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Preface

Dynamic stability of ships is a research topic which is in the focus of modern

researchers. When Brian Hayman presented this idea it was quite interesting for

me. I discussed this idea with Brian Hayman in detail and decided to write my

Master’s Thesis on this topic. I worked on project [3] in the Autumn of 2007,

which was the pre- project to this Master’s Thesis.

Irfan Ahmad Sheikh
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Summary

Parametric roll may be defined as the spontaneous rolling motion of the ship

moving in head or following seas that comes about as a result of the dynamic

instability of motion. The development of the parametric roll occurs under the

conditions that the encounter angular frequency is approximately twice the roll

angular frequency, the wavelength is equal to the ship length and the roll damping

is insufficient to dissipate the parametric roll energy.

In this Thesis the dynamic roll behaviour for 5 different combinations of wave

heights and wavelengths for different initial conditions and different initial wave

positions, without and with a realistic amount of damping have been studied.

The Methods used are the three Equations of roll motion based on three variants

of the stiffness term in the basic Mathieu equation with damping.
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Chapter 1

Introduction

1.1 Definitions

The motion of a ship can be described with the help of six degrees of freedom

shown in Figure 1.1.

Figure 1.1: Degrees of freedom for a ship.

These degrees of freedom are defined below.

Surge: Surge is the translational motion of a ship along its longitudinal axis

(x-axis).

Sway: Sway is the translational motion of a ship along its transverse axis (y-

axis).
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Heave: Heave is the translational motion of a ship along its vertical axis (z-axis).

Roll: Roll is the rotational motion of a ship about its longitudinal axis (x-axis).

Pitch: Pitch is the rotational motion of a ship about its transverse axis (y-axis).

Yaw: Yaw is the rotational motion of a ship about its vertical axis (z-axis).

Following are some definitions which will help us in understanding the problem.

Head seas: Head seas means that the waves are coming from in front of the

ship.

Following seas: Following seas means that the waves are coming from behind

the ship.

Longitudinal waves: The waves which are coming either from in front of or

from behind the ship are known as longitudinal waves.

Parametric roll: Parametric roll may be defined as the spontaneous rolling

motion of the ship moving in head or following seas that comes about as a result

of the dynamic instability of motion.

1.2 Background

Modern research on parametric rolling of ships was first conducted in Germany

in the late 1930s. The main objective of the research was to explain the capsiz-

ing of some small ships such as coasters and fishing vessels in severe following

seas. The phenomenon of parametric rolling was observed as a byproduct. This

phenomenon was thought to be related to small ships moving in following seas.

In the 1990s there were some incidents in which container ships and even some

cruise ships experienced heavy rolling in head seas. The APL CHINA casualty

in October 1998, described in Paulling [1], is shown in Figure 1.2. This incident

focused the attention of researchers on parametric rolling in head seas.

Parametric roll resonance is a phenomenon in which a small initial disturbance in

roll can cause an oscillatory rolling motion that grows to a large amplitude after

only a few cycles. The development of parametric roll is related to the periodic

change of stability as the ship moves in longitudinal waves at a speed when the

ship’s wave encounter frequency is approximately twice the natural roll
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Figure 1.2: APL CHINA container damage.

frequency and the damping of the ship is insufficient to dissipate the parametric

roll energy as described in ABS Guide [2]. This phenomenon seems to occur with

certain hull forms, and especially those having flared (non-vertical) sides. Large

container ships normally have a large flare in the forward region.

A considerable research work has been done on this phenomenon at both Det

Norske Veritas (DNV) and the Technical University of Denmark (DTU) as well

as other institutions in Europe and the USA. Attention has been largely focused

on identifying the conditions that trigger the instability so that the crew can take

action to prevent the development of the phenomenon, e.g. by changing speed or

course. Some research has studied ways of stabilising the roll motion by means

of active fins and other devices.

1.3 Objectives

The main aim of this MSc Project is to study the parameters that lead to para-

metric roll instability, and to provide easy-to-use tools for modelling dynamic roll

motion. Specific objectives are as follows.

• To further develop the MATLAB model developed in the pre-project [3], for

simulating the dynamic roll behaviour of a ship travelling in longitudinal

waves.
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• To develop MATLAB routines to calculate the nonlinear relationship between

the hydrostatic righting moment arm (GZ) and roll angle (φ) for a ship hull

from given hull lines.

• To study the dynamic roll behaviour of a specific container ship with the

help of different MATLAB models and then compare the model predictions

with those in published literature, and with existing full-scale measure-

ments.

• To perform parametric studies for different values of wave height, wavelength

and ship speed to explore stability boundaries for roll response in head or

following seas, both in the absence of roll damping and in the presence of

realistic amounts of roll damping.



Chapter 2

Ship Stability and Parametric

Rolling

2.1 Definitions

First of all definitions of some important terms are presented. These definitions

are taken from Rawson et al. [4].

Load waterplane or design waterplane (LWP): That waterplane to which

the ship is being designed is called the load waterplane or the design waterplane.

This plane may or may not be parallel to the keel.

Load waterline (LWL): The waterline at the level of the load waterplane is

called the load waterline.

Fore perpendicular (FP): Fore perpendicular is defined as the vertical line

passing through a point at which the load waterline crosses the front face of the

bow.

After perpendicular (AP): After perpendicular is defined as the vertical line

passing through a point at which the load waterline crosses the rear face of a

rudder post of the ship.

Length between perpendiculars (LBP or Lpp): The distance between the

fore perpendicular FP and the after perpendicular AP is called the length between

perpendiculars.
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Amidships or midships: The transverse plane midway between the perpen-

diculars FP and AP is called amidships or midships. The section of the ship at

this plane is called the midship section.

Volume of displacement (▽): The total volume of fluid displaced by the ship

is called the volume of displacement.

Weight displacement (∆): The weight of the water displaced by the ship is

called the weight displacement. This is also known as the ship displacement since

the weight of the water displaced by the ship is equal to the weight of the ship.

Buoyancy: The buoyancy of a body immersed in a fluid is the vertical upthrust

it experiences due to displacement of the fluid. The magnitude of the net upward

buoyancy force is equal to the weight of the fluid displaced by the body.

Centre of gravity (G): The centre of gravity of a body is that point through

which the whole weight of the body may be assumed to act. The centre of gravity

of the ship is denoted by G.

Centre of buoyancy (B): The centre of volume of fluid displaced by a ship is

known as the centre of buoyancy. This point is denoted by B. When the ship is

upright, the centre of buoyancy B is directly below the centre of gravity G of the

ship as shown in the Figure 2.1. The buoyancy force passes through the centre

Figure 2.1: Centre of gravity and the centre of buoyancy.
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of buoyancy and is given by

Buoy = ∆ = ▽× w, (2.1)

where w is the fluid weight density.

Metacentre (M): Consider the body shown in Figure 2.2 floating upright and

freely at waterline WL, whose centre of buoyancy is at B. Let the body be

rotated through a small angle in the plane of paper without altering the volume of

displacement. For convenience the body is assumed to be fixed and the waterline

rotated to W1L1. The centre of buoyancy for this new immersed shape is at B1.

Lines through B and B1 normal to their respective waterlines intersect at M

which is known as the metacentre.

Figure 2.2: The metacentre.

Righting lever (GZ): Consider the body shown in Figure 2.3 floating in a state

of equilibrium. In this state the centre of buoyancy B0 and the centre of gravity

G lie on the same vertical line. If the body is now rotated through a small angle

β, the centre of buoyancy will move to some new position, B. For convenience,

in Figure 2.3 the rotation is shown as being caused by a pure moment about G.

The weight of the body acts vertically downwards through G and the buoyancy

force acts vertically upwards through B. Thus the body is subject to a moment

∆GZ, where Z is the foot of the normal from G on to the line of action of the

buoyancy force. This moment tends to restore the body to the original position.

The couple is known as the righting moment and the distance GZ is known as

the righting lever.
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Figure 2.3: The righting lever GZ.

In Figure 2.3 the roll angle is denoted by β, but we shall denote it by φ in this

report.

Metacentric height (GM): The distance between the Centre of gravity G and

the metacentre M is called the metacentric height. The metacentric height GM

is a characteristic of the ship which helps determine its stability in the water.

There are three stability conditions as explained below.

1. Positive: The metacentric height is said to be positive when M lies above

G. In this case the righting moment tends to restore the body to the

original position as shown in Figure 2.4(a). This is the condition of stable

equilibrium.

2. Neutral: If M and G coincide then no righting moment acts on the body

as shown in Figure 2.4(b). The equilibrium is neutral in this case.

3. Negative: The metacentric height is said to be negative when M lies below

G. In this case the righting moment tends to increase the rotation angle as

shown in Figure 2.4(c). The equilibrium is unstable in this case.

For small values of roll angle φ the following relation applies.

GZ = GM sin φ ≃ GMφ (2.2)

This means that the righting lever and so the righting moment increases as GM

increases and vice versa. The greater the GM value or GZ value the greater is

the stability of the ship. The stability of a ship is measured by GM for small

angles of heel and by GZ for large angles of heel.
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Figure 2.4: The three stability conditions.

GZ curve: For practical applications it is necessary to present ship’s stability

in the form of righting moments or lever arms about the centre of gravity, as

the ship is heeled at constant displacement. A curve which shows variation in

the righting lever GZ as the ship is heeled at constant displacement, is known as

statical stability curve or GZ curve. Such a curve is shown in Figure 2.5.

Figure 2.5: GZ curve.

The initial slope of the GZ curve represents the metacentric height of ship in still

water.
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2.2 Roll Motions of Ship in Calm Water

When a ship is in calm water, any disturbance in transverse direction can cause

roll motions. When the equilibrium is disturbed, the righting moment or the hy-

drostatic restoring moment tends to return the ship back to the upright position.

When the equilibrium position is attained, the ship does not stop there but due

to inertia continues to roll at a decreasing velocity. When a maximum roll angle

is attained, the roll restoring moment tends to push the ship back to the upright

position. Again when the equilibrium position is attained, the ship does not stop

there but due to inertia continues to roll. Thus the ship begins to oscillate about

the equilibrium point with a constant roll period and amplitude if the damping

is neglected. These free roll oscillations, described in ABS Guide [2], are shown

in Figure 2.6.

Figure 2.6: Undamped small roll motions in calm water.

The period of such roll oscillations in calm water is known as the natural roll

period. The roll frequency corresponding to this roll period is called the natural

roll frequency.

2.3 Stability of Ship in Longitudinal Waves

Now we study the effect of a ship’s location on its stability in the longitudinal

waves. If the ship is located in a wave trough, the average waterplane width is

very much greater than in calm water. The bow and and the stern of the ship

are more deeply immersed than in calm water and the midship region is less deep

as shown in Figure 2.7(a). This makes the mean instantaneous waterplane wider

than in calm water with the result that the metacentric height GM is increased
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over that in calm water. Thus according to Equation (2.2) the GZ value becomes

greater and thereby the righting moment of the ship becomes greater than in calm

water. This means that the stability of the ship is increased in a wave trough.

Figure 2.7: (a) Waterline in wave trough. (b) Waterline on wave crest.

On the other hand when the wave crest is located amidships, the bow and the

stern of the ship are less deeply immersed than in calm water as shown in Figure

2.7(b). As a result the average waterplane is narrower than in calm water and

the metacentric height GM is decreased as compared to that in calm water.

Thus according to Equation (2.2) the GZ value becomes smaller and thereby

the righting moment of the ship becomes smaller than in calm water. Hence the

stability of the ship is decreased on the wave crest. This phenomenon is described

in ABS Guide [2].

2.4 Parametric Roll Resonance Phenomenon

We have come to the result that when a ship is sailing in longitudinal seas, its

stability increases in the wave trough and decreases on the wave crest. This

change in stability is oscillatory. If this change occurs at approximately twice the

natural roll period, roll motions may attain a very high roll angle as a result of

parametric roll resonance. A typical development of parametric roll resonance is

shown in Figure 2.8.
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Figure 2.8: Parametric roll resonance.

2.4.1 Conditions for the Development of the Phenomenon

Following are the conditions for the development of the parametric roll resonance

phenomenon.

1. The wave encounter frequency is approximately twice the natural roll fre-

quency.

2. The wavelength of the encountering wave is approximately equal to the ship

length.

3. The roll damping of the ship is insufficient to dissipate the parametric roll

energy.

The increase in the parametric roll motion and roll angle is most rapid when the

wave crest is moving away from amidships.

2.4.2 Development of the Phenomenon During One Roll

Period

The development of parametric roll resonance is shown in Figure 2.9. The graph

in the figure shows the variation in the metacentric height GM and the roll angle

with time. The graph also shows the free undamped rolling oscillations in calm

water and the mean GM value in waves. We see that at time t = 0 the ship
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has a roll angle equal to the amplitude of the free roll oscillations, and a GM

value equal to the mean GM value. The roll angle begins to decrease and the

GM value begins to increase from this time. This is the time when the wave

crest is moving away from amidships, and the ship encounters the waves with an

encounter frequency approximately twice the natural roll frequency.

Figure 2.9: Development of parametric roll resonance.

We divide the period of roll oscillation T in four quarters and study the change

in the roll angle in every quarter.

First Quarter

In the first quarter the stability of the ship is improving since it is entering a

wave trough. As a result the restoring moment tends to push the ship back to

the equilibrium position with a larger-than-calm-water moment since the GM

value in this quarter is greater than the mean GM value as shown in Figure 2.9.

This makes the change in roll angle slightly larger than in calm water as shown

in Figure 2.9.

Second Quarter

In the second quarter the ship encounters a wave crest and as a result its stability

decreases. The restoring moment now resists the roll motion with a less-than-
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calm-water moment since the GM value in this quarter is below the mean GM

value as shown in Figure 2.9. As a result the ship attains a roll angle greater

than in calm water at as shown in Figure 2.9.

Third Quarter

In the third quarter the ship undergoes the same situation as in the first quarter

and experiences a restoring moment which is larger-than-calm-water moment

since the GM value in this quarter is greater than the mean GM value. The

change in roll angle becomes greater than in calm water as shown in Figure 2.9.

Fourth Quarter

In the fourth quarter the situation is similar to that in the second quarter and the

ship experiences a restoring moment resisting the roll motion with a less-than-

calm-water moment since the GM value in this quarter is below the mean GM

value. Hence, at the end of the period T of roll oscillation, the roll angle becomes

even greater than in calm water as shown in Figure 2.9.

Overall Effect

If there is no change in the ship’s wave encounter frequency, the combination of

restoring moment (with a larger-than-calm-water value) and restoring moment

resisting the roll (with less-than-calm-water value) can cause the roll angle to

grow to a very high level after only a few cycles. This is called the parametric

roll resonance phenomenon. This phenomenon is described in Shin et al. [5].

2.5 Effect of Roll Damping

When a ship rolls in calm water, the roll amplitudes decrease successively due to

roll damping as shown in Figure 2.10, described in ABS Guide [2].
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Figure 2.10: Effect of roll damping in calm water.

Roll damping plays an important role in the development of parametric roll res-

onance. If the loss of energy per cycle caused by roll damping is more than the

gain in energy caused by the changing stability in longitudinal seas, the roll angles

will not increase and the parametric roll resonance will not develop. When the

gain in energy per cycle is more than the loss of energy due to roll damping, the

amplitude of the parametric roll starts to grow.





Chapter 3

A Simple Dynamic Model of

Parametric Roll

3.1 An Analogy to the Rolling Motion

The dynamic rolling motion of a ship experiencing stability variations in head or

following seas is analogous to that of a spring-mass system in which the spring

constant k varies sinusoidally with time as described in Paulling [1]. This spring-

mass system with damping included, described in Chopra [6, Chap 1], is shown

in Figure 3.1.

c

m

k x, u

P(t)

Figure 3.1: Spring-mass system with damping.

The equation of motion for this system is given by

mü(t) + cu̇(t) + ku(t) = p(t), (3.1)
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where u(t), u̇(t) and ü(t) represent displacement, velocity and acceleration of the

mass respectively. The term mü(t) represents the force of inertia, the term cu̇(t)

represents the damping force and the term ku(t) represents the force of the spring

while p(t) is the external force.

3.2 The Mathieu Equation with Damping

When the ship moves through head or following seas, its time-varying GM which

is analogous to the spring constant k, can be approximated by a sinusoidal func-

tion of time given by Equation (3.2), described in Paulling [1].

GM(t) = GM0(1 + C cos ωt) (3.2)

Here,

GM0 = still water GM,

C = fractional variation of GM ,

ω = encounter angular frequency.

The equation of roll motion with damping included and without any external

force is given by

Ix

d2φ

dt2
+ B

dφ

dt
+ ∆φ(GM0 + CGM0 cos ωt) = 0, (3.3)

where

Ix = mass moment of inertia in roll, including added mass,

φ = angle of roll,

B = viscous roll damping coefficient,

∆ = ship displacement.

Equation (3.3) applies only for small values of φ. We divide both sides of Equation

(3.3) by Ix

d2φ

dt2
+

B

Ix

dφ

dt
+
(

∆GM0

Ix

+
C∆GM0

Ix

cos ωt
)

φ = 0 (3.4)

We make a substitution,

ωn
2 =

∆GM0

Ix

, (3.5)

where ωn is the natural roll angular frequency for the undamped system. Equa-

tion (3.4) becomes,

d2φ

dt2
+

B

Ix

dφ

dt
+ (ωn

2 + Cωn
2 cos ωt)φ = 0 (3.6)
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Basic (standard) form of equation of motion without cos ωt term is

d2φ

dt2
+ 2ζωn

dφ

dt
+ ωn

2φ = 0, (3.7)

where ζ is the damping ratio which is defined as

ζ =
B

Bcr

, (3.8)

where Bcr is the critical roll damping coefficient.

By comparing the coefficients of dφ

dt
in Equations (3.6) and (3.7) we get

B

Ix

= 2ζωn (3.9)

We put Equation (3.8) in Equation (3.9)

B

Ix

= 2ωn

B

Bcr

⇒ Bcr = 2ωnIx (3.10)

We have found the expression for Bcr for later use. Now we put Equation (3.9)

in Equation (3.6)

d2φ

dt2
+ 2ζωn

dφ

dt
+ (ωn

2 + Cωn
2 cos ωt)φ = 0 (3.11)

We make the change of variable,

τ = ωt ⇒ dτ = ωdt ⇒
1

dt
=

ω

dτ
⇒

1

dt2
=

ω2

dτ 2

Equation (3.11) becomes,

ω2
d2φ

dτ 2
+ 2ζωωn

dφ

dτ
+ (ωn

2 + Cωn
2 cos τ)φ = 0 (3.12)

We divide both sides of Equation (3.12) by ω2

d2φ

dτ 2
+ 2ζ

ωn

ω

dφ

dτ
+

(

ωn
2

ω2
+ C

ωn
2

ω2
cos τ

)

φ = 0 (3.13)

We define

δ =
ωn

2

ω2
, ǫ = Cδ (3.14)
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The equation of roll motion now becomes,

d2φ

dτ 2
+ 2ζ

√
δ

dφ

dτ
+ (δ + ǫ cos τ)φ = 0 (3.15)

or

φ̈(τ) + 2ζ
√

δ φ̇(τ) + (δ + ǫ cos τ) φ(τ) = 0 (3.16)

This ordinary 2nd order differential equation where the spring constant var-

ies sinusoidally, is known as the Mathieu equation with damping. The term

(ǫ cos τ)φ(τ), is called the parametric excitation term because the development

of parametric roll resonance is accounted for this term.

3.3 Solution of the Mathieu Equation

The Mathieu equation is an ordinary 2nd order differential equation. We shall

solve this equation numerically by using Runge-Kutta-method (ode45) in MAT-

LAB. This method solves a system of equations of 1st order. We can show that a

system of n ordinary differential equations of order m can be written as a system

of n · m equations of 1st order. Thus the Mathieu equation can be transformed

to a set of two 1st order equations. We introduce the following to unknowns,

y1(τ) = φ(τ)

y2(τ) = φ̇(τ). (3.17)

By using these to unknowns Equation (3.16) can be written as

ẏ1(τ) = y2(τ)

ẏ2(τ) = −2ζ
√

δ y2(τ) − (δ + ǫ cos τ) y1(τ). (3.18)

The coefficients in these differential equations must be known and the initial

conditions for the unknown functions y1(τ) and y2(τ) in Equations (3.17) must

be specified.

3.4 Solutions without Roll Damping

The Mathieu equation without damping may have two types of solutions, bounded

or stable solutions and unbounded or unstable solutions as described in [5]. The

type of solution depends on the combination of the parameters δ and ǫ. These

two types of solutions are explained below.
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3.4.1 Bounded Solutions

For some pairs of δ and ǫ the amplitude of the roll motions remains within a

certain interval as shown in Figure 3.2(a). This figure shows the roll motion for

a pair (δ = 0.1, ǫ = 0.2) with damping excluded and initial conditions (φ(0) = 5

deg, φ̇(0) = 0). We see that the roll angle remains between -5 and 5 degrees.

This solution is bounded or stable solution.

Figure 3.2(b) shows the graph between φ and φ̇. This is called a phase plane plot.

The phase plane plot of the solution shows that φ̇ does not diverge, because the

solution is bounded.
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Figure 3.2: (a) Bounded solution of the Mathieu equation (b) Phase plane plot.

3.4.2 Unbounded Solutions

For some pairs of δ and ǫ the amplitude of the roll motion does not remain within

a certain interval but continues to grow as shown in Figure 3.3(a). This figure

shows the roll motion for a pair (δ = 0.15, ǫ = 0.2) with damping excluded and

initial conditions (φ(0) = 5 deg, φ̇(0) = 0). We see that the amplitude of the

roll angle increases in every period and becomes more than 30 degrees after only

a few cycles. This solution is unbounded or unstable solution. The phase plane

plot in Figure 3.3(b) shows that φ̇ diverges, because the solution is unbounded.



22 A Simple Dynamic Model of Parametric Roll

0 10 20 30 40 50 60 70 80
−30

−20

−10

0

10

20

30

40

τ

φ 
[d

eg
]

Solution of the Mathieu equation when δ= 0.15, ε= 0.2 and ζ = 0

−30 −20 −10 0 10 20 30 40
−10

−5

0

5

10

15

φ [deg]

φd
ot

Phase plane plot

Figure 3.3: (a) Unbounded solution of the Mathieu equation (b) Phase plane plot.

3.5 Effect of Roll damping on the Solutions

The effect of roll damping on the two types of solutions is studied separately.

3.5.1 Effect on the Bounded Solutions

When the roll damping is included, the amplitude of the roll motions for bounded

solutions decreases with time as shown in Figure 3.4. Figure 3.4(a) shows the roll

motion for the pair (δ = 0.1, ǫ = 0.2), with the initial conditions (φ(0) = 5 deg,

φ̇(0) = 0) and a damping ratio ζ = 0.05. Figure 3.11(b) shows the roll motions

with different initial conditions (φ(0) =, φ̇(0) = 1.5) but the same damping ratio.

We see that the roll motion dies after some time.
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Figure 3.4: Effect of roll damping on the bounded solutions.
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3.5.2 Effect on the Unbounded Solutions

There exists a transition value for roll damping for every pair of parameters δ

and ǫ for unbounded solution. ABS Guide [2] calls this a threshold value but we

will call it a transition value. If roll damping is less than the transition value, the

roll motion will be unbounded. If the roll damping is larger than the transition

value, the roll motion will be bounded. In Figure 3.5 the effect of roll damping on

the roll motions for the pair (δ = 0.15, ǫ = 0.2) with initial conditions (φ(0) = 5

deg, φ̇(0) = 0), is shown.
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Figure 3.5: (a) Roll damping is less than the transition value

(b) Roll damping almost equal to the transition value

(c) Roll damping is greater than the transition value.

We see in Figure 3.5(a) that the amplitude of the roll motions increases with

time. This means that the roll damping is less than the transition value and

therefore unable to prevent the development of the parametric roll resonance.

In Figure 3.5(b) we see that the amplitude of the roll motions decreases initially

but then remains constant at a certain roll angle. In this case the roll damping

is equal to the transition value.

In Figure 3.5(c) we see that the amplitude of the roll motions decreases in every

cycle due to roll damping. In this case the roll damping is large enough to prevent

the development of the parametric roll resonance.
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3.6 Ince-Strutt Diagram

3.6.1 Original Ince-Strutt Diagram

The combinations of the two types of solutions can be shown in Figure 3.6.

This figure is known as Ince-Strutt diagram as described in Paulling [1]. The

shaded areas in the figure correspond to the bounded solutions and the unshaded

areas correspond to the unbounded solutions. The unshaded areas are commonly

referred to as instability regions.

Figure 3.6: Original Ince-Strutt diagram.

We see in this figure that the first instability region is centred on a value δ = 1/4.

In Equation (3.14) we have defined δ as the ratio of the square of the natural roll

frequency to the square of the encounter frequency. Thus we get the relation,

δ =
ωn

2

ω2
=

1

4

⇒
ωn

ω
=

1

2
⇒ ω = 2ωn. (3.19)

This means that any small disturbance in the ship’s roll angle will grow to a

high amplitude when the wave encounter frequency is approximately twice the

natural roll frequency. This is the condition for the development of parametric

roll resonance which we have mentioned in Chapter 2.4.1. The unbounded motion



3.6 Ince-Strutt Diagram 25

in the first instability region is commonly referred to as the principal parametric

resonance as described in Shin et al. [5].

The second instability region is centred on a value δ = 1. For this value the ship’s

wave encounter frequency is equal to the natural roll frequency. Development of

parametric roll resonance is still possible if the other conditions mentioned in

Chapter 2.4.1 are fulfilled and the amplitude of the variation in GM is suffi-

ciently large. The unbounded motion in this region is defined as the fundamental

parametric resonance as described in Shin et al. [5].

3.6.2 Enlarged Ince-Strutt Diagram

In the original Ince-Strutt diagram the scaling of δ and ǫ is not proportional and

hence it is difficult to read the correct values of δ and ǫ. Therefore we introduce

an enlarged Ince-Strutt diagram which is properly scaled as shown in Figure 3.7,

taken from [8]. We shall use this diagram in the stability analysis. We note that

both the axis in this diagram are scaled by a factor of 4. Thus the first instability

region is centred on δ = 1 and the second instability region is centred on δ = 4

as shown in Figure 3.7.

Figure 3.7: Enlarged Ince-Strutt diagram.





Chapter 4

Ship Data and GZ Data

4.1 Ship Data

We shall study the dynamic roll behaviour of a container ship whose data is given

below.

Ship Length, Lpp = 232 m

Ship Displacement, ∆ = 54616 tons force

= 54616 × 1000 kg × 9.81 m s−2

= 5.358 × 108 N

Ship Speed, V = 21.3 knots

= 21.3 × 0.514 m s−1

= 10.95 m s−1

4.2 GZ Data

We are provided the GZ data for a container ship by DNV. These GZ data are

computed by a computer program NAPA which has been run for the still water
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case and for 21 wave positions at 15 different heel angles. NAPA has been run

for 5 different combinations of wave heights and wavelengths. The detail of of

these combinations of wave heights and wavelengths and corresponding values of

wave steepness are given in Table 4.1.

Table 4.1: The combinations of wave heights and wavelengths.

Wave height Wavelength Wave steepness
Case

H [m] L [m] H/L

1 11.6 232 0.05 = 1/20

2 8.4 232 0.036 ≈ 1/28

3 5.6 232 0.024 ≈ 1/42

4 5.6 155 0.036 ≈ 1/28

5 5.6 116 0.048 ≈ 1/21

We see in Table 4.1 that in the first three cases the wavelength is equal to the

ship length, in the case 4 it is about 2/3 of the ship length and in the case 5 it

is 1/2 of the ship length. We also note that the wave steepness has a minimum

value in the case 3.

4.3 Some GZ Curves

The GZ curve for the still water case is shown in Figure 4.1.
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Figure 4.1: GZ curve for the still water case.
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The GZ curves for the crest amidships position and the trough amidships position

for all the the five combinations of wave heights and wavelengths are shown in

Figures 4.2, 4.3 and 4.4
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Figure 4.2: (a) GZ curves for the case 1 (b) GZ curves for the case 2.
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Figure 4.3: (a) GZ curves for the case 3 (b) GZ curves for the case 4.
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Figure 4.4: GZ curve for the case 5.



Chapter 5

Calculation Methods

We shall use three calculation methods. These methods are actually equations of

roll motion corresponding to three variants of the stiffness term which are given

below.

5.1 Three Variants of the Stiffness Term

We define the following three variants of the stiffness term.

1. Linearised (small roll angle) formulation using sinusoidally interpolated GM

values between values for crest amidships and trough amidships positions.

2. Linearised (small roll angle) formulation using GM values obtained by inter-

polating between the real GM values for wave positions at L/20 intervals.

3. Nonlinear formulation using GZ values obtained by interpolating between

GZ values calculated for wave positions at L/20 intervals and roll angles

between −70 and 70 degrees.

The GM values used in the first two variants are based on GZ values calculated for

10 degrees roll angle. Now we shall find the equations of roll motion corresponding

to these three variants of the stiffness term.
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5.2 1st Equation of Roll Motion

We shall replace the still water GM values in the stiffness term in Equation (3.4)

with the sinusoidally interpolated GM values. For this purpose we define mean

metacentric height, GMm, and variation in mean metacentric height, CGMm, in

Equations (5.1) and (5.2) respectively. All the GM values used are based on GZ

values calculated for 10 degrees roll angle.

GMm =
1

2
(GMcr + GMtr) (5.1)

CGMm =
1

2
(GMcr − GMtr) (5.2)

Here,

GMcr = GM value for crest amidships position,

GMtr = GM value for trough amidships position.

We replace GM0 and CGM0 in Equation (3.4) with GMm and CGMm respectively

Ix

d2φ

dt2
+ B

dφ

dt
+ ∆φ(GMm + CGMm cos ωt) = 0 (5.3)

We note that when ωt = 0 the stiffness term becomes,

∆φ(GMm + CGMm) = ∆φ
1

2
(GMcr + GMtr) +

1

2
(GMcr − GMtr)

= ∆φ GMcr,

while for ωt = π it becomes

∆φ(GMm − CGMm) = ∆φ
1

2
(GMcr + GMtr) −

1

2
(GMcr − GMtr)

= ∆φ GMtr.

We divide both sides of Equation (5.3) by Ix

d2φ

dt2
+

B

Ix

dφ

dt
+
(

∆GMm

Ix

+
∆CGMm

Ix

cos ωt
)

φ = 0 (5.4)

We make a substitution,

ωr
2 =

∆GMm

Ix

, (5.5)
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where ωr is the roll angular frequency for the undamped system. This frequency

is different from ωn used previously because it is based on GMm rather than

GM0, and these quantities are not the same. Equation (5.4) becomes,

d2φ

dt2
+

B

Ix

dφ

dt
+ (ωr

2 + Cωr
2 cos ωt)φ = 0 (5.6)

or
d2φ

dt2
+

B

Ix

dφ

dt
+ ωr

2(1 + C cos ωt)φ = 0 (5.7)

or

φ̈(t) +
B

Ix

φ̇(t) + ωr
2(1 + C cos ωt) φ(t) = 0 (5.8)

This is the 1st equation of roll motion.

5.3 2nd Equation of Roll Motion

We shall now replace the sinusoidally interpolated GM values in the stiffness term

in Equation (5.3) with the GM values obtained by interpolating between the real

GM values for wave positions at L/20 intervals. This means that we shall replace

(GMm + CGMm cos ωt) with GMi. By making this replacement we get

Ix

d2φ

dt2
+ B

dφ

dt
+ ∆ φ GMi = 0 (5.9)

We divide both sides of Equation (5.9) by Ix

d2φ

dt2
+

B

Ix

dφ

dt
+

∆

Ix

GMi φ = 0 (5.10)

or

φ̈(t) +
B

Ix

φ̇(t) +
∆

Ix

GMi(t) φ(t) = 0 (5.11)

This is the 2nd equation of roll motion.

5.4 3rd Equation of Roll Motion

We shall now replace the stiffness term in Equation (5.9) with the restoring

moment function in which the GZ values are obtained by interpolating between



34 Calculation Methods

GZ values calculated for wave positions at L/20 intervals and roll angles between

−70 and 70 degrees. This means that we shall replace ∆ φ GMi with ∆ GZi. By

making this replacement we get

Ix

d2φ

dt2
+ B

dφ

dt
+ ∆ GZi = 0 (5.12)

We divide both sides of Equation (5.12) by Ix. We get

d2φ

dt2
+

B

Ix

dφ

dt
+

∆

Ix

GZi = 0 (5.13)

or

φ̈(t) +
B

Ix

φ̇(t) +
∆

Ix

GZi(φ, t) = 0 (5.14)

This is the 3rd equation of roll motion.

5.5 Solutions of the Equations of Roll Motion

All the three equations of roll are ordinary 2nd order differential equations. We

shall solve these equations numerically by using Runge-Kutta-method (ode45)

in MATLAB. As we have explained in Chapter 3.3, we need to transform every

equation to a set of two 1st order equations. We do this transformation for every

equation separately.

5.5.1 Solution of the 1st Equation

To solve the 1st equation of roll motion, i.e. Equation (5.8), we introduce the

following to unknowns,

y3(t) = φ(t)

y4(t) = φ̇(t). (5.15)

By using these to unknowns Equation (5.8) can be written as

ẏ3(t) = y4(t)

ẏ4(t) = −
B

Ix

y4(t) − ωr
2(1 + C cos ωt) y3(t). (5.16)

The coefficients in these differential equations must be known and the initial

conditions for the unknown functions y3(t) and y4(t) in Equations (5.15) must be

specified.
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5.5.2 Solution of the 2nd Equation

To solve the 2nd equation of roll motion, i.e. Equation (5.11), we introduce the

following to unknowns,

y5(t) = φ(t)

y6(t) = φ̇(t). (5.17)

By using these to unknowns Equation (5.11) can be written as

ẏ5(t) = y6(t)

ẏ6(t) = −
B

Ix

y6(t) −
∆

Ix

GMi(t) y5(t). (5.18)

The coefficients in these differential equations must be known and the initial

conditions for the unknown functions y5(t) and y6(t) in Equations (5.17) must be

specified.

5.5.3 Solution of the 3rd Equation

To solve the 3rd equation of roll motion, i.e. Equation (5.14), we introduce the

following to unknowns,

y7(t) = φ(t)

y8(t) = φ̇(t). (5.19)

By using these to unknowns Equation (5.14) can be written as

ẏ7(t) = y8(t)

ẏ8(t) = −
B

Ix

y8(t) −
∆

Ix

GZi [y7(t), t]. (5.20)

The coefficients in these differential equations must be known and the initial

conditions for the unknown functions y7(t) and y8(t) in Equations (5.19) must be

specified.

5.6 Estimation of the Coefficients in the Differen-

tial Equations

We shall make an estimation of the coefficients in the differential equations given

by Equations (5.16), (5.18) and (5.20).
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5.6.1 Estimation of the Coefficients in Equations (5.16)

Following is the list of coefficients which we need to estimate for solving the

differential equations given by Equations (5.16).

• Mass moment of inertia (Ix)

• Roll angular frequency (ωr)

• Fractional variation of GM (C)

• Encounter angular frequency (ω)

• Roll damping coefficient (B)

We note that ωr and C shall be used only in the first equation of roll motion.

Now we find these coefficients one by one.

Mass Moment of Inertia (Ix)

We shall find the mass moment of inertia by using the relation

ω1 =

√

∆GM0

Ix

, (5.21)

where,

ω1 = roll angular frequency based on the roll period as estimated by

Eriksen [7, Chap 5],

GM0 = still water GM value based on the GZ value calculated for the

still water case,

∆ = ship displacement.

From Equation (5.21) we get

Ix =
∆GM0

ω1
2

(5.22)

We are given the value of ∆. We need to calculate GM0 and ω1.

Calculation of GM0

Equation (2.2) for the still water case becomes,

GZ0 = GM0 φ, (5.23)
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where GZ0 is the still water GZ value. We shall use GZ0 value for 10 degrees roll

angle calculated by NAPA.

φ = 10 deg × π
180

= 0.174 rad

GZ0 for 10 deg = 0.18 m

By putting the values of φ and GZ0 in Equation (5.23) we get

0.18 = GM0 × 0.174

⇒ GM0 =
0.18

0.174
= 1.032 m

Calculation of ω1

We shall calculate ω1 with the help of the roll period, T1 as estimated by Eriksen

[7, chap 5]. The reason of using this roll period is that the container ship studied

by Eriksen [7] is the same ship we are studying.

Roll period, T1 = 21.4 s

Corresponding roll angular frequency is given by

ω1 =
2π

T1

=
2π

21.4
= 0.294 rad s−1

Calculation of Ix

By putting the values of ∆, GM0 and ω1 in Equation (5.22) we get

Ix =
5.358 × 108 kg m s−2 × 1.032 m

(0.294)2 s−2

= 6.397 × 109 kg m2

Roll Angular Frequency (ωr)

We shall find the roll angular frequency with the help of Equation (5.5). By

taking square root on both the sides of Equation (5.5) we get,

ωr =

√

∆GMm

Ix

. (5.24)



38 Calculation Methods

We have the values of ∆ and Ix. We need to calculate GMm.

Calculation of GMm

We shall use Equation (5.1) to find GMm. We need to calculate GMcr and GMtr

first. To find these values we shall use the GZ values for crest amidships and

trough amidships positions calculated by NAPA. We use Equation (2.2) for 10

degrees roll angle.

φ = 10 deg = 0.174 rad

GMcr =
GZcr

φ
=

GZcr

0.174
(5.25)

GMtr =
GZtr

φ
=

GZtr

0.174
(5.26)

By putting the values of GMcr and GMtr in Equation (5.1) we can find the value

of GMm. In Figure 5.1 GMcr vlues, GMtr values and GMm values for case 1 and

case 2 are plotted.
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Figure 5.1: (a) GM curves for the case 1 (b) GM curves for the case 2.

We can calculate ωr by putting the values of ∆, Ix and GMm in Equation (5.24).
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Fractional Variation of GMm (C)

We shall calculate the value of C with the help of Equations (5.1) and (5.2). By

dividing both sides of Equation (5.2) by GMm we get

C =
GMcr − GMtr

2GMm

(5.27)

By putting Equation (5.1) in Equation (5.27) we get

C =
GMcr − GMtr

GMcr + GMtr

(5.28)

The values of GMcr and GMtr can be calculated by using Equations (5.25) and

(5.26) respectively.

Encounter Angular Frequency (ω)

The encounter angular frequency, ω, is given by

ω = 2πf, (5.29)

where f is encounter frequency which is given by

f =
Vrel

L
, (5.30)

where

Vrel = relative velocity of the ship

L = wavelength

We are given the value of L, but we need to calculate Vrel.

Calculation of Vrel

The relative velocity of the ship is the sum of the ship speed, V and the wave

velocity, v. We are given the ship speed, V , but we have to calculate the wave

velocity, v.

Wave velocity, v, is given by

v =
g

ωw

, (5.31)

where

g = acceleration of gravity

ωw = wave angular frequency
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Wave angular frequency, ωw, is given by

ωw = 2πfw, (5.32)

where fw is wave frequency which is given by

fw =
v

L
, (5.33)

where L is the wavelength.

We put Equation (5.33) in Equation (5.32)

ωw =
2πv

L
(5.34)

Now we put Equation (5.34) in Equation (5.31)

v =
gL

2πv

⇒ v2 =
gL

2π

⇒ v =

√

gL

2π
(5.35)

By putting the values of g and L in Equation (5.35) we can calculate v and then

we can find Vrel by adding V and v. We can calculate encounter frequency, f ,

by putting the values of Vrel and L in Equation (5.30) and then we can calculate

encounter angular frequency, ω by putting the value of f in Equation (5.29).

Roll Damping Coefficient (B)

We can find the roll damping coefficient, B, with the help of Equation (3.8) which

gives

B = ζ Bcr (5.36)

where

ζ = damping ratio,

Bcr = critical damping coefficient.

According to information received from DNV the damping ratio, ζ , for a container

ship may vary from 2 to 10 %. At low ship speeds it may be from 2 to 3 %, but at



5.6 Estimation of the Coefficients in the Differential Equations 41

full speed it could be from 5 to 6 % for small roll amplitudes, possibly increasing

to about 10 % for large roll amplitudes

For the critical damping coefficient, Bcr, we have found en expression given by

Equation (3.10) which is

Bcr = 2ωnIx, (5.37)

where

Ix = mass moment of inertia,

ωn = natural roll angular frequency for the undamped system.

As we have mentioned in Chapter 5.2 that ωn is based on GM0, i.e. still water

GM. To make a realistic estimation of Bcr we replace ωn in Equation (5.37) with

ω1 which is the roll angular frequency based on the roll period as estimated by

Eriksen [7, chap 5]. The roll angular frequency, ω1, is more logical to use because

it has been calculated in the actual sea state rather than in the calm water.

Equation (5.37) becomes,

Bcr = 2ω1Ix, (5.38)

By putting the values of ω1 and Ix in Equation (5.38) we get

Bcr = 2 × 6.397 × 109 kg m2 × 0.294 rad s−1

= 3.761 × 109 kg m2 s−1

5.6.2 Estimation of the Coefficients in Equations (5.18)

We have made the estimation of all the coefficients except GMi(t) in the differ-

ential equations given by Equations (5.18).

Estimation of GMi(t)

GMi(t) is the time varying function in which the GM values are obtained by

interpolating between the real GM values for wave positions at L/20 intervals.

The GM values used are based on GZ values calculated for 10 degrees roll angle.

The GM curves used for interpolation for the case 1 and case 3 are shown in

Figure 5.2. The interpolation is done in MATLAB.
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Figure 5.2: (a) GM curves for the case 1 (b) GM curves for the case 3.

5.6.3 Estimation of the Coefficients in Equations (5.20)

We have made the estimation of all the coefficients except GZi [φ(t), t] in the

differential equations given by Equations (5.20).

Estimation of GZi [φ(t), t]

GZi [φ(t), t] is the restoring moment function in which the GZ values are obtained

by interpolating between GZ values calculated for wave positions at L/20 intervals

and roll angles between −70 and 70 degrees. The GZ mesh used for interpolation

for the case 1 is shown in Figure 5.3. The interpolation is done in MATLAB.
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Figure 5.3: GZ mesh for the case 1.

5.7 Initial Wave Position

We shall analyse the dynamic roll behaviour of the container ship for three dif-

ferent initial wave positions. These are

1. Crest amidships position

2. Trough amidships position

3. Zero wave elevation at the FP

5.8 Stability Analysis

We shall find the stability limits of the container ship for all the five combinations

of wave heights and wavelengths. For this purpose we need to calculate the

stability parameters in the Mathieu equation, i.e. δ and ǫ. Then by using the Ince-

Strutt diagram we can find the stability limits. We have defined the parameters

δ and ǫ in Equation (3.14). We replace ωn in Equation (3.14) with ωr which is

based on GMm rather than GM0. We get

δ =
ωr

2

ω2
, ǫ = Cδ (5.39)
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The encounter angular frequency, ω, depends on the relative velocity of the ship,

Vrel. Thus for different values of Vrel we get different encounter angular frequen-

cies, and corresponding to these frequencies we get different pairs of δ and ǫ.

Each pair of δ and ǫ represents a point on the Ince-Strutt diagram. If this point

lies in the stable region then the roll motion will be stable and if it lies in the

unstable region then the roll motion will be unstable.



Chapter 6

Results

We present the results obtained from the three calculation methods seperately.

6.1 Results for the 1st Method

The values of GMcr, GMtr, GMm and ωr calculated for all the five cases are given

in Table 6.1. We note that we can calculate ωr only for the 1st method.

Table 6.1: GM values and roll angular frequency.

GMcr GMtr GMm ωr
Case

[m] [m] [m] [rad s−1]

1 0.057 3.495 1.776 0.385

2 0.115 2.922 1.518 0.356

3 0.229 2.234 1.232 0.321

4 0.630 1.776 1.203 0.317

5 1.604 0.974 1.289 0.328

We have found the values of δ and ǫ corresponding to different relative velocities

of the ship. These pairs of δ and ǫ give us different points on the Ince-Strutt

diagram. We present the Ince-Strutt diagrams showing these points for each case

separately. We also present the results obtained from the stability analysis for

these cases.
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6.1.1 Case 1

For case 1 we obtain the points on the line in the Ince-Strutt diagram shown in

Figure 6.1.

Figure 6.1: Stability for case 1.

We have done the stability analysis for the relative velocities between 5 m/s and

50 m/s. All the velocities more than 50 m/s have a stable response because these

represent the points which lie in the bounded region between δ = 0 and δ = 1 in

the Ince-Strutt diagram. We present the data for case 1 in the first two instability

regions in Table 6.2.

Table 6.2: Data in the instability regions for case 1.

Instability region Vrel [m/s] ω [rad/s] ωr

ω

min max min max min max

1st 21.54 35.0 0.583 0.948 0.660 0.407

2nd 11.69 14.75 0.317 0.40 1.217 0.965

We note that at Vrel = 18 [m/s] lies in the stable region and Vrel = 28 [m/s] lies

in the unstable region. We have checked the stability on these points and some

other points in MATLAB. The MATLAB figures are attached in appendix . We

present the detail of these runs in Table.
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Table 6.3: Detail of the runs for case 1 in MATLAB.

Run Vrel [m/s] φ0 [deg] φ̇0 [deg/s] ζ

1 18 2 0 0

2 18 0 0.85 0

3 18 4 0 0

4 18 0 1.54 0

5 28 2 0 0

6 28 0 0.85 0

7 28 4 0 0

8 28 0 1.54 0

9 18 4 0 0.1

10 28 4 0 0.1

11 18 2 0 0

12 18 4 0 0

13 18 2 0 0

14 18 4 0 0

15 28 2 0 0

16 28 4 0 0

17 28 2 0 0

18 28 4 0 0

19 34.5 4 0 0

20 34.5 4 0 0.1

21 21.53 4 0 0

22 21.54 4 0 0

23 35.2 4 0 0

24 35.2 8 0 0

6.1.2 Case 2

For case 2 we obtain the points on the line in the Ince-Strutt diagram shown in

Figure 6.2.
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Figure 6.2: Stability for case 2.

We present the data for case 2 in the first two instability regions in Table 6.4.

Table 6.4: Data in the instability regions for case 2.

Instability region Vrel [m/s] ω [rad/s] ωr

ω

min max min max min max

1st 20.16 32.3 0.546 0.875 0.407 0.652

2nd 10.96 13.63 0.297 0.369 0.965 1.20

We note that the first instability region has become smaller and the second in-

stability region has moved a little bit to the right.

6.1.3 Case 3

For case 3 we obtain the points on the line in the Ince-Strutt diagram shown in

Figure 6.3.
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Figure 6.3: Stability for case 3.

We present the data for for case 3 in the first two instability regions in Table 6.5.

Table 6.5: Data in the instability regions for the case 3.

Instability region Vrel [m/s] ω [rad/s] ωr

ω

min max min max min max

1st 18.78 28.5 0.509 0.772 0.416 0.631

2nd 10.26 12.19 0.278 0.330 0.972 1.155

We note that the first instability region has become more smaller and the second

instability region has moved a little bit to the right.

6.1.4 Case 4 and case 5

The Ince-Strutt diagrams for case 4 and case 5 are shown in Figures 6.4 and 6.5

respectively.
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Figure 6.4: Stability for case 4.

Figure 6.5: Stability for case 5.

We note from the Ince-Strutt diagrams for case 4 and case 5 that the first instabil-

ity region has become more smaller than the previous case.the second instability

region has moved a little bit to the right.

6.2 Results for the 2nd Method

The trend of the results obtained by using the 2nd method is the same as for the

1st method.
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6.3 Results for the 3rd Method

The trend of the results obtained by using the 3rd method is the same as for

the 1st method. The only difference is that a change in the initial wave position

effects the roll response more than that in the first two methods.





Chapter 7

Conclusions

As we have mentioned in the previous chapter that the overall trend of the dy-

namic roll behaviour is the same for the three methods. We can conclude the

following things from the results of the stability analysis.

1. In the MATLAB runs from 1 to 8 we conclude that the roll response is

independent of the initial conditions.

2. From the run 9 and 10 it is obvious that roll motion of the stable solution

dies after some time and that of an unstable solution becomes stable for

just a few seconds.

3. The runs 11, 12, 15, and 16 are for the trough amidships position and the

runs 13, 14, 17 and 18 are for the zero wave elevation condition from the

FP. From these runs we conclude that the initial wave position does not

effect the stability of the roll response.

4. In the run 19 the roll response for a point having unstable response is shown.

In the run 20 this response becomes stable with a damping ratio 0.1.

5. The runs 23 and 24 show that a greater initial roll angle can change a stable

response to an unstable response.
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MATLAB Runs
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Figure A.1: (a) Run 1 (b) Run 2.
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Figure A.2: (a) Run 3 (b) Run 4.

0 5 10 15 20 25 30 35 40 45
−50

−40

−30

−20

−10

0

10

20

30

40

t [sec]

φ 
[d

eg
]

Run 5

0 5 10 15 20 25 30 35
−20

−10

0

10

20

30

40

t [sec]

φ 
[d

eg
]

Run 6

Figure A.3: (a) Run 5 (b) Run 6.
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Figure A.4: (a) Run 7 (b) Run 8.
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Figure A.5: (a) Run 9 (b) Run 10.
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Figure A.6: (a) Run 11 (b) Run 12.
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Figure A.7: (a) Run 13 (b) Run 14.
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Figure A.8: (a) Run 15 (b) Run 16.
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Figure A.9: (a) Run 17 (b) Run 18.
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Figure A.10: (a) Run 19 (b) Run 20.
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Figure A.11: (a) Run 21 (b) Run 22.
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Figure A.12: (a) Run 23 (b) Run 24.
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Appendix A

MATLAB Input Files

% GM_mean.m %

clear all

V_rel = 31;

L=232;

GZ_cr = 0.01; % 1) H = 11.6 m, L = 232 m

GZ_tr = 0.61;

% L=232;

% GZ_cr = 0.02; % 2) H = 8.4 m, L = 232 m

% GZ_tr = 0.51;

% L=232;

% GZ_cr = 0.04; % 3) H = 5.6 m, L = 232 m

% GZ_tr = 0.39;

% L=155;

% GZ_cr = 0.11; % 4) H = 5.6 m, L = 155 m

% GZ_tr = 0.31;

% L=116;

% GZ_cr = 0.28; % 5) H = 5.6 m, L = 116 m

% GZ_tr = 0.17;
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phi_10 = deg2rad(10);

GM_cr = GZ_cr/phi_10;

GM_tr = GZ_tr/phi_10 ;

GM_m = 1/2*(GM_cr+GM_tr);

%CGM_m= 1/2*(GM_cr-GM_tr);

% weight of ship

M=54616;

g=9.81;

Delta = M*1000*g;

% roll frequency

Tg = 21.4;

wg = 2*pi/Tg;

% moment of inertia

GZ_0 = 0.18;

GM_0 = GZ_0/phi_10;

Ix = Delta*GM_0/wg^2; % we find Ix with the help of wg & GM_0

wr = sqrt(Delta*GM_m/Ix); % roll frequency

B_cr = 2*wg*Ix;

C = (GM_cr-GM_tr)/(GM_cr+GM_tr);

v=sqrt((g*L)/(2*pi)); % wave velocity

f = V_rel/L;

w = 2*pi*f; % Encounter angular frequency

delta=wr^2./w.^2;

r=sqrt(delta);



63

epsilon=C*delta;

delta_s= delta*4;

epsilon_s = C*delta_s;

epsilon_s2=epsilon_s/2;

plot(delta_s, epsilon_s2,’r’)

grid on

xlabel(’delta’)

ylabel(’epsilon’)

% title (’Delta-epsilon curve for the container ship’)

% GM_interp.m %

% interpolation of GM

clear all

t=0:30;

V_rel=30;

L_pp=232;

L=232;

S_input= load (’WavePosition_232.txt’);

%GZ = load (’GZ_11_6_232.txt’);

%GZ = load (’GZ_8_4_232.txt’);

GZ = load (’GZ_5_6_232.txt’);

% L=155;

% S_input= load (’WavePosition_155.txt’);

% GZ = load (’GZ_5_6_155.txt’);

% L=116;

% S_input= load (’WavePosition_116.txt’);

% GZ = load (’GZ_5_6_116.txt’);

%a=V_rel.*t;

S= (L_pp-L)/2- V_rel*t; % crest amidships position at t=0
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%S= L_pp/2- V_rel*t; % trough amidships position at t=0

%S= L_pp-L/4- V_rel*t; % zero wave elevation at FP at t=0

e=numel(S);

for k=1:1:e

while S(k) < 0

S(k) = S(k) + L;

end

while S(k) > L

S(k) = S(k) - L;

end

end

phi_10=deg2rad(10);

GM= GZ/phi_10;

GMi = interp1(S_input,GM,S,’spline’);

plot (S_input,GM)

%plot (S,GMi,’o’,S_input,GM,’r’)

grid on

xlabel(’Wave position [m]’)

ylabel(’GM [m]’)

title(’GM curves for H=5.6 m , L=232 m’)

% weight of ship

M=54616;

g=9.81;

Delta = M*1000*g;
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% roll frequency

Tg = 21.4;

wg = 2*pi/Tg;

% moment of inertia

GZ_0 = 0.18;

GM_0 = GZ_0/phi_10;

Ix = Delta*GM_0/wg^2;

% roll frequency

wr = sqrt(Delta*GMi/Ix);

c_cr = 2*Ix*wr;

%c= c_cr*zeta;

% Encounter angular frequency

f = V_rel/L; % wave frequency

w = 2*pi*f;

Tw = 1./f;

r=wr/w;

%% GZ_interp.m

% interpolation of GZ

clear all

t=0:0.5:15;

V_rel=30;

L_pp=232;

L=232;

S_input= load (’WavePosition_232.txt’);

import_GZ_table GZ_table_11_6_232.xls;

%import_GZ_table GZ_table_8_4_232.xls;
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%import_GZ_table GZ_table_5_6_232.xls;

% L=155;

% S_input= load (’WavePosition_155.txt’);

% import_GZ_table GZ_table_5_6_155.xls;

% L=116;

% S_input= load (’WavePosition_116.txt’);

% import_GZ_table GZ_table_5_6_116.xls;

S= (L_pp-L)/2- V_rel*t;

%S= L_pp/2- V_rel*t;

%S= L_pp-L/4- V_rel*t;

e=numel(S);

for k=1:1:e

while S(k) < 0

S(k) = S(k) + L;

end

while S(k) > L

S(k) = S(k) - L;

end

end

phi = -70:5:70;

X = deg2rad(phi);

Y = S_input’;

GZ = Ark1;
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Xi = -1.23:0.05:1.23;

Yi = S’;

GZi = interp2(X,Y,GZ,Xi,Yi,’spline’);

mesh (X,Y,GZ)

hold on

%mesh (Xi,Yi,GZi+3), hold

% surf (X,Y,GZ)

% hold on

% surf (Xi,Yi,GZi+3)

% shading interp;

% colormap(summer)

xlabel(’φ [rad]′)

ylabel(’Wave position [m]’)

zlabel (’GZ [m]’)

title(’GM curves for H=5.6 m , L=232 m’)

% mathieu.m %

k = menu(’Choose a plot’,’Plot between roll angle and tau’,’Plot between phi and phidot’);

if k==1 % plot between roll angle and tau

tf_m= input(’Enter the final time [sec]: ’);

tspan_m= [0, tf_m];

w_m= 1;

tauspan_m = w_m*tspan_m;

ip= input(’Enter the initial roll angle [deg]: ’);

iv= input(’Enter the initial roll velocity: ’);

ip_r=deg2rad(ip);

iv_r=deg2rad(iv);

y0_m= [ip_r, iv_r];

delta_m= input(’Enter the coefficient δ : ′);

epsilon_m= input(’Enter the coefficient ǫ : ′);

zeta_m= input(’Enter the damping ratio ζ : ′);
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[tau_m, y_m] = ode45(@sysfil_mathieu,tauspan_m,y0_m,[],delta_m,epsilon_m,zeta

size(tau_m);

size(y_m);

y=rad2deg(y_m);

plot(tau_m, y(:,1))

grid on

xlabel(’τ ′)

ylabel(’φ [deg]′)

title([’Solution of the Mathieu equation when δ = ′, num2str(delta_m), ′, ǫ = ′,

else % Plot between phi and phidot

plot(y(:,1), y(:,2))

grid on

xlabel(’φ [deg]′)

ylabel(’’)

title (’Phase plane plot’)

end

% sysfil_mathieu.m %

function ydot=sysfil_mathieu(tau,y,delta,epsilon,zeta)

ydot=[y(2); -2*zeta*sqrt(delta)*y(2)-(delta + epsilon*cos(tau))*y(1)];

% test4a.m %

function varargout = test4a(varargin)

% TEST4 M-file for test4.fig

% TEST4, by itself, creates a new TEST4 or raises the existing

% singleton*.

%

% H = TEST4 returns the handle to a new TEST4 or the handle to
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% the existing singleton*.

%

% TEST4(’CALLBACK’,hObject,eventData,handles,...) calls the local

% function named CALLBACK in TEST4.M with the given input arguments.

%

% TEST4(’Property’,’Value’,...) creates a new TEST4 or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before test4_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to test4_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help test4

% Last Modified by GUIDE v2.5 16-Mar-2008 19:42:09

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @test4_OpeningFcn, ...

’gui_OutputFcn’, @test4_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin && ischar(varargin1)

gui_State.gui_Callback = str2func(varargin1);

end

if nargout

[varargout1:nargout] = gui_mainfcn(gui_State, varargin:);

else

gui_mainfcn(gui_State, varargin:);

end

% End initialization code - DO NOT EDIT
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% --- Executes just before test4 is made visible.

function test4_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to test4 (see VARARGIN)

% Choose default command line output for test4

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes test4 wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = test4_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout1 = handles.output;

function tf4_input_Callback(hObject, eventdata, handles)

% hObject handle to tf4_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of tf4_input as text

% str2double(get(hObject,’String’)) returns contents of tf4_input as a double
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% --- Executes during object creation, after setting all properties.

function tf4_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to tf4_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundC

set(hObject,’BackgroundColor’,’white’);

end

function iv4_input_Callback(hObject, eventdata, handles)

% hObject handle to iv4_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of iv4_input as text

% str2double(get(hObject,’String’)) returns contents of iv4_input as a double

% --- Executes during object creation, after setting all properties.

function iv4_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to iv4_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundC

set(hObject,’BackgroundColor’,’white’);

end

function zeta4_input_Callback(hObject, eventdata, handles)
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% hObject handle to zeta4_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of zeta4_input as text

% str2double(get(hObject,’String’)) returns contents of zeta4_input as a double

% --- Executes during object creation, after setting all properties.

function zeta4_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to zeta4_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgro

set(hObject,’BackgroundColor’,’white’);

end

function ip4_input_Callback(hObject, eventdata, handles)

% hObject handle to zeta4_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of zeta4_input as text

% str2double(get(hObject,’String’)) returns contents of zeta4_input as a double

% --- Executes during object creation, after setting all properties.

function ip4_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to zeta4_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.
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if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundC

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in plot4_pushbutton1.

function plot4_pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to plot4_pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

tf4 = str2double(get(handles.tf4_input,’String’));

t4span = [0, tf4];

ip = str2double(get(handles.ip4_input,’String’));

iv = str2double(get(handles.iv4_input,’String’));

ip4=deg2rad(ip);

iv4=deg2rad(iv);

y0_4= [ip4 ; iv4];

B_cr = 3.761e9 ;

zeta= str2double(get(handles.zeta4_input,’String’));

B4=B_cr*zeta;

[t4, y4] = ode45(@test4_system,t4span,y0_4,[],B4);

% plot between roll angle and tau

size(t4);

size(y4);

y=rad2deg(y4);

axes(handles.t_phi_axes)

plot(t4, y(:,1))

grid on

xlabel(’t [sec]’)
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ylabel(’φ [deg]′)

title(’Solution with sinusoidally interpolated GM’)

% Plot between phi and phidot

axes(handles.phi_phidot_axes)

plot(y(:,1), y(:,2))

grid on

xlabel(’φ [deg]′)

ylabel(’ [deg/s]’)

title (’Phase plane plot’)

% test4b.m %

clear all

k = menu(’Choose a plot’,’Plot between roll angle and tau’,’Plot between phi and

if k==1

% plot between roll angle and tau

tf =input(’Enter the final time [sec]: ’);

tspan= [0, tf];

ip= input(’Enter the initial roll angle [deg]: ’);

iv= input(’Enter the initial roll velocity [deg/s]: ’);

ip_r=deg2rad(ip);

iv_r=deg2rad(iv);

y0= [ip_r, iv_r];

B_cr = 3.761e9 ;

zeta= input(’Enter the damping ratio, zeta: ’);

B=B_cr*zeta;

[t, y] = ode45(@test4_system,tspan,y0,[],B);
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size(t);

size(y);

y_d=rad2deg(y);

plot(t, y_d(:,1))

grid on

xlabel(’t [sec]’)

ylabel(’φ [deg]′)

title(’Run 1’)

else

% Plot between phi and phidot

plot(y_d(:,1), y_d(:,2))

grid on

xlabel(’φ [deg]′)

ylabel(’ [deg/s]’)

title (’Phase plane plot’)

end

% test4_system.m %

function ydot=test4_system(t,y,B)

V_rel = 28;

L=232;

GZ_cr = 0.01; % 1) H = 11.6 m, L = 232 m

GZ_tr = 0.61;

% L=232;

% GZ_cr = 0.02; % 2) H = 8.4 m, L = 232 m
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% GZ_tr = 0.51;

% L=232;

% GZ_cr = 0.04; % 3) H = 5.6 m, L = 232 m

% GZ_tr = 0.39;

% L=155;

% GZ_cr = 0.11; % 4) H = 5.6 m, L = 155 m

% GZ_tr = 0.31;

% L=116;

% GZ_cr = 0.28; % 5) H = 5.6 m, L = 116 m

% GZ_tr = 0.17;

phi_10 = deg2rad(10); % 10 deg converted to radians

GM_cr = GZ_cr/phi_10; % GM for the crest amidships position

GM_tr = GZ_tr/phi_10; % GM for the trough amidships position

% moment of inertia, Ix

M=54616; % mass of ship

g=9.81;

Delta = M*1000*g; % ship displacement

Tg = 21.4; % roll period given in Eriksen [7, Chap

wg = 2*pi/Tg; % corresponding roll frequency% given

GZ_0 = 0.18; % GZ for still water

GM_0 = GZ_0/phi_10; % GM for still water

Ix = Delta*GM_0/wg^2;

% roll frequency, wr

GM_m = 1/2*(GM_cr+GM_tr); % Mean GM

wr = sqrt(Delta*GM_m/Ix);

C = (GM_cr-GM_tr)/(GM_cr+GM_tr); % fractional variation in mean GM
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% Encounter angular frequency

f = V_rel/L; % wave frequency

w = 2*pi*f;

ydot=[y(2); -B/Ix*y(2)- wr^2*(1+ C*cos(w*t))*y(1)]; % crest amidships position

%ydot=[y(2); -B/Ix*y(2)- wr^2*(1+ C*cos(w*t+pi))*y(1)]; % trough amidships

%ydot=[y(2); -B/Ix*y(2)- wr^2*(1+ C*cos(w*t+3/2*pi))*y(1)]; % zero wave elevation

% test5a.m %

function varargout = test5a(varargin)

% TEST5 M-file for test5.fig

% TEST5, by itself, creates a new TEST5 or raises the existing

% singleton*.

%

% H = TEST5 returns the handle to a new TEST5 or the handle to

% the existing singleton*.

%

% TEST5(’CALLBACK’,hObject,eventData,handles,...) calls the local

% function named CALLBACK in TEST5.M with the given input arguments.

%

% TEST5(’Property’,’Value’,...) creates a new TEST5 or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before test5_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to test5_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help test5

% Last Modified by GUIDE v2.5 16-Mar-2008 20:00:19

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...
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’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @test5_OpeningFcn, ...

’gui_OutputFcn’, @test5_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin && ischar(varargin1)

gui_State.gui_Callback = str2func(varargin1);

end

if nargout

[varargout1:nargout] = gui_mainfcn(gui_State, varargin:);

else

gui_mainfcn(gui_State, varargin:);

end

% End initialization code - DO NOT EDIT

% --- Executes just before test5 is made visible.

function test5_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to test5 (see VARARGIN)

% Choose default command line output for test5

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes test5 wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = test5_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure
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% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout1 = handles.output;

function tf5_input_Callback(hObject, eventdata, handles)

% hObject handle to tf5_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of tf5_input as text

% str2double(get(hObject,’String’)) returns contents of tf5_input as a double

% --- Executes during object creation, after setting all properties.

function tf5_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to tf5_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundC

set(hObject,’BackgroundColor’,’white’);

end

function ip5_input_Callback(hObject, eventdata, handles)

% hObject handle to ip5_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of ip5_input as text

% str2double(get(hObject,’String’)) returns contents of ip5_input as a double
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% --- Executes during object creation, after setting all properties.

function ip5_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to ip5_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgro

set(hObject,’BackgroundColor’,’white’);

end

function iv5_input_Callback(hObject, eventdata, handles)

% hObject handle to iv5_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of iv5_input as text

% str2double(get(hObject,’String’)) returns contents of iv5_input as a double

% --- Executes during object creation, after setting all properties.

function iv5_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to iv5_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgro

set(hObject,’BackgroundColor’,’white’);

end

function c3_input_Callback(hObject, eventdata, handles)
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% hObject handle to c3_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of c3_input as text

% str2double(get(hObject,’String’)) returns contents of c3_input as a double

% --- Executes during object creation, after setting all properties.

function c3_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to c3_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundC

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in plot5_pushbutton1.

function plot5_pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to plot5_pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

tf5 = str2double(get(handles.tf5_input,’String’));

t5span = [0, tf5];

ip = str2double(get(handles.ip5_input,’String’));

iv = str2double(get(handles.iv5_input,’String’));

ip5=deg2rad(ip);

iv5=deg2rad(iv);

y0_5= [ip5 ; iv5];
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B_cr = 3.761e9 ;

zeta = str2double(get(handles.c3_input,’String’));

B5=B_cr*zeta;

S_input= (0:1:20)*11.6; % Wave positions for L=232

%S_input= (0:1:20)*7.75; % Wave positions for L=155

%S_input = (0:1:20)*5.8; % Wave positions for L=116

%GZ = load (’GZ_11_6_232.txt’);

GZ = load (’GZ_8_4_232.txt’);

%GZ = load (’GZ_5_6_232.txt’);

%GZ = load (’GZ_5_6_155.txt’);

%GZ = load (’GZ_5_6_116.txt’);

[t5, y5] = ode45(@test5_system,t5span,y0_5,[],B5,S_input,GZ);

% plot between roll angle and tau

size(t5);

size(y5);

y=rad2deg(y5);

axes(handles.t_phi_axes)

plot(t5, y(:,1))

grid on

xlabel(’t [sec]’)

ylabel(’φ [deg]′)

title(’Solution with real interpolated GM’)

% Plot between phi and phidot

axes(handles.phi_phidot_axes)

plot(y(:,1), y(:,2))

grid on

xlabel(’phi’)

ylabel(’phi dot’)
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title (’Phase plane plot’)

%% test5b.m

clear all

k = menu(’Choose a plot’,’Plot between roll angle and tau’,’Plot between phi and phidot’);

if k==1

% plot between roll angle and tau

tf =input(’Enter the final time [sec]: ’);

tspan= [0, tf];

ip= input(’Enter the initial roll angle [deg]: ’);

iv= input(’Enter the initial roll velocity [deg/s]: ’);

ip_r=deg2rad(ip);

iv_r=deg2rad(iv);

y0= [ip_r, iv_r];

B_cr = 3.761e9 ;

zeta= input(’Enter the damping ratio, zeta: ’);

B=B_cr*zeta;

[t, y] = ode45(@test5_system,tspan,y0,[],B);

size(t);

size(y);

y_d=rad2deg(y);

plot(t, y_d(:,1))

grid on

xlabel(’t [sec]’)
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ylabel(’φ [deg]′)

title(’Run 000’)

else

% Plot between phi and phidot

plot(y_d(:,1), y_d(:,2))

grid on

xlabel(’φ [deg]′)

ylabel(’ [deg/s]’)

title (’Phase plane plot’)

end

% test5_system.m %

function ydot=test5_system(t,y,B,S_input,GZ)

phi_10 = deg2rad(10);

V_rel=28;

L_pp=232;

L=232;

%L=155;

%L=116;

S= (L_pp-L)/2- V_rel*t; % crest amidships position

%S= L_pp/2- V_rel*t; % trough amidships position

%S= L_pp-L/4- V_rel*t; % zero wave elevation at the FP

while S < 0

S = S + L;

end
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while S > L

S = S - L;

end

GM = GZ/phi_10;

GMi = spline(S_input,GM,S);

% moment of inertia, Ix

M=54616; % mass of ship

g=9.81;

Delta = M*1000*g; % weight of the ship

Tg = 21.4; % roll period given in Eriksen [7, Sec5]

wg = 2*pi/Tg; % corresponding roll frequency% given roll

GZ_0 = 0.18; % GZ for still water

GM_0 = GZ_0/phi_10; % GM for still water

Ix = Delta*GM_0/wg^2;

ydot=[y(2); -B/Ix*y(2)-Delta/Ix*GMi*y(1)];

% test7a.m %

function varargout = test7a(varargin)

% TEST7A M-file for test7a.fig

% TEST7A, by itself, creates a new TEST7A or raises the existing

% singleton*.

%

% H = TEST7A returns the handle to a new TEST7A or the handle to

% the existing singleton*.

%

% TEST7A(’CALLBACK’,hObject,eventData,handles,...) calls the local

% function named CALLBACK in TEST7A.M with the given input arguments.
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%

% TEST7A(’Property’,’Value’,...) creates a new TEST7A or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before test7a_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to test7a_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help test7a

% Last Modified by GUIDE v2.5 01-May-2008 18:55:42

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @test7a_OpeningFcn, ...

’gui_OutputFcn’, @test7a_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin && ischar(varargin1)

gui_State.gui_Callback = str2func(varargin1);

end

if nargout

[varargout1:nargout] = gui_mainfcn(gui_State, varargin:);

else

gui_mainfcn(gui_State, varargin:);

end

% End initialization code - DO NOT EDIT

% --- Executes just before test7a is made visible.

function test7a_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.
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% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to test7a (see VARARGIN)

% Choose default command line output for test7a

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes test7a wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = test7a_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout1 = handles.output;

function tf7_input_Callback(hObject, eventdata, handles)

% hObject handle to tf7_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of tf7_input as text

% str2double(get(hObject,’String’)) returns contents of tf7_input as a double

% --- Executes during object creation, after setting all properties.

function tf7_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to tf7_input (see GCBO)
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% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgro

set(hObject,’BackgroundColor’,’white’);

end

function ip7_input_Callback(hObject, eventdata, handles)

% hObject handle to ip7_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of ip7_input as text

% str2double(get(hObject,’String’)) returns contents of ip7_input as a double

% --- Executes during object creation, after setting all properties.

function ip7_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to ip7_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgro

set(hObject,’BackgroundColor’,’white’);

end

function iv7_input_Callback(hObject, eventdata, handles)

% hObject handle to iv7_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
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% Hints: get(hObject,’String’) returns contents of iv7_input as text

% str2double(get(hObject,’String’)) returns contents of iv7_input as a double

% --- Executes during object creation, after setting all properties.

function iv7_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to iv7_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundC

set(hObject,’BackgroundColor’,’white’);

end

function c7_input_Callback(hObject, eventdata, handles)

% hObject handle to c7_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of c7_input as text

% str2double(get(hObject,’String’)) returns contents of c7_input as a double

% --- Executes during object creation, after setting all properties.

function c7_input_CreateFcn(hObject, eventdata, handles)

% hObject handle to c7_input (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundC

set(hObject,’BackgroundColor’,’white’);

end
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% --- Executes on button press in plot7_pushbutton.

function plot7_pushbutton_Callback(hObject, eventdata, handles)

% hObject handle to plot7_pushbutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

tf7 = str2double(get(handles.tf7_input,’String’));

t7span = [0, tf7];

ip = str2double(get(handles.ip7_input,’String’));

iv = str2double(get(handles.iv7_input,’String’));

ip7=deg2rad(ip);

iv7=deg2rad(iv);

y0_7= [ip7 ; iv7];

B_cr = 3.761e9 ;

zeta= str2double(get(handles.c7_input,’String’));

B=B_cr*zeta;

% Read in table of GZ values and set up phi and position values

phi = -70:5:70; % In put roll angle

X = deg2rad(phi); % roll angle in radians

Y = (0:1:20)*11.6; % Wave positions for L=232

%Y = (0:1:20)*7.75; % Wave positions for L=155

%Y = (0:1:20)*5.8; % Wave positions for L=116

GZ = xlsread(’GZ_table_11_6_232.xls’); % Reads GZ table for H = 11.6 m, L =

%GZ = xlsread(’GZ_table_8_4_232.xls’); % Reads GZ table for H = 8.4 m, L = 232

%GZ = xlsread(’GZ_table_5_6_232.xls’); % Reads GZ table for H = 5.6 m, L = 232

%GZ = xlsread(’GZ_table_5_6_155.xls’); % Reads GZ table for H = 5.6 m, L = 155

%GZ = xlsread(’GZ_table_5_6_116.xls’); % Reads GZ table for H = 5.6 m, L = 116



91

[t7, y7] = ode45(@test7_system,t7span,y0_7,[],B,X,Y,GZ);

% plot between roll angle and tau

size(t7);

size(y7);

y=rad2deg(y7);

axes(handles.t_phi_axes)

plot(t7, y(:,1))

grid on

xlabel(’t [sec]’)

ylabel(’φ [deg]′)

title(’Solution with interpolated GZ’)

% Plot between phi and phidot

axes(handles.phi_phidot_axes)

plot(y(:,1), y(:,2))

grid on

xlabel(’φ [deg]′)

ylabel(’ [deg/s]’)

title (’Phase plane plot’)

% --- Executes when figure1 is resized.

function figure1_ResizeFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% test6b.m %

k = menu(’Choose a plot’,’Plot between roll angle and tau’,’Plot between phi and phidot’);

if k==1

% plot between roll angle and tau
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t_final=input(’Enter the final time: ’);

tspan= [0,t_final];

ip= input(’Enter the initial roll angle [deg]: ’);

iv= input(’Enter the initial roll velocity [deg/s]: ’);

ip_r=deg2rad(ip);

iv_r=deg2rad(iv);

y0= [ip_r, iv_r];

B_cr = 3.761e9 ;

zeta= input(’Enter the damping ratio, zeta: ’);

B=B_cr*zeta;

phi = -70:5:70;

X = deg2rad(phi);

Y = (0:1:20)*11.6;

import_GZ_data GZ_-70_70.xls;

GZ=data;

[t, y] = ode45(@test7_system,tspan,y0,[],B,X,Y,GZ);

size(t);

size(y);

y_d=rad2deg(y);

plot(t, y_d(:,1))

grid on

xlabel(’t [sec]’)

ylabel(’φ [deg]′)

title(’Run 000’)
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else

% Plot between phi and phidot

plot(y6(:,1), y6(:,2))

grid on

xlabel(’phi’)

ylabel(’phi dot’)

title([’Phase plane plot with interpolated values of GM for φ = 10 deg =

0.1745 rad and c = ′, num2str(c6)])

end

% test7_system.m %

function ydot=test7_system(t,y,B,X,Y,GZ)

t;

y;

V_rel=13.79;

L_pp=232;

L=232;

%L=155;

%L=116;

S= (L_pp-L)/2- V_rel*t; % crest amidships position

%S = L_pp/2- V_rel*t; % trough amidships position

%S= L_pp-L/4- V_rel*t; % zero wave elevation at FP

while S < 0

S = S + L;

end
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while S > L

S = S - L;

end

S;

% Interpolate GZ value from table

%GZi = interp2(phitable,postable,GZtable,y7(1),S,’spline’);

GZi = interp2(X,Y,GZ,y(1),S,’spline’);

% weight of ship

M=54600;

g=9.81;

Delta = M*1000*g;

% roll frequency

Tg = 21.4;

wg = 2*pi/Tg;

% moment of inertia

phi_10 = pi/18;

GZ_0 = 0.18;

GM_0 = GZ_0/phi_10;

Ix = Delta*GM_0/wg^2;

ydot=[y(2); -B/Ix*y(2)- Delta/Ix*GZi];
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