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A short explanation of theabbreviations and terms usedin the thesisECG is the abbreviation for ele
tro
ardiogram and is the term used for the12-lead ECG. ECG is also used for the re
ording in a single 
hannel of the12-lead ECG.12-lead is another term for the standard ECG re
ording.BSPM is an abbreviation for body surfa
e potential mapping, whi
h is a 
ol-le
tion of ele
tri
al potential di�eren
es re
orded at many points on theupper body. In this thesis a 64 
hannel BSPM is used. The term BSPMwill also be used on single 
hannels in the 64 
hannel BSPM.WCT is the abbreviation for the Wilson Central Terminal.Ele
trode is the term used for a single re
ording node used in BSPM/ECG.Channel is used for the re
ording in one of the ele
trodes of an ECG/BSPMthat have been modi�ed by the WCT.Lead is the term used for a 
ombination of ele
trode re
ordings. For the BSPMre
ordings in this thesis, a lead will be the same as a 
hannel.V is often used as the term for a 
hannel of the BSPM. V i is then the ith
hannel out of the 64 
hannels.
V i

j is often used as the term for the jth heartbeat of the ith 
hannel of a BSPM.
V i

j is then a ve
tor 
ontaining the measurement of one 
hannel V i betweenonset value j and j + 1.ST segment is a segment of the heartbeat. In this thesis, shifts in the STsegment between a rest and exer
ise re
ording is used as an indi
ation ofis
hemia.BSSTM is an abbreviation for body surfa
e ST segment mapping. This is amapping of the di�eren
e in ST segment shifts at the spatial lo
ations ofthe 
hannels of the BSPM.



Chapter 1Introdu
tion1.1 Is
hemia and the ele
tro
ardiogram (ECG)Is
hemi
 heart disease is the single most frequent 
ause of death in the worldtoday [42℄. It o

urs when the oxygen demand of the heart mus
le ex
eedsthe supply, often 
aused by an o

lusion in the blood vessels. Diagnosing is-
hemia is a di�
ult task, with the illness being undete
ted in many patients[15℄. Even the tiniest improvement of the methods for diagnosing this diseasewill have great e�e
t on the number of people re
eiving treatment in time. Theele
tro
ardiogram (ECG) is the most 
ommonly used tool for diagnosing heartdiseases, in
luding is
hemia. The ECG is a re
ording of the ele
tri
al a
tivityin the heart at sele
ted points on the body surfa
e.1.1.1 ST shift measurementECG exer
ise testing 
an be used to dete
t is
hemia by 
omparing a rest andexer
ise ECG re
ording of a patient. A shift in a part of the heartbeat 
alledthe ST segment is used as an indi
ation of the presen
e of is
hemia [15℄. In thestandard ECG, three limb ele
trodes in addition to six ele
trodes pla
ed 
loseto ea
h other on the 
hest is used. The small number of measuring points in thetraditional 12-lead ECG limits it's diagnosti
 
apabilities [22℄. The use of anECG vest, more 
ommonly 
alled a body surfa
e potential mapping (BSPM),whi
h has more ele
trodes spread over a greater area of the upper body providesbetter dete
tion and lo
alisation properties than the traditional ECG [25, 43℄.In addition, 
ardia
 
omputation methods using su
h ST segment shifts as inputvalues will bene�t from the BSPM as it measures the ST segment shifts at pointsspread out on the upper body.Before these ST segment shifts 
an be measured pre
isely, the raw datare
orded in a BSPM must be pro
essed. While the ECG is a standardisedand well resear
hed tool, there exists, to the author's knowledge, no 
ompleteBSPM post pro
essing algorithm. In this thesis an automati
 algorithm forpost pro
essing and measuring ST segment shifts in a 64 lead BSPM has beendeveloped. Both methods developed in this thesis, and modi�
ations of existingECG pro
essing methods will be made. These will utilise the in
reased spatialinformation provided by the BSPM.



1.2 BSPM signal pro
essing 31.2 BSPM signal pro
essingThe BSPM is a body surfa
e re
ording of the ele
tri
al a
tivity originating fromthe heart. However, not only the signal from the heart will be re
orded in aBSPM. A simple model for the 
ontent of a re
orded BSPM is made:
BSPM = BSPMsignal + BSPMnoise + BSPMdrift.The model 
lassifying the 
ontributing parts of a BSPM as a signal originatingfrom the heart, noise or baseline drift (slow varying 
hanges in the re
ording).The noise and baseline drift will result in ina

urate and sometimes even falsemeasurements of the BSPM 
hara
teristi
s if 
omputed from the raw data. Postpro
essing BSPM re
ordings is a task of redu
ing the amount of BSPMnoiseand BSPMdrift while at the same time keeping BSPMsignal un
hanged.
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Figure 1.1: Two examples of raw data re
ordings in a BSPM.1.3 Development of automati
 algorithmManual pro
essing and ST segment shift measurement of BSPM raw data istime 
onsuming and 
an be ina

urate. This motivates the need for a 
ompleteautomati
 algorithm for post pro
essing BSPM data. An automati
 BSPMpro
essing algorithm is developed in this thesis. It will use raw data re
ordingsas input, and produ
e both the pro
essed BSPM and 
omputed ST segmentshifts as output. Methods are developed and tested to both remove a prioriknown noise 
ontent, and un
lassi�ed disturban
es in the signal.The following methods have been developed, implemented and tested as partof the algorithm: First, noise redu
tion methods using frequen
y based �lteringte
hniques was implemented and tested. Se
ond, an algorithm for dete
ting theBSPM signal peaks was developed. This method was used to lo
ate the inter-esting parts of ea
h heartbeat. Third, methods for removing the baseline driftis dis
ussed. Four methods were sele
ted, implemented and evaluated againstea
h other. A method using 
ubi
 spline interpolation as an approximation tothe drift was deemed best and used in the automati
 algorithm. Even afterthis initial pro
essing, there may be noisy or 
orrupted signal parts present ina BSPM. Hen
e a framework for removing su
h parts of the BSPM was devel-oped as the fourth step of the algorithm. In the �fth step, a robust method for
omputing the ST segment shifts at ea
h ele
trode lo
ation from a pro
essedBSPM was made. Finally, a tool for visualising these shifts was 
reated.



4 Introdu
tion1.4 Outline of resultsThe algorithm developed in this thesis was applied to BSPM re
ordings of realpatients. Before pro
essing, it was not possible to 
ompute neither reliable nor
orre
t ST segment shifts from these re
ordings. In addition most re
ordingsshowed variations between neighbouring points on the body too great to bephysi
ally possible. After the automati
 algorithm was applied to these re
ord-ings, all BSPMs be
ame smoother with neighbouring ST segment shift valuesbeing relatively 
lose to ea
h other in value. The visualisation tool developed inthis thesis, 
an also be used to 
on�rm that the pro
essed BSPMs are physi
allypossible.A 
omparison between the standard ECG and pro
essed BSPM was made.Finally, ea
h pro
essed BSPM 
ould be re
ognised as belonging to either ahealthy patient or an is
hemi
 patient. With the ex
eption of one un
lear BSPM,the de
isions on the presen
e of is
hemia or not in a patient were all 
orre
t.Ea
h step of the automati
 algorithm developed has been evaluated anddis
ussed. In addition, the algorithm shows promising results when applied toreal life BSPMs. However, only a small number of BSPMs were available fortesting in this thesis. The results found by applying the algorithm to theseBSPMs are therefore not statisti
ally signi�
ant, but rather an indi
ation tothe e�e
tiveness of the algorithm developed.



Chapter 2Ele
tri
al a
tivity in theheart, the ECG and theBSPMThis thesis will have it's fo
us on post pro
essing body surfa
e potential map-pings. Di�eren
es in 
ertain segments of the BSPM of patients during rest andexer
ise is 
omputed from these for use in dete
ting is
hemia. Before atten-tion is turned to these problems, a des
ription of the ba
kground for the later
omputations will be given. The physiology and ele
trophysiology of the heartis brie�y des
ribed. The 12-lead ECG has for de
ades been the leading toolfor re
ording the ele
tri
al a
tivity in the heart, and still is today. The ECGwill be des
ribed as a motivation for the body surfa
e potential mappings thathave been used in this study. The BSPM and the re
ordings used will then beintrodu
ed to the reader. This 
hapter will be rounded o� by a des
ription ofis
hemi
 heart disease, and its e�e
t on the re
ordings of the ele
tri
al a
tivityfrom the heart.2.1 The physiology and ele
tri
al a
tivity of theheartIn this se
tion an introdu
tion to the physiology and ele
tri
al a
tivity in theheart will be given. This will serve as a ba
kground for the 
omputations onthe ele
tri
al signals originating in the heart that will be des
ribed later. [20,37, 5℄ all 
ontain 
hapters on the subje
t, and 
an be read for a more thoroughintrodu
tion.2.1.1 The physiology of the heartThe heart 
ontains four 
hambers, divided into two upper 
hambers 
alled theatria, and two lower 
hambers 
alled the ventri
les. Ea
h of these is also dividedinto left and right sides (see Figure 2.1). A typi
al heartbeat starts in thesinoatrial node (SA node) lo
ated just above the right atrium. It initiates the
ontra
tion of the atria, pushing blood into the ventri
les. When the atrial



6 ECG and BSPM

Figure 2.1: A s
hemati
 �gure of the human heart. (Figure from [4℄.)
ontra
tion is �nished, the ventri
les 
ontra
t. The left ventri
le pushes bloodri
h on oxygen into the arterial system, while the right pushes blood to thelungs. Then the heart mus
les relax, allowing the atria and ventri
les to bere�lled with blood.The 
ontra
tions of the heart mus
les during a heartbeat is 
ontrolled by aseries of ele
tri
al signals whi
h will be des
ribed in the next se
tion.2.1.2 Ele
tri
al a
tivity in the heartThe pumping of the heart is 
ontrolled by a system of ele
tri
al signals origi-nating in the SA node. The 
ells in the SA node are autonomous os
illators,whi
h means that they 
reate ele
tri
al a
tion potentials without any externalsour
es. The heart mus
le 
ells (myo
ardium) has the ability to 
arry an a
tionpotential (
ondu
t ele
tri
ity), whi
h means that the ele
tri
al signals initiatedin the SA node 
an be 
arried throughout the heart mus
les. Heart mus
le 
ellsin their resting state have a negative potential. The a
tion potential initiatedin the SA node spreads a
ross both atria as a wave of depolarisation, 
ausingthem to 
ontra
t. The atria and ventri
les are separated by a septum (layer) ofnon-ex
itable 
ells, so the a
tion potential does not spread dire
tly to the ventri-
les1. Instead it is passed through the only 
ondu
tive passage between the twolayers; the atrioventri
ular node (AV node) lo
ated at the bottom of the atria.The propagation of ele
tri
ity through the AV node is quite slow, so there is asmall delay between the signal propagating through the atria and rea
hing theventri
les. This allows the ventri
les to be �lled with blood before 
ontra
ting.The a
tion potential exits the AV node through it's distal portion, 
alled theatrioventri
ular bundle or the bundle of His, and into the ventri
les. At last themus
les of the heart relax and repolarise, readying for the next heartbeat.1This is the 
ase in the majority of hearts. Heart 
onditions or illnesses su
h as ventri
ular�brillation will result in di�erent ele
trophysiologi
al behaviour



2.2 The ele
tro
ardiogram 72.2 The ele
tro
ardiogram2.2.1 HistoryThe ele
tri
al potential that 
ause the heart to pump, spread through the bodyand 
an be measured at the body surfa
e. The ele
tro
ardiogram (ECG) re
ordsthe di�eren
e of this potential at the body surfa
e. The �rst ECG was pub-lished in 1887 by Augustus D. Waller. He re
orded the ele
tri
al potentialdi�eren
es in the paws of his bulldog using a 
apillary ele
trometer. 14 yearslater Willem Einthoven invented a better and more sensitive devi
e 
alled thestring galvanometer. He also assigned the letter P,Q,R,S and T to the di�erentde�e
tions in the ECG, whi
h are still used today (see Se
tion 2.2.3). Einthovenused ele
trodes on the left and right arm and the left leg to produ
e three bipolarleads, where ea
h lead is the potential di�eren
e between two ele
trodes. (seeSe
tion 2.2.2 for more info). In 1933 Wilson introdu
ed the 
on
ept of unipolarleads by tying the three limb leads together to 
reate a 
ommon referen
e pointfor all leads. The ECG has been standardised and improved over several de
adesafter this. In the last de
ades, digital 
omputers have been used to a greaterand greater extent to pro
ess the ECG signals. Today the ECG is a well knownand mu
h used tool around the world for monitoring the ele
tri
al a
tivity inthe heart.2.2.2 The standard 12-lead ECGDuring the 
ourse of a heartbeat, the ele
tri
al 
urrent spreading form the heartthroughout the body 
hanges in orientation and magnitude. The human bodyfun
tions as a passive volume 
ondu
tor. While not produ
ing any ele
tri
alpotential of its own, it allows the ele
tri
al signals originating from the heart totravel to the surfa
e. By measuring the potential di�eren
e between ele
trodesat the body surfa
e, one 
an approximate this ele
tri
al a
tivity.The measurement of the potential di�eren
e between ele
trodes is 
alled alead. Two types of leads will be des
ribed below; bipolar and unipolar leads.Unipolar leads are the potential di�eren
e between a point and a 
onstru
tedreferen
e potential. Einthoven used his three ele
trodes on the right arm (RA),left arm (LA) and left leg (LL) 
alled VRA, VLA and VLL respe
tively to formthree leads. These leads measure the potential di�eren
e between two points,and are 
alled lead I, II and III. Leads measuring the potential di�eren
e betweentwo points are 
alled bipolar.
I = VLA − VRA

II = VLL − VRA

III = VLL − VLA.The standard ECG used in hospitals worldwide 
onsists of three or four limbele
trodes and six 
hest ele
trodes. These are 
ombined to form 12 leads (seeFigure 2.2) 
alled I, II, III, AVR, AVL, AVF and V1-V6. Only lead I, II and IIIare bipolar, the others are unipolar. Di�ering from the three bipolar leads, theunipolar ones are not the potential di�eren
e between just two points. Instead,they are ele
trodes referen
ed to a 
onstru
ted �neutral� potential. Table 2.1
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Figure 2.2: The ele
trode pla
ement in the standard 12-lead ECG. Figure takenfrom [5℄



2.2 The ele
tro
ardiogram 9[37℄ gives an overview of the ele
trodes and referen
e potentials used to produ
eea
h lead. For leads V1-V6 the referen
e potential is the arithmeti
 average ofthe three limb ele
trodes VRA, VLA and VLL, and is 
alled the Wilson CentralTerminal (WCT). The idea is to 
reate a �zero� ele
trode whi
h ideally has small
hanges during a heartbeat.Lead ele
trode referen
eI VLA VRAII VLL VRAIII VLL VLAaVR VRA VLA and VLLaVL VLA VRA and VLLaVF VLL VRA and VLAV1-V6 1-6 VRA, VLA and VLLTable 2.1: The 
onstru
tion of the leads in 12-lead ECGHen
e, the unipolar leads referen
ed to the WCT approximately des
ribesthe ele
troni
 potential 
hanges in ea
h ele
trode. In the BSPM used in thisstudy, all leads used will be unipolar leads referen
ed to the Wilson CentralTerminal.2.2.3 The ECG signalFigure 2.3 shows the 
hara
teristi
s of a typi
al heartbeat, plotted with time onthe horizontal axis and potential di�eren
e on the verti
al axis. The straightline segments represents periods of time when there are no sour
es of ele
tri
ala
tivity in the heart, and are referred to as the baseline or isoele
tri
 line. Thewaveform de�e
tions from the baseline are 
aused by ele
tri
al a
tivity in theheart tissue. Ea
h phase in the ECG represents a 
ertain ele
tri
al a
tivity inthe heart. A detailed des
ription is given below. In pra
ti
e, the magnitude,duration and orientation (positive vs. negative de�e
tions) will wary over dif-ferent leads, and not all 
hara
teristi
s are sure to be present in the ECG ofevery lead.P wave : The ele
tri
al a
tivity of a heartbeat starts with the propagationof a
tion potential from the SA node through the atria. This triggersdepolarisation of the atria, resulting in a 
ontra
tion. This depolarisationprodu
es the P wave. The normal duration of a P wave is 100 ms, andthe magnitude is low relative to the QRS 
omplex and T wave.PR interval : The PR interval is the period starting with the onset of the Pwave, and ending with the onset of the QRS 
omplex. It normally has aduration of 120-200 ms.PR segment : The PR segment is the period between the o�set of the Pwave and the onset of the QRS 
omplex. This segment should be on thebaseline, as no ele
tri
al a
tivity normally o

urs in this segment.QRS 
omplex : The QRS 
omplex is 
aused by the depolarisation of theventri
les, and the repolarisation of the atria. The de�e
tion 
aused by



10 ECG and BSPMrepolarisation of the atria is small relative to the de�e
tion from depolari-sation of the ventri
les. The 
omplex is quite steep be
ause of high velo
ityof propagation of the ele
tri
al signals through the ventri
les. It also isthe part of a heartbeat with the largest magnitude (normally around 1-3mV) due to the great mus
le mass of the ventri
les. Normal duration forthe QRS 
omplex is 60-100 ms.ST segment : The ST segment is the period from the o�set of the QRS 
om-plex to the onset of the T wave. It 
orresponds to the time betweendepolarisation and repolarisation in the ventri
les, a time period in whi
hthere is little to none ele
tri
al a
tivity in the heart. Typi
al duration ofthe ST segment is 120 ms or less.T wave : The T wave is a result of repolarisation of the ventri
les, where the
ells return to their resting potential. It has longer duration (normally 200ms or less) than the QRS 
omplex sin
e repolarisation is a slower pro
essthan depolarisation. It has a magnitude of up to 0.5 mV, and usually islarger than the P wave.

Figure 2.3: S
hemati
 representation of ECG during one heart 
y
le. Timealong the horizontal axis, voltage along the verti
al axis. The �gure is from [7℄.



2.3 Body surfa
e potential mappings 112.3 Body surfa
e potential mappingsFor several de
ades ECG has been, and still is, the number one tool for re
ordingthe ele
tri
al a
tivity in the heart at the body surfa
e. Even though the 12-lead ECG is a well standardised and known test to medi
al personnel, it has it'slimitations. Sin
e the ECG only re
ords the body surfa
e potential di�eren
es insix lo
ations on the thorax it's spatial 
overage limits it's ability to dete
t severalheart diseases, su
h as is
hemia [26, 22℄. The BSPM 
overing an extensive areaof the upper body provides better spatial sampling and is also more sensitivein dete
ting is
hemia [38, 17℄, even in patients with no 
hara
teristi
 �ndings inthe standard 12-lead [26℄. The BSPM may also prove better suited for lo
alisingan is
hemi
 region of the heart [26℄. This motivates the use of BSPMs for earlydiagnosis of is
hemia. It is also a useful tool for 
ardia
 
omputations and inverseproblems, as the in
reased spatial sampling provides more data. From a signalpro
essing point of view the in
reased amount of data and spatial sampling
ompared to the 12-lead is an advantage that will be used in this thesis.2.3.1 Outline of the BSPMSo far in this 
hapter, the traditional 12 lead ECG has been des
ribed. Thisstandard ECG mapping uses six ele
trodes pla
ed at the 
hest as shown inFigure 2.2 in addition to the referen
e ele
trodes. The standard 12 lead ECGwill not be used in this thesis. Instead a 64 lead BSPM will be used. The BSPM
onsists of 64 ele
trodes pla
ed evenly in strips on the torso, in addition to threereferen
e ele
trodes pla
ed at the limbs (see Figure 2.4 and 2.5). While the

Figure 2.4: The 32 front leads in the 64 lead Body surfa
e potential mappingused in this thesis.
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Figure 2.5: The 32 ba
k leads in the 64 lead Body surfa
e potential mappingused in this thesis.traditional ECG only re
ords the ele
tri
 a
tion potential originating from theheart at six points on the 
hest, the BSPM re
ords the a
tion potential at boththe front and ba
k of the upper body. 32 ele
trodes are pla
ed in four strips ofeight at the front of the torso, and 32 ele
trodes are pla
ed in four strips of eightat the ba
k. These totals to 64 
hannels that will be denoted V i, i = 1, . . . , 64throughout the thesis.As written in Se
tion 2.2.2, the leads of a BSPM are unipolar leads. Thismeans that ea
h lead of a BSPM is the di�eren
e between the re
ording at the
urrent ele
trode, and the WCT (Remember that the WCT is the arithmeti
average of the three limb ele
trodes VLA, VRA and VLL). Ea
h of the BSPMleads measure a signal similar to those in a traditional ECG (both 
ases arere
ordings of the ele
tri
al potential di�eren
e at points on the body surfa
e).Although ea
h lead will have the 
hara
teristi
s illustrated in Figure 2.3, thevariation in shape and amplitude between some of the leads in a BSPM will begreater than for 12 lead ECG due to the large di�eren
e in spatial pla
ementbetween some of the ele
trodes.2.3.2 The equipment and re
ordings used in this studyThroughout the study, BSPMs of real patients will be presented and used. TheBSPMs have been re
orded at Rikshospitalet [1℄ in 
ooperation with Simularesear
h laboratory [2℄. The equipment used for the re
ording of the BSPMs,is the Biosemi A
tiveTwo Mk2-system [8℄. Two 4× 8 ele
trode panels shown in



2.4 Heart diseases 13Figure 2.6 are used; one on the front and one on the ba
k of the upper body.
Figure 2.6: The 4 × 8 ele
trode strips that are atta
hed to the front and ba
kof the torso for the BSPMs used in this thesis. Pi
ture is from [3℄.Ele
tri
al signals spread 
ontinuously through the body. To do 
omputa-tions on these signals, they have to be re
orded and stored digitally. Thus,the 
ontinuous ele
tri
al a
tion potentials that rea
h the ele
trodes at the bodysurfa
e are sampled in time by the BSPM measuring equipment. A samplingrate of 2048Hz is used, whi
h means that the 
ontinuous analog signal is storedas a dis
rete digital signal with 2048 data values (samples) per se
ond. All ofthis is done by the Biosemi system. The output of the equipment is a matrix ofnumbers, where ea
h 
olumn is a re
ording of a BSPM 
hannel in time.The fo
us of this thesis is to 
al
ulate information about the ST and PRsegments of the BSPM of a patient for usage in diagnosing is
hemia. To get theinformation needed, a BSPM of ea
h patient has to be re
orded both during restand during exer
ise. For these re
ordings, the ele
trodes are �rst atta
hed to thepatient. For some time, the patient sits without moving to get the �rest�-data.Then, without stopping the measurements, the patient mounts a stationarybi
y
le and starts 
y
ling. When the patient rea
hes a 
ertain heartbeat rate(220 minus age beats per minutes, adjusted by 
lini
al de
isions by the medi
alpersonnel), or starts to feel pain in the 
hest, the time is noted and the followingpart of the re
ording is termed the �exer
ise�-data. Throughout the rest of thethesis, when terms like �re
ording during rest� and �BSPM of the patient duringexer
ise� are used, they refer to these time periods.Due to a limited set of re
ordings available, this thesis will be limited to usingsix di�erent BSPMs. Two of these are re
ordings of healthy patients2 (whi
hwill be 
alled patient5 and patient6), and four are re
ordings of patients withis
hemi
 heart disease diagnosed by additional medi
al testing (
alled patient1,patient2, patient3 and patient4).2.4 Heart diseasesThe ele
tri
al signals generated by the heart 
hange in response to di�erent heart
onditions. Heart diseases and their e�e
t on ECGs/BSPMs is a large �eld, andmany diseases with 
orresponding 
hanges to the ECG has been surveyed. Thismakes the ECG a powerful diagnosti
 tool, as di�erent heart diseases 
an bere
ognised by 
hara
teristi
 
hanges in the signal re
orded at the body surfa
e.2The two healthy patients were not a
tually patients, but volunteers whi
h with 
ertaintydid not su�er from is
hemia. For the sake of 
onvenien
e though, they will be referred to aspatients for the rest of the thesis.



14 ECG and BSPMThere exist a great number of di�erent heart diseases and 
onditions, andso a multitude of e�e
ts on ECG signals. Attention will soon be turned tois
hemia, whi
h is the disease this thesis will fo
us on. First a few examplesof ECG abnormalities as a result of illnesses will be given [5℄, to illustrate thatheart 
onditions 
an 
hange ECG re
ordings in many di�erent ways: Heartbeatrhythms deviating from normal heartbeat rhythm (60-100 regularly spa
ed beatsper minutes) are 
alled arrhythmias. These 
ome in many forms, like 
hangesand irregularities in heartbeat rate, missing heartbeats, 
hanges in P wave,T wave and QRS 
omplex morphologies. In the extreme 
ase of ventri
ular�brillation, the normal ECG waveform seen in Figure 2.3 is unre
ognisable in theECG. Illnesses like peri
arditis and hyperkalemia will 
hange the morphologyof the ST phase and T wave, while illnesses like hypertrophy 
hanges the Pwave. Also, a range of other diseases and heart 
onditions will produ
e othervariations in the ECG morphology. Thus a patient su�ering from heart diseasesother than is
hemia 
an 
ompli
ate the dete
tion of is
hemi
 heart disease inthe BSPM. Compensating for individual other heart diseases in the pro
essingof BSPM data for is
hemia dete
tion falls beyond the s
ope of this master'sthesis. Instead the BSPM pro
essing algorithms used and developed will bedesigned to be robust against various 
hanges in the ele
tro
ardial morphology.Myo
ardial infar
tion and is
hemi
 heart disease will also show 
hara
teristi

hanges in the ECG, although not always easy to dete
t. A further des
riptionof is
hemia and it's e�e
t on BSPMs is given below.2.4.1 Is
hemiaIs
hemi
 heart disease, or is
hemia, is a mismat
h between demand and supplyof oxygen to heart mus
le 
ells. This is most often the 
ase when an o

lusionor narrowed part in one or more of the 
oronary arteries is present. Su
h ano

lusion will result in diminished blood supply to the heart mus
le, and soinsu�
ient oxygen supply. In many 
ases this will happen when the oxygendemand in the heart mus
le in
reases, for example when the heart is exposed toin
reased stress be
ause the patient exer
ises. The la
k of oxygen supply leadsto 
hanges in the ele
trophysiologi
al behaviour in the myo
ardial 
ells, whi
h
an be re
orded in a BSPM or ECG.An oxygen demand greater than the supply in heart mus
les for longer peri-ods of time will result in injury. This will eventually lead to myo
ardial infar
-tion, whi
h is the death of heart mus
le 
ells.2.4.2 Changes in BSPM 
aused by is
hemiaSin
e the ele
trophysiologi
al behaviour of the myo
ardium is 
hanged for aperson with is
hemia, there will also be 
hanges in the ele
tri
al signal re
ordedat the body surfa
e using a BSPM. These 
hanges 
an in many 
ases be seenas 
hanges in the ST segment of ea
h heartbeat. In a healthy heart, the STsegment is the time between ventri
ular depolarisation and repolarisation. Thus,no ele
tri
al a
tivity should o

ur during this time, and the BSPM re
ordingshould be on level with the baseline. However, is
hemia 
auses a delay in thedepolarisation and repolarisation of the myo
ardial 
ells. This delay results inshifts in the ST segment of the BSPM.



2.4 Heart diseases 15The shifts in the signal from a patient with is
hemia 
an be seen as elevationsor depressions in the ST segments, as seen in Figure 2.7. These shifts is present

Figure 2.7: To the left is a heartbeat of a patient su�ering from is
hemia duringrest. To the right is a heartbeat of the same 
hannel of the same patient duringexer
ise. Note that the ST segment is depressed relative to the PR segmentduring exer
ise while it is not during rest. This is a 
hara
teristi
 
hange in theBSPM/ECG of a patient with is
hemia.in the BSPM of a patient with is
hemia when the blood supply to the heartmus
le is insu�
ient. This leads to the following 
on
lusion: A patient with aheart that gets su�
ient blood supply during rest, but insu�
ient during stressshould have a �normal� BSPM during rest and ST segment shifts during stress.This is 
ommon in patients with early stages of is
hemia, where some arteriesmay be partially obstru
ted. It is then possible to �nd indi
ations of is
hemia bymeasuring the di�eren
e in ST segment elevation in BSPMs re
orded during restand and stress. It is not the is
hemia itself that is dete
ted this way, but the STsegment shifts that usually is a 
onsequen
e of the is
hemia. Other 
onditionsor 
ir
umstan
es may also 
ause shifts in the ST segment. Thus there mayo

ur false diagnosti
ations no matter how well the BSPM is pro
essed, if STsegment shifts alone is used.Shifts in the ST segment in the BSPM of a patient with is
hemia will not bepresent in all 
hannels of the BSPM. The size and lo
ation of the is
hemi
 zonevaries with whi
h arteries are narrowed, and to what extent. The position andnumber of 
hannels with ST segment depression and elevation in a BSPM willalso vary. Sin
e ea
h 
hannel is �looking� at the heart from di�erent dire
tions,the lo
ations of ST segment 
hanges may be used to determine the lo
ation ofthe is
hemi
 region of the heart [26℄. In traditional 12-lead ECG, there are onlysix ele
trodes pla
ed on the 
hest in addition to the referen
e ele
trodes. Thislimits the 12-lead's usefulness in dete
ting the region of is
hemia. In some 
ases,the ST segment shifts will only be present in ele
trodes pla
ed at other lo
ationson the torso than where the 12-lead ele
trodes are pla
ed. These two fa
torsmakes the BSPM an attra
tive tool for dete
ting is
hemia. The BSPM 
anre
ord ST segment shifts that may not be present in traditional ECG be
auseof the spatial lo
ation of the ele
trodes, and also provides data that is bettersuited for determining the lo
ation of the is
hemia. A further des
ription ofmeasuring the ST phase di�eren
es to dete
t is
hemia will be given in Se
tion3.2.



Chapter 3Working with real data, andtheoreti
al ba
kgroundIn the previous 
hapter the ele
trophysiology of the heart and the 
on
ept ofbody surfa
e potential mappings were introdu
ed. This 
hapter will furtherdes
ribe the problems involved when working with real life BSPM data, andthe pro
essing needed. Measuring of ST segment shift di�eren
es between restand exer
ise re
ordings to dete
t is
hemia will be further addressed. Finally anintrodu
tion to the Dis
rete Fourier Transform and the �ltering te
hniques usedin this thesis will given.3.1 Noise, drift and artefa
ts in BSPM re
ord-ingsWhen thinking about ECG, most people will think of a smooth graph withspikes every se
ond or so, su
h as in Figure 3.1. If the only ele
tri
al a
tivity
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Figure 3.1: Plot of an ideal ECG re
ordingre
orded had been the one originating from the heart, this would indeed bewhat the ECG of a healthy person looks like. However, in real life re
ordingsthis is not the 
ase. Figure 3.2 shows some real ECGs 
ontaminated by noise indi�erent ways. Clearly, most of these signals 
an't provide information helpful



3.1 Noise, drift and artefa
ts in BSPM re
ordings 17in diagnosing de
eases in their raw form, and need to be pro
essed �rst to getuseful results. Some 
hannels, like the lower right in Figure 3.2 will not provideany information at all even after pro
essing, and need to be removed. There are
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Figure 3.2: Plot of ECGs distorted by noise in di�erent ways. The upper leftECG is a result of loss of 
onta
t between the ele
trode and the skin of thepatient. Note the magnitude on the y-axis. The upper right ECG is a typi
alexample of an ECG with lots of 50Hz and white noise present. The lowerleft �gure, is an ECG with lots of drift, varying di�erently in time. Note themagnitude of the axis on the lower right �gure. This signal has no 
hara
teristi
sof an ECG.many sour
es of noise that 
an degrade the signal. The most important onesand their e�e
t on the re
ordings will be dis
ussed in Se
tion 3.1.2.3.1.1 Noise and drift in the measured BSPMThe measurement in a 
hannel of a BSPM 
onsists of the a
tual ele
tri
al signalsoriginating from the heart 
ombined with noise and baseline drift. Written inanother way:
BSPM = BSPMsignal + BSPMnoise + BSPMdrift. (3.1)Equation (3.1) is 
omposed of:

• BSPM is the measurement of one 
hannel in a BSPM.
• BSPMsignal is the part of the measurement that 
onsists of the ele
tri-
al signals from the heart. The amplitude of BSPMsignal usually varieswithin a range of 1-3 mV.
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al ba
kground
• BSPMdrift is the slow varying high amplitude parts of the measured

BSPM . The magnitude of the drift 
an be many times the magnitude of
BSPMsignal. A more thorough des
ription of drift and its impa
t on theBSPM is given in Se
tion 3.1.3.

• BSPMnoise 
onsists of every part of the measurement that is not BSPMsignalnor BSPMdrift. The noise varies mu
h in both form and amount, whi
hmeans that BSPMs even from the same patient 
an look 
omplete di�er-ent. See Se
tion 3.1.2 for a 
lassi�
ation of di�erent noise sour
es.To illustrate how drift and noise 
an a�e
t the signal, a set of syntheti
 datahas been generated. A syntheti
 BSPM signal has been generated using the te
h-nique des
ribed in [24℄. Random noise and baseline drift have been generatedseparately from the signal. This noise and drift have been given typi
al 
hara
-teristi
s, i.e. high amplitude and low frequen
y for the drift, and low amplitudeand high frequen
y for the noise. These three parts have been added togethera

ording to (3.1). The resulting BSPM 
an be seen in Figure 3.3. This iswhat a real life BSPM may look like. In this illustrating example, BSPMsignal,
BSPMdrift and BSPMnoise as seen in Figure 3.4 have been added to produ
ethe BSPM. The inverse pro
ess of splitting a BSPM measurement into thesethree parts is mu
h more 
omplex.
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Figure 3.3: A typi
al looking BSPM signal 
reated by adding BSPMsignal,
BSPMdrift and BSPMnoise. Ea
h of the three syntheti
ally generated 
ompo-nents of this BSPM 
an be seen in Figure 3.4.All measured 
hannels in a BSPM will be su
h a 
ombination of signal, driftand noise in many variations. Be
ause all the diagnosti
 information in a BSPMlies in the BSPMsignal parts, an important task in BSPM post pro
essing willbe to separate the information in a signal from the 
ontaminating noise anddrift. Due to the randomness and the 
omplexity of drift and noise in realmeasurements, this is a nontrivial task. In a measured BSPM, one does notknow what parts of the measurements that are signal, noise or drift, as was the
ase in Figure 3.3 and Figure 3.4. There are espe
ially two problems 
onne
tedto redu
ing the noise and drift in a BSPM: One is that some noise and drift maybe di�
ult to remove, and hen
e will still be present in the BSPM after drift andnoise redu
ing algorithms have been applied. The other is that drift and noise
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Figure 3.4: These three �gures show syntheti
ally generated BSPM signal, driftand noise. The upper left is a plot of BSPMsignal, the upper right is BSPMdriftand the lower is BSPMnoise.redu
ing algorithms 
an distort the signal part of the BSPM measurement.Redu
ing noise and drift in BSPM measurements, while minimising the twoproblems des
ribed above will be an important part of this thesis.3.1.2 Des
ription of noise sour
es, and their impa
t onthe BSPMA short des
ription of the most 
ommon noise and drift sour
es and how theya�e
t the ECG is given in [14℄. Experimental testing with real BSPM re
ordingshas also been performed. Below is an overview of the noise sour
es that may bepresent in a BSPM re
ording. An illustration of some of these 
an be seen inFigure 3.2 and Figure 3.5:Power line interferen
e 
onsists of 50 Hz harmoni
s, with amplitude of upto 50% of BSPM amplitude. Often these 
hara
teristi
s will not 
hangemu
h during a re
ording.Mus
le 
ontra
tion noise is 
aused by arti�
ial potentials generated by mus-
le 
ontra
tions. The signals resulting from mus
le 
ontra
tions 
an sim-pli�ed be viewed as zero mean band-limited Gaussian noise. Typi
al pa-rameters are; standard deviation of 10 % of BSPM amplitude and fre-quen
y 
ontent of up to 10 kHz.Ele
trode 
onta
t noise is interferen
e 
aused by loss of 
onta
t betweenele
trode and skin. This may happen temporarily, or during the wholere
ording. The amplitude may be over 100 times that of normal BSPMamplitude.Patient movement produ
e transient baseline 
hanges 
aused by variationsin the ele
trode skin impedan
e when the ele
trode moves. These 
hanges
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al ba
kgroundare sometimes slow varying, and 
an have amplitudes many times as highas normal BSPM amplitude.Baseline wandering/BSPM amplitude variation due to respiration. Theamplitude of the BSPM may vary by about 15 %, and slow baseline wan-dering o

ur due to respiration by the patient.Instrument noise generated by ele
troni
 devi
es used in signal pro
essingmay disturb the re
orded signal.Ele
trosurgi
al noise will destroy the signal, sin
e it normally 
onsists oflarge amplitude noise with frequen
ies between 100 kHz and 1 MHz. Thealiasing e�e
t 
aused by lower sampling rate than this, will disturb thesignal.Other sour
es su
h as perspiration, �awed ele
trodes, 
oughing or talkingduring re
ording et
. will also distort the re
orded signal.Some of the noise sour
es tested experimentally in a BSPM re
ording 
anbe seen in Figure 3.5 with a 
orresponding plot of their respe
tive frequen
yresponses in Figure 3.6.As des
ribed above, noise artifa
ts may o

ur in many di�erent forms andmagnitudes, making it an important task to redu
e the noise in the BSPM wherepossible. Noise may also be so dominating in a 
hannel that it is impossible toretrieve any real information from it. In these 
ases, the 
hannel should beremoved from the BSPM all together. In the next se
tion, the most importanttask, drift redu
tion, will be dis
ussed.3.1.3 Des
ription of the baseline drift removal problemIn ideal 
onditions, the parts of the BSPM where there are no sour
es of ele
tri
ala
tivity in the heart (e.g. the PR and ST segments) should have zero amplitude(see Figure 2.3 on page 10). As des
ribed in Se
tion 3.1.2 there are severalsour
es to high amplitude slow varying noise (see the lower left plot in Figure3.2). This type of noise in a signal will be referred to as baseline wander, baselinedrift, or simply drift. The baseline wander 
an add several hundred millivoltsto the amplitude of the signal. Sin
e the pure BSPM amplitude normally varieswithin 1-3 mV, it is 
lear that the drift will have to be removed if the re
ordingis to be of any use.Removing baseline drift is a task of removing the drift without distortingthe signal. When baseline wander is present in a signal, portions of the signalsu
h as the PR segment that should have zero amplitude, will have amplitudeequal to the amplitude of the drift at those parts. But at the other parts ofthe signal, su
h as the P and T wave and the QRS 
omplex, it is not 
lear howmu
h of the measurement is drift and how mu
h is the a
tual signal.3.2 Measuring ST and PR segment di�eren
es inrest and exer
ise re
ordingsAs des
ribed in Se
tion 2.4.1, some 
hannels of the BSPM of a patient will
hange when the demand for blood ex
eeds the supply. This is often the 
ase in
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Figure 3.5: Upper left 
orner: a 
hest 
hannel of the BSPM of a healthy patientduring rest 
an be seen. Upper right 
orner: the same 
hannel when the pa-tient is breathing heavily. A regular os
illation of the signal in phase with thebreathing 
an be observed. Lower left 
orner: the re
ording of the same patient
ontra
ting and relaxing 
hest and arm mus
les. The BSPM has more noise
ontent than the upper left one due to potentials generated by mus
le 
ontra
-tion. The lower right 
orner: the re
ording when the patient is 
oughing. The
oughing introdu
es disturban
es to the BSPM, but it returns to normal whenthe patient settles down.
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frequenvy (Hz)Figure 3.6: These �gures show the frequen
y spe
trums of the BSPM signalsdisplayed in Figure 3.5. The upper left �gure is the frequen
y spe
trum of theBSPM during rest. The upper right shows when the patient is breathing. Nosigni�
ant additional high frequen
y 
ontent is added by the breathing. Lowerleft 
orner: noti
e how the magnitude of almost all the frequen
ies displayed isin
reased when the patient 
ontra
ts his mus
les. Lower right 
orner: a similare�e
t is seen in the frequen
y spe
trum when the patient is 
oughing.



3.2 Measuring ST and PR segment di�eren
es in rest and exer
isere
ordings 23a person with is
hemia during stress. The o

luded arteries will provide enoughblood to the heart mus
les during resting periods, but not when the heart isworking hard. Computing the di�eren
e in ST segment elevation/depressionbetween rest and exer
ise 
an distinguish re
ordings of a patient with is
hemiaand a patient without.

Figure 3.7: This �gure shows two heartbeats from a BSPM of a healthy patientduring rest. The onset of the QRS 
omplex, and the J point right after the QRS
omplex is marked on the �gure. The p value for this 
hannel is 
omputed asthe mean of the area marked red right before the QRS 
omplex onset. The svalue for this 
hannel is the mean of the marked area right after the J point.The ST segment shifts are 
omputed by subtra
ting a value on the baselinefrom a value in the ST segment. This segment is often de�ned relative to theJ point, whi
h is the point where the BSPM/ECG 
urve �attens between theQRS 
omplex and the ST segment (see Figures 3.7 and 3.8). The value to usefor the ST segment varies in the literature; [36, 31, 15, 5℄ respe
tively uses thepoints 60, 63, 60 − 80 and 40ms after the J point. In this thesis, the mean ofthe signal in the period 50 − 70ms after the J point is used, with the J pointbeing de�ned as 40ms after the QRS 
omplex peak. The value on the baselineis 
omputed by taking the mean of the signal in the period 30 − 10ms beforethe QRS 
omplex onset. This se
tion is used sin
e it lies in the PR interval,and will in most 
ases not in
lude values from the P wave or the QRS 
omplex.The BSPM re
ordings used in this thesis, were done on patients both duringrest and while exer
ising on a stationary bike. The BSPM of a patient 
onsistsof 64 
hannels. These 
hannels are 
alled V i, with i = 1, . . . , 64 denoting thelo
ations of the 
hannels (see Figure 2.4 and Figure 2.5). The ve
tor 
ontainingthe jth heartbeat of 
hannel i will be named V i
j . For ea
h heartbeat in a 
hannel,a number si

j representing the ST segment elevation/depression and a number
pi

j representing the PR segment elevation/depression will be 
omputed. The
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Figure 3.8: This �gure shows two heartbeats from a BSPM of a patient withis
hemia during stress testing. The onset of the QRS 
omplex, and the J pointright after the QRS 
omplex is marked on the �gure. The p value for this
hannel is 
omputed as the mean of the area marked red right before the QRS
omplex onset. The s value for this 
hannel is the mean of the marked arearight after the J point. These heartbeats have depressed ST segments, whi
h is
hara
teristi
 for the BSPM of a patient with is
hemia.



3.3 The Dis
rete Fourier Transform(DFT) and sampling 25di�eren
e between these will be termed di
j :

si
j =

1

L

L
∑

n=1

V i
j (xn), with xn ∈ {50 − 70ms after the J point of V i

j }

pi
j =

1

L

L
∑

n=1

V i
rest(xn), with xn ∈ {30 − 10ms before QRS onset of V i

j }

di
j = si

j − pi
j . (3.2)In the above equations, L is the number of data points in the ST and PRsegments. At this step, the mean di�eren
e between the ST and PR segment of
hannel i is 
reated:

di
(state) =

1

H

H
∑

j=1

di
j . (3.3)

H is the number of heartbeats in the 
hannel V i. The 
al
ulations in (3.2)and (3.3) are done for all 
hannels V i
rest in the rest re
ording, and V i

exc in theexer
ise re
ording. This results in two ve
tors drest and dexc with respe
tiveelements di
rest and di

exc with i = 1, . . . , 64.The ve
tor drest is then subtra
ted from dexc to get the di�eren
es betweenthe re
ordings during exer
ise and the re
ordings during rest:
d = dexc − drest. (3.4)After these 
omputations on the BSPM of a patient, the resulting ve
tor d =

[d1, d2, . . . , d64] 
ontains the di�eren
es in ST segment shifts between exer
iseand rest for ea
h of the 64 
hannels in the BSPM. These values will later beused to get an indi
ation of whether a patient su�ers from is
hemia or not (seeSe
tion 2.4.2 and Chapter 6).3.3 The Dis
rete Fourier Transform(DFT) andsamplingThe ele
tri
al signals originating from the heart spread through the body 
ontin-uously in time. Sin
e 
omputers work with dis
rete numbers, and not analog,the 
ontinuous analog signals need to be translated into dis
rete digital sig-nals. To digitally pro
ess the analog ele
tri
al potentials re
orded at the bodysurfa
e, they need to be digitised. In this pro
ess the 
ontinuous signals aresampled at dis
rete time instants at a sampling frequen
y fs. The resultingBSPM re
ording then 
onsists of fs dis
rete values per se
ond. In this study,the BSPMs where re
orded with a sampling frequen
y of fs = 2048 Hz. A
-
ording to Shannons sampling theorem [32℄ (page 28), the highest frequen
ythat 
an be 
ontained in a digital signal with sampling frequen
y fs, is fs

2 . Thismeans that the highest frequen
ies 
ontained in the BSPM re
ordings used inthis thesis is f = fs

2 = 2048
2 = 1024 Hz. All of this is done in the re
ordingequipment des
ribed in Se
tion 2.3.2, and will not be dis
ussed further.When working with BSPM signals, mu
h of the modi�
ation and analysiswill be on the frequen
y 
hara
teristi
s of the signal. When doing frequen
yanalysis, it is 
onvenient to 
onvert the time-domain signal sequen
e to an



26 Working with real data, and theoreti
al ba
kgroundequivalent frequen
y-domain representation of the signal. This is done usingthe Dis
rete Fourier Transform(DFT). The DFT of a dis
rete time sequen
e
x(n) of length L is given by:

X(ω) =

L−1
∑

n=0

x(n)e−iωn, 0 ≤ ω ≤ 2π (3.5)where ω is the normalized frequen
y variable. Now, X(ω) is a dis
rete fun
-tion sampled at equally spa
ed normalized frequen
ies ωk = 2πk/L , k =
0, 1, 2, . . . , L − 1.Returning to (3.5), the frequen
ies f on the interval 0 ≤ f ≤ fs/2 
orre-sponds to the normalized frequen
ies ω on the interval 0 ≤ ω ≤ π. Due to thesymmetry properties of the DFT, X(ω) on the interval π ≤ ω < 2π is just amirror image of X(ω) on the interval 0 ≤ ω < π. Using the relation ω = 2πf

fs

,(3.5) 
an be rewritten as
X(f) =

L−1
∑

n=0

x(n)e−2πifn/fs , 0 ≤ f ≤ fs. (3.6)In fa
t, f is a dis
rete variable sampled at dis
rete points fk, where fk = kfs/L,
k = 0, 1, 2, . . . , L − 1. X(f) represents the amplitude and phase of the di�erentfrequen
y 
omponents of the time sequen
e x(n). |X(f)| is the amplitude ofthe frequen
y 
omponents of x(n). A plot of |X(f)| over all frequen
ies f is
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Figure 3.9: A 20 se
ond segment of a BSPM re
ording, and its 
orrespondingfrequen
y spe
trum. The right plot is the frequen
y spe
trum zoomed in onfrequen
ies in the interval 0 ≤ f ≤ 150 sin
e most of the frequen
y 
ontent in aBSPM re
ording are low frequen
ies.
alled the frequen
y spe
trum, and shows how mu
h of ea
h frequen
y f thesignal x(n) is 
omposed of. A plot of a BSPM-re
ording and its 
orrespondingfrequen
y spe
trum 
an be seen in Figure 3.9. For more reading on Dis
reteFourier Transforms and sampling, see an introdu
tory book on digital signalpro
essing, for instan
e [32℄.3.3.1 Filtering te
hniquesThroughout the thesis, frequen
y-sele
tive linear time invariant (LTI) �lters willbe applied to the BSPM re
ordings. The �lter 
hara
teristi
s of a digital LTI-



3.3 The Dis
rete Fourier Transform(DFT) and sampling 27�lter is determined by its impulse response h(n). A �lter with input x(n) hasoutput
y(n) = h(n) ∗ x(n) =

∞
∑

k=−∞

h(k)x(n − k),where ∗ is the 
onvolution operator. This is the time domain representationof a �lter with impulse response h(n). Sin
e frequen
y-sele
tive �lters will beused, it is more 
onvenient to express the output of a �lter in the frequen
ydomain. A property of 
onvolution is the 
onvolution theorem that states that
onvolution in the time domain is equivalent to multipli
ation in the frequen
ydomain [32℄ (page 283). The frequen
y domain expression of the output of adigital �lter is then
Y (ω) = H(ω)X(ω), (3.7)where Y (ω), H(ω) and X(ω) are the Dis
rete Fourier Transforms of y(n), h(n)and x(n) respe
tively.When designing a frequen
y-sele
tive �lter, the desired frequen
y 
hara
-teristi
s is given by the frequen
y response H(ω). Filters applied to BSPM-re
ordings need to have linear phase to avoid phase distortions in the output ofthe �lter.LTI �lters with linear phase 
an be implemented both with Finite ImpulseResponse (FIR) or In�nite Impulse Response (IIR) 
hara
teristi
s. A �lter ofboth of the two types 
ould be designed for the tasks in this thesis. However,FIR �lters are inherently stable, and mu
h easier to design with linear phase
hara
teristi
s. A drawba
k with FIR �lters is that they generally require manymore 
oe�
ients than an IIR �lter, and hen
e are more 
omputationally de-manding. The advantages of using FIR �lters was deemed greater than thedisadvantages, and hen
e all �lters used in this thesis will be FIR.Ideal �lters, i.e. �lters that has in�nitely sharp 
ut o� frequen
ies su
h as

H(ω) =

{

1, |ω| ≤ ωc

0, ωc < ω ≤ π,
annot be realized in a FIR �lter in pra
ti
e due to the Paley-Wiener theorem[32℄ (page 656). An important result from the Paley-Wiener theorem is thatsu
h �lters will require an in�nite length impulse response h(n), and hen
ebe non
ausal. To make a �lter realizable, the in�nite length impulse responseneed to be trun
ated at some point. A FIR �lter of length M 
an be made bymultiplying the desired impulse response hd(n) (in�nite length) with a �window�
w(n) (�nite length). w(n) has the property that w(n) = 0 for n > M − 1 and
n < 0. This yields the impulse response

h(n) = hd(n)w(n) (3.8)of length M.The ideal �lter hd(n) with in�nitely sharp 
ut o� frequne
y is in this thesisapproximated using windowing te
hniques (3.8). There are two main 
onse-quen
es of using a 
ausal approximation h(n) to the non
ausal hd(n): First, thetransition between frequen
ies passed through the �lter and frequen
ies removedis not in�nitely sharp, but will 
hange gradually. As an e�e
t of this, there willbe a band of frequen
ies, 
alled the transition band, that are in
reasingly atten-uated between the passed and stopped frequen
ies. Se
ond, small disturban
es



28 Working with real data, and theoreti
al ba
kgroundor ripples will be introdu
ed in the frequen
y spe
trum of both the passed andstopped frequen
ies of the �lter. Thus, some parts of the �stopped� frequen
ieswill be let through, and parts of the passed frequen
ies will 
hange in amplitude.Designing �lter windows is a task of redu
ing these ripples, and sharpening thetransition band.3.3.2 Filtering with Kaiser windowsIn this thesis the window fun
tions w(n) used, will be Kaiser windows. Thiswindow type is 
hosen for its �exibility in adjusting the amount of ripples inthe stop and pass bands, and the sharpness of the transition band. A length MKaiser window used in designing the FIR �lter impulse response h(n) in (3.8),has time domain sequen
e
w(n) =



























I0

[

α

√

(

M − 1

2

)2

−

(

n −
M − 1

2

)2]

I0

[

α

(

M − 1

2

)] , 0 ≤ n ≤ M − 1

0, elsewhere, (3.9)and frequen
y domain sequen
e
W (ω) =

(M + 1)sinh

(

√

α2 −

(

(M + 1)ω

2

)2)

I0(α)

√

α2 −

(

(M + 1)ω

2

)2
. (3.10)Here I0 is the zeroth order modi�ed Bessel fun
tion of the �rst kind, α is aparameter determining the shape of the window and M is the length of thewindow.Generally, an in
rease in the �lter length M will narrow the transition band.An in
rease in α will lower the amount of ripples in the pass and stop bands,but will also widen the transition band. Hen
e, the design of the �lter is a
ompromise between the narrowness of the transition band, and the amount ofdisturban
e in the kept and attenuated frequen
ies.



Chapter 4Methods and algorithmsThis 
hapter 
ontains a des
ription of many of the methods used and developedin this thesis. A 
ombination of a sele
tion of these will at a later point bemade to form an automati
 algorithm for pro
essing BSPM re
ordings makingthem ready for ST segment shift measurements. The methods des
ribed servesdi�erent purposes:Noise redu
tion: Not
h �ltering and lowpass �ltering algorithms des
ribed inSe
tion 4.1 were designed to redu
e the noise 
ontent in a BSPM. Thesemethods make use of frequen
y analysis and a priori knowledge of thenoise frequen
y 
hara
teristi
s in a signal.Drift redu
tion: Baseline drift is present in all BSPMs. Four di�erent algo-rithms for removing this drift from a BSPM is des
ribed in Se
tion 4.2Removing 
orrupted signals: Some 
hannels in a BSPM, or parts of a 
han-nel in a BSPM may still be too 
orrupted by noise or bad re
ording thatno information 
an be extra
ted, even after noise and drift redu
tion algo-rithms have been applied. Se
tion 4.3 
ontains des
ription of algorithmsto remove these signals.QRS dete
tion: Di�erent parts of the BSPM signal need to be re
ognised.The QRS dete
tion algorithm outlined in Se
tion 4.4 is designed to �ndthe QRS peaks in a BSPM. Other important features of the signal 
an befound on
e the QRS peaks are known.The algorithms des
ribed in this 
hapter will be 
ombined to form a 
ompletemethod for improving BSPM signals.4.1 Noise redu
tion algorithmsAs des
ribed in Se
tion 3.1.2, there are many sour
es of noise that 
an distortthe re
orded BSPM. Most of the distortions not 
lassi�ed as drift, are 50 Hznoise and white noise whi
h will be present in all frequen
ies of the signal. It isthese parts that make up the BSPMnoise part of (3.1):
BSPM = BSPMsignal + BSPMnoise + BSPMdrift.



30 Methods and algorithmsIn many BSPM re
ordings, the most prominent noise is the 50 Hz power-line interferen
e. Therefore the most important features of the noise redu
tionalgorithms is to remove this powerline interferen
e while 
ausing minimal dis-turban
e in the BSPM. In the algorithms des
ribed below; parts of a BSPMwill be removed based on the assumptions of the frequen
y 
ontents of signaland noise. Two algorithms are proposed; a not
h �lter for removing only 50 Hz
ontents of the BSPM, and a lowpass �lter for removing all frequen
ies greaterthan a desired 
uto� frequen
y.It is assumed for simpli
ity that BSPMnoise is made up of three 
omponents:
noise50Hz and noisewhite and noiseother. The 50 Hz 
omponent should alwaysbe removed, as it may disturb the signal to a great degree if it is of largeamplitude. Also, the removal of a small frequen
y band around 50 Hz will notdisturb signals un
ontaminated by 50 Hz noise, as will be seen in Se
tion 5.1.1.As mu
h of the rest of the noise, namely noisewhite, is assumed to be white it willbe of equal magnitude throughout the frequen
y spe
trum. This means that themore frequen
ies are removed, the more of this noise is removed. For instan
e,a lowpass �lter with 
uto� frequen
y of 100 Hz will remove ∼ 9

10 of the whitenoise in the signal, sin
e the frequen
y 
ontent is in the interval 0 − 1024 Hz.Applying a lowpass �lter to the signal may result in the �lter removing importantinformation 
ontained in the BSPM. Choosing the 
orre
t 
uto� frequen
y of alowpass signal is therefore a 
ompromise between the amount of noise removed,and the amount of distortions introdu
ed to the BSPM.These �lters were designed using Kaiser windows as des
ribed in Se
tion3.3.1. Designing �lters to remove parts of the signal with 
ertain frequen
y
omponents, is a 
ompromise between sharpness of the transition band, andripples in the pass and stop band of the �lter. The two parameters α and M in(3.9) and (3.10), with M being the �lter length, will determine the 
hara
teris-ti
s of the �lter. The width of the transition band of the �lter is the same asthe distan
e from the peak to the �rst zero in the window's frequen
y domainsequen
e.4.1.1 Use of not
h �lter to remove 50 Hz powerline noiseAs proposed in [41℄ a not
h �lter 
an be used to remove 50 Hz powerline noise.The not
h �lter is a bandstop �lter, whi
h means that it will remove an intervalof frequen
ies from the signal and keep the rest. A �lter with stop band of 49-51 Hz will be used. The parameters α and M in the Kaiser window (3.9) and(3.10) is sele
ted so that the transition bands in both the lowpass and highpassparts of the the �lter is less than 1 Hz. With a �lter of length M = 1400 and
α = 1.5, the above requirements are ful�lled. The 50 Hz 
omponent will inthis example be removed, while frequen
ies between 49Hz and 51Hz will beattenuated. The frequen
y 
omponents less than 49Hz and greater than 51Hzwill remain almost un
hanged. If there is 50Hz powerline noise present in thesignal, there will also be noise with frequen
y 
ontent as multiples of 50Hz,i.e. 100, 150, . . .Hz. Similar not
h �lters for removing these frequen
ies are alsoapplied to the signal.



4.2 Drift redu
tion algorithms 314.1.2 Lowpass �lter to redu
e high frequen
y noiseWhile the not
h �lter will remove the 50Hz powerline noise, it will do nothingwith the disturban
es from the other high frequen
y noise sour
es. A lowpass�lter will remove all frequen
ies greater than a 
uto� frequen
y fcutoff , and keepthe lower frequen
y 
omponents of the signal. The problem with using su
h a�lter, is that all non-noise 
omponents of the BSPM with frequen
y higher than
fcutoff also will be removed. A

ording to [5, 39, 21℄ P and T wave frequen
iesgenerally lies between 0 and 10Hz, and QRS 
omplex spans over a greater rangeof frequen
ies, with most of the signal 
omponents in the range 4 to 20Hz. [21℄also states that most of the diagnosti
 information in ECGs is 
ontained below
100Hz in adults, with the highest of these frequen
ies being in the QRS 
omplex.Sin
e the highest frequen
y 
ontents of a BSPM signal is in the QRS 
omplex,the removal of these should not a�e
t the ST segment. Hen
e, removal of thehigher frequen
ies, in
luding some frequen
ies below 100Hz, should improve theSignal to Noise Ratio (SNR) of the ST segment. Although the Ameri
an HeartAsso
iation (AHA) [21℄ re
ommends a high-frequen
y 
uto� of at least 150Hz,lower fcutoff frequen
ies will be used, sin
e this thesis primarily fo
uses on thediagnosti
 information 
ontained in the ST segment.A low pass �lter with parameters α = 2 and length 1000 in equations (3.9)and (3.10) is an adequate FIR lowpass �lter for this purpose. This �lter will betested on real BSPMs with di�erent 
uto� frequen
ies.4.2 Drift redu
tion algorithmsIn Chapter 3 the problem of baseline wander or drift in the BSPM re
ordingswas des
ribed. Many ways of removing the drift in an ECG has been proposedin the literature. Four promising methods have been applied to the BSPM datain this thesis. Ea
h of these will be des
ribed in this se
tion, and evaluated inSe
tion 5.2.4.2.1 Drift redu
tion using splinesA spline is a fun
tion de�ned pie
ewise by polynomials. In spline interpolation,data points are 
onne
ted by de�ning the spline to be equal to the data points,with polynomials 
onne
ting them. In this thesis splines will be used to makean approximation to the drift in the BSPM. This approximation will then besubtra
ted from the signal, produ
ing a new BSPM with drift redu
ed. Forfurther reading on spline interpolation, see e.g. [27, 23℄.To get an approximation of the drift, the splines will be 
onne
ted at onepoint per heartbeat 
alled the knots. The points sele
ted are in the PR segments
30ms before the onsets of the QRS 
omplexes. Hen
e there should theoreti
allybe no ele
tri
al sour
es in the heart 
reating baseline deviation at the knots.The magnitude of the BSPM here 
onsist of baseline drift and noise, and shouldtherefore be removed. The intervening values between the knots should beadjusted in a way that do not distort the signal, but still removes the baselinedrift. The splines used are de�ned as follows:The spline approximations are 
omputed for the 
hannels V i, i = 1, . . . , 64of a BSPM one at a time. Let N be the number of data points in a 
hannel
V i of a BSPM. V i is then a 
olle
tion of data values de�ned on an index set
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I = [1, 2, . . . , N ]. A 
hannel V i 
ontaining H heartbeats will have H knotsgiven by the partition ∆ = [x1, . . . , xj , . . . , xH ] with x1 < x2 < . . . < xH ,
xj ∈ I. One knot value is used per PR segment of the signal, as seen in Figure4.1. The spline s approximating the drift is 
hosen to be the fun
tion des
ribedby s(∆) = V i(∆), and

s(x) =







s0(x) , x < x1

sj(x) , xj < x < xj+1

sH(x) , xH < x
(4.1)where ea
h sj is a polynomial, and sj−1(xj) = sj(xj).Two types of spline interpolation will be used to remove the baseline drift,and will be des
ribed in the next se
tions.Linear splinesWith linear splines, the spline 
onne
ting the knots will be a 
olle
tion of straightlines (linear polynomials). The fun
tions sj in (4.1) are then on the form:

sj(x) = V i(xj) +
V i(xj+1) − V i(xj)

xj+1 − xj
(x − xj).These linear splines will interpolate the signal as shown in Figure 4.1. The drift
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Figure 4.1: Linear spline approximation of the drift in a 
hannel V i of a BSPM.
V i is visualised in solid line, the approximation of the drift is marked with adashed line. The knots [x1, x2, . . . , xH ] are marked as 
ir
les on the x axis. Theknot values used are marked as 
ir
les 
onne
ting the linear fun
tions in thedrift approximation spline.is now approximated by s. The drift is removed from V i by subtra
ting thespline s from V i. Using (3.1), this produ
es a new 
olle
tion of data points
BSPMimproved:

BSPMimproved = BSPMsignal + BSPMnoise + BSPMdrift − sNow, if s ≈ BSPMdrift then BSPMimproved ≈ BSPMsignal + BSPMnoise.In real re
ordings however, there will never be a true equality. Some drift will
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tion algorithms 33always be present in BSPMimproved, and artifa
ts may also be introdu
ed dueto bad drift approximation.Cubi
 splinesWith 
ubi
 splines, the spline 
onne
ting the knots will be a 
olle
tion of 
ubi
polynomials satisfying the 
onditions given in Se
tion 4.2.1. The fun
tions sjin (4.1) are 
hosen to be 
ubi
 polynomials on the form
sj(x) = ajx

3 + bjx
2 + cjx + dj .While the linear splines s needed no 
onditions other than those given in(4.1), some more restri
tions will be given to the 
ubi
 splines. The 
ubi
 splines

s are required to have two 
ontinuous derivatives, in other words s ∈ C2(R).Right sided derivatives are used, with the following de�nition:
s(n)(x) :=

{

s(x) , n = 0

limh→0+
s(n−1)(x+h)−s(n−1)(x)

h , n = 1, 2with s(n)(x) being the n-th derivative of s. Now the 
onditions set in (4.1) areexpanded for the 
ubi
 splines to be:
s(n)(x) =











s
(n)
0 (x), x < x1

s
(n)
j (x), xj < x < xj+1

s
(n)
H (x), xH < x

(4.2)for n = 0, 1, 2. A 
ubi
 spline s 
reated with the 
onditions given in (4.1) and
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Figure 4.2: Cubi
 spline approximation of the drift in the 
hannel of a BSPM.The approximation to the drift is visualised in a dashed line, with the knotvalues appearing as 
ir
les.(4.2) will be an approximation to the drift in the 
hannel V i whi
h it is based



34 Methods and algorithmson. These 
ubi
 splines will interpolate BSPMs in the way shown in Figure 4.2.Returning again to (3.1), a new dataset BSPMimproved is 
reated by subtra
ting
s from the 
hannel V i:

BSPMimproved = BSPMsignal + BSPMnoise + BSPMdrift − sIf s is a good approximation to BSPMdrift, BSPMimproved ≈ BSPMsignal +
BSPMnoise.Both the linear and 
ubi
 spline methods use the same knot values ∆ whenapproximating the drift. In most 
ases the value of s between the knot valueswill be di�erent in linear and 
ubi
 splines, sin
e they use di�erent polynomials.Generally, the 
ubi
 spline makes a smoother approximation to the drift, whilethe linear spline will make a more even approximation through ea
h heartbeat.Determining knot valuesEven though the knots used in the two spline interpolation algorithms des
ribedabove are 
hosen in the PR segment where there should ideally be no baselinedeviation, low amplitude high frequen
y noise is present. This will in�uen
e thespline approximation to the drift, and this disturban
e will be dire
tly transferedto BSPMimproved. Two methods have been 
hosen to redu
e this problem. The
hosen methods are lowpass �ltering, and using the mean of 
hosen neighbouringvalues of a knot point.The lowpass �lter is implemented using the lowpass �ltering methods de-s
ribed in Se
tion 4.1.2. A 
uto� frequen
y of 49Hz is used to both redu
erandom white noise, and any 50Hz noise present in the signal.Be
ause of the noise present in all parts of the signal, the use of knot pointsas des
ribed in Se
tion 4.2.1 will introdu
e a small randomness to the driftapproximation. By instead using the median value of neighbouring points in
lose proximity to the original knot value (whi
h is the point 30ms before theQRS 
omplex onset) as the knot value, this randomness 
an be redu
ed (seeFigure 4.3). 51 data points are used in the 
omputation of the median value.Sin
e the sampling rate is 2048 Hz, 51 points 
orresponds to 51

2048 1
sec

≈ 25ms.With this time window the data points used in the 
al
ulation of the medianknot value will in most 
ases be in the PR segment.4.2.2 Highpass �lteringThe spline interpolation methods des
ribed above removes the drift by sub-tra
ting an approximation of the drift from the BSPM. How pre
ise the driftremoval is, depends on the sele
tion of knot points and the intervening polyno-mials. Highpass �ltering is an alternative method to spline interpolation. Sin
ethe drift 
onsist of slow varying high amplitude 
hanges in the re
orded signal,removing the low frequen
ies from the BSPM will redu
e the drift. Unfortu-nately, parts of BSPMsignal also 
ontains low frequen
y 
omponents. Thus,�ltering out low frequen
ies from the re
orded signal 
an damage or 
hangeimportant information in the signal. The Ameri
an Heart Asso
iation (AHA)[21℄re
ommends a 
uto� frequen
y below 0.5 Hz. This 
uto� frequen
y will beused in the highpass �ltering methods.The highpass �lter is designed using the te
hniques des
ribed in Se
tion3.3.1. Sin
e the 
uto� frequen
y is 0.5Hz, the �lter will need a transition band
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data pointsFigure 4.3: The sele
tion of a knot value. The median of 51 data points is
omputed, and used as the knot value. The 51 data points are marked with'x's, while the 
omputed knot value is marked with an 'o'.width of less than 0.5Hz. A de
rease in α and an in
rease in length M of the�lter's window fun
tions (3.9) and (3.10) will narrow the transition band. With
α = 0 the window will equal a re
tangular window. To obtain a transitionbandwidth of less than 0.5 Hz, the �lter length has to be at least 4100. If
α instead is set to 1 the �lter will have smaller ripples in the passband, butwill require a longer �lter length. The window parameters for Equations (3.9)and (3.10) were sele
ted to be length M = 5000 and α = 1. This results ina FIR �lter whi
h removes frequen
ies below 0.5Hz while introdu
ing minimaldistortions to the frequen
y 
ontent higher than 0.5Hz.4.2.3 Filtering using Dis
rete Wavelet TransformAs an alternative to spline or highpass drift removal, other methods have beenused in the literature. For instan
e Time-Varying Filtering [34℄, Short TimeFourier Transform [30℄ and Wavelet Transform based methods [6, 9, 40℄. Ofthese the Wavelet Transform based methods seem most promising. A WaveletTransform based baseline drift removal algorithm will therefor be implemented,and tested alongside the three other drift removal algorithms des
ribed in theabove se
tions. A short des
ription of the wavelet transform �lter applied in thisthesis is given below. Details on wavelet de
omposition 
an be found elsewhere,for instan
e in [16, 11℄.The wavelet transform �lter bank works on ea
h 
hannel of a BSPM at atime. First, two symmetri
 �lters are 
reated from a mother wavelet. These�lters splits the BSPM signal into a low frequen
y 
omponent and a high fre-quen
y 
omponent using lowpass and highpass �lters and downsampling ea
hpart by a fa
tor two. These 
omponents are represented by a s
aling 
oe�
ient
c2 
orresponding to the low frequen
y 
omponents of the signal, and a detail
oe�
ient d2 
orresponding to the high frequen
y 
omponents of the signal.This pro
ess is repeated by splitting c2 into a low frequen
y 
omponent c3 and
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y 
omponent d3 and so on. This pro
ess is sket
hed in Figure4.4 (a) and Figure 4.5. The pro
ess is repeated until the s
aling 
oe�
ientsrepresents su�
iently small frequen
ies, whi
h 
an then be removed by settingthe 
oe�
ient to zero.

Figure 4.4: The de
omposition (a) and re
omposition (b) pro
edure of wavelettransformation.

Figure 4.5: The frequen
y 
ontent of the s
aling (a) and detail (b) subspa
es atsteps k, k+1, k+2 of the wavelet transform de
omposition of the signal. Theinterval [0 , π] is the s
aled frequen
y range of ck.In this thesis, the sampling frequen
y of the BSPM re
ordings used is 2048Hz,so the highest frequen
y 
ontents possible in the signal (the Nyquist frequen
y)is 2048Hz
2 = 1024Hz. As ea
h step of the wavelet signal de
omposition splits thesignal's frequen
y 
omponents in two, the s
aling 
oe�
ients c2 and d2 has fre-quen
y bands of width 512Hz. With ea
h step splitting the frequen
y band of

ck in two, with ck+1 
ontaining the lower half of the frequen
y 
ontent, c12 willwith this sampling frequen
y have a frequen
y 
ontent between 0 and 0.5Hz.These frequen
ies are removed, in a

ordan
e with the AHA re
ommendations[21℄, by setting the s
aling 
oe�
ient c12 to zero. The BSPM signal is then
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onstru
ted by setting c11 = d12 (sin
e c12 = 0), 
ombining c11 and d11 toform c10 and so on until the BSPM signal is re
onstru
ted with the frequen-
ies between 0 and 0.5Hz removed. This re
onstru
tion s
heme is illustrated inFigure 4.4 (b). In the wavelet de
omposition s
heme used in this thesis, symletwavelets are used.4.3 Removal of 
orrupted signalsSome parts of a BSPM re
ording may be so 
orrupted that no usable informa-tion 
an be extra
ted from them. In
luding these parts in further 
al
ulationswill only redu
e the overall quality of the BSPM, and hen
e they should be re-moved. Both short time periods of a 
hannel in a BSPM or a whole 
hannel mayneed to be removed. The main 
auses of these 
orruptions are ele
trosurgi
alnoise, malfun
tioning equipment and loss of 
onta
t between skin and ele
trode.Figure 4.6 is an example of the latter.
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Figure 4.6: A BSPM re
ording destroyed by loss of 
onta
t between ele
trodeand skin. Note the magnitudes on the y-axis.The methods in this se
tion were designed to 
ompletely remove BSPM
hannels or parts of BSPM 
hannels so destroyed by noise that no informationabout the ele
tri
al a
tivity in the heart 
ould be extra
ted from them. Thisis the 
ase when, after drift redu
tion and noise redu
tion has been applied tothe signal, BSPMnoise is still the dominating part in BSPM = BSPMsignal +
BSPMnoise + BSPMdrift. In some 
ases, the re
ording may not 
ontain ele
-tri
al signals from the heart at all, and BSPM ≈ BSPMnoise + BSPMdrift.This is the 
ase for instan
e when there is loss in 
onta
t between skin and ele
-trode, or when an ele
trode is malfun
tioning. Four algorithms for removing theuseless parts of BSPMs has been developed, and will be des
ribed next. Ea
halgorithm takes a di�erent approa
h to removing disturban
es in a BSPM. A
ombination of these four algorithms will be made to get a 
omplete methodfor identifying and removing bad parts of a BSPM. Drift and noise redu
tionmust be applied to the signals before any of these four algorithms are appliedto obtain the best results.



38 Methods and algorithms4.3.1 Removing destroyed 
hannelsSome 
hannels, like the one seen in Figure 4.6, are obviously of no use, sin
eno information of the ECG 
hara
teristi
s 
an be found in them. A simplealgorithm that makes use of the many 
hannels in a BSPM and the fa
t thatthe 
hara
teristi
s in ea
h 
hannel should be similar is des
ribed in this se
tion.The ith 
hannel of a BSPM will be denoted V i. The median, Vmedian, of all
hannels in a BSPM is 
reated by
Vmedian(x) = mediani=1,...,64(V

i(x)) for x = 1, 2, . . . , N,where N is the number of data points in ea
h 
hannel of the BSPM. Now, ea
h
hannel V i is tested to see if it deviates more from Vmedian than an presettoleran
e δ (See Figure 4.7). If it does, the 
hannel is removed from the BSPM
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Figure 4.7: The middle graph of this �gure shows parts of a 
hannel of a BSPM.The upper and lower lines in this �gure shows the tolerance of the test. If theBSPM signal at some point is greater than the upper line or lower than thelower line, the 
hannel will be removed from the data set.by setting it to zero:
V i =

{

V i, if ||V i − Vmedian||∞ < δ
0, if ||V i − Vmedian||∞ > δ

. (4.3)Here, || · ||∞ is the supremum norm de�ned by
||u||∞ = max

1≤x≤N
{u(x)} (4.4)where u is an arbitrary ve
tor with elements u(x) and length N .This algorithm is a fast and easy way to eliminate the worst 
hannels in aBSPM, but is not suited to do a �ner sear
h for 
hannels or parts of 
hannelsthat need to be removed. More re�ned methods for doing this is des
ribed inthe next se
tions.4.3.2 Removal of varying segmentsFor ea
h heartbeat V i

j of a 
hannel V i of a BSPM, the shifts in the ST segmentwill be measured by 
al
ulating the di�eren
e in amplitude of 20ms segments
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orrupted signals 39of the ST segment and the PR segment. The segments used are the same as theones des
ribed in Se
tion 3.2. These segments should normally not vary mu
hduring the 20ms segment, but will in some measurements do be
ause of noise,T/P wave interruption and so on. The method des
ribed in this se
tion willremove heartbeats V i
j 
ontaining ST or PR segments with too large variation,as this probably is 
aused by noise or interferen
e with T or P waves.The method is simple: For ea
h heartbeat V i

j of a BSPM, the standarddeviations σst and σpr of the ST and PR segment is 
omputed. If these ex
eedsa toleran
e value δ, the heartbeat is removed from the BSPM. Expressed moremathemati
ally, the standard deviations are for ea
h heartbeat:
σst =

√Var(V i
j (X))

σpr =
√Var(V i

j (Y )), (4.5)with X and Y being index sets de�ned on the ST and PR segments of V i
j . Then,the 
urrent heartbeat is kept if these standard deviations does not ex
eed thetoleran
e:

V i
j =

{

V i
j , if max{σst, σpr} < δ

0, if max{σst, σpr} > δ
. (4.6)4.3.3 Removal based on drift approximationThe 
hanges in a BSPM labelled as drift 
an sometimes be quite abrupt, forexample if the patient 
oughs or makes sudden movements. These and otherdisturban
es in the BSPM 
an redu
e the a

ura
y of the drift approximations.This se
tion des
ribes a method for removing the parts of a BSPM that have atoo abrupt 
hanging drift approximation 
reated by the methods des
ribed inSe
tion 4.2.1. Thus, this algorithm will only be applied to signals that have hadthe drift removed using a spline interpolation method. The method tests if these
ond derivatives of the drift approximation is greater than a given toleran
e

δ. If this is the 
ase, these parts of the signal are removed while the parts withse
ond derivatives smaller than δ are kept.Using the QRS dete
tion method des
ribed in Se
tion 4.4.2 the indexes of thebeginning of ea
h heartbeat in the BSPM have been found. These are labelled
∆ = [x1, . . . , xj , . . . , xH ], with H being the number of heartbeats in the BSPM.These knot points were used when making a spline based approximation to thedrift. For ea
h 
hannel V i, i = 1, . . . , 64 of the BSPM, the splines in (4.1)were tied together at the knot values V i(∆) (A
tually, values slightly di�eringfrom these were 
omputed using the method des
ribed in Se
tion 4.2.1, but thisnotation is used for notational 
onvenien
e). A simple form of se
ond derivative
D(2)(·) is 
al
ulated on these knot values:

D(V i(xj)) = V i(xj) − V i(xj−1)

D(2)(V i(xj)) = D(D(V i(xj))) =

= V i(xj) + V i(xj−2) − 2V (xj−1). (4.7)These se
ond derivatives are 
omputed for j = 3, . . . , H . Then the absolutevalue of ea
h se
ond derivative is tested to see if it ex
eeds the set toleran
e δ.



40 Methods and algorithmsIf |D(2)(V i(xj))| > δ, the heartbeats V i
j−2 and V i

j−1 are removed from the dataset. This algorithm will remove heartbeats with too abrupt 
hanges in the drift,and also artefa
ts introdu
ed by the drift redu
tion algorithms.4.3.4 Use of spatial information to test quality of signalThe ele
tri
al potential spreading from the heart through the body does sowithout dis
ontinuities or abrupt 
hanges. This is why the body 
an be viewedas a volume 
ondu
tor. A 
onsequen
e of this fa
t is that neighbouring 
hannelsshould re
ord similar signals. These properties of the BSPM is the ba
kgroundfor the algorithm for identifying and removing noisy/bad signals des
ribed inthis se
tion. The spatial information provided by the BSPM is used to determineif the heartbeats V i
j of ea
h 
hannel V i �ts in with the rest of the BSPM. Forea
h heartbeat V i

j in ea
h 
hannel the neighbouring 
hannels will be used topredi
t several values from whi
h V i
j should not deviate more than a giventoleran
e δ. If V i

j deviates from all these predi
ted values, it is 
onsidered a badsignal.The algorithm works on one 
hannel V i at a time. For ea
h 
hannel, thealgorithm is applied to ea
h heartbeat V i
j of that 
hannel. The 
urrent heartbeatthat the 
hannel is working on will be 
alled c for simpli
ity. The two 
hannelsabove c are 
alled o1 and o2, the two 
hannels below are 
alled u1 and u2, thetwo 
hannels to the left are 
alled l1 and l2 and the two 
hannels to the rightare 
alled r1 and r2. Of 
ourse, not all these neighbours are available for all
hannels. The heartbeats V 31

j of 
hannel V 31 will for example only have theneighbours o1 = V 30
j , o2 = V 29

j , u1 = V 32
j , l1 = V 23

j and l2 = V 15
j , see Figure 2.4and Figure 2.5. Figure 4.8 shows the example where a heartbeat from 
hannel

V 20 is the 
urrent 
hannel c.Now a number s for the ST segment and a number p for the PQ segmentof c is 
omputed, as des
ribed in Se
tion 3.2. This is also done for ea
h of theneighbours of c, with their 
orresponding numbers being s(u1), s(u2), p(u1),
p(u2) and so on. From ea
h available dire
tion, a predi
ted value of s and p isnow 
omputed in the following way, illustrated with s(u1) and s(u2):

ds(u) =







s(u1) + (s(u1)−s(u2))
2 , if both s(u1) and s(u2) available

s(u1), if only s(u1) available
s + 2δ, if neither s(u1) nor s(u2) available 





.(4.8)Similar 
omputations are done with the other neighbours and the p values. Thisprodu
es a set of two to four predi
ted s values for the 
hannel c and two tofour predi
ted p values, depending on the spatial lo
ation of c. The values sand p should now 
orrespond with these predi
ted values. A test is applied tosee if this is true:
ǫ = min{|s − ds(u)|, |s − ds(o)|, |s − ds(l)|, |s − ds(r)|,

|p − dp(u)|, |p − dp(o)|, |p − dp(l)|, |p − dp(r)|, }.
(4.9)If now ǫ > δ, the heartbeat c does not �t in with any of the predi
ted valuesfrom the neighbours, and is removed from the data set. If ǫ < δ, the ST or PQsegment of c �ts in with at least one of the predi
ted values of the neighbours,and the heartbeat is kept.
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Figure 4.8: An illustration of the values used in the algorithm of Se
tion 4.3.4.The 
hannel marked c is the 
urrent 
hannel. The 
hannels marked o are the twoneighbouring 
hannels above c. The 
hannels marked l are the two neighbouring
hannels to the left of c and so on. The 
losest of the two are given a subs
ript
1, the next a subs
ript 2.



42 Methods and algorithms4.3.5 Temporal quality test of PQ and ST segmentsThis method will make use of the prin
iple that heartbeats o

urring 
lose toea
h other in time in the same 
hannel should be similar. It 
reates medianST and PQ segments for ea
h 
hannel V i of the BSPM, and 
ompares the STand PQ segment of ea
h heartbeat V i
j with their respe
tive median. Heartbeatsthat 
ontain ST or PQ segments that deviate more than a toleran
e δ will beremoved from the data set. This algorithm is to be implemented re
ursively,with ea
h iteration possibly sorting out additional parts of the BSPM. Theoriginal 
hannel V i of the BSPM before any iterations of this algorithm hasbeen run will be termed Oi.The algorithm works on ea
h individual 
hannel Oi at a time. First, thereferen
e ST and PR segment values are 
reated from the ST and PR segmentsof ea
h heartbeat in the 
hannel V i. These are 
reated by �rst 
omputing themean value of the ST and PR segment of ea
h heartbeat:

si
j(V ) =

1

N

N
∑

n=1

V i
j (xn), with xn ∈ the ST segment of V i

j (4.10)
pi

j(V ) =
1

M

M
∑

n=1

V i
j (yn), with yn ∈ the PR segment of V i

j , (4.11)and N, M being the number of data points in the ST and PR segments of theheartbeat respe
tively. Now median ST and PR segment values si and pi are
reated, and their di�eren
e 
omputed:
si = medianj=1,...,H(si

j(V ))

pi = medianj=1,...,H(pi
j(V ))

di = si − pi,with H being the number of heartbeats in the 
hannel. Now that the referen
enumbers si and pi have been 
reated, the ST and PR segment numbers of ea
hheartbeat Oi
j 
an be tested. These values si

j(O) and pi
j(O) are 
reated analogousto (4.10) and (4.11), using Oi

j instead of V i
j . The di�eren
e di

j between the STand PR segment of ea
h heartbeat is 
omputed, and 
ompared to the mediandi�eren
e di:
di

j = si
j(O) − pi

j(O).If di
j deviates from di by more than a given toleran
e δ, the heartbeat is removedfrom the BSPM:

V i
j =

{

0, if |di
j − di| > δ

V i
j , if |di

j − di| < δ

}

.4.3.6 Re
ursive 
ombination of methodsIn the above se
tions, four stand-alone algorithms for identifying and removingparts of a BSPM that 
ontain too mu
h artefa
ts or variation or deviates toomu
h from the rest were des
ribed. As ea
h method has their strengths andweaknesses, a 
ombination of the above methods is formed. Below, an outline ofthe algorithm 
ombination is given in a Matlab/O
tave-like environment. In this
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tion 43outline, remove_se
ond_derivative and delta_1 refers to the algorithm and
orresponding toleran
e des
ribed in Se
tion 4.3.3. remove_varying_segmentsand delta_2 refers to Se
tion 4.3.2, remove_spatial and delta_3 refers toSe
tion 4.3.4 and remove_temporal and delta_4 refers to Se
tion 4.3.5.remove_spatial and remove_temporal are implemented in a loop, withea
h element of the ve
tors delta_3 and delta_4 being stri
ter than the previ-ous. These two algorithms 
ompare the 
urrent signal to neighbouring signalsin spa
e and time. For ea
h iteration of the loop, outliers of the BSPM has beenremoved. Thus, the heartbeats the signal is 
ompared to have been improvedfor ea
h iteration of the loop.The method for removing deviating and 
orrupted 
hannels is as follows:remove_se
ond_derivative(V,delta_1);remove_varying_segments(V,delta_2);O=V;for i=1:5V=remove_spatial(V,delta_3(i));V=remove_temporal(O,V,delta_4(i));endV=remove_sparse_
hannels(V);When a BSPM is used as the input V of the re
ursive algorithm, the outputwill be the BSPM with parts of the signal removed. The last step 
alledremove_sparse_
hannels will remove 
hannels in whi
h only 1
5 or fewer ofthe heartbeats are left after the 
orrupted heartbeats are eliminated.4.4 QRS dete
tionAn important task in ECG and BSPM signal pro
essing is QRS 
omplex de-te
tion. Sin
e the QRS 
omplex is the most prominent feature of the BSPM,it is used to lo
ate the other signal 
hara
teristi
s. It is also used in a varietyof BSPM signal pro
essing algorithms and as diagnosti
 information. Knowingthe QRS 
omplex lo
ation is therefore of prime importan
e! An ideal algorithmfor dete
ting QRS 
omplexes should dete
t all QRS peaks in a BSPM, withoutreturning any false peaks. Real BSPM re
ordings 
ome with a great variety inshape, frequen
y and noise 
ontent. This makes it ne
essary for a QRS dete
-tion algorithm to be robust with respe
t to these variations. In this se
tion,some results from the literature on QRS dete
tion will be reviewed, and a newalgorithm will be des
ribed.4.4.1 Literature on QRS dete
tionA large number of QRS dete
tion s
hemes are des
ribed in the literature. Friesenet al [14℄ tested nine di�erent algorithms with respe
t to a variety of noise. Nosingle algorithm in that study was 
learly superior, but two algorithms weredeemed better than the rest. The �rst of these is an algorithm based on digital



44 Methods and algorithms�ltering, and is an adaption of the algorithm developed by Engelese and Zee-lenberg [12℄. It applies a di�erentiator and bandpass �ltering to the signal, ands
ans it for amplitudes greater than a given threshold value. The se
ond algo-rithm uses squaring of the signal and derivatives before s
anning for parts thatex
eeds the threshold value. Qi Gao [33℄ tested eight di�erent QRS dete
tionalgorithms, 
on
luding that the algorithms based on amplitude and derivativesperformed best.Kannathal et al [5℄ suggests a QRS dete
tion algorithm based on the 
om-monly used algorithms developed by Pan et al [29℄ and the further developmentby Hamilton et al [18℄. These algorithms are similar to the ones that performedbest in the tests by Friesen et al [14℄ and Qi Gao [33℄. These dete
tion s
hemeswere based upon analysis of slope, amplitude and width of the ECG. Commonfor these three arti
les is to propose an algorithm involving the following �vesteps: First, the ECG is bandpass �ltered with a 5-15 Hz passband. Se
ond, thesignal is di�erentiated (using a �ve point derivative) to get information aboutthe slope of the signal. Third, the signal is squared to make the signal positiveand amplify the high frequen
ies. Then a moving integrator is applied to thesignal to dete
t the QRS 
omplexes. Last, the QRS peaks are dete
ted us-ing adaptive thresholds. The adaptive thresholds dete
t peaks above the givenvalue, and adjusts this value to dete
t QRS 
omplexes with di�erent amplitudes.Chen et al [10℄ proposes a simpler algorithm that makes use of bandpass�ltering, squaring and a moving summation window, but no derivatives. The
orre
t dete
tion rate of this algorithm was about the same as the ones des
ribedin [5℄ (∼ 99.5%).[39℄ 
on
luded that a bandpass �lter with 
entre frequen
y of 17 Hz max-imises the QRS energy relative to other disturban
es.4.4.2 A proposed QRS dete
tion algorithmThe algorithms mentioned in the previous se
tion were designed for traditional12-lead ECG. Many of them were also intended for real time usage, whi
h limitsthe 
omputational 
omplexion of the algorithms. The QRS algorithm proposedin this thesis is inspired by the ones in des
ribed in [5℄, [14℄, [10℄. This algorithmis not intended for real time usage. Hen
e more 
omputationally demandingmethods 
an be used to improve the algorithm. Moreover, advantage of thein
reased number of 
hannels in a BSPM will be taken. A 7 step QRS dete
tionalgorithm was developed. The input to the algorithm is an unmodi�ed BSPM.A sample 
hannel of an unmodi�ed BSPM 
an be seen in Figure 4.9. The outputof the algorithm is a ve
tor 
ontaining the QRS values. All the 
hanges madeto the BSPM during these seven steps are temporary, and only the QRS valueswill be used in further pro
essing.Step 1: Lowpass �ltering is applied to all the 
hannels in the BSPM. Thislowpass �lter is des
ribed in Se
tion 4.1.2, and has a 
uto� frequen
y of49 Hz. This �lter removes the high frequen
y noise 
ontent of the BSPM.Although a 5-15 Hz bandpass �lter is used in many of the most popularalgorithms, it will not be used in this one. One reason for this is that theAHA [21℄ states that the QRS 
omplex 
ontains higher frequen
ies thanthis. (In addition, both averaging and smoothing will be applied to thesignal in later steps.)
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Figure 4.9: A 
hannel of a BSPM before any pro
essing steps has been applied.It is 
lear from this �gure that automati
 dete
tion of QRS 
omplexes in this
hannel is di�
ult without modi�
ations to the BSPM.Step 2: Highpass �ltering is applied to all the 
hannels. In addition to re-moving the drift and DC 
omponent in the BSPM, the highpass �lter isintended to in
rease the magnitude of the QRS 
omplex relative to theother parts of the BSPM. Sin
e the T-wave primarily 
onsists of frequen-
ies in the range 1-2 Hz [21℄ and the QRS 
omplex primarily 
onsists offrequen
ies in the range 5-20 Hz [21℄, [39℄ a highpass �lter with 
uto�frequen
y 5 Hz is used. The highpass �lter used is the same as the onedes
ribed in Se
tion 4.2.2, but with �lter length M = 3000 and a di�erent
uto� frequen
y. The result of the two �rst steps on the sample 
hannel
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Figure 4.10: This �gure shows the BSPM 
hannel from Figure 4.9 after step 1and step 2 of the QRS dete
tion algorithm has been applied.of a BSPM 
an be seen in Figure 4.10. Although this 
hannel is suitedfor dete
ting QRS 
omplexes, not all 
hannels in a BSPM will be. The



46 Methods and algorithmsnext step is therefore to identify and remove those 
hannels when usingthe QRS dete
tion algorithm.Step 3: Removal of disturbing 
hannels. Some 
hannels in a BSPM will be toonoisy to provide information about the lo
ation of the QRS 
omplexes.The step after this one will involve 
reating an average BSPM sequen
efrom the 
hannels in the BSPM. Channels with too mu
h noise and toohigh amplitude, su
h as the one in Figure 4.6 will aggravate this average.For this reason, all 
hannels too deviant from the median of the BSPM willbe removed from the dataset before the rest of the algorithm is applied.The method des
ribed in Se
tion 4.3.1 is used for this step.Step 4: Absolute value and averaging. The absolute value of ea
h 
hannelthat passed through the previous step is now 
omputed to make all thedata points in the signal positive. The ele
tromagneti
 signals originatingfrom the heart propagates at high speed through the body. The sig-nals will therefore rea
h the ele
trodes at di�erent pla
es on the bodysurfa
e at, for all pra
ti
al and 
omputational purposes, the same time.Thus ea
h 
hannel of the BSPM will have the QRS 
omplexes at thesame times, whi
h is shown in Figure 4.11. The average BSPM is 
re-
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Figure 4.11: This is a plot of a single heartbeat from all 64 
hannels in a BSPM.Although both the form and amplitude varies mu
h from 
hannel to 
hannel,all QRS 
omplexes o

ur roughly at the same time.ated from all the 
hannels V i that by now 
ontains only positive values:
BSPMaverage(x) = 1

N

∑N
i=1 V i(x), where N is the number of 
hannelsin
luded in the 
omputation of the average and V i(x) is the 
hannel i ofthe BSPM at index x. This average will have di�eren
es in amplitudein the QRS 
omplexes redu
ed, and will also have less random variationsthan ea
h individual 
hannel. At this point, the QRS 
omplexes havebeen ampli�ed and equalised, while the other parts of the signal has beensuppressed.Step 5: Moving average �ltering. A moving average �lter is applied to the
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Figure 4.12: The Vaverage 
omputed by applying steps 1-4 of the QRS dete
tionalgorithm.BSPM returned from the previous step of this algorithm, to 
reate a newsignal sequen
e BSPMsmoothed. The duration of a normal QRS 
omplexis 60-100 ms. The length of the moving average �lter is sele
ted to be 101points, whi
h with a sampling rate of 2048 Hz 
orresponds to 49.3 ms.This is long enough to keep the high QRS peaks, without the high valuesfrom the QRS peaks 
reating falsely high P and T waves. This smoothingwill, in addition to further evening the amplitude of the QRS 
omplexes,remove many lo
al maxima that 
ould disturb the dete
tion of the QRS
omplexes.
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Figure 4.13: The smoothed average BSPM obtained by applying step 1-5 of theQRS dete
tion algorithm to a BSPM. The horizontal line is the threshold valueof 0.4 · max(BSPMsmoothed).Step 6: Finding values larger than the threshold value. Now the smoothedBSPM is sear
hed for values ex
eeding a preset threshold value to �ndpotential QRS 
andidates. The threshold value is 
hosen to be 0.4 ·
max(BSPMsmoothed) and is frequently used in other QRS dete
tion al-gorithms [33℄, [14℄, [18℄. Both averaging over the BSPM 
hannels and



48 Methods and algorithmssmoothing of the average have evened the amplitude of the QRS peaks,so a QRS 
omplex is unlikely to be lower than 0.4 times the largest QRS
omplex in any dataset. The algorithm sear
hes for periods where all 
on-se
utive data points in BSPMsmoothed for 40ms or more is higher than thethreshold value. When su
h a period is found the algorithm stores it as
intervalstart. Then it starts to sear
h for 40ms of 
onse
utive data pointswhi
h is lower than the threshold value and stores it as intervalend. Thisprodu
es an interval with high values of BSPMsmoothed, where a QRSvalue is lo
ated. Now the max value of BSPMaverage is found in thatinterval, and the index in the ve
tor BSPMaverage in whi
h this maxvalue is lo
ated is stored in ∆(i). In other words, the ve
tor ∆ is the in-dexes of the maximum elements of BSPMaverage in all the found intervals
[intervalstart, intervalstop].After a QRS 
omplex is found, the algorithm 
ontinues it's sear
h 200msafter that QRS 
omplex , sin
e there is a physiologi
al refra
tory periodabout this long [18℄. After this sear
h has been 
ondu
ted on the entiresignal, the QRS 
omplexes of BSPMaverage has been found. The elementsof the ve
tor ∆ then 
ontains the temporal lo
ation of the QRS 
omplexes.Sin
e the QRS 
omplex o

urs at the same time for all 
hannels of a BSPM,these QRS 
omplexes are the QRS 
omplexes of ea
h 
hannel of the BSPMas well (See Figure 4.11). Figure 4.14 shows the same time segment of theBSPM 
hannel from Figure 4.9 , with the QRS 
omplexes marked. Notethat although the 
orre
t QRS 
omplexes has been identi�ed, they havenot been lo
ated exa
tly at the peak of the 
omplex in this 
ase. Althoughthe ele
tri
 signal rea
hes ea
h 
hannel at the same time, the 
hannels willre
ord the signals di�erently.
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Figure 4.14: This is a short time segment of a BSPM, with the found QRS 
om-plex values marked with a dot. As the �gure shows, the 
orre
t QRS 
omplexwas found even when there were neighbouring peaks of high amplitude.Step 7: Although the six previous steps will �nd all the QRS 
omplexes in aBSPM in most 
ases, abnormal T waves or other unpredi
ted sour
es may
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tion 49produ
e false positives. These need to be sorted out. This last step of theQRS dete
tion algorithm will make use of the fa
t that the time betweenea
h heartbeat should be about the same length1.The median distan
e between the dete
ted QRS 
omplexes is 
omputed,and is termed L. The temporal lo
ation of the QRS 
omplexes found instep 6 of the algorithm is 
olle
ted in the ve
tor ∆, with ea
h element of
∆ being the estimated lo
ation of a QRS 
omplex. In this last step of thealgorithm, two 
andidates for ea
h QRS 
omplex is tested against ea
hother: The previously found values in ∆, and predi
ted values using themedian distan
e L. The new ve
tor 
onsisting of the lo
ations of the QRS
omplexes is given the name ∆new .The �rst element is set equal to the one found using step 1-6; ∆new(1) =
∆(1). Determining the rest of the QRS 
omplex values is a bit more 
om-pli
ated. Assuming ∆new(i) is found, ∆new(i + 1) is found the followingway: Two 
andidates for the value is 
omputed. The �rst, 
alled ∆o ispi
ked from the previously found set of QRS 
omplex lo
ations ∆ at asuitable lo
ation:

∆o = min
j=1,...,H

{∆(j) > (∆new(i) + 300)}, (4.12)where H is the number of QRS 
omplexes in ∆. This essentially pi
ksthe �rst value of ∆ lo
ated 300 data points or more after ∆new(i). These
ond 
andidate ∆p for ∆new(i + 1) is predi
ted using the knowledge ofthe median distan
e between the previously found QRS 
omplexes:
∆p = the index of max

x∈[a,b]
{BSPMaverage(x)}with a = ∆new(i) + L − 200and b = ∆new(i) + L + 200. (4.13)Thus, the value ∆p found in (4.13) is the temporal lo
ation of the maxi-mum value of BSPMaverage, in the interval where a QRS 
omplex shouldo

ur.Now the two 
andidates∆o and ∆p for the QRS 
omplex lo
ation∆new(i+

1) has been found. ∆new(i+1) is then set equal to ∆o if BSPMaverage(∆o)
> BSPMaverage(∆p), and equal to ∆p otherwise.This is 
ontinued for in
reasing values of i until the end of the signal
BSPMaverage is rea
hed. ∆new now 
ontains the �nal QRS 
omplex lo-
ations that will be used in later 
omputations. This last step of thealgorithm will work well in 
orre
ting sets of found QRS 
omplexes inwhi
h there are a few false positives or undete
ted QRS 
omplexes.The output of the QRS dete
tion algorithm is a ve
tor 
ontaining the QRSpeak's temporal lo
ation . All the steps in the algorithm was just steps towardobtaining the QRS values. Thus all 
hanges made to the BSPM during the QRSdete
tion algorithm were temporary, and will not be used in further pro
essingof the BSPM.1This is only the 
ase in patients with normal heart rhythm. Patients with heart 
onditionssu
h as arrhythmia will have heartbeats of uneven duration. This algorithm is designed towork in these 
ases as well.



Chapter 5Evaluation of methods andalgorithmsIn Chapter 4 a number of algorithms for performing several BSPM pro
essingtasks were presented. This 
hapter 
ontains an evaluation of the performan
eof these algorithms. Where multiple algorithms for performing the same taskwere presented, a 
omparison will be made. It is important to note that all thealgorithms have been evaluated with one goal at hand: To improve BSPMs fordete
ting is
hemia by measuring di�eren
es in ST segment shifts.5.1 Noise redu
tion in signalTwo algorithms were proposed to remove high frequen
y noise from BSPMs. Anot
h �lter was designed to remove the 50 Hz powerline noise that is presentin some BSPMs. A lowpass �lter was also designed to remove all frequen
iesabove a desired 
uto� frequen
y. These �lters were applied to several real patientre
ordings. The results of applying the �lters to BSPMs is given below, togetherwith a des
ription of what these results indi
ate.5.1.1 Not
h �lter to remove powerline noiseThe not
h �lter has been tested on BSPMs with little to none 50 Hz powerlinenoise. Figure 5.1 shows a plot of a 
hannel of su
h a BSPM before and afterthe not
h �lter has been applied. As expe
ted, the BSPM is almost identi
albefore and after the �lter was applied. This is be
ause there was very little50 Hz frequen
y present in the BSPM before �ltering, and removing these verysmall parts of the re
ording will only result in minor 
hanges.In Figure 5.2 the not
h �lter was applied to a BSPM with mu
h 50 Hzpowerline noise present. The �gure shows a smoother BSPM with less random�u
tuations after the not
h �lter has been applied. A look at Figure 5.3 
on�rmsthat only the frequen
y 
omponents 
lose to 50 Hz has been removed, and thusthe Signal-to-Noise Ratio has been improved.
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Figure 5.1: The dashed line shows a 
hannel of a BSPM with little 50 Hz powerline noise. The solid graph shows the BSPM after a not
h �lter has been appliedto remove the 50 Hz 
omponents of the BSPM. They are 
learly almost identi
al.
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Figure 5.2: The blue graph shows a 
hannel of a BSPM 
ontaminated with 50Hz power line noise. The red graph shows the BSPM after a not
h �lter hasbeen applied to remove the 50 Hz 
omponents of the BSPM.
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Figure 5.3: Parts of the frequen
y spe
trum of a BSPM 
ontaminated by 50Hz powerline noise. The blue graph shows a BSPM 
ontaminated with 50 Hzpower line noise. The red graph shows the BSPM after a not
h �lter has beenapplied to remove the 50 Hz 
omponents of the BSPM. As the �gure shows, thenot
h �lter 
auses near to no distortions in other frequen
ies than those in theimmediate neighbourhood of 50 Hz.



5.1 Noise redu
tion in signal 535.1.2 Lowpass �lter to remove high frequen
y noiseThe lowpass �lter with 
uto� frequen
y 49Hz has been applied to the sameni
e signal as was used in Figure 5.1. Little of the 
ontent of the BSPM was infrequen
ies above 50 Hz, and removing these frequen
ies should therefore resultonly in minor 
hanges in the BSPM. The result 
an be seen in Figure 5.4. Itis 
lear that the lowpass �lter produ
ed no signi�
ant distortions in this ni
eBSPM.
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Figure 5.4: The dashed line shows a BSPM with little 50 Hz power line noiseor other high frequen
y noise. The solid line shows the BSPM after the low-pass �lter with 
uto� frequen
y of 49 Hz has been applied to remove the highfrequen
y 
omponents of the BSPM. They are 
learly almost identi
al.In Figure 5.5 the lowpass �lter was applied to a BSPM with mu
h highfrequen
y 
ontent. The result of the �ltering is a mu
h smoother BSPM withless abrupt variations in amplitude. Not only is this mu
h ni
er visually, it isalso more useful for doing 
al
ulations on the di�erent phases of the signal sin
ethe randomness has been redu
ed. The danger with applying this lowpass �lteris that it is di�
ult to know if only noise is removed, or if parts of BSPMsignalalso is removed. That the lowpass �lter introdu
es no signi�
ant 
hanges toBSPMs with low noise 
ontents like the one in Figure 5.4, is a good indi
ationthat it will not introdu
e signi�
ant 
hanges in the BSPMsignal part of BSPMswith higher noise 
ontent. Similar results were a
hieved when applying thelowpass �lter with a 
uto� frequen
y of 49 Hz to other BSPMs as well.5.1.3 Results from noise redu
tionTo test the noise redu
tion algorithms further, six real BSPMs were used, withboth exer
ise and rest re
ordings from ea
h of the six. The re
ording in 
hannel
i of a BSPM will be 
alled V i. As a validation that the noise removed does not
ontain important information about BSPMsignal, the noise will be 
orrelatedwith a referen
e signal. The referen
e signal is 
hosen to be the median heartbeat
V i

median of ea
h 
hannel V i. An illustration of su
h a V i
median 
an be seen inFigure 5.6.
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Figure 5.5: The blue graph shows a BSPM with mu
h high frequen
y 
ontent.The red graph shows the BSPM after the lowpass �lter with 
uto� frequen
y of49 Hz has been applied to remove the high frequen
y 
omponents of the BSPM.
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Figure 5.6: The median heartbeat of a BSPM in solid line, and a randomlysele
ted heartbeat from the same BSPM in the dashed line. As 
an be seen, theabrupt random variations is redu
ed in the median heartbeat.



5.1 Noise redu
tion in signal 55Before the noise redu
tion algorithms were applied, the drift was removedfrom the re
ordings using the highpass �ltering methods des
ribed in Se
-tion 4.2.2. Thus, ea
h re
ording used 
onsisted mainly of BSPMsignal and
BSPMnoise before noise redu
tion was applied. Also, the re
ordings in whi
hno useful information 
ould be 
ontained were removed.For ea
h heartbeat V i

j , the noise removal algorithms removed a part ni
j thatwas labelled as noise. To test if this really was noise, or 
ontained informa-tion important to BSPMsignal, ni

j was 
orrelated with the referen
e heartbeat
V i

median in the following way:
ρi =

1

H

H
∑

j

corr(ni
j , V

i
median),where H is the number of heartbeats in the 
urrent 
hannel i. The 
orrelationnumber ρ = 1

64

∑64
1 ρi, with 64 being the number of 
hannels in a BSPM, was
omputed for ea
h patient. Ea
h ρ des
ribes how 
orrelated the noise removedfrom the BSPM is with the medians of the 
orresponding 
hannels. This resultedin 
orrelation numbers representing how 
orrelated the noise removed is withthe median heartbeats, and 
an be seen in Table 5.1.Patient state not
h �l-ter lowpass�lter 50Hz lowpass�lter 100Hzpatient1 rest 0.0715 0.1102 0.0010patient1 exer
ise 0.0085 0.0169 0.0017patient2 rest 0.0340 0.0764 0.0157patient2 exer
ise 0.0024 0.0102 0.0026patient3 rest 0.0444 0.0799 0.0185patient3 exer
ise 0.0052 0.0118 0.0054patient4 rest 0.0018 0.0192 0.0000patient4 exer
ise 0.0728 0.0177 0.0013patient5 rest 0.0122 0.0084 0.0058patient5 exer
ise 0.0076 0.0051 0.0025patient6 rest 0.0148 0.0210 0.0107patient6 exer
ise 0.0112 0.0190 0.0064Table 5.1: The 
orrelation number between the noise removed from the signal,and the median heartbeat. As 
an be seen, there is not mu
h 
orrelation betweenthe median heartbeats and the noise removed.As Table 5.1 shows, both the not
h �lter and 100 Hz 
uto� lowpass �lterremoves elements that are very little 
orrelated with the median heartbeat. Thisindi
ates that the parts that are removed 
onsists mainly of random noise, andnot signal. Also the 50 Hz 
uto� lowpass �lter removes elements that are little
orrelated with the median heartbeat. In some 
ases, the 
orrelation numberbetween the median and the parts removed with 50 Hz lowpass �lter shows somedegree of 
orrelation. Sin
e the highest frequen
ies 
ontained in BSPMsignal isin the QRS 
omplex, the parts removed will probably not introdu
e disturban
esto the ST segment.



56 Evaluation of methods and algorithms5.2 Drift redu
tionThe four drift redu
tion algorithms dis
ussed in Se
tion 4.2 were tested onvarious BSPM re
ordings. Sin
e there is su
h large variations in the drift indi�erent BSPM re
ordings, this se
tion will take a look at the performan
eof the four methods on a large range of di�erent BSPMs. The most desiredproperties of a drift redu
tion algorithm is that it will work equally well on allkinds of BSPMs. It should also introdu
e minimum distortions to the ST andPR segments while removing as mu
h of the drift as possible.In all the following tests in this se
tion, 20 se
ond segments of re
ording willbe used. Some �gures will display smaller parts of the segments for illustra-tional purposes. Testing the performan
e of the drift redu
tion algorithms onreal BSPM re
ordings is di�
ult, sin
e there is no a priori knowledge on howthe drift should be in ea
h 
ase. Therefore the results will be analysed in manyrepresentative 
ases, and a 
on
lusion will be drawn on the all round perfor-man
e. As a minimum requirement the algorithms should be able to removeslow varying drift from a ni
e and tidy signal.5.2.1 Drift redu
tion on ni
e BSPMsIf an algorithm performs poorly when removing the simplest forms of drift, it willprobably not be good at more 
omplex 
ases. This se
tion will take a look at theperforman
e on BSPMs with little noise disturban
es. Sin
e it is easiest to seethe pre
ision of the drift approximation in the simplest 
ases, bad performan
ehere will be a good indi
ation of bad performan
e in more 
omplex 
ases. Figure
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Figure 5.7: The four di�erent drift redu
tion algorithms' approximation to thedrift in a ni
e BSPM 
hannel from a healthy person.



5.2 Drift redu
tion 575.7 is a typi
al example of a ni
e BSPM with slow varying drift. The drifthas been approximated by the four drift redu
tion algorithms, and plotted onthe BSPM. There is a di�eren
e in the amount of drift removed between thefrequen
y based and the spline based drift approximations. However, the fourplots of the drift approximations are 
lose to parallel, whi
h means that theywill give similar results when 
al
ulating ST PR di�eren
es.
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Figure 5.8: The approximation of the drift by the four di�erent drift redu
tionalgorithms in a ni
e BSPM from a healthy person during exer
ise.Figure 5.8 shows the drift approximations to the drift in a ni
e BSPM 
hannelfrom a healthy person during exer
ise. The heartbeat rate is greater than the onein Figure 5.7. Small deviations from the baseline with a period of a heartbeator less will therefore not be 
aught up by the frequen
y based algorithms, sin
ethese use a 
uto� frequen
y of 0.5 Hz. When the heartbeat rate is this high,the spline methods will give a straighter baseline after drift redu
tion, while thefrequen
y based methods will remove a smoother drift approximation from theBSPM. This 
an also be seen in Figure 5.9, where the spline drift approximationsfollow the abrupt parts of the drift to a greater degree than the frequen
y driftapproximations does.5.2.2 Drift redu
tion on noisy BSPMsAs seen above, the drift redu
tion algorithms all worked quite well on BSPMswith little high frequen
y noise present. Sin
e the algorithms need to work wellon all kinds of BSPMs, they have also been tested on noisier BSPM re
ordings.Figure 5.10 shows the drift approximations to a BSPM with mu
h noise present.As expe
ted, the spline methods' drift approximations are more sensitive to
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Figure 5.9: The four di�erent drift redu
tion algorithms' approximation to thedrift in a BSPM with little noise and mu
h drift.high frequen
y noise. The deviation from baseline in the knot values in
reasesas the amount of high frequen
y noise in
reases, and results in a de
rease inthe pre
ision of the splines' drift approximations. The frequen
y based driftapproximation methods' performan
e will not be a�e
ted by the noise present,sin
e they operate purely on the low frequen
ies of the BSPM.The drift redu
tion algorithms was also applied to noisy BSPMs with more
omplex drift. Mu
h noise present in a BSPM 
an redu
e the pre
ision ofthe spline based drift redu
tion algorithms, though not mu
h. Be
ause of themethod used when 
al
ulating the knot values in the splines, the algorithms 
anhandle mu
h noise before anything more than minor faults o

ur (see Figure5.12) Still, this illustrates the importan
e of removing the high frequen
y noisefrom the BSPM before applying spline based drift redu
tion algorithms.5.2.3 The impa
t of drift redu
tion on phase di�eren
e
al
ulationsSo far, the pre
ision of the four drift redu
tion algorithms has been tested anddis
ussed. Extra fo
us will now be turned to the property of the algorithmsthat is of most importan
e to this study. The pro
essed BSPMs will be usedto 
al
ulate ST PR di�eren
es to diagnose is
hemia. Hen
e it is vital that theST and PR segments of the BSPM is preserved as true as possible after driftredu
tion has been applied. The BSPM of a patient with is
hemia with driftremoved using the four methods 
an be seen in Figure 5.13. An importantproperty for the drift redu
tion algorithms to have, is that they do not distort
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Figure 5.10: A BSPM 
hannel with a lot of high frequen
y noise present, anda slow varying drift. The drift approximations 
omputed by the four drift re-du
tion algorithms are displayed on top of the BSPM. It is 
lear that the drift
omputed by the two spline based algorithms deviates randomly from the a
tualdrift at some points. This de
rease in pre
ision is a result of the high frequen
ynoise present, and will only a�e
t the spline based algorithms
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Figure 5.11: The same BSPM as in Figure 5.10, but with noise removed us-ing a 49 Hz 
uto� lowpass �lter. With the high frequen
y noise removed, animprovement in the two spline based drift approximations 
an be seen.
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Figure 5.12: An BSPM with high frequen
y noise present, and a 
omplex drift.Approximations to the drift is shown on top of the BSPM. The noise 
ausesminor disturban
es to the spline base drift approximations, but they still yieldgood results.
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Figure 5.13: The drift redu
tion algorithms has been applied to the exer
iseBSPM of a person with is
hemia. The 
hara
teristi
 lowered ST segments arepreserved with all of the four algorithms.the ST and PR segments of the signal. In most 
ases, like in Figure 5.13, the fourmethods performed equally well. In some other 
ases, like those seen in Figure5.9 and 5.8 the frequen
y based algorithms will not give a good approximation tothe faster varying drift, whi
h may 
ause some segments of the signal to deviatemore from the baseline than it should. In the following se
tion, a method willbe pi
ked in favour of the three other.5.2.4 Con
lusions on drift redu
tionAll of the four drift removal algorithms implemented in this thesis made goodapproximations to the drift in BSPM signals. Two frequen
y based algorithms(highpass �ltering and wavelet transform �ltering) and two spline interpolationbased algorithms (linear and 
ubi
) were used to approximate the drift in asignal. The frequen
y based algorithms had similar performan
e, and the twospline based performed similar to ea
h other while di�erent from the frequen
ybased algorithms.The major advantage of the frequen
y based algorithms is that their perfor-man
e will not be a�e
ted by higher frequen
y noise in the BSPM. They willalso remove exa
tly the same frequen
ies from all BSPMs. Their drawba
k istheir inability to remove drift with frequen
y 
omponents higher than 0.5Hzthat is often present in BSPMs re
orded during exer
ise. Thus, when the ap-proximated drift has been removed from the BSPM, there will still be somebaseline deviations in some signals.



62 Evaluation of methods and algorithmsThe spline based algorithms will deal better with this problem, as the approx-imation 
reated by them will follow the drift in the signal to a greater degree.Thus a BSPM improved with one of the spline based drift removal algorithmswill have a straighter baseline with fewer deviations. The major drawba
k ofthe spline based methods, is that their performan
e relies on the sele
tion ofknot values right before the onset of ea
h QRS 
omplex. A robust QRS 
omplexdete
tion algorithm and good methods for removing high frequen
y and 50Hznoise 
omponents will minimise the e�e
t of this drawba
k.All over, the four algorithms performed well. Ea
h algorithm has advantagesand drawba
ks 
ompared to the others. While it is di�
ult to draw a de�nite
on
lusion, there were some indi
ations that some algorithms performed betterthan others. The 
ubi
 spline interpolation method is 
onsidered the best of thefour in the tasks required for this thesis. The ability to approximate drift withfaster variations than 0.5Hz was the ability weighted the most. Also, the 
ubi
version was sele
ted over the linear be
ause of its smoother approximationsto the drift. This makes it the most robust of the four methods, as it willperform well on BSPMs with fast heartbeat rates as well as slow ones. Thegood performan
e of the QRS 
omplex dete
tion algorithm and noise redu
tionalgorithms were helping fa
tors in this de
ision.
5.3 Results from removing 
orrupted signalsEven after noise and drift redu
tion algorithms have been applied to a BSPM,there will often be noise and artefa
ts present. In Se
tion 4.3 four di�erentmethods for removing 
orrupted and deviating parts of a BSPM were presented.All of these methods improve the re
orded BSPM by removing parts that isdeemed 
orrupted with respe
t to a given toleran
e. It is obvious that theamount of signals 
lassi�ed as 
orrupted depends on the stri
tness of the settoleran
e.With the limited number of BSPMs available for testing, it is not possible toprovide ideal parameters for these methods. Parameters that result in the bestremoval of 
orrupted or noisy heartbeats of the BSPMs available at this point,may not be ideally �t for other BSPMs. When determining the parametersused in this thesis, the six available BSPMs where split into training and testsets. A training set of four BSPMs and a test set of two were used. Theparameters were sele
ted to �t the four datasets in the training set, and testedto see if they �tted the test sets. Then new test and training sets 
onsisting ofdi�erent permutations of BSPMs were formed. This pro
edure was repeated,and suitable parameters were found. Not using too stri
t toleran
es was deemedmost important in this pro
ess.With a larger number of BSPMs available than at the present time, theparameters performing best on an arbitrary BSPM 
an be found. A similarmethod of using training and test sets is a possible way of doing this. Withthese sets being signi�
antly larger than at this point, one 
an be more 
ertainthat the found parameters �ts BSPMs re
orded at a later point.
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Figure 5.14: An example of a 
hannel in whi
h the whole 
hannel was removedby the sorting algorithm.5.3.1 Results from Removing destroyed 
hannelsIn this se
tion, the method des
ribed in Se
tion 4.3.1 will be evaluated. Themethod removes whole 
hannels if parts of it deviates too mu
h from the me-dian of all 
hannels. Some QRS 
omplexes in otherwise ni
e signals 
an haveamplitude several mV greater than the average QRS 
omplex. Thus a largetoleran
e should be used with this method. When the algorithm is used as oneof the �rst steps in the QRS dete
tion algorithm, a toleran
e of about 5mVshould do. This way, most signals will be kept while 
orrupted 
hannels and
hannels with abnormally high QRS 
omplex peaks will be removed. While thisis a good method for sorting out 
hannels in one of the �rst steps of a QRSdete
tion algorithm, other less 
oarse methods will be better in improving anarbitrary BSPM.5.3.2 The performan
e of the 
ombined sorting algorithmIn Se
tion 4.3.6 a re
ursive 
ombination of the four methods des
ribed in Se
-tion 4.3 (ex
luding that of Se
tion 4.3.1) was proposed. As mentioned earlier,too few body surfa
e potential mappings were available to determine the idealtoleran
es. Instead, some examples of the performan
e of the 
ombined sortingalgorithm will be given. The toleran
es were found using training and testingsets from the few date sets available.In the 
ombined sorting algorithm, four toleran
es were used. After testing,these were set to tol_1 = 2, tol_2 = 0.05, tol_3 = [0.7, 0.6, 0.5, 0.4, 0.3]and tol_4 = [0.14, 0.13, 0.12, 0.11, 0.10]. Some illustrations of the algorithm'sperforman
e is given in Figure 5.14 - 5.16.The parameters used was a good 
ombination for keeping as mu
h informa-tion as possible, while also sorting out the too noisy or 
orrupted heartbeats.If less than 1
5 of the original number of heartbeats in a 
hannel was left afterthe sorting, the whole 
hannel was removed. The 
hoi
e of this value was a
ompromise between having enough heartbeats left in a 
hannel to get a reli-able measurement of the ST segment and the need to have ST segment shiftvalues for as many points on the body surfa
e as possible. By in
reasing thisnumber, ST segment shifts from fewer 
hannels of the BSPM may be 
omputed,but these will in turn be more trustworthy. The sorting algorithm was applied
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Figure 5.15: An example of two heartbeats (dashed line) that have been removedbe
ause their ST and PR segment deviates too mu
h from the rest of the BSPM
hannel (solid line).
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Figure 5.16: In this �gure, an abnormally wide QRS 
omplex resulted in anarti�
ial shift in the signal was introdu
ed by the spline drift removal algorithm.The two heartbeats plotted with a dashed line was removed by the method basedon the drift approximation's se
ond derivatives.



5.3 Results from removing 
orrupted signals 65to six real BSPM re
ordings. In the �ni
est� of these only two 
hannels were
ompletely removed. In the BSPM with the noisiest or worst signals, 9 whole
hannels were 
ompletely removed.

5 10 15 20 25 30

−3

−2

−1

0

1

2

3

channel

m
V

 

 
exercise ST shift
rest ST shift

Figure 5.17: The mean ST segment shift values of the 32 �rst 
hannels bothduring rest and during exer
ise, with 
orresponding standard deviations. This isthe mean ST segment shifts of a patient 
omputed before the sorting algorithmhas been applied. Note the high standard deviations in most 
hannels.
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Figure 5.18: The mean ST segment shifts of both exer
ise and rest re
ordingwith 
orresponding standard deviations. This is the values for the same patientas is plotted in Figure 5.17, but after the sorting algorithm has been applied.Note that the standard deviations has been greatly redu
ed.By removing the noisy, 
orrupted and deviating heartbeats, the standarddeviation in the measured ST segment shifts is greatly redu
ed. Figure 5.17and Figure 5.18 shows the mean ST segment shift of the 32 front 
hannels ofthe noisiest of the six BSPMs. The �gures show both the ST segment shiftand the 
hannels standard deviation, for both rest and exer
ise re
ordings. Byredu
ing the standard deviation this mu
h, the sorting algorithm provides more
orre
t measures of the ST segment shift.



66 Evaluation of methods and algorithms5.4 QRS dete
tion on real BSPMsAnd now to something 
ompletely di�erent: In Se
tion 4.4.2 a QRS dete
tionalgorithm was proposed. Here the performan
e of this algorithm will be dis-
ussed, and some results presented. Step 1 to 6 of the algorithm dete
ts QRS
omplexes in a wide range of BSPM signals. Abnormally large P or T waves,or high amplitude noise may produ
e false positives. Step 7 of the algorithm isdesigned for 
orre
ting this, by making use of information about when a QRS
omplex should o

ur.The QRS dete
tion algorithm was applied to both the rest and exer
isere
ording of the six BSPMs available. From ea
h patient, 60 se
onds of exer
isere
ording and 601 se
onds of rest re
ording was used. This made a total of 690se
onds of BSPM re
ordings for the QRS dete
tion algorithm to be tested on.The algorithm dete
ted 1287 out of 1289 QRS 
omplex peaks, and produ
edno false positives. In this limited test, the algorithm thus had a sensitivity of
99.8% and a spe
i�
ity of 100% (spe
i�
ity being the per
entage of dete
tedQRS peaks that are real QRS peaks). These are promising results, but testingon mu
h larger data sets is required to 
on�rm the e�e
tiveness of this algo-rithm. For the purpose of dete
ting is
hemia from ST segment shift di�eren
es,a high spe
i�
ity is more important than the sensitivity. A falsely dete
ted QRS
omplex may lead to a false ST segment shift being 
omputed. An undete
tedQRS 
omplex however, will only redu
e the number of heartbeats available forST segments measuring by one. Thus, if later testing shows a de
rease in spe
i-�
ity, measures should be taken to in
rease it. In
reasing the treshold value orusing adaptive thresholds may in
rease the spe
i�
ity, but may also lead to ade
rease in sensitivity.

1For one of the patients, only 30 se
onds of rest re
ording were available.



Chapter 6The 
omplete algorithm andresultsIn Chapter 4 many algorithms for performing di�erent pro
essing tasks on aBSPM were presented. In Chapter 5 these algorithms were evaluated one ata time. In this 
hapter a dis
ussion is made on how these algorithms are puttogether to form a 
omplete BSPM pro
essing algorithm. The 
omplete BSPMpro
essing algorithm is automati
, so it takes raw data as input. The output ofthe algorithm is a ve
tor of numbers des
ribing the di�eren
es in ST segmentelevation/depression. These numbers 
an, when viewed properly, give an indi-
ation on whether a patient su�ers from is
hemia or not. Among other things,the output 
an also be used as input to methods 
omputing the ele
tri
al a
-tivity in the heart, as an inverse problem. Manual 
hoosing of ST segment shiftdi�eren
es is very time 
onsuming and ina

urate. This is the main reason for
reating an automati
 algorithm for doing this, utilising the methods developedin this thesis.The pro
essed BSPMs will be inspe
ted to see if they provide good data forre
ognising signs of is
hemia in a patient. The pro
essed data provide 
learerand more trustworthy data for this kind of testing, as will be seen towards theend of this 
hapter.6.1 The �nal BSPM pro
essing algorithmWhen there is suspi
ion that a patient su�ers from is
hemia, a BSPM of that pa-tient 
an be re
orded. The re
ording is done of the patient both during rest andexer
ise. The di�eren
e in ST segment between these two re
ordings 
an givean indi
ation of whether the patient su�ers from is
hemia or not. The BSPMis a re
ording of the potential di�eren
es in the ele
tri
al signals propagatingfrom the heart to 64 points on the body surfa
e. Unfortunately, a variety ofother signals are also re
orded. These are 
lassi�ed as noise and baseline drift.The total re
ording in a BSPM has been modelled as (3.1):
BSPM = BSPMsignal + BSPMnoise + BSPMdrift.The main goal of the automati
 BSPM pro
essing algorithm is to minimisethe amount of BSPMnoise and BSPMdrift present in all kinds of BSPM re
ord-



68 The 
omplete algorithm and resultsings, while keeping BSPMsignal un
hanged. The algorithm is a 
ombinationof methods developed and dis
ussed earlier in this thesis, and will produ
e animproved re
ording 
alled BSPMimproved. A simpli�ed model of the algorithmis given:
BSPMimproved = BSPMsignal + BSPMnoise + BSPMdrift

−Anoise − Adrift − Adeviants,
(6.1)where Anoise and Adrift are approximations to the noise and drift in the signaland Adeviants is the 
orrupted 
hannels and heartbeats that is removed. Whenthe BSPM has been 
leaned of artefa
ts and noise, ST segment shift di�eren
esis 
al
ulated from BSPMimproved.All the methods in
luded in the automati
 algorithm has been des
ribed indetail in previous 
hapters. Hen
e, this se
tion will only in
lude an overview ofhow these methods are 
ombined. The pro
ess of the algorithm is split into �vesteps, ea
h produ
ing an output that is used as input to the next step.6.1.1 Noise redu
tionThe �rst step of the automati
 BSPM pro
essing algorithm is noise redu
tion.The performan
e of the noise redu
tion methods is not a�e
ted by the othersteps in the algorithm, but several of the other steps perform better if noiseredu
tion has been applied �rst. The algorithms des
ribed in Se
tions 4.1.1 and4.1.2 are applied. The lowpass �lter will use a 
uto� frequen
y fcutoff = 49Hz.All 
hanges made in the BSPM by this step of the algorithm is kept for thelater stages. This improves the BSPM re
ording by removing parts of the signal

Anoise 
lassi�ed as noise:
BSPMnoiseimproved = BSPMsignal + BSPMnoise + BSPMdrift − Anoise.6.1.2 QRS 
omplex dete
tionAfter noise redu
tion has been applied to the BSPM, the time has 
ome to dete
tthe QRS 
omplexes. All the later steps of the BSPM pro
essing algorithmrequire information about the lo
ation of the QRS 
omplexes or heartbeats.The method used for dete
ting the QRS 
omplex peaks of ea
h heartbeat isdes
ribed in detail in Se
tion 4.4.2. Although the BSPM is modi�ed in di�erentways to dete
t the QRS 
omplex peaks, none of these modi�
ations are kept forlater stages of the BSPM pro
essing algorithm. The output of this step in thealgorithm is the lo
ation of the QRS peaks, and from this information of whereea
h heartbeat in the 
hannels of the BSPM starts and ends.6.1.3 Drift removalThe 
ubi
 spline interpolation method for removing drift in the BSPM wasdeemed the best of the four methods for drift removal tested in this thesis.Using the output of the last step in the BSPM pro
essing algorithm, the 
ubi
spline interpolation method for drift removal des
ribed in Se
tion 4.2.1 
an nowbe applied. The method makes an approximation Adrift to the drift in theBSPM, and subtra
ts it from the data:

BSPMdriftimproved = BSPMnoiseimproved − Adrift.



6.2 Comparison of BSPM and ECG 69The 
hanges made to the BSPM during this step of the algorithm are kept forlater stages.6.1.4 Identifying and removing 
orrupted parts of signalAt this stage in the algorithm, both noise redu
tion and drift removal hasbeen applied. If Anoise ≈ BSPMnoise and Adrift ≈ BSPMdrift, the signal
BSPMdriftimproved used at input to this step of the algorithm is

BSPMdriftimproved ≈ BSPMsignal.Unfortunately this is rarely the 
ase. In most BSPMs there will be parts ofindividual 
hannels, or even whole 
hannels, whi
h are still distorted by noiseor simply do not 
ontain any heart signal information at all! These parts of theBSPM are removed in this step of the algorithm. For removing the 
orruptedand deviant parts of BSPMdriftimproved, the re
ursive algorithm des
ribed in4.3.6 is used. After this step is applied, the �nal BSPMimproved in (6.1) isobtained.6.1.5 Computing the ST segment elevations/depressionsThe output BSPMimproved of the previous step of the algorithm is the BSPMsignal with noise and drift redu
ed, and 
orrupted and deviating parts of thesignal removed. As BSPMimproved is a 
leaner dataset that is more 
lose tothe a
tual BSPMsignal than the re
orded raw data. BSPMimproved 
an, withsome modi�
ations, be used in many tasks where a pro
essed BSPM dataset isrequired. In this thesis, the pro
essing algorithm is applied to both re
ordings
BSPM rest during rest and re
ordings BSPMexc during exer
ise for ea
h pa-tient, 
reating two pro
essed datasets BSPM rest

improved and BSPMexc
improved. Forea
h patient, these two datasets will be used in 
omputing the ST segment shiftdi�eren
es between rest and exer
ise. The method des
ribed in Se
tion 3.2 isused for this. Equation (3.4) in this method produ
es a ve
tor d of length 64.Ea
h element di, i = 1, . . . , 64 is a number representing the di�eren
e in STsegment shift between rest and exer
ise for the 
hannel i of the BSPM.6.2 Comparison of BSPM and ECGThe traditional 12-lead ECG 
onsists of six ele
trodes pla
ed on the 
hest, with
orresponding leads 
alled V1-V6, in addition to the referen
e limb ele
trodes.Of these six leads, V1, V3 and V5 are pla
ed at approximately the same positionas V 20, V 13 and V 6 respe
tively in a BSPM (see Figure 2.2 and Figure 2.4).The ECG of one of the two healthy patients has been re
orded, and will be
ompared to the pro
essed resting BSPM of the same patient. The ECG andBSPM of the three 
hannels pla
ed at approximately the same position on thethorax 
an be seen in Figure 6.1. In this patient, the BSPM ele
trode V 20was pla
ed approximately 3cm away from the lo
ation of ele
trode V1 of theECG. The other two pair of ele
trodes were 
loser to ea
h other, but still withdeviation in lo
ation. Generally, these three pairs of ele
trodes from ECG andBSPM are the ones pla
ed 
losest to ea
h other. In addition to the ele
trodesbeing pla
ed at slightly di�erent spatial lo
ations, the di�eren
e in the re
ording
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Figure 6.1: The left 
olumn 
ontains the ECG of 
hannel V1, V3 and V5 of ahealthy patient. Along the right 
olumn is the resting BSPM of 
hannel V 20,
V 13 and V 6 of the same patient. As ea
h pair of ECG and BSPM re
ordingare re
orded by ele
trodes pla
ed at approximately the same position on the
hest and both re
ordings are rest re
ordings, ea
h pair should show similarECG/BSPM morphology. The ECGs are quite similar to their 
orrespondingBSPMs. Noti
e the di�eren
e in amplitude in the two lower pairs. The am-plitude of the BSPM 
hannel V 13 is almost twi
e that of ECG 
hannel V3.



6.3 Visualisation of results 71equipment and signal pro
essing may also be a 
ause of di�eren
es in the ECGand BSPM re
ordings. In this example, the re
ordings were done with overa year in between. As expe
ted, the ECG and BSPM re
ordings were quitesimilar. There are some 
hanges in morphology that may have been 
ausedby the above mentioned or other reasons. One interesting di�eren
e is theamplitude di�eren
es, espe
ially between V3 of the ECG and V 13 of the BSPM.For this patient, the di�eren
e between the ST and PR segments was 
om-puted in the above mentioned ele
trode lo
ations using (3.2) and (3.3). TheECG BSPMV1 0.08mV V 20 0.06mVV3 0.15mV V 13 0.3mVV5 0.13mV V 6 0.18 mVTable 6.1: The ST segment shifts in the ECG and BSPM of a healthy patientduring rest in three 
orresponding lo
ations at the 
hest.results 
an be seen in Table 6.1. Comparing the amplitude of the 
hannels(Figure 6.1) and the magnitude of the ST segment shifts in the table, it seemsthat the larger amplitude in the BSPM 
hannels results in a higher magnitudein the ST segment elevations in this re
ording. The amplitude of the exer
iseBSPM is similar to that of the resting BSPM for this patient, indi
ating that nofalsely high ST shift di�eren
e between rest and exer
ise should be introdu
edby this. The most important sour
es for the deviation between the ECG andBSPM re
ording is the di�eren
e in re
ording equipment and spatial pla
ementof the ele
trodes, as there are only small di�eren
es in morphology other thanthe amplitude of the signal. The re
ording in these leads in the BSPM and ECGshould be similar, as they are re
ordings of essentially the same kind done atabout the same lo
ations. On this one patient, these expe
ted similarities werepresent with some deviations. There will always be deviations between di�erentre
ordings like these, due to the above dis
ussed or other reasons. Despite thedi�eren
es, 
hannel V 20, V 13 and V 6 will be 
onsidered equivalent to the ECG
hannels V1, V3 and V5 for the remainder of this thesis.6.3 Visualisation of resultsAn informative way of visualising the di�eren
es in ST segment depression/elevation of a patient between rest and exer
ise 
omputed as shown in equations(3.2), (3.3) and (3.4) on page 25 will be introdu
ed in this se
tion. The outputof the automati
 BSPM pro
essing algorithms des
ribed in Se
tion 6.1 is 64numbers di, i = 1, . . . , 64, ea
h des
ribing the di�eren
e in ST segment shiftin a point on the body surfa
e. These numbers are assigned 
olours a

ordingto their value, and plotted at their 
orre
t lo
ation at the body surfa
e. Anexample of this visualisation is shown in Figure 6.2.Although the visualisation of the ST segment di�eren
es in Figure 6.2 showsthe di�eren
es di at their lo
ation on the upper body, other visualisations maybe better for seeing the BSPM results as a whole. In Figure 6.3 the same ve
tor
d as in Figure 6.2 has been used. The values in d has been 
onne
ted usinglinear interpolation to better see the �oating di�eren
es between the numbers
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Figure 6.2: The ST segment shift di�eren
e between the rest and exer
ise re
ord-ing has been 
omputed for ea
h of the 64 
hannels in a BSPM. Ea
h of thesevalues are assigned a 
olour a

ording to their value. These values are plottedat the lo
ation of the ele
trodes at the body surfa
e.
di of ea
h ele
trode. These smooth 
oloured mappings of the ST segment shiftdi�eren
es in a patient will from this point on be termed �Body Surfa
e STsegment Mapping� (BSSTM). This BSSTM has been laid upon a pi
ture of apatient wearing the re
ording equipment for the purpose of illustration. Figure6.4 is the same BSSTM, without the illustrating pi
ture of the upper body. Thisway of visualising the ST segment shift di�eren
es 
an be valuable both as atool for evaluating BSPM signal pro
essing algorithms, and as a diagnosti
 tool.The BSSTM of a patient will show the 
hanges in ST segment elevation/depression between rest and exer
ise at both the front and ba
k of a patient.With knowledge of whi
h degrees of di�eren
e at whi
h points is 
hara
teristi
for a patient with is
hemia, this mapping 
an be viewed to easily get an ideaof whether the patient su�ers from is
hemia or not. Sin
e the body has theproperty of a volume 
ondu
tor, signals should propagate smoothly through thebody. Thus, signals re
orded at the body surfa
e should not di�er mu
h fromother points re
orded in 
lose proximity. If too abrupt 
hanges are present inthe BSSTM of the body surfa
e (su
h as in Figure 6.8), there is probably mu
hnoise present in some of the 
hannels sin
e the signals from the heart itself willnot produ
e su
h a BSSTM. This is useful in evaluating the performan
e of the
omplete BSPM pro
essing algorithm. A good algorithm will be able to sortout 
hanges that are too abrupt and produ
e a smoother BSSTM.
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Figure 6.3: The Body Surfa
e ST segment Mapping shown in Figure 6.4 laidupon a pi
ture of a patient wearing the BSPM re
ording equipment. Note whi
hparts of the 
olourmap 
orresponds to whi
h 
hannels of the BSPM.



74 The 
omplete algorithm and results

Figure 6.4: An example Body Surfa
e ST segment Mapping. This is the samemapping as shown in Figure 6.3 and 
onsists of the 32 �rst values of di. Thesevalues has been interpolated to 
reate a smooth mapping of the ST segmentshift di�eren
es in the BSPM.



6.4 Results on real data 756.4 Results on real dataThe automati
 algorithm outlined in Se
tion 6.1 has been implemented on sev-eral real BSPM re
ordings. These results are presented in this se
tion. Asthere is only a limited number of BSPM re
ordings available for testing, thealgorithm's performan
e on these data sets 
an not serve as a statisti
al �proof�that it will work well on all BSPMs. But the performan
e on these a
tualre
ordings will be an indi
ation to it's a

ura
y on future BSPM re
ordings.For ea
h patient, a 601 se
onds of 
onse
utive re
ording has been used as therest re
ording, and 60 se
onds as the exer
ise re
ording. In Appendix A, theBSSTMs of all the BSPMs pro
essed by the automati
 algorithm are shown.These are the plots of the ve
tor d 
omputed by (3.2),(3.3) and (3.4) for ea
hpatient. An example of a healthy patient and a patient with is
hemia will beviewed in the next two se
tions for illustration.6.4.1 Algorithm tested on a healthy patientThis is a dis
ussion of the algorithm's performan
e on one of the healthy pa-tients. Sin
e this patient is not su�ering from any heart 
onditions, it is expe
tedthat the ve
tor d 
omputed in (3.4) in the last step of the automati
 algorithmshould have values 
lose to zero. The elements of d should not di�er mu
hfrom ea
h other. In Figure 6.5 the ve
tor d has been 
omputed using the rawdata of the patient as the input BSPMimproved to the last step of the auto-mati
 algorithm (See Se
tion 6.1.5). The BSSTM is quite smooth, but withmaximum ST shift −0.129mV in 
hannel 2. By visually inspe
ting the BSPMplots of ea
h 
hannel of this re
ording, it has been 
on�rmed that the re
ording
onsists mainly of ni
e BSPM signals with little noise and artefa
ts present.Hen
e, the automati
 BSPM pro
essing algorithm should not make many al-terations to these data. The BSSTM of the same patient after the automati
algorithm has been applied is shown in Figure 6.6. In this �gure, the data hasbeen pro
essed by the algorithm des
ribed in Se
tion 6.1 and the new ve
tor
d is displayed in the BSSTM. It is 
lear that there is little di�eren
e betweenFigure 6.6 and Figure 6.5. Only the 
hannels whi
h di�ered mu
h from the restof the BSSTM in the raw data has been altered more than a few µV in thepro
essed version. Thus the algorithm performed very well on this BSPM. Itremoved some deviating 
hannels, while the rest of the 
hannels remained ni
e.After pro
essing, the maximum ST shift is of −0.09mV in 
hannel 13. The shiftof −0.129mV in 
hannel 2 that was present in the raw data has been redu
edto a mere −0.035mV shift in the pro
essed version.6.4.2 Algorithm tested on a patient with is
hemiaThe algorithm has also been tested on several patients with 
on�rmed is
hemia,with results displayed in Appendix A. In this se
tion, one of these will be stud-ied 
loser as an example of the automati
 algorithm's pro
essing of an is
hemi
patient. First, the ve
tor d 
ontaining the di�eren
es in ST segment shift be-tween rest and exer
ise is 
omputed from the raw data in the same way as wasdone in Se
tion 6.4.1. This d has been visualised in a BSSTM shown in Figure1Ex
ept patient4, whi
h had only 30 se
onds of rest re
ording available.
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Figure 6.5: The BSSTM of the front of a healthy patient. The raw data re
ord-ings has been used when making this BSSTM. It is quite smooth even beforeany pro
essing has been done. Only the 32 front 
hannels are in
luded in thisBSSTM.
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Figure 6.6: The front BSSTM of pro
essed data of the same patient as inFigure 6.5. The BSPM and BSSTM of this patient where quite ni
e beforeany pro
essing algorithms were applied, and hen
e few 
hanges has been made.Noti
e that some of the 
hannels was deemed too bad to be in
luded in the �nalBSSTM.
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omplete algorithm and results6.8. Several abrupt 
hanges and irregularities 
an be seen in the �gure, espe-
ially in the left part. Figure 6.7 shows the ve
tor d from the raw data of thepatient 
omputed from one randomly sele
ted heartbeat instead of the meanheartbeat of ea
h 
hannel. The abrupt 
hanges in ST segment shift di�eren
es

Figure 6.7: The BSSTM of a randomly sele
ted heartbeat of the front of apatient su�ering from is
hemia. This is the BSSTM of the raw data re
orded,and irregularities and abrupt 
hanges in the BSSTM are visible.in neighbouring 
hannels seen in these two �gures is not physi
ally possible.Hen
e there is mu
h noise and artefa
ts present in several of the 
hannels inthis BSPM.The automati
 BSPM pro
essing algorithm has been applied to this BSPM,and the output of the algorithm 
an be seen in Figure 6.9. Several 
hangesfrom the BSSTM of the raw data (Figure 6.8 and espe
ially the BSSTM ofone heartbeat shown in Figure 6.7) 
an be seen. The algorithm deemed several
hannels too distorted to be in
luded in the data set. All the deviating 
hannelshas been either removed or 
orre
ted so that they �t in with the rest of theBSPM. This leaves a smoother BSSTM, whi
h �ts better with the physi
almodel of ele
tri
al signals propagating from the heart through the body. Thereis still a region in the lower right area of the pro
essed BSSTM with large(greater than 0.2mV ) di�eren
es in ST segment shifts between the rest andexer
ise re
ording. It is mainly in this area that the is
hemia is visible in thisBSPM. Thus the algorithm managed to sort out mu
h of the 
orrupted parts ofthe signal, while at the same time keeping the information that makes it possibleto diagnose the patient.
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Figure 6.8: The BSSTM of the front of a patient su�ering from is
hemia. Thisis the BSSTM of the raw data re
orded. The mean ST and PR segments of ea
h
hannel has been used in 
omputing the di�eren
es in ST shift between exer
iseand rest, resulting in a smoother surfa
e than the one in Figure 6.7. Althoughsome of the random e�e
ts have been removed by using the mean 
hannels ofthe raw data instead of a randomly sele
ted heartbeat, abrupt 
hanges andunnaturally high ST shift values are 
learly visible. The upper 
orners of theBSSTM and an area to the lower left shows signs of being 
ontaminated by highnoise or baseline drift levels.
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Figure 6.9: This is the BSSTM of the pro
essed data of the same patient as inFigure 6.8. Note how the areas that were �unphysi
al� in Figure 6.8 and Figure6.7 have been either 
orre
ted, or removed from the BSPM. Note also the greatdepression in the lower right part of the BSSTM, whi
h is di�erent from therest of the BSSTM. This is 
hara
teristi
 for a patient su�ering from is
hemia.



6.5 Using output to separate healthy and is
hemi
 patients 816.4.3 Data produ
ed by the automati
 algorithmIt is a di�
ult task to evaluate the 
orre
tness of the 
omplete BSPM pro
essingalgorithm developed in this thesis. There are no given answers to how the BSPMre
ordings should be after pro
essing, as the only information available is theraw BSPM data and the knowledge of whether the patient has an is
hemia ornot. Ea
h step of the algorithm has been evaluated earlier in Chapter 5, buthere, light will be shed on the 
omplete output. In Se
tion 6.5 a dis
ussion willbe made of whether or not it is possible to separate the pro
essed BSPM of ahealthy patient from that of an is
hemi
 patient. First, the pro
essed BSPMswill be investigated for strengths and weaknesses in the pro
essing algorithm.In the two example patients dis
ussed above (see �gures 6.5 - 6.9), theBSPMs be
ame smoother after pro
essing. The same 
an be seen on all thepro
essed BSSTMs presented in Appendix A. There are no 
hannels deviatingmu
h from the rest, and most ST shift values in neighbouring areas are similar.This is 
oherent with the laws of physi
s that implies that the signal spreadingfrom the heart through the body should not deviate mu
h in lo
ations 
lose toea
h other. Thus the outputs of the automati
 algorithm are BSPM datasetsthat are physi
ally 
loser to what the ele
tri
al signals from the heart shouldlook like on the body surfa
e, than the raw data is.All the pro
essed BSPMs have a quite small standard deviation in all 
han-nels not removed by the algorithm (see Appendix A). Assuming that the mea-sured ST shifts are Gaussian distributed around the measured mean, the ma-jority of the measured values are 
lose to this value. Also, a large amount ofdata are still present after pro
essing, making the 
omputed values for the STsegment shifts trustworthy.6.5 Using output to separate healthy and is
hemi
patientsST shifts in exer
ise ECG testing is a well known method of dete
ting is
hemia.The 
riteria for a positive test of is
hemia varies in the literature [25, 22, 19,15, 31℄. The most 
ommon 
riteria, the one in the Ameri
an Heart Asso
iationguidelines, is depression or elevation of at least 0.1mV in one or more of theECG leads. Other propose a maximum shift of 0.2mV or more, or require ashift in several 
onse
utive 
hannels of a BSPM.Data from all the BSPMs pro
essed by the automati
 algorithm are pre-sented in Table 6.2. In Se
tion 6.2 it was established that 
hannels V 20, V 13and V 6 of the BSPM are lo
ated at approximately the same positions as V1,V3 and V5 of the 12-lead ECG. Applying the ≥ 0.1mV 
riteria to these three
hannels of ea
h patient's BSPM, the following is found: Both healthy patientswill be re
ognised as healthy (though just barely for one of them), while three ofthe four is
hemi
 patients will be re
ognised as is
hemi
. The fourth is
hemi
patient is not re
ognised, but the ST shift di�eren
e value of 
hannel V 6 ismissing sin
e the 
hannel was sorted out by the pro
essing algorithm.Looking at the maximum ST shift in ea
h patient, the maximum shift ofone of the healthy patient's BSPM shows some depression. Three of the fouris
hemi
 patients show a depression greater than −0.2mV , while the fourth alsohave a quite large depression of −0.154mV . With a 
riteria to the magnitude
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omplete algorithm and resultsPatient ST shift di�eren
e between exer
ise and rest in mV
V 20 V 13 V 6 min ST shift max ST shiftpatient5 0.003 0.090 -0.033 -0.062 in V 31 0.090 in V 13patient6 -0.061 -0.098 -0.013 -0.119 in V 15 0.043 in V 9patient1 � � -0.254 -0.254 in V 6 0.067 in V 57patient2 -0.012 -0.154 -0.138 -0.154 in V 13 0.108 in V 17patient3 � -0.063 -0.216 -0.328 in V 7 0.24 in V 28patient4a 0.071 0.026 � -0.216 in V 16 0.105 in V 36aDue to a re
ording error, no resting BSPM was available for this patient. The BSPMre
ording done a 
ouple of minutes after the exer
ise have been used as a substitute for therest re
ording for this patient. This may have resulted in falsely low di�eren
es between therest and exer
ise ST segment shifts, sin
e it takes some time for the BSPM signal to normaliseafter a stress test.Table 6.2: This table shows ST segment shift di�eren
es between exer
ise andrest re
ordings as 
omputed by (3.4). All data are from the BSPMs pro
essed bythe automati
 algorithm. Along ea
h row is the ST shift di�eren
es in sele
ted
hannels of a patient. The �rst three data 
olumns show the shift in the three
hannels V 20, V 13 and V 6 whi
h are lo
ated at approximately the same positionsas the 12- lead ECG leads V1, V3 and V5 respe
tively, as mentioned in Se
tion6.2. The two last 
olumns shows the greatest depression and elevation in ea
hBSPM.of the maximum ST shift ≥ 0.1mV , all is
hemi
 and one of the healthy patientswill be identi�ed as is
hemi
. With ST shift ≥ 0.15mV all the is
hemi
 andhealthy patients will be identi�ed 
orre
tly, while a 
riteria of ST shift ≥ 0.2mVwill identify three of the four is
hemi
 patients 
orre
tly and the rest as healthy.Table 6.3 summarises the out
ome of some of the 
riteria applied to the pro-
essed BSPMs. As seen in Table 6.3, it is possible to separate the healthy andPatient Out
ome of test (Positive(P)/Negative(N))ST shift≥

0.1mV in V 20,
V 13 or V 6

max ST shift ≥
0.1mV

max ST shift ≥
0.2mV

Truevaluespatient5 N N N Npatient6 N P N Npatient1 P P P Ppatient2 P P N Ppatient3 P P P Ppatient4 N P P PTable 6.3: This table summarises the response of the pro
essed BSPMs to threedi�erent 
riteria. A positive (P) response means that the BSPM ful�ls the
riterion, while a negative (N) means that it does not.is
hemi
 patients using di�erent 
riteria to the 
omputed ST segment shift dif-feren
es. In addition to set 
riteria like these, the BSPM opens the possibilityof looking for whole areas of the torso with ST segment depression/elevation.



6.5 Using output to separate healthy and is
hemi
 patients 836.5.1 The performan
e of the automati
 algorithmIn the previous se
tion, the ST shift values of all the pro
essed BSPMs weredis
ussed. These were 
orre
tly identi�ed as either is
hemi
 or healthy, with theex
eption of one healthy patient 'patient6' whi
h showed ST depressions slightlylarger than what would be expe
ted from a healthy patient. The inse
urity ofthis patient 
ould either be due to weaknesses in the automati
 algorithm, ano

urren
e of a healthy patient with 
orre
tly measured relatively large STdepression, or some other 
auses. Whi
h of these reasons that 
ontribute to thelarge ST depressions in this patient is investigated below:The performan
e of ea
h step of the automati
 algorithm was evaluated inChapter 5. If the ST shift di�eren
es of this patient were introdu
ed by theautomati
 algorithm, it most likely must have been the drift removal step asthe other steps only removes outlying or noisy parts of the signal. While thisis a possibility, it is unlikely. Neither the parts of the patient's BSPM withsmaller ST shift nor any of the other patients' BSPMs show signs of artefa
tsbeing introdu
ed by the drift removal method.
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Figure 6.10: The BSPM morphology of sele
ted 
hannels of the two healthypatients. Comparison of BSPM morphology between rest and exer
ise in the
hannels with the greatest ST shift between rest and exer
ise. The left 
olumndisplays plots of the resting BSPMs, while the right 
olumn displays the exer
iseBSPMs. The upper pair is the mean 
hannels of patient6, while the lower pairis the mean 
hannels of patient5.Another possibility is that these ST segment shift di�eren
es between restand exer
ise naturally o

urs in this patient's BSPM. The AHA summarisedfrom 58 studies of exer
ise ECG testing that the mean sensitivity of these testswas 67%, and the spe
i�
ity 72% [15℄ (sensitivity being the per
entage of pa-tients with a disease having an abnormal test, and spe
i�
ity the per
entage of
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Figure 6.11: The BSPM morphology of sele
ted 
hannels of the four is
hemi
patients. Comparison of BSPM morphology between rest and exer
ise in the
hannels with the greatest ST shift between rest and exer
ise. The left 
olumndisplays plots of the resting BSPMs, while the right 
olumn displays the exer
iseBSPMs. The plotted pairs are, from top to bottom, of patient1, patient2,patient3 and patient4.



6.6 Summary of results 85healthy patients having a normal test). It is thus quite 
ommon that healthypatients show ST shift larger than 0.1mV in exer
ise tests. In Figure 6.10 andFigure 6.11, the rest and exer
ise BSPM 
hannel with the largest ST shift di�er-en
e of the healthy and is
hemi
 patients are displayed. Now, the morphologyof the signal with the highest ST segment shift for patient6 and the is
hemi
patients 
an be 
ompared. It 
an be seen that the ST segment di�eren
e of
≈ 0.1mV between rest and exer
ise in patient6 is due to an elevation duringrest that has been redu
ed during exer
ise. The BSPM of e.g. patient3 has adistin
t morphology 
hara
teristi
 of is
hemia during exer
ise, while the BSPMof patient6 has similar morphology during both rest and exer
ise. Inspe
tionof the data shows that patient6 most likely is pro
essed 
orre
tly. Large STsegment shifts is re
orded in healthy patients from time to time, and this is onesu
h o

urren
e.Inspe
ting Figure 6.10 and Figure 6.11 further, it 
an be seen that theBSPMs of the healthy patients does not show mu
h 
hange in morphology be-tween rest and exer
ise. The BSPMs of the is
hemi
 patients on the otherhand, all show a 
lear 
hange in morphology between rest and exer
ise. Boththe ST segments and the QRS 
omplexes in the displayed 
hannels of the BSPMs
hanged between rest and exer
ise.6.6 Summary of resultsAt the start of this 
hapter, the automati
 algorithm for pro
essing BSPMdata was formed using the methods developed in Chapter 4 and evaluated inChapter 5. A tool, named the BSSTM, for visualising the ST segment shiftdi�eren
es between rest and exer
ise was introdu
ed. All the pro
essed BSPMsare presented in Appendix A, and two example BSPMs were dis
ussed morethoroughly. Finally, the data was investigated, to see if the BSPMs of is
hemi
patients 
ould be distinguished from those of healthy patients.Before pro
essing, it was not possible to know whi
h 
hannels of a BSPM
ould be trusted, and whi
h was noisy or �lled with artifa
ts. There was ahigh standard deviation in many measured ST shifts. Some 
hannels 
ontainedvery high ST shifts, and there were great di�eren
es between some neighbouring
hannels of several BSPMs. This makes the information obtained from the rawdata faulty and inse
ure, and it is also di�
ult to distinguish a BSPM of ahealthy patient from that of an is
hemi
 patient.After pro
essing by the automati
 algorithm presented in this 
hapter, allBSPMs have be
ome smoother and more physi
ally realisti
. Channels deviatingtoo mu
h from their neighbours have been removed or 
orre
ted. The standarddeviations in the ST shift measurements have been de
reased to an a

eptablelevel, though it is still quite high for most of the BSPM 
hannels. Looking at theBSSTMs of the pro
essed data, 
lear spatial trends 
an be seen as depressionsor elevations in neighbouring 
hannels. This in addition to the relatively lowstandard deviations is a good indi
ation that the ST shift values 
an be trusted.The large number of data points in ea
h BSPM 
on�rms this further.After pro
essing, the BSPMs 
an be distinguished as healthy or is
hemi
 bylooking at the ST shift di�eren
es. Both magnitude and spatial distributionof the ST shifts provide information that 
an be used to get an indi
ation ofis
hemia in the patient. The six BSPMs pro
essed in this thesis separated
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orre
tly into two groups of healthy and is
hemi
. The distin
tion was not very
lear though, with some degree of ST shift also in the healthy subje
ts. Asdis
ussed in this 
hapter, this 
an be attributed to the ST shift measurementnot being a pre
ise measure of is
hemia. There are good indi
ations towardthat the ST segment shifts measured in ea
h pro
essed BSPM are 
lose to thea
tual signals sent from the heart. The ST shifts measured after pro
essing arede�nitively better than those measured from the raw data. It is not possible toex
lude that the algorithm introdu
es artifa
ts or fails to remove noisy or falsesignals. The results from the six tested BSPMs indi
ate that su
h weaknessesin the algorithm are small if present at all. With a larger dataset availablefor testing, more se
ure results on the performan
e of the algorithm 
an beobtained. The ability of the 
omputed ST segment shifts to separate is
hemi
and healthy patients 
ould also be tested more extensively.6.6.1 Advantages and disadvantages in BSPM over ECGAlthough the ECG is the traditional instrument for exer
ise testing of patientsto dete
t is
hemia, there are several advantages in the BSPM over the 12-leadECG 
on�rmed by the results found in this thesis: The in
reased spatial sam-pling lessens sensitivity to noise and drift, as ea
h 
hannel 
an be 
omparedto spatially neighbouring 
hannels. This has been used to sort out deviatingheartbeats from BSPM datasets. Also, the sensitivity of an ECG re
ording suf-fers even with only a 
ouple of 
hannels removed due to noise. Two 
hannelsremoved from a BSPM will not signi�
antly 
hange it's diagnosti
 power as themissing 
hannels 
an be repla
ed by neighbouring values. In four of the sixBSPMs, the greatest ST shifts were at other lo
ations than the lo
ation of 12-lead ele
trodes. Thus the BSPM 
an dete
t 
hanges of greater magnitude thanthe ECG and possibly improve the diagnosti
ation of is
hemia. When viewingresults from a BSPM re
ording, one 
an look for areas of ST shifts rather thana few single leads as is done with ECG re
ordings. This makes the BSPM amu
h more robust devi
e, and it greatly improves the possibility of looking for
onse
utive points with ST shift as a sign of is
hemia.There are some potential disadvantages in using BSPM instead of ECG.First, the BSPM equipment 
onsists of a great number of ele
trodes whi
hmakes it more time 
onsuming to put on and take o� 
ompared to the pra
ti
al12-lead ECG. Se
ond, the traditional ECG provides su�
ient information inmany appli
ations, for instan
e monitoring the heartbeat rate. Thus the useof a BSPM over an ECG is not preferable in many appli
ations. Third, theBSPM is relatively new 
ompared to the ECG. While the ECG is a well knownand mu
h used tool for most medi
al personnel around the world, the BSPM isnot. Finally, ECG re
ording equipment is 
heaper than BSPM equipment, andis already available in most hospitals and medi
al institutions.6.6.2 The reliability of ST shift as measure of is
hemiaIn the above se
tions, the results obtained by applying the automati
 post pro-
essing algorithm to real BSPMs have been dis
ussed. The results indi
ate thatthe algorithm does not introdu
e signi�
ant errors in these BSPMs. Assum-ing that the algorithm pro
esses the data 
orre
tly, the presen
e of ST shiftdi�eren
es ≥ 0.1mV in a healthy patient means that ST shift di�eren
es is



6.6 Summary of results 87not an a

urate measure of is
hemia. This has been dis
ussed elsewhere in theliterature [15, 22, 19℄.There is additional information other than the ST segment shifts in the pro-
essed BSPM that 
an improve the dete
tion of is
hemia. As seen in Figure 6.10and Figure 6.11, there was no signi�
ant 
hange in morphology between rest andexer
ise in the healthy patients' BSPM, while in is
hemi
 patients' BSPM therewill most likely be 
hange in the 
hannels with the most ST shift. Lookingat the BSPM morphology of the 
hannel with the largest ST shift di�eren
ewill help separating is
hemi
 from healthy patient in the six BSPMs used inthis thesis, and it will probably improve the distin
tion also in future BSPMre
ordings. The slope of the ST segments 
an also improve the diagnosti
ationof is
hemia from a pro
essed BSPM [15℄. In most 
ases of is
hemia the BSPMwill show an alteration in the slope of the ST segment, while a healthy patient'sST slope should show no signi�
ant 
hanges. Information beyond what is in aBSPM re
ording will also improve the diagnosti
ation. [13℄ states that proba-bility before the test, the subje
t's age, time sin
e last meal, known diseases,symptoms and use of medi
ation should be taken into a

ount when drawing
on
lusions based on an ECG stress test.The BSPMs of di�erent patients are re
ordings of signals that have travelledthrough di�erent bodies before rea
hing the re
ording ele
trodes. This resultsin di�eren
es in the BSPMs due to di�eren
es in the bodies of the patients inaddition to the heart signals being di�erent. One result of this is di�eren
esin signal amplitude between patients, as the signal amplitude depends on thedistan
e between the heart and the ele
trode [35℄. Viewing the ST shift di�er-en
es relative to the amplitude of the signal (measured at the QRS 
omplex, Twave or otherwise) 
an to some degree 
an
el this e�e
t, possibly in
reasing thedi�eren
es between the ST shift measurements of healthy and is
hemi
 patients.This may also introdu
e errors in form of falsely high or low ST shift values.A mu
h bigger dataset than the six BSPMs available at this point is needed totest if this 
an improve the dete
tion of is
hemia.While some improvements to the methods of using BSPM data and ST shiftsto dete
t is
hemia were suggested above, these need to be tested on bigger datasets to be 
on�rmed. The pro
essing algorithm developed in this thesis willprovide equally good output for the is
hemia dete
tion methods dis
ussed above,as it does for the 
omputation of ST segment shifts used here. Pro
essed BSPMdata and ST segment shifts are also useful as input to 
ardia
 
omputationmethods, su
h as inverse problems [28℄, whi
h does not utilise the additionalinformation provided for example by the slope or morphology of a BSPM. Thus,post pro
essing and ST segment shift 
omputation has been the fo
us of thisthesis.



Chapter 7Con
lusions and further work7.1 Summary of the thesisThe body surfa
e potential mapping has been proposed as a better tool thantraditional 12-lead ECG in dete
ting is
hemia using ST segment exer
ise testing.As the raw data of a BSPM re
ording 
ontains noise and artefa
ts, a postpro
essing algorithm was developed in this thesis to provide more a

urate andse
ure ST segment shift measurements. A qui
k review of the designed andtested methods is given:First the noise, baseline drift and artefa
ts present in a BSPM re
ording were
lassi�ed. A simple model of the 
ontent of a BSPM re
ording was proposed:
BSPM = BSPMsignal + BSPMnoise + BSPMdrift.Noise and drift redu
tion methods were developed and tested to improve thequality of the re
ording, by using the knowledge of the noise and drift 
ontent ina BSPM signal. A QRS dete
tion algorithm was developed, and used to split thesignal into individual heartbeats and �nding important segments of the BSPM.For the �nal step of improving a BSPM re
ording, heartbeats still dominatedby noise or artifa
ts are removed. For doing this, several methods were designedand tested, and put together in a re
ursive algorithm. Finally a visualisationtool for viewing the ST segment shifts over the upper body was presented. Fromthe pro
essing methods tested throughout the thesis, a 
omplete BSPM postpro
essing algorithm was formed. The algorithm is designed to be automati
,by taking the raw data of an exer
ise and rest BSPM as input. As output,both the pro
essed BSPM and it's 
orresponding ST segment shift di�eren
esare provided.7.1.1 The automati
 BSPM pro
essing algorithmAn outline of the automati
 BSPM pro
essing algorithm developed in this thesisis given, step by step:

• As the �rst step of the BSPM pro
essing algorithm, a lowpass �lter is ap-plied to remove high frequen
y 
ontent of the re
ording. It was 
on
ludedthat a lowpass �lter with 
uto� frequen
y of 49Hz is best suited for this.
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• Next, the QRS 
omplex peaks are dete
ted, and used both for splittingthe signals into heartbeats and lo
ating the PR and ST segments of ea
hre
ording.
• To remove the baseline drift, an approximation to the drift using 
ubi
spline interpolation is made and subtra
ted from the re
ording. The 
ubi
spline interpolation method was 
hosen to be the best of the four driftremoval methods tested.
• Heartbeats too deviating in a temporal or spatial sense are sorted out fromthe data set, leaving a more 
onsistent BSPM free of severe artifa
ts.
• After the pro
essing part is 
omplete, the ST segment shift di�eren
esbetween the rest and exer
ise re
ording are 
omputed.
• These shifts are visualised as body surfa
e ST segment maps, and boththe pro
essed BSPM and ST segment shifts are given as output of thealgorithm.7.1.2 Dis
ussion of the algorithmEa
h step of the automati
 algorithm has been evaluated and dis
ussed. Asummary of these dis
ussions is given:Noise redu
tion: The noise redu
tion part will work on all kinds of BSPMsand for all purposes. It introdu
es no artifa
ts or distortions to the keptfrequen
y band of the signal. With the 
urrent 
ut o� frequen
y though,parts of the QRS 
omplex will be removed. The 
ut o� frequen
y shouldbe in
reased if the method is applied in a setting where the QRS 
omplexmorphology is important.QRS 
omplex dete
tion: A good algorithm for the task of pro
essing BSPMsfor is
hemia diagnosti
ation. It proved to be a robust method dete
tingthe QRS peaks in BSPMs with various noise and heartbeat rates. It de-te
ted 1287 out of 1289 QRS 
omplex peaks with no false positives in thetesting set. More testing on a larger dataset is required to get statisti
alsigni�
ant proof that the algorithm works well. Adaptive thresholding orderivative based dete
tion 
ould be added to the method, but are unlikelyto improve the performan
e signi�
antly.Baseline drift removal: The drift removal algorithm performed well on thetested data, and was deemed a robust method for drift removal. It isthough dependent on good sele
tion of knot values, and shows a slightredu
tion in performan
e when applied to noisy data. All drift redu
tionalgorithms may introdu
e artefa
ts and distortions to the signal, but thisalgorithm was deemed best out of the four tested with respe
t to this.This step also requires more testing on a larger dataset to 
on�rm it'sgood performan
e.Sorting out 
orrupted heartbeats: With the 
hosen parameters the out-liers and 
orrupted parts of the testing BSPMs were removed, while keep-ing a su�
ient amount of information. With a larger data set, training
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lusions and further workand testing sets 
an be used to obtain the optimal parameters �tting var-ious demands on the out
ome. The spatial sorting 
an be more re�ned,as 
an the temporal, e.g. with least squares surfa
e �tting predi
tion tosort out spatial outliers.Computing ST segment shift di�eren
es: A more re�ned way of 
hoosingPR and ST segments 
ould be made. In this thesis, the segments usedwere de�ned as a �xed distan
e from the QRS peak. With a good QRSdete
tion algorithm, this provides a robust method prone not to 
omputefalse ST and PR segment values.
7.2 Results of the algorithm applied to six testBSPMsSix BSPM re
ordings of real patients were available for testing. Of these, fourwere known to su�er from is
hemia, while two were healthy. Using the 
omputedST shift di�eren
es from the automati
 algorithm, it was possible to 
lassifyea
h patient as either healthy or is
hemi
. While it was possible to 
lassify thepatients using only the ele
trode lo
ations of the 12-lead ECG, the in
reasednumber of sampling points of the BSPM provide more information. Four of thesix patients had maximum ST shift values in lo
ations outside the traditionalECG lead lo
ations. The limited number of leads makes the standard ECGvulnerable to noise and 
orrupted 
hannels. When looking for signs of is
hemiausing ST shifts, both the magnitude and lo
ations of these shifts provided by theBSPM should be utilised for maximum e�e
t. In the four BSPMs of is
hemi
patients it was possible to see 
lear signs of the presen
e of is
hemia, whilethe BSPMs of the two healthy patients showed indi
ations that they belongedto healthy patients. This is a sign of strength in the pro
essing algorithm.Regardless of noise level in the raw data, all the pro
essed BSPMs were bothsmooth and ri
h enough on data to make de
isions based on them.The distin
tion was not very 
lear however, espe
ially with one healthy pa-tient showing ST segment depressions 
lose in magnitude to those of the is
hemi
patients. No signs were found in the pro
essed BSPM that these shifts were dueto weaknesses in the pro
essing algorithm, but rather a not so un
ommon o
-
urren
e of a healthy patient with ST shifts in exer
ise testing. This patient'sBSPM had no 
hange of morphology between rest and exer
ise that is 
hara
-teristi
 for an is
hemi
 patient. This indi
ates that ST shift di�eren
es aloneis not the ideal measure of is
hemia, whi
h has been supported in the litera-ture [13, 22, 15℄. It should rather be 
ombined with other information su
has the ST slope, T wave amplitude, shift relative to signal amplitudes, infor-mation about the patient's health and age et
. On the other hand, a simplematrix of numbers, su
h as the ST shifts, is required in many appli
ations or
ardia
 
omputation methods, su
h as solving inverse problems. A method forautomati
ally 
omputing these from raw BSPM data is therefore ne
essary.



7.3 Con
lusions 917.3 Con
lusionsShifts in the ST segment of an exer
ise ECG test is a sign of is
hemia. TheBSPM is a better suited tool for these tests, as the in
reased spatial samplingprovides ri
her information than the traditional 12-lead ECG. In this thesis,a 
omplete automati
 algorithm for post pro
essing BSPM re
ordings was de-veloped. The algorithm was applied to the BSPM re
ordings of two healthyand four is
hemi
 patients. The algorithm made the BSPMs more 
onsistent,greatly redu
ed the deviations in the measured ST shift values and returneda more physi
ally realisti
 BSPM for all the six data sets. After pro
essingit was possible to separate the BSPMs into re
ordings of healthy patients andre
ordings of is
hemi
 patients solely based on the ST shift values 
omputedby the automati
 pro
essing algorithm. However, there was no 
lear distin
tionbetween the is
hemi
 and healthy patients. It was judged that this is a diag-nosti
 weakness of measuring ST segment shifts, rather than false values beingintrodu
ed in the pro
essing. While this shows that the developed algorithmperformed well on this limited set of six patients, further testing with biggerdata sets is required to 
on�rm the results of this thesis.It was found that the magnitude of ST segment shifts between rest andexer
ise re
ordings alone is not the ideal way of diagnosing is
hemia based ona BSPM exer
ise re
ording. Other morphologi
al signs in a BSPM re
ordingthat 
an improve the dete
tion of is
hemia were des
ribed. The 
omputationof reliable ST segment shift di�eren
es is important in other appli
ations aswell. Solving inverse problems for lo
ating is
hemi
 regions in the heart [28℄for instan
e, utilise the magnitude of ST segment shifts alone when identifyingis
hemi
 heart disease.7.4 Further workThe algorithm developed in this thesis showed promising results on the sixBSPM re
ordings available. Further testing on a larger dataset is requiredto get statisti
al signi�
ant results on the performan
e of the algorithm. Alarger set of BSPMs also opens for other interesting resear
h, some ideas willbe presented here: Other methods of improving the dete
tion of is
hemia, asdis
ussed in Se
tion 6.6.2, 
ould be evaluated. With a bank of BSPMs from adiversity of patients available, a BSPM 
ould be 
ompared to the BSPMs in thisbank for instan
e by using adaptive �ltering te
hniques to see whi
h BSPM inthe bank it is 
losest to. The patient 
ould then be diagnosed the same.To better the use of spatial information to sort out deviating and 
orrupt
hannels, least mean square surfa
e �tting on the ST segment values 
an beused to predi
t the ST value a 
hannel should have a

ording to the surrounding
hannels. The same te
hniques 
an be used to repla
e ST segment values for
hannels that have been removed from the data set.The algorithms developed in this thesis have not been optimised with re-spe
t to 
omputational demands. At this point, the CPU time needed by theautomati
 algorithm is of no importan
e, but it may be in some later appli
a-tions. Another interesting proje
t would be to redesign the whole or parts ofthe algorithm for real time implementation. In doing this the a

ura
y of someof the methods may need to be toned down, but a fun
tioning adaption made
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lusions and further workfor real time implementation should be possible.
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Figure A.1: The BSSM of patient5 after the BSPM has been pro
essed. Theleft �gure shows the front of the patient, the right �gure shows the ba
k of thepatient.
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Figure A.2: The ST shifts in the pro
essed rest and exer
ise re
ordings of pa-tient5 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the front of the patient.
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Figure A.3: The ST shifts in the pro
essed rest and exer
ise re
ordings of pa-tient5 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the ba
k of the patient.
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Figure A.4: The BSSM of patient6 after the BSPM has been pro
essed. Theleft �gure shows the front of the patient, the right �gure shows the ba
k of thepatient.
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Figure A.5: The ST shifts in the pro
essed rest and exer
ise re
ordings of pa-tient6 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the front of the patient.
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Figure A.6: The ST shifts in the pro
essed rest and exer
ise re
ordings of pa-tient6 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the ba
k of the patient.
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Figure A.7: The BSSM of patient1 after the BSPM has been pro
essed. Theleft �gure shows the front of the patient, the right �gure shows the ba
k of thepatient.
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Figure A.8: The ST shifts in the pro
essed rest and exer
ise re
ordings of pa-tient1 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the front of the patient.
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Figure A.9: The ST shifts in the pro
essed rest and exer
ise re
ordings of pa-tient1 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the ba
k of the patient.
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Figure A.10: The BSSM of patient2 after the BSPM has been pro
essed. Theleft �gure shows the front of the patient, the right �gure shows the ba
k of thepatient.
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Figure A.11: The ST shifts in the pro
essed rest and exer
ise re
ordings ofpatient2 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the front of the patient.
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Figure A.12: The ST shifts in the pro
essed rest and exer
ise re
ordings ofpatient2 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the ba
k of the patient.
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Figure A.13: The BSSM of patient3 after the BSPM has been pro
essed. Theleft �gure shows the front of the patient, the right �gure shows the ba
k of thepatient.
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Figure A.14: The ST shifts in the pro
essed rest and exer
ise re
ordings ofpatient3 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the front of the patient.
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Figure A.15: The ST shifts in the pro
essed rest and exer
ise re
ordings ofpatient3 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the ba
k of the patient.
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Figure A.16: The BSSM of patient4 after the BSPM has been pro
essed. Theleft �gure shows the front of the patient, the right �gure shows the ba
k of thepatient.
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Figure A.17: The ST shifts in the pro
essed rest and exer
ise re
ordings ofpatient4 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the front of the patient.
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Figure A.18: The ST shifts in the pro
essed rest and exer
ise re
ordings ofpatient4 plotted on top of ea
h other. The standard deviation in the ST shiftmeasurement is in
luded. This is the 32 
hannels on the ba
k of the patient.
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