be digitised. In this proess the ontinuous signals aresampled at disrete time instants at a sampling frequeny fs. The resultingBSPM reording then onsists of fs disrete values per seond. In this study,the BSPMs where reorded with a sampling frequeny of fs = 2048 Hz. A-ording to Shannons sampling theorem [32℄ (page 28), the highest frequenythat an be ontained in a digital signal with sampling frequeny fs, is fs

2 . Thismeans that the highest frequenies ontained in the BSPM reordings used inthis thesis is f = fs

2 = 2048
2 = 1024 Hz. All of this is done in the reordingequipment desribed in Setion 2.3.2, and will not be disussed further.When working with BSPM signals, muh of the modi�ation and analysiswill be on the frequeny harateristis of the signal. When doing frequenyanalysis, it is onvenient to onvert the time-domain signal sequene to an



26 Working with real data, and theoretial bakgroundequivalent frequeny-domain representation of the signal. This is done usingthe Disrete Fourier Transform(DFT). The DFT of a disrete time sequene
x(n) of length L is given by:

X(ω) =

L−1
∑

n=0

x(n)e−iωn, 0 ≤ ω ≤ 2π (3.5)where ω is the normalized frequeny variable. Now, X(ω) is a disrete fun-tion sampled at equally spaed normalized frequenies ωk = 2πk/L , k =
0, 1, 2, . . . , L − 1.Returning to (3.5), the frequenies f on the interval 0 ≤ f ≤ fs/2 orre-sponds to the normalized frequenies ω on the interval 0 ≤ ω ≤ π. Due to thesymmetry properties of the DFT, X(ω) on the interval π ≤ ω < 2π is just amirror image of X(ω) on the interval 0 ≤ ω < π. Using the relation ω = 2πf

fs

,(3.5) an be rewritten as
X(f) =

L−1
∑

n=0

x(n)e−2πifn/fs , 0 ≤ f ≤ fs. (3.6)In fat, f is a disrete variable sampled at disrete points fk, where fk = kfs/L,
k = 0, 1, 2, . . . , L − 1. X(f) represents the amplitude and phase of the di�erentfrequeny omponents of the time sequene x(n). |X(f)| is the amplitude ofthe frequeny omponents of x(n). A plot of |X(f)| over all frequenies f is
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Figure 3.9: A 20 seond segment of a BSPM reording, and its orrespondingfrequeny spetrum. The right plot is the frequeny spetrum zoomed in onfrequenies in the interval 0 ≤ f ≤ 150 sine most of the frequeny ontent in aBSPM reording are low frequenies.alled the frequeny spetrum, and shows how muh of eah frequeny f thesignal x(n) is omposed of. A plot of a BSPM-reording and its orrespondingfrequeny spetrum an be seen in Figure 3.9. For more reading on DisreteFourier Transforms and sampling, see an introdutory book on digital signalproessing, for instane [32℄.3.3.1 Filtering tehniquesThroughout the thesis, frequeny-seletive linear time invariant (LTI) �lters willbe applied to the BSPM reordings. The �lter harateristis of a digital LTI-



3.3 The Disrete Fourier Transform(DFT) and sampling 27�lter is determined by its impulse response h(n). A �lter with input x(n) hasoutput
y(n) = h(n) ∗ x(n) =

∞
∑

k=−∞

h(k)x(n − k),where ∗ is the onvolution operator. This is the time domain representationof a �lter with impulse response h(n). Sine frequeny-seletive �lters will beused, it is more onvenient to express the output of a �lter in the frequenydomain. A property of onvolution is the onvolution theorem that states thatonvolution in the time domain is equivalent to multipliation in the frequenydomain [32℄ (page 283). The frequeny domain expression of the output of adigital �lter is then
Y (ω) = H(ω)X(ω), (3.7)where Y (ω), H(ω) and X(ω) are the Disrete Fourier Transforms of y(n), h(n)and x(n) respetively.When designing a frequeny-seletive �lter, the desired frequeny hara-teristis is given by the frequeny response H(ω). Filters applied to BSPM-reordings need to have linear phase to avoid phase distortions in the output ofthe �lter.LTI �lters with linear phase an be implemented both with Finite ImpulseResponse (FIR) or In�nite Impulse Response (IIR) harateristis. A �lter ofboth of the two types ould be designed for the tasks in this thesis. However,FIR �lters are inherently stable, and muh easier to design with linear phaseharateristis. A drawbak with FIR �lters is that they generally require manymore oe�ients than an IIR �lter, and hene are more omputationally de-manding. The advantages of using FIR �lters was deemed greater than thedisadvantages, and hene all �lters used in this thesis will be FIR.Ideal �lters, i.e. �lters that has in�nitely sharp ut o� frequenies suh as

H(ω) =

{

1, |ω| ≤ ωc

0, ωc < ω ≤ π,annot be realized in a FIR �lter in pratie due to the Paley-Wiener theorem[32℄ (page 656). An important result from the Paley-Wiener theorem is thatsuh �lters will require an in�nite length impulse response h(n), and henebe nonausal. To make a �lter realizable, the in�nite length impulse responseneed to be trunated at some point. A FIR �lter of length M an be made bymultiplying the desired impulse response hd(n) (in�nite length) with a �window�
w(n) (�nite length). w(n) has the property that w(n) = 0 for n > M − 1 and
n < 0. This yields the impulse response

h(n) = hd(n)w(n) (3.8)of length M.The ideal �lter hd(n) with in�nitely sharp ut o� frequney is in this thesisapproximated using windowing tehniques (3.8). There are two main onse-quenes of using a ausal approximation h(n) to the nonausal hd(n): First, thetransition between frequenies passed through the �lter and frequenies removedis not in�nitely sharp, but will hange gradually. As an e�et of this, there willbe a band of frequenies, alled the transition band, that are inreasingly atten-uated between the passed and stopped frequenies. Seond, small disturbanes



28 Working with real data, and theoretial bakgroundor ripples will be introdued in the frequeny spetrum of both the passed andstopped frequenies of the �lter. Thus, some parts of the �stopped� frequenieswill be let through, and parts of the passed frequenies will hange in amplitude.Designing �lter windows is a task of reduing these ripples, and sharpening thetransition band.3.3.2 Filtering with Kaiser windowsIn this thesis the window funtions w(n) used, will be Kaiser windows. Thiswindow type is hosen for its �exibility in adjusting the amount of ripples inthe stop and pass bands, and the sharpness of the transition band. A length MKaiser window used in designing the FIR �lter impulse response h(n) in (3.8),has time domain sequene
w(n) =



























I0

[

α

√

(

M − 1

2

)2

−

(

n −
M − 1

2

)2]

I0

[

α

(

M − 1

2

)] , 0 ≤ n ≤ M − 1

0, elsewhere, (3.9)and frequeny domain sequene
W (ω) =

(M + 1)sinh
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√
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(

(M + 1)ω
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(
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. (3.10)Here I0 is the zeroth order modi�ed Bessel funtion of the �rst kind, α is aparameter determining the shape of the window and M is the length of thewindow.Generally, an inrease in the �lter length M will narrow the transition band.An inrease in α will lower the amount of ripples in the pass and stop bands,but will also widen the transition band. Hene, the design of the �lter is aompromise between the narrowness of the transition band, and the amount ofdisturbane in the kept and attenuated frequenies.



Chapter 4Methods and algorithmsThis hapter ontains a desription of many of the methods used and developedin this thesis. A ombination of a seletion of these will at a later point bemade to form an automati algorithm for proessing BSPM reordings makingthem ready for ST segment shift measurements. The methods desribed servesdi�erent purposes:Noise redution: Noth �ltering and lowpass �ltering algorithms desribed inSetion 4.1 were designed to redue the noise ontent in a BSPM. Thesemethods make use of frequeny analysis and a priori knowledge of thenoise frequeny harateristis in a signal.Drift redution: Baseline drift is present in all BSPMs. Four di�erent algo-rithms for removing this drift from a BSPM is desribed in Setion 4.2Removing orrupted signals: Some hannels in a BSPM, or parts of a han-nel in a BSPM may still be too orrupted by noise or bad reording thatno information an be extrated, even after noise and drift redution algo-rithms have been applied. Setion 4.3 ontains desription of algorithmsto remove these signals.QRS detetion: Di�erent parts of the BSPM signal need to be reognised.The QRS detetion algorithm outlined in Setion 4.4 is designed to �ndthe QRS peaks in a BSPM. Other important features of the signal an befound one the QRS peaks are known.The algorithms desribed in this hapter will be ombined to form a ompletemethod for improving BSPM signals.4.1 Noise redution algorithmsAs desribed in Setion 3.1.2, there are many soures of noise that an distortthe reorded BSPM. Most of the distortions not lassi�ed as drift, are 50 Hznoise and white noise whih will be present in all frequenies of the signal. It isthese parts that make up the BSPMnoise part of (3.1):
BSPM = BSPMsignal + BSPMnoise + BSPMdrift.



30 Methods and algorithmsIn many BSPM reordings, the most prominent noise is the 50 Hz power-line interferene. Therefore the most important features of the noise redutionalgorithms is to remove this powerline interferene while ausing minimal dis-turbane in the BSPM. In the algorithms desribed below; parts of a BSPMwill be removed based on the assumptions of the frequeny ontents of signaland noise. Two algorithms are proposed; a noth �lter for removing only 50 Hzontents of the BSPM, and a lowpass �lter for removing all frequenies greaterthan a desired uto� frequeny.It is assumed for simpliity that BSPMnoise is made up of three omponents:
noise50Hz and noisewhite and noiseother. The 50 Hz omponent should alwaysbe removed, as it may disturb the signal to a great degree if it is of largeamplitude. Also, the removal of a small frequeny band around 50 Hz will notdisturb signals unontaminated by 50 Hz noise, as will be seen in Setion 5.1.1.As muh of the rest of the noise, namely noisewhite, is assumed to be white it willbe of equal magnitude throughout the frequeny spetrum. This means that themore frequenies are removed, the more of this noise is removed. For instane,a lowpass �lter with uto� frequeny of 100 Hz will remove ∼ 9

10 of the whitenoise in the signal, sine the frequeny ontent is in the interval 0 − 1024 Hz.Applying a lowpass �lter to the signal may result in the �lter removing importantinformation ontained in the BSPM. Choosing the orret uto� frequeny of alowpass signal is therefore a ompromise between the amount of noise removed,and the amount of distortions introdued to the BSPM.These �lters were designed using Kaiser windows as desribed in Setion3.3.1. Designing �lters to remove parts of the signal with ertain frequenyomponents, is a ompromise between sharpness of the transition band, andripples in the pass and stop band of the �lter. The two parameters α and M in(3.9) and (3.10), with M being the �lter length, will determine the harateris-tis of the �lter. The width of the transition band of the �lter is the same asthe distane from the peak to the �rst zero in the window's frequeny domainsequene.4.1.1 Use of noth �lter to remove 50 Hz powerline noiseAs proposed in [41℄ a noth �lter an be used to remove 50 Hz powerline noise.The noth �lter is a bandstop �lter, whih means that it will remove an intervalof frequenies from the signal and keep the rest. A �lter with stop band of 49-51 Hz will be used. The parameters α and M in the Kaiser window (3.9) and(3.10) is seleted so that the transition bands in both the lowpass and highpassparts of the the �lter is less than 1 Hz. With a �lter of length M = 1400 and
α = 1.5, the above requirements are ful�lled. The 50 Hz omponent will inthis example be removed, while frequenies between 49Hz and 51Hz will beattenuated. The frequeny omponents less than 49Hz and greater than 51Hzwill remain almost unhanged. If there is 50Hz powerline noise present in thesignal, there will also be noise with frequeny ontent as multiples of 50Hz,i.e. 100, 150, . . .Hz. Similar noth �lters for removing these frequenies are alsoapplied to the signal.



4.2 Drift redution algorithms 314.1.2 Lowpass �lter to redue high frequeny noiseWhile the noth �lter will remove the 50Hz powerline noise, it will do nothingwith the disturbanes from the other high frequeny noise soures. A lowpass�lter will remove all frequenies greater than a uto� frequeny fcutoff , and keepthe lower frequeny omponents of the signal. The problem with using suh a�lter, is that all non-noise omponents of the BSPM with frequeny higher than
fcutoff also will be removed. Aording to [5, 39, 21℄ P and T wave frequeniesgenerally lies between 0 and 10Hz, and QRS omplex spans over a greater rangeof frequenies, with most of the signal omponents in the range 4 to 20Hz. [21℄also states that most of the diagnosti information in ECGs is ontained below
100Hz in adults, with the highest of these frequenies being in the QRS omplex.Sine the highest frequeny ontents of a BSPM signal is in the QRS omplex,the removal of these should not a�et the ST segment. Hene, removal of thehigher frequenies, inluding some frequenies below 100Hz, should improve theSignal to Noise Ratio (SNR) of the ST segment. Although the Amerian HeartAssoiation (AHA) [21℄ reommends a high-frequeny uto� of at least 150Hz,lower fcutoff frequenies will be used, sine this thesis primarily fouses on thediagnosti information ontained in the ST segment.A low pass �lter with parameters α = 2 and length 1000 in equations (3.9)and (3.10) is an adequate FIR lowpass �lter for this purpose. This �lter will betested on real BSPMs with di�erent uto� frequenies.4.2 Drift redution algorithmsIn Chapter 3 the problem of baseline wander or drift in the BSPM reordingswas desribed. Many ways of removing the drift in an ECG has been proposedin the literature. Four promising methods have been applied to the BSPM datain this thesis. Eah of these will be desribed in this setion, and evaluated inSetion 5.2.4.2.1 Drift redution using splinesA spline is a funtion de�ned pieewise by polynomials. In spline interpolation,data points are onneted by de�ning the spline to be equal to the data points,with polynomials onneting them. In this thesis splines will be used to makean approximation to the drift in the BSPM. This approximation will then besubtrated from the signal, produing a new BSPM with drift redued. Forfurther reading on spline interpolation, see e.g. [27, 23℄.To get an approximation of the drift, the splines will be onneted at onepoint per heartbeat alled the knots. The points seleted are in the PR segments
30ms before the onsets of the QRS omplexes. Hene there should theoretiallybe no eletrial soures in the heart reating baseline deviation at the knots.The magnitude of the BSPM here onsist of baseline drift and noise, and shouldtherefore be removed. The intervening values between the knots should beadjusted in a way that do not distort the signal, but still removes the baselinedrift. The splines used are de�ned as follows:The spline approximations are omputed for the hannels V i, i = 1, . . . , 64of a BSPM one at a time. Let N be the number of data points in a hannel
V i of a BSPM. V i is then a olletion of data values de�ned on an index set
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I = [1, 2, . . . , N ]. A hannel V i ontaining H heartbeats will have H knotsgiven by the partition ∆ = [x1, . . . , xj , . . . , xH ] with x1 < x2 < . . . < xH ,
xj ∈ I. One knot value is used per PR segment of the signal, as seen in Figure4.1. The spline s approximating the drift is hosen to be the funtion desribedby s(∆) = V i(∆), and

s(x) =







s0(x) , x < x1

sj(x) , xj < x < xj+1

sH(x) , xH < x
(4.1)where eah sj is a polynomial, and sj−1(xj) = sj(xj).Two types of spline interpolation will be used to remove the baseline drift,and will be desribed in the next setions.Linear splinesWith linear splines, the spline onneting the knots will be a olletion of straightlines (linear polynomials). The funtions sj in (4.1) are then on the form:

sj(x) = V i(xj) +
V i(xj+1) − V i(xj)

xj+1 − xj
(x − xj).These linear splines will interpolate the signal as shown in Figure 4.1. The drift
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Figure 4.1: Linear spline approximation of the drift in a hannel V i of a BSPM.
V i is visualised in solid line, the approximation of the drift is marked with adashed line. The knots [x1, x2, . . . , xH ] are marked as irles on the x axis. Theknot values used are marked as irles onneting the linear funtions in thedrift approximation spline.is now approximated by s. The drift is removed from V i by subtrating thespline s from V i. Using (3.1), this produes a new olletion of data points
BSPMimproved:

BSPMimproved = BSPMsignal + BSPMnoise + BSPMdrift − sNow, if s ≈ BSPMdrift then BSPMimproved ≈ BSPMsignal + BSPMnoise.In real reordings however, there will never be a true equality. Some drift will



4.2 Drift redution algorithms 33always be present in BSPMimproved, and artifats may also be introdued dueto bad drift approximation.Cubi splinesWith ubi splines, the spline onneting the knots will be a olletion of ubipolynomials satisfying the onditions given in Setion 4.2.1. The funtions sjin (4.1) are hosen to be ubi polynomials on the form
sj(x) = ajx

3 + bjx
2 + cjx + dj .While the linear splines s needed no onditions other than those given in(4.1), some more restritions will be given to the ubi splines. The ubi splines

s are required to have two ontinuous derivatives, in other words s ∈ C2(R).Right sided derivatives are used, with the following de�nition:
s(n)(x) :=

{

s(x) , n = 0

limh→0+
s(n−1)(x+h)−s(n−1)(x)

h , n = 1, 2with s(n)(x) being the n-th derivative of s. Now the onditions set in (4.1) areexpanded for the ubi splines to be:
s(n)(x) =











s
(n)
0 (x), x < x1

s
(n)
j (x), xj < x < xj+1

s
(n)
H (x), xH < x

(4.2)for n = 0, 1, 2. A ubi spline s reated with the onditions given in (4.1) and
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Figure 4.2: Cubi spline approximation of the drift in the hannel of a BSPM.The approximation to the drift is visualised in a dashed line, with the knotvalues appearing as irles.(4.2) will be an approximation to the drift in the hannel V i whih it is based



34 Methods and algorithmson. These ubi splines will interpolate BSPMs in the way shown in Figure 4.2.Returning again to (3.1), a new dataset BSPMimproved is reated by subtrating
s from the hannel V i:

BSPMimproved = BSPMsignal + BSPMnoise + BSPMdrift − sIf s is a good approximation to BSPMdrift, BSPMimproved ≈ BSPMsignal +
BSPMnoise.Both the linear and ubi spline methods use the same knot values ∆ whenapproximating the drift. In most ases the value of s between the knot valueswill be di�erent in linear and ubi splines, sine they use di�erent polynomials.Generally, the ubi spline makes a smoother approximation to the drift, whilethe linear spline will make a more even approximation through eah heartbeat.Determining knot valuesEven though the knots used in the two spline interpolation algorithms desribedabove are hosen in the PR segment where there should ideally be no baselinedeviation, low amplitude high frequeny noise is present. This will in�uene thespline approximation to the drift, and this disturbane will be diretly transferedto BSPMimproved. Two methods have been hosen to redue this problem. Thehosen methods are lowpass �ltering, and using the mean of hosen neighbouringvalues of a knot point.The lowpass �lter is implemented using the lowpass �ltering methods de-sribed in Setion 4.1.2. A uto� frequeny of 49Hz is used to both reduerandom white noise, and any 50Hz noise present in the signal.Beause of the noise present in all parts of the signal, the use of knot pointsas desribed in Setion 4.2.1 will introdue a small randomness to the driftapproximation. By instead using the median value of neighbouring points inlose proximity to the original knot value (whih is the point 30ms before theQRS omplex onset) as the knot value, this randomness an be redued (seeFigure 4.3). 51 data points are used in the omputation of the median value.Sine the sampling rate is 2048 Hz, 51 points orresponds to 51

2048 1
sec

≈ 25ms.With this time window the data points used in the alulation of the medianknot value will in most ases be in the PR segment.4.2.2 Highpass �lteringThe spline interpolation methods desribed above removes the drift by sub-trating an approximation of the drift from the BSPM. How preise the driftremoval is, depends on the seletion of knot points and the intervening polyno-mials. Highpass �ltering is an alternative method to spline interpolation. Sinethe drift onsist of slow varying high amplitude hanges in the reorded signal,removing the low frequenies from the BSPM will redue the drift. Unfortu-nately, parts of BSPMsignal also ontains low frequeny omponents. Thus,�ltering out low frequenies from the reorded signal an damage or hangeimportant information in the signal. The Amerian Heart Assoiation (AHA)[21℄reommends a uto� frequeny below 0.5 Hz. This uto� frequeny will beused in the highpass �ltering methods.The highpass �lter is designed using the tehniques desribed in Setion3.3.1. Sine the uto� frequeny is 0.5Hz, the �lter will need a transition band
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data pointsFigure 4.3: The seletion of a knot value. The median of 51 data points isomputed, and used as the knot value. The 51 data points are marked with'x's, while the omputed knot value is marked with an 'o'.width of less than 0.5Hz. A derease in α and an inrease in length M of the�lter's window funtions (3.9) and (3.10) will narrow the transition band. With
α = 0 the window will equal a retangular window. To obtain a transitionbandwidth of less than 0.5 Hz, the �lter length has to be at least 4100. If
α instead is set to 1 the �lter will have smaller ripples in the passband, butwill require a longer �lter length. The window parameters for Equations (3.9)and (3.10) were seleted to be length M = 5000 and α = 1. This results ina FIR �lter whih removes frequenies below 0.5Hz while introduing minimaldistortions to the frequeny ontent higher than 0.5Hz.4.2.3 Filtering using Disrete Wavelet TransformAs an alternative to spline or highpass drift removal, other methods have beenused in the literature. For instane Time-Varying Filtering [34℄, Short TimeFourier Transform [30℄ and Wavelet Transform based methods [6, 9, 40℄. Ofthese the Wavelet Transform based methods seem most promising. A WaveletTransform based baseline drift removal algorithm will therefor be implemented,and tested alongside the three other drift removal algorithms desribed in theabove setions. A short desription of the wavelet transform �lter applied in thisthesis is given below. Details on wavelet deomposition an be found elsewhere,for instane in [16, 11℄.The wavelet transform �lter bank works on eah hannel of a BSPM at atime. First, two symmetri �lters are reated from a mother wavelet. These�lters splits the BSPM signal into a low frequeny omponent and a high fre-queny omponent using lowpass and highpass �lters and downsampling eahpart by a fator two. These omponents are represented by a saling oe�ient
c2 orresponding to the low frequeny omponents of the signal, and a detailoe�ient d2 orresponding to the high frequeny omponents of the signal.This proess is repeated by splitting c2 into a low frequeny omponent c3 and



36 Methods and algorithmsa high frequeny omponent d3 and so on. This proess is skethed in Figure4.4 (a) and Figure 4.5. The proess is repeated until the saling oe�ientsrepresents su�iently small frequenies, whih an then be removed by settingthe oe�ient to zero.

Figure 4.4: The deomposition (a) and reomposition (b) proedure of wavelettransformation.

Figure 4.5: The frequeny ontent of the saling (a) and detail (b) subspaes atsteps k, k+1, k+2 of the wavelet transform deomposition of the signal. Theinterval [0 , π] is the saled frequeny range of ck.In this thesis, the sampling frequeny of the BSPM reordings used is 2048Hz,so the highest frequeny ontents possible in the signal (the Nyquist frequeny)is 2048Hz
2 = 1024Hz. As eah step of the wavelet signal deomposition splits thesignal's frequeny omponents in two, the saling oe�ients c2 and d2 has fre-queny bands of width 512Hz. With eah step splitting the frequeny band of

ck in two, with ck+1 ontaining the lower half of the frequeny ontent, c12 willwith this sampling frequeny have a frequeny ontent between 0 and 0.5Hz.These frequenies are removed, in aordane with the AHA reommendations[21℄, by setting the saling oe�ient c12 to zero. The BSPM signal is then



4.3 Removal of orrupted signals 37reonstruted by setting c11 = d12 (sine c12 = 0), ombining c11 and d11 toform c10 and so on until the BSPM signal is reonstruted with the frequen-ies between 0 and 0.5Hz removed. This reonstrution sheme is illustrated inFigure 4.4 (b). In the wavelet deomposition sheme used in this thesis, symletwavelets are used.4.3 Removal of orrupted signalsSome parts of a BSPM reording may be so orrupted that no usable informa-tion an be extrated from them. Inluding these parts in further alulationswill only redue the overall quality of the BSPM, and hene they should be re-moved. Both short time periods of a hannel in a BSPM or a whole hannel mayneed to be removed. The main auses of these orruptions are eletrosurgialnoise, malfuntioning equipment and loss of ontat between skin and eletrode.Figure 4.6 is an example of the latter.
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Figure 4.6: A BSPM reording destroyed by loss of ontat between eletrodeand skin. Note the magnitudes on the y-axis.The methods in this setion were designed to ompletely remove BSPMhannels or parts of BSPM hannels so destroyed by noise that no informationabout the eletrial ativity in the heart ould be extrated from them. Thisis the ase when, after drift redution and noise redution has been applied tothe signal, BSPMnoise is still the dominating part in BSPM = BSPMsignal +
BSPMnoise + BSPMdrift. In some ases, the reording may not ontain ele-trial signals from the heart at all, and BSPM ≈ BSPMnoise + BSPMdrift.This is the ase for instane when there is loss in ontat between skin and ele-trode, or when an eletrode is malfuntioning. Four algorithms for removing theuseless parts of BSPMs has been developed, and will be desribed next. Eahalgorithm takes a di�erent approah to removing disturbanes in a BSPM. Aombination of these four algorithms will be made to get a omplete methodfor identifying and removing bad parts of a BSPM. Drift and noise redutionmust be applied to the signals before any of these four algorithms are appliedto obtain the best results.



38 Methods and algorithms4.3.1 Removing destroyed hannelsSome hannels, like the one seen in Figure 4.6, are obviously of no use, sineno information of the ECG harateristis an be found in them. A simplealgorithm that makes use of the many hannels in a BSPM and the fat thatthe harateristis in eah hannel should be similar is desribed in this setion.The ith hannel of a BSPM will be denoted V i. The median, Vmedian, of allhannels in a BSPM is reated by
Vmedian(x) = mediani=1,...,64(V

i(x)) for x = 1, 2, . . . , N,where N is the number of data points in eah hannel of the BSPM. Now, eahhannel V i is tested to see if it deviates more from Vmedian than an presettolerane δ (See Figure 4.7). If it does, the hannel is removed from the BSPM

5 5.5 6 6.5 7 7.5 8 8.5

−5

−4

−3

−2

−1

0

1

2

3

4

5

seconds

m
V

Figure 4.7: The middle graph of this �gure shows parts of a hannel of a BSPM.The upper and lower lines in this �gure shows the tolerance of the test. If theBSPM signal at some point is greater than the upper line or lower than thelower line, the hannel will be removed from the data set.by setting it to zero:
V i =

{

V i, if ||V i − Vmedian||∞ < δ
0, if ||V i − Vmedian||∞ > δ

. (4.3)Here, || · ||∞ is the supremum norm de�ned by
||u||∞ = max

1≤x≤N
{u(x)} (4.4)where u is an arbitrary vetor with elements u(x) and length N .This algorithm is a fast and easy way to eliminate the worst hannels in aBSPM, but is not suited to do a �ner searh for hannels or parts of hannelsthat need to be removed. More re�ned methods for doing this is desribed inthe next setions.4.3.2 Removal of varying segmentsFor eah heartbeat V i

j of a hannel V i of a BSPM, the shifts in the ST segmentwill be measured by alulating the di�erene in amplitude of 20ms segments



4.3 Removal of orrupted signals 39of the ST segment and the PR segment. The segments used are the same as theones desribed in Setion 3.2. These segments should normally not vary muhduring the 20ms segment, but will in some measurements do beause of noise,T/P wave interruption and so on. The method desribed in this setion willremove heartbeats V i
j ontaining ST or PR segments with too large variation,as this probably is aused by noise or interferene with T or P waves.The method is simple: For eah heartbeat V i

j of a BSPM, the standarddeviations σst and σpr of the ST and PR segment is omputed. If these exeedsa tolerane value δ, the heartbeat is removed from the BSPM. Expressed moremathematially, the standard deviations are for eah heartbeat:
σst =

√Var(V i
j (X))

σpr =
√Var(V i

j (Y )), (4.5)with X and Y being index sets de�ned on the ST and PR segments of V i
j . Then,the urrent heartbeat is kept if these standard deviations does not exeed thetolerane:

V i
j =

{

V i
j , if max{σst, σpr} < δ

0, if max{σst, σpr} > δ
. (4.6)4.3.3 Removal based on drift approximationThe hanges in a BSPM labelled as drift an sometimes be quite abrupt, forexample if the patient oughs or makes sudden movements. These and otherdisturbanes in the BSPM an redue the auray of the drift approximations.This setion desribes a method for removing the parts of a BSPM that have atoo abrupt hanging drift approximation reated by the methods desribed inSetion 4.2.1. Thus, this algorithm will only be applied to signals that have hadthe drift removed using a spline interpolation method. The method tests if theseond derivatives of the drift approximation is greater than a given tolerane

δ. If this is the ase, these parts of the signal are removed while the parts withseond derivatives smaller than δ are kept.Using the QRS detetion method desribed in Setion 4.4.2 the indexes of thebeginning of eah heartbeat in the BSPM have been found. These are labelled
∆ = [x1, . . . , xj , . . . , xH ], with H being the number of heartbeats in the BSPM.These knot points were used when making a spline based approximation to thedrift. For eah hannel V i, i = 1, . . . , 64 of the BSPM, the splines in (4.1)were tied together at the knot values V i(∆) (Atually, values slightly di�eringfrom these were omputed using the method desribed in Setion 4.2.1, but thisnotation is used for notational onveniene). A simple form of seond derivative
D(2)(·) is alulated on these knot values:

D(V i(xj)) = V i(xj) − V i(xj−1)

D(2)(V i(xj)) = D(D(V i(xj))) =

= V i(xj) + V i(xj−2) − 2V (xj−1). (4.7)These seond derivatives are omputed for j = 3, . . . , H . Then the absolutevalue of eah seond derivative is tested to see if it exeeds the set tolerane δ.



40 Methods and algorithmsIf |D(2)(V i(xj))| > δ, the heartbeats V i
j−2 and V i

j−1 are removed from the dataset. This algorithm will remove heartbeats with too abrupt hanges in the drift,and also artefats introdued by the drift redution algorithms.4.3.4 Use of spatial information to test quality of signalThe eletrial potential spreading from the heart through the body does sowithout disontinuities or abrupt hanges. This is why the body an be viewedas a volume ondutor. A onsequene of this fat is that neighbouring hannelsshould reord similar signals. These properties of the BSPM is the bakgroundfor the algorithm for identifying and removing noisy/bad signals desribed inthis setion. The spatial information provided by the BSPM is used to determineif the heartbeats V i
j of eah hannel V i �ts in with the rest of the BSPM. Foreah heartbeat V i

j in eah hannel the neighbouring hannels will be used topredit several values from whih V i
j should not deviate more than a giventolerane δ. If V i

j deviates from all these predited values, it is onsidered a badsignal.The algorithm works on one hannel V i at a time. For eah hannel, thealgorithm is applied to eah heartbeat V i
j of that hannel. The urrent heartbeatthat the hannel is working on will be alled c for simpliity. The two hannelsabove c are alled o1 and o2, the two hannels below are alled u1 and u2, thetwo hannels to the left are alled l1 and l2 and the two hannels to the rightare alled r1 and r2. Of ourse, not all these neighbours are available for allhannels. The heartbeats V 31

j of hannel V 31 will for example only have theneighbours o1 = V 30
j , o2 = V 29

j , u1 = V 32
j , l1 = V 23

j and l2 = V 15
j , see Figure 2.4and Figure 2.5. Figure 4.8 shows the example where a heartbeat from hannel

V 20 is the urrent hannel c.Now a number s for the ST segment and a number p for the PQ segmentof c is omputed, as desribed in Setion 3.2. This is also done for eah of theneighbours of c, with their orresponding numbers being s(u1), s(u2), p(u1),
p(u2) and so on. From eah available diretion, a predited value of s and p isnow omputed in the following way, illustrated with s(u1) and s(u2):

ds(u) =







s(u1) + (s(u1)−s(u2))
2 , if both s(u1) and s(u2) available

s(u1), if only s(u1) available
s + 2δ, if neither s(u1) nor s(u2) available 





.(4.8)Similar omputations are done with the other neighbours and the p values. Thisprodues a set of two to four predited s values for the hannel c and two tofour predited p values, depending on the spatial loation of c. The values sand p should now orrespond with these predited values. A test is applied tosee if this is true:
ǫ = min{|s − ds(u)|, |s − ds(o)|, |s − ds(l)|, |s − ds(r)|,

|p − dp(u)|, |p − dp(o)|, |p − dp(l)|, |p − dp(r)|, }.
(4.9)If now ǫ > δ, the heartbeat c does not �t in with any of the predited valuesfrom the neighbours, and is removed from the data set. If ǫ < δ, the ST or PQsegment of c �ts in with at least one of the predited values of the neighbours,and the heartbeat is kept.
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Figure 4.8: An illustration of the values used in the algorithm of Setion 4.3.4.The hannel marked c is the urrent hannel. The hannels marked o are the twoneighbouring hannels above c. The hannels marked l are the two neighbouringhannels to the left of c and so on. The losest of the two are given a subsript
1, the next a subsript 2.



42 Methods and algorithms4.3.5 Temporal quality test of PQ and ST segmentsThis method will make use of the priniple that heartbeats ourring lose toeah other in time in the same hannel should be similar. It reates medianST and PQ segments for eah hannel V i of the BSPM, and ompares the STand PQ segment of eah heartbeat V i
j with their respetive median. Heartbeatsthat ontain ST or PQ segments that deviate more than a tolerane δ will beremoved from the data set. This algorithm is to be implemented reursively,with eah iteration possibly sorting out additional parts of the BSPM. Theoriginal hannel V i of the BSPM before any iterations of this algorithm hasbeen run will be termed Oi.The algorithm works on eah individual hannel Oi at a time. First, thereferene ST and PR segment values are reated from the ST and PR segmentsof eah heartbeat in the hannel V i. These are reated by �rst omputing themean value of the ST and PR segment of eah heartbeat:

si
j(V ) =

1

N

N
∑

n=1

V i
j (xn), with xn ∈ the ST segment of V i

j (4.10)
pi

j(V ) =
1

M

M
∑

n=1

V i
j (yn), with yn ∈ the PR segment of V i

j , (4.11)and N, M being the number of data points in the ST and PR segments of theheartbeat respetively. Now median ST and PR segment values si and pi arereated, and their di�erene omputed:
si = medianj=1,...,H(si

j(V ))

pi = medianj=1,...,H(pi
j(V ))

di = si − pi,with H being the number of heartbeats in the hannel. Now that the referenenumbers si and pi have been reated, the ST and PR segment numbers of eahheartbeat Oi
j an be tested. These values si

j(O) and pi
j(O) are reated analogousto (4.10) and (4.11), using Oi

j instead of V i
j . The di�erene di

j between the STand PR segment of eah heartbeat is omputed, and ompared to the mediandi�erene di:
di

j = si
j(O) − pi

j(O).If di
j deviates from di by more than a given tolerane δ, the heartbeat is removedfrom the BSPM:

V i
j =

{

0, if |di
j − di| > δ

V i
j , if |di

j − di| < δ

}

.4.3.6 Reursive ombination of methodsIn the above setions, four stand-alone algorithms for identifying and removingparts of a BSPM that ontain too muh artefats or variation or deviates toomuh from the rest were desribed. As eah method has their strengths andweaknesses, a ombination of the above methods is formed. Below, an outline ofthe algorithm ombination is given in a Matlab/Otave-like environment. In this



4.4 QRS detetion 43outline, remove_seond_derivative and delta_1 refers to the algorithm andorresponding tolerane desribed in Setion 4.3.3. remove_varying_segmentsand delta_2 refers to Setion 4.3.2, remove_spatial and delta_3 refers toSetion 4.3.4 and remove_temporal and delta_4 refers to Setion 4.3.5.remove_spatial and remove_temporal are implemented in a loop, witheah element of the vetors delta_3 and delta_4 being striter than the previ-ous. These two algorithms ompare the urrent signal to neighbouring signalsin spae and time. For eah iteration of the loop, outliers of the BSPM has beenremoved. Thus, the heartbeats the signal is ompared to have been improvedfor eah iteration of the loop.The method for removing deviating and orrupted hannels is as follows:remove_seond_derivative(V,delta_1);remove_varying_segments(V,delta_2);O=V;for i=1:5V=remove_spatial(V,delta_3(i));V=remove_temporal(O,V,delta_4(i));endV=remove_sparse_hannels(V);When a BSPM is used as the input V of the reursive algorithm, the outputwill be the BSPM with parts of the signal removed. The last step alledremove_sparse_hannels will remove hannels in whih only 1
5 or fewer ofthe heartbeats are left after the orrupted heartbeats are eliminated.4.4 QRS detetionAn important task in ECG and BSPM signal proessing is QRS omplex de-tetion. Sine the QRS omplex is the most prominent feature of the BSPM,it is used to loate the other signal harateristis. It is also used in a varietyof BSPM signal proessing algorithms and as diagnosti information. Knowingthe QRS omplex loation is therefore of prime importane! An ideal algorithmfor deteting QRS omplexes should detet all QRS peaks in a BSPM, withoutreturning any false peaks. Real BSPM reordings ome with a great variety inshape, frequeny and noise ontent. This makes it neessary for a QRS dete-tion algorithm to be robust with respet to these variations. In this setion,some results from the literature on QRS detetion will be reviewed, and a newalgorithm will be desribed.4.4.1 Literature on QRS detetionA large number of QRS detetion shemes are desribed in the literature. Friesenet al [14℄ tested nine di�erent algorithms with respet to a variety of noise. Nosingle algorithm in that study was learly superior, but two algorithms weredeemed better than the rest. The �rst of these is an algorithm based on digital



44 Methods and algorithms�ltering, and is an adaption of the algorithm developed by Engelese and Zee-lenberg [12℄. It applies a di�erentiator and bandpass �ltering to the signal, andsans it for amplitudes greater than a given threshold value. The seond algo-rithm uses squaring of the signal and derivatives before sanning for parts thatexeeds the threshold value. Qi Gao [33℄ tested eight di�erent QRS detetionalgorithms, onluding that the algorithms based on amplitude and derivativesperformed best.Kannathal et al [5℄ suggests a QRS detetion algorithm based on the om-monly used algorithms developed by Pan et al [29℄ and the further developmentby Hamilton et al [18℄. These algorithms are similar to the ones that performedbest in the tests by Friesen et al [14℄ and Qi Gao [33℄. These detetion shemeswere based upon analysis of slope, amplitude and width of the ECG. Commonfor these three artiles is to propose an algorithm involving the following �vesteps: First, the ECG is bandpass �ltered with a 5-15 Hz passband. Seond, thesignal is di�erentiated (using a �ve point derivative) to get information aboutthe slope of the signal. Third, the signal is squared to make the signal positiveand amplify the high frequenies. Then a moving integrator is applied to thesignal to detet the QRS omplexes. Last, the QRS peaks are deteted us-ing adaptive thresholds. The adaptive thresholds detet peaks above the givenvalue, and adjusts this value to detet QRS omplexes with di�erent amplitudes.Chen et al [10℄ proposes a simpler algorithm that makes use of bandpass�ltering, squaring and a moving summation window, but no derivatives. Theorret detetion rate of this algorithm was about the same as the ones desribedin [5℄ (∼ 99.5%).[39℄ onluded that a bandpass �lter with entre frequeny of 17 Hz max-imises the QRS energy relative to other disturbanes.4.4.2 A proposed QRS detetion algorithmThe algorithms mentioned in the previous setion were designed for traditional12-lead ECG. Many of them were also intended for real time usage, whih limitsthe omputational omplexion of the algorithms. The QRS algorithm proposedin this thesis is inspired by the ones in desribed in [5℄, [14℄, [10℄. This algorithmis not intended for real time usage. Hene more omputationally demandingmethods an be used to improve the algorithm. Moreover, advantage of theinreased number of hannels in a BSPM will be taken. A 7 step QRS detetionalgorithm was developed. The input to the algorithm is an unmodi�ed BSPM.A sample hannel of an unmodi�ed BSPM an be seen in Figure 4.9. The outputof the algorithm is a vetor ontaining the QRS values. All the hanges madeto the BSPM during these seven steps are temporary, and only the QRS valueswill be used in further proessing.Step 1: Lowpass �ltering is applied to all the hannels in the BSPM. Thislowpass �lter is desribed in Setion 4.1.2, and has a uto� frequeny of49 Hz. This �lter removes the high frequeny noise ontent of the BSPM.Although a 5-15 Hz bandpass �lter is used in many of the most popularalgorithms, it will not be used in this one. One reason for this is that theAHA [21℄ states that the QRS omplex ontains higher frequenies thanthis. (In addition, both averaging and smoothing will be applied to thesignal in later steps.)
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Figure 4.9: A hannel of a BSPM before any proessing steps has been applied.It is lear from this �gure that automati detetion of QRS omplexes in thishannel is di�ult without modi�ations to the BSPM.Step 2: Highpass �ltering is applied to all the hannels. In addition to re-moving the drift and DC omponent in the BSPM, the highpass �lter isintended to inrease the magnitude of the QRS omplex relative to theother parts of the BSPM. Sine the T-wave primarily onsists of frequen-ies in the range 1-2 Hz [21℄ and the QRS omplex primarily onsists offrequenies in the range 5-20 Hz [21℄, [39℄ a highpass �lter with uto�frequeny 5 Hz is used. The highpass �lter used is the same as the onedesribed in Setion 4.2.2, but with �lter length M = 3000 and a di�erentuto� frequeny. The result of the two �rst steps on the sample hannel
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Figure 4.10: This �gure shows the BSPM hannel from Figure 4.9 after step 1and step 2 of the QRS detetion algorithm has been applied.of a BSPM an be seen in Figure 4.10. Although this hannel is suitedfor deteting QRS omplexes, not all hannels in a BSPM will be. The



46 Methods and algorithmsnext step is therefore to identify and remove those hannels when usingthe QRS detetion algorithm.Step 3: Removal of disturbing hannels. Some hannels in a BSPM will be toonoisy to provide information about the loation of the QRS omplexes.The step after this one will involve reating an average BSPM sequenefrom the hannels in the BSPM. Channels with too muh noise and toohigh amplitude, suh as the one in Figure 4.6 will aggravate this average.For this reason, all hannels too deviant from the median of the BSPM willbe removed from the dataset before the rest of the algorithm is applied.The method desribed in Setion 4.3.1 is used for this step.Step 4: Absolute value and averaging. The absolute value of eah hannelthat passed through the previous step is now omputed to make all thedata points in the signal positive. The eletromagneti signals originatingfrom the heart propagates at high speed through the body. The sig-nals will therefore reah the eletrodes at di�erent plaes on the bodysurfae at, for all pratial and omputational purposes, the same time.Thus eah hannel of the BSPM will have the QRS omplexes at thesame times, whih is shown in Figure 4.11. The average BSPM is re-
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Figure 4.11: This is a plot of a single heartbeat from all 64 hannels in a BSPM.Although both the form and amplitude varies muh from hannel to hannel,all QRS omplexes our roughly at the same time.ated from all the hannels V i that by now ontains only positive values:
BSPMaverage(x) = 1

N

∑N
i=1 V i(x), where N is the number of hannelsinluded in the omputation of the average and V i(x) is the hannel i ofthe BSPM at index x. This average will have di�erenes in amplitudein the QRS omplexes redued, and will also have less random variationsthan eah individual hannel. At this point, the QRS omplexes havebeen ampli�ed and equalised, while the other parts of the signal has beensuppressed.Step 5: Moving average �ltering. A moving average �lter is applied to the
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Figure 4.12: The Vaverage omputed by applying steps 1-4 of the QRS detetionalgorithm.BSPM returned from the previous step of this algorithm, to reate a newsignal sequene BSPMsmoothed. The duration of a normal QRS omplexis 60-100 ms. The length of the moving average �lter is seleted to be 101points, whih with a sampling rate of 2048 Hz orresponds to 49.3 ms.This is long enough to keep the high QRS peaks, without the high valuesfrom the QRS peaks reating falsely high P and T waves. This smoothingwill, in addition to further evening the amplitude of the QRS omplexes,remove many loal maxima that ould disturb the detetion of the QRSomplexes.
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Figure 4.13: The smoothed average BSPM obtained by applying step 1-5 of theQRS detetion algorithm to a BSPM. The horizontal line is the threshold valueof 0.4 · max(BSPMsmoothed).Step 6: Finding values larger than the threshold value. Now the smoothedBSPM is searhed for values exeeding a preset threshold value to �ndpotential QRS andidates. The threshold value is hosen to be 0.4 ·
max(BSPMsmoothed) and is frequently used in other QRS detetion al-gorithms [33℄, [14℄, [18℄. Both averaging over the BSPM hannels and



48 Methods and algorithmssmoothing of the average have evened the amplitude of the QRS peaks,so a QRS omplex is unlikely to be lower than 0.4 times the largest QRSomplex in any dataset. The algorithm searhes for periods where all on-seutive data points in BSPMsmoothed for 40ms or more is higher than thethreshold value. When suh a period is found the algorithm stores it as
intervalstart. Then it starts to searh for 40ms of onseutive data pointswhih is lower than the threshold value and stores it as intervalend. Thisprodues an interval with high values of BSPMsmoothed, where a QRSvalue is loated. Now the max value of BSPMaverage is found in thatinterval, and the index in the vetor BSPMaverage in whih this maxvalue is loated is stored in ∆(i). In other words, the vetor ∆ is the in-dexes of the maximum elements of BSPMaverage in all the found intervals
[intervalstart, intervalstop].After a QRS omplex is found, the algorithm ontinues it's searh 200msafter that QRS omplex , sine there is a physiologial refratory periodabout this long [18℄. After this searh has been onduted on the entiresignal, the QRS omplexes of BSPMaverage has been found. The elementsof the vetor ∆ then ontains the temporal loation of the QRS omplexes.Sine the QRS omplex ours at the same time for all hannels of a BSPM,these QRS omplexes are the QRS omplexes of eah hannel of the BSPMas well (See Figure 4.11). Figure 4.14 shows the same time segment of theBSPM hannel from Figure 4.9 , with the QRS omplexes marked. Notethat although the orret QRS omplexes has been identi�ed, they havenot been loated exatly at the peak of the omplex in this ase. Althoughthe eletri signal reahes eah hannel at the same time, the hannels willreord the signals di�erently.
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Figure 4.14: This is a short time segment of a BSPM, with the found QRS om-plex values marked with a dot. As the �gure shows, the orret QRS omplexwas found even when there were neighbouring peaks of high amplitude.Step 7: Although the six previous steps will �nd all the QRS omplexes in aBSPM in most ases, abnormal T waves or other unpredited soures may



4.4 QRS detetion 49produe false positives. These need to be sorted out. This last step of theQRS detetion algorithm will make use of the fat that the time betweeneah heartbeat should be about the same length1.The median distane between the deteted QRS omplexes is omputed,and is termed L. The temporal loation of the QRS omplexes found instep 6 of the algorithm is olleted in the vetor ∆, with eah element of
∆ being the estimated loation of a QRS omplex. In this last step of thealgorithm, two andidates for eah QRS omplex is tested against eahother: The previously found values in ∆, and predited values using themedian distane L. The new vetor onsisting of the loations of the QRSomplexes is given the name ∆new .The �rst element is set equal to the one found using step 1-6; ∆new(1) =
∆(1). Determining the rest of the QRS omplex values is a bit more om-pliated. Assuming ∆new(i) is found, ∆new(i + 1) is found the followingway: Two andidates for the value is omputed. The �rst, alled ∆o ispiked from the previously found set of QRS omplex loations ∆ at asuitable loation:

∆o = min
j=1,...,H

{∆(j) > (∆new(i) + 300)}, (4.12)where H is the number of QRS omplexes in ∆. This essentially piksthe �rst value of ∆ loated 300 data points or more after ∆new(i). Theseond andidate ∆p for ∆new(i + 1) is predited using the knowledge ofthe median distane between the previously found QRS omplexes:
∆p = the index of max

x∈[a,b]
{BSPMaverage(x)}with a = ∆new(i) + L − 200and b = ∆new(i) + L + 200. (4.13)Thus, the value ∆p found in (4.13) is the temporal loation of the maxi-mum value of BSPMaverage, in the interval where a QRS omplex shouldour.Now the two andidates∆o and ∆p for the QRS omplex loation∆new(i+

1) has been found. ∆new(i+1) is then set equal to ∆o if BSPMaverage(∆o)
> BSPMaverage(∆p), and equal to ∆p otherwise.This is ontinued for inreasing values of i until the end of the signal
BSPMaverage is reahed. ∆new now ontains the �nal QRS omplex lo-ations that will be used in later omputations. This last step of thealgorithm will work well in orreting sets of found QRS omplexes inwhih there are a few false positives or undeteted QRS omplexes.The output of the QRS detetion algorithm is a vetor ontaining the QRSpeak's temporal loation . All the steps in the algorithm was just steps towardobtaining the QRS values. Thus all hanges made to the BSPM during the QRSdetetion algorithm were temporary, and will not be used in further proessingof the BSPM.1This is only the ase in patients with normal heart rhythm. Patients with heart onditionssuh as arrhythmia will have heartbeats of uneven duration. This algorithm is designed towork in these ases as well.



Chapter 5Evaluation of methods andalgorithmsIn Chapter 4 a number of algorithms for performing several BSPM proessingtasks were presented. This hapter ontains an evaluation of the performaneof these algorithms. Where multiple algorithms for performing the same taskwere presented, a omparison will be made. It is important to note that all thealgorithms have been evaluated with one goal at hand: To improve BSPMs fordeteting ishemia by measuring di�erenes in ST segment shifts.5.1 Noise redution in signalTwo algorithms were proposed to remove high frequeny noise from BSPMs. Anoth �lter was designed to remove the 50 Hz powerline noise that is presentin some BSPMs. A lowpass �lter was also designed to remove all frequeniesabove a desired uto� frequeny. These �lters were applied to several real patientreordings. The results of applying the �lters to BSPMs is given below, togetherwith a desription of what these results indiate.5.1.1 Noth �lter to remove powerline noiseThe noth �lter has been tested on BSPMs with little to none 50 Hz powerlinenoise. Figure 5.1 shows a plot of a hannel of suh a BSPM before and afterthe noth �lter has been applied. As expeted, the BSPM is almost identialbefore and after the �lter was applied. This is beause there was very little50 Hz frequeny present in the BSPM before �ltering, and removing these verysmall parts of the reording will only result in minor hanges.In Figure 5.2 the noth �lter was applied to a BSPM with muh 50 Hzpowerline noise present. The �gure shows a smoother BSPM with less random�utuations after the noth �lter has been applied. A look at Figure 5.3 on�rmsthat only the frequeny omponents lose to 50 Hz has been removed, and thusthe Signal-to-Noise Ratio has been improved.
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Figure 5.1: The dashed line shows a hannel of a BSPM with little 50 Hz powerline noise. The solid graph shows the BSPM after a noth �lter has been appliedto remove the 50 Hz omponents of the BSPM. They are learly almost idential.
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Figure 5.2: The blue graph shows a hannel of a BSPM ontaminated with 50Hz power line noise. The red graph shows the BSPM after a noth �lter hasbeen applied to remove the 50 Hz omponents of the BSPM.
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Figure 5.3: Parts of the frequeny spetrum of a BSPM ontaminated by 50Hz powerline noise. The blue graph shows a BSPM ontaminated with 50 Hzpower line noise. The red graph shows the BSPM after a noth �lter has beenapplied to remove the 50 Hz omponents of the BSPM. As the �gure shows, thenoth �lter auses near to no distortions in other frequenies than those in theimmediate neighbourhood of 50 Hz.



5.1 Noise redution in signal 535.1.2 Lowpass �lter to remove high frequeny noiseThe lowpass �lter with uto� frequeny 49Hz has been applied to the samenie signal as was used in Figure 5.1. Little of the ontent of the BSPM was infrequenies above 50 Hz, and removing these frequenies should therefore resultonly in minor hanges in the BSPM. The result an be seen in Figure 5.4. Itis lear that the lowpass �lter produed no signi�ant distortions in this nieBSPM.
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Figure 5.4: The dashed line shows a BSPM with little 50 Hz power line noiseor other high frequeny noise. The solid line shows the BSPM after the low-pass �lter with uto� frequeny of 49 Hz has been applied to remove the highfrequeny omponents of the BSPM. They are learly almost idential.In Figure 5.5 the lowpass �lter was applied to a BSPM with muh highfrequeny ontent. The result of the �ltering is a muh smoother BSPM withless abrupt variations in amplitude. Not only is this muh nier visually, it isalso more useful for doing alulations on the di�erent phases of the signal sinethe randomness has been redued. The danger with applying this lowpass �lteris that it is di�ult to know if only noise is removed, or if parts of BSPMsignalalso is removed. That the lowpass �lter introdues no signi�ant hanges toBSPMs with low noise ontents like the one in Figure 5.4, is a good indiationthat it will not introdue signi�ant hanges in the BSPMsignal part of BSPMswith higher noise ontent. Similar results were ahieved when applying thelowpass �lter with a uto� frequeny of 49 Hz to other BSPMs as well.5.1.3 Results from noise redutionTo test the noise redution algorithms further, six real BSPMs were used, withboth exerise and rest reordings from eah of the six. The reording in hannel
i of a BSPM will be alled V i. As a validation that the noise removed does notontain important information about BSPMsignal, the noise will be orrelatedwith a referene signal. The referene signal is hosen to be the median heartbeat
V i

median of eah hannel V i. An illustration of suh a V i
median an be seen inFigure 5.6.



54 Evaluation of methods and algorithms

4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

seconds

m
V

 

 
raw signal
after highpass filtering

Figure 5.5: The blue graph shows a BSPM with muh high frequeny ontent.The red graph shows the BSPM after the lowpass �lter with uto� frequeny of49 Hz has been applied to remove the high frequeny omponents of the BSPM.
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Figure 5.6: The median heartbeat of a BSPM in solid line, and a randomlyseleted heartbeat from the same BSPM in the dashed line. As an be seen, theabrupt random variations is redued in the median heartbeat.



5.1 Noise redution in signal 55Before the noise redution algorithms were applied, the drift was removedfrom the reordings using the highpass �ltering methods desribed in Se-tion 4.2.2. Thus, eah reording used onsisted mainly of BSPMsignal and
BSPMnoise before noise redution was applied. Also, the reordings in whihno useful information ould be ontained were removed.For eah heartbeat V i

j , the noise removal algorithms removed a part ni
j thatwas labelled as noise. To test if this really was noise, or ontained informa-tion important to BSPMsignal, ni

j was orrelated with the referene heartbeat
V i

median in the following way:
ρi =

1

H

H
∑

j

corr(ni
j , V

i
median),where H is the number of heartbeats in the urrent hannel i. The orrelationnumber ρ = 1

64

∑64
1 ρi, with 64 being the number of hannels in a BSPM, wasomputed for eah patient. Eah ρ desribes how orrelated the noise removedfrom the BSPM is with the medians of the orresponding hannels. This resultedin orrelation numbers representing how orrelated the noise removed is withthe median heartbeats, and an be seen in Table 5.1.Patient state noth �l-ter lowpass�lter 50Hz lowpass�lter 100Hzpatient1 rest 0.0715 0.1102 0.0010patient1 exerise 0.0085 0.0169 0.0017patient2 rest 0.0340 0.0764 0.0157patient2 exerise 0.0024 0.0102 0.0026patient3 rest 0.0444 0.0799 0.0185patient3 exerise 0.0052 0.0118 0.0054patient4 rest 0.0018 0.0192 0.0000patient4 exerise 0.0728 0.0177 0.0013patient5 rest 0.0122 0.0084 0.0058patient5 exerise 0.0076 0.0051 0.0025patient6 rest 0.0148 0.0210 0.0107patient6 exerise 0.0112 0.0190 0.0064Table 5.1: The orrelation number between the noise removed from the signal,and the median heartbeat. As an be seen, there is not muh orrelation betweenthe median heartbeats and the noise removed.As Table 5.1 shows, both the noth �lter and 100 Hz uto� lowpass �lterremoves elements that are very little orrelated with the median heartbeat. Thisindiates that the parts that are removed onsists mainly of random noise, andnot signal. Also the 50 Hz uto� lowpass �lter removes elements that are littleorrelated with the median heartbeat. In some ases, the orrelation numberbetween the median and the parts removed with 50 Hz lowpass �lter shows somedegree of orrelation. Sine the highest frequenies ontained in BSPMsignal isin the QRS omplex, the parts removed will probably not introdue disturbanesto the ST segment.



56 Evaluation of methods and algorithms5.2 Drift redutionThe four drift redution algorithms disussed in Setion 4.2 were tested onvarious BSPM reordings. Sine there is suh large variations in the drift indi�erent BSPM reordings, this setion will take a look at the performaneof the four methods on a large range of di�erent BSPMs. The most desiredproperties of a drift redution algorithm is that it will work equally well on allkinds of BSPMs. It should also introdue minimum distortions to the ST andPR segments while removing as muh of the drift as possible.In all the following tests in this setion, 20 seond segments of reording willbe used. Some �gures will display smaller parts of the segments for illustra-tional purposes. Testing the performane of the drift redution algorithms onreal BSPM reordings is di�ult, sine there is no a priori knowledge on howthe drift should be in eah ase. Therefore the results will be analysed in manyrepresentative ases, and a onlusion will be drawn on the all round perfor-mane. As a minimum requirement the algorithms should be able to removeslow varying drift from a nie and tidy signal.5.2.1 Drift redution on nie BSPMsIf an algorithm performs poorly when removing the simplest forms of drift, it willprobably not be good at more omplex ases. This setion will take a look at theperformane on BSPMs with little noise disturbanes. Sine it is easiest to seethe preision of the drift approximation in the simplest ases, bad performanehere will be a good indiation of bad performane in more omplex ases. Figure
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Figure 5.7: The four di�erent drift redution algorithms' approximation to thedrift in a nie BSPM hannel from a healthy person.



5.2 Drift redution 575.7 is a typial example of a nie BSPM with slow varying drift. The drifthas been approximated by the four drift redution algorithms, and plotted onthe BSPM. There is a di�erene in the amount of drift removed between thefrequeny based and the spline based drift approximations. However, the fourplots of the drift approximations are lose to parallel, whih means that theywill give similar results when alulating ST PR di�erenes.
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Figure 5.8: The approximation of the drift by the four di�erent drift redutionalgorithms in a nie BSPM from a healthy person during exerise.Figure 5.8 shows the drift approximations to the drift in a nie BSPM hannelfrom a healthy person during exerise. The heartbeat rate is greater than the onein Figure 5.7. Small deviations from the baseline with a period of a heartbeator less will therefore not be aught up by the frequeny based algorithms, sinethese use a uto� frequeny of 0.5 Hz. When the heartbeat rate is this high,the spline methods will give a straighter baseline after drift redution, while thefrequeny based methods will remove a smoother drift approximation from theBSPM. This an also be seen in Figure 5.9, where the spline drift approximationsfollow the abrupt parts of the drift to a greater degree than the frequeny driftapproximations does.5.2.2 Drift redution on noisy BSPMsAs seen above, the drift redution algorithms all worked quite well on BSPMswith little high frequeny noise present. Sine the algorithms need to work wellon all kinds of BSPMs, they have also been tested on noisier BSPM reordings.Figure 5.10 shows the drift approximations to a BSPM with muh noise present.As expeted, the spline methods' drift approximations are more sensitive to
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Figure 5.9: The four di�erent drift redution algorithms' approximation to thedrift in a BSPM with little noise and muh drift.high frequeny noise. The deviation from baseline in the knot values inreasesas the amount of high frequeny noise inreases, and results in a derease inthe preision of the splines' drift approximations. The frequeny based driftapproximation methods' performane will not be a�eted by the noise present,sine they operate purely on the low frequenies of the BSPM.The drift redution algorithms was also applied to noisy BSPMs with moreomplex drift. Muh noise present in a BSPM an redue the preision ofthe spline based drift redution algorithms, though not muh. Beause of themethod used when alulating the knot values in the splines, the algorithms anhandle muh noise before anything more than minor faults our (see Figure5.12) Still, this illustrates the importane of removing the high frequeny noisefrom the BSPM before applying spline based drift redution algorithms.5.2.3 The impat of drift redution on phase di�erenealulationsSo far, the preision of the four drift redution algorithms has been tested anddisussed. Extra fous will now be turned to the property of the algorithmsthat is of most importane to this study. The proessed BSPMs will be usedto alulate ST PR di�erenes to diagnose ishemia. Hene it is vital that theST and PR segments of the BSPM is preserved as true as possible after driftredution has been applied. The BSPM of a patient with ishemia with driftremoved using the four methods an be seen in Figure 5.13. An importantproperty for the drift redution algorithms to have, is that they do not distort
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Figure 5.10: A BSPM hannel with a lot of high frequeny noise present, anda slow varying drift. The drift approximations omputed by the four drift re-dution algorithms are displayed on top of the BSPM. It is lear that the driftomputed by the two spline based algorithms deviates randomly from the atualdrift at some points. This derease in preision is a result of the high frequenynoise present, and will only a�et the spline based algorithms
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Figure 5.11: The same BSPM as in Figure 5.10, but with noise removed us-ing a 49 Hz uto� lowpass �lter. With the high frequeny noise removed, animprovement in the two spline based drift approximations an be seen.
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Figure 5.12: An BSPM with high frequeny noise present, and a omplex drift.Approximations to the drift is shown on top of the BSPM. The noise ausesminor disturbanes to the spline base drift approximations, but they still yieldgood results.
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Figure 5.13: The drift redution algorithms has been applied to the exeriseBSPM of a person with ishemia. The harateristi lowered ST segments arepreserved with all of the four algorithms.the ST and PR segments of the signal. In most ases, like in Figure 5.13, the fourmethods performed equally well. In some other ases, like those seen in Figure5.9 and 5.8 the frequeny based algorithms will not give a good approximation tothe faster varying drift, whih may ause some segments of the signal to deviatemore from the baseline than it should. In the following setion, a method willbe piked in favour of the three other.5.2.4 Conlusions on drift redutionAll of the four drift removal algorithms implemented in this thesis made goodapproximations to the drift in BSPM signals. Two frequeny based algorithms(highpass �ltering and wavelet transform �ltering) and two spline interpolationbased algorithms (linear and ubi) were used to approximate the drift in asignal. The frequeny based algorithms had similar performane, and the twospline based performed similar to eah other while di�erent from the frequenybased algorithms.The major advantage of the frequeny based algorithms is that their perfor-mane will not be a�eted by higher frequeny noise in the BSPM. They willalso remove exatly the same frequenies from all BSPMs. Their drawbak istheir inability to remove drift with frequeny omponents higher than 0.5Hzthat is often present in BSPMs reorded during exerise. Thus, when the ap-proximated drift has been removed from the BSPM, there will still be somebaseline deviations in some signals.



62 Evaluation of methods and algorithmsThe spline based algorithms will deal better with this problem, as the approx-imation reated by them will follow the drift in the signal to a greater degree.Thus a BSPM improved with one of the spline based drift removal algorithmswill have a straighter baseline with fewer deviations. The major drawbak ofthe spline based methods, is that their performane relies on the seletion ofknot values right before the onset of eah QRS omplex. A robust QRS omplexdetetion algorithm and good methods for removing high frequeny and 50Hznoise omponents will minimise the e�et of this drawbak.All over, the four algorithms performed well. Eah algorithm has advantagesand drawbaks ompared to the others. While it is di�ult to draw a de�niteonlusion, there were some indiations that some algorithms performed betterthan others. The ubi spline interpolation method is onsidered the best of thefour in the tasks required for this thesis. The ability to approximate drift withfaster variations than 0.5Hz was the ability weighted the most. Also, the ubiversion was seleted over the linear beause of its smoother approximationsto the drift. This makes it the most robust of the four methods, as it willperform well on BSPMs with fast heartbeat rates as well as slow ones. Thegood performane of the QRS omplex detetion algorithm and noise redutionalgorithms were helping fators in this deision.
5.3 Results from removing orrupted signalsEven after noise and drift redution algorithms have been applied to a BSPM,there will often be noise and artefats present. In Setion 4.3 four di�erentmethods for removing orrupted and deviating parts of a BSPM were presented.All of these methods improve the reorded BSPM by removing parts that isdeemed orrupted with respet to a given tolerane. It is obvious that theamount of signals lassi�ed as orrupted depends on the stritness of the settolerane.With the limited number of BSPMs available for testing, it is not possible toprovide ideal parameters for these methods. Parameters that result in the bestremoval of orrupted or noisy heartbeats of the BSPMs available at this point,may not be ideally �t for other BSPMs. When determining the parametersused in this thesis, the six available BSPMs where split into training and testsets. A training set of four BSPMs and a test set of two were used. Theparameters were seleted to �t the four datasets in the training set, and testedto see if they �tted the test sets. Then new test and training sets onsisting ofdi�erent permutations of BSPMs were formed. This proedure was repeated,and suitable parameters were found. Not using too strit toleranes was deemedmost important in this proess.With a larger number of BSPMs available than at the present time, theparameters performing best on an arbitrary BSPM an be found. A similarmethod of using training and test sets is a possible way of doing this. Withthese sets being signi�antly larger than at this point, one an be more ertainthat the found parameters �ts BSPMs reorded at a later point.
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Figure 5.14: An example of a hannel in whih the whole hannel was removedby the sorting algorithm.5.3.1 Results from Removing destroyed hannelsIn this setion, the method desribed in Setion 4.3.1 will be evaluated. Themethod removes whole hannels if parts of it deviates too muh from the me-dian of all hannels. Some QRS omplexes in otherwise nie signals an haveamplitude several mV greater than the average QRS omplex. Thus a largetolerane should be used with this method. When the algorithm is used as oneof the �rst steps in the QRS detetion algorithm, a tolerane of about 5mVshould do. This way, most signals will be kept while orrupted hannels andhannels with abnormally high QRS omplex peaks will be removed. While thisis a good method for sorting out hannels in one of the �rst steps of a QRSdetetion algorithm, other less oarse methods will be better in improving anarbitrary BSPM.5.3.2 The performane of the ombined sorting algorithmIn Setion 4.3.6 a reursive ombination of the four methods desribed in Se-tion 4.3 (exluding that of Setion 4.3.1) was proposed. As mentioned earlier,too few body surfae potential mappings were available to determine the idealtoleranes. Instead, some examples of the performane of the ombined sortingalgorithm will be given. The toleranes were found using training and testingsets from the few date sets available.In the ombined sorting algorithm, four toleranes were used. After testing,these were set to tol_1 = 2, tol_2 = 0.05, tol_3 = [0.7, 0.6, 0.5, 0.4, 0.3]and tol_4 = [0.14, 0.13, 0.12, 0.11, 0.10]. Some illustrations of the algorithm'sperformane is given in Figure 5.14 - 5.16.The parameters used was a good ombination for keeping as muh informa-tion as possible, while also sorting out the too noisy or orrupted heartbeats.If less than 1
5 of the original number of heartbeats in a hannel was left afterthe sorting, the whole hannel was removed. The hoie of this value was aompromise between having enough heartbeats left in a hannel to get a reli-able measurement of the ST segment and the need to have ST segment shiftvalues for as many points on the body surfae as possible. By inreasing thisnumber, ST segment shifts from fewer hannels of the BSPM may be omputed,but these will in turn be more trustworthy. The sorting algorithm was applied
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Figure 5.15: An example of two heartbeats (dashed line) that have been removedbeause their ST and PR segment deviates too muh from the rest of the BSPMhannel (solid line).
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Figure 5.16: In this �gure, an abnormally wide QRS omplex resulted in anarti�ial shift in the signal was introdued by the spline drift removal algorithm.The two heartbeats plotted with a dashed line was removed by the method basedon the drift approximation's seond derivatives.



5.3 Results from removing orrupted signals 65to six real BSPM reordings. In the �niest� of these only two hannels wereompletely removed. In the BSPM with the noisiest or worst signals, 9 wholehannels were ompletely removed.
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Figure 5.17: The mean ST segment shift values of the 32 �rst hannels bothduring rest and during exerise, with orresponding standard deviations. This isthe mean ST segment shifts of a patient omputed before the sorting algorithmhas been applied. Note the high standard deviations in most hannels.
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Figure 5.18: The mean ST segment shifts of both exerise and rest reordingwith orresponding standard deviations. This is the values for the same patientas is plotted in Figure 5.17, but after the sorting algorithm has been applied.Note that the standard deviations has been greatly redued.By removing the noisy, orrupted and deviating heartbeats, the standarddeviation in the measured ST segment shifts is greatly redued. Figure 5.17and Figure 5.18 shows the mean ST segment shift of the 32 front hannels ofthe noisiest of the six BSPMs. The �gures show both the ST segment shiftand the hannels standard deviation, for both rest and exerise reordings. Byreduing the standard deviation this muh, the sorting algorithm provides moreorret measures of the ST segment shift.



66 Evaluation of methods and algorithms5.4 QRS detetion on real BSPMsAnd now to something ompletely di�erent: In Setion 4.4.2 a QRS detetionalgorithm was proposed. Here the performane of this algorithm will be dis-ussed, and some results presented. Step 1 to 6 of the algorithm detets QRSomplexes in a wide range of BSPM signals. Abnormally large P or T waves,or high amplitude noise may produe false positives. Step 7 of the algorithm isdesigned for orreting this, by making use of information about when a QRSomplex should our.The QRS detetion algorithm was applied to both the rest and exerisereording of the six BSPMs available. From eah patient, 60 seonds of exerisereording and 601 seonds of rest reording was used. This made a total of 690seonds of BSPM reordings for the QRS detetion algorithm to be tested on.The algorithm deteted 1287 out of 1289 QRS omplex peaks, and produedno false positives. In this limited test, the algorithm thus had a sensitivity of
99.8% and a spei�ity of 100% (spei�ity being the perentage of detetedQRS peaks that are real QRS peaks). These are promising results, but testingon muh larger data sets is required to on�rm the e�etiveness of this algo-rithm. For the purpose of deteting ishemia from ST segment shift di�erenes,a high spei�ity is more important than the sensitivity. A falsely deteted QRSomplex may lead to a false ST segment shift being omputed. An undetetedQRS omplex however, will only redue the number of heartbeats available forST segments measuring by one. Thus, if later testing shows a derease in spei-�ity, measures should be taken to inrease it. Inreasing the treshold value orusing adaptive thresholds may inrease the spei�ity, but may also lead to aderease in sensitivity.

1For one of the patients, only 30 seonds of rest reording were available.



Chapter 6The omplete algorithm andresultsIn Chapter 4 many algorithms for performing di�erent proessing tasks on aBSPM were presented. In Chapter 5 these algorithms were evaluated one ata time. In this hapter a disussion is made on how these algorithms are puttogether to form a omplete BSPM proessing algorithm. The omplete BSPMproessing algorithm is automati, so it takes raw data as input. The output ofthe algorithm is a vetor of numbers desribing the di�erenes in ST segmentelevation/depression. These numbers an, when viewed properly, give an indi-ation on whether a patient su�ers from ishemia or not. Among other things,the output an also be used as input to methods omputing the eletrial a-tivity in the heart, as an inverse problem. Manual hoosing of ST segment shiftdi�erenes is very time onsuming and inaurate. This is the main reason forreating an automati algorithm for doing this, utilising the methods developedin this thesis.The proessed BSPMs will be inspeted to see if they provide good data forreognising signs of ishemia in a patient. The proessed data provide learerand more trustworthy data for this kind of testing, as will be seen towards theend of this hapter.6.1 The �nal BSPM proessing algorithmWhen there is suspiion that a patient su�ers from ishemia, a BSPM of that pa-tient an be reorded. The reording is done of the patient both during rest andexerise. The di�erene in ST segment between these two reordings an givean indiation of whether the patient su�ers from ishemia or not. The BSPMis a reording of the potential di�erenes in the eletrial signals propagatingfrom the heart to 64 points on the body surfae. Unfortunately, a variety ofother signals are also reorded. These are lassi�ed as noise and baseline drift.The total reording in a BSPM has been modelled as (3.1):
BSPM = BSPMsignal + BSPMnoise + BSPMdrift.The main goal of the automati BSPM proessing algorithm is to minimisethe amount of BSPMnoise and BSPMdrift present in all kinds of BSPM reord-



68 The omplete algorithm and resultsings, while keeping BSPMsignal unhanged. The algorithm is a ombinationof methods developed and disussed earlier in this thesis, and will produe animproved reording alled BSPMimproved. A simpli�ed model of the algorithmis given:
BSPMimproved = BSPMsignal + BSPMnoise + BSPMdrift

−Anoise − Adrift − Adeviants,
(6.1)where Anoise and Adrift are approximations to the noise and drift in the signaland Adeviants is the orrupted hannels and heartbeats that is removed. Whenthe BSPM has been leaned of artefats and noise, ST segment shift di�erenesis alulated from BSPMimproved.All the methods inluded in the automati algorithm has been desribed indetail in previous hapters. Hene, this setion will only inlude an overview ofhow these methods are ombined. The proess of the algorithm is split into �vesteps, eah produing an output that is used as input to the next step.6.1.1 Noise redutionThe �rst step of the automati BSPM proessing algorithm is noise redution.The performane of the noise redution methods is not a�eted by the othersteps in the algorithm, but several of the other steps perform better if noiseredution has been applied �rst. The algorithms desribed in Setions 4.1.1 and4.1.2 are applied. The lowpass �lter will use a uto� frequeny fcutoff = 49Hz.All hanges made in the BSPM by this step of the algorithm is kept for thelater stages. This improves the BSPM reording by removing parts of the signal

Anoise lassi�ed as noise:
BSPMnoiseimproved = BSPMsignal + BSPMnoise + BSPMdrift − Anoise.6.1.2 QRS omplex detetionAfter noise redution has been applied to the BSPM, the time has ome to detetthe QRS omplexes. All the later steps of the BSPM proessing algorithmrequire information about the loation of the QRS omplexes or heartbeats.The method used for deteting the QRS omplex peaks of eah heartbeat isdesribed in detail in Setion 4.4.2. Although the BSPM is modi�ed in di�erentways to detet the QRS omplex peaks, none of these modi�ations are kept forlater stages of the BSPM proessing algorithm. The output of this step in thealgorithm is the loation of the QRS peaks, and from this information of whereeah heartbeat in the hannels of the BSPM starts and ends.6.1.3 Drift removalThe ubi spline interpolation method for removing drift in the BSPM wasdeemed the best of the four methods for drift removal tested in this thesis.Using the output of the last step in the BSPM proessing algorithm, the ubispline interpolation method for drift removal desribed in Setion 4.2.1 an nowbe applied. The method makes an approximation Adrift to the drift in theBSPM, and subtrats it from the data:

BSPMdriftimproved = BSPMnoiseimproved − Adrift.



6.2 Comparison of BSPM and ECG 69The hanges made to the BSPM during this step of the algorithm are kept forlater stages.6.1.4 Identifying and removing orrupted parts of signalAt this stage in the algorithm, both noise redution and drift removal hasbeen applied. If Anoise ≈ BSPMnoise and Adrift ≈ BSPMdrift, the signal
BSPMdriftimproved used at input to this step of the algorithm is

BSPMdriftimproved ≈ BSPMsignal.Unfortunately this is rarely the ase. In most BSPMs there will be parts ofindividual hannels, or even whole hannels, whih are still distorted by noiseor simply do not ontain any heart signal information at all! These parts of theBSPM are removed in this step of the algorithm. For removing the orruptedand deviant parts of BSPMdriftimproved, the reursive algorithm desribed in4.3.6 is used. After this step is applied, the �nal BSPMimproved in (6.1) isobtained.6.1.5 Computing the ST segment elevations/depressionsThe output BSPMimproved of the previous step of the algorithm is the BSPMsignal with noise and drift redued, and orrupted and deviating parts of thesignal removed. As BSPMimproved is a leaner dataset that is more lose tothe atual BSPMsignal than the reorded raw data. BSPMimproved an, withsome modi�ations, be used in many tasks where a proessed BSPM dataset isrequired. In this thesis, the proessing algorithm is applied to both reordings
BSPM rest during rest and reordings BSPMexc during exerise for eah pa-tient, reating two proessed datasets BSPM rest

improved and BSPMexc
improved. Foreah patient, these two datasets will be used in omputing the ST segment shiftdi�erenes between rest and exerise. The method desribed in Setion 3.2 isused for this. Equation (3.4) in this method produes a vetor d of length 64.Eah element di, i = 1, . . . , 64 is a number representing the di�erene in STsegment shift between rest and exerise for the hannel i of the BSPM.6.2 Comparison of BSPM and ECGThe traditional 12-lead ECG onsists of six eletrodes plaed on the hest, withorresponding leads alled V1-V6, in addition to the referene limb eletrodes.Of these six leads, V1, V3 and V5 are plaed at approximately the same positionas V 20, V 13 and V 6 respetively in a BSPM (see Figure 2.2 and Figure 2.4).The ECG of one of the two healthy patients has been reorded, and will beompared to the proessed resting BSPM of the same patient. The ECG andBSPM of the three hannels plaed at approximately the same position on thethorax an be seen in Figure 6.1. In this patient, the BSPM eletrode V 20was plaed approximately 3cm away from the loation of eletrode V1 of theECG. The other two pair of eletrodes were loser to eah other, but still withdeviation in loation. Generally, these three pairs of eletrodes from ECG andBSPM are the ones plaed losest to eah other. In addition to the eletrodesbeing plaed at slightly di�erent spatial loations, the di�erene in the reording
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Figure 6.1: The left olumn ontains the ECG of hannel V1, V3 and V5 of ahealthy patient. Along the right olumn is the resting BSPM of hannel V 20,
V 13 and V 6 of the same patient. As eah pair of ECG and BSPM reordingare reorded by eletrodes plaed at approximately the same position on thehest and both reordings are rest reordings, eah pair should show similarECG/BSPM morphology. The ECGs are quite similar to their orrespondingBSPMs. Notie the di�erene in amplitude in the two lower pairs. The am-plitude of the BSPM hannel V 13 is almost twie that of ECG hannel V3.



6.3 Visualisation of results 71equipment and signal proessing may also be a ause of di�erenes in the ECGand BSPM reordings. In this example, the reordings were done with overa year in between. As expeted, the ECG and BSPM reordings were quitesimilar. There are some hanges in morphology that may have been ausedby the above mentioned or other reasons. One interesting di�erene is theamplitude di�erenes, espeially between V3 of the ECG and V 13 of the BSPM.For this patient, the di�erene between the ST and PR segments was om-puted in the above mentioned eletrode loations using (3.2) and (3.3). TheECG BSPMV1 0.08mV V 20 0.06mVV3 0.15mV V 13 0.3mVV5 0.13mV V 6 0.18 mVTable 6.1: The ST segment shifts in the ECG and BSPM of a healthy patientduring rest in three orresponding loations at the hest.results an be seen in Table 6.1. Comparing the amplitude of the hannels(Figure 6.1) and the magnitude of the ST segment shifts in the table, it seemsthat the larger amplitude in the BSPM hannels results in a higher magnitudein the ST segment elevations in this reording. The amplitude of the exeriseBSPM is similar to that of the resting BSPM for this patient, indiating that nofalsely high ST shift di�erene between rest and exerise should be introduedby this. The most important soures for the deviation between the ECG andBSPM reording is the di�erene in reording equipment and spatial plaementof the eletrodes, as there are only small di�erenes in morphology other thanthe amplitude of the signal. The reording in these leads in the BSPM and ECGshould be similar, as they are reordings of essentially the same kind done atabout the same loations. On this one patient, these expeted similarities werepresent with some deviations. There will always be deviations between di�erentreordings like these, due to the above disussed or other reasons. Despite thedi�erenes, hannel V 20, V 13 and V 6 will be onsidered equivalent to the ECGhannels V1, V3 and V5 for the remainder of this thesis.6.3 Visualisation of resultsAn informative way of visualising the di�erenes in ST segment depression/elevation of a patient between rest and exerise omputed as shown in equations(3.2), (3.3) and (3.4) on page 25 will be introdued in this setion. The outputof the automati BSPM proessing algorithms desribed in Setion 6.1 is 64numbers di, i = 1, . . . , 64, eah desribing the di�erene in ST segment shiftin a point on the body surfae. These numbers are assigned olours aordingto their value, and plotted at their orret loation at the body surfae. Anexample of this visualisation is shown in Figure 6.2.Although the visualisation of the ST segment di�erenes in Figure 6.2 showsthe di�erenes di at their loation on the upper body, other visualisations maybe better for seeing the BSPM results as a whole. In Figure 6.3 the same vetor
d as in Figure 6.2 has been used. The values in d has been onneted usinglinear interpolation to better see the �oating di�erenes between the numbers
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Figure 6.2: The ST segment shift di�erene between the rest and exerise reord-ing has been omputed for eah of the 64 hannels in a BSPM. Eah of thesevalues are assigned a olour aording to their value. These values are plottedat the loation of the eletrodes at the body surfae.
di of eah eletrode. These smooth oloured mappings of the ST segment shiftdi�erenes in a patient will from this point on be termed �Body Surfae STsegment Mapping� (BSSTM). This BSSTM has been laid upon a piture of apatient wearing the reording equipment for the purpose of illustration. Figure6.4 is the same BSSTM, without the illustrating piture of the upper body. Thisway of visualising the ST segment shift di�erenes an be valuable both as atool for evaluating BSPM signal proessing algorithms, and as a diagnosti tool.The BSSTM of a patient will show the hanges in ST segment elevation/depression between rest and exerise at both the front and bak of a patient.With knowledge of whih degrees of di�erene at whih points is harateristifor a patient with ishemia, this mapping an be viewed to easily get an ideaof whether the patient su�ers from ishemia or not. Sine the body has theproperty of a volume ondutor, signals should propagate smoothly through thebody. Thus, signals reorded at the body surfae should not di�er muh fromother points reorded in lose proximity. If too abrupt hanges are present inthe BSSTM of the body surfae (suh as in Figure 6.8), there is probably muhnoise present in some of the hannels sine the signals from the heart itself willnot produe suh a BSSTM. This is useful in evaluating the performane of theomplete BSPM proessing algorithm. A good algorithm will be able to sortout hanges that are too abrupt and produe a smoother BSSTM.
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Figure 6.3: The Body Surfae ST segment Mapping shown in Figure 6.4 laidupon a piture of a patient wearing the BSPM reording equipment. Note whihparts of the olourmap orresponds to whih hannels of the BSPM.
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Figure 6.4: An example Body Surfae ST segment Mapping. This is the samemapping as shown in Figure 6.3 and onsists of the 32 �rst values of di. Thesevalues has been interpolated to reate a smooth mapping of the ST segmentshift di�erenes in the BSPM.



6.4 Results on real data 756.4 Results on real dataThe automati algorithm outlined in Setion 6.1 has been implemented on sev-eral real BSPM reordings. These results are presented in this setion. Asthere is only a limited number of BSPM reordings available for testing, thealgorithm's performane on these data sets an not serve as a statistial �proof�that it will work well on all BSPMs. But the performane on these atualreordings will be an indiation to it's auray on future BSPM reordings.For eah patient, a 601 seonds of onseutive reording has been used as therest reording, and 60 seonds as the exerise reording. In Appendix A, theBSSTMs of all the BSPMs proessed by the automati algorithm are shown.These are the plots of the vetor d omputed by (3.2),(3.3) and (3.4) for eahpatient. An example of a healthy patient and a patient with ishemia will beviewed in the next two setions for illustration.6.4.1 Algorithm tested on a healthy patientThis is a disussion of the algorithm's performane on one of the healthy pa-tients. Sine this patient is not su�ering from any heart onditions, it is expetedthat the vetor d omputed in (3.4) in the last step of the automati algorithmshould have values lose to zero. The elements of d should not di�er muhfrom eah other. In Figure 6.5 the vetor d has been omputed using the rawdata of the patient as the input BSPMimproved to the last step of the auto-mati algorithm (See Setion 6.1.5). The BSSTM is quite smooth, but withmaximum ST shift −0.129mV in hannel 2. By visually inspeting the BSPMplots of eah hannel of this reording, it has been on�rmed that the reordingonsists mainly of nie BSPM signals with little noise and artefats present.Hene, the automati BSPM proessing algorithm should not make many al-terations to these data. The BSSTM of the same patient after the automatialgorithm has been applied is shown in Figure 6.6. In this �gure, the data hasbeen proessed by the algorithm desribed in Setion 6.1 and the new vetor
d is displayed in the BSSTM. It is lear that there is little di�erene betweenFigure 6.6 and Figure 6.5. Only the hannels whih di�ered muh from the restof the BSSTM in the raw data has been altered more than a few µV in theproessed version. Thus the algorithm performed very well on this BSPM. Itremoved some deviating hannels, while the rest of the hannels remained nie.After proessing, the maximum ST shift is of −0.09mV in hannel 13. The shiftof −0.129mV in hannel 2 that was present in the raw data has been reduedto a mere −0.035mV shift in the proessed version.6.4.2 Algorithm tested on a patient with ishemiaThe algorithm has also been tested on several patients with on�rmed ishemia,with results displayed in Appendix A. In this setion, one of these will be stud-ied loser as an example of the automati algorithm's proessing of an ishemipatient. First, the vetor d ontaining the di�erenes in ST segment shift be-tween rest and exerise is omputed from the raw data in the same way as wasdone in Setion 6.4.1. This d has been visualised in a BSSTM shown in Figure1Exept patient4, whih had only 30 seonds of rest reording available.
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Figure 6.5: The BSSTM of the front of a healthy patient. The raw data reord-ings has been used when making this BSSTM. It is quite smooth even beforeany proessing has been done. Only the 32 front hannels are inluded in thisBSSTM.
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Figure 6.6: The front BSSTM of proessed data of the same patient as inFigure 6.5. The BSPM and BSSTM of this patient where quite nie beforeany proessing algorithms were applied, and hene few hanges has been made.Notie that some of the hannels was deemed too bad to be inluded in the �nalBSSTM.



78 The omplete algorithm and results6.8. Several abrupt hanges and irregularities an be seen in the �gure, espe-ially in the left part. Figure 6.7 shows the vetor d from the raw data of thepatient omputed from one randomly seleted heartbeat instead of the meanheartbeat of eah hannel. The abrupt hanges in ST segment shift di�erenes

Figure 6.7: The BSSTM of a randomly seleted heartbeat of the front of apatient su�ering from ishemia. This is the BSSTM of the raw data reorded,and irregularities and abrupt hanges in the BSSTM are visible.in neighbouring hannels seen in these two �gures is not physially possible.Hene there is muh noise and artefats present in several of the hannels inthis BSPM.The automati BSPM proessing algorithm has been applied to this BSPM,and the output of the algorithm an be seen in Figure 6.9. Several hangesfrom the BSSTM of the raw data (Figure 6.8 and espeially the BSSTM ofone heartbeat shown in Figure 6.7) an be seen. The algorithm deemed severalhannels too distorted to be inluded in the data set. All the deviating hannelshas been either removed or orreted so that they �t in with the rest of theBSPM. This leaves a smoother BSSTM, whih �ts better with the physialmodel of eletrial signals propagating from the heart through the body. Thereis still a region in the lower right area of the proessed BSSTM with large(greater than 0.2mV ) di�erenes in ST segment shifts between the rest andexerise reording. It is mainly in this area that the ishemia is visible in thisBSPM. Thus the algorithm managed to sort out muh of the orrupted parts ofthe signal, while at the same time keeping the information that makes it possibleto diagnose the patient.
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Figure 6.8: The BSSTM of the front of a patient su�ering from ishemia. Thisis the BSSTM of the raw data reorded. The mean ST and PR segments of eahhannel has been used in omputing the di�erenes in ST shift between exeriseand rest, resulting in a smoother surfae than the one in Figure 6.7. Althoughsome of the random e�ets have been removed by using the mean hannels ofthe raw data instead of a randomly seleted heartbeat, abrupt hanges andunnaturally high ST shift values are learly visible. The upper orners of theBSSTM and an area to the lower left shows signs of being ontaminated by highnoise or baseline drift levels.
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Figure 6.9: This is the BSSTM of the proessed data of the same patient as inFigure 6.8. Note how the areas that were �unphysial� in Figure 6.8 and Figure6.7 have been either orreted, or removed from the BSPM. Note also the greatdepression in the lower right part of the BSSTM, whih is di�erent from therest of the BSSTM. This is harateristi for a patient su�ering from ishemia.



6.5 Using output to separate healthy and ishemi patients 816.4.3 Data produed by the automati algorithmIt is a di�ult task to evaluate the orretness of the omplete BSPM proessingalgorithm developed in this thesis. There are no given answers to how the BSPMreordings should be after proessing, as the only information available is theraw BSPM data and the knowledge of whether the patient has an ishemia ornot. Eah step of the algorithm has been evaluated earlier in Chapter 5, buthere, light will be shed on the omplete output. In Setion 6.5 a disussion willbe made of whether or not it is possible to separate the proessed BSPM of ahealthy patient from that of an ishemi patient. First, the proessed BSPMswill be investigated for strengths and weaknesses in the proessing algorithm.In the two example patients disussed above (see �gures 6.5 - 6.9), theBSPMs beame smoother after proessing. The same an be seen on all theproessed BSSTMs presented in Appendix A. There are no hannels deviatingmuh from the rest, and most ST shift values in neighbouring areas are similar.This is oherent with the laws of physis that implies that the signal spreadingfrom the heart through the body should not deviate muh in loations lose toeah other. Thus the outputs of the automati algorithm are BSPM datasetsthat are physially loser to what the eletrial signals from the heart shouldlook like on the body surfae, than the raw data is.All the proessed BSPMs have a quite small standard deviation in all han-nels not removed by the algorithm (see Appendix A). Assuming that the mea-sured ST shifts are Gaussian distributed around the measured mean, the ma-jority of the measured values are lose to this value. Also, a large amount ofdata are still present after proessing, making the omputed values for the STsegment shifts trustworthy.6.5 Using output to separate healthy and ishemipatientsST shifts in exerise ECG testing is a well known method of deteting ishemia.The riteria for a positive test of ishemia varies in the literature [25, 22, 19,15, 31℄. The most ommon riteria, the one in the Amerian Heart Assoiationguidelines, is depression or elevation of at least 0.1mV in one or more of theECG leads. Other propose a maximum shift of 0.2mV or more, or require ashift in several onseutive hannels of a BSPM.Data from all the BSPMs proessed by the automati algorithm are pre-sented in Table 6.2. In Setion 6.2 it was established that hannels V 20, V 13and V 6 of the BSPM are loated at approximately the same positions as V1,V3 and V5 of the 12-lead ECG. Applying the ≥ 0.1mV riteria to these threehannels of eah patient's BSPM, the following is found: Both healthy patientswill be reognised as healthy (though just barely for one of them), while three ofthe four ishemi patients will be reognised as ishemi. The fourth ishemipatient is not reognised, but the ST shift di�erene value of hannel V 6 ismissing sine the hannel was sorted out by the proessing algorithm.Looking at the maximum ST shift in eah patient, the maximum shift ofone of the healthy patient's BSPM shows some depression. Three of the fourishemi patients show a depression greater than −0.2mV , while the fourth alsohave a quite large depression of −0.154mV . With a riteria to the magnitude



82 The omplete algorithm and resultsPatient ST shift di�erene between exerise and rest in mV
V 20 V 13 V 6 min ST shift max ST shiftpatient5 0.003 0.090 -0.033 -0.062 in V 31 0.090 in V 13patient6 -0.061 -0.098 -0.013 -0.119 in V 15 0.043 in V 9patient1 � � -0.254 -0.254 in V 6 0.067 in V 57patient2 -0.012 -0.154 -0.138 -0.154 in V 13 0.108 in V 17patient3 � -0.063 -0.216 -0.328 in V 7 0.24 in V 28patient4a 0.071 0.026 � -0.216 in V 16 0.105 in V 36aDue to a reording error, no resting BSPM was available for this patient. The BSPMreording done a ouple of minutes after the exerise have been used as a substitute for therest reording for this patient. This may have resulted in falsely low di�erenes between therest and exerise ST segment shifts, sine it takes some time for the BSPM signal to normaliseafter a stress test.Table 6.2: This table shows ST segment shift di�erenes between exerise andrest reordings as omputed by (3.4). All data are from the BSPMs proessed bythe automati algorithm. Along eah row is the ST shift di�erenes in seletedhannels of a patient. The �rst three data olumns show the shift in the threehannels V 20, V 13 and V 6 whih are loated at approximately the same positionsas the 12- lead ECG leads V1, V3 and V5 respetively, as mentioned in Setion6.2. The two last olumns shows the greatest depression and elevation in eahBSPM.of the maximum ST shift ≥ 0.1mV , all ishemi and one of the healthy patientswill be identi�ed as ishemi. With ST shift ≥ 0.15mV all the ishemi andhealthy patients will be identi�ed orretly, while a riteria of ST shift ≥ 0.2mVwill identify three of the four ishemi patients orretly and the rest as healthy.Table 6.3 summarises the outome of some of the riteria applied to the pro-essed BSPMs. As seen in Table 6.3, it is possible to separate the healthy andPatient Outome of test (Positive(P)/Negative(N))ST shift≥

0.1mV in V 20,
V 13 or V 6

max ST shift ≥
0.1mV

max ST shift ≥
0.2mV

Truevaluespatient5 N N N Npatient6 N P N Npatient1 P P P Ppatient2 P P N Ppatient3 P P P Ppatient4 N P P PTable 6.3: This table summarises the response of the proessed BSPMs to threedi�erent riteria. A positive (P) response means that the BSPM ful�ls theriterion, while a negative (N) means that it does not.ishemi patients using di�erent riteria to the omputed ST segment shift dif-ferenes. In addition to set riteria like these, the BSPM opens the possibilityof looking for whole areas of the torso with ST segment depression/elevation.



6.5 Using output to separate healthy and ishemi patients 836.5.1 The performane of the automati algorithmIn the previous setion, the ST shift values of all the proessed BSPMs weredisussed. These were orretly identi�ed as either ishemi or healthy, with theexeption of one healthy patient 'patient6' whih showed ST depressions slightlylarger than what would be expeted from a healthy patient. The inseurity ofthis patient ould either be due to weaknesses in the automati algorithm, anourrene of a healthy patient with orretly measured relatively large STdepression, or some other auses. Whih of these reasons that ontribute to thelarge ST depressions in this patient is investigated below:The performane of eah step of the automati algorithm was evaluated inChapter 5. If the ST shift di�erenes of this patient were introdued by theautomati algorithm, it most likely must have been the drift removal step asthe other steps only removes outlying or noisy parts of the signal. While thisis a possibility, it is unlikely. Neither the parts of the patient's BSPM withsmaller ST shift nor any of the other patients' BSPMs show signs of artefatsbeing introdued by the drift removal method.
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Figure 6.10: The BSPM morphology of seleted hannels of the two healthypatients. Comparison of BSPM morphology between rest and exerise in thehannels with the greatest ST shift between rest and exerise. The left olumndisplays plots of the resting BSPMs, while the right olumn displays the exeriseBSPMs. The upper pair is the mean hannels of patient6, while the lower pairis the mean hannels of patient5.Another possibility is that these ST segment shift di�erenes between restand exerise naturally ours in this patient's BSPM. The AHA summarisedfrom 58 studies of exerise ECG testing that the mean sensitivity of these testswas 67%, and the spei�ity 72% [15℄ (sensitivity being the perentage of pa-tients with a disease having an abnormal test, and spei�ity the perentage of
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Figure 6.11: The BSPM morphology of seleted hannels of the four ishemipatients. Comparison of BSPM morphology between rest and exerise in thehannels with the greatest ST shift between rest and exerise. The left olumndisplays plots of the resting BSPMs, while the right olumn displays the exeriseBSPMs. The plotted pairs are, from top to bottom, of patient1, patient2,patient3 and patient4.



6.6 Summary of results 85healthy patients having a normal test). It is thus quite ommon that healthypatients show ST shift larger than 0.1mV in exerise tests. In Figure 6.10 andFigure 6.11, the rest and exerise BSPM hannel with the largest ST shift di�er-ene of the healthy and ishemi patients are displayed. Now, the morphologyof the signal with the highest ST segment shift for patient6 and the ishemipatients an be ompared. It an be seen that the ST segment di�erene of
≈ 0.1mV between rest and exerise in patient6 is due to an elevation duringrest that has been redued during exerise. The BSPM of e.g. patient3 has adistint morphology harateristi of ishemia during exerise, while the BSPMof patient6 has similar morphology during both rest and exerise. Inspetionof the data shows that patient6 most likely is proessed orretly. Large STsegment shifts is reorded in healthy patients from time to time, and this is onesuh ourrene.Inspeting Figure 6.10 and Figure 6.11 further, it an be seen that theBSPMs of the healthy patients does not show muh hange in morphology be-tween rest and exerise. The BSPMs of the ishemi patients on the otherhand, all show a lear hange in morphology between rest and exerise. Boththe ST segments and the QRS omplexes in the displayed hannels of the BSPMshanged between rest and exerise.6.6 Summary of resultsAt the start of this hapter, the automati algorithm for proessing BSPMdata was formed using the methods developed in Chapter 4 and evaluated inChapter 5. A tool, named the BSSTM, for visualising the ST segment shiftdi�erenes between rest and exerise was introdued. All the proessed BSPMsare presented in Appendix A, and two example BSPMs were disussed morethoroughly. Finally, the data was investigated, to see if the BSPMs of ishemipatients ould be distinguished from those of healthy patients.Before proessing, it was not possible to know whih hannels of a BSPMould be trusted, and whih was noisy or �lled with artifats. There was ahigh standard deviation in many measured ST shifts. Some hannels ontainedvery high ST shifts, and there were great di�erenes between some neighbouringhannels of several BSPMs. This makes the information obtained from the rawdata faulty and inseure, and it is also di�ult to distinguish a BSPM of ahealthy patient from that of an ishemi patient.After proessing by the automati algorithm presented in this hapter, allBSPMs have beome smoother and more physially realisti. Channels deviatingtoo muh from their neighbours have been removed or orreted. The standarddeviations in the ST shift measurements have been dereased to an aeptablelevel, though it is still quite high for most of the BSPM hannels. Looking at theBSSTMs of the proessed data, lear spatial trends an be seen as depressionsor elevations in neighbouring hannels. This in addition to the relatively lowstandard deviations is a good indiation that the ST shift values an be trusted.The large number of data points in eah BSPM on�rms this further.After proessing, the BSPMs an be distinguished as healthy or ishemi bylooking at the ST shift di�erenes. Both magnitude and spatial distributionof the ST shifts provide information that an be used to get an indiation ofishemia in the patient. The six BSPMs proessed in this thesis separated



86 The omplete algorithm and resultsorretly into two groups of healthy and ishemi. The distintion was not verylear though, with some degree of ST shift also in the healthy subjets. Asdisussed in this hapter, this an be attributed to the ST shift measurementnot being a preise measure of ishemia. There are good indiations towardthat the ST segment shifts measured in eah proessed BSPM are lose to theatual signals sent from the heart. The ST shifts measured after proessing arede�nitively better than those measured from the raw data. It is not possible toexlude that the algorithm introdues artifats or fails to remove noisy or falsesignals. The results from the six tested BSPMs indiate that suh weaknessesin the algorithm are small if present at all. With a larger dataset availablefor testing, more seure results on the performane of the algorithm an beobtained. The ability of the omputed ST segment shifts to separate ishemiand healthy patients ould also be tested more extensively.6.6.1 Advantages and disadvantages in BSPM over ECGAlthough the ECG is the traditional instrument for exerise testing of patientsto detet ishemia, there are several advantages in the BSPM over the 12-leadECG on�rmed by the results found in this thesis: The inreased spatial sam-pling lessens sensitivity to noise and drift, as eah hannel an be omparedto spatially neighbouring hannels. This has been used to sort out deviatingheartbeats from BSPM datasets. Also, the sensitivity of an ECG reording suf-fers even with only a ouple of hannels removed due to noise. Two hannelsremoved from a BSPM will not signi�antly hange it's diagnosti power as themissing hannels an be replaed by neighbouring values. In four of the sixBSPMs, the greatest ST shifts were at other loations than the loation of 12-lead eletrodes. Thus the BSPM an detet hanges of greater magnitude thanthe ECG and possibly improve the diagnostiation of ishemia. When viewingresults from a BSPM reording, one an look for areas of ST shifts rather thana few single leads as is done with ECG reordings. This makes the BSPM amuh more robust devie, and it greatly improves the possibility of looking foronseutive points with ST shift as a sign of ishemia.There are some potential disadvantages in using BSPM instead of ECG.First, the BSPM equipment onsists of a great number of eletrodes whihmakes it more time onsuming to put on and take o� ompared to the pratial12-lead ECG. Seond, the traditional ECG provides su�ient information inmany appliations, for instane monitoring the heartbeat rate. Thus the useof a BSPM over an ECG is not preferable in many appliations. Third, theBSPM is relatively new ompared to the ECG. While the ECG is a well knownand muh used tool for most medial personnel around the world, the BSPM isnot. Finally, ECG reording equipment is heaper than BSPM equipment, andis already available in most hospitals and medial institutions.6.6.2 The reliability of ST shift as measure of ishemiaIn the above setions, the results obtained by applying the automati post pro-essing algorithm to real BSPMs have been disussed. The results indiate thatthe algorithm does not introdue signi�ant errors in these BSPMs. Assum-ing that the algorithm proesses the data orretly, the presene of ST shiftdi�erenes ≥ 0.1mV in a healthy patient means that ST shift di�erenes is



6.6 Summary of results 87not an aurate measure of ishemia. This has been disussed elsewhere in theliterature [15, 22, 19℄.There is additional information other than the ST segment shifts in the pro-essed BSPM that an improve the detetion of ishemia. As seen in Figure 6.10and Figure 6.11, there was no signi�ant hange in morphology between rest andexerise in the healthy patients' BSPM, while in ishemi patients' BSPM therewill most likely be hange in the hannels with the most ST shift. Lookingat the BSPM morphology of the hannel with the largest ST shift di�erenewill help separating ishemi from healthy patient in the six BSPMs used inthis thesis, and it will probably improve the distintion also in future BSPMreordings. The slope of the ST segments an also improve the diagnostiationof ishemia from a proessed BSPM [15℄. In most ases of ishemia the BSPMwill show an alteration in the slope of the ST segment, while a healthy patient'sST slope should show no signi�ant hanges. Information beyond what is in aBSPM reording will also improve the diagnostiation. [13℄ states that proba-bility before the test, the subjet's age, time sine last meal, known diseases,symptoms and use of mediation should be taken into aount when drawingonlusions based on an ECG stress test.The BSPMs of di�erent patients are reordings of signals that have travelledthrough di�erent bodies before reahing the reording eletrodes. This resultsin di�erenes in the BSPMs due to di�erenes in the bodies of the patients inaddition to the heart signals being di�erent. One result of this is di�erenesin signal amplitude between patients, as the signal amplitude depends on thedistane between the heart and the eletrode [35℄. Viewing the ST shift di�er-enes relative to the amplitude of the signal (measured at the QRS omplex, Twave or otherwise) an to some degree anel this e�et, possibly inreasing thedi�erenes between the ST shift measurements of healthy and ishemi patients.This may also introdue errors in form of falsely high or low ST shift values.A muh bigger dataset than the six BSPMs available at this point is needed totest if this an improve the detetion of ishemia.While some improvements to the methods of using BSPM data and ST shiftsto detet ishemia were suggested above, these need to be tested on bigger datasets to be on�rmed. The proessing algorithm developed in this thesis willprovide equally good output for the ishemia detetion methods disussed above,as it does for the omputation of ST segment shifts used here. Proessed BSPMdata and ST segment shifts are also useful as input to ardia omputationmethods, suh as inverse problems [28℄, whih does not utilise the additionalinformation provided for example by the slope or morphology of a BSPM. Thus,post proessing and ST segment shift omputation has been the fous of thisthesis.



Chapter 7Conlusions and further work7.1 Summary of the thesisThe body surfae potential mapping has been proposed as a better tool thantraditional 12-lead ECG in deteting ishemia using ST segment exerise testing.As the raw data of a BSPM reording ontains noise and artefats, a postproessing algorithm was developed in this thesis to provide more aurate andseure ST segment shift measurements. A quik review of the designed andtested methods is given:First the noise, baseline drift and artefats present in a BSPM reording werelassi�ed. A simple model of the ontent of a BSPM reording was proposed:
BSPM = BSPMsignal + BSPMnoise + BSPMdrift.Noise and drift redution methods were developed and tested to improve thequality of the reording, by using the knowledge of the noise and drift ontent ina BSPM signal. A QRS detetion algorithm was developed, and used to split thesignal into individual heartbeats and �nding important segments of the BSPM.For the �nal step of improving a BSPM reording, heartbeats still dominatedby noise or artifats are removed. For doing this, several methods were designedand tested, and put together in a reursive algorithm. Finally a visualisationtool for viewing the ST segment shifts over the upper body was presented. Fromthe proessing methods tested throughout the thesis, a omplete BSPM postproessing algorithm was formed. The algorithm is designed to be automati,by taking the raw data of an exerise and rest BSPM as input. As output,both the proessed BSPM and it's orresponding ST segment shift di�erenesare provided.7.1.1 The automati BSPM proessing algorithmAn outline of the automati BSPM proessing algorithm developed in this thesisis given, step by step:

• As the �rst step of the BSPM proessing algorithm, a lowpass �lter is ap-plied to remove high frequeny ontent of the reording. It was onludedthat a lowpass �lter with uto� frequeny of 49Hz is best suited for this.



7.1 Summary of the thesis 89
• Next, the QRS omplex peaks are deteted, and used both for splittingthe signals into heartbeats and loating the PR and ST segments of eahreording.
• To remove the baseline drift, an approximation to the drift using ubispline interpolation is made and subtrated from the reording. The ubispline interpolation method was hosen to be the best of the four driftremoval methods tested.
• Heartbeats too deviating in a temporal or spatial sense are sorted out fromthe data set, leaving a more onsistent BSPM free of severe artifats.
• After the proessing part is omplete, the ST segment shift di�erenesbetween the rest and exerise reording are omputed.
• These shifts are visualised as body surfae ST segment maps, and boththe proessed BSPM and ST segment shifts are given as output of thealgorithm.7.1.2 Disussion of the algorithmEah step of the automati algorithm has been evaluated and disussed. Asummary of these disussions is given:Noise redution: The noise redution part will work on all kinds of BSPMsand for all purposes. It introdues no artifats or distortions to the keptfrequeny band of the signal. With the urrent ut o� frequeny though,parts of the QRS omplex will be removed. The ut o� frequeny shouldbe inreased if the method is applied in a setting where the QRS omplexmorphology is important.QRS omplex detetion: A good algorithm for the task of proessing BSPMsfor ishemia diagnostiation. It proved to be a robust method detetingthe QRS peaks in BSPMs with various noise and heartbeat rates. It de-teted 1287 out of 1289 QRS omplex peaks with no false positives in thetesting set. More testing on a larger dataset is required to get statistialsigni�ant proof that the algorithm works well. Adaptive thresholding orderivative based detetion ould be added to the method, but are unlikelyto improve the performane signi�antly.Baseline drift removal: The drift removal algorithm performed well on thetested data, and was deemed a robust method for drift removal. It isthough dependent on good seletion of knot values, and shows a slightredution in performane when applied to noisy data. All drift redutionalgorithms may introdue artefats and distortions to the signal, but thisalgorithm was deemed best out of the four tested with respet to this.This step also requires more testing on a larger dataset to on�rm it'sgood performane.Sorting out orrupted heartbeats: With the hosen parameters the out-liers and orrupted parts of the testing BSPMs were removed, while keep-ing a su�ient amount of information. With a larger data set, training



90 Conlusions and further workand testing sets an be used to obtain the optimal parameters �tting var-ious demands on the outome. The spatial sorting an be more re�ned,as an the temporal, e.g. with least squares surfae �tting predition tosort out spatial outliers.Computing ST segment shift di�erenes: A more re�ned way of hoosingPR and ST segments ould be made. In this thesis, the segments usedwere de�ned as a �xed distane from the QRS peak. With a good QRSdetetion algorithm, this provides a robust method prone not to omputefalse ST and PR segment values.
7.2 Results of the algorithm applied to six testBSPMsSix BSPM reordings of real patients were available for testing. Of these, fourwere known to su�er from ishemia, while two were healthy. Using the omputedST shift di�erenes from the automati algorithm, it was possible to lassifyeah patient as either healthy or ishemi. While it was possible to lassify thepatients using only the eletrode loations of the 12-lead ECG, the inreasednumber of sampling points of the BSPM provide more information. Four of thesix patients had maximum ST shift values in loations outside the traditionalECG lead loations. The limited number of leads makes the standard ECGvulnerable to noise and orrupted hannels. When looking for signs of ishemiausing ST shifts, both the magnitude and loations of these shifts provided by theBSPM should be utilised for maximum e�et. In the four BSPMs of ishemipatients it was possible to see lear signs of the presene of ishemia, whilethe BSPMs of the two healthy patients showed indiations that they belongedto healthy patients. This is a sign of strength in the proessing algorithm.Regardless of noise level in the raw data, all the proessed BSPMs were bothsmooth and rih enough on data to make deisions based on them.The distintion was not very lear however, espeially with one healthy pa-tient showing ST segment depressions lose in magnitude to those of the ishemipatients. No signs were found in the proessed BSPM that these shifts were dueto weaknesses in the proessing algorithm, but rather a not so unommon o-urrene of a healthy patient with ST shifts in exerise testing. This patient'sBSPM had no hange of morphology between rest and exerise that is hara-teristi for an ishemi patient. This indiates that ST shift di�erenes aloneis not the ideal measure of ishemia, whih has been supported in the litera-ture [13, 22, 15℄. It should rather be ombined with other information suhas the ST slope, T wave amplitude, shift relative to signal amplitudes, infor-mation about the patient's health and age et. On the other hand, a simplematrix of numbers, suh as the ST shifts, is required in many appliations orardia omputation methods, suh as solving inverse problems. A method forautomatially omputing these from raw BSPM data is therefore neessary.



7.3 Conlusions 917.3 ConlusionsShifts in the ST segment of an exerise ECG test is a sign of ishemia. TheBSPM is a better suited tool for these tests, as the inreased spatial samplingprovides riher information than the traditional 12-lead ECG. In this thesis,a omplete automati algorithm for post proessing BSPM reordings was de-veloped. The algorithm was applied to the BSPM reordings of two healthyand four ishemi patients. The algorithm made the BSPMs more onsistent,greatly redued the deviations in the measured ST shift values and returneda more physially realisti BSPM for all the six data sets. After proessingit was possible to separate the BSPMs into reordings of healthy patients andreordings of ishemi patients solely based on the ST shift values omputedby the automati proessing algorithm. However, there was no lear distintionbetween the ishemi and healthy patients. It was judged that this is a diag-nosti weakness of measuring ST segment shifts, rather than false values beingintrodued in the proessing. While this shows that the developed algorithmperformed well on this limited set of six patients, further testing with biggerdata sets is required to on�rm the results of this thesis.It was found that the magnitude of ST segment shifts between rest andexerise reordings alone is not the ideal way of diagnosing ishemia based ona BSPM exerise reording. Other morphologial signs in a BSPM reordingthat an improve the detetion of ishemia were desribed. The omputationof reliable ST segment shift di�erenes is important in other appliations aswell. Solving inverse problems for loating ishemi regions in the heart [28℄for instane, utilise the magnitude of ST segment shifts alone when identifyingishemi heart disease.7.4 Further workThe algorithm developed in this thesis showed promising results on the sixBSPM reordings available. Further testing on a larger dataset is requiredto get statistial signi�ant results on the performane of the algorithm. Alarger set of BSPMs also opens for other interesting researh, some ideas willbe presented here: Other methods of improving the detetion of ishemia, asdisussed in Setion 6.6.2, ould be evaluated. With a bank of BSPMs from adiversity of patients available, a BSPM ould be ompared to the BSPMs in thisbank for instane by using adaptive �ltering tehniques to see whih BSPM inthe bank it is losest to. The patient ould then be diagnosed the same.To better the use of spatial information to sort out deviating and orrupthannels, least mean square surfae �tting on the ST segment values an beused to predit the ST value a hannel should have aording to the surroundinghannels. The same tehniques an be used to replae ST segment values forhannels that have been removed from the data set.The algorithms developed in this thesis have not been optimised with re-spet to omputational demands. At this point, the CPU time needed by theautomati algorithm is of no importane, but it may be in some later applia-tions. Another interesting projet would be to redesign the whole or parts ofthe algorithm for real time implementation. In doing this the auray of someof the methods may need to be toned down, but a funtioning adaption made



92 Conlusions and further workfor real time implementation should be possible.



Appendix AAppendix: Figures fromompletely proessed BSPMs



94 Appendix: Figures from ompletely proessed BSPMs

Figure A.1: The BSSM of patient5 after the BSPM has been proessed. Theleft �gure shows the front of the patient, the right �gure shows the bak of thepatient.
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Figure A.2: The ST shifts in the proessed rest and exerise reordings of pa-tient5 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the front of the patient.
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Figure A.3: The ST shifts in the proessed rest and exerise reordings of pa-tient5 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the bak of the patient.
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Figure A.4: The BSSM of patient6 after the BSPM has been proessed. Theleft �gure shows the front of the patient, the right �gure shows the bak of thepatient.
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Figure A.5: The ST shifts in the proessed rest and exerise reordings of pa-tient6 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the front of the patient.
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Figure A.6: The ST shifts in the proessed rest and exerise reordings of pa-tient6 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the bak of the patient.
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Figure A.7: The BSSM of patient1 after the BSPM has been proessed. Theleft �gure shows the front of the patient, the right �gure shows the bak of thepatient.
0 5 10 15 20 25 30 35

−0.3

−0.2

−0.1

0

0.1

0.2

channel

m
V

 

 
exercise ST shift
rest ST shift

Figure A.8: The ST shifts in the proessed rest and exerise reordings of pa-tient1 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the front of the patient.
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Figure A.9: The ST shifts in the proessed rest and exerise reordings of pa-tient1 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the bak of the patient.
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Figure A.10: The BSSM of patient2 after the BSPM has been proessed. Theleft �gure shows the front of the patient, the right �gure shows the bak of thepatient.
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Figure A.11: The ST shifts in the proessed rest and exerise reordings ofpatient2 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the front of the patient.
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Figure A.12: The ST shifts in the proessed rest and exerise reordings ofpatient2 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the bak of the patient.
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Figure A.13: The BSSM of patient3 after the BSPM has been proessed. Theleft �gure shows the front of the patient, the right �gure shows the bak of thepatient.
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Figure A.14: The ST shifts in the proessed rest and exerise reordings ofpatient3 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the front of the patient.
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Figure A.15: The ST shifts in the proessed rest and exerise reordings ofpatient3 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the bak of the patient.
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Figure A.16: The BSSM of patient4 after the BSPM has been proessed. Theleft �gure shows the front of the patient, the right �gure shows the bak of thepatient.
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Figure A.17: The ST shifts in the proessed rest and exerise reordings ofpatient4 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the front of the patient.
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Figure A.18: The ST shifts in the proessed rest and exerise reordings ofpatient4 plotted on top of eah other. The standard deviation in the ST shiftmeasurement is inluded. This is the 32 hannels on the bak of the patient.
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