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Abstract

In this thesis, we investigate the application of duality-based
goal-oriented adaptive error control to the computation of
shear stresses in biomedical flow problems. As a model prob-
lem, we consider the linear Stokes equations.

Adaptive error control for goal functionals expressed as sur-
face integrals, as in the case of shear stresses, require the
formulation of a dual Stokes problem where the shear stress
goal functional enters as a driving force. This may lead to
instabilities (oscillations) in the dual pressure. A partial so-
lution to this problem is to reformulate surface integrals as
volume integrals.

We find that the volume formulation leads to significant im-
provements, both for the stability of the dual pressure and
the quality of efficiency indices. Various strategies for ap-
proximation of the dual problem, mesh refinement, and rep-
resentations of shear stress goal functionals are examined.
The strategies have been implemented in Python based on
the FEniCS/DOLFIN framework and applied to a pair of
two-dimensional geometries, including a simple test case on
the unit square with known primal and dual analytic solu-
tions, and an idealized model of an aneurysm geometry.
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Chapter 1

Introduction

Computational fluid dynamics (CFD) is a scientific field that, with the help of digital comput-
ers, produces quantitative predictions or numerical descriptions of fluid flows. It is immensely
powerful as a means to increase understanding of fluid phenomena. CFD plays a central role
in engineering predictions as a tool to solve industrial problems, and has applications in all
areas of engineering. It is used within aerospace engineering, chemical engineering, mechan-
ical and civil engineering to name a few [15, 29].

CFD is never exact. To fulfill the full power of CFD, results must be accurate and
computations cost effective. It is crucial that the accuracy of a computed solution may
be determined. Duality based goal-oriented error control and adaptivity is a technique for
minimization of the error in a quantity of interest, a so-called goal functional, taken from
a computed solution. Most often our main interest in a simulation will be in some quan-
tity of physical or engineering interest. With error control in a goal functional we exploit
the localized nature of such a quantity to construct purposefully designed meshes, thereby
allowing for an economic use of computational resources. The goal-oriented framework also
provides an estimate of the accuracy of the computed functional of interest. A posteriori es-
timates are derived based on local solution residuals and the solution of an auxiliary adjoint
(dual) problem. The dual problem describes the dependence of the global error in the goal
functional on local smoothness properties. Goal-oriented adaptivity and error control thus
addresses both the aspect of computational work and accuracy in a simulation.

Another field in which CFD has a huge potential is within modelling and imaging of
physiological processes [8]. Simulation of blood flow in arteries and computation of the re-
sulting shear stresses offer a promising tool to increase understanding of the causes for the
development and rupture of what is known as aneurysms. An aneurysm is a balloon-like
dilatation of a segment of the the artery that forms when the structural integrity of the
artery wall is compromised due to repetitive hydraulic stress [14]. Figure 1.1 illustrates the
phenomenon. As many as 1-6 per cent of the population will during their life time develop
aneurysms [13, 23, 19]. Untreated the aneurysm might rupture, which may lead to death or
grave disability. Even unruptured an aneurysm may cause damage by interrupting the blood
flow or impinging on nearby blood vessels, organs or bone [14].

Wall shear stress is a quantity of importance in the study of blood flow, in particular
in the study of flows in blood vessels with vascular malformations. It is believed to be a
contributing factor in the development and rupture of aneurysms [19]. Simulations of blood
are computationally expensive as they are conducted on geometrically complex domains.



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Image of an abnormal blood vessel with multiple aneurysms [2].

In this thesis we investigate techniques for employing goal-oriented error control and
adaptivity when the quantity of interest is shear stress. We investigate different ways of rep-
resenting the shear stress and the quality of the derived error estimates and error-indicators.
Method investigations do not extend to the case when the shear stresses are induced by fluid
flow governed by the Navier-Stokes equations. Nonlinear extensions of the general theory is
however still included, as is the application of the finite element method and the goal-oriented
framework to the Navier-Stokes equations.

The outline of the thesis is as follows. In Chapter 2 the governing equations for flow
considered in this thesis are presented. The general theory of the finite element method along
with its application to the governing equations are also presented in Chapter 2. Chapter 3
introduces a framework for adaptive goal-oriented error control. Chapter 4 presents the
methodology employed in this thesis. In Chapter 5 we provide a brief introduction to the
different test-cases, and the numerical results are presented in Chapter 6. Chapter 7 provides
conclusions and future works.
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Figure 1.2: Different refinement strategies of a geometry.



Chapter 2

Simulating fluid flow

In this chapter, the governing equations considered in this work are described, together with
a finite element discretization of these equations.

2.1 Mathematical model

2.1.1 The steady-state incompressible Navier-Stokes equations

The incompressible Navier-Stokes equations are a set of nonlinear partial differential equa-
tions that describe the motion of incompressible Newtonian fluids. They arise from the
conservation laws for mass and momentum and a balance of forces according to Newton’s
laws [25, 15, 5, 20] . For a vector field u = u(x, t), describing the fluid velocity, and a scalar
pressure field p = p(x,t), the full Navier-Stokes equations for viscous Newtonian incompress-
ible fluids read

p(?;tl—i-u-Vu):V-a—i-f, V-u=0, (2.1)

where p is the density of the fluid, 0 = o(u,p) is the tensor describing stresses in the fluid
and f is a given body force, such as gravity. The stress tensor we consider in this thesis is

o(u,p) = uVu+ pl, (2.2)

where p is the dynamic viscosity. We have switched the sign of the pressure to obtain a sym-
metric matrix system, and we apply the regular velocity gradient instead of the symmetric
gradient £(u) = 3(Vu + Vu?), which is traditionally used in stress calculations. The equa-
tions (2.1) are called the momentum equation and the equation of continuity, respectively.
We consider here the time-independent, or stationary, Navier-Stokes equations, and we as-
sume incompressibility of the fluid, meaning a constant density in space and time. All fluids
are compressible, but incompressibility is a reasonable assumption when the fluid density is
virtually unaffected by pressure changes within the flow [15]. This applies for fluids such as
water and oil, and is a common assumption also for blood.

The equation of continuity

The continuity equation is derived from the law of mass conservation, which states that,
for an arbitrary fixed volume V', with boundary 0V, the volume mass will remain constant
over time. Thus a decrease of mass within V' must equal the rate of outflow through the
boundaries. This is described by the equation

d

— | pdV = —/ pu-ndS. (2.3)
dt Jy av

3
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Using the divergence theorem (Green’s theorem) [15], the surface integral is transformed into
a volume integral, and we obtain

/<gt+v (p )) dv = 0. (2.4)

For this to hold for an arbitrarily Chosen volume, it must be true at any point, and thus the
integrand vanishes, leaving us w1th £+ V- (pu) = 0. This is called the volume conservation
equation or the continuity equation. Slnce the fluid is incompressible, the density is constant
in time, and the continuity equation reduces to

V-u=0. (2.5)

The momentum equation

The momentum of the fluid contained within the volume V is conserved. Newton’s second
law states that the total force acting on a body equals its rate of change of linear momentum,
fv pudV. From this balance of forces the momentum equation is derived. The forces acting
on the fluid are divided into two types: body forces are forces acting from a distance, such as
gravity, whereas surface forces are forces that arise from direct contact with the surroundings,
and are given by stresses on the domain walls. The stress tensor o gives the state of stress
at a point, so by taking its vector product with the unit normal on the boundary wall, we
obtain the stress vector whose normal and tangential components constitute the normal- and
shear stresses respectively. This relation of forces is expressed through the equation

d
pudV / a~ndS+/de
dt oV 1%

(2.6)
:/ V-o+fdv,
,

where the last equality was obtained by applying Green’s theorem to the stress-term. We
apply the transport theorem [15] (2.3) to the momentum-term, perform integration by parts
on the resulting surface integral and finally apply the continuity equation. We then obtain

d
pudV / dV+/ pu(u-n)dsS
dt ov
/ i +p(V-u)u+pu-VvVudS (2.7)
— [ ) - Vuds.
/Vpdt + pu-VudS

This is inserted into (2.6). The resulting terms can now be collected in one volume integral

/( (flt+pu Vu-V- a—f) AV = 0. (2.8)

Again we observe that for this to apply to any volume, the integrand must vanish at every
point, which yields

d
<dltl—|—u Vu)zv-a—i-f. (2.9)

This is the momentum equation, which, when put together with (2.5), yields the time-
dependent incompressible Navier-Stokes equations.
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2.1.2 The Stokes equations

The Stokes equations are a stationary, linearized form of the full Navier-Stokes equations,
derived by eliminating the terms on the left side of (2.1), namely the term expressing the
time-dependence, %‘t‘, and the nonlinear term, u- Vu, also called the convective term. When
convection is removed, we model a more controlled and predictable flow, whereas letting
%—‘t‘ = 0, means the equations are stationary, or time-independent. This means that there
is no longer any change over time, and we say that the flow has reached a steady state.
The Stokes equations model slow flowing, or creeping, flow. In flow that satisfies the Stokes
equations, viscous forces dominate over kinematic forces, which may correspond to a high

fluid viscosity or very small velocities. Our model for Stokes flow then reads

—V-.o(u,p)=£f V-u=0, (2.10)

with o(u,p) as in (2.2) and f the body forces.

2.1.3 Boundary conditions

To complete our model problem, we must also describe the fluid behaviour on the domain
boundary. When conditions are imposed directly on the fluid velocity or pressure on the
boundary, it is called a Dirichlet-type boundary condition. When instead conditions are im-
posed on the velocity gradient normal to the boundary, it is called a Neumann-type boundary
condition. These are the two types of boundary conditions we are concerned with in this
thesis. A brief description is given of some common boundary conditions.

An inflow boundary condition is a prescribed fluid velocity at a domain inlet. We can
for example have a uniform or a parabolic inlet velocity profile. At a domain outlet we
impose a condition of no flow influence or resistance by letting the normal component of the
stress tensor, o, also called the traction vector, equal zero. That is o(u,p) - n = 0. On the
remaining boundary, namely all areas that are not inlet or outlet, we model rigid walls to
contain the fluid. Modelling the boundary walls as rigid is in some cases, such as blood flow,
not an accurate assumption, but is fairly common nonetheless. Solid walls are modelled by
letting the velocity equal zero on the boundary. The no-slip condition means that the fluid
velocity relative to the wall is zero, so in the case of rigid walls, this means that the fluid
velocity is zero.

2.1.4 Computation of wall shear stress

In this thesis we investigate techniques for conducting error control in the wall shear stresses
induced by fluid flow. In Chapter 3, the general theory of adaptive error control is presented,
and we see that the goal functional in which we seek error minimization, will appear in the
variational form of an auxiliary adjoint (dual) problem derived from our original problem.
This means that different goal functionals give rise to different dual solutions. We have
applied, in our numerical studies, different techniques for representing the shear stress goal
functional: one in which the shear stress is represented in terms of surface integrals, also
called the surface formulation, and one in which the shear stress is reformulated to contain
only integrals over the interior of the domain, a formulation we call the volume formulation.

The wall shear stress is a quantity that resides on the domain boundary, and is thus
traditionally represented in terms of a line- or surface integral in, respectively, two and three
dimensions. If u is the fluid velocity and p the fluid pressure, then the surface representation
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of the induced wall shear stress reads

MS((u,p))Z/ o(u,p)n-tds, (2.11)

|y’

where o is the stress tensor given in (2.2), n is the unit normal vector and t the unit tan-
gent vector on the goal boundary I'¢. The subscript S indicates that Mg gives shear stress
represented as surface integral.

The technique for deriving the volume formulation is described in [27], and the continu-
ation article [28], for the computation of drag and lift. Here we apply it to the computation
of shear stress. The derivation starts with the definition of a function v4 € [H(Q)]%, that is
prescribed a certain value on, I', and set to be zero everywhere else on the domain bound-
ary. The function vy should be defined so that we, by multiplying it with the momentum
equation, integrating the resulting expression over the domain and performing integration
by parts, obtain an expression that equals the goal functional and that consists exclusively
of volume integrals. The value of v; in the domain interior can be arbitrarily chosen.

The technique is demonstrated on the stationary version of the Navier-Stokes equa-
tions given in (2.1). Application to the Stokes equations then entails simply removing the
convection-term. We multiply the momentum equation with v4, integrate over €2, and per-
form integration by parts:

Oz/p(u-Vu—V'a(u,p)—f)-vddx

Q
/pu-Vu-vddx/V~J(u,p)~vdd:ﬂ/f-vddx (2.12)
Q Q Q

:/pu-Vu-vdda:—i—/a(u,p)-Vvdd:c—/ o(u,p)n-vddx—/f'vddx.
Q Q o0N Q

We define v4 to equal the tangent vector t on the part of the boundary on which the goal
functional is evaluated, and to be zero on the remaining boundary. The integral expression
for the surface shear stress thus appears in (2.12). By inserting v4 and collecting the vol-
ume terms on one side and the boundary terms on the other, we have derived the volume
representation of the shear stress.

My(p) = [

a(u,p)Vvddx—/f‘vddx. (2.13)
Q

Q

Since the value of v, in the interior can be arbitrarily chosen, we will in our numerical testing
apply one volume representation in which v; has minimal support in §2, and one in which
it has a larger support, to investigate the effect this has on the corresponding dual solution
and generated error estimates.

2.2 The finite element method

Partial differential equations (PDE’s) are the underlying equations in a wide range of phys-
ical phenomena. Most problems involving partial differential equations can not be solved
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analytically. We need to use a numerical technique to discretize the problem and generate
an approximate solution. The numerical technique we use in this thesis is the finite element
method. It is a powerful and flexible numerical approach in that it with relative ease allows
for discretization of complicated domains, application of non-uniform meshes and appropri-
ate boundary conditions. It is the most widely used numerical technique both in analysis
and engineering [11, 9].

2.2.1 The strong problem formulation

When solving a PDE, we search for a continuous solution that satisfies the equations as well
as some additional conditions that characterize the behaviour on the domain boundaries and
the problems initial state. For a general PDE this can be expressed as:

Find w € V' such that Lu=f (2.14)

where £ : V — V' is a differential operator from the solution space V into the dual space
V', f € V', and u € V is the continuous solution. This initial problem formulation is called
the strong problem or strong formulation, and we say that a solution u of (2.14) solves the
problem in a strong way.

2.2.2 The weak problem formulation

Given such a formulation, the finite element method is applied to generate a corresponding
approximate solution. The first step is deriving an alternative formulation of the strong form
that allows for the equation to be fulfilled with less restrictive differentiability requirements on
u, for this reason called the weak formulation or the weak problem. It is derived by multiplying
the strong form with a suitably defined test function v, integrating the resulting equations
over the domain 2, and using integration by parts to remove higher order derivatives of w.
In the linear case, it can be phrased as:

find w € V' such that a(u,v) = L(v) VveV (2.15)

where a : V x V — R is a bilinear form, L : V — R a linear form and V and V are called
the trial- and test spaces, respectively. They are spaces of functions with such generalized
derivatives, such as Sobolev spaces. For a description of Sobolev spaces and their properties,
see [11]. We will often refer to (2.15) as the variational form.

2.2.3 The finite element formulation

To introduce the discrete setting, we construct finite dimensional subspaces, V; C V, in
which to search for the approximate solution. To this end we first divide the domain €2 into
a set, T, = {T'}, of subdomains with disjoint interiors, also called a tesselation, such that
Q = Uper, T, which we call the cells. We then define local function spaces P = P(T') over
each cell as well as a way to determine a function v € P from the basis for its dual space,
which consists of linear functionals on P. The definition of a finite element, Definition 2.2.1,
found in [9] formally describes this.
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Definition 2.2.1 (Finite element) Let

(i) T be a bounded closed subset of R? with non-empty interior and piecewise smooth
boundary (the element domain)
(i) P ="P(T) be a finite-dimensional space of functions on T of dimension n
(the space of shape functions)
(i4i) N ={N1, Na, ..., Ny} be a basis for P’ (the set of degrees of freedom or nodes)

Then (T, P,N) is called a finite element.

Definition 2.2.2 (Nodal basis of P) Let (T, P,N) be a finite element. The basis
{1, 02, ... 0k} of P dual to N (i.e. Ni(¢j) = 0;5) is called the nodal basis of P.

The global finite element space V}, over the entire domain €2 can now be constructed by
combining the local function spaces given by the finite elements. By replacing the infinite-
dimensional test- and trial spaces with their finite dimensional counterparts, we obtain the
restricted variational problem:

find up € Vi, such that a(up,v,) = L(vp) Yo,eV,CV (2.16)

where wuy, is the finite element solution. A function in V}, can be written as a linear combi-
nation of the basis for V.

up = Y Ui (2.17)
i=N

where U; are given by the degrees of freedom. Inserting this anzats into (2.16), and replacing
the test function with an arbitrary basis function, ¢;, we get a system of equations where U;
are the unknowns, that we solve to find the finite element solution.

2.2.4 Lagrange elements

There are a wide variety of element choices. We use the most common element, the Lagrange
element, in which the spatial cell is a simplex, which is a generalization of a triangle; an
interval in one dimension, a triangle in two dimensions and a tetrahedron in three dimensions.
The functions over the cells are polynomials, and the degrees of freedom are given simply by
function evaluation in the nodes, so a function v € P is determined by N(v) = v(x;). The
definition of the Lagrange element, Definition 2.2.3, is found in [19]. The Lagrange element
is illustrated in Figure 2.1.

Definition 2.2.3 (Lagrange element) The Lagrange element (CG,) is defined for
q=1,2,3 by

T a simplex
P = Pr(T) space of polynomials of degree less than or equal to k

N;(v) = v(z;) function value in the node with global index i
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*—o—90

Figure 2.1: The linear (top) and quadratic (bottom) Lagrange elements in one-. two-, and three
dimensions. Figures taken from [19].

2.3 Finite element formulation for the Stokes equations

We apply the finite element method to the Stokes equations for a general domain €2 with
boundary 92 partitioned into a Dirichlet and Neumann part, I'p and I'y, on which we
impose Dirichlet and Neumann conditions, respectively. To derive the weak formulation for
the Stokes problem, we multiply the strong equations, given in (2.1.2), with the appropriate
test functions, integrate over €2 and apply integration by parts. The weak problem for the
Stokes equations now reads

find (u,p) € V.xQ  such that

a((w,p), (v,q)) = L((v,q)) Y (v,q) €V xQ
where (2.18)
a((u,p), (v,q)) = (Vu,Vv) +(p,V-v) +(V - u,q)
L((v,q)) = (£, v) + (&, V)ry

To find the finite element formulation for the Stokes equations, we apply a mixed finite
element method, which refers to the fact that we have different approximation spaces for
the different unknowns. In order to obtain a stable system of algebraic equations, the finite
element spaces for the velocity and pressure should be chosen so as to satisfy the Babuska-
Brezzi condition, derived in [10]. For the Stokes equations, it is known that using the
Taylor-Hood element space, defined in [26], assures this. The Taylor-Hood element space
is the tensor product of the vector-valued globally continuous space of piecewise quadratics
([CG2]?9) for the velocity, for spatial dimension d, and the scalar globally continuous space
of piecewise linears (CGy) for the pressure. The corresponding continuous solution spaces
from which the discrete spaces are induced are the Sobolev spaces [H'(2)]> and L?*(Q),
respectively. The definitions of some of the applied function spaces are

H Q) ={veQ—=R| / [v|? + |Vo2dz < oo},
Q
HI(Q) = [HI(Q)]d = {U = {Ula "'avd} | v; € HI(Q) Vi= 17 ad}a
Q) = {veQ R /|v\2dxgoo}. (2.19)
Q

CGr={ve H Q)| vePy(T) YT € Tp}.
CGj = [CGL? = {v = {v1,..,03} | v; € CGy Vi=1,...,d},
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where Tj is a tesselation of cells. The CGy, spaces are globally continuous, meaning that
neighbouring elements coincide in degrees of freedom on common edges. Elements in the
corresponding discontinuous Galerkin (DGy) spaces do not coincide across common edges.
This is illustrated in Figure 2.2. Replacing the continuous solution of (2.18) with (up,pn) €
Vi x Q, = CGo x CGy, we obtain the finite element formulation for the Stokes equations

find (up,pr) € Vi, x Qn such that
a((un,p), (v 0)) = L((v,@))  V(v,q) € Vi x Q
where (2.20)
a((up;pn); (v, q)) = (Vup, Vv) + (pp, V- v) + (V- up, q)
L((v,q) = (£, v) + (g, v)ry

2.4 Finite element formulation for the stationary Navier-Stokes
equations

For nonlinear partial differential equations, such as the Navier-Stokes equations, the bilinear
form is replaced with a semilinear form, F'(u;v) = a(u,v) — L(v), which is nonlinear in all
arguments preceding the semi-colon and linear in the remaining arguments. The weak form
is derived in the same manner, by multiplication with appropriate test functions, integration
over the domain and application of integration by parts. The finite element formulation for
the stationary Navier-Stokes equations is the same as for the Stokes equations, only with an
added convection-term. The same element space, the Taylor-Hood element space, is used.
For the Navier-Stokes equations the weak formulation reads

find (u,p) € V. x @  such that
F((u,p);(v,q) =0  V(v,q) eV xQ
where (2.21)
F((u,p); (v,q)) = (uVu,v) +(Vu,Vv) + (p,V-v) +(V - u,q)
—(f,v) — (& V)ry

where F : V x V — R. The finite element formulation is entirely analogous with (2.21) with
V and @ as finite element spaces.

Figure 2.2: Piecewise quadratic functions of globally continuous (left), and globally discontinuous
(right) function spaces. Figures taken from [19].



Chapter 3

Adaptivity and goal-oriented error
control

In all numerical modelling, we target reliable control of the error in an approximation with
optimal use of computational resources. Error estimates reflect the accuracy of the compu-
tation and stability of the problem, and can usually be divided into two types; a priori- and
a posteriori error estimates. A priori error estimates relate the computational error in an
approximation to information about the global continuous solution. To quantify the error
in practice, a priori error estimates are less suited, since information about the continuous
problem is not usually available. We must rather apply a posteriori error estimates, where
the computational error is related to information about the global discrete solution. Dealing
with error estimation in global norms like the energy norm or L?-norm does, in most appli-
cations, not provide useful bounds for quantities of real physical interest. They also involve
global stability constants that are usually unknown, and that are too crude in the sense that
they do not properly reflect the sensitivity to local error sources.

Goal-oriented adaptivity and error control applies a duality technique to derive error es-
timates directly for a quantity of interest taken from the computed solution. These estimates
are based on local error indicators, in which local residuals are weighted with the solution
of a linearized adjoint (dual) problem. The dual problem expresses the influence of the local
residuals on the global error in the quantity of interest. The local error indicators can be
utilized to adapt mesh refinement with respect to minimization of the goal functional er-
ror. Goal-oriented error estimation thus aims to optimize the use of computational resources
needed to control of the accuracy in a given physical quantity of interest. The following is a
summary of the general theory of goal oriented adaptivity and error control gathered from
[7, 6, 12].

3.1 A framework for adaptive error control

In many applications, our main interest will be some localized physical property of the solu-
tion of a simulation. We define a goal functional M : V — R, which expresses this quantity.
Since we typically target a high accuracy in a localized quantity of interest, a mesh of high
global resolution may be unnecessarily expensive. When we employ goal-oriented adaptivity,
refinement can be focused to the areas that give the largest contributions to the total error in
M. We thus aim at obtaining an accurate simulation with a purposeful use of computational
resources. The task of goal-oriented adaptive error control is: a minimal computational work
to obtain a given level of accuracy in M, or conversely, minimizing the error in M, with a

11
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given amount of computational work.

An adaptive method consists of a method for discretization and an adaptive algorithm.
This involves an iterative process in which a problem is solved following the prescribed dis-
cretization procedure, a stopping-criterion is evaluated using computational feedback, and a
strategy of modification is carried out if the criterion is not satisfied. When the stopping-
criterion is met, the iterative process terminates and we have obtained a solution guaranteed
to fulfil the desired level of accuracy.

The residual error, that is the error generated by inserting the approximated solution
into the differential equation, provides a measure of the accuracy, whereas the solution to an
auxiliary dual problem gives the stability properties. This duality technique is described in
[12] for adaptive methods with estimates on the global solution error. In [7, 6] the technique
is extended to goal oriented error control. The main steps involved in deriving a posteriori
error estimates and error indicators are described below.

3.1.1 The linear case

We first consider the case of linear variational problems and linear goal functionals. In
the following section, the theory is extended to include nonlinear variational problems and
nonlinear goal functionals. We consider a general linear variational problem

find w e V. such that a(u,v) = L(v) VoeV, (3.1)

with a: V x V — R a continuous bilinear form, L : V — R a continuous linear form, and V'
and V appropriate Sobolev spaces. In the context of adaptive error control this is called the
primal problem, and u the primal solution. The finite element formulation, posed on finite
dimensional subspaces V;, € V and Vi, € V, constructed as described in Section 2.2.3, then
reads

find up, € Vi, such that a(up,v,) = L(vp,) Vo, € V. (3.2)

This is called the discrete primal problem, and its solution wuy, the discrete primal solution.
We assume that a unique discrete solution exists. We will most often refer to (3.2) as the
primal problem, rather than the discrete primal. The (weak) residual relative to the approx-
imation wuy, measures the error of inserting the approximate solution, uy, in the continuous
primal problem. The weak residual is defined as

r(v) = L(v) — a(up,v). (3.3)
By Galerkin orthogonality, we have
r(v) = L(v) — a(un,v) = alup,v) — a(up,v) =0 Yo eV, (3.4)

meaning that the residual vanishes for all functions in V. This property is used in the
derivation of the error estimates.

The goal of the computation is to minimize the error in the goal functional with respect
to uy, that is; for a given tolerance TOL, we wish to compute a discrete primal solution, uy,
that solves (3.2) such that

n = |M(u) — M(up)| < TOL. (3.5)
To derive an a posteriori error estimate for the magnitude of M(u) — M (uy), we must first
find a way of representing it that involves only known quantities. To this end we define the
continuous dual variational problem

find z € V*  such that a*(z,v) = M(v) YoeVr, (3.6)
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where V* and V* are the dual trial- and test spaces, a* : V* x V* = R is the adjoint of a, so
that a*(u,v) = a(v,u). We call z the dual solution. The discrete dual problem is the natural
discretization of (3.7), posed on the finite dimensional subspaces V;* C V* and Vh* c V.
The discrete dual reads

find z, € Vi such that a*(z,v) = M(v) VveV,, (3.7)

Now we have what we need to find a representation of M(u) — M(up) in terms of computable
functions. We assume that we have V* =V and V* = {u — v|u,v € V'}. Using linearity of
M and combining (3.1), (3.7) (3.3), we can find a different representation of the error in M.

M(u) — M(up) = a*(z,u —up) = a(u — up, 2)
= a(u,z) — a(up, ) (3.8)
= L(2) — a(up, z) = r(z).

Note that by galerkin orthogonality (3.4), we also have that

M) — M(up) =r(z) =r(z —vp) Vo, € Vi (3.9)

3.1.2 Extension to the nonlinear case

We now extend the theory to include nonlinear variational problems and nonlinear goal
functionals. The general nonlinear variational problem reads

find w € V such that  F(u;v) =0, Yo eV (3.10)

where V and V are a pair of trial and test spaces and F': V X V — R is a semilinear form
which is (possibly) nonlinear in arguments preceding the semicolon and linear in remaining
arguments. Some definitions are in order:

e The Fréchet derivative:
F'(u; Qu,v) = %F(u + €0u; v)|e=0

e The adjoint:
F'*(u;0u,v) = F (u; v, 0u)

e An appropriate average of the Fréchet derivative:

F'(u,v) = fol F'(su+ (1 — s)up;u,v)ds

We define the dual problem:

find z € V* such that F*(Z,’U) =M (v) YweV* (3.11)

F'"is a now a bilinear form. We want to use this to find an error representation just like in
the linear case. To this end we first apply the chain rule on the average of the Fréchet to
obtain the following equality.
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1
F'(u—up,v) = / F'(su+ (1 — s)up;u — up,v)ds

/F su— (L4 s)up + €(u —up); v)|e=o ds

/ | QdS

(where g(e) = su+ (1 — s)up + €(u — up)) (3.12)
/ —F(su+ (1 — s)up; )Zz ds

B L9 dg

= (u — up) ; 85(8 ) E(su + (1 — s)up;v)ds

= (u —up)(u —up) " (F(u;0) = F(up;v))
= F(u;v) — F(up;v).

This can be shown identically for M’, so we have

F'(u—up;v) = F(u;v) — Flup;v),

e (3.13)
M (u—up) = M(u) — M(up).

Using these derived equalities together with (3.10), we can find a representation of the error
in the goal functional.

M(u) — M(up) = M'(u—up) = F*(z,u — up)
= Fl(u—up,2) = F(u; 2) — F(up; 2) (3.14)
— Flup2) = r(2)

The error in the goal functional is now represented in terms of the weak residual evaluated
in the dual solution as for the linear case.

3.2 Application of the framework for adaptive control to the
Stokes problem and the stationary Navier-Stokes problem

We derive the dual problem and error representation including redistribution of facet residu-
als based on the strong and weak formulation for the Stokes equations. They are derived for
a general domain €2, with boundary 92 divided into a Dirichlet part I'p, which may include
a homogeneous and non-homogeneous part, and Neumann part 'y, a general body force f
and a general goal functional M (u, p).

3.2.1 Dual problem

When solving the dual problem for the Stokes equations we look for the dual solution z =
(zv,2q) € W* such that
for all w = (wy, wg) € W*. Where

a*(sz) = <MVWV7 vZV> + <wQ7 V- ZV> + (V "Wy, ZQ>

The goal functional M will vary with the application.
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3.2.2 Error representation

Based on the general weak form we find the representation of the error M((up,pp)) —
M((u,p)) for the Stokes equations using the weak residual r evaluated at the dual solu-
tion z as described in (3.8). 7, = {T;} denotes a tessellation of cells with Q@ = U;T; and
T;NT; =0 Vi,j. We use the definition of the weak residual and divide the residual into a
sum of cell contributions. We then apply integration by parts on the cell-terms to obtain a
distribution of the cell residuals into interior- and facet contributions, denoted, respectively
Rr and Ryr. We denote by vT the restriction of v to the cell T, and o, = uVuy, + pp, the
discrete shear stress.

T((ZVa ZQ)) = L((ZV7 ZQ)) - a((uhaph)7 (ZV7 ZQ))
= (f,z2v) + (g, 2v)ry — (1VUs, Vzy) — (pn, V - 2v) — (V - up, 2q)
= > {fzv)r + (g zv)ornry — (UVh, Vo)1 — (pr, V - 2v)7 — (V- uh, 2)7
TeTh
= Z £+ V- (uVup +ppl),zv)r — (V- up, 20)7
TeTh
= ((uVuy + pul)n, zv)or + (8, 2v)orrry

= Z <fT + V- U£7Z$>T - <V ) ulzmjv 25>T - <(U{H,Z€>3T + <gT7 Z€>3T0FN

TeT,

= > (RV.2{)r + (R, 25y — (o] 0" 2l )or + (&7, 20 )orrry
TeT,

= (Rr,2")r = Y _{oin”, z)or + (87 21 ) orory
TETh TeTh

= > (Rr,z)r + (Ror, z)or
TeT,

(3.15)

The error in the goal functional is now represented as a sum of residual contributions from
each cell T', one part of which comes from the cell interior and one from the cell facets. So,
for a general set of boundary conditions

u=g on I'p,
o(u,p)n =h on Ty,
on a general domain boundary 02 = I'p UT'yy where I'p and I'y are the Dirichlet and Neu-

mann boundary respectively, and for general functions g and h, we thus have the formulations
of the cell and facet residual contributions for the Stokes equations

_(RL\ _ ([ 4+ V- (uvul +plT)
- ()-(CTER)
_( Ryr
RBT—( 0 )
where (3.17)

RV — gT—agnT on T NIy
—O'?;IIT ondT NI'p

Extension to the Navier-Stokes equations yields an added term to the cell residuals given by
the convection.
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The facet residual on interior facets will contribute to both cells that share the facet. We
distribute these interior facet residuals equally between the two cells, and this way obtain
indicators that will be either equal, but in general smaller in magnitude than the original
formulation. To perform this distribution we return to the residual representation found in
(3.15), and consider only the facet contributions, that is the last term, (Rgr, z)sr. We switch
from cell-wise summation to summation over all mesh edges, perform the distribution, and
then switch back to obtain a different representation consisting of contributions from each
cell. These representations of the total error are equal, and will sum up to the same total
error as a result of cancellations. However, when the localized cell residuals are to be used as
indicators, the absolute value is applied, and the redistributed cell representations will give
smaller values.

We first note that (Ror,z)or = Y _.cor(RoT.e: Z)e, where Ror. = Rar|,, the restriction
to edge e. We use continuous Lagrange function spaces, so the functions are piecewise
polynomials which are continuous across boundaries. This is illustrated in Figure 2.2. The
function value of the polynomials in neighbouring cells T and T” then coincide on the shared

/

boundary, and here zZ' = z7. We consider the sum of facet terms.

> (Ror.zyor = Y (Rore 2)e

TETh TETh ec0T
= Z <R8T,ea ZT)e + <R8T’,ea ZT’>e + Z <R3T,67 ZT>€
eCeint EeCe€ext
e=TNT’ e€dT
= Z <R8T,e + RaT’,ea ZT>6 + Z <R6T7€7 Z>€
e€eint eCeext
e=TNT' eedT (318)
= Z ( Z <R8T,e + RBT’,67 ZT)e + Z <R8T,ey z>e>
TeTr \ecdTNQ ecdTNON
= Z Z ([Ror]le; Z)e
TeTh ec0T
= Z ([Ror],2")or,
TeTh

where [ | denotes the redistribution over cell facets. We thus have
_ ( [Bor] \ _ ( 3(oqn” +oi"nT)
(o] = (el ) - ! ,
where the neighbour cell T” is found relative to cell T and edge e (3.19)

T — T'(T,e) if e C e
o T if e C eeqt

where e;,; and e.,; denote the set of interior and exterior edges, respectively. We have
derived two equal representations of the error in the goal functional

r(z) = Y (Rr,z)r + (Ror,2)or = Y _ (Rr,2)r + ([Rorl, 2)or- (3.20)
T€eTh TET

When we apply the absolute value, these representations will, however, in general not be
equal. This gives rise to the definition of different error indicators, which we denote nr.



Chapter 4

Methodology

This chapter describes the methodology used to apply the reviewed theory in the numerical
testing.

4.1 Adaptivity strategies

An adaptive method involves a stopping-criterion which guarantees an error below a certain
tolerance-level, and a strategy for modification if the criterion is not met. When applying
adaptive error-control in a goal functional, the modification procedure is concerned with
finding an economic mesh design, with the aim to reduce the error in the goal functional.
This entails making choices on several sub-strategies that together make-up the modification
procedure. They provide instructions for how to estimate the error in the target quantity,
how to create the local error indicators, how to determine which cells are to refined and how
to refine them. This section provides an introduction to the sub-strategies that we consider
in this thesis. The adaptive algorithm for goal oriented error control and adaptivity is given
in Algorithm 1. Uniform refinement is implemented by a simple adjustment in the refinement
step by simply letting all the cells be refined.

Algorithm 1 Goal oriented error control and adaptivity.

Given an initial mesh partitioning 7y, a goal functional M, an error tolerance, €.

1: Compute the primal solution uy,

2: Estimate the error in the goal functional, ny, ~ |M (u) — M (up)|

3: if ny < e then

Done > error is computed within given tolerance
4: Compute error-indicators {nr}
5. Mark mesh for refinement, based on {nr}
6: Refine mesh, 7y — Tr41
7: Repeat procedure > (points 1 - 6)

4.1.1 Error estimators and error indicators

Given a computed solution, cell error indicators are formed from computed local residuals
and the approximated solution to the linearized dual problem. The error indicators indicate

17
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which cells give the largest contributions to the global error in the target quantity. There
are three strategies on how to form the error indicator on a cell T

n7" = |(Rr, 2)r + (Ror, 2)ar|,
n$"" = |(Rr, 2) + ([Ror] . 2)or|, (4.1)
ni* = (Re, 2)r| + [([Ror) , 2)or .

where [ | denotes the redistribution of the facet residuals as introduced in Section 3.2. Given
a computed solution, we wish to estimate the error in a quantity of interest n, ~ |[M(u) —
M(up)|. The strategies for estimating the error in the goal functional considered here are

er

Mh "= T(w)7
i = S
T

mt =i
T

(4.2)

4.1.2 Dual approximation

In order to evaluate the error representation M(u) — M(up) = r(z), we need an approx-
imation to the dual solution z. As discussed in Section 3.1.1, we need a to find a dual
approximation that is not found in the natural discretization, Vh, of the dual solution space,
since the residual in such a function vanishes. We consider two strategies for approximating
such a function: an approximation found by means of a higher order method, and an extrap-
olated dual approximation. To distinguish between them, we add, respectively, the subscript
H and E:
Zyg - Higher order approximation of dual

4.3
Zg - Extrapolated approximation of dual (43)

Higher order dual approximation

The higher order dual approximation is found by solving the dual variational problem on
the same mesh as the primal problem, only using one order higher function spaces.
Extrapolated dual approximation

The extrapolated dual approximation is found by solving the same order dual problem, that
is; using the same mesh and polynomial order as the primal problem, then extrapolating this
computed solution to a higher order function space. This technique is developed in [22], and
further details of the derivation can be found there.

4.1.3 Mesh marking

Given a set of error indicators nr, the cells that are to be refinement are marked using a
marking strategy and a marking fraction indicating how large a fraction of the marked cells
are to be refined. The marking strategies that we consider are Dorfler and fixed fraction.

Dorfler

When we use Dorfler marking, a set of cells, for which the total added error exceeds a fraction
of the total error are marked. The Dorfler marking procedure was derived in [21].
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Figure 4.1: Refinement of a single cell using the recursive bisection (to the left) and regular cut
refinement algorithm (to the right).

Fixed fraction

The fixed fraction marking procedure is exactly as the name suggests: a fixed percentage
of the cells with the highest indicated error are marked for refinement. This percentage is
determined by the marking fraction which is also an argument to the adaptive algorithm.

4.1.4 Refinement

The refinement algorithm provides a recipe for how the cells are refined. We consider here
the Rivara recursive bisection refinement algorithm and the regular cut refinement algorithm.
The refinement procedures are described below, and the procedures performed on a single
cell are illustrated in Figure 4.1.

The Rivara recursive bisection algorithm

With Rivara recursive bisection refinement, which we shall usually refer to as recursive
bisection, a triangle is refined by choosing the longest edge and splitting it down the middle
so that we have two equal triangles.

The regular cut refinement algorithm

When regular cut refinement is applied, a triangle is subdivided into four equal triangles,
and the neighbouring cells that get hanging nodes are refined using the recursive bisection
algorithm.

4.2 Computing goal functionals

The goal functionals for which we test adaptive error control in this thesis are: (1) a manu-
factured goal functional, which we utilise to be able to study the performance of the adaptive
error control algorithm for smooth primal and dual solutions (2) Three representations of
the wall shear stress goal functional over some portion of the domain boundary. For the
manufactured goal functional, we will derive that possession of known exact primal solutions
in this case leads to known exact dual solutions. For the shear stress formulations we provide
in this section discussion of some numerical aspects.
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4.2.1 The manufactured goal functional

The manufactured goal functional is derived so as to obtain known analytical dual solutions
when we have known analytical primal solutions. The manufactured goal functional is defined
as

/\/l((u,p)):/Qfe-udarH—/F g, -uds, (4.4)

for a general boundary 9€) = I'p U ', with imposed boundary conditions

u=0onTIp,

o(u,p)-n=gonI'y.

That the Dirichlet boundary conditions are homogeneous, is crucial in order to obtain known
exact dual solutions. For simplicity we let x = (u, p) denote the primal solutions, z = (2, z4)
the dual solutions, y = (v, ¢) the primal test functions and w = (w,, wy) the dual test func-
tions. We then have

Primal problem: find x € W such that a(x,y) = L(y) VyeWw
Dual problem: find z € W* such that  a*(z,w) = M(w) VweW*

The bilinear form a, and linear form L, for the Stokes equations are given in Section 2.3. We
have

L(y):/ng-vdx+/FNg~vdS (4.5)

Due to the homogeneous Dirichlet boundary conditions, the primal test and trial function
spaces are the same. We have W* = W, which in this case is the same as the primal trial
space W. This means that the primal and dual solutions are found in the same function
space, and W = W. For the Stokes equations, with the sign of the pressure gradient switched,
we know that a is symmetric. If x. denotes the exact primal solution, we obtain

alxev) = L) = [

fe-vdx+/ g.-vdS
Q I'n
= M(v)

(4.6)

This leads to a(xe,v) = a*(z,v). This is an equation that can be solved for z, and thus
we have obtained known analytical dual solutions. Incidently, since a is symmetric, we have
a*(z,v) = a(z,v), and thus z = x., and the analytical primal and dual solutions are thus
the same.

4.2.2 The shear stress goal functional

The first shear stress representation is the traditional formula which consists of a surface
integral over the boundary. The last two are both representations of the shear stress involving
integrals over the interior of the domain, one which has a small support in €2, the other with
larger support in €2, and whose extent will depend on the domain at hand. In this context,
computation of volume integrals is preferable to the computation of surface integrals from
a numerical point of view [28]. In [27] they also found the volume formulation to yield
more accurate results. On a continuous level, when (u,p) solves the continuous variational
problem (2.18), the two formulations (2.11) and (2.13) are equivalent. On a discrete level
however, for (up,pp) that solves (2.20), this does not apply. We can thus not expect that
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the computed goal functional values are the same. But we expect that the approximation
error will be relatively small and that they will approach approximately the same value when
the mesh is refined. If v4 has a small support in 2, the computational cost of computing
the integrals is smaller. For details on the vy constructed in the numerical experiments, see
Section 5.1.4 and Section 5.2.2.

4.3 Performance evaluation

4.3.1 Evaluating the quality of error estimates

The goal of our adaptive method is to accurately approximate the value of the goal functional
with a minimal computational work. To achieve this we need an as accurate as possible
estimate of the error in the goal functional, and an efficient strategy for modification when
the stop criterion is not met. We make a continuous assessment of the progress based on
computational feedback from the adaptive algorithm. To which degree the a posteriori error
estimate correctly approximates the actual error in the goal functional is measured in an
efficiency index, I, which gives the ratio of the error estimate 7, to the actual error n

_ T _ 2 (4.7)

"o IM(ef

The efficiency of the mesh modification strategy is measured in the convergence of the
error on the goal functional value, n = |M(u) — M (uy)|. We provide plots of 7 versus number
of degrees of freedom.

4.3.2 Computing reference values

Reference values for the goal functionals allow for evaluation of the computed error estimates.
They are found in one of two ways. If the problem at hand has a known analytical solution,
the reference value can be found by hand-calculation. If, on the other hand, no analytical
solution is available, the reference value must be found through computation by evaluating
the goal functional in an approximate solution computed on a uniformly refined, very fine,
mesh. To corroborate that this computed value is correct and found on a sufficiently fine
mesh, we supplement with an evaluation of the goal functional on a a series of adaptively
refined meshes, to assure that they in fact converge towards the same value.

4.3.3 Estimating convergence rates

A common model for the spatial discretization error of a computed solution is e = e(h) =
Ch", where h is the element size and C' and r are unknown constants [16, 19]. On a series
of increasingly fine meshes, we find the rate at which the corresponding computed solutions
approach the exact solution by comparing the discretization errors. If h; and h;,1 are grid-
spacings of two consecutive meshes and e; and e;j;1 the corresponding solution errors, the
exponential, , of the convergence rate is

_ log(e/ej1)
log(hj/hj+1)
r as hj — 0 gives the convergence rate. The error e; is computed in the L?- or H'-error-norm.
If k is the solution polynomial degree, then the optimal convergence rate, [, is I = k+ 1 in
the L?>-norm and, | = k in the H'-norm. DOLFIN provides a function errornorm, which
approximates the functions by polynomials of high degree by interpolating them to the same
high order function space, subtracts the two fields and then computes the integral. It takes

(4.8)
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as optional argument the norm-type you wish to use, with default being the L?>-norm. When
the mesh is uniformly refined, we usually employ a halving of the mesh size from one iteration
to the next, in which case the denominator of (4.8) vanishes, and we have,

r =log(e;j/ejy1). (4.9)

4.4 Tools

The adaptive solver is implemented using the FEniCS finite element software library [1, 18].
The FEniCS project is a tool for automated solution of partial differential equations (PDEs),
and is a collaborative project between a number of research institutes around the world.
FEniCS is very user friendly, among others because of the close correspondence between the
mathematical formulas and the DOLFIN syntax. FEniCS programs can be written both
in the Python and C++4 programming language. All developed code is written in python
[17, 4]. Visualization of results is done using Paraview [3].



Chapter 5

Test cases

In this chapter we introduce the test cases considered in this thesis. The first test case is
the two-dimensional unit square, on which we construct known smooth analytical solutions.
The second test case is an idealized two dimensional model of a blood vessel with a saccular
aneurysim.

On the unit square, we will first investigate adaptive error control in a manufactured goal
functional, defined so as to obtain known smooth exact dual solutions. The manufactured
goal functional is introduced in Section 4.2.1. It is defined as

MM((uJ?))_/fe-udx—i—/ g, -uds,
Q T'n

where (u,p) is the primal solution, f is a given body force and g is the function that gives
the Neumann boundary conditions on I'y, that is o((u,p)n = g on I'y, where o is the stress
tensor.

On both domains, we will test adaptive error control in the wall shear stress on a portion
of the boundary. We will consider all three representations of the shear stress defined in
Section 2.1.4: the surface form, and the volume forms with small and large interior support.
The shear stress formulations are distinguished by the added subscripts S, V7 and Vi, de-
noting, respectively, the surface form, the volume with small support and the volume with
large support. The three formulations for the shear stress are defined as

Ms((u.p) = [ hotupn-eds.
My, ((u,p)) = /QV -o(u,p): Vvg, do — /Qf- vy, dz, (5.1)

My, ((u,p)) = / V-o(u,p): Vv, doe — / f-vg,dz,
Q Q

where v4, and vy, has a small and large interior support, respectively, and h = h((z,y)), as
introduced in Section 4.2.2, is an appropriate smoothing function defined for each individual
case. For the volume shear stress formulations, smoothing is incorporated in v4, and vg,.

5.1 Test case I: Two dimensional unit square

5.1.1 Problem definition

In the first test case we model Stokes flow, and our computational domain, €, is the square
with width and height of unit length. A mno-slip condition is imposed on the left-hand
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boundary, and the remaining boundary is given a non-homogeneous Neumann boundary
condition corresponding to imposing an induced force. The boundary conditions read

ou
po-+pmn=g only,

on (5.2)

u=0 onlp,

where p is the dynamic viscosity, the force g is found from the exact solutions and I' =
{0} x (0,1) and 'y = 9Q\T are the parts of the boundary with essential and natural
boundary conditions respectively.

5.1.2 Exact solutions

On this domain we can find an exact velocity u., and pressure p.. In two dimensions, stream
functions can be defined, which are used to find the instantaneous streamlines in flow [15]. By
letting the velocity be expressed as the curl of the stream function ¢, u, = Vxy = <%7 - %)7
fulfilment of the no-divergence condition is assured, since the divergence of the curl of a vector
field is identically zero. We define the stream function as ¢ = z¥¢(z,y) for some k > 1,
where ¢(z,y) = sin(27z) sin(27y). This way the homogeneous Dirichlet boundary condition

ulp, =0, is also fulfilled:

k9o 2 2
wem V) <—:v’“—1 ko + :cgi)> YT Dady  Oyon ’

Since x appears in both terms of u., we have u.|r = 0. The exact primal solutions velocity
and pressure are given by

uc(z,y) = <

pe(x,y) = sin(rz) sin(my)
The exact velocity and pressure are shown in Figure 5.1. Inserting u. and p. into the

momentum equation and Neumann boundary condition, we can find the body force f. and
the Neumann force g,.

2ma? sin(27z) cos(2my) >

—2z sin(27x) sin(27y) — 2722 cos(27z) sin(27y) (5.3)

fe =-V. U(ueype)

_ (—4vr [sin(27z)(1 — 47%2?) + 47w cos(27z) | cos(2my) — m cos(wx) sin(my) (5.4)

~ U 4dur [cos(2mx) (3 — 4m?a?) — 8ma sin(27x)] sin(2my) — wsin(mz) cos(my) )
The force g, is defined as g, = o(ue,pe)n on I'y, which spans three sides of the square.
By partitioning I'y into three disjoint domains, I'y = I'y; U 'y, U I'n,, we can find the
expression for g, on each subdomain.

Iy, = {1} X (Oa 1)a I'n, = (07 1) X {0}7 Iy = (071) X {1}

If we define g; = g.[p, = 0¢|p, ni, where n; is the normal vector on I'y;, the restriction of
g, to I'y,, we find that

_Ou 7 cos(27my)
gl(lay) _V% =4dvm (-28111(2773]) )

g,(2,0) = dur ( 0 > ,

rsin(2rx) + w22 cos(2mx)

g3(z,1) = —go(x).
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0,000 1571 3,142 4,712 6,283 0,000 0,250 0,500 0,750 1i000

(a) (b)

Figure 5.1: Fluid velocity (left) and pressure (right) for the unit square test case on a uniform mesh
with 8192 triangles.

5.1.3 The manufactured goal functional

We first consider error control in the manufactured goal functional

MM<<u,p>>=/fe-udx+/ ¢ uds.
Q T

N

Since we have homogeneous Dirichlet boundary conditions, and a symmetric bilinear form,
considering the manufactured goal leads to known exact dual solutions that coincide with
the smooth exact primal solutions. This was derived in Section 4.2.1. We usually refer
to the exact primal solutions simply as the exact solutions. This idealized case provides a
good opportunity to perform sensitive testing of the effects of varying the various error- and
adaptivity parameters in the adaptive algorithm. The reference value for M is found to be

MM’ref - 37-6481242

It is obtained by evaluation of M s in the exact solutions on a uniform mesh of approximately
100000 cells. Figure 5.2 shows that the adaptively obtained computed goal functional values
approach the same reference value.

5.1.4 The shear stress goal functional

Next we consider the shear stress over the Dirichlet boundary, at + = 0. We will consider the
three shear stress representations given in Section 2.1.4. Here, Mg is the surface formulation,
whereas My, and My, are the formulations involving volume integrals in which vy, , vg, has
a small and large interior support respectively. By the construction of the exact solutions,
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Figure 5.2: Values of the manufactured goal functional plotted against degrees of freedom. Each point
marks an iteration. Adaptive meshes are obtained using a Dorfler marking with marking fraction 0.5

and recursive bisection refinement.

there is no shear stress on the Dirichlet boundary. If u = (u1, u2), we have

8u2

0(Ue,pe)n-tdS = —dS =0,
/FD (e, ) .

since ‘9;“” (0,y) = 0. From a physical point of view, it is less interesting to perform error
control with respect to a zero shear stress, but as a methodological study of the performance
of the adaptive method the results are just as relevant. However, having the goal functional
value converge towards zero imposes some numerical issues. As the goal functional value is
better approximated, it will approach zero. As will the computational error and the error
estimate. This can cause some instabilities, as computed values involved can suddenly fall
below machine precision. It can be seen in the results as sudden drops in the efficiency index.

The vq with small support is defined by representing v, as a continuous piecewise
quadratic function, taking the value one in all degrees of freedom associated with the second
component on the goal boundary I'p, and letting all other degrees of freedom vanish. This
results in a vector field that is non-zero only on the cells intersecting the goal boundary. On
the other hand, the vq with large support is defined by letting the second component of
vq vary linearly from one to zero from the goal boundary to the right hand side boundary

(x=1).

5.2 Test case 1I: Idealized saccular aneurysm

5.2.1 Problem definition

We consider next an idealized model of a blood vessel with a saccular aneurysm. The original
model was a 20mm long and 2mm wide, straight channel with a bulge modelling the aneurysm
with a diameter of approximately 3.5mm. To increase flow into the aneurysm, and make
derivations of shear stress smoothing applicable to more general cases, the mesh was altered
by direct coordinate manipulation. Both domains are illustrated in Figure 5.3. At the inlet
the velocity is given a parabolic profile, with a peak velocity of 700mm/s. At the outlet we
impose free outflow. On the remaining boundary, which is the channel side walls and over
the aneurysm, a no-slip condition is imposed. The boundary conditions read
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Figure 5.3: Computational domain for the idealized aneurysm. On top the initial model of a straight
channel with a bulge and on bottom the manipulated model.

u=20 on I,
u=h(y) only,
Ju

(5.6)
,uan+pn:0 onI'p,

where p is the dynamic viscosity, and I'p = Ul'y and I'p are the parts of the boundary with
essential and natural boundary conditions respectively.

5.2.2 The shear stress goal functional

On the domain of the idealized aneurysm, we wish compute the shear stress inside the
aneurysm. We will consider the three shear stress representations given in Section 2.1.4.
Here, Mg is the surface formulation, whereas My, and My, are the formulations involving
volume integrals in which v4,, v4, has a small and large interior support, respectively. Refer-
ence values for the three shear stress goal functionals are found by comparing the adaptively
and uniformly obtained values, as shown in Figure 5.2.2. The reference values are found to
be

Ms’ref - 0.255687
My, res = 0.25536,

(5.7)
MVQ’ref - 0-25555.

The vy with small support is found by representing v; as a function in the Crouzieux-
Raviart element space. We create a self-defined expression TangentExpression subclassing
Expression that defines the tangent vector by accessing the normal vector on the facets.
The tangent expression is then applied to v4 as a Dirichlet boundary condition. We add
interior support to vg4 by solving a Poisson problem on the domain with v; as boundary
condition on the entire domain boundary. The implementation of v4 as a [CG;]? function
is shown in Figure 5.7. For visualization purposes the CR-function is not suited, since it is
evaluated in the midpoint of the edges and not in the mesh points. Since both the CG; and

CR-functions are meant to represent the same function, namely the tangent on the boundary,
we use the CGi-function to illustrate the implementation of v.
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Figure 5.4: Values of the surface shear stress goal functional plotted against degrees of freedom. Each
point marks a refinement level. Adaptive values obtained with Dérfler marking with fraction 0.8.
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Figure 5.5: Values of the volume shear stress goal functional plotted against degrees of freedom. Each
point marks a refinement level. Adaptive values obtained with, respectively, Dorfler marking with
fraction 0.8 and fixed fraction marking with fraction 0.4 for goal functional with small- and large

support.
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Figure 5.7: v with small (left) and large (right) interior support. With added smoothing.
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Chapter 6

Numerical results

In this chapter we present numerical results for the two test cases. The adaptive solver was
implemented in DOLFIN 1.0 [18] inspired by the automated framework in DOLFIN 0.9.9
[22]. The complete source code can be found at http://folk.uio.no/elinesu.

6.1 Test case 1

The velocity flow pattern and the pressure on the unit square are shown in Figure 6.1. When
applying a uniform mesh refinement, the discretization error for both the primal velocity and
pressure, as measured in the L?-norm, decrease at a rate of one higher than the respective
degree of approximation, which we call the optimal convergence rate, as we might expect for
such smooth solutions. The computed uniform convergence rates are given in Table 6.1.

N; = Niy1 8—16 16 —-32 32—=64 64— 128 Final error

2.947 2.974 2.988 2.995 5.36e-06
2.193 2.038 2.007 2.001 2.51e-05

Table 6.1: Convergence rate for the error measured in the L?-norm for primal velocity (top) and
pressure (bottom). Corresponding to a uniform increase in number of cells, N;, in each direction.

6.1.1 Adaptive error control in the manufactured goal functional

The manufactured goal functional, Mj;, is described in Section 4.2.1. Its area of influence
spans the entire domain, so we expect the global error in M, to depend on cells throughout
the mesh. This might make the adaptive advantages less prominent than when a more
localized target quantity is used, such as the shear stress over a portion of the boundary.

Dual solutions and adaptive meshes

When investigating error control in the manufactured goal functional, we obtain dual so-
lutions that coincide with the primal solutions. This was derived in Section 4.2.1. The
dual solutions can thus be viewed in Figure 6.1. The velocity magnitudes are the largest
on the right side of the domain, particularly along the boundary. Since the primal- and
dual solutions are the same, both large residuals in the momentum equation, as well as large
magnitudes of the dual velocity will cause the mesh to be most aggressively refined here.

31


http://folk.uio.no/elinesu

32 CHAPTER 6. NUMERICAL RESULTS

0.000 1,571 3,142 4,712 6,283 0.000 0,250 0,500 0,750 1,000

(a) (b)

Figure 6.1: Fluid velocity (left) and pressure (right) for the unit square test case computed with
Dorfler marking and recursive bisection refinement obtained by 20 iterations. The final mesh has
11334 triangles (51536 degrees of freedom).



6.1. TEST CASE 1 33

Meshes obtained by recursive bisection refinement and regular cut refinement are shown
in Figure 6.2. Both refinement algorithms were introduced in Section 4.1.4. We observe
that regular cut refinement generates more degrees of freedom than recursive bisection, due
to the fact that its tendency to propagate refinement to neighbouring cells is considerably
larger than for recursive bisection. As a result it takes fewer iterations to reach the required
accuracy when we use the regular cut refinement method. Table 6.2 shows, for a series of
adaptive meshes generated using the two refinement algorithms, the average number of cells
that are marked to be refined against the average number of cells that are actually refined.
For recursive bisection the number of cells that is supposed to be marked correspond well
with the number that are in fact refined. For regular cut refinement however, the number
of cells that are refined greatly exceeds the number that were marked. This makes for
a more aggressive, and one would expect more robust, but on the other hand less precise
refinement algorithm. The effect the refinement method has on the generated error estimates
is investigated in the context of marking strategies in Section 6.1.1.

Figure 6.2: Adaptively refined meshes with respect to error-minimization in the manufactured goal
functional. Obtained using Dérfler marking and recursive bisection refinement (to the left, 11334
triangles, 20 refinements) and regular cut refinement (to the right, 10127 triangles, 11 refinements).

final average average
refinement algorithm iterations | cell number cells marked (%) cells refined (%)
Rivara recursive bisection 20 11334 22.3 23.9
Regular cut 12 14192 13.1 48.3

Table 6.2: Average number of cells marked for refinement and average number of cells that are refined
using the two refinement algorithms Rivara recursive bisection and regular cut refinement with Dorfler
marking and fraction 0.5.

Adaptive performance

On account of refinement being required throughout the mesh, it will require a large number
of degrees of freedom in order for M s to reach a certain level of accuracy. This is demon-
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Uniform refinement Adaptive refinement
N n Ih N n Ih
659 1.5253e-01 | 0.987369 | 659 1.5253e-01 | 0.987369
1019 | 2.6666e-02 | 0.989982
1688 | 1.2443e-02 | 0.991068
2467 | 1.0667e-02 | 0.997049 | 2819 | 3.3634e-03 | 0.994635
4834 | 1.2597e-03 | 0.9971
9539 | 6.9471e-04 | 0.999282 | 8178 | 4.5773e-04 | 0.997084
13912 | 1.5489¢-04 | 0.998674
23933 | 5.9854e-05 | 0.999307
37507 | 4.4120e-05 | 0.999822 | 40075 | 1.9779e-05 | 0.999493
66376 | 7.2519e-06 | 0.999770

148739 | 2.7761e-06 | 0.999946

Table 6.3: Number of degrees of freedom, error in Mj; and corresponding efficiency indices for a
series of uniform and adaptive meshes obtained using a fixed fraction marking with marking fraction
0.4 and recursive bisection refinement. Refinement level when 7 is below 1.0e-04 and 1.0e-05 is marked
with blue and red, respectively.

strated in Table 6.3, where we show the error n = |Mjs(u) — Mas(up)| and corresponding
efficiency indices for a series of meshes generated with uniform and adaptive refinement. The
required number of degrees of freedom to reach an accuracy in M s of 1.0e-04 is almost the
same for the two methods. When an accuracy of 1.0e-05 is reached, the number of degrees
of freedom using uniform refinement is a little more than twice as many as when adaptivity
is employed. Considering the added computational work from the additional iterations in
the adaptive algorithm, this computational advantage is not significant.

Dual approximation strategies. We consider the quality of the generated error estimates
when weighting of the residuals is provided by a higher order dual approximation, wy, and
extrapolated dual approximation, wg. Figure 6.3 shows the errors Mps(e) and efficiency
indices I, = /\;177(;)7 plotted against degrees of freedom for adaptively obtained solutions using
the two strategies. The results are very good. Both yield efficiency indices that approach
1.0. wg outperforms wg, and yields exceptionally accurate error estimates, with efficiency
indices that never fall below 0.98. For wg the lower bound on the indices is 0.7, and the
indices are slightly less stable, but the results are very good nonetheless. In Figure 6.5 we
compare the adaptive to the uniformly obtained results for each of the two dual strategies.
The results are similar. The adaptive error is slightly smaller than the uniform error, but
converges at approximately the same rate.

Error indicators We compare the effect of using different error indicators when both higher
order-, and extrapolation provides the weighting. Here we use Dorfler 0.5 marking. The
results are shown in Figure 6.6. In both cases the use of error representation indicators
yields slightly more stable index values, but more degrees of freedom. Both features are
most prominent when the extrapolated dual approximation is used.

Marking parameters We make a comparison between the parameters that together determine
how the mesh is refined, namely the marking strategy (Dorfler and fixed fraction), the
marking fraction and the refinement algorithm (recursive bisection and regular cut). The
marking strategies and refinement algorithms are compared in Figure 6.7, all with a marking
fraction of 0.5. Fixed fraction marking gives rise to less oscillations in the efficiency index,
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Figure 6.3: Error (top) and efficiency indices (bottom) plotted against degrees of freedom for the
higher order and extrapolated dual approximation strategies. With fixed fraction 0.5 marking.
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Figure 6.4: Error (left) and efficiency index (right) against degrees of freedom, for the higher order
dual approximation strategy under uniform and adaptive refinement.
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Figure 6.5: Error (left) and efficiency index (right) against degrees of freedom, for the extrapolated
dual approximation strategy under uniform and adaptive refinement.
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Figure 6.6: Efficiency index for the manufactured goal functional using a higher order dual strategy
(left) and extrapolation dual strategy (right).



6.1. TEST CASE I 37

but in return is more affected by the choice of marking fraction. Dorfler marking is a more
adaptive strategy, and it follows approximately the same marking pattern regardless of choice
of fraction, as shown in Figure 6.10. In [24] a thorough analysis of the effects of varying the
mesh marking fraction was presented for a fluid-structure interaction (FSI) problem. Here
was found that the marking fraction had little effect for Dérfler marking but a large effect
for fixed fraction marking, just as observed here, and it was concluded that the marking
fraction should lie somewhere between 0.3 and 0.5. In this case we need the fraction to
be of a certain size to obtain more stable indices. Fixed fraction marking in combination
with recursive bisection refinement and a fraction of 0.5 or 0.6 seems to be yield the very
best efficiency indices and smallest error. The error is so accurately estimated with all
parameter combinations that we must zoom into the details to see the differences, as is done
in Figure 6.8.

10
~— fixed fraction - recursive bisection 0.5
100k «— fixed fraction - regular cut 0.5
~— dorfler - recursive bisection 0.5
s—a dorfler - regular cut 0.5
-1 X .
10 S e-< uniform
10-2 L
=
10—3 L
10—4 L
10-5 L
10-6 H H !
10° 10* 10°
N
102 ~—— fixed fraction - recursive bisection 0.5
' ~— fixed fraction - regular cut 0.5
—e dorfler - recursive bisection 0.5
101 =—= dorfler - regular cut 0.5
e--< uniform
< 1.00 W
3
S
0.99f
0.98f
0.97t
10° 10* 10°
N

Figure 6.7: Error (top) and index (bottom) for different refinement algorithms and marking strategies
all with marking fraction 0.5.
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1.001r
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Figure 6.8: Efficiency indices for different refinement algorithms and marking strategies all with
marking fraction 0.5.
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Figure 6.9: Marking fractions compared for fixed fraction marking with recursive bisection (to the
right) and regular cut (to the left) refinement. All with higher order dual approximation, n§""-

estimator, and 77" -indicator.
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Figure 6.10: Marking fractions compared for drfler marking with recursive bisection (to the right)

and regular cut (to the left) refinement. All with higher order dual approximation, n§""-estimator,

and 9§ "-indicator.
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Convergence of approximations

We consider the convergence of the primal solution, as well as the dual approximations corre-
sponding to the manufactured goal functional, under both uniform and adaptive refinement.
In Table 6.1was given the convergence rates of the primal solution under uniform conver-
gence. Convergence rates for the higher order and extrapolated dual approximations under
uniform refinement are shown in Table 6.4 and Table 6.5. Since the primal and dual solutions
coincide, results are not included for the same order dual approximation. The higher order-
and extrapolated dual approximations are expected to yield a more accurate approximation
to the dual solutions. The higher order dual velocity and pressure, as well as the extrapolated
dual velocity, has an optimal convergence rate under uniform refinement. The extrapolated
dual pressure, however, is one order suboptimal.

In Figure 6.11 the L?-error norm is plotted against degrees of freedom for the adaptive
and uniform primal solutions, and in Figure 6.12 for the higher order- and extrapolated
dual solutions. All the adaptively obtained solutions yield good convergence and approach
the uniform rates as the number of degrees of freedom increases. The higher order strategy
yields approximately two orders of magnitude more accurate results than the extrapolation
strategy.

N;—- N1 8—16 16 —32 32—64 64— 128 Final error

4.007 4.005 4.002 4.001 2.79e-08
3.402 3.274 3.118 3.041 1.37e-07

Table 6.4: Convergence rate for the error measured in the L?-norm for higher order dual velocity
(top) and pressure (bottom). Corresponding to a uniform increase in number of cells, N, in each
direction.

N; = Niy1 8—16 16 =32 32 —=64 64— 128 Final error

3.566 3.830 3.927 3.966 1.94e-06
1.941 1.962 1.988 1.997 5.61e-05

Table 6.5: Convergence rate for the error measured in the L?-norm for extrapolated dual velocity
(top) and pressure (bottom). Corresponding to a uniform increase in number of cells, N;, in each
direction.
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errornorm

108 = 1(‘)4 5
N

Figure 6.11: L2-error of the primal solution under uniform and adaptive refinement. wu; denotes the
primal velocity, and p;, denotes the primal pressure. Adaptive rates are given as dotted lines, and
uniform rates as solid lines. Adaptive rates obtained using a Dorfler marking with fraction 0.5 and
recursive bisection refinement.
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errornorm

Figure 6.12: L2-error of the higher order and extrapolated dual approximations under uniform and
adaptive refinement. Z and y denote the dual velocity and pressure, respectively. Subscripts H and
E denote higher order and extrapolation, respectively. Adaptive rates are given as dotted lines, and
uniform rates as solid lines. Adaptive rates obtained using Doérfler marking with fraction 0.5 and
recursive bisection refinement.
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Adaptive error control in the shear stress goal functional

The shear stress goal functional and the formulations that we apply are introduced in Sec-
tion 2.1.4. We apply the introduced notation for the representations of the shear stress goal
functional. Mg, My, and My, thus denote, respectively, the surface formulation of the
shear stress, the volume formulation of the shear stress with a small interior support and the
volume formulation of the shear stress with a large interior support. When something can
be taken to mean either of the three, we will simply use M.

Dual solutions and adaptive meshes

The dual solution generated by the shear stress goal functional has an applied shear stress
along the Dirichlet boundary, causing downward fluid movement. The generated dual veloci-
ties when the volume shear stress with small and large support constitute the goal functional
in the dual variational problem, are shown in Figure 6.13. We see that a large and small
interior support in the volume formulation gives rise to significantly different dual velocities.
On account of a zero dual velocity on the remaining boundary, hard transitions occur, caus-
ing pressure spikes.

The dual solutions, the pressure in particular, are sensitive to the form of M in the dual
variational problem. Using the surface shear stress formulation, Mg, we experience some
numerical instabilities in the dual pressure along the goal boundary. In Figure 6.14 and
Figure 6.15 this is illustrated for the higher order dual approximation on a uniform mesh
and an adaptive mesh obtained by Dérfler marking with fraction 0.5 and recursive bisection
refinement. We see that spikes appear along the boundary on which the shear stress is de-
fined, an effect that is more evident when adaptive refinement is applied. In Figure 6.14,
we see that the uniform higher order dual pressure has a spike near the top left corner of
the domain, and a subsequent pressure drop and rise along the y-direction. As the mesh
is refined uniformly, the lower bound on the pressure will continue to drop, so the uniform
pressure will not converge. When the mesh is adaptively refined, the higher order dual pres-
sure is even more unstable, and there develope numerous large spikes along the boundary
Figure 6.15. In Figure 6.16 and Figure 6.17 are the corresponding results for extrapolation.
This same phenomenon occurs for the extrapolated dual pressure, though on a smaller scale,
as Figure 6.17 illustrates. For the uniform extrapolated dual pressure, shown in Figure 6.16,
a spike developes at the top corner point, These dual pressures have proved ill-suited as dual
solutions. They tend to dominate the error indicators and focus refinement near the goal
boundary, the effect of which was clearly demonstrated in the figures.
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0,000 0,269 0,538 0,807 1,075 0.00 0,182 0,365 0I547 0I730

(a) (b)

Figure 6.13: The dual velocity corresponding to shear stress with small interior support (to the left),
and large interior support (to the right). Found on a uniform mesh with 2048 triangles.

Imposing the volume representation of the shear stress proved effective to improve the
dual pressure. In Figure 6.18 and Figure 6.19 are shown, respectively, the higher order and
extrapolated dual pressure on the final of a series of adaptive meshes computed using the
minimal support volume formulation. With the formulation with larger support, results are
similar.
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Figure 6.14: To the left values of the higher order dual pressure as a function of y along the Dirichlet
boundary on a sequence of increasingly fine uniform meshes. To the right the higher order dual
pressure on a 16 x 16 uniform mesh, scaled with a factor of 0.5. Computed with the surface formulation
of shear stress.
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Figure 6.15: To the left values of the higher order dual pressure as a function of y along the Dirichlet
boundary on an adaptive mesh with 3283 cells, obtained using Dorfler marking with fraction 0.5 and
recursive bisection refinement. To the right the higher order dual pressure on the same mesh scaled
with a factor of 0.005. Computed with the surface formulation of shear stress.
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Figure 6.16: To the left the extrapolated dual pressure as a function of y along the Dirichlet boundary
on a sequence of increasingly fine uniformly refined meshes. To the right the extrapolated dual
pressure on a 16 x 16 uniform mesh, scaled with a factor of 0.9. Computed with the surface formulation
of shear stress.
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Figure 6.17: To the left the extrapolated dual pressure as a function of y along the Dirichlet boundary
on an adaptive mesh with 2746 cells, obtained using Dérfler marking with fraction 0.5 and recursive
bisection refinement. To the right the extrapolated dual pressure on the same mesh. Computed with
the surface formulation of shear stress.
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Figure 6.18: To the left the higher order dual pressure as a function of y along the Dirichlet boundary
on a sequence of adaptive meshes obtained using Dérfler marking with fraction 0.5 and recursive
bisection refinement. To the right the higher order dual pressure on the final mesh with 2100 cells,

scaled with a factor of 0.9. Computed with the volume formulation of shear stress with minimal
interior support.
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Figure 6.19: To the left the extrapolated dual pressure as a function of y along the Dirichlet boundary
on a sequence of adaptive meshes obtained using Doérfler marking with fraction 0.5 and recursive
bisection refinement. To the right the extrapolated dual pressure on the final mesh with 2558 cells,

scaled with a factor of 0.9. Computed with the volume formulation of shear stress with minimal
interior support.
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Meshes refined for the three shear stress formulations are shown in Figure 6.20. Here a
fixed fraction marking strategy with marking fraction 0.3 and recursive bisection refinement
is applied. We see how the surface formulation tends to localize refinement to the goal
boundary. The volume formulations yield a quite similar spread of refinement, just somewhat
more focused near the goal boundary for the formulation with small support. Figure 6.21
shows generated error indicators on a selected few of the refinement levels in the adaptive
algorithm defined by the aforementioned adaptivity arguments. We observe that the surface
formulation yields large error indicator values almost exclusively near the goal boundary,
whereas the volume formulations yield a more evenly distributed error.

Figure 6.20: Meshes refined with respect to error-minimization in the (from left to right) surface shear
stress, volume shear stress with small- and large interior support. Generated using a fixed fraction
marking strategy with marking fraction 0.3 and recursive bisection refinement. The meshes consist
of, respectively, 4206, 5214 and 5339 triangles.
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Adaptive performance

Using the higher order dual approximation yields indices between 0.5 and 2.0 for the volume
formulation with small support, as can be seen in Figure 6.1.1. Some oscillations in the
efficiency indices occur. When using the volume formulation with a large interior support,
the generated efficiency indices are between 0.8 and 1.2. This can be seen in Figure 6.1.1.
Some oscillations occur also here, but the results are more stable than for the volume shear
formulation with small support. Extrapolated dual approximation only yields good index
values when used with the shear stress formulation with large interior support. Otherwise
the index values either explode or the error is extremely underestimated. The last drop in
index value for adaptive refinement is caused by residuals evaluating to zero. In Table 6.6
are shown generated degrees of freedom, index values and errors in the goal functional on
a series of uniformly and adaptively refined meshes. When employing an adaptive marking
strategy about a fifth of the degrees of freedom were needed to reach the same accuracy as
under uniform refinement, which is a significant improvement on a mesh of this size.

¢-¢ uniform ¢-¢ uniform

10

dorfler 0.5 - recursive bisection
dorfler 0.3 - regular cut

fixed 0.5 - recursive bisection
fixed 0.3 - regular cut

— 10

10°

M(u)—M(u,

10°

10°

— dorfler 0.5 - recursive bisection
»—x=dorfler 0.3 - regular cut

2.0

=—a fixed 0.5 - recursive bisection
o—o fixed 0.3 - regular cut

1.0

10 10

Figure 6.22: Error (left) and efficiency indices (right) for varying marking strategies and refinement
strategies all with the optimal choice of marking fraction, for the volume formulation of shear stress
with small support.
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Uniform refinement Adaptive refinement

N n I N n I

659 | 1.5167e-04 | 1.057560 | 659 | 1.5253e-01 | 1.057560
776 | 9.6185e-05 | 0.997662
970 | 6.9426e-05 | 1.012435
1146 | 8.4471e-06 | 1.100444
1368 | 8.1207e-07 | 1.000279
1719 | 1.5027e-06 | 1.1905174

2467 | 5.7974e-06 | 1.024772 | 2262 | 1.2895e-07 | 0.9831263
3743 | 2.9287e-07 | 0.8684147
4543 | 7.0533e-08 | 0.8927639
5350 | 4.4975e-08 | 0.8071269
6649 | 3.7609¢-09 | 0.1178824

9539 | 1.8801e-07 | 1.024159

37507 | 1.4909e-09 | 0.971713

o1

Table 6.6: The Dorfler 0.5 recursive bisection error representation estimator dwr indicator. Last drop
in index value for adaptive refinement caused by residuals evaluating to zero (residuals are on level

10-10)
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Figure 6.23: Error (left) and efficiency indices (right) for varying marking strategies and refinement
strategies all with the optimal choice of marking fraction, for the volume formulation of shear stress
with large support.
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Convergence of approximations

Higher order dual approximation yields approximately one order of magnitude more accurate
dual approximation than extrapolation, (Figure 6.24) The reference solution is computed on
a uniform mesh with approximately 32000 cells. So we have a primal solution with approxi-
mately 149000 degrees of freedom and higher order dual solutions with approximately 360000
degrees of freedom.

Higher order dual approximation Extrapolated dual approximation

10 10
ES ES
L k-A @S L PSERS @S
107 ¢ 2 107 ¢ e
o—e ZV1 *—e zVl
e-o0 gvl e-0 gvl
2| =~ 2| =~ |
10 — Zy 10 — Zy
g +-< QVQ g - 5/\/2
g 10°F g 10°F
5 5
10 ¢ 10 ¢
10° 10°
10-6 i i 10-6 i i
10° 10* 10° 10° 10* 10°
N N

Figure 6.24: L2-error of the dual approximations under uniform refinement. 2 denotes the dual
velocity, y denotes the dual pressure. The subscripts S, V7 and V5 indicate, respectively, the surface
formulation and the volume formulation with small- and large interior support.

6.1.2 Discussion first test case

For test case I with the manufactured goal, efficiency indices are all very close to 1.0, showing
excellent estimation properties. The approach thus seems robust for smooth primal and dual
solutions.

For smooth primal on unit square, the volume-formulation provides what seems to be
excellent dual solutions. The large versus small interior support gave large differences in the
dual velocity, but no visible differences in the dual pressure.

The shear stress formulated by surface integrals yields a highly unstable dual pressure
along this goal boundary regardless of method for refinement, but especially when adaptive
refinement is utilized. This was clearly illustrated in Figures 6.14, 6.15, 6.16 and 6.17 where
the generated higher order dual pressures were plotted for both uniform and adaptive mesh
refinement. Despite the unstable higher order approximated dual pressure, the quality of the
error estimate is very good, and higher order generated efficiency indices between 0.85 and
1.6, provided we employ a refinement method that assures a somewhat spread refinement.
The large value spikes that develop for the dual pressure will dominate the error indicators,
and thus focus the refinement to the goal boundary. We reach the same accuracy in M(e) as
when applying uniform refinement using a lot fewer degrees of freedom (10000 vs 100000).
When using the extrapolated dual approximation, the error is highly underestimated, with
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efficiency indices that approach 0.2.

The representation of the goal functional as volume integrals offers a considerable im-
provement for the stability of the dual pressure, which is illustrated in Figure 6.18. Using
volume formulation with v; we obtain very good results with a higher order dual approxi-
mation. The dual pressure is nice and smooth regardless of the choice of support and order
of approximation of vy, and the efficiency indices are very good. For the extrapolation dual
approximation on the other hand, good results are not as easily obtainable. With v, with a
large support, and with a sufficiently aggressive refinement approach, we can achieve quite
good indices, but results are highly sensitive to choice of parameters. Thus extrapolation is
all in all a very unstable choice of dual approximation with respect to computation of shear
stress. Higher order is a much more stable dual approximation strategy.

Adaptive refinement proved very effective in terms of accurate computation of shear
stress at a considerably lower computational cost. The extrapolation dual approximation
method proved unstable and very sensitive to parameter choices, whereas the higher order
dual approximation demonstrated the opposite. Good index values could be generated for
all shear stress formulations.

For computation of shear stress the cell-facet-split and dual-weighted-residual estimators
overestimate a great deal regardless of representation, and are therefore not options as error
estimators. We must rather use the error representation estimator in further computations
of shear stress.

6.2 TestCase I1

The fluid velocity and pressure on the simplified aneurysm are shown in figure Figure 6.25.
Note that the switched sign of the pressure in (2.2) yields a counter-intuitive initial negative
pressure at the inlet and a rise in pressure across the domain until it reaches its maximum
at the outlet. On this test case we consider adaptive error control in the wall shear stress
goal functionals Mg, My, and My, along the surface of the bulge modelling the aneurysm.

Dual solutions and adaptive meshes

The dual solution generated by the shear stress along the aneurysm boundary works to accel-
erate the dual velocity along the inside of the aneurysm causing a rotational anti-clockwise
movement. In Figure 6.26 is shown the dual velocity corresponding to all shear stress formu-
lations, computed on a coarse uniform mesh. For the goal functional with a small support,
the velocity follows the rotational movement along the aneurysm boundary. The dual veloc-
ity generated by the goal functional with large support, does not seem to follow this pattern,
but flows in one direction across the domain.

The dual pressure generated by all shear stress formulations, computed on the initial
uniform mesh with 2483 triangles, are shown in Figure 6.27. The dual pressure generated
by either of the formulations with small support, that is Mg and My, are unstable, and
yield oscillations along the goal boundary even at the initial coarse mesh. When applying
the volume formulation with large support on the other hand, the generated dual pressure
is smooth along the goal boundary. Since the quantities are so small, we have scaled the
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Figure 6.25: Fluid velocity (left) and pressure (right) on the idealized aneurysm. Computed on a
uniform mesh with 2438 triangles.

pressure with a factor of 20 to emphasize the smooth features.

In figure Figure 6.28 are shown adaptively obtained dual pressures generated by all three
shear stress formulations using a Dorfler marking strategy with marking fraction 0.5 and the
regular cut refinement algorithm. We observe that both formulations with small support
yield dual pressures with numerous spikes along across the aneurysm boundary, whereas the
volume formulation yields a much smoother dual pressure. When we enlarge the features
around the aneurysm, however, we see that some numerical instabilities occur also for the
volume formulation with a large support.

The shear stress goal functional with small and large support yield quite different adaptive
meshes. This is illustrated in Figure 6.29, where we show adaptive meshes generated for the
volume formulation with small and large support, obtained using a Dorfler marking strategy
with marking fraction 0.5 and regular cut refinement. We observe how a small support tends
to yield a more localized refinement.
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Figure 6.30: Values of the shear stress goal functionals under uniform refinement.

Figure 6.31: Error in the goal functional given by the volume formulation of shear stress using different
error estimators. Computed using a Dorfler marking with marking fraction 0.6 and recursive bisection
refinement.
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Discussion test case II

As we observed in the first test case, the shear stress with small and large support give rise
to very different dual velocities. Both the surface formulation and the volume formulation
with small support yield a highly unstable dual pressure. More stable dual pressures could
be obtained using the volume formulation with large support, but some instabilities were
still observed. Figure 6.31 shows that the adaptive refinement did not perform well in terms
of generating good quality error estimates. The error was very underestimated. Estimates
were somewhat improved by employing estimators that by construction give larger error es-
timates, but the error was still very underestimated.

Implementing the volume formulation on the aneurysm mesh was more complicated on
account of the difficulties with correctly representing the tangent function. As discussed in
Section 4.2.2, we want to implement v4 as a [CG1]? function. This presented no problems in
the first test case. The reference values for the three formulations of the shear stress were all
zero, and generated values of the goal functionals for both uniform and adaptive refinement
approached zero.

The goal boundary on the unit square, namely the part of the boundary on which we
compute the shear stress, is in £ = 0, so the tangent vector points in the same direction
across all goal boundary facets. On the aneurysm, however, the goal boundary is over the
aneurysm, which causes the direction of the tangent vector to vary with the facets. An
approximation error is thus introduced due to the fact that we do not correctly represent
the tangent vector on the facets. If vq is [CG1]?, for example, the tangent will vary linearly
across a facet from the value in first degree of freedom to the value in the second degree of
freedom on the facet. We do thus not know what to expect when we use a CG; function to
represent vg. In the numerical testing, we found that, when the tangent was represented as
[CG4]?, the goal functional value did not converge towards any value. In Figure 5.7 we show
vy implemented as [CG1]¢ with small and large support.

A way to correctly represent the tangent vector is to represent it as a discontinuous
function. It requires a discontinuous function to correctly represent the tangent. But This
conflict with the requirement that we must be able to apply the gradient on vg.

We have tried many different approaches: representing vy as a CGp function did not
work. Representing vg as a DGg function did not work either, since we could not apply the
gradient. Solving a pde only on the boundary did not work because it was tremendously
time-consuming.

What gave the best results, was using the Crouzieux-Raviart element space to repre-
sent vg. The Crouzieux-Raviart element has evaluation at the midpoint of each edge. The
function space made up of Crouzieux-elements is continuous only at edge midpoints. The
Crouzieux-Raviart element space, denoted CR, is not H' conforming, but allows for appli-
cation of the gradient, as it is continuous across edges. It thus both represents the tangent
vector in a good way since it is discontinuous, and fulfils the requirement that we can apply
the gradient. The generated values for all shear stress formulations seemed to converge to-
wards the same value. It was the only tested option, with which we were able to produce
a stable dual pressure. This occurred, however, only on a uniform mesh, and of a certain
cell size. Under both uniform and adaptive meshes, did the pressure become unstable very
quickly. There is no good way of visualizing v4 when it is CR, since values are set on the
edges, and not in the mesh points.Figure 6.30 illustrates that the goal functional values for
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the three shear stress formulations converge towards the same value when the CR function
space is applied.



Chapter 7

Conclusion and future work

By applying error control in a manufactured goal functional on the unit square, we were able
to test the adaptive approach for a case with smooth primal and dual solutions. The gen-
erated efficiency indices were all very close to 1.0, showing excellent estimation properties.
The approach seems robust for smooth primal and dual solutions.

Applying adaptive error control in wall shear stress, even in this basic test case, proved
more challenging. The generated dual solutions were very sensitive to the representation
of the shear stress goal functional. When the shear stress was represented in the terms of
surface integrals, the dual pressure was of a highly unstable nature, showing large spikes
along the boundary of interest. This is not ideal in terms of error indication, since the dual
pressure will then dominate the refinement indicators. This will in turn cause refinement to
occur almost exclusively near the goal boundary. This applied for both the higher order and
the extrapolated dual approximation induced by the surface representation of shear stress.

By instead applying the volume representation of the shear stress, we obtained improved
dual pressures for both the higher order and the extrapolated dual approximation strategy.
The higher order dual approximation showed good error estimation properties for all three
shear stress formulations in terms of quality of the error estimates. The required accuracy
in the goal functional was reached at about a third of the degrees of freedom as when the
accuracy was met on a uniform mesh. The extrapolation approximation strategy was far less
stable. For both the surface formulation and the volume formulation with small interior sup-
port acceptable efficiency indices could not be obtained. The error would generally be highly
underestimated, and generate significant oscillations in the efficiency indices. When em-
ploying the volume formulation with large interior support, the error estimates were slightly
improved, but still very sensitive to the employed marking strategy.

Of the techniques for error control in shear stress, the volume formulation with large
interior support generated the most stable efficiency indices. Under uniform refinement, this
formulation demonstrated better convergence properties for the induced dual approxima-
tions.

For the second test case, the results were much less satisfactory. Instabilities were ob-
served in the dual pressure regardless of the choice of goal functional formulation although
slight improvements were demonstrated for the volume formulation with large support.

The work in this thesis serves as an initial investigation of these techniques for applying
adaptive error control in the shear stress induced by fluid flow. Producing a stable dual
pressure proved challenging. The stability of the dual solutions is required to correctly

61
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illustrate the the dependence of the global goal functional error on local discretization errors.
Applying the volume representation of the shear stress goal functional showed potential in
terms of producing a stable dual pressure. The approximation error that resulted from the
conversion to volume-integrals seemed to be small, since the produced goal functional values
converged towards the same values. This error could be expected to grow when adding
a convection term to the volume formulation. For further conclusions to be drawn, the
technique needs to be investigated on more complex domains, both 2D and 3D test problems
incorporating both time and convection. Efforts should be made towards finding a good and
robust way of representing the tangent vector and reliably computing the dual solution in
general.



Appendix A

Code

In this appendix a few code snippets are included. See captions for brief explanation of each.

A.1 The shear stress goal functional

Python code

def surface_goal(self, W, x=None):

if x == None:

x = Function (W)

(u, p) = split(x)

# normal and tangential vectors

n = FacetNormal (W.mesh())

t = as_vector ((n[1], -n[01))

# smoothing function
h = Expression("4*x[1]1*(1-x[1])", degree = 2)

# smoothed shear stress
m = h*inner (self.sigma(u, p, self.mu)*n, t)+*ds(1)

return m, X

Figure A.1: Implementation of the surface formulation of the shear stress goal functional on the unit
square.
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Python code

def volume_goal(self, goal, W, x=None):

if x == None:
x = Function (W)
(u, p) = split(x)

vd = generate_vd (W)
if goal == "volume_shear2":
v_d = add_support(v_d)

# volume formulation of shear stress goal functional
M = inner(self.sigma(u, p, self.mu), grad(v_d))x*dx\
- inner (self.f_ex, v_d)*dx
return M, x
Figure A.2: Implementation of the volume formulation of the shrear stress goal functional. Imple-

mentation applies to both the unit square and the idealized aneurysm. The implementation of the
function v, is applied to each case.

Python code

if goal == "volume_shearil":

VectorFunctionSpace (W.mesh (), "CG", 2)
= Function (V)

# smoothing
h = Expression("4*x[1]1*(1-x[1])", degree=2)

bc = DirichletBC(V.sub(1l), h, Goal())
bc.apply(v_d.vector ())

elif goal == "volume_shear2":
V = VectorFunctionSpace(W.mesh(), "CG", 3)
# smoothing

h = Expression(("0.0", "4xx[1]*x(1-x[1])*(1-x[0])"), degree=3)
v_d = project(h, V)

Figure A.3: Implementation of the function v, for the volume formulations with small and large
support on the unit square.
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Python code

def translate(x, y):
’>?’ return translated and rotated point ’7°
phi = 0.6799989473909490725093281462

x -= 1.974610
y += 0.552720
x_new = x#*cos(phi) - y*sin(phi)

y_new = y*cos(phi) + x*sin(phi)
return y_new

Figure A.4: Method that, given mesh coordinates z and y (for points on the aneurysm), returns
the rotated and translated coordinates. Needed in order to introduce smoothing based solely on the
x-coordinates.

Python code

class Smoothing (Expression):
def init__(self, mesh):

self .mesh = mesh

def eval(self, values, x):
g = translate(x[0], x[1])/2.43404902569284065095
values[0] = g
\begin{python}
\caption{Smoothing function subclassing Expression.}
\end{figure}

\begin{figurel} [htbp]
\begin{python}

class TangentExpression(Expression):
def __init__(self, mesh):
self .mesh = mesh
def eval_cell(self, values, x, ufc_cell):
cell = Cell(self.mesh, ufc_cell.index)

n = cell.normal(ufc_cell.local_facet)

#smoothing
g = translate(x[0], x[1])/2.43404902569284065095
values [0] = g*n[1]
values[1] = - g*nl[0]
def value_shape(self):
return (2,)

Figure A.5: Implementation of v4 with small support and embedded smoothing.
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Python code

def add_support(self, V, v_d):
print "adding support to v_d"

bc = DirichletBC(V, v_d, "on_boundary")

TrialFunction (V)
TestFunction (V)

up
P

zero = Constant ((0.0, 0.0))

a = inner (grad(up), grad(vp))*dx
L = inner(zero, vp)*dx

v_d2 = Function (V)

solve(a == L, v_d2, bc)

return v_d2

Figure A.6: Add support to v4 by solving a Poisson problem.

Python code

def shear_volume(self, W, x=None):

goal = self.goal

plot_ = True

if x == None:
x = Function (W)
plot_ = False

(u, p) = split(x)

t TangentExpression(W.mesh())

V = VectorFunctionSpace(W.mesh(), "CR", 1)
v_d = Function (V)

bc = DirichletBC(V, t, Goal())
bc.apply(v_d.vector ())

if goal == "volume_shear2":
v_d = self.add_support(V, v_d)

M = inner(self.sigma(u, p, self.mu), grad(v_d))*dx -

inner (self.f_ex, v_d)*dx
return M, x

Figure A.7: Implementation of the volume formulation for the shear stress on the idealized aneurysm.
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