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abstract

PURPOSE Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Biomarkers to aid in
prognostication and treatment decisions are in high demand, and to facilitate their development, a better
understanding of the underlying biology of the highly heterogeneous disease is needed.

METHODS A genome-scale alternative splicing (AS) analysis using RNA-sequencing data from primary micro-
satellite stable (MSS) CRCs from 127 patients was performed. Splice variant–specific expression levels of individual
cancer samples were compared with the total set of samples, and a metric for a tumor sample’s global amount of
deviating AS was developed. This metric varied considerably across the cohort and ranged from 6 to 282 deviating
AS events per tumor sample. A threshold of 45 or more deviating events was set to distinguish cancers with high
(n = 44) and low (n = 83) levels of deviating AS.

RESULTS Patients with high amounts of AS deviations had significantly shorter time to relapse compared with
patients with fewer deviations (P = .04). Furthermore, differential gene expression analysis revealed nine known
cancer-critical genes that are significantly upregulated in samples with high amounts of deviating AS. Validation
of the results in an independent cohort of MSS CRCs showed the same tendency toward shorter progression-free
survival among the high-deviation group. In both cohorts, enrichment for growth factors was identified among
upregulated genes associated with this phenotype.

CONCLUSION There is a large variation in the amount of deviating AS amongMSS CRCs, and we provide evidence
that those with high amounts of deviations represent different cancer biology.
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INTRODUCTION

Colorectal cancer (CRC) remains a global health
challenge because of exceptionally high incidence
and mortality rates worldwide.1-3 Primary CRCs are
commonly divided into two major phenotypes: the
microsatellite instability type, caused by deficiencies in
the DNA mismatch repair system, and the micro-
satellite stable (MSS) type, which are characterized by
larger chromosomal rearrangements. Despite large
variability in the underlying mechanisms that cause
development of colorectal tumors, several molecular
biomarkers have been discovered that can aid in early
detection and estimation of progression of this
disease.4 Particularly well studied is the expression
and mutational landscape of oncogenes such as
KRAS5 and BRAF,6 and tumor suppressor genes such
as TP53.7 Less elucidated is the role of alternative
splicing (AS) in the development of CRC. We have
previously studied how AS in KRAS can affect the
prognosis of patients with CRC,8 and the recent ad-
aptation of high-throughput sequencing technologies

has enabled investigations into the landscape of AS on
a scale that spans the entire genome. It has previously
been found that cancers originating from similar tis-
sue, such as colon and rectum adenocarcinomas,
form clusters on the basis of how the AS patterns differ
between corresponding normal and tumor tissue, and
also that AS affects cancer development to varying
extents depending on the cancer type.9 Moreover, a
study presenting the genome-wide AS landscape in
CRC found differences in splicing patterns between
normal and tumor tissues, attesting that AS is a key
characteristic behind tumor progression.10

We have previously published a study comparing the
splicing patterns within a cohort of MSS primary
CRCs.11 Using exon-level microarrays, deviating
exon usage was found to be correlated with the
expression of splicing factors and associated with
poor patient prognosis. The aim of this study was to
evaluate genome-wide AS patterns in CRC by using
RNA-sequencing technology on a similar set of
MSS CRCs.
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METHODS

Material

This study included RNA-sequencing data from 127 patients
with CRC, 77 of whom were also included in the previous exon
microarray study.11 The RNA-sequencing data were prepared
as previously described.12 All tissue samples were of the MSS
subtype. Fromall patients, weusedRNA-sequencing data from
primary cancerous tissue (Data Supplement). Average age at
diagnosis was 70.5 years, and the majority had stage II or III
CRC. Sixty-six patients (52%) were male and 61 (48%) were
female. The protocol was approved by the Regional Committee
for Medical and Health Research Ethics (REC numbers
1.2005.1629 and 2010/1805). All patients provided written
informed consent, and the studywas conducted in accordance
with the Declaration of Helsinki. The research biobanks were
registered according to national legislation.
Analysis of RNA-Sequencing Data

Quality control. All samples, with an average of 88.95
million reads, were assessed for adapter contamination
using the FastQC software program13 and aggregated by
the MultiQC software program14 (Data Supplement).
All samples had , 10% of reads containing adapter se-
quences. Two CRC samples with outlier quality control
values were excluded from the study.

Read alignment and splice event identification. Reads
were processed with the SpliceSeq software program15 (version
2.1), which infers AS events on the basis of read alignment to a
reference splice graph. The reference splice graph database
was constructed using a proprietary software tool (acquired by
correspondence with the author of SpliceSeq) and was based
on the hg38 reference genome downloaded from the National
Center for Biotechnology Information File Transfer Protocol
server16 and feature annotations from Ensembl (Ensembl
Genes 85 database, data set GRCh38.p717). Only features from
protein coding genes were included in the analysis. SpliceSeq
was configured to use Bowtie18 version 1.0.0 with default
parameters for read alignment.

Additional data from the SpliceSeq database that were not
included in the standard data export, such as information

about exons upstream and downstream of the splice sites,
and expression estimates for the exons affected by
splicing, were extracted from the database using MySQL
queries. In 90.5% of the 51,750 genomic loci that were
revealed with AS, percent spliced in (PSI) values, repre-
senting the exon inclusion ratios, were calculated for all
samples. Splice sites were included in the AS analysis if it
was possible to obtain a PSI value in at least 80 of the 127
samples.

Exon expression values, measured in reads per kilobase
of transcript per million reads mapped, were averaged
for multiexon AS events. For every AS event, median ex-
pression values from every tumor sample were calculated for
the exon or exons affected.Median expression valueswere also
calculated for the parent gene. Median PSI values were cal-
culated for every AS event, and across all samples, a delta-PSI
was calculated as the difference to themedian value. The 25th
and 75th percentiles of PSI values were calculated for every AS
event, along with the interquartile range (IQR). Finally, exon
and gene expression in individual samples were normalized for
the median expression in all samples, and a ratio between
normalized exon expression and normalized gene expression
was computed for every splicing event in each sample.

Identification of samples with high levels of deviating AS.
Data filters were tailored to target two main classes of AS
deviations. Deviating inclusion events are AS events where
a subset of samples exhibits an inclination toward the in-
clusion of an exon that is excluded in the majority of
samples. Deviating exclusion events are AS events where
the exon is excluded in a minority of samples, while in-
cluded in the majority. Outlier detection was performed on
PSI values to indicate relative deviating inclusion or ex-
clusion of a given event. A PSI value outlier in the higher or
lower end of the spectrum implies deviating inclusion or
exclusion, respectively. The following rules were applied,
inspired by a previous study9:

inclusion � PSI.Q3 + 1.5 IQR

exclusion � PSI,Q1 − 1.5 IQR

CONTEXT

Key Objective
Can identification and quantification of deviating alternative splicing in microsatellite stable colorectal cancer reflect

meaningful tumor biology and provide relevant information on patient prognosis?
Knowledge Generated
The amount of deviating splicing varies between patients. Patients with high amounts of deviating splicing have a particularly

poor prognosis, and their tumors express genes that are associated with more aggressive cancer phenotypes.
Relevance
Patients with microsatellite stable colorectal cancer can be stratified on the basis of their cancers’ RNA transcript variation.

This will inform on their prognosis, and therefore also influence on treatment decisions.
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where Q1 is the 25th percentile of PSI values, Q3 is the
75th percentile of PSI values, and IQR is the IQR for PSI
values, derived from Q3-Q1. Individual deviating exon
inclusion and exon exclusion events were identified using
the criteria outlined in Table 1. For inclusion events,
minimum requirements for reads per kilobase of tran-
script per million reads mapped and included counts
ensure adequate evidence that the spliced exon and its
gene of origin are expressed. Furthermore, PSI outliers
with a minimum absolute difference from the median in
the cohort are indicative of relative exon usage where
outlier detection is not compromised by lack of variation.
Finally, a fold change greater than two for the median-
normalized exon/gene expression ratio ensures that the
splicing pattern of an event in a sample is considerably
deviant from the background level. Similar filters were
used for the identification of exon-exclusion events, but
the parameters were altered to target events with ex-
pression and PSI values below the baseline, rather than
above.

Samples were categorized into two groups on the basis of
the total number of AS deviations using the expectation-
maximization algorithm from the R package mixtools19

(version 1.2.0). The intersection of the two distributions
was used as a numerical threshold for classifying samples
with high levels of deviating AS.

Additional statistical tests. Five-year relapse-free survival
times for low- and high-deviation sample groups were

estimated using the Kaplan-Meier method,20 imple-
mented in the survival21 R package (version 3.1-8). Events
were considered as relapse or death from any cause and
censored in the case of no event within five years or when
the patient was lost to follow-up. Twelve patients with TNM
stage IV were excluded from the survival analysis, as
metastatic CRCs can be interpreted as already having
relapsed at time point zero. Univariable and multivariable
Cox proportional hazards regression was performed using
the survival21 R package (version 3.1-8). The survminer22

R package (version 0.4.6) was used to draw Kaplan-Meier
curves. Fisher’s exact test was run in R (version 3.6.0) with
two-sided significance values on a two-by-two contin-
gency table. Additional procedures are described in the
Data Supplement.

RESULTS

From the RNA-sequencing data of 127 CRCs, a total of
approximately 6.5 million AS data points were quantified.
Among these, 6,326 deviating AS events, that is, individual
cancer samples with values for a particular splicing site that
deviate from the value distribution in the other cancer
samples, were identified. The division of these into par-
ticular types of AS showed that cassette exon and alternate
promoter usage were the most common events (2,081 and
2,065, respectively; Fig 1A). Among the cassette exons,
deviating inclusion events were more common than devi-
ating exclusion events (1,763 inclusions and 318 exclu-
sions). An example of a deviating inclusion cassette exon is

TABLE 1. Filtering Criteria Used to Identify Deviating Exon Inclusion and Exclusion Events

Parameter
Inclusions
Threshold Exclusions Threshold Description

Gene RPKM . 5 . 5 Minimum expression of the exon’s gene of origin in the particular
sample

Median gene RPKM . 5 . 5 Minimum median expression of the exon’s gene of origin in all
samples

Exon RPKM . 1
. Median exon

RPKM

Minimum expression of the exon that is included in the particular
sample (averaged for all exons in multiexon splicing events)

Median exon RPKM . 5 Minimum median expression of the exon across all samples

PSI . Q3 + (1.5 IQR) , Q1 – (1.5 IQR) PSI for the event must be . 75% for inclusion events and lower
than 25% for exclusion events

Included counts . 5 The minimum number of reads supporting the inclusion of the
exon in the particular sample

Excluded counts . 5 The minimum number of reads supporting the exclusion of the
spliced exon in the particular sample

Delta-PSI (absolute) . 0.2 . 0.2 The PSI of the exon in the particular sample must be more than
0.2 greater than the median PSI in all samples

Normalized exon/gene ratio
(log2)

. 1 , –1 The log2-transformed median-normalized exon/gene expression
ratio must be . 1 for inclusion events and lower than –1 for
exclusion events

NOTE. IQR is derived from quartile 3 to quartile 1 (Q3-Q1).
Abbreviations: IQR, interquartile range; PSI, percent spliced in; Q1, 25th percentile; Q3, 75th percentile; RPKM, reads per kilobase of

transcript per million reads mapped.
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shown in Figures 1B and 1C, where exon 2 in the PAPD4
gene is included in sample 98 (red) and sample 113
(purple), while the same exon is excluded in the majority of
samples. Alternative promoter deviations were identified in
826 different genes. In 637 (77%) of those genes, differential
usage was identified between two alternative promoters, but
we observed deviating usage of up to four different promoters
(for the gene OXR1). The majority (571; 27%) of alternative
promoter deviations occurred uniquely in one individual
sample, whereas the total number of alternative promoter
deviations per sample ranged from 1 to 81.

Identification of Samples With High Levels of Deviating
Alternative Splicing

In total, 6,326 events were detected from the 127 samples,
ranging from 6 to 282 deviations per sample. No correlation
was found between the number of AS deviations identified
and the sequencing depth (Pearson’s r = –0.03; P = .78; Data
Supplement). The expectation-maximization algorithm was
applied to identify a threshold of 44.5 AS deviations per

sample, which separated 44 samples with high levels of
deviation from83 samples with low levels of deviation (Fig 2A).
No particular skewedness was found for sex, age, or sided-
ness when comparing the high versus lowASdeviation groups
(Fig 2B). However, nine of 12 TNM stage IV cancers, versus
30% of the TNM stage I-III cancers belonged to the high-level
group (Fisher’s exact; P = .004). Distributions of additional
clinical parameters are shown in the Data Supplement.

Gene Expression Associated With Levels of Deviating
Alternative Splicing

Gene set enrichment analysis on gene expression ratios
between the low- and high-deviation groups showed dif-
ferences in gene sets related to metabolic processes and
MYC targets, among several other biological processes
(Fig 3). Analysis of individual genes revealed a total of 755
differentially expressed genes (Data Supplement). Of these,
749 genes had higher expression, and six genes had lower
expression in the high-deviation group compared with the
low-deviation group. Nine of the differentially expressed
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FIG 1. Identification of deviating AS events. (A) Distribution of splice types among 6,326 identified deviating AS events. Deviating inclusion
of exon 2 in PAPD4: (B) Line plot showing expression in RPKM on the y-axis and exon 2 and its immediate upstream and downstream exons
on the x-axis. The red line indicates sample 98, the purple line sample 113, and gray lines are the remaining samples in the cohort. (C)
Scatter plot of the AS event, with the y-axis displaying expression in RPKM, and the x-axis representing one sample per tick, with sample 98
highlighted with a red background and sample 113 highlighted with a purple background. Green dots represent the spliced exon, red down-
oriented triangles represent the downstream exon, blue up-oriented triangles represent the upstream exon, and black plus signs represent
the gene-level expression, here PAPD4. AS, alternative splicing; RPKM, reads per kilobase of transcript per million reads mapped.
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protein-coding genes are part of the Cancer Gene Census,23

and all of them had higher expression in the high-deviation
group compared with the low-deviation group (Fig 4A).

We also compared differential AS between the high- and
low-deviation groups and identified a total of 414 signifi-
cantly differentially alternatively spliced sites. The distri-
bution of splice types among the significant AS events is
displayed in Figure 4B. Eighteen of the events were de-
tected in known cancer genes (Data Supplement), in-
cluding in ATM and CHEK2.

Association With Relapse-Free Survival

There was a significant difference in time to relapse between
the low-deviation and high-deviation groups (P = .037).
Univariable survival analyses found that patients with high
levels of AS deviations (n = 35) had poorer prognosis (Cox
proportional hazard ratio [HR], 0.55; 95% CI, 0.31 to 0.97;
P = .039) than patients with low levels (n = 80). Multivariable
Cox regression analysis supported the effect of AS deviation

levels on relapse or death when more covariates were
considered (Table 2). The Kaplan-Meier plot for five-year
relapse-free survival analysis is shown in Figure 4C.

Validation in an Independent Data Set

RNA-sequencing data from a total of 426 MSS CRC tissue
samples fromThe Cancer GenomeAtlas (TCGA) were included
in an external validation. Two hundred eighty-two samples were
classified as having low levels of ASdeviations and144 samples
as having high levels of AS deviations. Percentagewise, this is
the closest possible distribution to that of the in-house cohort
(66% v34% lowandhigh levels of deviation, respectively, in the
TCGA cohort, compared with 65% v 35%, respectively, in the
in-house cohort). Both cohorts produced similar distributions,
with a substantial body of low-level samples and a long tail of
high-deviation samples (Data Supplement).

Differential gene expression analysis (DGEA) revealed 538
significantly differentially expressed genes (510 upregulated
and 28 downregulated in high-deviation samples compared
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FIG 2. Patient subtyping on the basis of AS deviation levels. (A) Subtyping of 127 patients on the basis of the number of deviating AS events. The
x-axis represents numbers of AS deviations, and the y-axis represents the density of patients. The expectation-maximization algorithm was used
to identify two subdistributions of patients: those with high levels of deviations (red line) and those with low levels of deviations (blue line). The
intersection of the two distributions (44.5) was used as a numerical threshold to separate the patients. (B) Distribution of clinical variables in the
identified subgroups. The x-axis represents the total percentage distribution of each parameter, and absolute values for the number of patients in
each subgroup are written in white. AS, alternative splicing.
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with low-deviation samples; Data Supplement). Sixty
(46 protein coding and 14 lncRNAs) of the genes were
also significantly differentially expressed in the in-house
cohort (Data Supplement).

By applying functional annotations tools from the Database
for Annotation, Visualization, and Integrated Discovery to
the 59 (one gene was missing in Database for Annotation,
Visualization, and Integrated Discovery), six annotation
clusters were defined. Notably, the combined set of genes
was significantly enriched for growth factor genes (Data
Supplement), including VGF, MIA, and INHA.

Analyses including clinical data from the TCGA cohort did
not yield significant association between AS deviation and
progression-free survival (Cox proportional HR, univariable

HR, 0.75; 95% CI, 0.45 to 1.26; P = .28; multivariable HR,
0.80; 95% CI, 0.48 to 1.33; P = .384).

DISCUSSION

We have provided evidence for a relevant subgrouping of
MSS CRCs with high amounts of AS, which deviates from
the majority of CRC samples. From RNA-sequencing data,
we have established a method for quantifying deviating AS
in a tumor setting on a per-sample basis. We have previ-
ously analyzed a part of this series of CRC11 and other types
of cancer24 by a similar approach using exon microarray
data. These analyses were performed with the Affymetrix
GeneChip Human Exon 1.0 ST Array, which provides exon-
level expression data, but with no measurements of exon-
exon junctions. The present use of RNA-sequencing data
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enabled a genome-scale study of the particular splice
junctions and the ability to distinguish between different
types of AS. We found exon inclusion and alternate pro-
moter usage to be the most common deviations.

Interestingly, we found that the number of AS deviations
varies greatly within the cohort, and patients with TNM
stage IV were found to be associated with a higher number
of deviating AS than patients with stage I-III. However, even
within the TNM stage I-III group, survival analysis between
samples with high and low numbers of deviations showed
that it had predictive value for patient prognosis.

DGEA between the groups showed significant difference in
755 genes. Among them were known cancer genes
(DCAF12L2, EPHA7, KLK2, LRP1B, MUC16, OMD,
S100A7, and TP63), all of which had stronger expression in
samples with high number of deviating AS, compared with
the low-deviation subgroup.

Differential AS analysis showed significant differences in
splicing of 414 splice sites, 18 of which correspond to known
cancer driver genes.23 High-deviation samples, more often
than low-deviation samples, had a retained intron between
exons 1 and 2 of ATM, and skipped exon 2 in CHEK2
(Data Supplement). ATM and CHEK2 both encode cell-cycle
checkpoint kinases involved in DNA damage response. The

proteins encoded by both genes interact with the proteins
encoded by the tumor suppressor genes TP53 and BRCA1,
as well as one another. Mutations in both genes are linked to
cancer progression in various tissue types, such as colon,
rectum, breast, thyroid, lymphoid, and skin.25-27

Gene set enrichment analysis identified systematic changes
on larger networks of genes. High-deviation samples showed
low expression of genes associated with mitochondrial gene
expression and translation, and oxidative phosphorylation,
suggesting that there are differences in energy metabolism
between the groups, and possibly that high-deviation can-
cers increasingly exhibit the Warburg effect28 known to fa-
cilitate oncogenesis, tumor progression, and motility.29 MYC
targets were also less expressed in high-deviation samples.
Deregulation ofMYC is known to affect energy metabolism in
cancer.30 Furthermore, samples with high levels of AS de-
viation also showed higher expression of genes associated
with epithelial-mesenchymal transition, which increases cell
motility and is associated with the initiation of metastasis.31

Combined, these characteristics suggest that high levels of
AS deviation are linked to tumor aggressiveness, which could
explain the increased prevalence of AS deviation in patients
with stage IV CRC and the observed difference in relapse-
free survival between the subgroups.

By comparing our results with an external cohort of MSS
CRC tissue samples, we found the same tendency of as-
sociation between high amounts of deviating AS and dis-
ease progression, but the results did not reach statistical
significance. One possible explanation can be that the
external cohort had only a median follow-up time of
1.7 years, compared with 5 years in the in-house cohort.
We also used the external data in DGEA and identified
genes that were differentially regulated in association with
high amount of deviating AS in both cohorts. Functional
annotation of these genes showed upregulation of genes
associated with growth factors, notably the genes VGF,
MIA, and INHA. Associations have been found between
upregulation of VGF and disease aggressiveness in lung
adenocarcinomas,32 MIA is associated with aggressive
malignant melanoma,33 and INHA is known to be upre-
gulated in some ovarian cancers.34

In conclusion, we have demonstrated that the transcriptome-
wide amount of deviating AS in MSS CRC is highly variable,
and that the cancers with the highest number of deviations
are associated with shorter time to disease relapse. Fur-
thermore, these cancers show lower expression of genes
related to energy metabolism and higher expression of
growth factor genes, but further studies are needed to assess
the association between levels of deviating AS and aggres-
sive cancer phenotypes.

TABLE 2. Multivariable Analysis of HRs for 5-Year Relapse or Death
Variable HR 95% CI P

Deviation status

High (n = 35) 1.00

Low (n = 80) 0.54 0.30 to 0.99 .048

Age group

Above median (n = 62) 1.00

Below median (n = 53) 0.82 0.46 to 1.49 .522

Tumor location

Left + rectum (n = 65) 1.00

Right (n = 50) 0.73 0.40 to 1.32 .297

TNM stage

I (n = 2) 1.00

II (n = 61) 0.63 0.08 to 4.90 .656

III (n = 52) 0.95 0.12 to 7.23 .957

Sex

Female (n = 59) 1.00

Male (n = 56) 1.38 0.76 to 2.51 .285

NOTE. Deviation status is significantly predictive of patient
prognosis, and patients with low levels of AS deviations have
approximately half the risk of relapse or death, compared with those
with high levels of AS deviation.

Abbreviations: AS, alternative splicing; HR, hazard ratio.
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