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Chapter 1

Introduction

The more you study mathematics the more you try to define what mathe-
matics really is. That is how it is for me anyways. In light of this question
I typed “math” in wikipedia to see what sort of definition it would give me.
I soon forgot why I was looking up “math” and focused my attention on an
overview of some of the main fields in mathematics. There was a picture
connected to each field. Calculus had the area under a curve, topology had
a 3D model of a torus and so on. Then I saw something interesting. The
picture next to “group theory” was a Rubik’s cube. I’ve known how to solve
the cube since I was in my early teens and I had just finished a course in
group theory which I really enjoyed. Could the two be added together? It
was almost too good to be true.
I was given the following research topic to base my thesis on:

Research topic: The thesis is centered on the Rubic’s cube and the group
it defines. Give a description of the group structure by using groups of per-
mutation and the orientation groups of the corner and side cubits. Describe
interesting subgroups, e.g. the center and subgroups of elements which only
changes orientation. Describe, by use of group theory, simple moves e.g.
moves which only changes orientation of two corners. Give an overview of
some algorithms which solves the cube.

I start by creating the group in chapter 2 as a quotient group of a group
on six letters. I will show that this group has the desired properties the
Rubik’s group should have. Chapters 3 and 4 are devoted to understand
the possibilities and limitations of the group which will result in a complete
mapping of the group as a semidirect product. The theory in chapter 3 has
been sketched out by Michael Weiss [6] and I have expanded upon it. In
the short chapter 5 I will determine the center of the group. I will present a
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6 CHAPTER 1. INTRODUCTION

method for solving the cube in chapter 6.

Notation

• Since there will be both vectors and cycles in this thesis I will use
(a1, a2, . . . , an) for vectors with n coordinates and [a1, a2, . . . , an] for a
cycle that sends a1 to a2 etc.

• Z/(n)Z = Zn.

• If a proof is omitted (either because it is trivial or similar to a previous
proof) I will simply put

Proof.

• For a homomorphism φ : G1 → G2 the kernel of φ is defined as

ker(φ) = {g ∈ G1 | φ(g) = idG2}

• A variable x = (x1, . . . , xn) is a vector if it is in bold font.

• (G, ∗) is the group G with binary relation ∗.



Chapter 2

The group structure of the cube.

2.1 A group on 6 letters

Let G6 = {D, U,B, F, L, R} be a set of six letters and let g4 = ∅ ∀ g ∈ G6,
where the ∅ denotes the empty word. Let G be the set of any finite words of
these letters, remembering the relation above.

Definition 2.1.1. Let ∗ : G×G → G be the map defined by

∗(w1, w2) = w1 ∗ w2 = w1w2

So ∗ denotes the combination of two such words into a new word.

Example 2.1.2. FDBR ∗R2DU = FDBR3DU

Lemma 2.1.3. (G, ∗) is a group. Where 1 = idG = ∅

Proof. (i) The right identity comes from the definition. Let w ∈ G, then
w ∗ idG = w∅ = w
(ii) Since any word is made up of letters from G6 inverses exists. Take e.g.
DUR. Then

DUR ∗R3U3D3 = idG

so for any g ∈ G6, g−1 = g3, and for any word abc ∈ G, (abc)−1 = c3b3a3 =
c−1b−1a−1.
(ii) This group is closed under ∗ since any two finite words form a new finite
word.
(iv) Associativity is trivial since a(bc) = abc and (ab)c = abc hence a(bc) =
(ab)c

7



8 CHAPTER 2. THE GROUP STRUCTURE OF THE CUBE.

Figure 2.1: The name of the faces and the cubits

2.2 Organizing the cube
The cube has 6 faces. Front (f), back (b), left (l), right (r), top (up (u)) and
bottom (down (d)). See figure 2.1. They form a set

F = {f, b, l, r, u, d}

The cube consists of 26 little cubes, hereby known as cubits. There are 8
corner cubits with three faces. They will form the set

U(Cc) ⊂ F 3

and will have names like (f, u, r) ∈ U(Cc) or just fur for short, meaning the
cubit in the ’front, up, right’ position. There 12 side cubits with two faces
forming the set

U(Cs) ⊂ F 2

with names like (u, r) ∈ U(Cs) or just ur for short, meaning the cubit in the
’up, right’ position. There are also 6 center cubits with only one face, and
they will not be studied now for reasons stated later.

Let D be a clockwise 90 degree rotation of the down face when looking
right at it. Same for U, B, F, L, R for up, back, front, left and right faces
respectively. These 6 basic moves form the set

G6 = {D, U, F, B, L, R}
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The words of the group G can be viewed as moves on the cube where the
letters in G6 are the basic moves. Note that a word from G will only move
corner cubits to corner cubits and side cubits to side cubits. The MF move is
moving the middle row vertically 90◦ through F, U, B, D faces. It is rotated
the same way as R, not as L. Note that MF = R−1L, so there is no need
to include the words that moves the middle rows and columns as generators.
Thus the center cubits will never be moved, making them uninteresting to
study. One can formally say that

g : F 3 → F 3

∀ g ∈ G with the corner cubits and

g : F 2 → F 2

∀ g ∈ G with the side cubits. Starting down this path of extreme formality
will only lead to confusion (especially for me) so I chose just to state the
following: When I write

D(frd) = rbd

I mean to say: f → r, r → b, d → d. Allow me to remark what this notation
gives and what it does not give. It simply says that if any corner cubit is in
the frd position and the word D is applied to it then it will end up in the
rbd position. It also gives me which face of the different cubits were moved.
The front face in frd went to the right face in rbd and so on. It does not
state which cubit was in the frd position to start with.

Each cubit will reside in a placeholder which will be called a cubicle and
will be named in the same fashion as the cubits. They do not move when a
word is applied to the cubits. The three letters denoting a corner cubit will
always be the same three letters of the cubicle it resides, but they may not
be in the same order.

We let Bc be the set of all corner cubicles, they will be defined to be:

Bc = {fur, frd, fdl, f lu, bul, bld, bdr, bru}

If you have a cube, you can check that all the individual corner cubicles have
been defined clockwise. We let Bs be the set of all side cubicles defined to
be:

Bs = {fu, fr, fd, fl, bl, bd, br, bu, ur, ul, dl, dr}
There are three ways a corner cubit may reside in a corner cubicle and two
ways a side cubit may reside in a side cubicle. If we look at all possibilities
we form the set

Cc = {All possible corner cubit positions}



10 CHAPTER 2. THE GROUP STRUCTURE OF THE CUBE.

so |Cc| = 8·3 = 24. We call this set the oriented corner cubits. Compare with
|U(Cc)| = 8, which is then the set defined earlier, now called the unoriented
corner cubits The same can be done with the side cubits forming the set

Cs = {All possible side cubit positions}

so |Cs| = 12 · 2 = 24, and call this the oriented side cubits. The sets
Bc = U(Cc) and Bs = U(Cs), but the group will act on U(Ci) but not on
Bi. If one only needs to speak of oriented or unoriented cubits in general we
form the sets:

C = Cs ∪ Cc

being the oriented cubits and

U(C) = U(Cc) ∪ U(Cs)

being the unoriented cubits.

Definition 2.2.1. Let πc : Cc → Cc where abc ∈ F 3 are the three letters in
the corner cubicle and πs : Cs → Cs where ab ∈ F 2 are the two letters in the
side cubicle, be given by

πc(abc) = πc(bca) = πc(cab) = abc

and
πs(ab) = πs(ba) = ab

πc and πs removes the orientation of the cubits, and Im(πi) = U(Ci). To
help us understand how the basic moves move the cubits we make a vector
and number it according to the place of the cubits in the cube’s solved state.
We number the cubits in the order of the cubicles.The corner cubits then
form a vector c ∈ C8

c . So if the cube is in its start configuration then

c = (c1, c2, c3, c4, c5, c6, c7, c8)

When a word from G is applied to c the order will change. The same ordeal
can be done with a d ∈ C12

s for the side cubits in a similar fashion. We will
let xi = πc(ci) and yi = πs(di). Let

x = (πc(c1), . . . , πc(c8)) = (x1, . . . , x8)

y = (πs(c1), . . . , πs(c12)) = (y1, . . . , y12)

How the basic moves act on x and y is depicted in table 2.1.
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Move Coordinates
D(x) (x1, x3, x6, x4, x5, x7, x2, x8)
D(y) (y1, y2, y11, y4, y5, y12, y7, y8, y9, y10, y6, y3)
U(x) (x4, x2, x3, x5, x8, x6, x7, x1)
U(y) (y9, y2, y3, y4, y5, y6y7, y10, y8, y1, y11, y12)
F (x) (x4, x1, x2, x3, x5, x6, x7, x8)
F (y) (y4, y1, y2, y3, y5, y6, y7, y8, y9, y10, y11, y12)
B(x) (x1, x2, x3, x4, x8, x5, x6, x7)
B(y) (y1, y2, y3, y4, y8, y5, y6, y7, y9, y10, y11, y12)
L(x) (x1, x2, x4, x5, x6, x3, x7, x8)
L(y) (y1, y2, y3, y10, y11, y6, y7, y8, y9, y5, y4, y12)
R(x) (x2, x7, x3, x4, x5, x6, x8, x1)
R(y) (y1, y9, y3, y4, y5, y6, y12, y8, y7, y10, y11, y2)

Table 2.1:

2.3 Group actions
Definition 2.3.1. Let X be a set and (G, ∗) be a group. We say that G acts
on X (from left) if ∃ a map ◦ : G×X → X such that
(i) idGx = x
(i) (g1 ∗ g2) ◦ (x) = g1 ◦ (g2 ◦ x) ∀ x ∈ X and ∀ g1, g2 ∈ G

Now, there is a map for each c ∈ C

◦ : G× C → C

so that w ◦ c = w(c) simply denotes in which cubicle c is after applying the
word w.

Example 2.3.2. R(fr) = ur and UR(fr) = U(R(fr)) = U(ur) = ub

It will be important to remember that UR means first do R then do U
since G acts from the left.

Lemma 2.3.3. G acts on C

Proof. We use the map above.
(i) 1 ◦ c = c, ∀ c ∈ C
(ii) Let w1, w2 ∈ G and c ∈ C then

(w1 ∗ w2) ◦ (c) = w1 ◦ (w2 ◦ c)

∀ c ∈ C and ∀ w1, w2 ∈ G from the example above. This should amount
to no loss of generality.
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Lemma 2.3.4. G acts on πc(Cc) ∼= U(Cc) and πs(Cs) ∼= U(Cs) by the maps

g(πc(c)) = πc(g(c))

and
g(πs(c)) = πs(g(c))

Proof. We will only prove the first, the second is identical.

(i) 1 ◦ π(c) = π(1(c)) = π(c), ∀ c ∈ C

(ii) Let g, h ∈ G and c ∈ C then

(gh)π(c) = π(gh(c)) = π(g(h(c))) = g(π(h(c))) = g(h(π(c)))

∀ c ∈ C and ∀ g, h ∈ G.

In simpler language, G acts on both the oriented and unoriented cubes.

2.4 Making the right group
Lemma 2.4.1. The set

N = {g ∈ G | g(c) = c ∀ c ∈ C}

is a normal subgroup of G.

Proof. (i) (subgroup): If n1, n2 ∈ N we have ∀ c ∈ C

(n1n2)(c) = n1(n2(c)) = n1(c) = c ⇒ n1n2 ∈ N,

idG = idN , and since n−1(n(c)) = n−1(c) and n−1(n(c)) = (n−1n)(c) = c
then n−1 ∈ N .
(ii) (normal): Let g ∈ G. Then

gng−1(c) = g(n(g−1(c))) = g(g−1(c)) = (gg−1)(c) = c

so gng−1 ∈ N ∀ g ∈ G and n ∈ N .

Definition 2.4.2. Let g1, g2 ∈ G. We say

g1 ∼ g2

if g1(c) = g2(c) ∀ c ∈ C.
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Lemma 2.4.3. ∼ is an equivalence class.

Proof. There are three things to check.
(i) Reflexivity: This is trivial since g(c) = g(c) ∀ g ∈ G.
(ii) Symmetry: If g1(c) = g2(c) then g2(c) = g1(c).
(iii) Transitivity: If g1(c) = g2(c) and g2(c) = g3(c) then g1(c) = g3(c).

Lemma 2.4.4. The following is equivalent:
(i) ∃ g ∈ N such that g1 = gg2

(ii) g1g
−1
2 ∈ N

(iii) g1 ∼ g2

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Suppose ∃ g ∈ N such that g1 = gg2. Then

(g1g
−1
2 )(c) = (gg2g

−1
2 )(c) = g(c) = c

so g1g
−1
2 ∈ N . Now suppose g1g

−1
2 ∈ N then

(g1g
−1
2 )(c) = c ⇐⇒ g1(c) = g2(c)

hence g1 ∼ g2. And if g1 ∼ g2 then for any g ∈ N we have:

g1(c) = g2(c) ⇐⇒ g1(c) = g(g2(c)) ⇐⇒ g1(c) = (gg2)(c)

Proposition 2.4.5.
G = G/N

is a finite group. The elements in this group will be called moves.

Before this is proven, let me note that G will be the group studied in the
rest of this thesis. It will have the desired properties the group of the Rubik’s
cube should have. The lemma above tells us that two different words that
gives the same configuration on the cube will be one move in G. We will also
use m ∈ G for a general move and g ∈ G6 for one of the six basic moves in
the rest of the thesis.

Proof. Since N is normal, G is a group. So the interesting point here is the
finiteness. Since two different paths to the same configuration is now one
move all one has to consider is the number of possible configurations of the
cube. There are 8 corners with 3 orientations each and 12 sides with 2. As
noted earlier, the center cubits do not move relative to each other. So there
is a maximum of 8! · 38 · 12! · 212 ≈ 5, 2 · 1020 different configurations on the
cube, which is a finite number (almost not. . .).
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So |G| ≤ 8! · 38 · 12! · 212. Since G is a quotient group, which move should
represent a co-set? In Z/(3)Z −1,0 or 1 are natural selections but what about
G? Since a move may be almost infinitely long, a logical answer would be the
shortest one. There are, in fact, an upper limit to the length of any move. It
has been proven that the cube can come from any configuration to the start
configuration in 20 or less moves (letters), which will not be proven in this
thesis. This gives us that any m ∈ G need not be longer than 20 letters. 1

Corollary 2.4.6. 〈G6〉 = G

Proof. This follows strait from how G has been defined. One needs to confirm
that non of the basic moves are in N which is obvious.

We have the following:

Corollary 2.4.7.
{1} → N → G → G → {1}

is an exact sequence.

Proof.

2.5 Introducing φ

Definition 2.5.1. Let X be a set. A permutation of X is a function σ :
X → X which is bijective.

Theorem 2.5.2. Let G be a group which acts on X. For each g ∈ G, the
function σg : X → X defined by

σg(x) = gx

∀ x ∈ X is a permutation of X.

Proof. See page 155 in [1]

Proposition 2.5.3. Let X be a set with n ∈ N elements and σ be a permu-
tation of X. Then

Sn = {σ : X → X}

is a group under function composition (◦) with n! elements called the sym-
metry group of n letters.

Proof. See page 77 in [1]
1See appendix A
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If we forget about the orientation of the cubits we see that G ∼= Ω ⊂
(S8 × S12) since G permutes all the corner and side cubits. If one numbered
all the unoriented corner and side cubits in any fashion a natural map would
arise:

φ : G → (S8 × S12)

where φ(m) = σm for a σ ∈ (S8 × S12). Since corners only go to corners and
sides to sides one could divide the map into this:

φc : G → S8 given by φ([xi, . . . , xj]) = [i, . . . , j] where xi ∈ U(Cc) ∀ i ∈ N
φc : G → S12 given by φ([yl, . . . , yk]) = [l, . . . , k] where yi ∈ U(Cs) ∀ i ∈ N

So Im(φ) = Ω ⊂ (S8 × S12). The ker φ would be all the moves that only
changes orientation of the cube. Let’s call it H. This would give rise to the
following exact sequence:

{1} → H → G → Ω (2.1)

The next two chapter will be devoted to determine H and Ω. They will play
an important role in understanding G.
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Chapter 3

H and orientation

What is the subgroup H from (2.1)? H consits of moves which does not
permute any cubits but simply changes their orientation.

Lemma 3.0.4. H is a normal subgroup.

Proof. Since H = ker(φ).

Since corner cubits cannot go to side cubits and visa versa, we will analyze
them separately.

3.1 Corner cubits
We will start by looking at the corner cubits. Much of this section has
been done by Michael Weiss [6], in what my professor called “perhaps the
simplest, non-trivial example of gauge theory”. (You do not need to know
any gauge theory to understand this). We can say that the cubits are twisted
and give them value. 0 for no twist, 1 for a clockwise twist and −1 for a
counterclockwise twist, and try to define

τ(m, c) = The amount c is twisted by m ∈ G

One problem is that the basic moves also move the cubits from cubicle to
cubicle so “measuring” the twists may be tricky. This twist function will have
certain interesting and very helpful properties. In the end we shall be able
to prove the following:

Theorem 3.1.1. If the cube is in its start configuration then∑
c∈Cc

τ(m, c) ≡ 0 mod 3

∀ m ∈ G

17
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The first problem will be to properly define a twist.

Definition 3.1.2. A fiber over a x ∈ U(Cc) is

π−1(x)

(π from definition 2.2.1)

Hence, the fiber is the three ways a cubit can sit in a cubicle. (|π−1(x)| =
3). Now ’flu’ can be in the ’flu’ cubicle in three ways: ’flu’, ’luf’ or ’ufl’. A
close look shows that ’flu’ is permuted cyclically. We will call the group that
permutes the c ∈ Cc in its own fiber Z3. The choice of fiber is trivial since
they each have 3 elements.

Lemma 3.1.3.
Z3

∼= Z3

Proof. Define γi ∈ Z3, γi : Cc → Cc by

γ0(abc) = abc

γ1(abc) = cba

γ−1(abc) = bca

Then λ : Z3 → Z3 given by
λ(γi) = i

is an isomorphism.

So we let Z3 act from the right while G acts from the left.

Lemma 3.1.4. For m ∈ G, c ∈ Cc and t ∈ Z3 we have

(mc)t = m(ct)

Proof. Let m(ci) = cj + 1. Let (ci)t = ci + 1 ∀ c ∈ Cc. Then (mci)t =
(cj + 1)t = cj + 2 = cj − 1, and m(cit) = m(ci + 1) = cj + 2 = cj − 1.

Lemma 3.1.5. Z3 acts transitively on each fiber of Cc.

Proof. This is only an observation on how the cube works. If a cubit is in
a certain orientation then there exists a move such that the cubit can be
rotated in any way we want.

Lemma 3.1.6. G acts transitively on U(Cc)
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Proof. This is another observation on how the cube works. If a corner cubit
is in a certain cubicle then there exists a move such that the cubit can be
moved to any other corner cubicle.

The twist can now be defined as follows:

Definition 3.1.7. If c and mc are in the same fiber then we say that mc = ct
for a unique t ∈ Z3 and define

τ(m, c) = t

What if c and mc are not in the same fiber? It seems that some kind of
coordinate system would be useful, but it could turn out to be very messy.
Another option is to use sections, which is quite frequent in gauge theory.

Definition 3.1.8. A section of Cc is a set S that picks one element from
each fiber.

So, if S is a section and x ∈ U(Cc) then

S(x) = the chosen element of the fiber over x

So
S(x) ∈ π−1(x)

Let S(x) ∈ Cc then π(S(x))) = x. Let m be a move that sends x to another
fiber. Let m−1 send x to m−1x and then back to Cc by S(m−1x). Finally
send this back to the start fiber by m:

mS(m−1x)

Now, mS(m−1x) is in the same fiber as S(x) ∀ m ∈ G but not necessarily in
the same orientation. We can now define a more general twist function.

Definition 3.1.9.

τ(m, S, x) = the unique tx ∈ Z3 such that S(x)tx = mS(m−1x)

(note that this is possible because Z3 acts transitively on the fibers, and
because G acts transitively on the unoriented cubits). This whole ordeal
is depicted in the following diagram where the black dots represent unused
cubits in the fiber, the equation comes if you start at S(x).
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Cc : mS(m−1x) •

Cc : • S(m−1x)

m
ggNNNNNNNNNNN

Cc : S(x)

π(S(x))

��

tx

KK

•

U(Cc) : x m−1
// m−1x

S

RR

What if we had chosen another section? Since Z3 cyclically permutes
elements in the fibers, we see that a section R will have the following relation
to section S:

Rz = S

for a z ∈ Z8
3 and

R(x)zx = S(x)

for some zx ∈ Z3, which will be the x′th coordinate of z ∈ Z8
3. We can prove

the following:

Lemma 3.1.10. If S and R are any two sections of Cc then∑
x∈U(Cc)

τ(m, S, x) =
∑

x∈U(Cc)

τ(m, R, x)

Proof.

R(x)zx = S(x)

⇒ R(m−1x)zm−1x = S(m−1x) now let m act
⇒ mR(m−1x)zm−1x = mS(m−1x)

⇒ R(x)τ(m, R, x)zm−1x = S(x)τ(m, S, x) from 3.1.9
⇒ R(x)τ(m, R, x)zm−1x = R(x)zxτ(m, S, x) additively:
⇒ τ(m, R, x) + zm−1x = zx + τ(m,S, x)

Summing over:∑
x∈U(Cc)

τ(m, R, x) +
∑

x∈U(Cc)

zm−1x =
∑

x∈U(Cc)

zx +
∑

x∈U(Cc)

τ(m,S, x)

∑
x∈U(Cc)

τ(m, R, x) =
∑

x∈U(Cc)

τ(m,S, x)
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so the sum is only dependent on m, not on the section.

The next lemma will be particularly usefull.

Lemma 3.1.11. ζ : Z8
3 → Z3 given by

ζ(τ(m,S,x)) =
∑

xi∈U(Cc)

τ(m, S, xi)

where each xi is a coordinate of x, is a homomorphism.

Proof. Let m, h ∈ G. Remember that

S(x)τ(h, S, x) = hS(h−1x)

We have

S(x)τ(m, S, x) = ms(m−1x)

⇒ S(x)τ(hm, S, x) = hmS(m−1h−1x)

also
S(h−1x)τ(m, S, h−1x) = mS(m−1h−1x)

Now letting h act from the right and using the other identities gives:

hS(h−1x)τ(m, S, h−1x) = hmS(m−1h−1x)

⇒ S(x)τ(h, S, x)τ(m, S, h−1x) = S(x)τ(hm, S, x)

⇒ τ(h, S, x)τ(m, S, h−1x) = τ(hm, S, x)

Additively this gives:

τ(h, S, x) + τ(m, S, h−1x) = τ(hm, S, x) (3.1)

⇒
∑

x∈U(Cc)

τ(h, S, x) +
∑

x∈U(Cc)

τ(m, S, x) =
∑

x∈U(Cc)

τ(hm, S, x)

⇒ ζ(τ(h, S, x)) + ζ(τ(m, S, x)) = ζ(τ(hm, S, x))

we’ve replaced h−1x with x when the sum comes since all the unoriented
cubits will be summed over.

This gives us the desired results and a corollary which will be important
later on.
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Corollary 3.1.12. Let m, n ∈ G and τ be as before. Then

τ(mn, S, x) = τ(m, S, x) + τ(n, S, m−1x)

Proof. This is equation (3.1).

This also holds for the side cubits as we shall see later on.

Definition 3.1.13. S is a section such that

τ(1, S,x) = 0

and
τ(1, S,y) = 0

when the cube is in its start configuration.

To see that the sum is always zero, we need to see what happens with
the six basic moves under S . If S is the cubicles then it satisfies definition
3.1.13 and we give value 1 for clockwise twist and −1 for counterclockwise
twist.

Example 3.1.14. We see that D(x2) = x7 and D(frd) = rbd while the
cubicle is bdr. So

S(x7)τ(D, S, x7) = DS(D−1x7) = DS(x2) = D(frd) = rbd

⇒ bdr + τ(D, S, x7) = rbd

⇒ τ(D, S, x7) = 1

In other words, we need to twist x7 clockwise from its cubicle state in order
to achieve the same twist as D gives it when it comes from the cubicle state
of x2.

Continuing like this gives us table 3.1. We can now finally prove the
following

Theorem 3.1.15. If R is a section such that ζ(τ(1, R, x)) = 0 then

ζ(τ(m,R, x)) ≡ 0 mod 3

for all m ∈ G. In particular

ζ(τ(m, S, x)) ≡ 0 mod 3
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Move Coordinates
τ(D, S,x) (0,-1,-1,0,0,-1,1,0)
τ(D, S,y) (0,0,1,0,0,1,0,0,0,0,1,1)
τ(U, S,x) (1,0,0,-1,1,0,0,-1)
τ(U, S,y) (1,0,0,0,0,0,0,1,1,1,0,0)
τ(F, S,x) (0,0,0,0,0,0,0,0)
τ(F, S,y) (0,0,0,0,0,0,0,0,0,0,0,0)
τ(B, S,x) (0,0,0,0,0,0,0,0)
τ(B, S,y) (0,0,0,0,0,0,0,0,0,0,0,0)
τ(L, S,x) (0,0,-1,1,-1,1,0,0)
τ(L, S,y) (0,0,0,0,0,0,0,0,0,0,0,0)
τ(R,S,x) (-1,1,0,0,0,0,-1,1)
τ(R,S,y) (0,0,0,0,0,0,0,0,0,0,0,0)

Table 3.1:

Proof. Lemma 3.1.10 gives us that we can just use S. We see that ζ(τ(1, S, x)) =
0 when the cube is solved. From table 3.1 we see that

ζ(τ(g, S, x)) ≡ 0 mod 3

∀ g ∈ G6. Now each m ∈ G can be written as m =
∏

gi, where gi ∈ G6 ∀ i.
The homomorphism property then gives:

ζ(τ(m,S, x)) = ζ(τ(
∏

gi, S, x)) =
∑

i

ζ(τ(gi, S, x)) ≡ 0 mod 3

3.2 Side cubits
Now a similar law holds for side cubits modulo 2. This section will be very
similar to the last, if the proofs are similar I will just state

Proof.

Here the cubits are twisted with value 0 for no twist and 1 for a twist.
The fiber now only has two elements and we will use y ∈ U(Cs).

Definition 3.2.1. A fiber over a y ∈ U(Cs) is

π−1(y)
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Lemma 3.2.2.
S2
∼= Z2

Proof.

So we let Z2 act on the right.

Lemma 3.2.3. For m ∈ G, c ∈ Cs and t ∈ Z3 we have

(mc)t = m(ct)

Proof. The only difference is that −1 is no longer an option.

The twist can now be defined as:

Definition 3.2.4. If c and mc are in the same fiber then we say that mc = ct
for a unique t ∈ Z2 and define

τ(m, c) = t

Z2 acts transitively on the fibers of Cs as well, G acts transitively on
U(Cs) and a section Q is the same, only with 12 elements. We have the same
important relation:

Definition 3.2.5.

τ(m, Q, y) = the unique ty ∈ Z3 such that Q(y)ty = mQ(m−1y)

Cc : mS(m−1y) S(m−1y)
moo

Cc : S(y)

π(S(y))

��

ty

JJ

•

U(Cc) : y m−1
// m−1y

S

RR

The independence of sections when taking sums follow from the same calcu-
lations, ending up with:∑

y∈U(Cs)

τ(m, R, y) =
∑

y∈U(Cs)

τ(m, Q, y)

The homomorphism property holds
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Lemma 3.2.6. ζ : Z12
2 → Z2 given by

ζ(τ(m, Q,y)) =
∑

y∈U(Cs)

τ(m, Q, y)

is a homomorphism.

Proof.

Corollary 3.1.12 also holds with y instead of x. We use the section S from
definition 3.1.13 and we can now prove the analogue for side cubits.

Theorem 3.2.7. If Q is a section such that ζ(τ(1, Q, y)) = 0 then

ζ(τ(m, Q, y)) ≡ 0 mod 2

for all m ∈ G. In particular

ζ(τ(m, S, y)) ≡ 0 mod 2

Proof. We can again just use S. We see that ζ(τ(1, S, y)) = 0 when the cube
is solved. From table 2 we see that

ζ(τ(g, S, y)) ≡ 0 mod 2

∀ g ∈ G6. Now each m ∈ G can be written as m =
∏

gi, where gi ∈ G6 ∀ i.
The homomorphism property then gives:

ζ(τ(m,S, y)) = ζ(τ(
∏

gi, S, y)) =
∑

i

ζ(τ(gi, S, y)) ≡ 0 mod 2

3.3 Back to H
Lemma 3.3.1. τ : (H, C, U(C)) → (Z8

3 × Z12
2 ) as defined earlier is a homo-

morphism.

Proof. Let h1, h2 ∈ H. Corollary 3.1.12 gives us that

τ(h1h2, S, x) = τ(h1, S, x) + τ(h2, S, h−1
1 x)

but h−1
1 x = x since h1 ∈ H and H is a group. Same argument shows that it

holds for y as well.
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So what about H? From what has been done it would be plausible to
conclude that

H ∼= K ⊂ (Z8
3 × Z12

2 )

Where

K = {(x,y) ∈ (Z8
3×Z12

2 ) | ζ(τ(g, s, x)) ≡ 0 mod 3, ζ(τ(g, s, y)) = 0 mod 2 ∀g ∈ G}

And since the sums have to be equal we see that

K ∼= (Z7
3 × Z11

2 )

H ∼= K is only true if the homomorphism from H to K is surjective. There
might be some a = (a1, . . . , a8) ∈ Z8

3 where∑
i

ai ≡ 0 mod 3

but there would be none h ∈ H such that

τ(h, S,x) = a

We must prove the following.

Theorem 3.3.2. Let m ∈ G. Then m ∈ H if and only if

ζ(τ(m, S, x)) ≡ 0 mod 3

∀ x ∈ U(Cc) and
ζ(τ(m, S, y)) ≡ 0 mod 2

∀ y ∈ U(Cs).

Before this can be proven we will have need of the following two lemmas:

Lemma 3.3.3. Let xi, xj, x
′
i, x

′
j ∈ U(Cc) , where xi 6= xj 6= x′j. Then ∃ m ∈

G such that
m(xi, xj) = (x′i, x

′
j)

Then same holds for side cubits.

Proof. Since the group G acts transitive on the cubits we know that ∃ m ∈ G
such that m(xj) = x′j. The trick is to find a move that sends xj to x′j without
moving xi then if xi 6= x′i we need to find a move that sends xi to x′i without
moving x′j. By symmetry, one quickly sees that if we can send xj to x′j
without moving xi then this holds ∀ i so the second part follows. Since the
group is symmetric, no generality is lost by choosing the start configuration
and letting xi = x1. We will now send x2 to all other corners without moving
x1:
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• x2 → x3: D−1

• x2 → x4: L−1D−1

• x2 → x5: L2D−1

• x2 → x6: D2

• x2 → x7: D

• x2 → x8: BD

This can similarly be done with x3, . . . , x8. Same with the side cubits, since
the 6 basic moves also acts on them in a similar fashion.

This shows that G acts 2-transitively on the unoriented cubits. To prove
the theorem, we also need this for oriented cubits.

Lemma 3.3.4. Let ci, cj ∈ Cc, where ci 6= cj. Let ci+1 be ci with a clockwise
twist and ci − 1 be ci with a counterclockwise twist. Then ∃ m ∈ G such that

m(c) = c ∀ c 6= ci and c 6= cj

and
m(ci) = ci + 1

and
m(cj) = cj − 1

or visa versa.
Further, let ci, cj ∈ Cs, where ci 6= cj. Let ci + 1 be ci with a clockwise twist.
Then ∃ m ∈ G such that

m(c) = c ∀ c 6= ci and c 6= cj

and
m(ci) = ci + 1

and
m(cj) = cj + 1

Proof. From lemma 3.3.3 we can change the position of any two pairs of
unoriented cubits. There exists a move on the cube which only changes the
orientation of two corner cubits, and leave all other cubits in place. It gives
a +1 on one of the cubits and a −1 on the other. One such move is

m0 = L−1D2LDL−1DLRD2R−1D−1RD−1R−1
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which has disjoint cycle composition

[fdl, dlf, lfd][bld, dbl, ldb]

so it acts on c2 and c7, but by lemma 3.3.3 we can find m ∈ G such that

m(ci, cj) = (c2, c7)

and
m−1m0m ∈ H

since H is normal. So m−1m0m will only permute which two corners are being
oriented and leave all others in their right place and orientation. There are
also moves that changes the orientation of two side cubits without changing
any other cubits. One such move is:

UR−1LBR−1LD−1R−1LF−1R−1LU−1R−1LB−1R−1LDR−1LFR−1L

which can more easily be described as (U−1MF )4(UMF )4 with the definition
of MF from chapter 2. This will do the same trick for the side cubits.

We can now prove Theorem 3.3.2

Proof. We have shown that if m ∈ H, then ζ(τ(m, S, x)) ≡ 0 mod 3 and
ζ(τ(m, S, y)) ≡ 0 mod 2. We have left to prove the converse. All we need
to see is that dim H = 7 × 11 since we know that H ∼= L ⊂ (Z8

3 × Z12
2 ) We

will start with the corners. Lemma 3.3.4 gives me that ∃ m ∈ H such that

τ(m, S,x) = (1, 0, . . . , 0,−1)

for any position of 1, letting −1 be freezed to the last position. This gives
us the following matrix 

1 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 −1
0 0 1 0 0 0 0 −1
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1


where the rows are the twist vectors for the moves. These are linearly in-
dependent since det I7 = 1 6= 0. The same can be done for the side cubits
where we would end up with 11 row vectors where 1 would be freezed at the
end and the first eleven columns would be the identity matrix. This shows
that dim L = 7× 11 ⇒ L = K ⇒ K ∼= H
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This gives rise to the following exact sequence

0 → H τ−→ (Z8
3 × Z12

2 )
ζ−→ (Z3 × Z2) → 0

So if we look at φ : G → (S8 × S12) we have proven that

H ∼= ker (φ) ∼= (Z7
3 × Z11

2 )

Remark 3.3.5. If S had been a section such that τ(1, S,x) = (0, . . . , 1, . . . , 0)
then ∑

x∈U(Cc)

τ(m, S, x) ≡ 1 mod 3

since the generators keep the sum equal to 0 modulo 3. Same for -1 and same
for 1 modulo 2. If the cube was in the start configuration and you forced a
twist on only one corner cubit (by using a screwdriver or something similar)
then you would get into an orbit that you could not get out of. From this
it should be plausible to conclude that the orientation of the group gives us
3 · 2 = 6 orbits of the configurations.
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Chapter 4

Ω and permutations

We will now move our attention to the possible permutations of the unori-
ented cubits, leaving the subject of orientation for a while. I will assume
some knowledge of cycles for this section.

4.1 Possible permutations

Looking at table 2.1 we can rewrite what happens to x and y in terms of
cycle notation:

φ(D) = [x2, x7, x6, x3][y3, y12, y7, y6]

φ(U) = [x1, x8, x5, x4][y1, y10, y8, y9]

φ(F ) = [x1, x2, x3, x4][y1, y2, y3, y4]

φ(B) = [x5, x6, x7, x8][y5, y6, y7, y8]

φ(L) = [x3, x6, x5, x4][y4, y11, y5, y10]

φ(R) = [x1, x2, x7, x8][y2, y12, y7, y9]

So any g ∈ G6 is a product of two odd permutations which is an even
permutation. Since the product of two even permutations is even we have
the following result:

Proposition 4.1.1. Let m ∈ G, then

sign(φc(m)) = sign(φs(m))

Now, let (σc, σs) ∈ (S8 × S12). Is it possible that sign(σc) = sign(σs) but
there is no m ∈ G such that φc(m) = σc and φs(m) = σs?

31
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Proposition 4.1.2. Let (σc, σs) ∈ (S8 × S12) and let sign(σc) = sign(σs).
Then ∃ m ∈ G such that

φc(m) = σc and φs(m) = σs

Before this can be proven, we need some lemmas.

Lemma 4.1.3. The alternating group, An is generated by 3-cycles.

Proof.

Lemma 4.1.4. G acts 3-transitively on the unoriented corner and the side
cubits respectively.

Proof. This will be similar to the proof of Lemma 3.3.3. We now freeze two
corners, e.g. x1 and x2 and see that we can move x3 to any other corner.

• x3 → x4 : L−1

• x3 → x5 : L2

• x3 → x6 : L

• x3 → x7 : B2L2

• x3 → x8 : B−1L2

In order to prove this properly we should choose the two first corners in all
possible positions, excluding symmetry. This would be a long and boring
read and the reader who is familiar with the cube knows that this is not just
possible, but rather easy. The side cubits will be the same with different
moves.

Lemma 4.1.5. ∀ xi, xj, xk ∈ U(Cc) where xi 6= xj 6= xk, there ∃ m ∈ G such
that

φ(m) : [xi, xj, xk]

and
m(x) = x

∀ x 6= xi, xj, xk and
m(y) = y

∀ y ∈ U(Cs)
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Proof. In other words. It is possible to permute any three unoriented corner
cubits without moving any other cubit. Now there exists a m0 ∈ G such that

φ(m0) = [x2, x7, x6]

and m0(c) = c for all other cubits. This move is:

m0 = D−1L−1DRD−1LDR−1

which has cycle composition:

[frd, drb, ldb]

Since G is 3-transitive, ∃ m ∈ G such that

m−1m0m

will permute any three corners, and leave all other cubits fixed. This is easy
to see if you, for a particular m ∈ G, write down the cycle notation for m
and compute m−1m0m.

Lemma 4.1.6. ∀ yi, yj, yk ∈ U(Cs) where yi 6= yj 6= yk ∃ m ∈ G such that

φ(m) : [yi, yj, yk]

and
m(y) = y

∀ y 6= yi, yj, yk and
m(x) = x

∀ x ∈ U(Cs)

Proof. This is analogue to the last lemma, so all we need is a m ∈ G that
only permutes 3 side cubits without permuting anything else. One such move
is

m1 = F−1D2FDF−1DFRD2R−1D−1RD−1R−1

which has cycle composition
[fd, ld, rd]

Corollary 4.1.7. (A8 × A12) ⊂ φ(G)

Proof. Since An is generated by 3-cycles and all 3-cycles in A8 and A12 can be
realize as moves on the cube by Lemma 4.1.5 and Lemma 4.1.6, the corollary
follows.
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We can now prove Proposition 4.1.2. Since idSn = 1 6= 0 we will use
ξ2 = ({±1}, ·) instead of Z2. Keeping in mind that Z2

∼= ξ2 by f(a) =
(−1)a, a ∈ Z2

Proof. We make the set

Ω = {(σc, σs) ∈ (S8 × S12) | sign(σc) = sign(σs)}

and want to prove that φ(G) ∼= Ω. We see that (A8×A12) ⊂ Ω and φ(G) ⊂ Ω
from Proposition 4.1.1. We also have that

Ω/(A8 × A12) ∼= ξ2

since any (σc, σs) ∈ Ω is either sign((σc, σs)) = (1, 1) ∼ 1 if (σc, σs) ∈
(A8 × A12) or sign((σc, σs)) = (−1,−1) ∼ −1. This gives rise to the ex-
act sequences:

{1}

��

{1}

��
{1} // A8 × A12

// Ω

��

// ξ2

��

// {1}

{1} // A8 × A12
// S8 × S12

��

// ξ2 × ξ2

��

// {1}

ξ2

��

ξ2

��
{1} {1}

Let x, y ∈ ξ2, then ξ2 × ξ2 goes to ξ2 by xy, so ξ2 is also the kernel where
x = y. S8×S12 goes to ξ2× ξ2 by the sign homomorphism and S8×S12 goes
to ξ2 by sign(x) · (sign(y))−1. So

(A8 × A12) ⊂ φ(G) ⊂ Ω

by corollary 4.1.7, but
Ω/(A8 × A12) ∼= ξ2

so either
φ(G) ∼= (A8 × A12)

or
φ(G) ∼= Ω
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So all we need to find is a m ∈ G where sign(φc(m)) = sign(φs(m)) = −1,
but this is true ∀ g ∈ G6 so

φ(G) ∼= Ω

which is equivalent to Proposition 4.1.2

We can now state the two Propositions in one Theorem

Theorem 4.1.8. m ∈ G if and only if

sign(φc(m)) = sign(φs(m))

Corollary 4.1.9.

{1} // H // G
φ // Ω // {1}

is an exact sequence.

We now have the order of G

Corollary 4.1.10.

|G| = 1

2
· 8! · 12! · 37 · 211 ≈ 4.325 · 1019

Proof. Corollary 4.1.9 gives us that

G/H ∼= Ω ⇒ |G|/|H| = |Ω| ⇒ |G|/(37 · 211) =
1

2
· 8! · 12!

When the first Rubik’s cube came out an advertisement was made stating
that the cube “has over 3 billion combinations but only one solution”.[5] I
would call that an understatement.

Remark 4.1.11. If we apply the screwdriver method here again and force
two cubits to be permuted while no other cubits were permuted then one would
not be able to solve the cube. It seems that the rules of permutations gives us
two orbits of configurations. Put together with the 6 from orientation it would
be plausible to conclude that there are 2 · 6 = 12 orbits of the configuration of
the cube. This also goes well with the fact that |G| was 1

12
of the number of

“possible” configurations on the cube.
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4.2 Ω to action!
How does Ω act on H? Not directly, naturally, since H ⊂ G and Ω ⊂
(S8 × S12). We will need the following:
Lemma 4.2.1. For m, m′ ∈ G and m 6= m′ and h ∈ H let φ(m) = φ(m′)
then

m−1hm = m′−1hm′

Proof. Since φ(m) = φ(m′) = σ the only difference between m and m′ lies
in the orientation. We will let ci be a corner or side cubit and let ci + 1 the
the same cubit rotated clockwise and ci − 1 be a counterclockwise rotation.
Now, let m and m′ send ci to cj, but let m(ci) = cj and m′(ci) = cj + 1. Let
h change orientation by +1 (this could be any change). Then

m−1hm(ci) = m−1h(cj) = m−1(cj + 1) = ci + 1

and
m′−1hm′(ci) = m′−1h(cj + 1) = m′−1(cj + 2) = ci + 1

since m′−1 will add a −1.

So the choice of m is irrelevant as long as φ(m) = φ(m′). We will therefore
write σ−1hσ where σ“=”m for any m such that φ(m) = σ. We will now look
at the map: σ(h) = σ−1hσ.
Lemma 4.2.2.

σ(H) ⊂ Aut(H)

Proof. So we have to show that σ is a homomorphism on elements of H and
that σ : H → H is injective. Let h1, h2 ∈ H. Then

σ(h1h2) = σ−1(h1h2)σ = σ−1h1σ
−1σh2σ = σ(h1)σ(h2)

so σ is a homomorphism. Since H is normal we know that σ−1hσ ∈ H so
∃ h′ ∈ H such that

h′ = σ−1hσ

for any given h ∈ H. Hence σ ⊂ Aut(H)

So Ω simply permutes the elements in H by conjugation.
Proposition 4.2.3. µ : Ω → Aut(H) given by

µh(σ) = σ−1hσ

for any h ∈ H is a homomorphism.
Proof.

(µh(σ2)(σ1)) = µ(σ2)(σ
−1
1 hσ1) = σ−1

2 σ−1
1 hσ1σ2 = (σ1σ2)

−1hσ1σ2 = µh(σ1σ2)
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4.3 Semidirect product
Definition 4.3.1. Let N and A be two groups and let φ : A → Aut(N) be a
homomorphism with a1, a2 ∈ A and n1, n2 ∈ N We define a product

� : ((N × A)× (N × A)) → (N × A)

by
�((n1, a1), (n2, a2)) = (n1φa1(n2), a1, a2)

Lemma 4.3.2.
((N × A),�)

Is a group called the semidirect product of N and A with regard to φ and is
a group. It is denoted by

N oφ A

Proof. [3] on p. 162. Sketch: The identity is (idN , idA) and

(n, a)−1 = (φa−1(n−1), a−1)

It is worth noting that pairs (n, idA) form a normal subgroup of the
product isomorphic to N , and pairs (idN , a) form a subgroup of the product
isomorphic to A. So if we have two groups and a certain homomorphism, we
can create this product. We can also start with a group, and if it has certain
properties it can be written as a semidirect product.

Lemma 4.3.3. Let G be a group with N as a normal subgroup. If ∃ A ⊂ G
where G = NA and N ∩A = 1 then ∃ some homomorphism φ : A → Aut(N)
such that

G ∼= N oφ A

Proof. See Lemma 7.20 on p. 168 in [4].

Can G be written as a semidirect product? H is normal and if Ω ∼= A ⊂ G
then H ∩ A = 1. We can use µ as our homomorphism. All we have to check
is that ∃ A ⊂ G such that A ∼= Ω and that G = HA

Lemma 4.3.4. The set

A = {m ∈ G | τ(m, S, x) = 0 ∀ x ∈ U(C)}

is a subgroup of G.
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Proof. The identity is carried over so we need to check that if m, n ∈ A then
mn ∈ A. We use corollary 4.2.3 and since m−1x ∈ U(Cc) then

τ(mn, S, x) = τ(m,S, x) + τ(n, S, m−1x) = 0 + 0 = 0 (4.1)

so mn ∈ A. Same argument works for the sides. Now we have to show that if
m ∈ A then m−1 ∈ A. Since G is a finite group, then for each m ∈ G ∃ a ∈ N
such that

ma = 1

(since 〈m〉 is a subgroup of G). So let m ∈ A and ma = 1 then ma−1 = m−1

and
τ(ma−1, S, x) = 0

by induction of equation (4.1), so m−1 ∈ A

Lemma 4.3.5.
A ∼= Ω

Proof. Now we need to show that for each σ ∈ Ω, ∃ m ∈ A such that
φ(m) = σ. Let us first look at any m ∈ G. Then φ(m) = σ. Now if
τ(m, S,x) = 0 we are done, so let’s assume τ(m,S,x) 6= 0. Let h ∈ H. Then

τ(hm, S, x) = τ(h, S, x) + τ(m, S, x)

because hx = x. So since H ∼= (Z7
3 × Z11

2 ) and ζ(τ(m, S, x)) ≡ 0 mod 3 for
corners and ζ(τ(m, S, y)) ≡ 0 mod 2 for sides, then for each m ∈ G ∃ h ∈ H
such that τ(hm, S, x) = 0 ∀ x ∈ U(C). So hm ∈ A.

Theorem 4.3.6.
G ∼= H oµ Ω

Proof. All that is left now is to see that G = HA. This is just the same
argument as in Lemma 3.1.4. Each move can be realized as first a change in
orientation and then a permutation. So ∀ m ∈ G,∃! h ∈ H, α ∈ A such that
m = αh.

G is now completely mapped.
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The center, Z(G)

Definition 5.0.7.

Z(G) = {x ∈ G | gx = xg ∀ g ∈ G}

is called the center of the group G.

It is easy to see that Z(G) is a subgroup of G, and it will not be proven
here. So what is Z(G)? It turns out it’s not much. Proving this, however, is
now fairly easy because of our knowledge of H.

Lemma 5.0.8.
Z(G) ⊂ H

Proof. Let m ∈ Z(G) but m /∈ H. Then m permutes some ci ∈ C. So
φ(m) ∈ (S8×S12) and is not trivial, but Z(S8×S12) is trivial since Z(Sn) is
trivial ∀ n > 2.

Lemma 5.0.9. Let m ∈ Z(G) and m 6= 1. Then m must either change the
orientation of all side cubits, or m must change the orientation of all the
corner cubits.

Proof. Let m ∈ H. Then m changes the orientation of some cubit ci to c′i,
(ci 6= c′i) so m(ci) = c′i. Let m not change orientation of cj. Since G acts
2-transitively, ∃ g ∈ G such that g(ci) = cj. Then g(c′i) = c′j where c′j is c′j
with a new orientation. This gives

gm(ci) = g(c′i) = c′j

and
mg(ci) = m(cj) = cj

so m /∈ Z(G). Hence for m to be in Z(G), m must change the orientation of
all the cubits, and since the side cubits and the corner cubits acts separately
the result follows.
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Proposition 5.0.10.
Z(G) = {ms, 1}

where ms is the move that changes orientation of all the side cubits.

Proof. We see that m must change the orientation of all the side or all
the corner cubits. If ms changes the orientation of all side cubits then
τ(ms, S,y) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and ζ(τ(ms, S, y)) ≡ 0 mod (2),
so ms is a move that can be realized on the cube. The corner cubits gives
more difficulty since they can be oriented in two ways. So not only must m
change the orientation of all the corner cubits, it must change all of them
either clockwise or counter clockwise. Let mc change all the cubits clockwise
and let S be the section that gives the value 1 for clockwise change and
−1 for counterclockwise change. Then τ(mc, S,x) = (1, 1, 1, 1, 1, 1, 1, 1) and
ζ(τ(m, S, y)) ≡ −1 mod (3), and hence mc is not a move in H by Theorem
3.3.2. If mc′ changes all the orientation counterclockwise then

mcmc′ = 1 ⇐⇒ mc′ = m−1
c

and since Z(G) is a group then mc′ /∈ Z(G).

The move ms applied to the start configuration is often called the “super-
flip” configuration. It was the first configuration proven to need at least 20
letters to achieve from the start configuration.1

1See appendix A
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How to solve the cube.

I would recommend getting a Rubik’s cube for this section. We will not go
about trying to explain how to “speed-solve” the cube, but rather lay out
a methodical way. Much of the moves that will be used has already been
introduced earlier in the thesis. The U,D,R, L, F, L notation will be used,
but the explicit moves are not so important as the general ideas. We will also
start to use the MF , MR, MM notations. The MF move is moving the middle
row vertically 90◦ through F, U, B, D faces. It is rotated the same way as
R, not as L. MR is the other middle vertical that go through the R,U, L,D
faces. It is rotated the same way as the F face, not as B. The MM is moving
the horizontal middle row, the one that goes through the F, R, B, L faces. It
is rotated the same way as D face and not as U . Remember to read all the
moves from right to left.

6.1 Solving one face
We start by solving one of the 6 faces. This is relatively easy. It is not
enough, however to just solve one face, it must be solved in the “right way”
since you have to solve the rest of the cube also. I will illustrate the right
way in figure 6.1. If stuck on the first side, one can use the moves outlined
in the last section of this chapter and make them fit your configuration by
conjugation.

6.2 Solving the second row.
Let the cube be rotated so the solved side is on the top, and make sure your
center pieces is on the right faces. The next step will be get all the side cubits
on the second row right. See figure 6.2. That is, to place the fr, fl, br, bl
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Figure 6.1: ’Up’ face solved the right way

Figure 6.2: Second row
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Figure 6.3: Solving the second row

cubits right. The trick is to find a move that swaps side cubits on the second
row with side cubits on the bottom. This move is very easy, and it will only
mess up bottom cubits without ruining our top. First you find a side cubit
on the bottom that you want to place on the second row. You do D some
times so the side cubit’s color at the bottom is the same as the center color
of that face. See figure 6.3. If you want to swap fd with fr you do:

F 1D−1FDRDR−1D−1

If you want to swap fd with fl you do:

FD−1F−1D−1L−1D−1LD

You repeat this until all the second row side cubits are correct. If there
are two swapped second row side cubits, you can take one down by permuting
it with a random side cubit from the bottom and then permute it up at the
right location. The same technique can be used if a side cubit is in its right
cubicle but in the wrong orientation.

6.3 The side cubits of the bottom
Two things remain before the whole cube is solved, the bottom and the third
row. We shall proceed to solve the bottom and then solve the third row at
last. We start with the side cubits. Now, there is a move which as disjoint
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Figure 6.4: The fish.

cycle composition
[fd, bf ][ld, dr]

so it permutes and change orientation of four side cubits without moving
anything else. Now do D some times until the cube in the desired position
according to the cycle composition of this move and then do:

MF DM−1
F DMF DM−1

F DMF DM−1
F

If not all the side cubits face down one can do D unitill the cubits line up
with the cycle composition and then do the move again. It should be possible
to get all the side cubits at the bottom in the right orientation through this
process. Just keep a close eye on the cycle composition.

6.4 Finishing the bottom
All that is left now is permuting and switching orientation of at most 8
cubits. The bottom side cubits should all face down now. The goal now is to
create a “fish” shape. See figure 6.4. To create this you do the “fish” move:
RD2R−1D−1RD−1R−1, which has cycle notation:

[frd, dbl, rdf ][fdl, bdr, lfd][ld, bd, rd]

This is the “right” fish move. The left is analogous: L−1D2LDL−1DL, with
cycle notation:

[frd, bld, rdf ][fdl, drb, lfd][ld, rd, bd]

The fish move is applied to F, B, R or L if one let the ’up’ face be the one that
was solved first. What of these faces chosen as the new front face depends on
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the cubes configuration. After doing this some times one should end up with
a fish shape at the bottom. When this is achieved one can do the fish move
on the face that has a cubit sharing the same color as the fish closest to the
fish’s “head”. See figure 6.4. One does the “right” move if it is a right corner
cubit and the “left” move if it is a left corner cubit. The bottom should now
be solved, but most likely not in the “right way” so there is still have some
work to do with the third row.

6.5 Finishing the rest
The cube is now nearly done. The bottom looks fine but some of the cubits
might still be in the wrong position with regard to the third row. We now
need a set of moves that permutes cubits without rotating them so the bottom
stays the same. We will just present some basic moves that are usefull with
their cycle notation, and one should be able to finish the rest. Remember
to use conjugation if needed to move some other cubits than the ones in the
cycle notation. Be carefull to memorize or write the moves done on the cube
before one of these moves so it can be easy to do the inverse afterwards.

• Permuting three sides:

F−1D2FDF−1DFRD2R−1D−1RD−1R−1

cycle notation:
[fd, ld, rd]

• Permuting three corners:

BD−1F−1DB−1D2FD−1F−1D2FL−1DRD−1LD2R−1DRD2R−1

cycle notation:
[fdl, rdf, bdr]

• Orienting two sides:
(U−1MF )4(UMF )4

cycle notation:
[ul, lu][ur, ru]

• Permuting two corners and two sides:

L−1DRD−1LD2R−1DRD2R−1

cycle notation:
[frd, rbd][fd, rd]



46 CHAPTER 6. HOW TO SOLVE THE CUBE.



Appendix A

God’s number

If one had the capacity to solve the Rubik’s cube in the most efficient of
ways, how many moves would you need? It turns out that the answer is 20
if we allow g2 ∀ g ∈ G6. No more than 20 moves are needed to solve the
cube and hence no more than 40 moves are needed to get from one configu-
ration to any other configuration. I have chosen to include table A.1 from [2].

Proposition A.0.1. No m ∈ G need to be longer than 20 letters.

Proof. It has been proven that it takes no more than 20 letters to go from any
configuration to the start configuration. This proposition is a bit stronger,
it states that it takes no more than 20 letters to get from one configuration
to any other configuration. Let l be any valid configuration and define this
to be the (new) start configuration. If one applies the moves needed to go
from the start configuration to all the configurations in the table above one
would end up at new configurations, but they would all be 20 or less letter
away from l and they would all be included since no two different moves give
the same configuration. This can be done for any configuration.

The “superflip” from the Center is one of the moves that creates a con-
figuration that takes no less than 20 letters to solve. It was actually the first
move proven to take no less than 20 letters to solve. This move does it in
exactly 20 letters [2]:

UR2UF 2DR2UB−1F−1U2LB2R2F 2DU−1FU2LR
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Distance Number of configurations
0 1
1 18
2 243
3 3240
4 43 239
5 574 908
6 7 618 438
7 100 803 036
8 1 332 343 288
9 17 596 479 795
10 232 248 063 316
11 3 063 288 809 012
12 40 374 425 656 248
13 531 653 418 284 628
14 6 989 320 578 825 358
15 91 365 146 187 124 313
16 ca. 1, 1 · 1018

17 ca. 1.2 · 1019

18 ca. 2, 9 · 1019

19 ca. 1, 5 · 1018

20 ca. 3 · 109

Table A.1:
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