
Roberto Rossini

Developing reproducible and
efficient computational tools for
modeling and analysis of dynamic
multi-level 3D genome organization

Thesis submitted for the degree of Philosophiae Doctor

Department of Biosciences

Faculty of Mathematics and Natural Sciences

2023

© Roberto Rossini, 2023

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2712

ISSN 1501-7710

All rights reserved. No part of this publication may be

reproduced or transmitted, in any form or by any means, without
permission.

Cover: UiO.

Print production: Graphic center, University of Oslo.

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo under the supervision of Professor Jonas
Paulsen.

The thesis is a collection of three papers, presented in chronological order of
writing. The papers are preceded by an introductory chapter that relates them
to each other and provides background information and motivation for the work.

Acknowledgements

First, I would like to thank my supervisor Jonas for always being supportive,
and guiding me through my PhD.

Second, I wish to thank my colleagues at EVOGENE, in particular, I would like
to thank my friends and colleagues Andrea H., Andrea R., Dominik, Fabiana,
Negar, Oda, and Saleh, for the many scientific discussions, coffee breaks, and
beer evenings.
A special thanks to Negar and Saleh for sharing the office with me and listening
to my complaints and loud keyboard for the past three years.
Many thanks also to Rein for the numerous, thought-provoking scientific discus-
sions.
Thank you also to my friends and colleagues at the department for the many
chats and coffee breaks, especially Chiara, Dabao, Ida, Frida, Renate, and
Veslemøy.
Thanks to Yuri and Sissel for being my friends and joining me on many hikes
and fishing trips around Oslo.

Lastly, I would like to thank my family in Italy for being supportive and
understanding throughout my studies.

Roberto Rossini
Oslo, December 2023

i

Summary

In English

The genome of eukaryotes is tightly packed into micrometer-sized nuclei.
To achieve this impressive feat, DNA is folded into a number of 3D structures

ranging from nucleosomes at the nanometer scale to chromosome territories at
the micrometer scale. These structures are not just simply a means to achieve the
required level of compaction, but rather structures with functional implications
when it comes to gene expression, DNA repair, recombination, and more.

Over the past two decades, Chromosome Conformation Capture (3C) methods
have evolved to map the 3D structure of whole genomes, including Hi-C methods,
which is widely used to map pairwise 3D genome interactions. These techniques
pioneered the discovery of Topologically Associating Domains (TADs), which
are kilo- to megabase scale regions that show preferential self-interaction in 3D
space. It was later discovered that the vast majority of TADs are a consequence
of a process known as DNA loop extrusion.

The first part of this dissertation was dedicated to the development of
computational tools for simulation and data analysis of the 3D genome. As part
of our software development efforts, we developed a high-performance in silico
model of DNA loop extrusion, named MoDLE, that is capable of simulating loop
extrusion on the entire human genome in a matter of minutes.

While developing MoDLE we realized a lack of interoperability between .hic
and cooler, the two most popular file formats used to store Hi-C interactions.
This prompted us to develop hictk, a toolkit to transparently perform common
operations on .hic and cooler files, such as converting between the two formats
and fetching interactions overlapping a region of interest.

The second part of this dissertation focused on the analysis of cancer data with
emphasis on 3D genomics. Here we characterized changes in the 3D structure of
genomes during breast cancer progression. We report significant changes at the
subcompartment and TAD clique level. Furthermore, we identify a structural
variation at the MYC locus that is associated with the dysregulation of several
oncogenes.

iii

Summary

På Norsk

Genomet hos Eukaryoter er tett pakket inn i mikrometerstore cellekjerner. For
å oppnå dette, er DNAet foldet inn i en rekke 3D-strukturer som strekker seg
fra nukleosomer på nanometerskala til kromosomterritorier på mikrometerskala.
Disse strukturene er ikke bare nødvendig for å gjøre DNAet kompakt, men har
også funksjonell betydning for genuttrykk, DNA-reparasjon og rekombinasjon.

I løpet av de siste årtiene har Chromosome Conformation Capture (3C)-
metoder blitt utviklet for å kartlegge hele genomer i tre dimensjoner (3D),
inkludert Hi-C-metoder som nå er mye brukt for å kartlegge genomvide parvise
3D-interaksjoner. Disse teknikkene har vært banebrytende for oppdagelsen av
topologisk assosierende domener (TAD), som er regioner i kilo- til megabas-
estørrelse med anrikning av 3D-kontakter innad i domenene. Det har senere
vist seg at flertallet av TADene er et resultat av en prosess kjent som DNA-
løkkeekstrudering.

Den første delen av denne avhandlingen ble viet til utvikling av beregn-
ingsverktøy for simulering og dataanalyse av 3D-genomet. Som en del av dette,
utviklet vi en effektiv in silico-modell av DNA-løkkeekstrudering, kalt MoDLE,
som er i stand til å simulere løkkeekstrudering på hele det menneskelige genom
på få minutter.

Under utviklingen av MoDLE innså vi at det manglet interoperabilitet mellom
formatene .hic og cooler, som er er de to mest populære filformatene for lagring
av Hi-C-interaksjoner. Dette ledet oss til å utvikle hictk, et verktøy for å utføre
vanlige operasjoner på .hic og cooler-filer på en brukervennlig måte, som for
eksempel å konvertere mellom de to formatene, eller å hente interaksjoner som
overlapper et interesseområde.

Den andre delen av denne avhandlingen fokuserte på analyse av kreftdata med
vekt på 3D-genomikk. Her karakteriserte vi endringer i 3D-strukturen av genomer
under utvikling og progresjon av brystkreft. Vi fant signifikante endringer på
subkompartement- og TAD-klikknivå. Vi identifiserte også strukturell variasjon
ved MYC-lokuset som er assosiert med dysregulering av flere onkogener.

iv

List of Papers

Paper I

Rossini R., Kumar V., Mathelier A., Rognes T. and Paulsen J.
“MoDLE: high-performance stochastic modeling of DNA loop extrusion interac-
tions”
Genome Biology 23, 247 (2022) DOI: 10.1186/s13059-022-02815-7.

Paper II

Rossini R. and Paulsen J.
“hictk: blazing fast toolkit to work with .hic and .cool files”
Submitted for publication. DOI: 10.1101/2023.11.26.568707

Paper III

Rossini R., Oshaghi M., Nekrasov M., Bellanger A., Domaschenz R., Dijkwel Y.,
Abdelhalim M., Collas P., Tremethick D. and Paulsen J.
“Multi-level 3D genome organization deteriorates during breast cancer progres-
sion”
Submitted for publication. DOI: 10.1101/2023.11.26.568711

v

Contents

Preface i

Summary iii

List of Papers v

Contents vii

List of Figures xi

List of Acronyms xiii

I Introduction 1

1 Genome organization in three dimensions 3
1.1 Introduction . 3
1.2 Chromatin organization . 3

1.2.1 DNA and nucleosomes 3
1.2.2 Topologically Associating Domains 5
1.2.3 Extrusion loops, stripes, and fountains 7
1.2.4 Compartments 9
1.2.5 TAD cliques . 11
1.2.6 Chromosome territories 11
1.2.7 Closing remarks 12

1.3 DNA loop extrusion . 14
1.3.1 Mechanism and key players 14
1.3.2 How does loop extrusion relate to other processes? 16
1.3.3 In-silico models of DNA loop extrusion 18
1.3.4 Closing remarks 22

2 Experimental methods to study the 3D Genome 25
2.1 Introduction . 25
2.2 Sequencing-based methods 25

2.2.1 Chromosome Conformation Capture methods . . 25
2.2.2 Ligation-free methods 32

2.3 Imaging methods . 38
2.3.1 FISH-based methods 38
2.3.2 Live-imaging . 42

vii

Contents

2.4 Differences and similarities between experimental techniques
and closing remarks . 42

3 File formats used to represent interaction frequencies 45
3.1 Introduction . 45
3.2 From reads to interactions 45
3.3 Formats to store pairwise interactions 46

3.3.1 validPairs . 46
3.3.2 Juicer . 47
3.3.3 DCIC Pairs . 48

3.4 Binned interactions . 49
3.4.1 COO . 49
3.4.2 Matrix format . 49
3.4.3 Bedgraph2 . 50
3.4.4 Juicer . 51
3.4.5 HiC-Pro . 51
3.4.6 HiCExplorer . 51
3.4.7 The .hic format 52
3.4.8 The cooler format 55

3.5 Comparing .hic and cooler formats 57
3.6 Closing remarks and future perspectives 58

II Aims of the study 59

III Summary of papers 61

IV Discussion 67

4 Main projects 69
4.1 MoDLE: Modeling of DNA Loop Extrusion 69
4.2 Why develop MoDLE? . 70
4.3 A brief history of MoDLE 70
4.4 Automating the build process of complex C++ applications 74
4.5 Applications of MoDLE . 77

4.5.1 Genome-wide optimization of loop extrusion pa-
rameters . 77

4.5.2 Local optimization of loop extrusion parameters . 79
4.5.3 Predicting the effects of Topologically Associating

Domain (TAD) border alteration 80
4.6 Current limitations of MoDLE 80
4.7 MoDLE: future perspectives 82
4.8 hictk: blazing fast toolkit to work with .hic and .cool files 83
4.9 Why develop hictk? . 83

viii

Contents

4.10 History of hictk . 85
4.11 The importance of documentation 85
4.12 The importance of correctness 86
4.13 Current limitations of hictk 87
4.14 hictk: future perspectives 87
4.15 Why analyzing cancer data? 88
4.16 Global deterioration of the 3D genome during cancer

progression . 89
4.17 Structural variation at the MYC locus is associated with

upregulation of known oncogenes 90
4.18 Structural variants complicate the analysis of Hi-C data . 91
4.19 Closing remarks . 92

5 Other projects 95
5.1 Side projects . 95
5.2 OSS contributions . 96
5.3 Bug report for 4DNucleome 97

6 Research reproducibility 101
6.1 Why is reproducibility important? 101
6.2 Reproducibility in the context of bioinformatics 101
6.3 My workflow for reproducible data analysis 102
6.4 Sharing data analysis pipelines 104
6.5 Data sharing . 104
6.6 Research reproducibility: closing remarks 104

Bibliography 107

Papers 134

I MoDLE: high-performance stochastic modeling of DNA
loop extrusion interactions 135

II hictk: blazing fast toolkit to work with .hic and .cool files 195

III Multi-level 3D genome organization deteriorates during
breast cancer progression 223

Appendices 295

A A slightly longer history of MoDLE 297

B Improving existing file formats used to store Hi-C interactions 303

C Components of a reproducible analysis pipeline 307

ix

List of Figures

1.1 Micro-C heatmap showing TADs. 5
1.2 Heatmaps showing loops, stripes and fountains. 7
1.3 Hi-C heatmap showing A/B compartments. 9
1.4 Diagram of cohesin’s structure. 14
1.5 Diagram of the “swing-and-clamp” loop extrusion model. 15
1.6 Diagram of V(D)J recombination aided by DNA loop extrusion. 17

2.1 Diagram of common steps shared by methods from the 3C family. 26
2.2 Diagram of the Pore-C protocol 31
2.3 Schematic of the GAM protocol. 33
2.4 Schematic of the SPRITE protocol. 35
2.5 Diagram of ChIA-Drop. 37
2.6 Diagram of DNA-FISH . 39
2.7 Diagram of chromatin tracing by FISH 40

3.1 Simplified diagram of the .hic specification. 53

4.1 Comparison between heatmaps generated by MoDLE v0.1.0 and
Micro-C. 71

4.2 Comparison between heatmaps generated by MoDLE v1.1.0 and
Micro-C. 73

4.3 MoDLE genome-wide parameter optimization. 77
4.4 Result of the local parameter optimization using MoDLE 79
4.5 MoDLE simulations used to predict the effects of deletions to

TAD borders at the HoxD locus. 80
4.6 Translocation and amplification events visualized as Hi-C interac-

tion matrices. 91

5.1 Warning notice on the 4DNucleome data portal. 98

xi

List of Acronyms

3C Chromosome Conformation Capture

4C Circular Chromosome Conformation Capture

5C Chromosome Conformation Capture Carbon Copy

ACP Architectural Chromatin Proteins

AID Auxin Inducible Degron

AML Acute Myeloid Leukemia

API Application Programming Interface

ASan Address Sanitizer

ATAC-seq Assay for Transposase-Accessible Chromatin using Sequencing

BED Browser Extensible Data

BEDPE BED Paired-End

bp base pairs

CARGO Chimeric Array of gRNA Oligonucleotides

CHi-C Capture Hi-C

ChIA-Drop Chromatin Interaction Analysis with Droplets

ChIP-seq Chromatin ImmunoPrecipitation Sequencing

CI Continuous Integration

CIGAR Compact Idiosyncratic Gapped Alignment Report

CLI Command Line Interface

CND Chromatin Nanodomains

CNV Copy Number Variation

CSR Compressed Sparse Row

CTCF CCCTC-binding Factor

CTs Chromosome Territories

xiii

List of Acronyms

dCas9 catalitically-dead Cas9

DDR DNA-Damage Response

DI Directionality Index

DPM DNA phosphate modified

DSB Double Strand Break

DSG disuccinimidyl glutarate

ecDNA extra chromosomal DNA

ERC European Research Council

FACS Fluorescence Activated Cell Sorting

FAIR Findability, Accessibility, Interoperability, and Reusability

FISH Fluorescence In Situ Hybridization

FUSE Filesystem in USErspace

GAM Genome Architechture Mapping

GEM Gel bead in Emulsion

GEO Gene Expression Omnibus

HDF Hierarchical Data Format

HDF5 Hierarchical Data Format 5

HiPore-C High-throughput Pore-C

ICE Iterative Correction and Eigenvector decomposition

ICR Imprinting Control Region

INM Inner Nuclear Membrane

IO Input-Output

IS Insulation Score

JVM Java Virtual Machine

LAD Lamina Associating Domain

LCR Locus Control Region

LEF Loop Extruding Factor

LINE Long Long Interspersed Nuclear Element

xiv

MCM Minichromosome Maintenance

MD Molecular Dynamics

MERFISH Multiplexed Error-Robust Fluorescence in situ Hybridization

MINA Multiplexed Imaging of Nucleome Architecture

MLE Maximum Likelihood Estimation

MoDLE Modeling of DNA Loop Extrusion

NCHG NonCentral HyperGeometric

NGS Next-Generation Sequencing

NHS N-hydroxy-succinimide

NPC Nuclear Pore Complex

ONM Outer Nuclear Membrane

ORCA Optical Reconstruction of Chromatin Architecture

OSS Open-Source Software

PC Principal Component

PCA Principal Component Analysis

PCR Polymerase Chain Reaction

PRNG Pseudo-Random Number Generator

PTM Post Translational Modifications

qPCR Quantitative PCR

RCMC Region Capture Micro-C

RD-SPRITE RNA & DNA SPRITE

RNAP RNA Polymerase

rRNA Ribosomal RNA

scHi-C single-cell Hi-C

scNanoHi-C single-cell Nanopore Hi-C

scSPRITE single-cell SPRITE

seqFISH+ Sequential Fluorescence in Situ Hybridization

sgRNA short guide RNA

xv

List of Acronyms

SMC Structural Maintenance of Chromosomes

SPRITE Split-Pool Recognition of Interactions by Tag Extension

SRA Sequence Read Archive

TAD Topologically Associating Domain

Trac-looping Transposases-mediated Analysis of Chromatin Looping

TSS Transcription Start Site

TTS Transcription Termination Site

UBSan Undefined Behavior Sanitizer

UiO Universitetet i Oslo

URI Uniform Resource Identifier

WGS Whole Genome Sequencing

xvi

Part I

Introduction

Chapter 1

Genome organization in three
dimensions

1.1 Introduction

This chapter introduces the core principles of three-dimensional (3D) genome
organization, including nucleosomes, TADs, loops, compartments, and chro-
mosome territories. The chapter also focuses on DNA loop extrusion, which
is responsible for the formation of TADs, loops, and a few other 3D features.
DNA loop extrusion is covered in depth, as it is a central aspect of Paper I.
Finally, the information presented in this chapter mainly pertains to chromatin
organization in metazoans, even though variants of most of the processes and
features discussed are present in most eukaryotes.

1.2 Chromatin organization

In eukaryotes, genomic DNA is tightly packaged with various types of proteins
to form chromatin. This packaging must be efficient, as considerable amounts
of DNA must fit in a relatively small nucleus. Yet, packaging must be well
organized and allow rapid local chromatin remodeling to facilitate processes such
as gene expression, DNA replication, recombination, and repair. To meet all
the above requirements, chromatin is organized into a hierarchical structure,
with different structures and processes being involved at different levels of the
hierarchy [1].

1.2.1 DNA and nucleosomes

At the nanometer scale, chromatin is a complex of DNA and proteins such as
histones and transcription factors [2]. Due to its phosphate backbone, DNA is
a negatively charged polymer and thus cannot easily fold on itself because of
electrostatic repulsive forces. To achieve the high level of compaction observed
in eukaryote nuclei, DNA is wrapped around wedge-shaped protein complexes
to form nucleosomes.

Each nucleosome consists of 145–147 base pairs (bp) of DNA wrapped around
a core histone octamer made of two of each of H2A, H2B, H3 and H4 proteins [2,
3]. Adjacent nucleosomes are connected through a DNA-linker of variable length
(20-50 bp), resulting in a bead-on-a-string like structure that constitutes the
fundamental structural unit of chromatin [2, 3]. The DNA-linker connecting
adjacent nucleosomes is often bound by linker histones, namely histon H1 and its
variants, forming chromatosomes. H1 histones have profound effects on chromatin

3

1. Genome organization in three dimensions

folding and accessibility, as their presence promotes chromatin compaction and
limits DNA accessibility to DNA-binding proteins [4].

Besides the canonical histone proteins, nucleosomes can include other
histone variants, which contribute to the structural and functional diversity
of chromatin [5]. For example, histone variant macro-H2A.1 has been shown
to replace H2A in regions subjected to X chromosome inactivation, where its
inclusion in nucleosomes inhibits transcription factor binding [5, 6].

Furthermore, histones are susceptible to Post Translational Modifications
(PTM), which affect histones’ affinity for DNA and other histones or proteins.
PTMs are involved in a myriad of functions, among which the recruitment of
ATP-dependent chromatin remodellers (see below), transcription promotion and
repression by facilitating or obstructing the recruitment of the transcriptional
machinery, and DNA repair, by marking regions slated for repair with
phosphorylated H2AX (γH2AX) [7–9].

On top of histone modifications, nucleosomes can be remodeled by Archi-
tectural Chromatin Proteinss (ACPs) [10], histone chaperones [11], and ATP-
dependent chromatin remodellers [12], all of which can affect how histones interact
with other molecules, including DNA and other histones. Histone chaperones
and ATP-dependent chromatin remodellers are responsible for incorporating
specific histone variants into the histone core [3, 5]. ATP-dependent chromatin
remodellers are also responsible for chromatin remodeling by sliding, displacing,
or removing nucleosomes. This can have profound impacts on transcription
activation and repression when remodeling occurs around the Transcription Start
Site (TSS) of genes [3, 12]. Polycomb proteins are an example of ACP and
play an important role in gene silencing during development and differentiation
through methylation of H3 and ubiquitination of histone H2A [10, 13].

Overall, nucleosomes are highly configurable DNA/protein complexes that
are crucial to chromatin folding in eukaryotes [3, 7].

Chromatin characterized by the bead-on-a-string structure, also known as 10
nm chromatin, organizes into higher-order structures. Since late 1970, it was
believed that 10 nm chromatin folds into 30 nm chromatin, as this is the structure
that was observed in vitro studies [14–18]. However, over the past 10 years,
a large number of studies tried and failed to image 30 nm chromatin in vivo,
suggesting that if 30 nm chromatin exists in living cells, it is not the most common
structure [19–24]. Furthermore, recent studies using live-imaging and single-cell
Hi-C (reviewed in Section 2.3.2 and Section 2.2.1.8, respectively) to visualize
individual nuclei revealed that chromatin structure is highly dynamic, and its
structure varies within and among nuclei, suggesting that chromatin cannot be
tightly folded in a single, static structure [25, 26]. In recent years, Ricci et al. [27]
showed that a variable number of nucleosomes transiently interact in vivo,
forming nucleosome clutches, which are nucleosome-rich regions interspersed with
nucleosome-poor regions. The existence of nucleosome clutches is also supported
by Micro-C data, which identified a large number of short stretches of nucleosomes
organized in a zig-zag orientation [28]. Clutches have been proposed to organize
in higher order structures named Chromatin Nanodomainss (CNDs) [29], whose
formation is likely driven by nucleosome-nucleosome interactions [29].

4

Chromatin organization

Overall, while the bead-on-a-string is widely recognized as a model of
chromatin, more studies are needed to shed light on how individual nucleosomes
fold into higher-order structures.

1.2.2 Topologically Associating Domains

Figure 1.1: Micro-C heatmap showing TADs over a 13 Mbp region from the
human genome. TADs within TAD T7 are highlighted with square braces.
Individual pixels in the heatmap show the interaction frequency between a pair
of genomic intervals (also known as bins). Pixels in dark shades of red represent
pairs of bins characterized by high interaction frequencies (see color scale on the
top-right).
Heatmap generated from dataset 4DNFI9GMP2J8 at 25 kbp resolution [28, 30].

Topologically Associating Domains (TADs) are genomic regions in the range of
100 kbp to 5 Mbp that exhibit preferential self-interactions [31]. They were first
described by Dixon et al. [32] and Nora et al. [33] by analyzing high-resolution
Hi-C and 5C maps (see Sections 2.2.1.3 and 2.2.1.4). Since then, TADs have also
been observed using other methods, such as GAM, SPRITE and ChIA-Drop
(reviewed in Sections 2.2.2.1, 2.2.2.2 and 2.2.2.4). TADs appear like squares
along the Hi-C matrix diagonal (often nested within one another, see Figure 1.1)
and are observed in the genome of many eukaryotes, including animals, flies,
nematodes, and fungi [34, 35]. There is convincing evidence that most TAD
structures observed in Hi-C data result from a process known as DNA loop
extrusion (reviewed in Section 1.3 and Paper I). Surprisingly, TADs are usually
not observable in individual cells [26], but rather become apparent when looking
at an ensemble of cells. This can be explained by a preference for loop formation

5

1. Genome organization in three dimensions

within TADs rather than between TADs that becomes more obvious when
aggregating multiple cells.

Despite being one of the most studied chromatin structures, there is no
unique formal definition of TAD. Instead, there are many operative definitions
of TADs which have historically been introduced as part of the development
of new software for TAD-calling [36]. Dixon et al. [32] were among the first
to provide an operative definition of TADs through the Directionality Index
(DI). Given a genomic region, the DI quantifies the degree of interaction with
upstream and downstream regions. Genomic regions inside TADs usually exhibit
a DI of approximately zero, as they interact with equal frequencies with up-
and downstream regions. When approaching TAD boundaries the DI will be
different from zero, as genomic regions inside and close to the beginning of
TADs show preferential interactions with downstream regions, while regions
inside TADs but close to the end exhibit preferential interactions with upstream
regions. A few years later, Crane et al. [37] introduced a new definition of
TADs based on Insulation Score (IS) (also known as diamond score). Insulation
scores are computed by sliding a diamond-shaped window along the Hi-C matrix
diagonal and aggregating interactions. When inside TADs, IS will be large, as
the sliding diamond overlaps regions with intra-TAD interactions. Conversely,
at TAD boundaries, IS will be small, as in this case the sliding diamond overlaps
inter-TAD interactions. Rao et al. [38] proposed a heuristic method for TAD-
calling, named Arrowhead. Arrowhead applies a transformation to Hi-C matrices,
after which TADs appear as arrowhead-shaped patterns, with the arrow’s head
pointing to the left corner of TADs. Arrowheads in the transformed matrix, and
thus TAD boundaries, are identified using a dynamic programming approach.

All TAD definitions discussed so far ignore the nested nature of TADs, where
smaller sub-TADs are often found inside larger TADs. In 2015, Weinreb et al. [39]
published TADtree, the first method capable of identifying hierarchies of TADs.
TADtree models TADs from different resolutions as TAD forests and then
finds the optimal forest by maximizing an objective function using dynamic
programming.

Since the first TAD discovery, a large number of TAD-callers have been
developed. As a comprehensive review of all TAD-calling methods is outside
the scope of this thesis, for more details, readers are referred to the following
reviews on the topic [40–42].

A controversial topic is the functional role of TADs. TADs have been observed
across many eukaryotic species, suggesting that they are an important feature of
chromatin folding [34, 35]. Initial studies investigating the functional role of TADs
reported that enhancers preferentially interacted with promoters located within
the same TAD, suggesting that TADs may act as regulatory domains for gene
expression, facilitating enhancer-promoter interactions within the same TAD and
obstructing enhancer-promoter interactions among different TADs [43]. Thus,
TADs have been proposed to be units for DNA replication, V(D)J recombination,
and repair (reviewed in Section 1.3.2). This idea was further substantiated by
several other studies showing how perturbing specific TADs had a significant
and specific impact on tissue and disease development [44]. However, recent

6

Chromatin organization

studies introducing perturbation to TADs and DNA loop extrusion genome-wide
suggested a more nuanced view. Nora et al. [45] show that while rapid CCCTC-
binding Factor (CTCF) degradation through Auxin Inducible Degron (AID) in
mice leads to a near-complete loss of TADs, it only had relatively mild effects
on gene expression regulation, causing the misregulation of 370 genes after 1
day of AID induction and 4996 genes 4 days after induction. Similar results
were reported by Hsieh et al. [46], where the authors showed loss that acute loss
of CTCF, cohesin, WAPL, or YY1 had minimal effects on promoter-enhancer
interactions. Altogether, these results suggest that TADs may not be required
for the maintenance of promoter-enhancer interactions, but rather for their
establishment right after mitotic exit. Different studies assessed the effects of
adding one or more CTCF binding sites between promoter and enhancers that
are known to be interacting and showed that the reduction in gene expression
was significant but not complete. For a more thorough overview of perturbations
to DNA loop extrusion refer to the review by de Wit et al. [47].

In conclusion, despite their prevalence, TADs are poorly defined features
of the chromatin 3D structure. Despite this, TADs have been shown to be
implicated in various biological processes, such as gene expression regulation,
DNA repair, and somatic recombination.

1.2.3 Extrusion loops, stripes, and fountains

Figure 1.2: Micro-C heatmap showing stripes and loops over a 1 Mbp region
from the human genome (left). Hi-C heatmap showing fountains over a 5 Mbp
region from the mouse genome (right).
Left heatmap was generated from dataset 4DNFI9GMP2J8 at 5 kbp resolution [28, 30].

Right heatmap was generated from dataset GSE199059 at 25 kbp resolution [48, 49].

7

1. Genome organization in three dimensions

TADs are not the only feature visible at the kilo- to mega-base scale in Hi-C
data, as at this scale we also find extrusion loops, stripes, and fountains.

Loops, often also known as dots, represent a pair of loci interacting at a high
frequency. Most of the loops observed in Hi-C data arise as a consequence of
loop extrusion bridging a pair of convergent CTCF binding sites (see Section 1.3
for more details). However, thanks to the advent of Micro-C and more recently
Region Capture Micro-C (RCMC), we now know that loops can also arise from
stable enhancer-promoter and promoter-promoter interactions [28, 50, 51]. Stipes
or lines, are another pattern that arises due to cohesin interacting with CTCF
during loop extrusion.

More specifically, stripes form when cohesin extrusion is stalled only on one
side due to collisions with a specific CTCF site that is bound by CTCF, but is
free to extrude on the other side. When this is the case, genomic regions that are
adjacent in 1D space are progressively brought together with the CTCF site that
is stalling cohesin, thus forming a stripe enriched of interactions. Similarly to
what has been described for loops, Hsieh et al. [50] show that a large number of
small-scale stripes (10–50 kbp) link promoter-promoter and enhancer-promoter
sites, with weak loops forming at intersections between stripes.

Another pattern that has recently been described in C. elegans, Zebrafish
and mouse embryonic stem cells are extrusion fountains (also known as plumes
or jets) [49, 52–55]. Fountains appear as “patterns of contacts that emanate
from a single genomic locus and broaden with distance from the diagonal”, and
have been hypothesized to be sites of preferential cohesin load [55].

In conclusion, DNA loop extrusion (reviewed in Section 1.3) seems involved
in the formation of several 3D structures characterized by distinct appearances in
the Hi-C matrix, namely loops, stripes, and fountains. These structures form as
a consequence of either cohesin stalling or preferential loading at given genomic
loci.

8

Chromatin organization

1.2.4 Compartments

Figure 1.3: Hi-C heatmap showing A/B compartments over a 35 Mbp region from
the human genome. Alternating between A/B compartments is highlighted by
the barplot on top of the heatmap, showing the first Principal Component (PC)
computed as outlined in Section 1.2.4. The barplot shows A and B compartment
domains in red and blue, respectively. Regions in the heatmap corresponding
to A/B compartments exhibit the characteristic checkerboard pattern, showing
preferential interactions between compartment domains of the same type.
Heatmap generated from dataset ENCFF447ERX at 50 kbp resolution [56].

Chromatin compartments were initially described by Lieberman-Aiden et al. [57]
as genomic domains forming a checkerboard pattern on the Hi-C map.

Compartments are identified using Principal Component Analysis (PCA) of
normalized Hi-C contact matrices. First, the Hi-C matrix (i.e., the observed
matrix) is normalized by computing the ratio with the expected matrix. Next,
the Pearson correlation of all pairs of rows and columns of the observed/expected
matrix is computed. Finally, the first Principal Component (PC) is computed
by PCA, and regions with positive and negative signs are assigned to A and B
compartments, respectively [57–59]. Note that it is often required to re-orient
the PC, such that the PC vector is positively correlated with GC content, gene
content, or any other suitable metric that is associated with open chromatin [59].

The method described above is the original method to call A/B compartments
introduced by Lieberman-Aiden et al. [57], however, over the years this method
has been modified to improve accuracy and computational performance to allow
computing A/B compartments at finer resolutions [60–63]. However, almost
every modern approach still relies on the computation of PCA to assign genomic
bins to the A or B compartment, the main differences reside in the numerical
method used to compute the PCA and in the preprocessing and normalization
steps that preceded PCA computation [59]. One exception is CscoreTool,
which instead frames the problem as a Maximum Likelihood Estimation (MLE)

9

1. Genome organization in three dimensions

optimization problem, computing the probability that a genomic bin belongs to
the A compartment [64].

Compartments are associated with different chromatin states, with A and B
compartments being associated with open and closed chromatin, respectively.
The first studies reported that compartment intervals, that is stretches of
bins annotated with the same compartment, were in the order of 1 to several
megabasepairs [65]. It later became clear that these numbers were for the most
part incorrect due to resolution and sequencing depth limits.

A recent study by Harris et al. [66] reported that “chromatin alternates
between A and B compartments at kilobase scale”. These findings were made
possible by algorithmic advances in PCA computation as well as an ultra-
deep Hi-C map, with over 33 billion interactions. The authors report that
the median compartment interval is only 12.5 kbp, and that virtually all
active enhancers and promoters localize in the A compartment. Furthermore,
several genes exhibit discordant compartmentalization, whereby gene TSS and
Transcription Termination Site (TTS) belong to different compartments. This
behavior becomes more common the longer a gene is. Goel et al. [51] decided
to take a different approach, and instead of generating an ultra-deep, genome-
wide Hi-C map, they generated an ultra-deep Micro-C map over three small
regions of interests using RCMC (reviewed in Section 2.2.1.7). The authors
describe localized regions of highly focal and nested interactions that give rise
to a checkerboard pattern at a very fine scale. They name these domains
microcompartments, as they exhibit properties similar to A/B compartments,
but at a much finer scale. Microcompartments have been found to often connect
enhancers and promoters, and their presence is independent of loop extrusion
and transcription.

One of the critiques to the two-state A/B compartment model is that two
states may be inadequate to recapitulate chromatin’s compartmental behavior.
For this reason, several studies introduced the concept of subcompartments. The
first of such studies was published in 2011 by Yaffe et al. [67], where the authors
used k-means clustering to assign genomic bins to three different states.

In 2014, thanks to the improvements introduced by in-situ Hi-C, Rao et al. [38]
used unsupervised clustering to classify chromatin across 6 different subcompart-
ments. Over the last decade, several other approaches have been proposed to
identify subcompartments. These tools can be broadly classified into three cate-
gories: tools that annotate subcompartments de-novo from inter-chromosomal
interactions, such as GHMM, SCI and SNIPER [38, 68, 69]; tools that do de-novo
annotation from intrachromosomal interactions, namely Calder, dcHiC, and MO-
SAIC [70–72]; tools that predict subcompartment labels from existing annotation
based on epigenetic marks, for example, PyMEGABASE and SCI-DNN [68, 73].
Overall, most tools identify between 4 and 9 distinct subcompartment types [59].
Calder’s authors find “that eight subcompartments were sufficient to capture
significant changes of [these] histone modifications in all cell lines”. The authors
also report that subcompartments A.1.1, A.1.2, and A.2.1 are associated with
active transcription marks, while repressive marks are more common in B.1.1
and B.1.2 subcompartments [70].

10

Chromatin organization

In conclusion, compartments are a layer of chromatin organization distinct
from TADs whose mechanism of formation possibly counteracts that of TADs [74].
Compartment domains were originally thought to be much larger than TADs,
however, recent studies using ultra-deep Hi-C maps revealed that the median
compartment domain size is in reality much smaller than TADs [51, 66].
Both compartments and subcompartments types show distinct enrichments
and depletions of epigenetic markers associated with active, inactive, and
heterochromatic chromatin, thus making compartments and subcompartments a
good proxy for chromatin states.

1.2.5 TAD cliques

TAD cliques are defined as a “subset of k TADs (with k ≥ 3) which are fully
connected - that is, which all interact pair-wise in the Hi-C data” [75, 76].

To identify TAD cliques, Paulsen et al. [76] start by identifying pairs of
TADs whose interactions in 3D space are statistically significant using the
NonCentral HyperGeometric (NCHG) distribution. Next, TADs are represented
as a uni-directed graph, where TADs with statistically significant interactions are
connected by an edge. TAD cliques are then identified using the Bron–Kerbosch
algorithm [76, 77] as subsets of fully connected nodes in the TAD graph. The
largest clique in which a TAD participates is known as the maximal clique size
for the given TAD, or more colloquially as the TAD clique size.

TAD cliques have been shown to be enriched in B compartments and to
exhibit overall low levels of gene expression. Furthermore, the larger a TAD
clique is, the greater the overlap with B compartments and Lamina Associating
Domains (LADs), suggesting that TAD cliques may stabilize heterochromatin
at the nuclear periphery [76, 78] and Paper III.

Paulsen et al. followed TAD cliques during adipose cell differentiation, and
found that TAD cliques sizes grow and shrink during differentiation. The authors
also show that gene expression changes as expected following changes in clique
sizes. That is clique growth is associated with transcription repression while clique
shrinkage is associated with an increase in transcription. Ali et al. [78] found
an enrichment of Long Long Interspersed Nuclear Element (LINE) transposons
in TADs taking part to cliques compared to TADs not part of cliques. In the
same study, the authors reported a depletion in convergent CTCF binding sites
in TADs part of TAD cliques. CTCF depletion was positively correlated with
TAD clique size.

TAD cliques have initially been described in human and mouse [76, 78, 79]
and Paper III, but have later been identified in several other species, such as
Drosophila [80], cotton [81] and giant panda [82], suggesting that TAD cliques
are an emerging, wide-spread level of chromatin organization.

1.2.6 Chromosome territories

Chromosome Territories (CTs) were the first 3D feature of the genome to be
described, with their first description by Carl Rabl [83] dating back to 1885.

11

1. Genome organization in three dimensions

After being abandoned for several decades, the concept of CTs was brought back
in the late 1980s and early 1990s, when CTs were directly visualized through
chromosome painting [84].

CTs are defined as discrete territories in the cell nucleus that are occupied
by individual chromosomes during interphase. In 2000, Sun et al. [85] showed
that chromosomes assume nonrandom radial nuclear positions in approximately
spherical nuclei, with larger chromosomes preferentially located at the nuclear
periphery and smaller chromosomes preferentially located at the nuclear core.
For flat-ellipsoid nuclei, chromosome radial positioning seems to instead be driven
by gene content, with gene-rich chromosomes located towards the nuclear core
while gene-poor chromosomes are preferentially located closer to the nuclear
periphery [86] Furthermore, different tissues have been shown to exhibit different
CTs [87].

Neighbor chromosome territories have been shown to intermingle, even though
the extent of intermingling varies among studies, with 1–20% of the nuclear
volume consisting of intermingled sequences from different chromosomes [88, 89].
Strikingly, chromosomal rearrangements appear to correlate with the degree of
chromosome intermingling [89]. Chromosomal regions of intermingling have also
been found to be enriched with RNA Polymerase (RNAP)II. This enrichment
was shown to be resistant to temporary perturbations to transcription. However,
intermingling regions were found to be enriched in both active and repressive
marks [90]. For a thorough review of the current state of CTs, readers are
referred to the review by Szczepińska et al. [91]

Taken together, these findings describe CTs as important features of the
3D genome that contribute to chromatin folding at a level above TADs and
chromatin compartments. CTs have an important role in determining the radial
positioning of chromosomes and genes in the nucleus. Furthermore, chromosome
intermingling has been described to have profound effects on the frequency of
translocations and gene expression regulation.

1.2.7 Closing remarks

In this section, I introduced some of the most prominent structures involved in
chromatin folding as viewed using Hi-C.

At the 150–200 bp scale, chromatin is folded into nucleosomes. Recent
studies [27, 29] suggest that groups of nucleosomes co-localize in 3D space
forming nucleosome clutches and CND. Next, at the 100 kbp–5 Mbp scale,
chromatin folds into TADs [32, 33], which are for the most part a result of a
process known as DNA loop extrusion. TADs are often found nested within
one another. Furthermore, in Hi-C data, TAD boundaries are often enriched
by other patterns, such as stripes and dots, which are a consequence of the
partial or complete stall of DNA loop extrusion [28, 50]. Another level of
chromatin folding are A/B compartments and subcompartments [38, 57]. For
a long time, it was believed that chromatin compartments occurred at a scale
significantly larger than TADs. However, recent evidence suggests that A/B
compartments are alternating at a much finer scale than what was previously

12

Chromatin organization

thought [66]. Paulsen et al. [76] showed that groups of TADs can organize
into TAD cliques, forming domains that may help stabilize heterochromatin at
the nuclear periphery. At the chromosome level, chromosomes are organized
into chromosome territories, which are defined as discrete territories in the cell
nucleus that are occupied by individual chromosomes during interphase [84].

In this thesis, I am focusing on DNA-DNA interactions, as these kinds of
interactions have been at the core of my research. However, as it is well known,
the nucleus is not only filled with DNA but also with complexes and structures
made of proteins and lipids, some of which play a crucial role in chromatin
folding.

The nucleus is delimited by the nuclear envelope, which is a double layer
membrane separating the nucleus from the cytoplasm in eukaryotes. The
nuclear envelope consists of two membranes, an Inner Nuclear Membrane
(INM) and Outer Nuclear Membrane (ONM). The INM and ONM are fused in
correspondence of Nuclear Pore Complexes (NPCs), which are protein complexes
forming channels across the nuclear envelope, and are responsible for regulating
the nucleocytoplasmic transport. Metazoans have an additional structure
connecting the nuclear envelope to the peripheral chromatin named nuclear
lamina. The nuclear lamina is a meshwork of A- and B-type lamins, and is
involved in numerous processes, including DNA replication, transcription, and
chromatin organization. As dissecting the role and function of these structures
is outside the scope of this thesis, readers are referred to the following articles
reviewing the nuclear envelope [92, 93], nuclear lamina [94–96], and NPC [97,
98].

Moving to the interior of the nucleus, besides DNA, RNA, and proteins, the
nucleus contains several different membrane-less structures known as nuclear
bodies. Nuclear bodies cover numerous different functions. For example, the
nucleolus is the main responsible for Ribosomal RNA (rRNA) synthesis and
ribosome assembly, while Cajal bodies are involved in several processes related
to RNA processing. While several of the nuclear bodies have profound effects on
chromatin folding, their description as well as the description of the resulting
protein-DNA interactions is outside the scope of this thesis. For this reason,
readers are referred to the following reviews on the topic [99–106].

13

1. Genome organization in three dimensions

1.3 DNA loop extrusion

DNA loop extrusion is established as one of the important processes involved in
chromatin folding in interphase nuclei of metazoans and other eukaryotes. In
metazoans, loop extrusion mediated by cohesin is responsible for the formation
of TADs (reviewed in Section 1.2.2), which have been implied to play a role in
several biological processes, such as gene expression, DNA repair, and replication.
In this section, I will review the current state of the art on the process of DNA
loop extrusion and relate loop extrusions to other biological processes. The
section ends with a review of available in-silico models simulating loop extrusion.
I will focus on DNA loop extrusion by cohesin in metazoans during interphase,
even though loop extrusion is also carried out by condensin I and condensin II
on mitotic chromosomes in other organisms.

1.3.1 Mechanism and key players

Figure 1.4: Diagram of co-
hesin’s structure.
Taken from Figure 2 from
New insights into genome
folding by loop extrusion
from inducible degron tech-
nologies [47].
Reproduced with permission
from Springer Nature.

The process of DNA loop extrusion, as it is
currently understood, involves two key players,
namely cohesin and CCCTC-binding Factor
(CTCF). Cohesin is a protein complex belonging
to the Structural Maintenance of Chromosomes
(SMC) protein family and is the main responsible
for the formation of DNA loops in interphase
nuclei. Cohesin’s core complex consists of
proteins SMC1, SMC3 and RAD21 (SCC1) and
STAG1/2 (SCC3) in humans (see Figure 1.4).
Furthermore, loop-extruding cohesin associates
with NIPBL/MAU2 (SCC2/SCC4) complex or
the PDS5A/B protein. CTCF is a transcription
factor implicated in numerous processes, such
as transcriptional regulation, insulation, V(D)J
recombination, and chromatin folding. The
CTCF protein consists of three domains: an
N-terminal domain, which is used to interact
with cohesin, a C-terminal domain and a central
domain with 11 zinc fingers, which is used to
recognize CTCF’s binding site [107, 108].

At its core, loop extrusion by cohesin consists
of cohesin being loaded onto DNA and growing a
loop of DNA until cohesin is released, or until one
or more extrusion barriers (such as CTCF) are
met, in which case loop extrusion is stalled. This
process of progressive loop extrusion continues
throughout interphase to continuously fold chromatin into TADs.

The mechanism through which cohesin extrudes DNA has been debated
for a long time. First, the “tethered-inchworm” model [109] was proposed,

14

DNA loop extrusion

where cohesin was hypothesized to walk along the DNA using its ATPase heads.
This model was followed by the “pumping” model [110], which proposed that
DNA is initially bound to cohesin’s hinge, then translocated towards SCC1
by conformation changes induced by ATPase activity. Next, the “scrunching”
model [111] was proposed, where cohesin extrudes DNA by alternating between
straight and bent coiled-coil conformation. More recently the “swing-and-clamp”
model was proposed by Bauer et al. [112]. This model, which is depicted
in Figure 1.5, starts with DNA bound to the hinge of cohesin-NIPBL complex,
where NIPBL is also associated with cohesin’s hinge. Next, cohesin’s coils
spontaneously align and fold, translocating DNA bound to the hinge to the
SMC3 head through clamping by NIPBL. In this conformation, when ATP is
present at cohesin’s ATPase heads, ATPase engagement forces the hinge away
from SMC3, while DNA is kept in proximity of SMC3 by NIPBL clamping.
Finally, ATP hydrolysis causes the ATPase heads to disengage, and the cohesin-
NIPBL complex is brought back to its initial state, with a new DNA segment
bound to cohesin’s head.

Figure 1.5: Diagram of the “swing-and-clamp” loop extrusion model. Figure 7F
from Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism
- 10.1016/j.cell.2021.09.016 [112].
Figure licensed under the CC BY-NC-ND 4.0 license.

The process of DNA loop extrusion, as it is currently understood, develops
as follows. Loop extrusion begins with cohesin being loaded onto DNA in a
non-sequence-specific way that is not currently understood, with preferential
loading onto accessible chromatin, especially at enhancer sites [113]. This requires
cohesin to be associated with NIPBL [114, 115]. Cohesin is unloaded from DNA
through interactions with WAPL and WAPL-PDS5 [116–118]. NIPBL is not
only required for cohesin loading onto DNA but also for active loop extrusion,

15

1. Genome organization in three dimensions

as cohesin’s ATPase activity is observed only in the presence of NIPBL [119,
120]. Cohesin processivity can be affected by several factors. On the one hand,
cohesin can be acetylated by ESCO1/2 [121] and deacetylated by HDAC8 [122].
NIPBL competes with PDS5A/B for cohesin binding, and when cohesin is
acetylated, binding to PDS5A/B is favored. On the other hand, when cohesin
is in its deacetylated form, binding with NIPBL is favored [123]. Given that
cohesin ATPase activity is observed only when cohesin is bound to NIPBL,
acetylated cohesin bound to PDS5A/B cannot actively extrude DNA, and thus
loops are stabilized. Furthermore, acetylated cohesin appears to be protected
from unloading by WAPL-PDS5, thus increasing the lifetime of already stable
loops [123].

Loop extrusion can be stalled by interactions with several molecules acting
as molecular barriers. First and foremost, loop extrusion can be stalled by
collisions with the CTCF protein [124, 125]. CTCF recognizes and binds a
non-palindromic DNA motif. Thus, motif direction determines the positioning
of CTCF’s N-terminus. Crucially, cohesin is unable to extrude through CTCF
when its N-terminus is facing against cohesin’s extrusion direction [126] It has
been shown that this is due to molecular interactions between cohesin and
RAD21/STAG2 and CTCF’s N-terminus [108, 126].

In recent years, several studies showed that loop extrusion can be stalled, or
at least slowed down by Minichromosome Maintenance (MCM) complex and by
transcribing RNAP [113, 127, 128]. This behavior is at odds with the observation
that loop extruding cohesin can bypass obstacles as large as 200 nm [129]. The
two findings can be reconciled by hypothesizing that what stalls cohesin is not
molecule size, but rather specific interactions between cohesin and molecules
acting as loop extrusion barriers. Finally, a recent study challenged the view that
CTCF is a static barrier to loop extrusion by showing that CTCF’s blocking
ability depends on DNA tension, and is greater when DNA tension is high [130].

Overall, loop extrusion by cohesin establishes itself as a highly dynamic
process that continuously compacts DNA of interphase nuclei in metazoans. The
fact that current simulations show good agreement with Hi-C experiments only
in selected regions suggests that loop extrusion, as is currently understood, is
not the only process involved in the formation of loops, stripes and TADs [131,
132].

1.3.2 How does loop extrusion relate to other processes?

This section focuses on the functional role of DNA loop extrusion and how this
relates to other biological processes.

Shortly after the discovery of TADs [32, 33], it was hypothesized that their
main function, and thus the main function of interphase loop extrusion, was
that of constraining enhancer-promoter interactions, facilitating interactions
of elements within the same TAD and obstructing all other interactions. This
hypothesis was supported by evidence that enhancer-promoter interactions are
indeed much more frequent within TADs than between TADs [133]. However, this
model was quickly put into discussion by several studies showing how depleting

16

DNA loop extrusion

cohesin or CTCF had minimal impact on gene expression [45, 125, 134, 135].
Based on this evidence, the model was revised such that loop extrusion is mostly
important to establish enhancer-promoter interactions during differentiation or
in response to stimuli, but that once these interactions are established, loop
extrusion is no longer necessary [136]. It has also been proposed that the impact
of loop extrusion on expression levels may depend on several other factors, such
as individual gene susceptibility to enhancer-mediated activation, the linear
distance between enhancers and the genes they regulate, and the proximity of
gene promoters to TAD borders [136].

In conclusion, our current understanding of DNA loop extrusion in relation
to gene expression is that loop extrusion may not be necessary for the short-
term maintenance of enhancer-promoter interactions, but it is likely crucial to
establish and maintain them in the long term. The relationship between DNA
loop extrusion and gene expression is analyzed in more detail in this review by
Karpinska et al. [136].

Figure 1.6: Diagram of V(D)J recombination aided by DNA loop extrusion.
Figure 2b from How DNA loop extrusion mediated by cohesin enables V(D)J
recombination [137].
Figure licensed under the CC BY NC ND 4.0 DEED license.

In recent years, loop extrusion was found to be implicated in V(D)J
recombination in pro-B cells.

V(D)J recombination is a type of somatic recombination that occurs during
B cell differentiation and is responsible for the highly variable repertoire of
antibodies produced by the vertebrate immune system [138]. In this context,
loop extrusion has been thoroughly studied at the mouse immunoglobulin heavy-
chain locus Igh [139–144].

Figure 1.6 shows a diagram of how loop extrusion is hypothesized to aid
V(D)J recombination. The Igh locus is fairly large, measuring 2.75 Mbp, and
consists of 13 DH segments, 4 JH segments, and 113 VH segments, with over
90% of its size due to VH segments. As shown in Figure 1.6, this region harbors
11 CTCF sites at the 3′-end, all pointing towards the 5′-end, as well as 125
sites interspersed in the Igh locus, all of which are pointing towards the 3′-
end. Due to the considerable length of the Igh locus, recombination involving
different segments from this locus requires bridging over long distances. Several
studies showed that cohesin and loop extrusion are likely at play here [139–144].

17

1. Genome organization in three dimensions

To generate a highly diverse repertoire of antibodies, it is crucial that all VH

segments are allowed to participate in the V(D)J recombination. Loop extrusion
mediated by cohesin can facilitate this, as it can be loaded anywhere on the
Igh locus, and can bridge one of the CTCF sites near the recombination center
(RC) to any of the CTCF sites interspersed in the Igh locus, depending on where
cohesin is loaded and on which CTCF sites are bound by CTCF at a given
time [137].

Together, these observations suggest that DNA loop extrusion is one of the
crucial processes required for the proper functioning of the vertebrate immune
system.

Another process where DNA loop extrusion is proving to be crucial is that
of DNA Double Strand Break (DSB) repair.

DNA DSBs can be caused by several endogenous and exogenous factors,
such as radiation, drugs, transcription and replication stress [145–148]. DNA
DSBs formation induces the assembly of DNA-Damage Response (DDR) foci
in correspondence with damaged sites, which are responsible for detecting and
repairing DNA DSBs [149]. Part of DDR’s damage response involves recruiting
the ATM kinase to mark the damaged region with γH2AX, which eventually
leads to the recruitment of other proteins involved in the DDR mechanism, such
as 53BP1 and MDC1 [150]. It is crucial that DDR foci are assembled as rapidly
as possible to reduce the chance that the DNA ends resulting from a DSB event
drift away, which could render the DSB repair impossible.

Arnould et al. [151] show that TADs produced by DNA loop extrusion
mediated by cohesin are functional units of the DNA damage response, and
play an important role in establishing γH2AX-53BP1 domains around the DSB
site. The authors show that upon DSB damage, cohesin is recruited by the
ATM kinase on both sides of the DSB site to carry out divergent, one-sided
loop extrusion, reeling DNA towards the damage site. This enables the ATM
kinase to phosphorylate H2AX nucleosomes over megabase-sized domains within
10–30 minutes. Crucially, phosphorylation spread is limited to the TAD where
the DSB occurred. Finally, ATM can also phosphorylate cohesin, leading to an
increase in loop strength, suggesting that cohesin phosphorylation may modify
properties of the cohesin complex, such as extrusion speed and DNA binding
stability.

In summary, DNA loop extrusion facilitates DNA DSB repair by promoting
rapid phosphorylation of H2AX-containing nucleosomes surrounding the DSB
site. This phosphorylation is crucial for the timely establishment of the DDR
foci.

1.3.3 In-silico models of DNA loop extrusion

Given that Paper I presents MoDLE (Modeling of DNA Loop Extrusion), a
high-performance stochastic model of DNA loop extrusion, it felt appropriate
to provide an overview of efforts preceding and following MoDLE. One key
distinction between MoDLE and most of the models introduced in this section, is

18

DNA loop extrusion

that MoDLE simulates loop extrusion as a stochastic process, while most other
models utilize different types of Molecular Dynamics (MD) simulations.

A mechanism for chromatin organization by DNA loop extrusion was initially
proposed by Alipour et al.[152] in 2012. Alipour et al. used lattice simulations
modeling a single loop of DNA, where a bi-directional loop extruder was
repeatedly loaded onto the DNA. Their simulation showed that this configuration
was sufficient to generate large loop domains as long as Loop Extruding Factor
(LEF) processivity was sufficiently high (i.e., as long as LEFs were given enough
time to traverse loop domains before being released). In the same paper,
the authors propose that the formation of several loop domains along whole
chromosomes may be regulated by molecular barriers that act as boundaries
to loop domains. These barriers could either halt loop extrusion or promote
the dissociation of LEFs. It should be noted that Alipour et al. proposed this
mechanism for the compaction of mitotic chromosomes, however many of the
properties of the proposed mechanism have later been shown to also apply to
DNA loop extrusion by cohesin on interphase chromosomes.

Between 2013 and 2015, two studies simulated loop extrusion in the context
of mitotic chromosomes [153, 154].

However, it was not until late fall 2015 that the first MD simulations
of interphase DNA loop extrusion became available. On July 27, 2015,
Sanborn et al. [155] submitted an article titled “Chromatin extrusion explains
key features of loop and domain formation in wild-type and engineered genomes”
to PNAS. The article was published on September 17, 2015. Shortly after, on
August 14, 2015, Fudenberg et al. [131] published a preprint titled “Formation of
Chromosomal Domains by Loop Extrusion”, which was later published on
Cell reports on May 31, 2016. The two studies introduce similar models
for DNA loop extrusion (described below) and conclude that a model based
on DNA loop extrusion can recapitulate known features of Hi-C matrices,
such as the observed contact probability function (P (s) ∝ s−γ), interaction
enrichment within TADs, and loop formation at convergent CTCF binding
sites. However, while Sanborn et al. find that the loop extrusion model can
recapitulate experimental interaction probability curves P (s), regardless of
simulation parameters, Fudenberg et al. report that the level of agreement with
experimental evidence does depend on the parameter choice. Another point of
contrast between the two studies is the level of agreement between simulated
and experimental Hi-C maps: Sanborn et al. report that the outcome of all
13 genomic engineering experiments were successfully predicted by simulations,
while Fudenberg et al. find that the level of agreement between simulated
and experimental Hi-C matrices varies depending on the region that is being
compared.

Fudenberg et al. [131] simulate loop extrusion over a 10 Mbp region subject
to Langevin dynamics. The simulation involves binding and release of LEFs to
and from DNA. LEFs are simulated as particles that symmetrically translocate
along the genome, forming bonds between the two monomers at the base of DNA
loops. As LEFs translocate along the DNA, bonds between monomers at the
base of the loop are broken and re-formed such that the bond always connects

19

1. Genome organization in three dimensions

the two monomers at the base of DNA loops. Extrusion barriers are placed at
fixed locations and can halt loop extrusion when correctly oriented, similar to
CTCF’s behavior in vivo. Furthermore, LEFs are not able to bypass each other,
resulting in stalling of loop extrusion.

Sanborn et al. [155] model DNA molecules using Langevin dynamics as
homopolymers where each monomer represents 1 kbp of DNA. The loop extrusion
model proposed by the authors is very similar to that of Fudenberg et al.
The main difference between the two models is that in Sanborn’s model,
collisions between LEFs cause one of the LEFs to dissociate from DNA, while
in Fudenberg’s model LEF collision simply cause loop extrusion to stall until
one of the LEFs is released. Fudenberg et al. use their model to predict the
effects of cohesin and CTCF depletion and find good agreement between in-silico
and experimental heatmaps. In contrast, Sanborn et al. applied their model to
predict the effect of local perturbation of CTCF binding sites by genome editing
and found that their model could recapitulate the impact of the genome edits
on the resulting Hi-C matrix.

The models proposed by Fudenberg et al. [131] and Sanborn et al. [155]
were used to simulate loop extrusion by several other studies. For example,
in September 2017, Schwarzer et al. [135] used Fudenberg’s model to simulate
NIPBL depletion and find good agreement with experimental data. Shortly
after, on October 2017, Rao et al. [134] extended Sanborn’s model by using a
block copolymer instead of a homopolymer to simulate phase-separation by A/B
compartments and loop extrusion using a single model. The authors use their
model to predict the effects of cohesin depletion on the resulting Hi-C matrix
and found good agreement between experimental and simulated data. Crucially
they show that compartment strength is weakened by the process of DNA loop
extrusion, suggesting that the two processes antagonize each other.

In 2018, Nuebler et al. [156] extended Fudenberg’s model to use a block
copolymer to simulate phase-separation by A/B compartments (similarly to
what was done by Rao et al. [134]). Neubler et al. confirmed that phase-
separation induced by A/B compartments is weakened by DNA loop extrusion.
Furthermore, the authors use their model to predict the effect of NIPBL, CTCF,
and WAPL depletion and find good agreement with experimental evidence.
Finally, Neubler et al. showed that the active nature of loop extrusion is required
to contrast compartmentalization, as simulations with static loops show no effect
on compartment strength, and that compartment weakening is proportional to
LEF extrusion speed.

In the same year, Pereira et al. [157] combined the loop extrusion model
with a model based on multivalent interactions between DNA and transcription
factors. The authors find that neither model can on their own accurately predict
features of Hi-C data, as the loop extrusion model fails to recapitulate large-scale
interactions while the transcription factor model fails to model local domain
patterns. However, when the two models are combined, the resulting model is
capable of reproducing features observed in Hi-C data at all scales.

Later in the same year, Pereira’s model was integrated into the Hip-Hop model
developed by Buckle et al. [158]. The Hip-Hop model integrates several different

20

DNA loop extrusion

types of data, including epigenetic marks (H3K27ac), chromatin accessibility
(ATAC-seq), and extrusion barrier location and direction (CTCF). This model
is capable of simulating interactions driven by A/B compartmentalization as
well as DNA loop extrusion.

In 2020, another paper using simulations based on Fudenberg’s model was
published by Banigan et al. [159]. In this paper the authors dissect different
regimes of loop extrusion: two-sided, one-sided, semi-diffusive, and switching
extrusion. Overall the authors find that one-sided and semi-diffusive loop
extrusion cannot recapitulate dots found in Hi-C matrices unless LEFs are
almost exclusively loaded at CTCF sites. In contrast, two-sided and switching
loop extrusion can recapitulate all features of interphase Hi-C matrices. For the
switching model, this is the case only as long as the switching rate is sufficiently
fast. The authors also show that a mix of approximately 50% one- and two-sided
extrusion can recapitulate interphase Hi-C matrices.

In early 2021, Xi et al. [160] developed a mathematical model to predict
DNA loops observed in ChIA-PET CTCF. The model combines the probability
of CTCF binding a given site with the distance-dependent decay of contact
frequencies and loop competition around CTCF pairs to predict the probability
of CTCF interaction. The authors show that the model can predict the effects
of ΔWAPL on ChIA-PET data.

Later in the same year, Zhang et al. [127] adapted the original Hip-Hop model
to preferentially load cohesin at TSS occupied by RNAPII. Results from these
simulations complemented the main findings of this study, where the authors
present data suggesting that RNAPII recruits NIPBL and WAPL following
mitotic exit.

In early 2022 Gabriele et al. [161] simulated loop extrusion using a model based
on Fudenberg’s. The authors simulated loop extrusion around the Fbn2 locus
under different regimes, including ΔCTCF, ΔRAD21, and ΔWAPL. Consistent
with microscopy and Micro-C data, Gabriele et al. simulations find that the
Fbn2 TAD is rarely in a state where it is fully extruded. Later in the same
year, Dequeker et al. [162] used MD simulations to predict the effects of MCM
on loop extrusion during G1 phase. The authors report that MCMs act as
semi-permeable barriers to DNA loop extrusion by cohesin.

In Nov 2022, we published Paper I to introduce MoDLE, a high-performance
stochastic model of DNA loop extrusion interactions (reviewed in Section 4.1).
MoDLE was the first model capable of simulating DNA loop extrusion
interactions genome-wide in a matter of minutes. MoDLE models CTCF
barriers using a two-state (bound and unbound) Markov process where transition
probabilities are computed from the average occupancy of a given CTCF binding
site. MoDLE provides a wide range of parameters that can be used to tweak
numerous aspects of DNA loop extrusion simulations, such as extrusion barrier
permeability, reciprocal LEF permeability, extrusion speeds, and much more.
Finally, despite not simulating the dynamics of the DNA polymer, MoDLE can
generate interaction matrices resembling Micro-C and Hi-C matrices, suggesting
that full-fledged MD simulations may not be necessary to simulate loop extrusion
interactions. Similarly to what was reported by Fudenberg et al. [131], the level

21

1. Genome organization in three dimensions

of agreement between simulated and experimental heatmaps depends on the
regions that are being compared. When comparing regions where loop extrusion
appears to be the main process driving chromatin conformation, interaction
matrices generated by MoDLE and Micro-C exhibit high levels of agreement.

In late 2022, a paper by Banigan et al. [128] describing the interplay between
loop extrusion and transcription was published. In this paper, the authors
simulate loop extrusion using a model based on Fudenberg’s, where RNAPs act
as semi-permeable, moving barriers to loop extruding cohesin. More specifically,
in simulations, head-on collisions between cohesin and RNAP result in cohesin
being slowly pushed back by RNAP. This is justified by RNAP’s stall force,
which is much greater than that of cohesin. In case of collisions between cohesin
and RNAP moving in the same direction, cohesin continues extruding as fast as
RNAP allows. This is justified by the fact that cohesin’s translocation speed
is much greater than the RNAP’s one. Crucially, in both cases, cohesin is
allowed to bypass RNAP with a relatively small probability. Simulations confirm
experimental evidence showing that RNAP acts as semi-permeable, moving
barriers. Furthermore, simulations were used to test whether preferential cohesin
loading at TSS could lead to better predictions. However, the authors find that
this does not improve simulation accuracy, and suggest that cohesin’s enrichment
at TSS is likely due to collisions with RNAP paused at TSS before transcription
initiation.

In 2023, Zhang et al. [113] used a model based on the Hip-Hop model [158] to
simulate the effect of RNAPII on loop extrusion similarly to what was done by
Banigan et al. [128]. In this study, the authors use simulations to support two
findings, namely that RNAPII antagonizes loop extrusion and that accumulation
of interactions between enhancers and promoters requires RNAPII.

1.3.4 Closing remarks

In this section, I reviewed the state of the art on the process of DNA loop
extrusion from a biological and computational perspective.

While some aspects of DNA loop extrusion are clear, such as the involvement
of cohesin and CTCF, some of the details are not yet resolved (e.g., whether
two cohesins are able to traverse one another in vivo) and others are still being
debated (e.g., whether cohesin preferentially loads at TSS).

Overall, the models introduced by Fudenberg et al. [131] and San-
born et al. [155] have stood the test of time, and have proven fundamentally
correct. However, recent developments such as Davidson et al. [130], Bani-
gan et al. [128], Zhang et al. [113], and Dequeker et al. [162] provide a more
nuanced view of this process, showing how loop extrusion is affected by biophys-
ical properties of chromatin such as DNA tension, as well as by other processes
such as transcription and DNA replication. It is reassuring to see that in-silico
simulations are slowly becoming just another tool in the researcher’s toolbox, as
exemplified by some of the studies reviewed in this section [113, 127, 128, 134,
135, 155, 161, 162] where in vitro and in vivo experiments have been supported
or guided by insights gained through in-silico modeling.

22

DNA loop extrusion

Given the level of agreement between experiments and simulations [131, 155,
156, 158, 159], Paper I, it is clear that our understanding of DNA loop extrusion
is substantially correct. That being said, a few studies [50, 131], including Paper
I, reported how the level of agreement is not uniform along the entire genome.
This suggests that DNA loop extrusion, in its current form, is likely not the only
process responsible for chromatin folding at the kilobase and megabase scale. It
will be interesting to witness how the field evolves to answer these and other
questions, in the quest of unraveling the process of DNA loop extrusion.

23

Chapter 2

Experimental methods to study the
3D Genome

2.1 Introduction

This chapter introduces the most important techniques that are being used to
characterize the chromatin 3D structure. Even though I have not directly used
most of these techniques as part of my research, many of these methods have
been used to first describe hallmark 3D structures in individual or ensemble
of cells, such as chromosome territories (Section 1.2.6), A/B compartments
(Section 1.2.4), TADs (Section 1.2.2) and loops (Section 1.2.3). For this reason, I
consider it important to acknowledge and introduce at least the most important
of these techniques, as well as some very recently developed techniques. Methods
are classified into imaging and sequencing methods, even though some of
the sequencing methods use PCR or microarrays instead of DNA sequencing.
Methods are introduced in rough historical order such that methods coming later
in the chapter build on methods that have already been introduced. At the end
of the chapter, I will briefly summarize and contrast the most relevant techniques
and outline some of the considerations that came to mind while writing this
chapter.

2.2 Sequencing-based methods

Sequencing methods listed in this section rely on PCR, microarrays, or Next-
Generation Sequencing (NGS) to characterize the 3D structure of genomes.
These methods do not measure the location of one or more loci in 3D space,
but rather whether two or more loci co-localize in 3D space, i.e., whether they
are within a certain distance of each other. The first method to study the 3D
structure of genomes using a sequencing approach was 3C, which was developed
in 2002 by Dekker et al. and allowed detecting whether a pair of loci interact in
3D space [163].

2.2.1 Chromosome Conformation Capture methods

Chromosome Conformation Capture methods all descend from the original
3C method and have several steps in common. First, cells are cross-linked
(usually by treatment with formaldehyde), Figure 2.1a. This has the effect
of freezing chromatin in its current 3D structure by forming protein-protein
and DNA-protein covalent bonds. Next, DNA is digested using one or more
restriction enzymes (or sometimes other types of enzymes such as DNase I

25

2. Experimental methods to study the 3D Genome

and MNase), Figure 2.1b. Crucially, DNA digestion is followed by dilution
and a proximity-based ligation step where T4 DNA ligase is added to cell
nuclei, Figure 2.1c. This favors ligation of cross-linked DNA fragments, meaning
that there is a greater chance that fragments that are cross-linked (i.e., that were
originally close in 3D space) will be ligated. Finally, cross-linking is reversed and
DNA is either isolated and quantified, or subjected to more processing before
eventually being quantified.

(a) Nuclei are cross-linked. (b) Digestion with restric-
tion enzymes.

(c) Proximity ligation with
T4 DNA ligase.

Figure 2.1: Diagram of common steps shared by methods from the 3C family.
Adjacent DNA strands are depicted in blue and orange. Dotted lines
in Figure 2.1a represent restriction sites. Crosslinked proteins are shown in
light blue. Figure based on Figure 1a from A 3D Map of the Human Genome at
Kilobase Resolution Reveals Principles of Chromatin Looping [38].
Reproduced with permission from Cell Press.

2.2.1.1 3C

3C was developed in 2002 and was the first technique to use PCR to characterize
3D genomic interactions. The first steps of the 3C protocol are the same as those
outlined at the beginning of the previous section. In the original protocol, after
cross-link reversal, the cross-linking frequency (and thus, interaction frequency)
of a pair of loci is determined by Quantitative PCR (qPCR) using locus-specific
primers [163].

Dekker et al. [163] demonstrated the capabilities of the 3C method by applying
it to the genome of Saccharomyces cerevisiae. Using 3C the authors were able
to recapitulate known properties of centromere clustering in the yeast genome
throughout the cell cycle. 3C also allowed the authors to characterize chromatin
flexibility in yeast as well as generating a 3D model of chromosome III. The
model showed that chromosome III has a contorted ring structure [163].

Besides the low throughput, the main disadvantage of 3C is that it requires
prior knowledge of the sequence of interacting loci.

26

Sequencing-based methods

2.2.1.2 4C

Zhao et al. [164] modify the original 3C protocol to enable detection of interactions
between a target locus and the rest of the genome by developing a new technique
named Circular Chromosome Conformation Capture (4C). The authors used
4C to characterize interactions of H19 Imprinting Control Region (ICR) in
mouse, identifying 114 sequences interacting with the maternally inherited H19
ICR [164].

After the first ligation step (see Figure 2.1c), the 4C protocol involves a
second ligation step to produce self-circularized DNA fragments. These fragments
are then amplified by inverse PCR. The amplified library is then quantified
using DNA microarrays or sequencing.

While 4C is a significant improvement upon 3C, throughput is still extremely
limited, and knowledge of the sequence of a locus of interest is still required.

2.2.1.3 5C

Chromosome Conformation Capture Carbon Copy (5C) is another variant of 3C
that allows the characterization of all pairwise interactions occurring among loci
in a genomic region of interest (usually not larger than 1 Mbp). The first steps of
the 5C protocol are identical to that of the original 3C protocol. After generating
a 3C library, 5C primers are annealed to the 3C library. 5C primers consist of
two sequences: the sequence corresponding to the 3′-end of restriction fragments
(sense sequence in forward primers and antisense in reverse primers); T7 and T3c
universal tails for amplification (5′-end of forward primers and 3′-end of reverse
primers, respectively). The result of the above primer design strategy is that
forward and reverse primers will often anneal across ligation junctions. Next,
primes that anneal next to one another are ligated using Taq ligase. Finally, 5C
libraries can be amplified using T7 and T3c universal primers. The amplified
library can then be quantified using microarrays or DNA sequencing [165].

Dostie et al. [165] showcased 5C by characterizing a 400 kbp region
surrounding the β-globin region in K562 and GM06990 human cell lines. The
authors reported that the Locus Control Region (LCR) strongly interacts with
the γ-globin genes in K562 cells, where γ-globin is known to be expressed.
Furthermore, the authors identified a novel chromatin loop between the β-globin
LCR and a pseudogene located in the intra-genic region between γ- and δ-globin
genes. This pseudogene is weakly expressed in K562 cells. Finally, the authors
applied 5C on a gene-desert region, and found, as expected, that the chromatin
structure in this region is similar to that of a random coiled polymer [165].

Overall, 5C is another significant improvement to 3C. Improvements in 5C are
orthogonal to those of 4C: 5C allows to characterize all-versus-all interactions over
a limited genomic region, while 4C allows characterizing one-vs-all interactions
genome-wide. That being said, the throughput of the technique is still very
limited. Furthermore, 5C primer design is a fairly laborious step, which limits
the extent of the genomic regions that can be characterized.

27

2. Experimental methods to study the 3D Genome

2.2.1.4 Hi-C

Hi-C is the latest iteration of 3C techniques and is by far the most widely used
method from the 3C family, largely superseding 3C, 4C, and 5C. Hi-C allows for
characterizing chromatin interactions at very fine resolutions (up to 500 bp [66])
and genome-wide.

The original Hi-C protocol, dilution Hi-C [57], shares the initial steps of
cross-linking and digestion with restriction enzymes from the original 3C protocol.
However, instead of re-ligating the sticky ends left by the digestion step, the
overhangs are filled with biotinylated nucleotides. The blunt ends are then
ligated, and DNA fragments labeled with biotin are selected by streptavidin
enrichment. The resulting library is then fragmented and finally sequenced using
NGS [57].

The original Hi-C protocol was updated and refined several times to improve
resolution and reduce the frequency of uninformative re-ligation events. The first
improvement was in-situ Hi-C [38], which used a 4-cutter instead of a 6-cutter
enzyme and where the re-ligation step is performed in intact nuclei instead of
lysed and pooled nuclei. Using a restriction enzyme that cuts more frequently
increases the number of possible restriction fragments and thus the resolution of
the resulting Hi-C matrix. Performing the re-ligation step in intact nuclei poses
two main advantages: a reduction in spurious ligation events (i.e. ligation between
DNA fragments from different cells); and a reduction in sample processing time.
The progress made with in-situ Hi-C was further refined and formalized with the
release of the Hi-C 2.0 protocol [166], which makes a distinction between adherent
and suspension cells and includes a step to remove biotin from un-ligated ends
to reduce the number of uninformative reads. This is crucial not only to improve
sequencing efficiency but also to remove invalid interactions that cannot be
detected computationally, such as partially digested DNA fragments whose ends
map onto adjacent restriction fragments. Another variation of the in-situ Hi-C
protocol consists of using 2 or more restriction enzymes for DNA digestion, thus
improving the theoretically achievable resolution and partially mitigating issues
due to restriction site mappability biases. This and other improvements are now
part of the Hi-C 3.0 protocol [167].

Using Hi-C, Aiden et al. [57] showed that the human genome segregates
into two separate compartments, named A and B compartments (Section 1.2.4).
A compartments correlate with gene-rich regions, high expression levels, and
accessible chromatin, while B compartments correlate with gene-poor, highly
condensed chromatin, and overall lower expression levels.

A few years later, Dixon et al. and Nora et al. [32, 33] identified Topologically
Associating Domains (Section 1.2.2) using Hi-C on human and mice cell lines.
In 2014, Rao et al. [38] developed in-situ Hi-C and identified many loops
connecting enhancers and promoters. The authors also refine the notion of A/B
compartments by identifying 6 subcompartments, each with distinct histone
marks.

In conclusion, Hi-C is a significant improvement over 3C, which allows
profiling chromatin interactions genome-wide across a broad range of resolutions.

28

Sequencing-based methods

However, this comes with an increase in sequencing costs, which can be quite
substantial when generating deep Hi-C libraries.

2.2.1.5 Capture Hi-C

Capture Hi-C (CHi-C) extends the Hi-C protocol to include a sequence capture
step to enrich Hi-C libraries for a set of loci of interest [168]. This greatly reduces
sequencing costs, enabling studying a subset of chromatin interactions at very
high resolutions.

2.2.1.6 DNase Hi-C

One of the limitations of Hi-C is the cut frequency imposed by digestion with
restriction enzyme, which limits the maximum interaction map resolution that
can theoretically be achieved.

To work around this issue, Ma et al. developed DNase Hi-C [169, 170]
(also known as in-situ DNase Hi-C), a variation of the in-situ Hi-C protocol
that uses DNase I instead of restriction enzymes for DNA digestion. Besides
an increase in cut frequency, the main advantage of using DNase I instead of
restriction enzymes is the reduction of several sources of bias that affect digestion
by restriction enzymes, such as GC content, restriction site mappability, and
genomic coverage. Due to an additional immobilization step, which reduces
nuclei loss during library preparation, DNase Hi-C is also more suitable to be
used in low-input experiments. DNase Hi-C can be combined with hybridization
capture kits to reduce sequencing costs required to profile interactions for a set
of loci of interest at very high resolutions. Finally, while DNase I DNA cleavage
is nonspecific with respect to DNA sequence, DNaseI has been shown to exhibit
mild GC bias at cleavage sites. This should be taken into account when applying
DNAse Hi-C to organisms with low GC content.

The main limitation of DNase Hi-C is the high sequencing cost required to
achieve high-resolution maps. This becomes less of an issue when DNase Hi-C is
coupled with a capture step to enrich interactions involving one or more regions
of interest.

2.2.1.7 Micro-C

Micro-C [171, 172] is another improvement on dilution Hi-C that seeks to improve
interaction map resolution and genome coverage by using MNase instead of
restriction enzymes for DNA digestion. MNase is a nuclease capable of digesting
DNA not bound to histones and is thus suitable to generate maps reaching the
nucleosome unit level (200 bp). Similarly to DNase Hi-C, the main limitation of
Micro-C is the sequencing cost required to generate high-resolution maps.

A recent variation of Micro-C is Region Capture Micro-C (RCMC) [51],
which combines Micro-C with tiling region capture to enrich interactions falling
on a genomic region of interest. The main advantage of RCMC is a significant
reduction in sequencing costs, which allows profiling a region of interest at
unprecedented resolutions and sequencing depths.

29

2. Experimental methods to study the 3D Genome

2.2.1.8 Single-cell Hi-C

While bulk sequencing methods can provide precious insights into the chromatin
3D structure, they tend to show an average picture of a population of cells. This
can be an issue when attempting to characterize highly dynamic processes, where
different cells may exhibit radically different structures.

It is with this motivation that Nagano et al. [26] developed single-cell Hi-C,
a technique that seeks to characterize chromatin structure in individual nuclei
by modifying the original Hi-C protocol to perform the ligation step in intact
nuclei (similarly to what is done in in-situ Hi-C). After cross-linking and ligation
(see Figure 2.1), nuclei are manually selected under the microscope. Next, DNA
is fragmented with an additional round of digestion with a different restriction
enzyme. Finally, the sequencing library is prepared by inserting a barcode that
uniquely identifies each nucleus.

Using scHi-C, Nagano et al. described that TADs observed in bulk HiC are
generally conserved in individual nuclei. Inter-TAD interactions, however, show
a much greater degree of variability, suggesting that higher-order chromosome
folding may not be as conserved as previously thought. Intriguingly, with the
aid of in-silico 3D modeling, the authors showed how variability in inter-TAD
interactions does not affect chromatin folding of chromosome X of mouse at the
level of chromosome territories.

30

Sequencing-based methods

2.2.1.9 Pore-C

Figure 2.2: Diagram of the Pore-C protocol
showing the main steps from nuclei crosslinking
to Nanopore sequencing. DNA fragments
are represented as lines drawn using different
colors. Crosslinked proteins are depicted as
gray globules.
Figure 1a from Pore-C concatemers yield high-
fidelity maps of proximal 3D contacts [173].
Reproduced with permission from Springer
Nature.

Pore-C [173] is a variation of Hi-
C that uses Nanopore long-read
sequencing instead of paired-
end Illumina sequencing to se-
quence ligation products.

Pore-C is the first method
from the 3C family that enables
the detection of multiway in-
teractions (that is, interactions
involving more than a pair of
loci). Besides the sequencing
platform, the main difference
between the in-situ Hi-C and
Pore-C protocol is that the Pore-
C protocol does not require
ligation products to be frag-
mented and amplified (see Fig-
ure 2.2). The main limitations
of Pore-C are sequencing costs
and throughput when compared
to similar techniques, such as
Hi-C.

To at least partially address
the throughput issue, High-
throughput Pore-C (HiPore-C)
was developed [174]. The
sequencing pores used in
nanopore sequencing are sen-
sitive to DNA-bound proteins,
which can result in pore clog-
ging, thus affecting sequencing
throughput. The HiPore-C
protocol modifies the original
Pore-C protocol to address the pore clogging issue by using pronase instead of
protease K for protein degradation. Pronase is a cocktail of nonspecific proteases
that can completely degrade native as well as denatured proteins. This resulted
in an 80% increase in throughput compared to Pore-C, allowing to capture
significantly more pairwise and multiway interactions

Deshpande et al. [173] introduced the concept of synergies, which are loci with
more multiway interactions than expected. The authors found that synergies
are enriched in enhancers and promoters in open chromatin.

31

2. Experimental methods to study the 3D Genome

2.2.1.10 scNanoHi-C

Single-cell Nanopore Hi-C (scNanoHi-C) [175] is a variant of Pore-C capable of
recording chromatin interaction in single cells. The first steps of the protocol
are similar to those of in-situ Hi-C. After proximity ligation, individual cells
were selected using Fluorescence Activated Cell Sorting (FACS). Each cell is
then deposited into a 96-well plate where DNA fragments are barcoded using a
Tn5 transposase. Next, cells are pooled, cross-linking is reversed and DNA is
purified for sequencing.

The main advantage of scNanoHi-C compared to scHi-C, is the ability to
detect multiway interactions. Besides obvious advantages, this allows to generate
many more pair-wise interactions, as a k-way interaction can be decomposed
into k2 pair-wise interactions.

2.2.2 Ligation-free methods

While 3C methods have proven to be extremely powerful, they have inherent
limitations due to their reliance on cross-linking, DNA digestion, and ligation to
detect interacting regions. These limitations manifest as several sources of bias,
namely protein occupancy, restriction site density, and GC content. Ligation-
free methods seek to overcome some of these limitations by taking a different
approach, one that does not involve ligation of restriction fragments.

32

Sequencing-based methods

2.2.2.1 GAM

Figure 2.3: Schematic of the GAM
protocol showing the main steps from
cryosectioning to generation of co-
segregation frequencies rendered as
contact maps. Figure based on Fig-
ure 4a from Methods for mapping 3D
chromosome architecture [176].
Reproduced with permission from
Springer Nature.

With the intention of developing an ex-
perimental technique orthogonal to Hi-
C, Beagrie et al. [177] developed GAM,
the first method that enabled capturing
genome-wide 3D interactions without re-
quiring proximity ligation.

GAM protocol is radically different
from any of the 3C protocols (see Fig-
ure 2.3). First, 400–1200 cells are fixed
using sucrose and then frozen. Next, cells
are cryosectioned, and nuclear profiles are
extracted by laser microdissection. Fi-
nally, the DNA content of each nuclear
profile is extracted, amplified, and se-
quenced.

The underlying assumption of GAM
is that neighbor loci in 3D space will be
found in the same slice more often than
loci that are farther apart. The compu-
tational analysis of GAM sequence data
involves detecting the set of loci that are
present in each slice. This information is
then used to infer several chromatin pa-
rameters using the SLICE mathematical
model, such as contact frequencies, radial
distributions, and chromatin compaction.

Compared to Hi-C, the GAM protocol
is much more laborious, requiring the
collection and amplification of hundreds
of nuclear profiles to achieve resolutions
on par with shallow in-situ Hi-C maps.
To at least partially mitigate this issue,
Beagrie et al. [178] developed multiplex-
GAM, a variation of GAM that allows
collecting up to 10 nuclear profiles in a
single PCR tube, thus greatly reducing
the time required for library preparation.

Beagrie et al. [177, 178] compared in-
teraction maps produced by GAM with
those produced by Hi-C, and find them
to be highly correlated. The authors also
reported that multiway interactions de-
tected by GAM in mice are enriched with
super-enhancers and highly expressed re-

33

2. Experimental methods to study the 3D Genome

gions. Furthermore, when comparing
GAM with Hi-C, it appears that Hi-C
tends to underestimate interaction frequencies for regions involved in multiway
interactions.

Overall, GAM is a technique for characterizing the 3D structure that is
orthogonal to FISH (introduced in section Section 2.3.1) and 3C, which validates
previous findings regarding chromosome territories, A/B compartments, TADs
and loops. GAM comes with several advantages, namely requiring low DNA
input, independence from DNA cross-linking, digestion, and proximity ligation,
and finally, the ability to capture multiway interactions. The main downside of
GAM is the complexity of library preparation. However, this issue was partially
mitigated by the introduction of multiplexed-GAM.

34

Sequencing-based methods

2.2.2.2 SPRITE

Figure 2.4: Schematic of the
SPRITE protocol showing the main
steps from crosslinking to genera-
tion of contact maps from SPRITE
clusters. Figure based on Figure 4b
from Methods for mapping 3D chro-
mosome architecture [176].
Reproduced with permission from
Springer Nature.

SPRITE [179, 180] is a ligation-free
method to detect genome-wide chromatin
interactions.

The core idea behind SPRITE is a
split-pool barcoding scheme, where DNA
fragments are repeatedly pooled in a sin-
gle well, and then split across 96 wells
with distinct barcodes (see Figure 2.4).
The first step in SPRITE’s protocol is
cross-linking by formaldehyde and disuc-
cinimidyl glutarate (DSG) followed by cell
lysis using sonication and DNase diges-
tion. Next, crosslinked DNA is bound to
N-hydroxy-succinimide (NHS)-ester mag-
netic beads to facilitate DNA pooling in
subsequent steps. At this point, DNA
ends are repaired using dA-tailing en-
zymes, leading to DNA molecules with a
single dA overhang. The next step is split-
pool barcoding, which is repeated 5 times.
For the first iteration, a DNA phosphate
modified (DPM) adaptor with a dT over-
hang is added. For the remaining itera-
tions, complexes bound to magnetic beads
are split across 96 wells, each of which
contains a unique tag, which is ligated to
the crosslinked DNA molecules through
the DPM adaptor. Next, the sample is
pooled into a single well. This process will
create barcodes with over 8 billion possi-
ble combinations. The last steps consist
of cross-linking reversal, PCR amplifica-
tion, and library preparation followed by
high-throughput sequencing. Chromatin
interactions can then be detected compu-
tationally by clustering reads sharing the
same barcode. Each cluster represents
DNA molecules that originated from the
same cross-linked complex.

Using SPRITE, Quinodoz et al. [179]
were able to recapitulate many of the
known features and structures of the 3D
genomes, such as chromosome territories,
A/B compartments, TADs and loops. The

35

2. Experimental methods to study the 3D Genome

authors also identified two interaction
hubs consisting of mostly long-range in-
teractions. One hub is enriched for gene-poor regions and regions surrounding
genes encoding rRNAs and is shown to co-localize with the nucleolus. The other
hub is enriched for gene-rich regions as well as several genes known to associate
with the nuclear speckles. Using FISH (introduced in section Section 2.3.1) the
authors showed that this hub indeed co-localizes with the nuclear speckles.

The main strength of SPRITE is the ability to characterize multiway
interactions, even long-range interactions that cannot be detected by traditional
3C methods. Another feature of SPRITE is the ability to be extended to
simultaneously track DNA and RNA interactions, as was recently shown with
RNA & DNA SPRITE (RD-SPRITE) [181]. The main disadvantage of SPRITE
is the laboriousness of its protocol, as while SPRITE’s protocol is simpler and
faster than that of GAM, it is more than twice as long as the typical Hi-C
protocol, taking 5 days instead of 2.

2.2.2.3 scSPRITE

Single-cell SPRITE (scSPRITE) [182] is a variation of SPRITE to detect
multiway chromatin interactions at the single-cell level.

The main difference between scSPRITE and the original SPRITE protocol,
is that scSPRITE performs an additional round of barcoding, where DNA
fragments in intact nuclei are labeled with barcodes that almost always uniquely
identify individual cells. Single-cell barcoding is performed with a split-and-pool
protocol analogous to that used in normal SPRITE. After cell barcoding, nuclei
are lysed and the normal SPRITE split-and-pool barcoding is performed to label
individual DNA-protein aggregates.

Using scSPRITE, Arrastia et al. [182] show that while most cells contain
TADs, these TADs show high variability between cells. The authors also show
that variable TADs are not uniformly spread along the genome, but rather
cluster in regions that they term variable TAD regions. Next, the authors
focus on a single variable TAD region on chromosome 4 of mouse, where they
identify two populations of cells that exhibit distinct chromatin organization.
The two populations of cells not only have distinct TAD configurations, but
their compartmentalization is also different.

2.2.2.4 ChIA-Drop

ChIA-Drop [183] is a technique to perform multiplex analysis of chromatin
interactions.

In ChIA-Drop, cross-linked and fragmented chromatin is loaded into a
Chromium microfluidics system, where each DNA-protein complex is assigned
to a Gel bead in Emulsion (GEM) (see Figure 2.5). GEMs are droplets
containing the reagents required for DNA amplification and barcoding as well
as a unique barcode that identifies the GEM (see Figure 2.5). After barcoding

36

Sequencing-based methods

and amplification, DNA from droplets is pooled, purified, and sequenced
(see Figure 2.5).

ChIA-Drop interactions are highly similar to Hi-C interactions, however with
ChIA-Drop it is also possible to detect multiway interactions. Furthermore,
ChIA-Drop can be modified to also track interactions mediated by a protein of
interest such as RNAPII.

Figure 2.5: Diagram of the ChIA-Drop protocol showing the main steps from
crosslinling to contact map generation.
Figure based on Figure 1a from Multiplex chromatin interactions with single-
molecule precision [183].
Reproduced with permission from Springer Nature.

2.2.2.5 Trac-looping

Transposases-mediated Analysis of Chromatin Looping (Trac-looping) [184]
employs a hyperactive Tn5 transposase to simultaneously measure chromatin
accessibility and interactions.

DNA transposition mediated by Tn5 relies on the presence of a pair of 19-bp
mosaic end (ME) sequences. Accordingly, Trac-looping uses a bivalent ME
linker consisting of a pair of ME sequences separated by a 30 bp oligonucleotide
spacer. Tn5 transposase forms a tetramer complex with the bivalent ME. The
hyperactive Tn5 and bivalent ME are added to cross-linked cells, where Tn5 will
insert the 4 MEs in accessible regions of the genome in cis, or trans. Next, DNA
is digested using restriction enzymes and overhangs are filled with biotinylated
nucleotides. Finally, DNA fragments are circularized, enriched by streptavidin

37

2. Experimental methods to study the 3D Genome

pulldown, and sequenced. Insertions in cis can then be used as a proxy for DNA
accessibility, while interactions in trans can be used as a proxy for long-range
chromatin interactions.

The main limitation of Trac-looping is that the technique is limited to
detecting interactions involving regions located in open chromatin. This is due
to Tn5’s preference to cut open chromatin.

2.3 Imaging methods

Methods involving visualizing labeled nuclei through microscopes were one of the
first methods used to characterize the 3D structure of genomes. These methods
can be classified in FISH-based and live-imaging methods. The first requires
fixation, while the latter allows for the visualization of living cells.

2.3.1 FISH-based methods

Since the inception of Fluorescence In Situ Hybridization (FISH) in 1982 [185],
a great variety of methods based on this technique have been developed.

FISH utilizes fluorescent DNA probes that are complementary to one or more
genomic regions of interest. DNA probes bind to complementary regions so that
regions of interest can be visualized with fluorescence microscopy (see Figure 2.6).
The main features of FISH are: (1) enabling direct visualization of one or more
regions of interest (thus allowing taking direct distance measurements between
two or more regions), and (2) collecting information from individual nuclei.
However, FISH also comes with two important drawbacks: namely requiring cell
fixation (potentially perturbing the original 3D structure of nuclei), and being
restricted to visualize only a small number of loci at the same time.

2.3.1.1 2D and 3D-FISH

2D-FISH is performed on flattened cells, where cells have been flattened to the
point of exhibiting close to a 2D geometry [186]. This simplifies visualizing cells
by ensuring that nuclei are on the same focal plane [187]. FISH on 3D-preserved
nuclei (3D-FISH) is instead performed on nuclei in their original geometry [188].
Both 2D and 3D-FISH enable the visualization of 2–52 regions of interest at
once [176]. This number is constrained by the limited number of available
independent fluorescence channels [189].

One of the most important steps of FISH experiments, is probe design. Probes
are usually produced by synthesis or by nick translation and are designed to be
150–500 bp long and to target regions of at least 30 kbp [176]. Probes are either
directly labeled with fluorescent nucleotides or with biotinilated nucleotides
which will be then recognized and highlighted by fluorescent avidin.

After fixing cells or nuclei to a glass plate, cells are permeabilized by treatment
with a detergent or organic solvent. Next, complementary probes are introduced
in the nucleus. To increase probe binding rates, DNA is denatured through

38

Imaging methods

heath and formamide treatment. Finally, labeled nuclei are imaged through a
fluorescence microscope [176].

Figure 2.6: Diagram of DNA-FISH. The diagram shows a fluorescently labeled
DNA probe annealing with denatured DNA. Regions labeled with fluorescent
probes appear as red dots when visualized under the microscope.
Source: NCBI NHGRI

2.3.1.2 Cryo-FISH

Cryo-FISH is a variation of 3D-FISH where probes are hybridized to cryo-sections
of fixed cells. Labeled cryo-sections are then visualized using a fluorescence or
electron microscope. Compared to 3D-FISH, cryo-FISH enables visualization
at higher resolution due to better spatial resolution, sensitivity, and image
contrast [176, 190].

39

2. Experimental methods to study the 3D Genome

2.3.1.3 Multiplexed FISH

(a) Bind primary probes. (b) Pinpoint locus 1.

(c) Pinpoint locus 3. (d) Pinpoint locus N.

Figure 2.7: Diagram of chromatin tracing by FISH showing the protocol steps
from the binding of primary probes to loci pinpointing.
DNA is represented as a gray line while loci complementary to primary probes
are depicted as gray circles. Figure generated from Figure 1 from Chromatin
Tracing: Imaging 3D Genome and Nucleome [191].

Multiplexed FISH, also known as chromatin tracing, is a variation of 3D-FISH
that combines FISH with oligo probes (such as Oligopaints) and microfluidic
technologies to resolve chromosome-scale chromatin folding at higher resolution.

Oligopaints is a method to generate libraries of labeled oligonucleotides
suitable for FISH experiments [192]. Compared to traditional probes, probes
produced by Oligopaints are shorter (60–100 bp instead of 150–200 bp) and
exhibit higher precision in probe placement. Because of this, Oligopaints FISH
allows targeting of loci in the order of 5 kbp when using super-resolution
microscopy [176].

Chromatin tracing involves labeling a large number of genomic regions
across hundreds or thousands of cells by using multistep labeling followed by
imaging, where both steps are automated by using microfluidics. The first step
involves the hybridization of primary probes to all regions of interest along the
genome (Figure 2.7a). Primary probe sequences consist of two portions: the
first portion is complementary to a region of interest, while the second portion
is a barcode sequence that does not hybridize with any genomic sequence. The
first hybridization round is followed by a second round of probe hybridization
where fluorescent-labeled secondary probes are added one by one and imaged
(Figures 2.7b to 2.7d). Secondary probes hybridize with the barcode sequence
of primary probes, thus enabling imaging of one of the genomic regions of

40

Imaging methods

interest. Next, following the imaging step, the fluorescent probes are removed
by e.g., photobleaching before proceeding with the next round of secondary
probe hybridization. Once all loci marked by primary probes have been imaged,
the centers of the genomic regions of interest are linked to trace the chromatin
structure [191, 193].

Overall, compared to traditional 3D-FISH, multiplexed FISH can be
used to visualize smaller regions at high resolution (1.2–2.5 Mbp at 30 kbp
resolution [194]) or larger regions at intermediate resolution (such as entire
chromosomes at TAD-level resolution [195]) [176, 191, 193].

Earlier iterations of chromatin tracing date back to 2016, and were used to
characterize the spatial organization of TADs in human interphase autosomes
and X chromosomes, reaching resolutions in the order of 1–4 Mbp [193, 195].
Combining chromatin tracing with super-resolution microscopy allowed for the
characterization of smaller regions (1.2–8 Mbp) at up to 10 kbp resolution[193,
194, 196]. Wang et al. [195] report that based on their findings, the fractal
globule model does not recapitulate the structure of chromosomes for genomic
distances greater than 7 Mbp. Consistent with existing knowledge about TADs
segregating into A/B compartments, the authors find that at coarse resolutions
TADs segregate into two distinct compartments. Lastly, the authors characterize
the active and inactive copies of chromosome X, and find that their topologies
and locations are profoundly different.

2.3.1.4 Multimodal FISH imaging

One of the capabilities of chromatin profiling is the possibility of complementing
it with other profiling methods, thus providing not only insight into chromatin
structure but also into its functional state. The first attempts at multimodal
FISH imaging were Hi-M and Optical Reconstruction of Chromatin Architecture
(ORCA) which combined chromatin profiling with RNA-FISH, allowing simul-
taneous imaging of up to 122 loci at 2–10 kbp resolutions and up to 29 RNA
targets [193, 197, 198]. Hi-M and ORCA were followed by several other methods
improving resolution, throughput, and the number and type of molecules profiled,
namely Multiplexed Imaging of Nucleome Architecture (MINA) [199, 200], DNA
Multiplexed Error-Robust Fluorescence in situ Hybridization (MERFISH) [201]
and DNA Sequential Fluorescence in Situ Hybridization (seqFISH+) [202, 203].

Liu et al. applied MINA to chromosome 19 of mouse fetal liver tissue. They
identify 7 different cell types and characterize chromatin folding around Scd2, a
gene that is expected to be highly expressed in hepatocytes only. Thanks to the
fine resolution achieved with MINA, the authors were able to pinpoint a single
promoter-enhancer interaction likely responsible for the cell-specific expression
of Scd2. The authors were also able to recapitulate several results from previous
findings, such as the positive correlation between compartment score and gene
expression, as well as the polarized organization of A/B compartments [199].

41

2. Experimental methods to study the 3D Genome

2.3.2 Live-imaging

While FISH techniques are very powerful, they only allow taking still snapshots
of chromatin structure from fixed cells. In contrast, methods for live cell
imaging allow tracking chromatin structure over time, which is very important,
as chromatin folding is known to be a highly dynamic process [204].

2.3.2.1 CRISPR-Tag

CRISPR-Tag uses catalitically-dead Cas9 (dCas9) fused with a fluorescent protein
to recognize and bind a region of interest [25]. Similarly to what is done in
the CRISPR-Cas9 method for genome editing, a short guide RNA (sgRNA) is
engineered to have its guide sequence complementary to a region of interest.
The fluorescently labeled dCas9 protein will then be guided to the region of
interest and mark it. The main limitation of CRISPR-Tag is that the technique
is limited to tagging repetitive regions, as to achieve adequate signal-to-noise
ratios, multiple dCas9 proteins have to be recruited to the same locus.

2.3.2.2 CARGO

Chimeric Array of gRNA Oligonucleotides (CARGO) is a method based on
CRISPR-TAG that can deliver up to 12 different sgRNAs using a single vector,
thus overcoming the main limitation of CRISPR-Tag [205]. Using CARGO,
Gu et al. were able to live image a non-repetitive 2 kbp region.

2.4 Differences and similarities between experimental
techniques and closing remarks

In the previous sections, I presented four families of experimental techniques
that can be used to characterize the 3D structure of genomes. Many techniques
tackle the problem using orthogonal approaches, each with their strengths and
weaknesses. Despite this, all presented methods can identify the hallmarks
of chromatin 3D organizations, namely chromosome territories, open/close
chromatin domains, and DNA loops. Most of the sequencing methods can
also recapitulate TADs. This gives great confidence that the observed structures
are not technical artifacts, but rather real structures that are present in ensemble
or individual cells.

FISH and live-imaging methods have the unique capability of directly imaging
nuclei, enabling direct measurement of distance between a set of regions of
interest. Distance measures can also be converted to interaction maps by setting a
distance threshold below which two genomic regions are considered as co-locating.
Furthermore, both FISH and CRISPR-Tag-like methods allow visualizing 3D
structures at the single-cell level. However, all imaging approaches have several
limitations in common. FISH methods require cell fixation, a treatment that can
potentially alter the genome 3D structure. Furthermore, all imaging techniques
depend on the recruitment of a large number of fluorophores on the region to

42

Differences and similarities between experimental techniques and closing

remarks

be visualized, potentially disrupting the local chromatin 3D structure. Another
limitation of imaging methods is the low throughput, which even in the case of
highly multiplexed imaging cannot match that of other non-imaging approaches.

Chromosome Conformation Capture methods in contrast, especially those
based on Hi-C, do not suffer from throughput issues and can be used to
characterize 3D interactions genome-wide and at considerably high resolutions.
The only exception is single-cell variants of 3C, whose throughput is quite limited
when looking at interactions for individual cells. One important limitation of
many 3C techniques, is the inability to detect multiway interactions. This has
recently changed with the development of Pore-C and related methods (including
Tri-C [206], 4C-walks [207] and multi-contact 4C [208], all of which predate
Pore-C). The main issue with 3C methods is the compound effect of several
different sources of bias introduced by cross-linking, restriction enzyme digestion,
and proximity ligation. Another issue is the high sequencing costs required to
generate deep Hi-C maps, as sequencing costs scale with the square of the density
of interactions in Hi-C maps.

To sidestep some of the issues associated with Hi-C and 3C methods in general,
several ligation-free methods have been developed. GAM uses a radically new
approach, using the frequency of co-occurrence of genomic loci in thin slices
of cryosections of nuclei to infer chromatin interactions. Being orthogonal to
Hi-C, GAM is not affected by the source of biases that are associated with Hi-C.
Unfortunately even GAM is not a silver bullet, as it is a fairly laborious technique
and cannot yet reach the level of details achieved with deeply sequenced Hi-C
libraries. SPRITE and ChIA-Drop are less demanding in terms of labor required
for library preparation compared to GAM, however, their protocols are still
more complex than Hi-C. SPRITE’s ability to capture longer range interactions
than 3C methods is both an advantage and disadvantage. It is advantageous
because it allows the detection of long-range interactions that are invisible to 3C
methods, which can only detect interactions between DNA molecules that are
less than 200 nm apart. However, there is no clear way to put a hard limit on the
maximum distance of interactions detected by SPRITE, making the definition of
interacting regions a bit vague. Finally, applications of Trac-looping are limited
by its inability to detect interactions taking place in close chromatin.

We are now at a point where we have several techniques using orthogonal
approaches to characterize the genome 3D structure. Several of these techniques
have been developed with the aim of avoiding biases associated with the proximity
ligation and crosslinking steps of 3C methods. However, 3D-FISH and Hi-C are
still the most commonly used techniques and are considered as golden standards
to compare to when new techniques are developed. This together with the
high level of agreement between FISH, Hi-C, and other techniques suggest
that the sources of bias affecting FISH and Hi-C, likely have limited effect on
detected interactions. Likewise, the high level of agreement between Hi-C and
ligation-free methods such as GAM and SPRITE suggest that these methods are
valid alternatives to 3C methods that enable the characterization of multiway
interactions.

To conclude, we do not yet have an experimental technique to rule them all.

43

2. Experimental methods to study the 3D Genome

At present, it seems unlikely that any of the available methods will obsolete all
others in the near future, especially considering that some of the techniques,
such as Hi-C and FISH nicely complement each other. Instead, researchers will
have to continue picking the most appropriate technique based on their research
questions, available expertise, and experiment/sequencing budgets. This suggests
that FISH and Hi-C will continue to thrive for the foreseeable future, as the
availability of well-established protocols and commercial preparation kits make
them more broadly accessible to research groups who do not yet have extensive
experience working with these techniques. The availability of computational
pipelines for pre-processing and analysis of new types of data is also a current
limitation to the diffusion of novel experimental techniques, as processing and
analyzing data produced by said techniques will not only require expertise in
the analysis of biological data but also experience in software development.

44

Chapter 3

File formats used to represent
interaction frequencies

3.1 Introduction

This chapter aims to provide a comprehensive overview of textual and binary
formats used to represent interaction frequencies, such as those generated by
Hi-C experiments. For textual formats, I will focus on relatively popular formats,
as describing all formats ever invented would require too much space, given
that in the early days virtually every group developed their format. Finally, I
will focus on the .hic and cooler formats, as these two are the de-facto format
standard to represent pairwise interactions in a highly compressed, indexed file
format. The purpose of this chapter is to provide the necessary background for
Paper II, which introuces a toolkit to transparently operate on .hic and cooler
files.

3.2 From reads to interactions

The journey from raw 3C data to an interaction matrix begins with one or more
pairs of files in FASTQ format.

Throughout this section, I will assume to be processing the paired-end
FASTQ files produced by a Hi-C experiment, even though most of the steps are
independent of which method from the 3C family generated the data. FASTQ is
a text format used to store nucleotide sequences together with their quality scores.
Most Hi-C experiments use Illumina paired-end sequencing with read lengths
ranging between 2x36 and 2x150 bp [209, 210], (with some protocols requiring
up to 2x250 bp HIFI reads [211]) Reads pairs are usually mapped individually
to a reference genome via iterative mapping [212], two-step mapping [213]
or by using specialized read aligners, such as Chromap [214], taking care to
properly map chimeric reads produced by the proximity-ligation step in the Hi-C
library preparation. Mapped reads are stored in SAM or BAM format [215].
At this point, read pairs have to be filtered to identify informative pairs (i.e.,
reads mapping to two different restriction fragments) from uninformative pairs
(e.g., self-circle and dangling-end pairs). This produces a list of valid pairs of
interactions. Finally, valid interactions can then be binned and aggregated to
generate interaction matrices.

Over the last decade, several pipelines have been developed to automate
some or all of the above steps. To name a few: HiC-Pro [213], Juicer [60], 4DN
Hi-C processing pipeline [216], Distiller [217], ENCODE HiC uniform processing
pipeline [218] and nf-core/hic [219]. While the file formats used for the mapping

45

3. File formats used to represent interaction frequencies

step are standardized and well-defined, formats used in other steps, and especially
to represent pairs of interactions and interaction matrices are less standardized.

3.3 Formats to store pairwise interactions

This section introduces and describes the most common formats used to represent
lists of pairwise interactions. This family of file formats is crucial, as these formats
act as intermediate representations of 3C data between the read mapping and
interaction binning steps. Pairwise interactions are processed by tools such as
Cooler [220], JuicerTools [60], HiCExplorer [221, 222], and hictk (Paper II) to
generate highly-compressed and indexed representations of binned interaction
matrices.

Pairs of interactions are usually represented as long lists of records, where
each record contains a pair of genomic coordinates. Despite the simplicity of
the data being stored, lists of pairwise interactions come in a variety of formats,
some of which are outlined in the current section.

3.3.1 validPairs

validPairs is the file format used by HiC-Pro [213] as well as one of the formats
used by nf-core/hic [219] to represent pairwise interactions. It was one of the
first formats introduced to store pairwise interactions of Hi-C experiments.

The format is a tab-delimited textual format without a header and with the
following columns:

• read name - The read name.

• chr_reads1 - Chromosome name for the first mate.

• pos_reads1 - Mapping position of the first mate.

• strand_reads1 - Strand for the first mate.

• chr_reads2 - Chromosome name for the second mate.

• pos_reads2 - Mapping position of the second mate.

• strand_reads2 - Strand for the second mate.

• fragment_size - Fragment size in bp.

• res frag name R1 - Restriction fragment for the first mate.

• res frag R2 - Restriction fragment for the second mate.

• mapping qual R1 - Mapping quality for the first mate.

• mapping qual R2 - Mapping quality for the second mate.

• allele_specific_tag - Allele tag (optional).

46

Formats to store pairwise interactions

Listing 1 shows an example of a validPair file.

A00548:315:H77LWDMXY:2:2405:30436:31031 chr1 16145 + chr1 187139 - 2538 HIC_chr1_30 HIC_chr1_951 31 35

A00548:315:H77LWDMXY:2:2231:8603:2550 chr1 16167 + chr1 186953 - 2330 HIC_chr1_30 HIC_chr1_951 31 31

A00548:315:H77LWDMXY:1:1167:16920:11913 chr1 16195 + chr1 186981 - 2330 HIC_chr1_30 HIC_chr1_951 31 31

A00548:315:H77LWDMXY:2:2165:4020:8390 chr1 16265 - chr1 185829 - 512 HIC_chr1_30 HIC_chr1_947 31 11

A00548:315:H77LWDMXY:1:1417:8187:10504 chr1 16750 + chr1 187560 - 2354 HIC_chr1_30 HIC_chr1_951 31 31

A00548:315:H77LWDMXY:2:1401:4996:12680 chr1 16771 + chr1 187566 - 2339 HIC_chr1_30 HIC_chr1_951 11 31

A00548:315:H77LWDMXY:1:2287:16712:16908 chr1 16845 - chr1 186898 + 2536 HIC_chr1_30 HIC_chr1_951 31 31

A00548:315:H77LWDMXY:1:2161:29541:2300 chr1 16868 - chr1 186992 + 2465 HIC_chr1_30 HIC_chr1_951 31 34

A00548:315:H77LWDMXY:2:2117:11351:11913 chr1 17405 + chr1 188136 - 2275 HIC_chr1_30 HIC_chr1_951 37 31

Listing 1: validPairs example file.

3.3.2 Juicer

The Juicer suite of tools [60] defines its file format to represent pairwise
interactions in text format. This format does not have a header and consists of
a space-separated file where each record contains the following fields for each of
the two mates:

• str - Mate strand (0 for forward, anything else for reverse).

• chr - Chromosome name.

• pos - Mapping position.

• frag - Restriction site fragment.

• map - Mapping quality score.

• cigar - Compact Idiosyncratic Gapped Alignment Report (CIGAR) string.

• sequence - Read sequence.

There are two variations of the original Juicer format:

• A “medium format”, with an additional field storing the readname and
without the cigar and sequence fields.

• A “short format”, which is based on the “medium format” and lacks the
readname and map fields.

C24LCACXX130513:3:2315:8962:99350 0 1 13469 7 16 1 52724972 146510 2 178

C24LCACXX130513:3:2216:17074:2449 0 1 18111 15 0 1 235989131 542545 0 178

D258GACXX130605:3:2101:13335:2917 0 1 23820 26 16 1 20850 24 0 0

D258GACXX130605:3:2211:8449:53007 0 1 30819 42 16 1 31292 43 5 0

D258GACXX130605:3:1316:8258:97833 0 1 38027 59 0 1 39931 70 0 0

D258GACXX130605:3:2212:1989:10981 0 1 46778 86 0 1 150327905 328353 0 178

C23LRACXX130511:8:2209:8430:42384 0 1 55470 107 0 1 101038308 262310 0 91

D258GACXX130605:3:1215:9842:28962 0 1 67704 140 16 1 79804 170 0 0

D258GACXX130605:3:1105:6204:52382 0 1 82209 179 0 1 7072188 16245 0 178

C24LCACXX130513:3:2116:12420:51114 16 1 91634 204 16 1 31296715 86648 0 176

Listing 2: Juicer “medium” example file.

47

3. File formats used to represent interaction frequencies

Interactions in Juicer format can be used by JuicerTools to generate multi-
resolution interaction matrices in .hic format. See Listing 2 for an example of
the Juicer “medium” format.

3.3.3 DCIC Pairs

The DCIC Pairs file format [223], colloquially known as the “Pairs” format, is a
file format that stores pairwise interactions following a header in textual format.

The file header contains metadata regarding the file format, whether the
data is sorted by genomic coordinates, the data shape (i.e., whether the file
contains interactions only spanning the upper triangle of a Hi-C matrix), and
the list of chromosomes with their sizes. After the header, each line represents
an interaction expressed as (readID, chr1, pos1, chr2, pos2). See Listing 3
for a sample snippet of the file format. readID is an optional field and when
not used should be set to “.”. The Pairs format is extensible, meaning that
in addition to the reserved columns (readID, chr1, pos1, chr2, pos2, strand1,
strand2), additional columns can be added by specifying them through the
#column header field.

pairs format v1.0

#sorted: chr1-chr2-pos1-pos2

#shape: upper triangle

#genome_assembly: hg38

#chromsize: chr1 249250621

#chromsize: chr2 243199373

#chromsize: chr3 198022430

...

#columns: readID chr1 pos1 chr2 pos2 strand1 strand2

EAS139:136:FC706VJ:2:2104:23462:197393 chr1 10000 chr1 20000 + +

EAS139:136:FC706VJ:2:8762:23765:128766 chr1 50000 chr1 70000 + +

EAS139:136:FC706VJ:2:2342:15343:9863 chr1 60000 chr2 10000 + +

EAS139:136:FC706VJ:2:1286:25:275154 chr1 30000 chr3 40000 + -

Listing 3: DCIC Pairs example file.

The Pairs format was standardized in 2016 by the 4D Nucleome Omics Data
Standards Working Group, and aims to be a tool-agnostic, textual format to
represent lists of pairwise interactions. The format was developed to enable
random queries when Pairs files are compressed using bgzip [224] and indexed
using Pairix (introduced in Section 3.3.3.2).

3.3.3.1 Pairsam

An example of an extension of the Pairs format is the Pairsam format defined
by Pairtools [225], which introduces three additional fields in addition to the 7
reserved fields, namely pair_type, sam1 and sam2. pair_type is used to store
the type of Hi-C pair defined by a record, while sam1 and sam2 are used to
store the alignment in SAM format for the first and second mate respectively.
In addition, Pairtools embeds the SAM file header directly in the Pairs header
through the #samheader header field.

48

Binned interactions

3.3.3.2 Pairix

Pairix is an indexing strategy and index format over files in Pairs format that
enables efficient fetching of pairs overlapping queries consisting of a pair of
genomic coordinates. Pairix is an extension of the Tabix indexing format, that
is used to index tab-delimited, compressed text files over one set of genomic
coordinates [224]. To make a Pairs file indexable by Pairix, interactions in a
Pairs file needs to be sorted by chr1, chr2, pos1, and pos2. The sorted Pairs file
then needs to be compressed using bgzip [224]. Finally, the file can be indexed
using the pairix utility [226], resulting in an index file with extension .px2.
Lee et al. [223] show that running a query using a Pairix indexed file consisting
of 300 million records takes approximately 1 second while satisfying the same
query by traversing a Pairs file takes up to 30 minutes.

3.4 Binned interactions

It is often the case we are not interested in the exact mapping position of each
mate pair, but rather in the number of read pairs mapping over a given pair
of genomic intervals. There are several formats that can store this kind of
information as sparse 2D matrices in textual or binary format.

3.4.1 COO

The COO format is the simplest textual format that can be used to represent
sparse matrices. It consists of a list of records, where each record stores the
matrix row, column, and associated value (see Listing 4 for an example). Files
in this format are often compressed and sorted by row and column.

0 0 33188

0 1 13454

0 2 2560

0 3 911

0 4 753

0 5 846

0 6 530

0 7 378

0 8 630

0 9 756

Listing 4: COO example file.

This format is commonly used by linear algebra applications as intermediate
representation of 2D sparse matrices.

3.4.2 Matrix format

The .matrix format was introduced by the Dekker lab and stores interaction
matrices as dense matrices in tab-delimited textual format. The first row and
column in the matrix contain the list of genomic intervals represented by each
column/row in the interaction matrix. Furthermore, the first row begins with

49

3. File formats used to represent interaction frequencies

the shape of the matrix being represented. Because this format uses a dense
matrix representation, it is not suitable for representing the high-resolution
interaction matrices produced by modern Hi-C experiments. To reduce storage
space requirements, files in this format are often compressed.

Refer to Listing 5 for an example of a file in .matrix format.

3x3 0|mm9|chr1:1-500000 1|mm9|chr1:500001-1000000 2|mm9|chr1:1000001-1500000

0|mm9|chr1:1-500000 1 nan 12.6330 17.0892

1|mm9|chr1:500001-1000000 14.7847 18.9111 13.5268

2|mm9|chr1:1000001-1500000 15.1814 9.5573 6.9416

Listing 5: .matrix example file.

3.4.3 Bedgraph2

Bedgraph2, also known as 2Dbedgraph, Ginteractions [227], and sometimes
incorrectly referred to as BED Paired-End (BEDPE), is a file format derived
from the widely popular BED format, where each line contains a pair of genomic
coordinates in BED3 format followed by the number of interactions corresponding
to the pair of coordinates.

• chrom1 - Chromosome #1.

• start1 - Start position of interval #1.

• end1 - End position of interval #1.

• chrom2 - Chromosome #2.

• start2 - Start position of interval #2.

• end2 - End position of interval #2.

• value - Number of interactions.

See Listing 6 for a snippet taken from a file in bedgraph2 format.

chr2L 0 50000 chr2L 0 50000 33188

chr2L 0 50000 chr2L 50000 100000 13454

chr2L 0 50000 chr2L 100000 150000 2560

chr2L 0 50000 chr2L 150000 200000 911

chr2L 0 50000 chr2L 200000 250000 753

chr2L 0 50000 chr2L 250000 300000 846

chr2L 0 50000 chr2L 300000 350000 530

chr2L 0 50000 chr2L 350000 400000 378

chr2L 0 50000 chr2L 400000 450000 630

chr2L 0 50000 chr2L 450000 500000 756

Listing 6: Bedgraph2 example file.

Files in this format are often sorted by genomic coordinates and compressed.

50

Binned interactions

3.4.4 Juicer

The file format used to store binned interactions in Juicer format is based on the
“short” format introduced in Section 3.3.2. On top of the standard columns, this
format includes a score column storing the number of interactions corresponding
to the given bin.

Files in this format can be used by JuicerTools to generate matrices from
already binned interactions.

3.4.5 HiC-Pro

Interactions stored in HiC-Pro [213] format consist of two files. A Bedgraph file
with the list of genomic bins (see Listing 7) and their corresponding index and a
file in COO format with the list of binned interactions (see Listing 4).

chr1 0 1000000 1

chr1 1000000 2000000 2

chr1 2000000 3000000 3

chr1 3000000 4000000 4

chr1 4000000 5000000 5

chr1 5000000 6000000 6

chr1 6000000 7000000 7

chr1 7000000 8000000 8

chr1 8000000 9000000 9

Listing 7: HiC-Pro bin table example.

Genomic coordinates can then be mapped to interactions using the index
specified in the fourth column of the Bedgraph file.

3.4.6 HiCExplorer

The HiCExplorer file format [221, 222], also known as h5, is a format based on
Hierarchical Data Format 5 (HDF5) [228].

HDF5 is the latest version of Hierarchical Data Format (HDF) and is
used to store data using a hierarchy of objects, such as groups, datasets, and
attributes. The resulting hierarchy is similar to that of files and folders in a
filesystem. Groups serve the purpose of organizing datasets and attributes using
a hierarchical structure. Datasets are the most common way to store large
amounts of data as typed multidimensional arrays. Finally, attributes can be
used to store small amounts of data associated with groups and datasets, such
as metadata about the object they refer to. Datasets can store data using a
contiguous or chunked layout. Furthermore, chunked datasets support several
filters that can be used e.g., to shuffle or compress the underlying data.

Matrices in h5 format use two groups, intervals, and matrix and several
datasets to represent Hi-C matrices.

• intervals - Group used to store the list of intervals represented by the
h5 file (i.e., the bin table).

51

3. File formats used to represent interaction frequencies

– chr_list - Dataset used to store chromosome names associated with
intervals.

– start_list - Dataset used to store the beginning of intervals.

– end_list - Dataset used to store the end of intervals.

– extra_list - Dataset to use additional information associated with
each interval.

• matrix - Group used to store the list of pairwise interactions.

– data - Dataset used to store the number of interactions in Compressed
Sparse Row (CSR) format.

– indices - Dataset used to store column indices in the CSR matrix.

– indptr - Dataset used to store the indptr vector, mapping elements
in data and indices to the rows in the CSR matrix.

– shape - Tuple storing the shape of the matrix.

Files in HiCExplorer format can be generated using the hicBuildMatrix and
hicConvertFormat subcommands from HiCExplorer. Furthermore, files in h5
format can be used as input by most commands from the HiCExplorer suite of
tools. However, the use of this format outside the HiCExplorer suite is quite
limited.

3.4.7 The .hic format

The .hic file format was developed by the Aiden group and is today one of
the most popular formats used to store Hi-C interactions [60]. The format
supports representing pairwise interactions at multiple resolutions, with and
without normalization vectors. Files in .hic format are generated from pairwise
or pre-binned interactions stored in Juicer format using the pre subcommand
of JuicerTools or HiCTools [60]. Files in .hic format can be read by many
applications, including straw [229] and hictk (see Paper II). The .hic format
specification defines how Hi-C interactions are stored in .hic files [230]. The
format specification went through several iterations, with the latest iteration
being .hic v9.

52

Binned interactions

3.4.7.1 Overview of the .hic v9 specification

Figure 3.1: Simplified diagram of the .hic specification.
The first half of the diagram shows the file layout of a matrix.hic file. The
diagram shows the three main sections of a .hic file. Sections are listed in
the same order as they appear in .hic files, as exemplified by the arrows. For
each section, the diagram reports the most important data types stored. The
body section is by far the largest section in .hic file. This section contains one
metadata block for each chromosome-chromosome matrix. The structure of a
matrix metadata block is shown in the second half of the diagram. Crucially,
the metadata block contains an index mapping interaction block IDs to offsets
in the .hic files. These offsets point to blocks stored in the interaction blocks
section of the file body. Here, interactions can be represented as sparse or dense
sub-matrices (see second half of the diagram).

The format specification for .hic v9 was released in late 2020. Compared to .hic
v8, .hic v9 uses a new and improved indexing strategy for intra-chromosomal
interactions that results in a more compact index as well as more dense interaction
blocks, making block decompression more efficient. Figure 3.1 shows a simplified
diagram of the .hic v9 format specification.

Files in .hic format consist of a header, body, footer, and block table. The
first three bytes in .hic files contain the “HIC” magic string, which is used to

53

3. File formats used to represent interaction frequencies

identify .hic files.
After the magic string, .hic files store the file header, which contains metadata

stored in binary format. Among the metadata fields, there are the format version,
the list of chromosomes, and the list of available resolutions for matrices using bp
and fragment units. Crucially, the header stores the offset to the footer section
as well as the section where the normalization index is stored.

The header section is immediately followed by the body section, which stores
the actual interaction matrices for each pair of chromosomes.

The last section in the file is the footer. The footer contains a list of keys
associated with file offsets, where keys correspond to chromosome pairs and the
offset points to the relative position in the file where the matrix for the given
pair of chromosomes is stored. The footer also contains the list of vectors for
the expected values as well as normalization vectors.

Each matrix in the body section consists of some metadata (e.g., the matrix
unit and resolution) as well as an index enumerating interaction blocks and
mapping them to their offset and size in the .hic file. Interaction blocks are
stored in compressed form in the block section, which is part of the body section.
Each block contains interactions spanning a rectangular region from the Hi-C
matrix. As of .hic v9, there are two types of blocks: blocks storing data as lists
of sparse rows, and blocks storing data in dense format.

This section described a simplified version of the .hic v9 specification, for
more details readers are referred to the format specification [230].

3.4.7.2 How do queries on .hic files work?

Given a query such as [chr1:10,000-50,000, chr2:25,000-55,000) at 5 kbp
resolution, to satisfy the query, applications such as straw [229] and hictk (see
Paper II) need to proceed as follows.

The first step is reading the file header to ensure the .hic file contains
interactions for the given chromosome and resolution.

Next, applications seek to the footer offset found in the header section to
then read the list of chromosome pairs and the offset to their matrix in the .hic
file. Once the appropriate chromosome pair has been found, applications seek to
the corresponding file offset, which marks the beginning of a matrix stored in
the body section.

At this point, applications read the necessary parts of the metadata, and
then read the index portion for the given matrix. Once read, the index can be
used to map each block ID to the beginning and end of a block of interactions
stored in the block section of the file. Next, applications need to compute the list
of block IDs that may contain interactions overlapping the given query. This is
achieved in different ways depending on the version of the file that is being read
and whether the given query spans an intra- or inter-chromosomal region of the
Hi-C map. To answer the example query, first genomic coordinates are converted
to bin IDs by dividing them by the bin size. Next, the first and last bins of the
query are mapped to blocks by dividing them by the block size (i.e., the number
of rows stored in an interaction block). The resulting block IDs correspond to

54

Binned interactions

the first and last blocks containing interactions overlapping the query. Block
IDs can be mapped to rows and columns in the block grid by dividing block IDs
by the number of blocks in a row of the Hi-C matrix (the result of the division
will be the row number while the remainder of the division will be the column
number). The row and columns are then used to generate the list of blocks
containing interactions overlapping the query. The last step consists of reading
and decompressing interaction blocks and filtering interactions such that only
interactions overlapping the query are returned.

Satisfying intra-chromosomal queries on .hic v9 files is a bit more complex, as
in this version of the .hic format specification, blocks are rotated by 45° and their
shape is no longer symmetric. Furthermore, in case the given query refers to
normalized matrices, raw interactions need to be multiplied by the appropriate
normalization coefficients.

Following the above logic, and thanks to the implementation of several
optimizations, hictk is capable of running approximately 10 TAD-sized queries
per second at 1 kbp resolution on a ultra-deep .hic file (ENCFF447ERX [56],
see Paper II).

3.4.8 The cooler format

The cooler file format was developed by the Mirny group in mid-2019 [220] and
is a format based on HDF5 [228]. Cooler represents Hi-C interactions using a
Compressed Sparse Row (CSR) storage scheme adapted to have genomically
labeled axes. CSR matrices are represented using three 1D arrays. A “data”
array that stores the list of nonzero values. An “indices” array mapping each
element in the “data” array to its column. An “indptr” array mapping elements
of the “data” and “indices” vector to rows. HDF5 supports efficient storing of
dense matrices but does not natively support sparse matrices. To work around
this issue, cooler uses HDF5’s dense 1D vector to represent the data and indices
required to represent a matrix in CSR format.

On top of single-resolution cooler files (.cool), the cooler specification defines
multi-resolution (.mcool) and single-cell cooler files (.scool). Similarly to .hic
files, cooler files store raw interactions and compute normalized interactions by
dividing raw interactions by a pair of weights from the normalization vector.
The latest revision of the single-resolution cooler specification is v3, while the
latest specification for .mcool and .scool files are v2 and v1, respectively.

3.4.8.1 Overview of the cooler v3 specification

As outlined in Section 3.4.6, HDF5 uses groups, datasets, and attributes to
represent data using a hierarchical format.

The specification for single-resolution cooler files defines 4 mandatory groups,
chroms, bins, pixels, and indexes, which are used to represent a genomically-
labeled CSR matrix. The chrom group contains the name and length datasets
with the list of chromosome names and their sizes, respectively.

55

3. File formats used to represent interaction frequencies

The bins group contains the bin table, which is represented using 3 mandatory
datasets, chrom, start and end, defining the chromosome, leftmost and
rightmost positions of an interval, respectively. In addition to the 3 mandatory
datasets, the bins group can contain one or more additional datasets storing the
normalization vectors used for balancing interactions. Normalization datasets
should have the same shape as the other datasets in the bin table.

The pixels group consists of three datasets: bin1_id, bin2_id and count.
bin1_id and bin2_id contain the index corresponding to two entries in the
bin table mapping the pixel to a pair of genomic bins, while count stores the
non-zero count associated with the corresponding pair of bins.

Finally, the index group contains two vectors: chrom_offset and
bin1_offset. bin_offset, stores the index of the first pixel mapping to
each row in the sparse matrix. This dataset will thus consist of n + 1 entries,
where n is the number of bins stored in the bins table. chrom_offset, on the
other hand, contains m + 1 entries, where m is the number of chromosomes and
where each entry corresponds to the index of the first bin in the bins table
mapping to a given chromosome. The last entries in the chrom_offset and
bin_offset tables correspond to the size of the bin table.

To improve the performance of random access queries and reduce file size,
datasets in cooler files are chunked and compressed using gzip.

3.4.8.2 How do queries on .cool files work?

Queries on .cool files are carried out in a radically different way than queries on
.hic files, as .cool files store interaction genome-wide, in a single table, while .hic
files store one interaction matrix for each pair of chromosomes.

Given a query such as [chr1:10,000-50,000), the first step undertaken by
applications satisfying the query consists of identifying the first row containing
pixels overlapping the given query. This is accomplished in two steps. First
applications identify the index iC corresponding to the queried chromosome. iC

is then used to find the first and last bin overlapping the given chromosome by
indexing vector chrom_offset using iC and iC + 1, respectively.

Next, these two indices are used to slice dataset bin_offset, yielding slice
BO. This slice contains the indices of the first pixel overlapping each row between
the first and last bins.

Finally, the first row overlapping the given query can be identified through a
binary search over BO using j0 = iC + 10,000

bin size
as key. Similarly, the last row

overlapping the query can be computed as j1 = iC + 50,000

bin size
.

At this point, the search for pixels overlapping the given queries can be
narrowed down to pixels between j0 and j1. There are several optimization
opportunities to efficiently traverse this interval of pixels and only return pixels
overlapping the query. However, a naive implementation can simply iterate over
pixels between j0 and pixel j1 and only return pixels overlapping the given query.

Following the above logic, and thanks to the implementation of several
optimizations, hictk is capable of running approximately 10 TAD-sized queries

56

Comparing .hic and cooler formats

per second at 1 kbp resolution on an ultra-deep .cool file (ENCFF447ERX [56],
see Paper II).

3.5 Comparing .hic and cooler formats

While the .hic and cooler formats represent the same kind of data, they do
so in radically different ways. Cooler takes advantage of the HDF5 format to
abstract away low-level Input-Output (IO) operations, greatly simplifying the
implementation of libraries reading cooler files. However, this comes with some
drawbacks:

• Limited freedom in the choice of how to serialize data to disk.

• Inability to effectively take advantage of multi-threading, as HDF5 achieves
thread-safety by wrapping most operations behind a global lock.

The .hic format, on the other hand, does not depend on any library to do
low-level IO, making implementing libraries reading this format more complex.
However, this gives format designers full control over the layout of serialized
data, and there are no limitations imposed by the format itself when it comes to
multi-threading.

Another important difference between .hic and cooler is how matrices are
stored: cooler uses a single matrix to store all interactions, while .hic stores
matrices for each pair of chromosomes separately. This makes cooler inherently
better at satisfying queries that require traversing all interactions, while .hic is
more efficient at satisfying queries spanning a pair of chromosomes. Furthermore,
cooler stores genomic coordinates in a bin table once, and individual pixels
refer back to the bin table as appropriate, while .hic stores genomic coordinates
directly in interaction blocks. This has important consequences on file sizes,
with cooler usually being able to achieve significantly smaller file sizes. However,
this comes with a performance penalty when satisfying queries requesting the
full genomic coordinates associated with interactions, as this requires an extra
lookup in the bin table.

One of the features that is currently only available in .hic files, is the ability
to efficiently store expected interactions. Doing the same with cooler requires
creating a new file only storing expected interactions, while .hic files can achieve
the same purpose by storing one vector (with one entry per bin) for each
chromosome.

One flaw of the .hic specification, is the lack of a section in the specification
dictating the endianness that should be used when serializing data to disk.
In practice, this is rarely an issue, as most modern CPU architecture used in
desktop and server environments are little-endian, and so applications reading
and writing .hic files happen by chance to run on machines using the same
endianness. However, it would be desirable for the .hic specification to be
updated to include a section on how to handle endianness. Cooler does not have
to dictate this aspect in its specification, as data endianness is transparently
handled by the HDF5 library.

57

3. File formats used to represent interaction frequencies

3.6 Closing remarks and future perspectives

In this chapter, I summarized available formats that can be used to represent
pairwise and binned interactions produced by 3C experiments.

As the field of 3D genomics and 3C matures, there is a pressing need for
stable, portable, efficient, and standard file formats. On the front of pairwise
interactions, the Pairs standard and Pairix indexing are becoming more and
more popular. As for representing binned interactions, the field is currently split
across .hic and cooler standards. Given that both formats have their strengths,
I see no reason for one to prevail over the other in the near future. In an ideal
world, every tool should accept files in both .hic and cooler formats. However,
this is in practice rarely the case, as this requires tool developers to duplicate
all code to perform IO on interactions matrices, and so we are left with tools
that either understand one of the textual formats, .hic or cooler. To make things
worse, converting .hic files to cooler and vice versa has historically been difficult,
as no tool was able to convert any .hic file to any cooler file and vice versa (see
Paper II).

In Appendix B I suggest some ways in which .hic and cooler file formats can
be improved. Furthermore, in Paper II and Section 4.8 I present and discuss
hictk, a blazing fast toolkit to work with .hic and .cool files. Among other things,
hictk enables easy conversion of files in .hic to cooler format and vice versa.

58

Part II

Aims of the study

Aims of the study

The human 3D genome is structured in a dense, yet well-organized manner,
packing over 2 meters of DNA into nuclei with diameters in the order of a few
micrometers. In the last two decades, we began to understand many of the
details that underpin this intricate structure and discovered several processes
involved in shaping the 3D genome structure at different levels. 3C and Hi-C
experiments have been crucial in this process.

Despite this, the tools to analyze Hi-C data and simulate the recently
uncovered processes, such as DNA loop extrusion, are often suboptimal. At the
beginning of my PhD, I noticed a lack of user-friendly and high-performance tools
to simulate DNA loop extrusion. Back then, existing tools were difficult to use,
and due to their computational complexity, they could be used to simulate loop
extrusion on relatively small regions, thus limiting the questions that could be
answered with these tools. For this reason, I decided to develop a user-friendly
and high-performance stochastic model of DNA loop extrusion named
MoDLE. Next, using this newly developed model, I sought to infer global and
local parameters of DNA loop extrusion.

While developing MoDLE, I found myself needing to write simulated
interactions to disk and found that there were no C++ libraries enabling this
functionality. Upon further inspection, I realized that the lack of libraries to
write files in common formats used in the Hi-C field was not only an issue for C++

applications like MoDLE, but rather a more widespread problem. Furthermore,
the field is split across two file formats: the .hic and cooler formats, with no easy
way to convert between the two formats. For these reasons, I sought to develop
a toolkit to transparently and efficiently operate on .hic and cooler
files. Developing this toolkit is not only useful for my own research but also
for the scientific community as well, as a significant amount of time is currently
being spent dealing with format incompatibilities and other technical details
that should not interest end users.

Finally, understanding the 3D structure of genomes and the processes that
concur to determine this structure is not an end in itself. A better understanding
of the 3D genome will also help us better understand diseases characterized by
disorganization of the 3D genome, such as certain types of cancer. This led me
to develop and use a computational approach to unravel multi-level
3D genome alterations during breast cancer progression.

60

Part III

Summary of papers

Summary of papers

Paper I

MoDLE: high-performance stochastic modeling of DNA loop extrusion
interactions
Rossini R., Kumar V., Mathelier A., Rognes T. and Paulsen J.
2022 Genome Biology 23, 247 DOI: 10.1186/s13059-022-02815-7

We present MoDLE, a high-performance stochastic model of DNA loop extrusion
interactions. MoDLE takes as inputs a list of chromosomes and extrusion
barriers and produces an interaction matrix similar to that produced by Hi-C
experiments as output. Thanks to several optimizations to the model design
and implementation, MoDLE can simulate interactions mediated by DNA loop
extrusion on the entire human genome in a matter of minutes. Loop extrusion
has been extensively reviewed in Section 1.3.

In brief, MoDLE’s algorithm articulates as follows. First, MoDLE generates
a sparse representation of the genome by using the list of chromosomes and
extrusion barriers provided as inputs. Extrusion barriers are modeled using a
two-state (bound and unbound) Markov process where transition probabilities are
computed from the occupancy of a given extrusion barrier. LEFs are modeled as
pairs of extrusion units bridging together pairs of genomic regions corresponding
to the base of loops.

Crucially, MoDLE tracks extrusion barrier and LEF positions with base-
pair resolution, meaning that the model could in principle be used to generate
interaction matrices at 1 bp resolution. Next, the model enters a burn-in phase,
where LEFs are progressively bound to DNA where loop extrusion is simulated
as described below. The only difference between the burn-in phase and the rest
of the simulation is that during the burn-in phase, interactions are not tracked.
The burn-in phase terminates once the system has reached equilibrium. MoDLE
simulation is iterative, meaning that the model iteratively performs a set of
predefined operations, such as binding LEFs and detecting collisions.

MoDLE’s simulation loop begins with binding and unbinding of LEFs to
DNA. LEFs can bind any region on the genome with equal probability, while
LEF release is biased such that LEFs stalled by a pair of convergent extrusion
barriers are less likely to be released. Next, MoDLE generates a set of candidate
moves for each LEF. These correspond to the distance a LEF is set to move
assuming no collision will take place during the current iteration.

The next step involves updating the extrusion barrier states by computing
the next state in the Markov chain used to model barriers. After that, MoDLE
proceeds to compute LEF-LEF and LEF-barrier collisions. Collision information
is used to update the candidate moves such that they do not violate the
constraints imposed by collision events. For example, if an extrusion unit
is set to move 100 bp but a collision will occur 50 bp downstream from the
current position, then the candidate move for this extrusion unit will be changed
to 50 bp.

Next, LEF positions are updated using the adjusted candidate moves. Finally,
a subset of the active LEFs are selected and released from the DNA. These

62

Summary of papers

LEFs will be bound to a new genomic region in the next iteration. Once the
burn-in phase is complete, every iteration, before moving LEFs, positions of a
subset of active LEFs are used to sample molecular interactions. The above
description refers to how simulations of individual chromosomes in distinct nuclei
are performed. In practice MoDLE runs many simulation instances in parallel by
generating a number of tasks based on the parameters provided as input. This
allows MoDLE performance to scale linearly with the number of CPU cores, as
simulation instances are for the most part independent from one another.

In MoDLE’s paper, we compare the interaction matrices produced by MoDLE
with Micro-C matrices as well as matrices generated with MD simulations and
show that the matrices produced by MoDLE are very similar to both Micro-C and
MD-simulated matrices. The paper next proceeds to show potential applications
of MoDLE, including how MoDLE can be used to estimate genome-wide as well
as local parameters of loop extrusion. Results of the genome-wide parameter
optimization highlight the possibility that CTCF may act as a barrier to DNA
loop extrusion using a broad range of binding kinetics. In the local optimization,
we show how MoDLE can be used to infer extrusion barrier occupancies from
Micro-C data.

Besides comparing simulated heatmaps with Micro-C data, we also compare
simulated LEF and extrusion barrier occupancies with choesin and CTCF
Chromatin ImmunoPrecipitation Sequencing (ChIP-seq) data, respectively. The
comparison shows how peaks and valleys in simulated data often correspond to
peaks and valleys in ChIP-seq data. Finally, we showcase MoDLE’s predictive
capabilities by modeling the HoxD cluster and showing how MoDLE can predict
the result of perturbing extrusion barriers at the HoxD locus.

MoDLE is written in C++17 and is released under the MIT license.
MoDLE’s source code is available on GitHub at github.com/paulsengroup/modle.
MoDLE’s binaries are available on GitHub and bioconda. A containerized version
of MoDLE can be downloaded from GHCR.io and DockerHub.

63

Summary of papers

Paper II

hictk: blazing fast toolkit to work with .hic and .cool files
Rossini R. and Paulsen J.
Submitted for publication.

We present hictk, a blazing-fast toolkit to work with .hic and .cool files.
hictk is both a Command Line Interface (CLI) application and a library designed
to transparently operate on .hic and .cool files (reviewed in Sections 3.4.7
and 3.4.8). The CLI component is built on top of the library components and
allows performing many common operations on .hic and .cool files directly from
the shell, including converting files in .hic an .mcool format. hictk provides a C++

library with Python bindings that can be used as base to build more complex
applications. The library provides a set of functions and classes to perform
simple operations such as fetching interactions overlapping a given query, as well
as more complex operations, such as merging multiple streams of pixels. The
hictk library makes heavy use of iterators to lazily traverse potentially large
collections of pixels using very little memory. From the developer’s perspective,
there is no difference between querying .hic or .cool files. The following Python
snippet shows how to fetch interactions overlapping a region of interest from a
.hic file using hictk’s Python bindings:

import hictkpy

import sys

file = hictkpy.File("interactions.mcool", 10_000)

selector = file.fetch("chr1:10,000,000-20,000,000")

df = selector.to_df()

Write pixels to stdout

df.to_csv(sys.stdout, sep="\t")

To fetch interactions from a .cool file, the only change required would be to
specify a different path to hictkpy.File().

In hictk’s paper, we compare hictk performance with that of cooler,
juicer_tools, straw and hic2cool, and find that hictk consistently out-
performs other tools across a broad selection of benchmarks. As an example, one
of our benchmarks shows that hictk convert is up to 42 faster than hic2cool

when converting a large .hic file to .mcool format. Another benchmark shows
that hictk is up to 1.5 times faster than straw and up to 20 faster than cooler

at reading interactions for chromosome 1 and writing them to standard output.
In the paper, we also show how trivial it is to modify existing applications to
use hictk instead of cooler to read interactions from .hic and .cool files.

64

Summary of papers

hictk is written in C++17 and is released under the MIT license. hictk’s
source code is available on GitHub at github.com/paulsengroup/hictk. hictk’s
binaries are available on bioconda. A containerized version of hictk can be
downloaded from GHCR.io and DockerHub.

Python bindings for the hictk library are available on GitHub
at github.com/paulsengroup/hictkpy, bioconda and PyPI.

65

Summary of papers

Paper III

Multi-level 3D genome organization deteriorates during breast cancer
progression
Rossini R., Oshaghi M., Nekrasov M., Bellanger A., Domaschenz R., Dijkwel Y.,
Abdelhalim M., Collas P., Tremethick D. and Paulsen J.
Submitted for publication.

We report here our study on the multi-level alteration of genome organi-
zation and expression during breast cancer progression. Using an in vitro model
of breast cancer (MCF10A, MCF10AT1 and MCF10Ca1a) we investigated
changes in 3D genome organization and expression associated with cancer
progression. To this aim, we generated Hi-C, RNA-seq, and Lamin B1 ChIP-seq
data and used publicly available datasets for several epigenetic marks. Using
Hi-C, we generate annotations of TADs, (sub)compartments, and TAD cliques
(reviewed in Sections 1.2.2, 1.2.4 and 1.2.5). Overall we find that TADs remain
stable during cancer progression, however, significant changes occur at the level
of TAD-TAD interactions, (sub)compartments, and gene expression.

First, we report major (sub)compartment switching throughout cancer
progression, with weak subcompartments, such as B0 and A0 subcompartments
showing a greater tendency to switch compared to stronger subcompartments
such as B3 and A3. Overlapping our subcompartment annotation with 3D in
silico models of the genome shows how the well-behaving radial positioning of
subcompartments in MCF10A is degraded in MCF10AT1 and MCF10Ca1a,
showing that radial positioning becomes compromised as cancer progresses to
later stages.

After describing the association between cancer progression and 3D structure
deterioration at the (sub)compartment level, we investigated the relation between
subcompartment switching and gene expression. We find that subcompartment
switches are often associated with changes in expression levels, where switches
towards open chromatin correspond to expression upregulation, while switches
towards closed chromatin correspond to downregulation of gene expression.

Next, we characterize changes in TAD-TAD interactions by analyzing TAD
cliques across the three stages. We find that TAD clique composition throughout
cancer progression is highly dynamic, exhibiting pervasive changes in maximal
clique sizes. By overlapping our subcompartment annotation with TAD cliques,
we find that larger cliques mostly consist of heterochromatic TADs, with
cliques of size 6 or greater almost exclusively consisting of regions annotated
as B3 subcompartments. Strikingly, in MCF10AT1 and MCF10Ca1a, large
cliques become more associated with regions annotated as B2 subcompartments.
Next, we cluster TAD cliques based on their subcompartment composition.
Clustering shows that TAD cliques often contain TADs belonging to different
subcompartments. Furthermore, we find that TAD cliques consisting of different
types of A-subcompartments are depleted in MCF10AT1 and MCF10Ca1a
compared to MCF10A.

66

Part IV

Discussion

Chapter 4

Main projects

During my PhD I have spent a significant amount of time designing, implementing
and using bioinformatics tools. The first year of my PhD was almost entirely
devoted to designing, implementing and testing MoDLE (Paper I).

While developing MoDLE, I found myself needing to write interactions
mediated by DNA loop extrusion to disk, which led me to develop a library
to read and write cooler files. This library was initially part of MoDLE, but
was later extracted and overhauled into a short-lived library, named coolerpp.
Coolerpp source code is now part of the hictk code base (Paper II). hictk itself
was developed while working on Paper III.

While working on this paper, at one point we wanted to assess the impact
of different matrix balancing algorithms on TAD calling. At that point, we
were mostly working with interactions in cooler format, however some balancing
algorithms can only be computed when working with .hic files. Unfortunately,
extracting balancing vectors from .hic file turned out to not be trivial. This,
and other issues faced when working with .hic and cooler files prompted us to
develop hictk.

After carefully studying the source code of straw, the only available library
capable of reading .hic files, we decided to write our own library to read .hic
files (see Paper II), as straw is affected by several important flaws discussed in
Section 4.8. This later turned out to be beneficial for hictk performance, as
having full control over code reading .hic files and writing cooler files opened up
possibilities for several optimizations. As Paper I (and later Paper II) involved
a significant amount of software development and relatively little data analysis,
towards the end of the first year of my PhD, I decided to embark in a project
involving data analysis of cancer progression, which eventually resulted in Paper
III.

The rest of this thesis is dedicated to a discussion of the three projects that
resulted in Paper I, Paper II, and Paper III. The discussion also includes a
section on the reproducibility of bioinformatic analyses and a section about other
projects I took part during the course of my PhD.

4.1 MoDLE: Modeling of DNA Loop Extrusion

MoDLE was the first project I began working on right after moving to Norway
and starting my PhD. Back then I was vaguely aware of the process of DNA
loop extrusion and had no experience working with Hi-C data. However, after
spending the first 1–2 months familiarizing myself with the field, I felt ready to
start developing an in silico model of DNA loop extrusion.

69

4. Main projects

4.2 Why develop MoDLE?

We decided to develop MoDLE for several reasons.
First, we saw a lack fo tools to simulate DNA loop extrusion, especially a lack

of efficient and easy to use tools. Back in 2020, virtually all attempts at modeling
DNA loop extrusion relied on MD simulations. While MD simulations offer great
flexibility in how a process like loop extrusion can be modeled, they are extremely
compute-intensive. Furthermore, MD simulations are not trivial to design and
implement, often requiring the involvement or at least the supervision of a MD
expert. Finally, it was not clear to us whether full-fledged MD simulations were
required to simulate loop extrusion interactions.

Second, the few available tools, were difficult to use. Reproducing the results
of MD simulations was often not possible due to the low quality or complete
lack of simulation code. This was preventing us, and likely many others, from
reproducing the results from scientific publications, as well as using existing
simulations as a starting point for our own simulations. Another issue with MD
simulations of DNA loop extrusion, is that they often require access to one or
more NVIDIA GPUs for the simulation to run in a matter of days instead of
weeks or months. Unfortunately, many compute clusters as well as individual
research groups do not have access to such GPUs.

Third, the computational demands of MD simulations do not support
chromosome-level or genome-wide simulations of loop extrusion, limiting our
ability to better understand the process. For example, without genome-wide
simulations, systematic identification of regions whose 3D structure is not
primarily determined by loop extrusion is not possible. Furthermore, there
is often no Hi-C data available for less commonly studied species and tissues.
A tool enabling genome-wide simulation of loop extrusion would allow us to
predict what the Hi-C data would look like at the TAD-scale.

Given the above points, we saw a need for a user-friendly tool for in silico
simulation of DNA loop extrusion at the genome-scale. It was originally thought
that the main function of TADs produced by DNA loop extrusion was that of
facilitating enhancer-promoter interactions of elements within the same TAD
and obstructing other types of interactions. Accordingly, our vision was to apply
MoDLE to predict the effect of perturbations at the TAD level on enhancer-
promoter interactions, and thus potentially gene expression.

4.3 A brief history of MoDLE

The current version of MoDLE (MoDLE v1.1.0) is a relatively large and complex
C++17 project, counting close to 30 thousand lines of code. However, MoDLE
started as a much simpler project, counting less than 10 thousand lines of code.

The initial version of MoDLE, v0.1.0 (09/03/2021), represented the genome
as a dense vector of bins, where each bin represented a fixed amount of DNA.
Bins were also used to track which LEFs and extrusion barriers were bound to
the DNA represented by the bin in a given simulation epoch. Upon binding,

70

A brief history of MoDLE

Figure 4.1: Comparison between heatmaps generated by MoDLE v0.1.0, (below
the diagonal) and Micro-C (4DNFI9GMP2J8, above the diagonal) at 10 kbp
resolution.

each LEF was assigned a lifetime, that is the number of epochs the LEF-DNA
binding was supposed to last. Upon collision events, a stochastic process was
used to determine the number of epochs a given LEF was not allowed to extrude
in the direction affected by the collision.

This design was simple to understand and implement, however, it was affected
by several issues (see Appendix A for more details). One of the issues was
performance. After profiling the execution time of this version of MoDLE, it
was clear that most of the CPU time was spent breaking and forming DNA
bonds between adjacent bins. Another factor affecting performance was the low
level of parallelism achievable with this implementation, as concurrency was
limited by the number of chromosomes to be simulated. This design was also
affected by a logic bug that caused extrusion barriers to appear as blocking
(i.e., bound by CTCF) and non-blocking (i.e., not bound by CTCF) in the same
epoch, depending on which LEFs queried barriers for their occupancy. This bug
was due to the stochastic process used to simulate LEF-barrier collision events.

Despite the outlined issues, heatmaps produced by MoDLE v0.1.0 recapitu-
lated important features of Hi-C data, such as stripes and dots (see Figure 4.1).
Not being happy with the computational performance of our model, we went
back to the drawing board to develop MoDLE v0.2.0.

The differences between MoDLE v0.1.0 and v0.2.0 (21/03/2021) are too many
to exhaustively list here (see Appendix A for more details). In brief, MoDLE

71

4. Main projects

v0.2.0 uses a sparse representation of the genome, where bins are no longer
explicitly modeled. Instead, MoDLE keeps a sorted list of extrusion barriers
and extrusion units (i.e., the reverse- and forward-moving components of LEFs).
We developed a family of algorithms based on the merge part of mergesort to
detect and process collision events in linear time complexity. These algorithms
rely on the fact that extrusion units and extrusion barriers are always sorted by
their genomic coordinates. To improve the level of simulation concurrency, we
introduced the notion of simulation instances. Instead of running one simulation
per chromosome, we now run several simulation instances per chromosome.
Simulation instances are largely independent from one another, and can thus
run in parallel without requiring extensive synchronization.

The result of the above changes led to a dramatic performance improvement,
with MoDLE v0.2.0 taking only 4 minutes 6 seconds to simulate loop extrusion
on hg38 using 256 CPU cores versus over 8 hours required by v0.1.0). That
being said, the model was still susceptible to falling into an inconsistent state
due to the way collisions were handled.

It was in MoDLE v0.3.0 (14/06/2021), that the logic bug affecting previous
versions was finally fixed. Addressing this bug required a significant rework of how
extrusion barriers were modeled and how collisions were handled (see Appendix A
for more details). Extrusion barriers are now modeled as a two-state (bound
and unbound) Markov process, such that at any given time, an extrusion
barrier instance is either bound or unbound. Changes in this version also include
improvements to how LEFs are loaded and released, changes to how collisions are
tracked, improvements to MoDLE’s test suite, CLI interface, and several changes
needed to make MoDLE’s output consistent across platforms. The simulation
algorithm of MoDLE v0.3.0 was also implemented using CUDA. However, this
implementation did not yield the expected performance improvements, and so
the GPU implementation was abandoned in favor of the CPU one.

MoDLE v0.3.0 was followed by version 0.4.0 and 0.4.1, which involved the
additions of features that are no longer part of MoDLE. After MoDLE v0.4.1 we
published 7 release candidates for v1.0.0, where we fixed many bugs, improved
the CLI interface, and further optimized performance. Versions 1.0.0-rc.3 and
1.0.0-rc.7 were used to produce the results presented in Paper I.

The latest version of MoDLE is v1.1.0. At its core, the simulation algorithms
used by MoDLE v0.3.0 and v1.1.0 are very similar. Figures 4.1 and 4.2 shows a
comparison of the heatmaps produced by MoDLE v0.1.0, v1.1.0 with Micro-C
heatmaps. Simulating loop extrusion on hg38 using 256 CPU cores with MoDLE
v1.1.0 takes 2 minutes 59 seconds.

72

A brief history of MoDLE

Figure 4.2: Comparison between heatmaps generated by MoDLE v1.1.0, (below
the diagonal) and Micro-C (4DNFI9GMP2J8, above the diagonal) at 10 kbp
resolution.

73

4. Main projects

4.4 Automating the build process of complex C++

applications

As pointed out in Section 4.3, MoDLE has grown into a fairly large and complex
C++ application. The latest version of MoDLE counts close to 30 thousand lines
of code, organized into 19 internal libraries and depending on over 25 external
libraries.

In languages like Python, Rust, or R, installing and importing third-party
libraries is trivial, as all three languages provide standard and mature facilities
to express software dependency graphs. Unfortunately C++ does not have a
standard build system, nor does it have a standard package manager, making
dependency management much more cumbersome. C++ applications with
third-party dependencies often require the users to install build, and runtime
dependencies manually. This can quickly spiral out of control, as third-party
dependencies can themselves depend on other libraries. Furthermore, manually
installing C++ dependencies may require compiling dependencies, and injecting
the path to libraries and header folders into the build system, which is usually
prohibitively difficult for non C++ developers. Finally, there is no guarantee
that once all dependencies have been manually installed the build system will
be able to find all required files, nor that the version of packages installed are
compatible. All of the above makes building bioinformatics software written in
C or C++ too complex for the average user.

In the case of MoDLE, we attempt to mitigate the above issues in three
ways. First, every time a commit is pushed to MoDLE’s main branch, we build
and publish MoDLE as a containerized application, so that users can use any
version of MoDLE without any setup required. Second, we contributed a recipe
for MoDLE to bioconda, so that users can easily install MoDLE using conda.
Third, we designed MoDLE’s build system to automate as many configuration
and build steps as possible, such that building MoDLE doesn’t require prior
experience building C++ applications.

Configuration and build steps are automated with CMake and Conan, which
can be easily installed through the OS package manager or pip, Python’s package
manager.

Another complication of C++ applications, is that by default applications
tend to use dynamic linking, meaning that every time an application is launched,
it has to look for all its dependencies. Dynamic linking and shared libraries have
their place, however in the context of bioinformatics software, in my opinion,
the benefits of dynamic linking do not justify its drawbacks. From a practical
perspective, the main drawback of dynamic linking is that updating dependencies
can break existing applications. However, this usually will go unnoticed until the
next time the application is launched. To avoid this issue, MoDLE is by default
built with static linking, meaning that compiled code for third-party libraries is
directly embedded in MoDLE’s binary. This means that future updates to the
OS or other packages are highly unlikely to break MoDLE. The disadvantages of
static linking are that it tends to produce large binaries and that applying security

74

Automating the build process of complex C++ applications

updates requires recompiling the entire application. However, given that binary
sizes of statically linked bioinformatics tools rarely exceed 10 megabytes, and that
most bioinformatics tools are not very exploitable from a security perspective,
these disadvantages are fairly limited for most bioinformatics applications and
certainly form MoDLE. Static linking is becoming much more popular, to the
point where there are now compiled languages such as Go and Rust that build
libraries and binaries with static linking by default.

Unfortunately, approaches to build and test automation such as those used
by MoDLE are rarely used in C++ bioinformatics applications. This is not
without good reason, as developing and maintaining these systems requires
a significant amount of work from the developer side, namely (1) knowledge
of at least another language (usually CMake or make), (2) familiarity with a
package manager such as Conan or vcpkg, and (3) familiarity with a Continuous
Integration (CI) pipeline such as GitHub Actions to automate build, test, and
deployment. Ultimately, it would be desirable for C++ to standardize a build
system and dependency management system. However, as this seems unlikely
to happen in the near future, we must resort to other solutions to streamline
installing C++ applications.

Conda and more specifically bioconda, provide a way to easily install
bioinformatics applications. However, bioconda does not support Windows
as a platform. Furthermore, macOS support is limited to the x86 architecture,
meaning that the new machines with CPUs based on Apple Silicon are not
natively supported. These machines can still install applications through
bioconda, however, they will incur a performance penalty, which can be significant
for C++ applications, as x86 applications installed through bioconda are executed
using the Rosetta 2 compatibility layer. Finally, package managers such as
bioconda encourage the use of dynamic linking, which as outlined in previous
lines, makes applications more prone to breaking due to dependency updates.

The dynamic linking model poses another issue for applications installed
through conda, namely the chance of generating dependency graphs that cannot
be solved. Consider two applications, A and B. Both applications depend on
library C, however, A depends on C v1 while B requires C v2. In the above case,
it will not be possible to install applications A and B in the same environment,
as conda does not support installing multiple versions of the same package
side-by-side. With static linking, the above issue would not be possible. There
are other package managers, such as spack that support installing multiple
versions of the same software side-by-side. However, spack requires building all
dependencies from source, which takes much longer than installing applications
through conda. Furthermore, build issues encountered while using spack are
often very difficult to debug even for experienced users, as users have to chase
issues that happened in an isolated build environment that is managed by spack.

Another approach to solving package management in bioinformatics is
containers. Containers sidestep the dependency management issue by bundling
software, libraries, and configuration files into container images, such as Docker or
Apptainer images. Using containerized applications does not usually involve any
set up step, only downloading the container image from DockerHub or GHCR.io.

75

4. Main projects

This allows users to effortlessly use applications as setup and configured by the
application’s developers. However, containers can be quite large for applications
with complex dependencies. Furthermore, combining multiple applications into
a single container often requires writing a new recipe from scratch. This means
that if a user wants to use applications A and B in the same environment, it does
not matter that containers for applications A and B are available individually.
If container A and B use different base images, or if A and B are not simple
applications that can be installed by copying a handful of files, then the two
containers cannot be easily combined.

While package managers like conda and distribution systems based on
containers are greatly simplifying the distribution of bioinformatics applications,
we do not yet have a silver-bullet solution to easily consume any bioinformatics
package. Simpler solutions, like bioconda, do not natively support all platforms,
while more complex solutions such as containers can in principle support any
platform but are less user-friendly to use and combine. An emerging solution to
connect multiple containers in a data analysis pipeline are workflow systems such
as Nextflow and Snakemake (reviewed in Chapter 6). The resulting workflows
are easy to use across platforms, however writing or modifying the workflows
requires knowledge of yet another programming language and programming
model, thus excluding less technically inclined users.

76

Applications of MoDLE

4.5 Applications of MoDLE

The ability to accurately simulate loop extrusion genome-wide and with excellent
performance makes MoDLE suitable for several applications that were not
previously possible. In Paper I we demonstrate three possible applications of
MoDLE.

4.5.1 Genome-wide optimization of loop extrusion parameters

(a) (b)

Figure 4.3: MoDLE genome-wide parameter optimization. A Diagram of the
Markov process used to simulate extrusion barriers by MoDLE. The diagram with
red/blue boxes shows the chain of states assumed by an extrusion barrier instance
given different parameter combinations. B Density plot showing the results of
the MoDLE’s genome-wide parameter optimization. The plot shows MoDLE’s
performance across the searched parameter space. Red star, orange pentagon,
blue square, and green triangle show optimal, near-optimal, suboptimal, and
non-optimal parameter combinations, respectively.
Figures 4A and 4C from MoDLE: high-performance stochastic modeling of DNA
loop extrusion interactions - 10.1186/s13059-022-02815-7.
Figures licensed under the CC BY 4.0 DEED license.

Small-scale in silico simulations of DNA loop extrusion have been instrumental
to better understanding the core principles and dynamics of DNA loop extrusion.
However, the inability to simulate loop extrusion genome-wide limits the extent
to which we can understand this process. For example, without genome-wide
simulations, it is not possible to generate a genome-wide annotation of regions
whose 3D structure is not primarily determined by loop extrusion. Another
application that requires performing genome-wide simulation is the unbiased
estimation of general loop extrusion parameters.

77

4. Main projects

In Paper I we take advantage of MoDLE’s ability to simulate loop extrusion
genome-wide to optimize loop extrusion parameters along the entire genome
instead of small, selected regions like was previously done. More specifically, we
were interested in characterizing the parameters governing the binding kinetics
of extrusion barriers modeled as CTCF barriers. This was interesting to us, as it
was previously described that CTCF residence time is approximately one minute,
while cohesin’s residence time is in the order of 30 minutes [231], however, it
was not known whether this is the only regime where CTCF can efficiently stall
LEFs, or if other regimes are possible. Showing that CTCF can act as a barrier
to DNA loop extrusion under different regimes suggests that CTCF binding
kinetics may vary along the genome, in different tissues, or even different species.

As outlined in Paper I, Section 4.3 and shown in Figure 4.3a, MoDLE models
extrusion barriers using a two-state Markov process (bound and unbound). The
dynamics of the Markov process are determined by three variables: (1) PBB,
(2) PUU , and (3) πB. PBB is the probability of self-transition to the “bound”
state, while PUU is the self-transition probability to the “unbound” state, and
πB is the probability of binding for a CTCF binding site in a simulation epoch.
These transition probabilities can be inferred from cohesin or CTCF ChIP-seq
as outlined in Paper I and references [131, 155]. However, in the MoDLE paper
we sought to optimize πB and PUU , genome-wide, to maximize similarities
between heatmaps simulated by MoDLE and Micro-C heatmaps. Parameters
were optimized with Bayesian optimization using Gaussian processes (see Paper
I for more details). The objective function used for optimization was designed
to detect similarities in stripe position and length given a pair of interaction
matrices (see Paper I for more details). We find that the optimal parameter
combination is πB = 0.747 and PUU = 0.963. This suggests that the dynamics
of CTCF barriers are best recapitulated by relatively long intervals where the
binding site is occupied, followed by long, but comparatively shorter intervals
where the binding site is not occupied. However, as shown in Figure 4.3b, there is
a broad range of parameter combinations that can yield near-optimal heatmaps.
More specifically, average occupancy πB can assume values between 0.6 and
0.9 as long as PUU is relatively high (> 0.8). Near-optimal results can also be
achieved when occupancy is very high (> 0.9) and PUU is relatively low (< 0.8).

This suggests that CTCF can be an effective barrier to loop extrusion under
two regimes: one characterized by lower occupancies and with high binding
stability, and the other with high occupancy but low binding stability.

78

Applications of MoDLE

4.5.2 Local optimization of loop extrusion parameters

Figure 4.4: Result of the local parameter optimization using MoDLE. A Micro-C
data from a 5 Mbp region from chromosome 1. B Output produced by MoDLE
for the same region after the optimization of extrusion barrier parameters. C
Output produced by MoDLE for the same region using barrier parameters
inferred from RAD21 ChIP-seq data. D-E Panels showing the average extrusion
barrier and LEF occupancy profiles generated by MoDLE. F-G Panels showing
the fold-change over control for CTCF and RAD21 ChIP-seq data.
Figure 6 from MoDLE: high-performance stochastic modeling of DNA loop
extrusion interactions - 10.1186/s13059-022-02815-7.
Figures licensed under the CC BY 4.0 DEED license.

Another application of MoDLE presented in Paper I, is the local optimization of
loop extrusion parameters. This time we optimized the transition probabilities
of individual extrusion barriers in a 5 Mbp region harboring over 2100 candidate
CTCF binding sites. We were interested in learning whether MoDLE could be
used to infer loop extrusion parameters from Micro-C data alone.

With this aim, we developed an optimization strategy based on genetic
algorithms to optimize πB using a modified version of the objective function
employed in the genome-wide parameter optimization (see Paper I for more
details).

The results of this optimization show that in the absence of ChIP-seq data,
MoDLE can infer individual CTCF barrier occupancies from Micro-C data
(see Figure 4.4). We compare the simulated LEF and CTCF occupancy with
RAD21 and CTCF ChIP-seq data, and find that peaks and valleys in simulated
data often coincide with those found in experimental data (see Figure 4.4),
suggesting that the parameters inferred and the process simulated by MoDLE
are biologically meaningful.

One extension to this optimization strategy could be to generate candidate
extrusion barrier binding sites by e.g., placing a pair of divergent barriers every
100 bp, then optimizing their occupancy. Doing so would yield a profile of
extrusion barrier occupancy that includes, but is not limited to, CTCF barriers,

79

4. Main projects

thus aiding the characterization of extrusion barriers other than CTCF.

4.5.3 Predicting the effects of TAD border alteration

Figure 4.5: MoDLE simulations used to predict the effects of deletions to TAD
borders at the HoxD locus.

The last application we display in Paper I, is using MoDLE to predict the effects
of extrusion barrier alterations at the HoxD cluster locus. This is an important
validation step for our model and will inform us as to whether MoDLE can be
used to predict the effects of local perturbations to extrusion barriers.

First, we inferred extrusion barrier occupancies from Micro-C data as outlined
in Section 4.5.2. Next, we in silico inactivated barriers separating the centromeric
and telomeric domains of the HoxD cluster (C- and T-Dom, respectively).
Inactivation or deletion of these barriers is known to lead to increased interactions
between the two domains [232, 233].

MoDLE’s simulations correctly predict that inactivating barriers separating
the T- and C-Dom causes a loss of insulation. As shown in Figure 4.5, this
leads to the merging of TADs separating the two domains. Thus, we conclude
that MoDLE can be used to test the effects of local perturbations to DNA loop
extrusion.

4.6 Current limitations of MoDLE

Several factors are limiting MoDLE accuracy, applications, and overall usefulness.
As reported by others and us [131], comparing the result of simulations with

real Hi-C or Micro-C data yields mixed results. For some regions, the level of
agreement between simulated and observed heatmaps is strikingly high, while

80

Current limitations of MoDLE

for other regions the level of agreement is much poorer. The main issue here
is the availability of accurate extrusion barrier annotations, both in terms of
barrier positions and strength. It is common practice to generate extrusion
barrier annotations to simulate loop extrusion from CTCF or RAD21 ChIP-seq
data. However, as outlined above, this often yields mixed results, suggesting
two things: (1) loop extrusion as it is currently understood, may not be the only
process involved in shaping the 3D genome structure at the TAD level; (2) CTCF,
RNAPII, and MCMs may not be the only molecules able to stall loop extrusion.
This second point is substantiated by evidence produced by Hsieh et al. [50] as
well as by us (unpublished results), showing that DNA accessibility is a better
predictor for extrusion barrier occupancy. This is an intriguing possibility, both
from a mechanistic point of view, but also for potential applications of MoDLE,
as data such as Assay for Transposase-Accessible Chromatin using Sequencing
(ATAC-seq) are more widely available than CTCF or RAD21 ChIP-seq. Thus,
a combination of CTCF candidate binding sites and ATAC-seq could be used to
simulate loop extrusion for tissues or species where CTCF or RAD21 ChIP-seq
data is lacking. Candidate binding sites can be easily obtained by mining the
reference genome using tools such as MAST [234], while DNA accessibility can
be inferred from DNase-seq or ATAC-seq data.

In the case of MoDLE, simulation accuracy could also be affected by
the fact that MoDLE does not currently support simulating barriers other
than CTCF, such as RNAPII and MCMs, nor it supports simulating A/B
compartmentalization.

Another aspect that is not currently possible to simulate with MoDLE, is
the preferential loading of LEFs at specific loci or regions, such as preferential
loading at enhancers and promoters.

Next, because MoDLE does not explicitly simulate polymer dynamics
through e.g., MD simulations, the resulting heatmaps only contain interactions
directly mediated by loop extrusion, meaning that data for regions far from
the matrix diagonal is either very sparse or missing altogether. This makes it
difficult to compare MoDLE output with that of Hi-C or Micro-C experiments,
as usual approaches such as matrix correlation result in very low correlation
values that do not reflect similarities observed when visually inspecting simulated
matrices. The uninformativeness of correlation metrics when comparing matrices
produced by MoDLE and Hi-C or Micro-C matrices was one of the reasons we
developed a custom objective function to use for parameter optimization, as
using correlation metrics led to parameter combinations that were obviously
incorrect (e.g., average LEF lifetimes of approximately 0 and extremely high
or extremely low extrusion barrier occupancies). This also suggests that loop
extrusion itself may not be involved in establishing intra-TAD interactions and
that other processes, possibly similar to the hypothesized process of phase-
separation are responsible for the formation of TAD-cliques. Furthermore, the
fact that TAD-cliques are often associated with the nuclear lamina suggests that
a subset of TAD-TAD interactions are driven by TAD co-localization at the
nuclear lamina.

Finally, there are many differences between MoDLE’s approach to simulating

81

4. Main projects

loop extrusion and MD approaches. One of the differences is computational
efficiency, where MoDLE outclasses MD approaches. However, extending MD
models to change how loop extrusion is simulated is much simpler than modifying
MoDLE, as the latter requires C++ proficiency and deep knowledge of MoDLE’s
code base. This lack of flexibility from MoDLE’s part, is the result of tradeoffs
between performance optimizations, user-friendliness, and extensibility.

4.7 MoDLE: future perspectives

At the time of writing, MoDLE has received a fair bit of attention from the
scientific community. However, the use of MoDLE outside of our group is fairly
limited, suggesting that our users are facing difficulties when trying to apply
MoDLE to answer their research questions. As discussed in the previous section,
there are currently several limitations preventing MoDLE from being more widely
used. One of them is that while it is easy to use MoDLE to generate a .cool file
with interactions resembling that of Hi-C and Micro-C, quantitative analysis of
this data is a bit cumbersome, as comparing simulated data with experimental
data is not trivial. The MoDLE package consists of two commands: modle

and modle_tools, the first simulates loop extrusion interactions, and the latter
includes several subcommands to preprocess MoDLE’s inputs or postprocess
MoDLE’s output.

To improve MoDLE usability, future work should focus on expanding
modle_tools to provide easy and clear workflows that take MoDLE-simulated
heatmaps as input, and produce biologically meaningful results as output. For
example, in Paper I we show that MoDLE can recapitulate the effects of local
perturbations of extrusion barriers at the HoxD cluster. This suggests, that
MoDLE could be used to inform and guide experiments using genome-editing to
perturbate loop extrusion on a region of interest. To support this use case, we
could develop a workflow that programmatically perturbates extrusion barriers
and simulation parameters over a genomic region of interest, then rank extrusion
barriers based on the magnitude of the effect of their perturbation. The feasibility
of such a workflow depends on the availability of reliable annotations of extrusion
barrier occupancies, as well as the ability to robustly compare heatmaps generated
by different runs of MoDLE.

Another potential application of MoDLE is that of classifying the genome
into two categories: (1) regions whose 3D structure is largely determined by
DNA loop extrusion, and (2) regions whose 3D structure is determined by other
processes. This information could be used by studies trying to discover and
describe new processes involved in the local 3D structure of genomes. However,
such a workflow depends on our ability to compare MoDLE’s output with
experimental data in a meaningful way.

Finally, another application of MoDLE could be that of generating genome-
wide annotations of TADs for species who lack publicly available Hi-C data but
that have other types of data such as ATAC-seq or CTCF ChIP-seq. These kinds
of applications rely on the availability of robust inference methods to generate

82

hictk: blazing fast toolkit to work with .hic and .cool files

reliable extrusion barrier annotations from epigenetic data. Unfortunately
generating such annotations is not yet a solved problem.

4.8 hictk: blazing fast toolkit to work with .hic and .cool files

hictk is one of the projects I started working on after MoDLE’s paper was
published. As I will briefly explain in Section 4.10, in practice hictk development
overlapped with MoDLE development as well as with the data analysis for Paper
III.

4.9 Why develop hictk?

hictk spun out of our need for better interoperability between .hic and cooler
file formats.

The .hic and cooler file formats are the de-facto standard formats used to
store pairwise interactions produced by 3C experiments (see Chapter 3 for more
details). However, interoperability between the two formats has historically been
rather poor. This was due to the lack of tools that can easily convert between
the two file formats. The state of library support to read and write both formats
is also not ideal. The cooler Python library can be used to read and write cooler
files, while .hic files can be read using the straw library, which is available for
C++, MATLAB, Python, and R. However, there is no library support to create
.hic files. Furthermore, cooler and straw Application Programming Interfaces
(APIs) are significantly different. Thus, writing applications capable of reading
interactions from .hic and cooler files requires writing IO code twice, once for
.hic files and another time for cooler files. This means that, in practice, most
applications can read interactions only from .hic, cooler, or text files, leaving
the burden of format conversion on the user. Unfortunately, converting between
file formats is not trivial, and sometimes is not possible at all (e.g., converting
.hic v9 files to .mcool format was not possible using existing tools). For these
reasons, I decided to develop hictk, a blazing fast toolkit to work with .hic and
.cool files.

While designing the toolkit, I considered re-using existing libraries for IO
on .hic and .cool files, however, I decided to develop hictk from scratch and
implement functionality from these libraries from scratch for the following reasons.
Cooler is an excellent library to read and write cooler files. The library is written
in Python and has a clear, powerful, and thoroughly tested API. Unfortunately,
the fact that the library is written in Python makes it very difficult to use outside
of Python applications. The straw library is written in C++ and provides bindings
for a multitude of languages. Unfortunately, straw API is not as powerful as that
of cooler. For example, straw’s C++ public API is limited to reading interactions
into a vector of triplets (pos1, pos2, count) or as a dense matrix (implemented
as a vector of vectors that does not support any operation beside iterations and
accessing elements by index). Furthermore, the C++ implementation is affected
by several bugs and design issues. For example, the library leaks memory every

83

4. Main projects

time the straw function is called, causing applications that perform a large
number of queries to eventually run out of memory.

Another issue is that the library communicates errors to the user by printing
messages to stdout or stderr, then exiting in a way that cannot be caught
by applications. This approach to error handling is also followed in case of
recoverable errors, such as queries on non-existing chromosomes. The exit signal
issued by straw when errors are encountered cannot be caught or avoided, not
even in higher-level languages such as Python. As a result, performing a query
on invalid chromosomes from Python results in the Python interpreter to quit
upon errors.

Finally, contrary to what is stated on straw’s GitHub repository (“Straw:
rapidly stream data from .hic files”), straw does not stream interactions, but
rather reads all interactions into a vector, then returns that vector. This means
that performing large queries on high-resolution interaction matrices requires
a large amount of memory. I considered, addressing the above issues and
contributing my changes upstream, however, the amount of changes required
together with the lack of a test infrastructure to ensure my changes did not
break straw made me shy away from this option.

Difficulties with format conversions are not only technical issues that
individual researchers have to deal with but also an issue for consortia such
as the 4DNucleome and ENCODE. For example, the 4DNucleome provides
Hi-C datasets in .mcool and .hic format. Surprisingly, downloading files in both
formats and comparing them with e.g., hictk reveals that the two files are not
identical, but rather have small differences, which are likely due to how pair-wise
interactions are binned by the pipelines that generate cooler and .hic files. The
ability to reliably convert between the two formats would allow these consortia
to use a single pipeline to generate files in .hic or .mcool format, then use a
conversion tool such as hictk convert to convert files to the other format.

Another consequence of poor format interoperability, is the segregation of the
field into at least two separate communities, one using Hi-C data for assembly
purposes and the other using Hi-C data for genome analysis. The first community
almost exclusively uses files in .hic format, as most tools for genome assembly
expect interactions to be in .hic format, while the latter uses a mix of .hic and
cooler files, depending on the specifics of the data analysis that is being carried
out. Nowadays, a large amount of data is generated for assembly purposes.
However, there is no biological reason why these datasets could not be used for
other purposes. Unfortunately, difficulties with format conversion are one of the
reasons why this is rarely done.

84

History of hictk

4.10 History of hictk

hictk history is a bit more intricate than one may think. While hictk in its
current form was conceptualized and implemented during the summer of 2023,
many of its components were developed earlier than that.

The first component that I developed, and that is now part of hictk, is the
library part to read and write cooler files. The first version of this library dates
back to early spring 2021. Back then I was working on MoDLE and realized that
I needed a reasonable, high-performance way to write interactions to disk. This
resulted in the development of a small library part of MoDLE code base that
supported the bare-minimum operations required for MoDLE to be able to write
interactions to disk. Later in the same year, the library was expanded to also
support reading interactions, as this functionality was now required by certain
subcommands of modle_tools. Fast forwarding to April 2022, this library was
now mature enough to be used as a general-purpose library to read and write
cooler files, so I decided to refactor the code into a library named coolerpp.
coolerpp was a short-lived library that was not publicized and, as far as I am
aware, was never used outside of our group.

In late 2022 I was working on the data analysis for Paper III, and needed
to convert matrices in .mcool format to .hic format, and then back to .mcool
format. The workflow to perform the above operations turned out to be relatively
complex due to format incompatibilities and issues when trying to read .hic
files (e.g. the issues outlined in Section 4.9). This led me to develop a C++

library named hicxx that could read interactions from .hic v8 and v9 files. Using
coolerpp and hicxx, I wrote a tool named hic2cool-ng (hic2cool next-generation)
to convert .hic files to .mcool format. In the process, I realized that coolerpp
and hicxx could have been much more useful if combined into a single library.

This is how hictk was born. hictk’s repository was created on June 8, 2023,
by merging and refactoring code from hicxx and coolerpp. After merging and
integrating the two codebases, I worked on performance optimizations and added
the functionality required to implement the commands that are now part of the
hictk CLI tool, such as the ability to merge streams of pixels, validating .hic and
cooler files, coarsening streams of pixels and much more.

4.11 The importance of documentation

No matter the quality and performance of software, proper documentation
is required for software to be useful. hictk documentation is hosted on read
the docs at hictk.readthedocs.io. The documentation includes instructions of
how to install hictk from bioconda and from source, as well as instructions
of how to acquire hictk Docker images. Furthermore, the documentation
comes with examples of how the CLI and API can be used to perform
common operations. Documentation for hictkpy is also hosted on read the
docs at hictkpy.readthedocs.io and has a similar structure to that of hictk’s
documentation. Considering that hictk is a young project, documentation

85

4. Main projects

is adequate. However, more work needs to be done to bring it on par with
documentation of more mature projects such as the likes of cooler.

4.12 The importance of correctness

One aspect that is often neglected in bioinformatics software development, is
automated testing. Most bioinformatics applications provide a test dataset that
can be used to run the application with default settings. If the application does
not crash and some output is produced, the application is assumed to be correct.
This assumption could not be further from the truth, as any software, especially
complex software, can fail or misbehave in a million different ways.

For this reason, while developing hictk I decided to take a more thorough
approach to testing, one where the development of new code and its tests
proceeded in parallel. When appropriate, I followed a test-driven development,
whereby code for the test case was implemented before writing the functions or
classes to be tested.

The latest version of hictk’s codebase is tested with 80 unit tests and 22
integration tests, achieving over 83% code coverage. Automated tests are run
every time a commit is pushed to hictk’s repository (including commits pushed
as part of pull requests). Furthermore, every week or whenever new commits
are pushed to the main branch, a suite of randomized tests is executed. For this
purpose, we generated a pair of identical .mcool and .hic files. These files are
used as input for the randomized test suite, where thousands of random queries
are generated and executed, and the output of hictk and cooler are compared to
ensure both applications return identical interactions when given the same query.
This level of testing contributes to making us confident that the output produced
by hictk implementation is fundamentally correct, and that application and
library code deal with invalid inputs in a reasonable way. Furthermore, because
hictk is a C++ application, hictk can be affected by bugs related to memory
management. To prevent these kinds of bugs, I avoid manually allocating memory
whenever possible, and use instead facilities to manage memory allocations and
access to uninitialized memory that are provided by the standard library, such
as smart pointers, standard containers, std::variant, and std::optional.
Furthermore, automated tests are run using hictk builds that are instrumented
with Address Sanitizer (ASan) and Undefined Behavior Sanitizer (UBSan) to
detect memory errors and undefined behavior at runtime. As hictk grew in
complexity, its test suite grew as well.

hictk test suite has reached a point where running the automated tests
on Ubuntu, testing 4 different compilers using a total of 6 different build
configurations takes close to 2h. Automated tests are not only run on Ubuntu
systems, but also on macOS Big Sur, Monterey, and Ventura, as well as Windows
Server 2022. As hictk continues to grow, we will have to find ways to modularize
hictk’s test suite to support running portions of the full test suite. This will
be necessary to improve the speed of automated tests to provide more rapid
feedback to developers regarding the correctness of their changes.

86

Current limitations of hictk

4.13 Current limitations of hictk

hictk currently implements the vast majority of the functionality required to
read any .cool and .hic file. However, there are a few edge cases that are not
currently supported.

First, .hic files older than v6 are not supported, the reason being that we were
unable to find files this old. Furthermore, there is no specification for format v6
and older. Support for format v6 is provided by mimicking how straw processes
.hic v6 files. There are no current plans to support reading .hic files older than
v6.

Second, both .hic files and cooler files support writing interactions using a
variable bin size. However, these kinds of files are encountered very rarely, so
supporting them was not one of our priorities. That being said, we do plan to
support these kinds of files. This will require generalizing our concept of bin
table to also support variable bin sizes.

Third, hictk does not natively support writing .hic files. Currently, functions
and subcommands that need to write to .hic files depend on JuicerTools and
HiCTools to do so. However, this is suboptimal, as both tools depend on the
presence of the Java Virtual Machine (JVM), which is a large dependency, and
something we would like to avoid. Furthermore, writing files in .hic format
currently takes a long time and requires large amounts of memory. With hictk,
I believe it will be possible to significantly reduce memory requirements while
improving performance. This is a use case we definitely want to support in the
near future.

Finally, hictk does not currently support reading remote files. Supporting
this for .hic files is relatively easy, as in this case, we have full control over
low-level IO operations. However, doing the same for cooler files is not trivial,
as in this case, we have no control over low-level IO operations. Supporting
remote file access for cooler files will likely require a significant amount of work,
and may in the end not be possible at all. Thus, reading remote cooler files
may require users to mount remote HTTP or FTP files and folders on the local
filesystem using e.g., Filesystem in USErspace (FUSE).

4.14 hictk: future perspectives

I developed hictk with the aim of bridging the .hic and cooler worlds while
shielding users from the details and complexity associated with the low-level
operations on the two file formats.

hictk was not publicized to the scientific community up until very recently,
and as such I believe there are currently no users outside of our group. We
decided to not advertise hictk, as the project was made public towards the end
of my PhD, as I was busy wrapping up Paper II and Paper III and would most
likely not have time to fix bugs and provide adequate user support. However,
this is soon going to change, and I hope the community will find hictk useful
and embrace the new possibilities that tools like hictk open up.

87

4. Main projects

I intend to continue developing and supporting hictk for as long as possible.
Some of the features and improvements I intend to implement have been listed
in Section 4.13, however, there are other improvements I would like to introduce,
such as supporting balancing interactions using other algorithms beside Iterative
Correction and Eigenvector decomposition (ICE), providing bindings for more
scripting languages, such as R, and expanding the documentation.

Besides improvements to hictk itself, I am also looking forward to seeing the
hictk library being used to write new applications or update old applications
to support both .hic and cooler formats. As a matter of fact, I am planning
to do some of this work myself by e.g., updating MoDLE to use hictk instead
of coolerpp, as well as contributing to third-party projects to help them take
advantage of hictk. One of such project is HiGlass, a web application to visualize
Hi-C matrices and other types of biological data. The HiGlass backend is written
in Python, and up until now only supported reading cooler files using the cooler
Python API. Updating HiGlass to use hictk would enable HiGlass to visualize
interactions from both .cool and .hic files. Given that cooler’s and hictk’s Python
APIs are very similar, I expect this could be achieved with minimal changes to
the HiGlass codebase.

Developing hictk required me to become knowledgeable about the .hic and
cooler format specifications. I believe this puts me in a position to provide useful
insights when it comes to the development and improvement of file formats
to represent genomic interactions such as those produced by Hi-C and Pore-
C experiments. While the current version of .hic and cooler enable efficient
storage of binned pair-wise interactions, new storage strategies will have to be
developed to support multiway interactions such as those produced by Pore-C
experiments. Furthermore, there are currently no formats designed to efficiently
represent and query pair-wise or multiway interactions directly. Pairix (reviewed
in Section 3.3.3.2) is a step in the right direction, however, the format itself
operates on compressed text files, where a compressed binary representation
would certainly improve file size and query performance. After my PhD, it is my
intention to continue being involved in file format standardization and library
development.

During my PhD, most of my development efforts were done on my own
without collaborating with other developers. However, going forward I would
like to increase my collaborations with other developers to improve the quality
of the software I develop and receive feedback from other experts in the field.
This will likely mean collaborating with groups such as the Open2C and the
4DNucleome.

4.15 Why analyzing cancer data?

Breast cancer is the most common type of cancer and is characterized by complex
disorganization of the 3D genome structure. Thus, understanding the reasons
behind the 3D structure disorganization is crucial to better understanding
how breast cancer and other types of cancer develop and progress. While

88

Global deterioration of the 3D genome during cancer progression

the disorganization of the 3D structure of genomes in breast cancer has been
previously described [235, 236], there are currently no studies characterizing this
dysregulation during cancer progression. For this reason, we decided to write
Paper III, where we characterize the genome 3D structure in an in vitro model
of breast cancer. Analyzing human cancer data provided me with a new set of
challenges and skills to learn, as well as the opportunity to contribute knowledge
to the scientific community that one day may inform the development of new
therapies to treat cancer.

First, our cancer model is affected by structural variations. This poses a
number of challenges when analyzing Hi-C data, given that data is mapped to
reference genomes without structural variations, meaning that interactions that
in reality are occurring in cis, appear in the trans portion of Hi-C maps.

Second, the project involved analyzing other kinds of data, including
epigenetic data and expression data.

Third, while workflows for the analysis of ChIP-seq and RNA-seq data are
fairly standardized, the same cannot be said for Hi-C data analysis. This meant
I had to develop my own data analysis workflow as part of this project. Finally,
analyzing data in a reproducible way involves an additional set of challenges, as
reproducibility must be baked in when designing the analysis workflows.

4.16 Global deterioration of the 3D genome during cancer
progression

While perturbations at the TADs have been shown to be the cause of
developmental diseases as well as being associated with some types of cancer
and degenerative diseases, in Paper III we report that TADs do not undergo
significant rearrangements during cancer progression in our breast cancer model.
In contrast, we report that TAD cliques undergo significant reconfiguration as
cancer progresses. This is quite surprising, as it suggests that the properties
of TADs themselves do not change significantly, while the way they interact
with each other does. This can be interpreted in two opposite ways: (1)
the structural and regulatory role of TADs is so important that significant
perturbations involving TADs are not observed because they are lethal, and (2)
TADs have a marginal role when it comes to gene expression orchestration and
thus their perturbation often does not lead to changes in expression levels. A
third hypothesis is that both hypotheses 1 and 2 are true at the same time for
different parts of the genome. Experiments depleting factors involved in loop
extrusion, such as cohesin and CTCF, suggest that the second hypothesis is true.
However, these experiments deplete proteins for a relatively short amount of time,
thus it is possible that longer depletion times are required in order to observe
a more significant change in gene expression. The high level of conservation of
TADs across cell types and, to some extent, different species, supports the first
hypothesis. However, the high variability on TAD-TAD interactions suggests
that this type of interaction is less fundamental for cell viability, however, due

89

4. Main projects

to their pervasiveness in our cancer model it is possible that they play a role in
the progression of cancer.

One of the main findings of Paper III is that subcompartments undergo
significant rearrangements during cancer progression, with different subcompart-
ments showing distinct switching behavior. Perhaps as expected, intermediate
subcompartments such as B0 and A0 show the greatest tendency to switch to
any other subcompartment type. Surprisingly, there are relatively few A0→B0
and B0→A0 transitions, suggesting that B0 and A0 subcompartments may
characterize regions where chromatin is in an intermediate state, waiting to be
remodeled into eu- or heterochromatin. This hypothesis is substantiated by the
lack of both enrichment and depletion of active and repressive histone marks in
B0 and A0 subcompartments.

Subcompartment switching in T1 and C1 are also associated with the deteri-
oration of chromatin radial positioning. This may suggest that subcompartment
transitions involving B3 and B2 subcompartments are either cause or consequence
of the deterioration of chromatin radial positioning.

Ultimately, more studies will be needed to further clarify this relationship.
Regardless of their cause, we report that compartment switches affect gene
expression in the expected direction, that is switches toward open chromatin lead
to the upregulation of gene expression, while switches towards closed chromatin
lead to gene expression downregulation. However, the correlation between
compartment switches and changes in gene expression is fairly mild, suggesting
that there is not a 1:1 correspondence between the two variables and that only
a subset of differentially expressed genes can be explained by subcompartment
switches.

In conclusion, at the global level, we report a general deterioration of the
3D genome organization. This deterioration is especially pronounced at the
subcompartment and TAD clique level.

4.17 Structural variation at the MYC locus is associated with
upregulation of known oncogenes

After characterizing the deterioration of the 3D genome organization at a global
level, we decided to focus on the MYC locus, which in healthy cells is located
on chromosome 8. As outlined in Part III, this locus is involved in a structural
rearrangement consisting of a translocation and amplification. Unfortunately,
due to the complexity of the structural rearrangement, we were unable to fully
resolve the topology of the translocated region. However, we were able to
show that the translocation results in two de novo contacts between enhancer
elements on chromosome 10 and MYC ’s promoter. The large copy number of
the translocated region opens the possibility that the translocated region exists
as a circular, extra chromosomal DNA (ecDNA), which is not uncommon for
the MYC region in cancer cell lines. This hypothesis could be verified e.g., using
FISH by using probes that hybridize to chromosome 8, chromosome 10, and the

90

Structural variants complicate the analysis of Hi-C data

translocated regions. If the translocated region exists as an ecDNA, then we
should observe at least three bright dots in the FISH experiment.

4.18 Structural variants complicate the analysis of Hi-C data

(a) Translocation event visualized
through Hi-C heatmaps. The translo-
cated region appears as a darker square
in the chr3:chr5 region of the interac-
tion matrix.

(b) Amplification event visualized
through Hi-C heatmaps. The amplified
region appears as a sharp, dark square
of enriched interactions.

As briefly mentioned in Section 4.15, the data analysis for Paper III was
complicated by the presence of several translocations and copy number alterations.
Figure 4.6a shows an example of how translocations appear in Hi-C data. This
poses several issues, as interactions that are occurring in cis appear as taking
place in trans in the Hi-C data. This can easily interfere with any statistical tests
to identify significant interactions in Hi-C matrix, like the one used to call TAD
cliques in Paper III. Ultimately, the proper way to deal with translocations in
Hi-C data would be to generate a new reference genome assembly that includes
translocations and map the Hi-C reads back to this new reference. Unfortunately,
this is highly impractical, as generating the new assembly will likely require
Whole Genome Sequencing (WGS). This could in principle be avoided by
splitting the original assembly at translocation breakpoints, then re-scaffold
the assembly. However, there are currently no tools that can automate this
process. Furthermore, re-scaffolding may in the end fail due to the lack of
phasing information. Finally, this would require a system, such as liftOver, to
map between coordinates of different reference genomes, further complicating
the analysis. Some of this complexity could be reduced by using a graph
representation of the genome assembly. However, tools to operate on genome
graphs are still in the early stages. Furthermore, the pipelines used to generate Hi-
C maps would have to be updated to work with this kind of genome representation.

91

4. Main projects

In conclusion, the field currently lacks tools to effectively deal with translocations
in Hi-C data.

Another issue is that of Copy Number Variations (CNVs), whereby one or
more regions are present in more or less copies than what is found in the wild-type
genotype. In the context of Hi-C data, amplified regions will appear to interact
more strongly (see Figure 4.6b), as reads originated from different copies of the
same regions will be mapped back to the same region in the genome assembly.
Generating a custom genome assembly with the copy-altered regions will not help
in this case, as this would result in multi-mapping reads that cannot be uniquely
assigned to a genomic region. The common approach to deal with CNVs in
Hi-C data is to balance interaction matrices using algorithms such as ICE, which
assume equal visibility across genomic regions. However, this approach has been
shown to not be effective, as it leads to an imbalance between cis and trans
interactions for CNV regions [237]. To address these issues, specialized balancing
algorithms have been developed [237]. Unfortunately, available implementations
are not optimized to support processing high-resolution matrices, which forced
us to use ICE to balance interaction matrices used in Paper III. However, given
that most of our analyses are performed on cis matrices, we used cis interactions
only to balance interaction matrices. Furthermore, calling TAD cliques is the
only step that requires trans interactions. However, in this step, raw cis and
trans interaction frequencies are used. Given the above, our analyses are likely
not affected by the cis/trans interaction imbalance outlined earlier.

4.19 Closing remarks

The 3D genome is neatly folded into a multi-level 3D structure which includes
A/B compartments, TADs, and nucleosomes.

In the first part of my PhD (Paper I), I focused my research activities at the
TAD level by developing a stochastic model of DNA loop extrusion. TADs were
initially thought to regulate the formation of enhancer-promoter interactions by
promoting certain interactions while preventing others. Accordingly, disruption
of TADs have been shown to cause a number of developmental diseases [238,
239], neurological disorders [240], and cancers [241, 242].

Given the prevalence of TADs in metazoan genomes, and how they appear
to control enhancer-promoter interactions, one would think that their disruption
by e.g., cohesin or CTCF depletion would have dramatic consequences on gene
expression. Yet, several studies report that the expression of only a small number
of genes is affected by the above perturbations [29, 45, 125, 134, 161, 243]. These
observations support the hypothesis that TADs are important for the correct
wiring of enhancer-promoter interactions at mitotic exit and that they have a
less important role during interphase. This raises several important questions
regarding the association of TAD perturbations and cancer progression. Indeed,
several papers report that genes located inside perturbed TADs exhibit aberrant
expression [244–247]. For example, Luo et al. [246] reported that dysregulation
of the HOX gene, which is associated with many types of cancer including

92

Closing remarks

Acute Myeloid Leukemia (AML), is driven by the presence of a CTCF boundary
between the HOXA7 and HOXA9 genes. Taberlay et al. [245] characterized
the effects of TAD perturbations in prostate cancer and found a number of
cancer-specific TADs. These TADs often overlapped regions affected by CNVs.
For example, a deletion of a region spanning the TP53 tumor suppressor locus
resulted in the splitting of a TAD into two smaller TADs with corresponding
alteration in gene expression. However, in the cancer progression model used in
Paper III, TADs were highly conserved and thus do not appear to be the main
driver of cancer progression. This is also one of the reasons why we decided not
to take advantage of MoDLE simulations as part of Paper III.

Besides TADs, A/B compartments and subcompartments have been reported
to often undergo major changes in many cancer types [248, 249], and Paper III.
For example, Martin et al. [248] characterized A/B compartments during prostate
cancer progression and showed that cancer progression is associated with a loss
of A compartment strength, suggesting an increased intermixing of A and B
compartment regions. Overall, the authors report that 300 and 86 genes overlap
regions switching from B to A and from A to B compartments, respectively. In
Paper III we also report substantial switching between A and B compartments.
However, the overall ratio of A to B compartments remains largely unaltered as
breast cancer progresses. Furthermore, the use of subcompartments allowed us
to assess switching with a greater level of details.

Recent evidence shows that chromatin alternates between A and B
compartments at the kbp scale, and that virtually all active enhancers are located
in A compartments. While there is not a 1:1 mapping between A compartments
and active genes, there is a clear correlation between expression levels and
A compartments (see Paper III). The evidence produced by Harris et al. [66]
suggests that very small chromatin openings may be sufficient to induce enhancer
activation and that a small fraction of the compartment switches reported
in Paper III may be important for cancer development and progression.

Ultimately, more studies are needed to elucidate this question.

93

Chapter 5

Other projects

Besides working on my main project, throughout my PhD I have been working
on a few side projects as well as contributing to other Open-Source Software
(OSS) projects.

5.1 Side projects

Nextflow workflow to call TAD cliques

In late 2022 I started working on a Nextflow workflow to call TAD cliques. The
workflow is available on GitHub at robomics/call_tad_cliques. TAD cliques are
called as described in the following tutorial: Chrom3D/INC-tutorial.

The workflow takes as input a sample sheet in TSV format with the following
mandatory columns:

• sample: sample name

• cooler_cis: cooler file used to read cis interactions (e.g., Uniform Resource
Identifier (URI) to a 50 kbp cooler)

• cooler_trans: cooler file used to read trans interactions (e.g., URI to a 1
Mbp cooler)

The sample sheet can contain a tads column containing the path to a BED
file with the list of TADs. When not provided, the workflow will use HiCExplorer
to call TADs from the cooler_cis file.

The workflow outputs 6 text files and 2 plots. The text files contain the list of
TAD cliques called from cis interactions, trans interactions, and all interactions.
For each type of clique, the workflow outputs a file with the list of TAD cliques
and another file with the list of the domains part of cliques. This workflow was
used in Paper III to automate TAD clique calling.

Nextflow workflow to compress the output of nf-core/hic

In May 2023 I developed a Nextflow workflow to compress the output produced
by nf-core/hic. The workflow is available on GitHub at robomics/compress-
nfcore-hic-output.

The workflow takes as input the path to the output folder produced by
nf-core/hic, the path to a FASTA file with the reference genome assembly used
by nf-core/hic, and the path to a folder where to store the output files. The
workflow will compress files in BAM format using CRAM, a reference-based
format to store reads mapped to a reference genome. Furthermore, the workflow

95

5. Other projects

will compress statistic files, validPairs (see Section 3.3.1), and MultiQC report
using LZMA (i.e., xz). This workflow was used to compress the data produced
by Paper III, achieving a 3.1x compression ratio for alignment data and a 4x
compression ratio for validPairs.

Nextflow workflow to generate the gene track for HiGlass

Generating gene annotations with HiGlass can be a difficult process, as HiGlass
does not natively support GTF or GFF files. Instead, users are first required
to generate a .beddb file using clodius, then ingest this file in a HiGlass server
using a special set of command line flags. The instructions on how this can be
achieved are a bit involved and are listed in HiGlass documentation (link).

In June 2022, I developed a Nextflow workflow to automate the generation of
the .beddb file. The workflow requires as input a few files with gene information
that can be downloaded from NCBI (e.g., a file to map gene IDs to RefSeq IDs),
as well as the taxa ID and assembly name for the species that is being processed.
Furthermore, the workflow requires a file with the list of chromosomes and their
sizes as well as the refgene file that can be downloaded from UCSC FTP server.

The workflow outputs a single file in .beddb format that can be readily
ingested into HiGlass server instance.

5.2 OSS contributions

Bioconda

I contributed a handful of recipes to the bioconda, including recipes for the
following packages:

Package Source Recipe Contribution

FitHiC github.com anaconda.org Update recipe
hictk github.com anaconda.org Add new recipe
hictkpy github.com anaconda.org Add new recipe
modle github.com anaconda.org Add new recipe

Conan Center Index

I contributed several recipes to the Conan Center Index, including recipes for
the following packages:

96

Bug report for 4DNucleome

Package Source Recipe Contribution

bitflags github.com conan.io Add new recipe
boost boost.org conan.io Update recipe
bshoshany-thread-pool github.com conan.io Update recipe
cli11 github.com conan.io Update recipe
fast_float github.com conan.io Update recipe
hdf5 portal.hdfgroup.org conan.io Update recipe
hictk github.com conan.io Add new recipe
highfive github.com conan.io Update recipe
libarchive libarchive.org conan.io Update recipe
libbigwig github.com conan.io Add new recipe
libcuckoo github.com conan.io Add new recipe
spdlog github.com conan.io Update recipe
xoshiro-cpp github.com conan.io Add new recipe
xxhash github.com conan.io Update recipe
xz_utils tukaani.org conan.io Update recipe

Other contributions

Beside contributions to bioconda and the Conan Center Index I have also
contributed bugfixes to the following projects:

Project Source Contributions

Chrom3D github.com github.com
cooler github.com github.com
dcHiC github.com github.com
iced github.com github.com
libBigWig github.com github.com
nf-core/hic github.com github.com
stripenn github.com github.com

5.3 Bug report for 4DNucleome

While working on Paper I, I discovered a bug affecting .mcool files generated by
cooler v0.8.3, which includes all .mcool files published on the 4DNucleome Data
Portal up until the time of writing (19/11/2023). When reading interactions
from the affected files, there is a possibility that multiple values will be returned
for the same pixel, meaning that for certain rows or columns, the Hi-C matrix
appears to be N-dimensional where N ≥ 2.

For example, the following output was obtained using the Cooler API to read
interactions from 4DNFI9GMP2J8.mcool

97

5. Other projects

chrom1 start1 end1 chrom2 start2 end2 count balanced

chr1 10828000 10830000 chr1 11002000 11004000 1 0.000208987
chr1 10828000 10830000 chr1 11002000 11004000 1 0.000208987
chr1 10828000 10830000 chr1 11006000 11008000 1 0.000199523
chr1 10828000 10830000 chr1 11006000 11008000 3 0.000598569
chr1 10828000 10830000 chr1 11010000 11012000 4 0.000695946
chr1 10828000 10830000 chr1 11010000 11012000 2 0.000347973
chr1 10828000 10830000 chr1 11020000 11022000 1 0.000219669
chr1 10828000 10830000 chr1 11020000 11022000 1 0.000219669
chr1 10828000 10830000 chr1 11030000 11032000 3 0.000499071
chr1 10828000 10830000 chr1 11030000 11032000 2 0.000332714
. .

Luckily, the base resolution of files affected by this bug does not have
duplicate pixels, suggesting that the bug was introduced when running the
cooler zoomify command. Thus, affected files can be fixed by iteratively
coarsening the base resolution with cooler zoomify from a recent version of
cooler, or using hictk zoomify.

I reported the bug to the 4DNucleome, which resulted in them adding the
notice shown in Figure 5.1 to the file page for .mcool files:

Figure 5.1: Warning notice on the 4DNucleome data portal informing users of
the bug affecting .mcool files published on the portal.

A detailed report of this bug is available on GitHub at
robomics/20221129_4dnucleome_bug_report.

While developing hictk, I have implemented two subcommands to detect
and fix this issue, namely, hictk validate and hictk fix-mcool (see Paper
II). The first detects various problems with .hic, .cool, .mcool and .scool files.
When passing the --validate-index option, hictk will check the index of
cooler files to detect the bug described above. hictk fix-mcool is a wrapper
around hictk zoomify and hictk balance. This command will first read the
resolutions available in the corrupted .mcool file, and generate a new .mcool file
containing the same resolutions. After iterative coarsening, hictk will proceed
to balance each resolution using ICE. If the original matrix was balanced using

98

Bug report for 4DNucleome

cooler, then hictk will attempt to re-use the same balancing parameters used by
cooler, otherwise, it will fall back to use the default balancing parameters used
by hictk balance.

99

Chapter 6

Research reproducibility

For the past decade, we have been aware of the reproducibility crisis that is
affecting modern scientific studies, meaning that the results of many scientific
studies cannot be reproduced by an independent party [250–252]. This crisis
affects virtually every field, including the fields of genomics and bioinformatics.
Conceptualizing and performing studies with a good degree of reproducibility
is no easy task, and often requires an interdisciplinary team committed to
reproducibility. Discussing reproducibility in a general sense is not in the scope
of this thesis, where instead I will focus on the reproducibility of bioinformatics
data analysis and the measures I developed to ensure the results produced by
my analysis pipeline are replicable and reproducible by others.

6.1 Why is reproducibility important?

There is no unique definition of reproducibility in the context of the scientific
method. Odd Erik Gundersen proposes that “Reproducibility is the ability of
independent investigators to draw the same conclusions from an experiment by
following the documentation shared by the original investigators” [253]. This is
extremely important for scientific studies, to the point that Moonesinghe et al.
state that “replication . . . is the cornerstone of science and replication of findings
is very important before any causal inference can be drawn” [254].

In the field of life sciences, reproducibility is a glaring issue, with a survey
finding that “More than 70% of researchers have tried and failed to reproduce
another scientist’s experiments, and more than half have failed to reproduce
their own experiments” [250]. This has several ramifications, ranging from
slower scientific progress, wasted resources, and even negative effects on patient’s
health. A study from 2015 estimated that over $28 billion per year are spent
on preclinical research that is not reproducible in the United States alone [255].
Thus, as a scientist, I feel the responsibility to do my best to ensure the results
of my research activities are reproducible by others.

6.2 Reproducibility in the context of bioinformatics

In the context of bioinformatics data analysis, for a study to be reproducible,
the raw and processed data, as well as all the code used to generate processed
data from raw data should be shared. If any analysis step requires manual
intervention, these steps should be thoroughly documented to enable a third
party to reproduce the manual steps. Thus, when it comes to bioinformatics
analysis, documentation consists of source code and documentation for the

101

6. Research reproducibility

operator running the analysis, with instructions on how to prepare the data and
run the analysis steps.

While there is no unique definition of reproducibility and replicability,
throughout this section I will use the definition of reproducibility suggested by
Odd Erik Gundersen, and I am defining replicability as the ability of independent
investigators to obtain identical results when applying the original protocol on
the original data following the provided documentation. So, study replicability
is a more stringent requirement than study reproducibility.

In the vast majority of genomic studies, raw data is generated through complex
wet lab experiments. This raw data is then analyzed by one or more bioinformatic
pipelines. While achieving end-to-end replicability of a study is usually not
possible, as we do not control all experimental variables, reproducibility of the
computational analysis is often achievable, provided that analysis pipelines have
been developed with this objective in mind. There are several tools that enable
the development of reproducible analysis pipelines at scale, some of which will
be discussed in the next sections.

6.3 My workflow for reproducible data analysis

During the course of my PhD, I became familiar with several tools to improve the
reproducibility of data analysis pipelines (see Appendix C) and have developed
my own data analysis workflow using these tools. This section briefly outlines
and motivates my analysis workflow.

For each project, I create a new GitHub repository. This repository will host
all code used for data analysis. The repository is structured using 5 different
folders:

• bin/: folder containing all scripts used by task in the workflow management
system, Nextflow in this case.

• configs/: folder containing workflow config files.

• containers/: folder containing the Dockerfiles used to build the container
images used by the workflows.

• data/: folder containing input, output, and scratch data.

• workflows/: folder containing the Nextflow workflow files.

Each workflow has its own config. Workflows and configs have the same name,
as the file name is used to pair configs and workflows. For example, workflow
fetch_data.nf would be paired with config fetch_data.config. Config files
define the input files and parameters used by workflows.

Dockerfiles under containes/ are named like image_name__vx.y.z.Dockerfile.
The double underscore is used by the build infrastructure to split the image
name from its version. Ideally, there should be one image for each application
used in the workflows, however, this is practice not always possible, as certain

102

My workflow for reproducible data analysis

workflow tasks need access to two or more applications. When this is the case,
images are given a generic name (e.g., utils or functional_analysis), and all
required tools are installed side by side. When a Dockerfile is modified, a GitHub
Actions workflow is triggered. This workflow will first gather metadata about
the container image to be built, then will proceed to build the container image
using resources from GitHub’s cloud infrastructure. The resulting container
images are published in the package section of the repository that triggered the
workflow. The GitHub Actions workflow is defined using reusable actions. Thus,
adding a new Dockerfile requires adding a minimal GitHub workflow for the
image to be picked up and built by the build infrastructure.

The number and type of Nextflow workflows defined in the workflows/

folder depends on the analyses to be carried out. However, there are some
workflows that are fairly common. For example, virtually all my projects have a
fetch_data.nf workflow. This workflow takes a downloads.tsv file as input
with the following columns:

• url: the URL to the file to be downloaded.

• sha256: the SHA256 digest of the file to be downloaded.

• dest: the path (including the file name) where the file should be stored
after being downloaded.

• action: when set to none, files are simply downloaded. When set to
compress, files are compressed using gzip before being stored at their final
destination.

The workflow consists of a single task that processes a single row from
the downloads.tsv file, thus enabling concurrent download, checksumming,
renaming, and optionally compressing of all the input files required by other
workflows. Another common workflow is preprocess_data.nf. This workflow
contains tasks to preprocess input data and generate data used by other
downstream workflows. Examples of common tasks performed by this workflow
are sorting .chrom.sizes files, filtering reference genome assemblies to remove
unplaced scaffolds, and building indices used by read mappers. In general, I try
to define one workflow for each data analysis unit. For example, for the data
analysis for Paper III, TAD analysis and compartment analysis are performed
by two separate workflows. Crucially, draft image generation is usually done as
part of the analysis workflows. This ensures that the latest figures represent the
latest results produced by the workflow.

Finally, launching workflows is automated through bash scripts. Thus,
reproducing the results of my data analysis requires the following steps:

• Installing and configuring Nextflow.

• Cloning the data analysis repository.

• Read the documentation to learn in which order workflows should be
launched.

103

6. Research reproducibility

• Launch workflows in the proper order. As an example, launching workflow
fetch_data.nf is as simple as running ./run_fetch_data.sh.

The workflows will take care to download the appropriate Docker images and
use them to run tasks using the input files and parameters defined in config files.
This will result in fully reproducible data analysis, as input files are checksummed
immediately after being downloaded and tasks are run using containers.

6.4 Sharing data analysis pipelines

Openly sharing workflows for reproducible data analysis is equally important
to writing the workflows in the first place. The development of my pipelines
can be tracked on GitHub (e.g., the pipeline used for Paper III is available at
paulsengroup/2022-mcf10a-cancer-progression). Furthermore, pipeline releases
are archived on Zenodo using Zenodo’s GitHub integration. As an example, the
pipeline used for Paper III is archived at 10.5281/zenodo.10069548. The pipeline
README contains instructions on the pipeline structure and how it can be
executed.

6.5 Data sharing

As the data produced by genomics studies tend to be very large, special care
should be taken when publishing this kind of data. Furthermore, the data should
be publicly available and discoverable for a long period of time (as in decades),
and thus services such as Dropbox and Google Drive are not suitable for this
purpose. The details of how data should be archived and published depend on
the nature of the study as well as data type. To publish the data produced by my
research activities I used a variety of services, namely the NRID Research Data
Archive and Zenodo to archive general-purpose data (Paper I and Paper II),
and the Sequence Read Archive (SRA) and Gene Expression Omnibus (GEO) to
archive biological data (Paper II and Paper III). These services provide long-term
storage for research and other types of data. Data uploaded to these services
cannot be modified. Furthermore, each dataset is assigned a unique identifier
(often in the form of a DOI string). Using an archival strategy like the one just
described is very important, as it ensures that the data produced by scientific
studies is discoverable and reusable by other researchers.

6.6 Research reproducibility: closing remarks

In Section 6.1 I briefly outlined some reasons why reproducibility of data analysis
is an important matter.

In later sections, I presented some technical solutions that can be used to
achieve data analysis reproducibility. These solutions provide several benefits
that nicely complement one another, however, they all have one glaring problem:
they address complexity with more complexity. While it can be argued that

104

Research reproducibility: closing remarks

the tradeoff in complexity is one worth making, the burden of this additional
complexity falls on the shoulders of the researchers in charge of the data analysis.
In practice, this means that researchers have to learn the basics of containerized
applications, as well as a new domain-specific language for workflow management.
With the right set of incentives, this would not be a problem, however, at the
time of writing, there are relatively few incentives for researchers to do the
above. However, the field is slowly moving in the right direction. For example,
several journals, such as Genome Biology [256] and Bioinformatics [257] not only
require that data used as part of scientific publication be made public through
appropriate data repository but also that the same is done with code, albeit
with almost no requirements placed on software quality and reproducibility,
as depositing code in a GitHub repository is usually sufficient to fulfill the
requirements.

Given the huge economic and time loss caused by non-reproducible research,
I think there should be stronger incentives to adopt some of these technologies.
For example, scientific journals could start requiring that software used as
part of the data analysis be made available as software containers. Funding
agencies could also play a role in incentivizing the adoption of technologies to
enable reproducible data analysis. Some funding agencies, such as the European
Research Council (ERC) already have strong requirements when it comes to open
science and Findability, Accessibility, Interoperability, and Reusability (FAIR)
principles, however, these requirements focus on research and data discoverability,
and availability, not on accessibility and quality of the software used to process
the data itself. I believe there should be a set of principles in line with FAIR
also for scientific software and analysis pipelines. Another entity that could
facilitate the adoption of these tools is for universities to introduce mandatory
courses at the PhD level to educate new PhD candidates on the causes of the
reproducibility crisis, as well as the technical solutions to tackle these problems.
Many universities, including Universitetet i Oslo (UiO), already have mandatory
courses covering these topics, however, in many cases these courses cover the
topics at a fairly high level, without providing clear actionable that a PhD
candidate can immediately apply to their day-to-day research. I think these
courses should be updated and expanded to also cover how to practically tackle
ethical issues, including reproducibility issues, in practice.

105

Bibliography

1. Jordan Rowley M and Corces VG. Organizational Principles of 3D Genome
Architecture. Nature reviews Genetics. 2018 Dec; vol. 19, no. 12 :789–
800

2. Steensel B van. Chromatin: constructing the big picture. The EMBO
Journal. 2011 May 18; vol. 30, no. 10 :1885–95

3. Luger K, Dechassa ML, and Tremethick DJ. New insights into nucleosome
and chromatin structure: an ordered state or a disordered affair? Nature
Reviews Molecular Cell Biology. 2012 Jul; vol. 13, no. 7. Number: 7
Publisher: Nature Publishing Group:436–47

4. Fyodorov DV, Zhou BR, Skoultchi AI, and Bai Y. Emerging roles of linker
histones in regulating chromatin structure and function. Nature Reviews
Molecular Cell Biology. 2018 Mar; vol. 19, no. 3. Number: 3 Publisher:
Nature Publishing Group:192–206

5. Henikoff S, Furuyama T, and Ahmad K. Histone variants, nucleosome
assembly and epigenetic inheritance. Trends in Genetics. 2004 Jul 1;
vol. 20, no. 7. Publisher: Elsevier:320–6

6. Chadwick BP and Willard HF. Cell cycle–dependent localization of
macroH2A in chromatin of the inactive X chromosome. Journal of Cell
Biology. 2002 Jun 24; vol. 157, no. 7 :1113–23

7. Jenuwein T and Allis CD. Translating the Histone Code. Science. 2001
Aug 10; vol. 293, no. 5532. Publisher: American Association for the
Advancement of Science:1074–80

8. Bannister AJ and Kouzarides T. Regulation of chromatin by histone
modifications. Cell Research. 2011 Mar; vol. 21, no. 3. Number: 3
Publisher: Nature Publishing Group:381–95

9. Millán-Zambrano G, Burton A, Bannister AJ, and Schneider R. Histone
post-translational modifications — cause and consequence of genome
function. Nature Reviews Genetics. 2022 Sep; vol. 23, no. 9. Number: 9
Publisher: Nature Publishing Group:563–80

10. McBryant SJ, Adams VH, and Hansen JC. Chromatin architectural
proteins. Chromosome Research. 2006 Feb 1; vol. 14, no. 1 :39–51

11. Hammond CM, Strømme CB, Huang H, Patel DJ, and Groth A. Histone
chaperone networks shaping chromatin function. Nature Reviews Molecular
Cell Biology. 2017 Mar; vol. 18, no. 3 :141–58

12. Reyes AA, Marcum RD, and He Y. Structure and Function of ATP-
dependent Chromatin Remodeling Complexes. Journal of molecular
biology. 2021 Jul 9; vol. 433, no. 14 :166929

107

Bibliography

13. Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla
MA, and Hadi AHA. Gene Silencing and Polycomb Group Proteins: An
Overview of their Structure, Mechanisms and Phylogenetics. OMICS : a
Journal of Integrative Biology. 2013 Jun; vol. 17, no. 6 :283–96

14. Finch JT and Klug A. Solenoidal model for superstructure in chromatin.
Proceedings of the National Academy of Sciences of the United States of
America. 1976 Jun; vol. 73, no. 6 :1897–901

15. Woodcock CL, Frado LL, and Rattner JB. The higher-order structure of
chromatin: evidence for a helical ribbon arrangement. The Journal of Cell
Biology. 1984 Jul; vol. 99, no. 1 :42–52

16. Robinson PJJ, Fairall L, Huynh VAT, and Rhodes D. EM measurements
define the dimensions of the "30-nm" chromatin fiber: evidence for a
compact, interdigitated structure. Proceedings of the National Academy
of Sciences of the United States of America. 2006 Apr 25; vol. 103, no. 17
:6506–11

17. Robinson PJ and Rhodes D. Structure of the ‘30nm’ chromatin fibre: A
key role for the linker histone. Current Opinion in Structural Biology.
Nucleic acids/Sequences and topology 2006 Jun 1; vol. 16, no. 3 :336–43

18. Bassett A, Cooper S, Wu C, and Travers A. The folding and unfolding of
eukaryotic chromatin. Current Opinion in Genetics & Development. 2009
Apr; vol. 19, no. 2 :159–65

19. Eltsov M, MacLellan KM, Maeshima K, Frangakis AS, and Dubochet J.
Analysis of cryo-electron microscopy images does not support the existence
of 30-nm chromatin fibers in mitotic chromosomes in situ. Proceedings
of the National Academy of Sciences. 2008 Dec 16; vol. 105, no. 50.
Publisher: Proceedings of the National Academy of Sciences:19732–7

20. Fussner E, Strauss M, Djuric U, Li R, Ahmed K, Hart M, Ellis J, and
Bazett-Jones DP. Open and closed domains in the mouse genome are
configured as 10-nm chromatin fibres. EMBO reports. 2012 Nov 6; vol. 13,
no. 11 :992–6

21. Joti Y, Hikima T, Nishino Y, Kamada F, Hihara S, Takata H, Ishikawa T,
and Maeshima K. Chromosomes without a 30-nm chromatin fiber. Nucleus
(Austin, Tex). 2012; vol. 3, no. 5 :404–10

22. Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S,
Frangakis AS, Imamoto N, Ishikawa T, and Maeshima K. Human mitotic
chromosomes consist predominantly of irregularly folded nucleosome fibres
without a 30-nm chromatin structure. The EMBO journal. 2012 Apr 4;
vol. 31, no. 7 :1644–53

23. Maeshima K, Hihara S, and Eltsov M. Chromatin structure: does the
30-nm fibre exist in vivo? Current Opinion in Cell Biology. Nucleus and
gene expression 2010 Jun 1; vol. 22, no. 3 :291–7

108

Bibliography

24. Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, and O’Shea CC.
ChromEMT: Visualizing 3D chromatin structure and compaction in
interphase and mitotic cells. Science. 2017 Jul 28; vol. 357, no. 6349.
Publisher: American Association for the Advancement of Science:eaag0025

25. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park
J, Blackburn EH, Weissman JS, Qi LS, and Huang B. Dynamic Imaging
of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas
System. Cell. 2013 Dec 19; vol. 155, no. 7. Publisher: Elsevier:1479–91

26. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue
ED, Tanay A, and Fraser P. Single-cell Hi-C reveals cell-to-cell variability
in chromosome structure. Nature. 2013 Oct; vol. 502, no. 7469. Number:
7469 Publisher: Nature Publishing Group:59–64

27. Ricci MA, Manzo C, García-Parajo MF, Lakadamyali M, and Cosma MP.
Chromatin Fibers Are Formed by Heterogeneous Groups of Nucleosomes
In Vivo. Cell. 2015 Mar 12; vol. 160, no. 6. Publisher: Elsevier:1145–58

28. Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh
THS, Parsi KM, Yang L, Maehr R, Mirny LA, Dekker J, and Rando
OJ. Ultrastructural Details of Mammalian Chromosome Architecture.
Molecular Cell. 2020 May 7; vol. 78, no. 3 :554–565.e7

29. Szabo Q, Donjon A, Jerković I, Papadopoulos GL, Cheutin T, Bonev
B, Nora EP, Bruneau BG, Bantignies F, and Cavalli G. Regulation of
single-cell genome organization into TADs and chromatin nanodomains.
Nature Genetics. 2020 Nov; vol. 52, no. 11. Number: 11 Publisher: Nature
Publishing Group:1151–7

30. 4DNFI9GMP2J8; 4DN Data Portal — identifiers.org

31. Rocha PP, Raviram R, Bonneau R, and Skok JA. Breaking TADs: insights
into hierarchical genome organization. Epigenomics. 2015; vol. 7, no. 4
:523–6

32. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, and
Ren B. Topological domains in mammalian genomes identified by analysis
of chromatin interactions. Nature. 2012 May; vol. 485, no. 7398. Number:
7398 Publisher: Nature Publishing Group:376–80

33. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot
T, Berkum NL van, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N,
Dekker J, and Heard E. Spatial partitioning of the regulatory landscape
of the X-inactivation centre. Nature. 2012 Apr 11; vol. 485, no. 7398
:381–5

34. Dekker J and Heard E. Structural and Functional Diversity of Topologically
Associating Domains. FEBS letters. 2015 Oct 7; vol. 589, no. 20 :2877–84

35. Acemel RD and Lupiáñez DG. Evolution of 3D chromatin organization at
different scales. Current Opinion in Genetics & Development. 2023 Feb
1; vol. 78 :102019

109

Bibliography

36. Wit E de. TADs as the Caller Calls Them. Journal of Molecular Biology.
Perspectives on Chromosome Folding 2020 Feb 7; vol. 432, no. 3 :638–42

37. Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ,
Uzawa S, Dekker J, and Meyer BJ. Condensin-Driven Remodeling of
X-Chromosome Topology during Dosage Compensation. Nature. 2015
Jul 9; vol. 523, no. 7559 :240–4

38. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson
JT, Sanborn AL, Machol I, Omer AD, Lander ES, and Aiden EL. A 3D
Map of the Human Genome at Kilobase Resolution Reveals Principles of
Chromatin Looping. Cell. 2014 Dec 18; vol. 159, no. 7 :1665–80

39. Weinreb C and Raphael BJ. Identification of hierarchical chromatin
domains. Bioinformatics. 2016 Jun 1; vol. 32, no. 11 :1601–9

40. Forcato M, Nicoletti C, Pal K, Livi CM, Ferrari F, and Bicciato S.
Comparison of computational methods for Hi-C data analysis. Nature
Methods. 2017 Jul; vol. 14, no. 7. Number: 7 Publisher: Nature Publishing
Group:679–85

41. Zufferey M, Tavernari D, Oricchio E, and Ciriello G. Comparison of
computational methods for the identification of topologically associating
domains. Genome Biology. 2018 Dec 10; vol. 19, no. 1 :217

42. Sefer E. A comparison of topologically associating domain callers over
mammals at high resolution. BMC Bioinformatics. 2022 Apr 12; vol. 23,
no. 1 :127

43. Dixon JR, Gorkin DU, and Ren B. Chromatin Domains: The Unit of
Chromosome Organization. Molecular Cell. 2016 Jun 2; vol. 62, no. 5
:668–80

44. Kaiser VB and Semple CA. When TADs go bad: chromatin structure and
nuclear organisation in human disease. F1000Research. 2017 Mar 24;
vol. 6 :F1000 Faculty Rev–314

45. Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur
N, Dekker J, Mirny LA, and Bruneau BG. Targeted Degradation of
CTCF Decouples Local Insulation of Chromosome Domains from Genomic
Compartmentalization. Cell. 2017 May 18; vol. 169, no. 5 :930–944.e22

46. Hsieh THS, Cattoglio C, Slobodyanyuk E, Hansen AS, Darzacq X, and
Tjian R. Enhancer–promoter interactions and transcription are largely
maintained upon acute loss of CTCF, cohesin, WAPL or YY1. Nature
Genetics. 2022 Dec; vol. 54, no. 12. Number: 12 Publisher: Nature
Publishing Group:1919–32

47. Wit E de and Nora EP. New insights into genome folding by loop extrusion
from inducible degron technologies. Nature Reviews Genetics. 2023 Feb;
vol. 24, no. 2. Number: 2 Publisher: Nature Publishing Group:73–85

48. GSE199059; GEO Accession viewer — identifiers.org

110

Bibliography

49. Guo Y, Al-Jibury E, Garcia-Millan R, Ntagiantas K, King JWD, Nash
AJ, Galjart N, Lenhard B, Rueckert D, Fisher AG, Pruessner G, and
Merkenschlager M. Chromatin jets define the properties of cohesin-driven
in vivo loop extrusion. Molecular Cell. 2022 Oct 20; vol. 82, no. 20
:3769–3780.e5

50. Hsieh THS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ, Tjian
R, and Darzacq X. Resolving the 3D Landscape of Transcription-Linked
Mammalian Chromatin Folding. Molecular Cell. 2020 May 7; vol. 78,
no. 3 :539–553.e8

51. Goel VY, Huseyin MK, and Hansen AS. Region Capture Micro-C reveals
coalescence of enhancers and promoters into nested microcompartments.
Nature Genetics. 2023 Jun; vol. 55, no. 6. Number: 6 Publisher: Nature
Publishing Group:1048–56

52. Isiaka BN, Semple JI, Haemmerli A, Thapliyal S, Stojanovski K, Das
M, Gilbert N, Glauser DA, Towbin B, Jost D, and Meister P. Cohesin
forms fountains at active enhancers in C. elegans. Pages: 2023.07.14.549011
Section: New Results. 2023 Jul 16

53. Kim J and Ercan S. Cohesin mediated loop extrusion from active enhancers
form chromatin jets in C. elegans. Pages: 2023.09.18.558239 Section: New
Results. 2023 Sep 20

54. Wike CL, Guo Y, Tan M, Nakamura R, Shaw DK, Díaz N, Whittaker-
Tademy AF, Durand NC, Aiden EL, Vaquerizas JM, Grunwald D, Takeda
H, and Cairns BR. Chromatin architecture transitions from zebrafish sperm
through early embryogenesis. Genome Research. 2021 Jun 1; vol. 31, no. 6.
Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring
Harbor Laboratory Press Institution: Cold Spring Harbor Laboratory
Press Label: Cold Spring Harbor Laboratory Press Publisher: Cold Spring
Harbor Lab:981–94

55. Galitsyna A, Ulianov SV, Bykov NS, Veil M, Gao M, Perevoschikova K,
Gelfand M, Razin SV, Mirny L, and Onichtchouk D. Extrusion fountains
are hallmarks of chromosome organization emerging upon zygotic genome
activation. Pages: 2023.07.15.549120 Section: New Results. 2023 Jul 15

56. ENCFF447ERX; ENCODE — identifiers.org

57. Lieberman-Aiden E, Berkum NL van, Williams L, Imakaev M, Ragoczy T,
Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R,
Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J,
Mirny LA, Lander ES, and Dekker J. Comprehensive Mapping of Long-
Range Interactions Reveals Folding Principles of the Human Genome.
Science. 2009 Oct 9; vol. 326, no. 5950. Publisher: American Association
for the Advancement of Science:289–93

111

Bibliography

58. Miura H, Poonperm R, Takahashi S, and Hiratani I. Practical Analysis
of Hi-C Data: Generating A/B Compartment Profiles. X-Chromosome
Inactivation: Methods and Protocols. Ed. by Sado T. Methods in Molecular
Biology. New York, NY: Springer, 2018 :221–45

59. Kalluchi A, Harris HL, Reznicek TE, and Rowley MJ. Considerations and
caveats for analyzing chromatin compartments. Frontiers in Molecular
Biosciences. 2023 Apr 5; vol. 10 :1168562

60. Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES,
and Aiden EL. Juicer Provides a One-Click System for Analyzing Loop-
Resolution Hi-C Experiments. Cell Systems. 2016 Jul 27; vol. 3, no. 1.
Publisher: Elsevier:95–8

61. Giorgetti L, Lajoie BR, Carter AC, Attia M, Zhan Y, Xu J, Chen CJ,
Kaplan N, Chang HY, Heard E, and Dekker J. Structural organization
of the inactive X chromosome in the mouse. Nature. 2016 Jul; vol. 535,
no. 7613. Number: 7613 Publisher: Nature Publishing Group:575–9

62. Kruse K, Hug CB, and Vaquerizas JM. FAN-C: a feature-rich framework
for the analysis and visualisation of chromosome conformation capture
data. Genome Biology. 2020 Dec 17; vol. 21, no. 1 :303

63. Weide RH van der, Brand T van den, Haarhuis JHI, Teunissen H, Rowland
BD, and Wit E de. Hi-C analyses with GENOVA: a case study with cohesin
variants. NAR Genomics and Bioinformatics. 2021 Jun 1; vol. 3, no. 2
:lqab040

64. Zheng X and Zheng Y. CscoreTool: fast Hi-C compartment analysis at
high resolution. Bioinformatics. 2018 May 1; vol. 34, no. 9 :1568–70

65. Nichols MH and Corces VG. Principles of 3D compartmentalization of the
human genome. Cell Reports. 2021 Jun 29; vol. 35, no. 13 :109330

66. Harris HL, Gu H, Olshansky M, Wang A, Farabella I, Eliaz Y, Kalluchi A,
Krishna A, Jacobs M, Cauer G, Pham M, Rao SSP, Dudchenko O, Omer
A, Mohajeri K, Kim S, Nichols MH, Davis ES, Gkountaroulis D, Udupa D,
Aiden AP, Corces VG, Phanstiel DH, Noble WS, Nir G, Di Pierro M,
Seo JS, Talkowski ME, Aiden EL, and Rowley MJ. Chromatin alternates
between A and B compartments at kilobase scale for subgenic organization.
Nature Communications. 2023 Jun 6; vol. 14, no. 1. Number: 1 Publisher:
Nature Publishing Group:3303

67. Yaffe E and Tanay A. Probabilistic modeling of Hi-C contact maps elimi-
nates systematic biases to characterize global chromosomal architecture.
Nature Genetics. 2011 Nov; vol. 43, no. 11. Number: 11 Publisher: Nature
Publishing Group:1059–65

68. Ashoor H, Chen X, Rosikiewicz W, Wang J, Cheng A, Wang P, Ruan
Y, and Li S. Graph embedding and unsupervised learning predict
genomic sub-compartments from HiC chromatin interaction data. Nature
Communications. 2020 Mar 3; vol. 11, no. 1. Number: 1 Publisher: Nature
Publishing Group:1173

112

Bibliography

69. Xiong K and Ma J. Revealing Hi-C subcompartments by imputing inter-
chromosomal chromatin interactions. Nature Communications. 2019 Nov
7; vol. 10, no. 1. Number: 1 Publisher: Nature Publishing Group:5069

70. Liu Y, Nanni L, Sungalee S, Zufferey M, Tavernari D, Mina M, Ceri
S, Oricchio E, and Ciriello G. Systematic inference and comparison of
multi-scale chromatin sub-compartments connects spatial organization to
cell phenotypes. Nature Communications. 2021 May 10; vol. 12, no. 1.
Number: 1 Publisher: Nature Publishing Group:2439

71. Chakraborty A, Wang JG, and Ay F. dcHiC detects differential compart-
ments across multiple Hi-C datasets. Nature Communications. 2022 Nov
11; vol. 13, no. 1. Number: 1 Publisher: Nature Publishing Group:6827

72. Wen Z, Zhang W, Zhong Q, Xu J, Hou C, Qin ZS, and Li L. Extensive
Chromatin Structure-Function Associations Revealed by Accurate 3D
Compartmentalization Characterization. Frontiers in Cell and Develop-
mental Biology. 2022; vol. 10

73. Dodero-Rojas E, Mello MF, Brahmachari S, Oliveira Junior AB, Contes-
soto VG, and Onuchic JN. PyMEGABASE: Predicting Cell-Type-Specific
Structural Annotations of Chromosomes Using the Epigenome. Journal of
Molecular Biology. 2023 Aug 1; vol. 435, no. 15 :168180

74. Hildebrand E and Dekker J. Mechanisms and functions of chromosome
compartmentalization. Trends in biochemical sciences. 2020 May; vol. 45,
no. 5 :385–96

75. Collas P, Liyakat Ali TM, Brunet A, and Germier T. Finding Friends in
the Crowd: Three-Dimensional Cliques of Topological Genomic Domains.
Frontiers in Genetics. 2019; vol. 10

76. Paulsen J, Liyakat Ali TM, Nekrasov M, Delbarre E, Baudement MO,
Kurscheid S, Tremethick D, and Collas P. Long-range interactions between
topologically associating domains shape the four-dimensional genome
during differentiation. Nature Genetics. 2019 May; vol. 51, no. 5. Number:
5 Publisher: Nature Publishing Group:835–43

77. Bron C and Kerbosch J. Algorithm 457: finding all cliques of an undirected
graph. Communications of the ACM. 1973 Sep 1; vol. 16, no. 9 :575–7

78. Liyakat Ali TM, Brunet A, Collas P, and Paulsen J. TAD cliques predict
key features of chromatin organization. BMC Genomics. 2021 Jul 3;
vol. 22, no. 1 :499

79. Zhao Y, Ding Y, He L, Zhou Q, Chen X, Li Y, Alfonsi MV, Wu Z, Sun H,
and Wang H. Multiscale 3D genome reorganization during skeletal muscle
stem cell lineage progression and aging. Science Advances. 2023 Feb 17;
vol. 9, no. 7. Publisher: American Association for the Advancement of
Science:eabo1360

113

Bibliography

80. Szabo Q, Jost D, Chang JM, Cattoni DI, Papadopoulos GL, Bonev B,
Sexton T, Gurgo J, Jacquier C, Nollmann M, Bantignies F, and Cavalli G.
TADs are 3D structural units of higher-order chromosome organization in
Drosophila. Science Advances. 2018 Feb 28; vol. 4, no. 2 :eaar8082

81. Pei L, Huang X, Liu Z, Tian X, You J, Li J, Fang DD, Lindsey K, Zhu L,
Zhang X, and Wang M. Dynamic 3D genome architecture of cotton fiber
reveals subgenome-coordinated chromatin topology for 4-staged single-cell
differentiation. Genome Biology. 2022 Feb 3; vol. 23, no. 1 :45

82. Li Y, Xu W, Wang Y, Kou J, Zhang J, Hu S, Zhang L, Wang J, Liu
J, Liu H, Luo L, Wang C, Lan J, Hou R, and Shen F. An improved,
chromosome-level genome of the giant panda (Ailuropoda melanoleuca).
Genomics. 2022 Nov 1; vol. 114, no. 6 :110501

83. Rabl C. Uber zellthilung. Morphol Jahrb. 1885; vol. 10 :214–330

84. Cremer T and Cremer C. Chromosome territories, nuclear architecture
and gene regulation in mammalian cells. Nature Reviews Genetics. 2001
Apr; vol. 2, no. 4. Number: 4 Publisher: Nature Publishing Group:292–301

85. Sun HB, Shen J, and Yokota H. Size-Dependent Positioning of Human
Chromosomes in Interphase Nuclei. Biophysical Journal. 2000 Jul 1;
vol. 79, no. 1 :184–90

86. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S,
Eils R, Cremer C, Speicher MR, and Cremer T. Three-Dimensional Maps
of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase
Rosettes. PLOS Biology. 2005 Apr 26; vol. 3, no. 5. Publisher: Public
Library of Science:e157

87. Parada LA, McQueen PG, and Misteli T. Tissue-specific spatial organiza-
tion of genomes. Genome Biology. 2004 Jun 21; vol. 5, no. 7 :R44

88. Olivares-Chauvet P, Fennessy D, Jackson DA, and Maya-Mendoza A.
Innate Structure of DNA Foci Restricts the Mixing of DNA from Different
Chromosome Territories. PLOS ONE. 2011 Dec 21; vol. 6, no. 12.
Publisher: Public Library of Science:e27527

89. Branco MR and Pombo A. Intermingling of Chromosome Territories in
Interphase Suggests Role in Translocations and Transcription-Dependent
Associations. PLOS Biology. 2006 Apr 25; vol. 4, no. 5. Publisher: Public
Library of Science:e138

90. Maharana S, Iyer KV, Jain N, Nagarajan M, Wang Y, and Shivashankar
GV. Chromosome intermingling—the physical basis of chromosome
organization in differentiated cells. Nucleic Acids Research. 2016 Jun 20;
vol. 44, no. 11 :5148–60

91. Szczepińska T, Rusek AM, and Plewczynski D. Intermingling of chromo-
some territories. Genes, Chromosomes and Cancer. 2019; vol. 58, no. 7.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/gcc.22736:500–6

114

Bibliography

92. Hetzer MW. The Nuclear Envelope. Cold Spring Harbor Perspectives in
Biology. 2010 Mar; vol. 2, no. 3 :a000539

93. De Magistris P and Antonin W. The Dynamic Nature of the Nuclear
Envelope. Current biology: CB. 2018 Apr 23; vol. 28, no. 8 :R487–R497

94. Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin
A, Dayani Y, Prokocimer M, and Enosh A. The nuclear lamina and its
functions in the nucleus. International Review of Cytology. 2003; vol. 226
:1–62

95. Leeuw R de, Gruenbaum Y, and Medalia O. Nuclear Lamins: Thin
Filaments with Major Functions. Trends in Cell Biology. 2018 Jan;
vol. 28, no. 1 :34–45

96. Briand N and Collas P. Lamina-associated domains: peripheral matters
and internal affairs. Genome Biology. 2020 Apr 2; vol. 21, no. 1 :85

97. Beck M and Hurt E. The nuclear pore complex: understanding its function
through structural insight. Nature Reviews Molecular Cell Biology. 2017
Feb; vol. 18, no. 2. Number: 2 Publisher: Nature Publishing Group:73–89

98. Lin DH and Hoelz A. The Structure of the Nuclear Pore Complex (An
Update). Annual review of biochemistry. 2019 Jun 20; vol. 88 :725–83

99. Staněk D and Fox AH. Nuclear bodies: news insights into structure and
function. Current Opinion in Cell Biology. 2017 Jun; vol. 46 :94–101

100. Dubois ML and Boisvert FM. The Nucleolus: Structure and Function.
The Functional Nucleus. Publisher: Nature Publishing Group:29

101. Iarovaia OV, Minina EP, Sheval EV, Onichtchouk D, Dokudovskaya S,
Razin SV, and Vassetzky YS. Nucleolus: A Central Hub for Nuclear
Functions. Trends in Cell Biology. 2019 Aug 1; vol. 29, no. 8. Publisher:
Elsevier:647–59

102. Chang HR, Munkhjargal A, Kim MJ, Park SY, Jung E, Ryu JH, Yang Y,
Lim JS, and Kim Y. The functional roles of PML nuclear bodies in genome
maintenance. Mutation Research. 2018 May; vol. 809 :99–107

103. Spector DL and Lamond AI. Nuclear Speckles. Cold Spring Harbor
Perspectives in Biology. 2011 Feb; vol. 3, no. 2 :a000646

104. Galganski L, Urbanek MO, and Krzyzosiak WJ. Nuclear speckles:
molecular organization, biological function and role in disease. Nucleic
Acids Research. 2017 Oct 13; vol. 45, no. 18 :10350–68

105. Fox AH and Lamond AI. Paraspeckles. Cold Spring Harbor Perspectives
in Biology. 2010 Jul; vol. 2, no. 7 :a000687

106. Wang Y and Chen LL. Organization and function of paraspeckles. Essays
in Biochemistry. 2020 Dec 7; vol. 64, no. 6 :875–82

107. Kim S, Yu NK, and Kaang BK. CTCF as a multifunctional protein
in genome regulation and gene expression. Experimental & Molecular
Medicine. 2015 Jun; vol. 47, no. 6. Number: 6 Publisher: Nature
Publishing Group:e166–e166

115

Bibliography

108. Li Y, Haarhuis JHI, Sedeño Cacciatore Á, Oldenkamp R, Ruiten MS
van, Willems L, Teunissen H, Muir KW, Wit E de, Rowland BD, and
Panne D. The structural basis for cohesin–CTCF-anchored loops. Nature.
2020 Feb; vol. 578, no. 7795. Number: 7795 Publisher: Nature Publishing
Group:472–6

109. Nichols MH and Corces VG. A tethered-inchworm model of SMC DNA
translocation. Nature Structural & Molecular Biology. 2018 Oct; vol. 25,
no. 10. Number: 10 Publisher: Nature Publishing Group:906–10

110. Diebold-Durand ML, Lee H, Ruiz Avila LB, Noh H, Shin HC, Im H, Bock
FP, Bürmann F, Durand A, Basfeld A, Ham S, Basquin J, Oh BH, and
Gruber S. Structure of Full-Length SMC and Rearrangements Required
for Chromosome Organization. Molecular Cell. 2017 Jul 20; vol. 67, no. 2
:334–347.e5

111. Ryu JK, Katan AJ, Sluis EO van der, Wisse T, Groot R de, Haering CH,
and Dekker C. The condensin holocomplex cycles dynamically between
open and collapsed states. Nature Structural & Molecular Biology. 2020
Dec; vol. 27, no. 12. Number: 12 Publisher: Nature Publishing Group:1134–
41

112. Bauer BW, Davidson IF, Canena D, Wutz G, Tang W, Litos G, Horn S,
Hinterdorfer P, and Peters JM. Cohesin mediates DNA loop extrusion
by a “swing and clamp” mechanism. Cell. 2021 Oct 14; vol. 184, no. 21
:5448–5464.e22

113. Zhang S, Übelmesser N, Barbieri M, and Papantonis A. En-
hancer–promoter contact formation requires RNAPII and antagonizes
loop extrusion. Nature Genetics. 2023 May; vol. 55, no. 5. Number: 5
Publisher: Nature Publishing Group:832–40

114. Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A,
and Nasmyth K. Cohesin’s binding to chromosomes depends on a separate
complex consisting of Scc2 and Scc4 proteins. Molecular Cell. 2000 Feb;
vol. 5, no. 2 :243–54

115. Takahashi TS, Yiu P, Chou MF, Gygi S, and Walter JC. Recruitment
of Xenopus Scc2 and cohesin to chromatin requires the pre-replication
complex. Nature Cell Biology. 2004 Oct; vol. 6, no. 10. Number: 10
Publisher: Nature Publishing Group:991–6

116. Gandhi R, Gillespie PJ, and Hirano T. Human Wapl is a cohesin-binding
protein that promotes sister-chromatid resolution in mitotic prophase.
Current biology: CB. 2006 Dec 19; vol. 16, no. 24 :2406–17

117. Kueng S, Hegemann B, Peters BH, Lipp JJ, Schleiffer A, Mechtler K,
and Peters JM. Wapl Controls the Dynamic Association of Cohesin with
Chromatin. Cell. 2006 Dec 1; vol. 127, no. 5. Publisher: Elsevier:955–67

116

Bibliography

118. Shintomi K and Hirano T. Releasing cohesin from chromosome arms
in early mitosis: opposing actions of Wapl–Pds5 and Sgo1. Genes &
Development. 2009 Aug 20. Company: Cold Spring Harbor Laboratory
Press Distributor: Cold Spring Harbor Laboratory Press Institution: Cold
Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory
Press Publisher: Cold Spring Harbor Lab

119. Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, and Peters JM. DNA
loop extrusion by human cohesin. Science. 2019 Dec 13; vol. 366, no. 6471.
Publisher: American Association for the Advancement of Science:1338–45

120. Kim Y, Shi Z, Zhang H, Finkelstein IJ, and Yu H. Human cohesin compacts
DNA by loop extrusion. Science. 2019 Dec 13; vol. 366, no. 6471. Publisher:
American Association for the Advancement of Science:1345–9

121. Minamino M, Ishibashi M, Nakato R, Akiyama K, Tanaka H, Kato Y,
Negishi L, Hirota T, Sutani T, Bando M, and Shirahige K. Esco1 Acetylates
Cohesin via a Mechanism Different from That of Esco2. Current biology:
CB. 2015 Jun 29; vol. 25, no. 13 :1694–706

122. Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M,
Saitoh K, Komata M, Katou Y, Clark D, Cole KE, De Baere E, Decroos C,
Di Donato N, Ernst S, Francey LJ, Gyftodimou Y, Hirashima K, Hullings
M, Ishikawa Y, Jaulin C, Kaur M, Kiyono T, Lombardi PM, Magnaghi-
Jaulin L, Mortier GR, Nozaki N, Petersen MB, Seimiya H, Siu VM, Suzuki
Y, Takagaki K, Wilde JJ, Willems PJ, Prigent C, Gillessen-Kaesbach
G, Christianson DW, Kaiser FJ, Jackson LG, Hirota T, Krantz ID, and
Shirahige K. HDAC8 mutations in Cornelia de Lange syndrome affect the
cohesin acetylation cycle. Nature. 2012 Sep; vol. 489, no. 7415. Number:
7415 Publisher: Nature Publishing Group:313–7

123. Ruiten MS van, Gent D van, Sedeño Cacciatore Á, Fauster A, Willems L,
Hekkelman ML, Hoekman L, Altelaar M, Haarhuis JHI, Brummelkamp
TR, Wit E de, and Rowland BD. The cohesin acetylation cycle controls
chromatin loop length through a PDS5A brake mechanism. Nature
Structural & Molecular Biology. 2022 Jun; vol. 29, no. 6. Number:
6 Publisher: Nature Publishing Group:586–91

124. Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz
A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon
N, Aragon L, Fisher AG, and Merkenschlager M. Cohesins Functionally
Associate with CTCF on Mammalian Chromosome Arms. Cell. 2008 Feb
8; vol. 132, no. 3. Publisher: Elsevier:422–33

125. Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W,
Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, Walther N, Koch B,
Kueblbeck M, Ellenberg J, Zuber J, Fraser P, and Peters JM. Topologically
associating domains and chromatin loops depend on cohesin and are
regulated by CTCF, WAPL, and PDS5 proteins. The EMBO Journal.
2017 Dec 15; vol. 36, no. 24. Publisher: John Wiley & Sons, Ltd:3573–99

117

Bibliography

126. Pugacheva EM, Kubo N, Loukinov D, Tajmul M, Kang S, Kovalchuk AL,
Strunnikov AV, Zentner GE, Ren B, and Lobanenkov VV. CTCF mediates
chromatin looping via N-terminal domain-dependent cohesin retention.
Proceedings of the National Academy of Sciences. 2020 Jan 28; vol. 117,
no. 4. Publisher: Proceedings of the National Academy of Sciences:2020–31

127. Zhang S, Übelmesser N, Josipovic N, Forte G, Slotman JA, Chiang M,
Gothe HJ, Gusmao EG, Becker C, Altmüller J, Houtsmuller AB, Roukos
V, Wendt KS, Marenduzzo D, and Papantonis A. RNA polymerase II is
required for spatial chromatin reorganization following exit from mitosis.
Science Advances. 2021 Oct 22; vol. 7, no. 43. Publisher: American
Association for the Advancement of Science:eabg8205

128. Banigan EJ, Tang W, Berg AA van den, Stocsits RR, Wutz G, Brandão
HB, Busslinger GA, Peters JM, and Mirny LA. Transcription shapes 3D
chromatin organization by interacting with loop extrusion. Proceedings
of the National Academy of Sciences. 2023 Mar 14; vol. 120, no. 11.
Publisher: Proceedings of the National Academy of Sciences:e2210480120

129. Pradhan B, Barth R, Kim E, Davidson IF, Bauer B, Laar T van, Yang W,
Ryu JK, Torre J van der, Peters JM, and Dekker C. SMC complexes can
traverse physical roadblocks bigger than their ring size. Cell Reports. 2022
Oct 18; vol. 41, no. 3 :111491

130. Davidson IF, Barth R, Zaczek M, Torre J van der, Tang W, Nagasaka K,
Janissen R, Kerssemakers J, Wutz G, Dekker C, and Peters JM. CTCF
is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion.
Nature. 2023 Apr; vol. 616, no. 7958. Number: 7958 Publisher: Nature
Publishing Group:822–7

131. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, and Mirny
LA. Formation of Chromosomal Domains by Loop Extrusion. Cell Reports.
2016 May 31; vol. 15, no. 9 :2038–49

132. Corsi F, Rusch E, and Goloborodko A. Loop extrusion rules: the next
generation. Current Opinion in Genetics & Development. 2023 Aug 1;
vol. 81 :102061

133. Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W,
Ettwiller L, and Spitz F. Functional and topological characteristics of
mammalian regulatory domains. Genome Research. 2014 Mar 1; vol. 24,
no. 3. Company: Cold Spring Harbor Laboratory Press Distributor:
Cold Spring Harbor Laboratory Press Institution: Cold Spring Harbor
Laboratory Press Label: Cold Spring Harbor Laboratory Press Publisher:
Cold Spring Harbor Lab:390–400

134. Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-
Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, Huang
X, Shamim MS, Shin J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick
T, Bernstein BE, Casellas R, Lander ES, and Aiden EL. Cohesin Loss
Eliminates All Loop Domains. Cell. 2017 Oct 5; vol. 171, no. 2 :305–
320.e24

118

Bibliography

135. Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G,
Loe-Mie Y, Fonseca NA, Huber W, Haering CH, Mirny L, and Spitz F.
Two independent modes of chromatin organization revealed by cohesin
removal. Nature. 2017 Nov; vol. 551, no. 7678. Number: 7678 Publisher:
Nature Publishing Group:51–6

136. Karpinska MA and Oudelaar AM. The role of loop extrusion in enhancer-
mediated gene activation. Current Opinion in Genetics & Development.
2023 Apr 1; vol. 79 :102022

137. Peters JM. How DNA loop extrusion mediated by cohesin enables V(D)J
recombination. Current Opinion in Cell Biology. Cell Nucleus 2021 Jun
1; vol. 70 :75–83

138. Bassing CH, Swat W, and Alt FW. The Mechanism and Regulation of
Chromosomal V(D)J Recombination. Cell. 2002 Apr 19; vol. 109, no. 2.
Publisher: Elsevier:S45–S55

139. Jain S, Ba Z, Zhang Y, Dai HQ, and Alt FW. CTCF-Binding Elements
Mediate Accessibility of RAG Substrates During Chromatin Scanning.
Cell. 2018 Jun 28; vol. 174, no. 1 :102–116.e14

140. Lin SG, Ba Z, Alt FW, and Zhang Y. RAG Chromatin Scanning
During V(D)J Recombination and Chromatin Loop Extrusion are Related
Processes. Advances in Immunology. 2018; vol. 139 :93–135

141. Zhang Y, Zhang X, Ba Z, Liang Z, Dring EW, Hu H, Lou J, Kyritsis N,
Zurita J, Shamim MS, Presser Aiden A, Lieberman Aiden E, and Alt FW.
The fundamental role of chromatin loop extrusion in physiological V(D)J
recombination. Nature. 2019 Sep; vol. 573, no. 7775 :600–4

142. Ba Z, Lou J, Ye AY, Dai HQ, Dring EW, Lin SG, Jain S, Kyritsis N,
Kieffer-Kwon KR, Casellas R, and Alt FW. CTCF orchestrates long-
range cohesin-driven V(D)J recombinational scanning. Nature. 2020 Oct;
vol. 586, no. 7828. Number: 7828 Publisher: Nature Publishing Group:305–
10

143. Hill L, Ebert A, Jaritz M, Wutz G, Nagasaka K, Tagoh H, Kostanova-
Poliakova D, Schindler K, Sun Q, Bönelt P, Fischer M, Peters JM, and
Busslinger M. Wapl repression by Pax5 promotes V gene recombination
by Igh loop extrusion. Nature. 2020 Aug; vol. 584, no. 7819 :142–7

144. Dai HQ, Hu H, Lou J, Ye AY, Ba Z, Zhang X, Zhang Y, Zhao L, Yoon HS,
Chapdelaine-Williams AM, Kyritsis N, Chen H, Johnson K, Lin S, Conte
A, Casellas R, Lee CS, and Alt FW. Loop extrusion mediates physiological
Igh locus contraction for RAG scanning. Nature. 2021 Feb; vol. 590,
no. 7845 :338–43

145. Ward JF. The yield of DNA double-strand breaks produced intracellularly
by ionizing radiation: a review. International Journal of Radiation Biology.
1990 Jun; vol. 57, no. 6 :1141–50

119

Bibliography

146. Ross WE and Bradley MO. DNA double-stranded breaks in mammalian
cells after exposure to intercalating agents. Biochimica Et Biophysica Acta.
1981 Jun 26; vol. 654, no. 1 :129–34

147. Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ, Myers DR,
Choi VW, Compagno M, Malkin DJ, Neuberg D, Monti S, Giallourakis
CC, Gostissa M, and Alt FW. Genome-wide Translocation Sequencing
Reveals Mechanisms of Chromosome Breaks and Rearrangements in B
Cells. Cell. 2011 Sep 30; vol. 147, no. 1. Publisher: Elsevier:107–19

148. Barlow JH, Faryabi RB, Callén E, Wong N, Malhowski A, Chen HT,
Gutierrez-Cruz G, Sun HW, McKinnon P, Wright G, Casellas R, Robbiani
DF, Staudt L, Fernandez-Capetillo O, and Nussenzweig A. Identification
of early replicating fragile sites that contribute to genome instability. Cell.
2013 Jan 31; vol. 152, no. 3 :620–32

149. Rogakou EP, Boon C, Redon C, and Bonner WM. Megabase chromatin
domains involved in DNA double-strand breaks in vivo. The Journal of
Cell Biology. 1999 Sep 6; vol. 146, no. 5 :905–16

150. Lee JH and Paull TT. Activation and regulation of ATM kinase activity
in response to DNA double-strand breaks. Oncogene. 2007 Dec; vol. 26,
no. 56. Number: 56 Publisher: Nature Publishing Group:7741–8

151. Arnould C, Rocher V, Finoux AL, Clouaire T, Li K, Zhou F, Caron P,
Mangeot PE, Ricci EP, Mourad R, Haber JE, Noordermeer D, and Legube
G. Loop extrusion as a mechanism for formation of DNA damage repair
foci. Nature. 2021 Feb; vol. 590, no. 7847. Number: 7847 Publisher:
Nature Publishing Group:660–5

152. Alipour E and Marko JF. Self-organization of domain structures by DNA-
loop-extruding enzymes. Nucleic Acids Research. 2012 Dec 1; vol. 40,
no. 22 :11202–12

153. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, and
Dekker J. Organization of the Mitotic Chromosome. Science. 2013 Nov 22;
vol. 342, no. 6161. Publisher: American Association for the Advancement
of Science:948–53

154. Goloborodko A, Marko JF, and Mirny LA. Chromosome Compaction
by Active Loop Extrusion. Biophysical Journal. 2016 May 24; vol. 110,
no. 10 :2162–8

155. Sanborn AL, Rao SSP, Huang SC, Durand NC, Huntley MH, Jewett
AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke
A, Melnikov A, McKenna D, Stamenova EK, Lander ES, and Aiden EL.
Chromatin extrusion explains key features of loop and domain formation in
wild-type and engineered genomes. Proceedings of the National Academy
of Sciences. 2015 Nov 24; vol. 112, no. 47. Publisher: Proceedings of the
National Academy of Sciences:E6456–E6465

120

Bibliography

156. Nuebler J, Fudenberg G, Imakaev M, Abdennur N, and Mirny LA. Chro-
matin organization by an interplay of loop extrusion and compartmental
segregation. Proceedings of the National Academy of Sciences. 2018 Jul
17; vol. 115, no. 29. Publisher: Proceedings of the National Academy of
Sciences:E6697–E6706

157. Pereira MCF, Brackley CA, Michieletto D, Annunziatella C, Bianco
S, Chiariello AM, Nicodemi M, and Marenduzzo D. Complementary
chromosome folding by transcription factors and cohesin. Pages: 305359
Section: New Results. 2018 Apr 23

158. Buckle A, Brackley CA, Boyle S, Marenduzzo D, and Gilbert N. Polymer
Simulations of Heteromorphic Chromatin Predict the 3D Folding of
Complex Genomic Loci. Molecular Cell. 2018 Nov 15; vol. 72, no. 4
:786–797.e11

159. Banigan EJ, Berg AA van den, Brandão HB, Marko JF, and Mirny LA.
Chromosome organization by one-sided and two-sided loop extrusion. eLife.
2020 Apr 6; vol. 9. Ed. by Struhl K. Publisher: eLife Sciences Publications,
Ltd:e53558

160. Xi W and Beer MA. Loop competition and extrusion model predicts
CTCF interaction specificity. Nature Communications. 2021 Feb 16;
vol. 12, no. 1. Number: 1 Publisher: Nature Publishing Group:1046

161. Gabriele M, Brandão HB, Grosse-Holz S, Jha A, Dailey GM, Cattoglio C,
Hsieh THS, Mirny L, Zechner C, and Hansen AS. Dynamics of CTCF- and
cohesin-mediated chromatin looping revealed by live-cell imaging. Science.
2022 Apr 29; vol. 376, no. 6592. Publisher: American Association for the
Advancement of Science:496–501

162. Dequeker BJH, Scherr MJ, Brandão HB, Gassler J, Powell S, Gaspar
I, Flyamer IM, Lalic A, Tang W, Stocsits R, Davidson IF, Peters JM,
Duderstadt KE, Mirny LA, and Tachibana K. MCM complexes are barriers
that restrict cohesin-mediated loop extrusion. Nature. 2022 Jun; vol. 606,
no. 7912. Number: 7912 Publisher: Nature Publishing Group:197–203

163. Dekker J, Rippe K, Dekker M, and Kleckner N. Capturing Chromosome
Conformation. Science. 2002 Feb 15; vol. 295, no. 5558. Publisher:
American Association for the Advancement of Science:1306–11

164. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S,
Kanduri C, Lezcano M, Singh Sandhu K, Singh U, Pant V, Tiwari V,
Kurukuti S, and Ohlsson R. Circular chromosome conformation capture
(4C) uncovers extensive networks of epigenetically regulated intra- and
interchromosomal interactions. Nature Genetics. 2006 Nov; vol. 38, no. 11.
Number: 11 Publisher: Nature Publishing Group:1341–7

121

Bibliography

165. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA,
Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, and Dekker J.
Chromosome Conformation Capture Carbon Copy (5C): A massively
parallel solution for mapping interactions between genomic elements.
Genome Research. 2006 Oct; vol. 16, no. 10 :1299–309

166. Belaghzal H, Dekker J, and Gibcus JH. HI-C 2.0: AN OPTIMIZED HI-C
PROCEDURE FOR HIGH-RESOLUTION GENOME-WIDE MAPPING
OF CHROMOSOME CONFORMATION. Methods (San Diego, Calif).
2017 Jul 1; vol. 123 :56–65

167. Lafontaine DL, Yang L, Dekker J, and Gibcus JH. Hi-C 3.0: Improved
Protocol for Genome-Wide Chromosome Conformation Capture. Current
Protocols. 2021 Jul; vol. 1, no. 7 :e198

168. Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S,
Nagano T, Andrews S, Wingett S, Kozarewa I, Assiotis I, Fenwick K,
Maguire SL, Campbell J, Natrajan R, Lambros M, Perrakis E, Ashworth
A, Fraser P, and Fletcher O. Unbiased analysis of potential targets of
breast cancer susceptibility loci by Capture Hi-C. Genome Research. 2014
Nov; vol. 24, no. 11 :1854–68

169. Ma W, Ay F, Lee C, Gulsoy G, Deng X, Cook S, Hesson J, Cavanaugh C,
Ware CB, Krumm A, Shendure J, Blau CA, Disteche CM, Noble WS, and
Duan Z. Fine-scale chromatin interaction maps reveal the cis-regulatory
landscape of human lincRNA genes. Nature Methods. 2015 Jan; vol. 12,
no. 1. Number: 1 Publisher: Nature Publishing Group:71–8

170. Ramani V, Cusanovich DA, Hause RJ, Ma W, Qiu R, Deng X, Blau CA,
Disteche CM, Noble WS, Shendure J, and Duan Z. Mapping 3D genome
architecture through in situ DNase Hi-C. Nature Protocols. 2016 Nov;
vol. 11, no. 11. Number: 11 Publisher: Nature Publishing Group:2104–21

171. Hsieh THS, Weiner A, Lajoie B, Dekker J, Friedman N, and Rando
OJ. Mapping Nucleosome Resolution Chromosome Folding in Yeast by
Micro-C. Cell. 2015 Jul 2; vol. 162, no. 1 :108–19

172. Hsieh THS, Fudenberg G, Goloborodko A, and Rando OJ. Micro-C XL:
assaying chromosome conformation from the nucleosome to the entire
genome. Nature Methods. 2016 Dec; vol. 13, no. 12. Number: 12 Publisher:
Nature Publishing Group:1009–11

173. Deshpande AS, Ulahannan N, Pendleton M, Dai X, Ly L, Behr JM,
Schwenk S, Liao W, Augello MA, Tyer C, Rughani P, Kudman S, Tian H,
Otis HG, Adney E, Wilkes D, Mosquera JM, Barbieri CE, Melnick A,
Stoddart D, Turner DJ, Juul S, Harrington E, and Imieliński M. Identifying
synergistic high-order 3D chromatin conformations from genome-scale
nanopore concatemer sequencing. Nature Biotechnology. 2022 Oct; vol. 40,
no. 10. Number: 10 Publisher: Nature Publishing Group:1488–99

122

Bibliography

174. Zhong JY, Niu L, Lin ZB, Bai X, Chen Y, Luo F, Hou C, and Xiao
CL. High-throughput Pore-C reveals the single-allele topology and cell
type-specificity of 3D genome folding. Nature Communications. 2023 Mar
6; vol. 14, no. 1. Number: 1 Publisher: Nature Publishing Group:1250

175. Li W, Lu J, Lu P, Gao Y, Bai Y, Chen K, Su X, Li M, Liu J, Chen Y, Wen
L, and Tang F. scNanoHi-C: a single-cell long-read concatemer sequencing
method to reveal high-order chromatin structures within individual cells.
Nature Methods. 2023 Oct; vol. 20, no. 10. Number: 10 Publisher: Nature
Publishing Group:1493–505

176. Kempfer R and Pombo A. Methods for mapping 3D chromosome
architecture. Nature Reviews Genetics. 2020 Apr; vol. 21, no. 4. Number:
4 Publisher: Nature Publishing Group:207–26

177. Beagrie RA, Scialdone A, Schueler M, Kraemer DCA, Chotalia M, Xie SQ,
Barbieri M, Santiago I de, Lavitas LM, Branco MR, Fraser J, Dostie J,
Game L, Dillon N, Edwards PAW, Nicodemi M, and Pombo A. Complex
multi-enhancer contacts captured by genome architecture mapping. Nature.
2017 Mar; vol. 543, no. 7646. Number: 7646 Publisher: Nature Publishing
Group:519–24

178. Beagrie RA, Thieme CJ, Annunziatella C, Baugher C, Zhang Y, Schueler
M, Kukalev A, Kempfer R, Chiariello AM, Bianco S, Li Y, Davis T,
Scialdone A, Welch LR, Nicodemi M, and Pombo A. Multiplex-GAM:
genome-wide identification of chromatin contacts yields insights overlooked
by Hi-C. Nature Methods. 2023 Jul; vol. 20, no. 7. Number: 7 Publisher:
Nature Publishing Group:1037–47

179. Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E,
Lai MM, Shishkin AA, Bhat P, Takei Y, Trinh V, Aznauryan E, Russell
P, Cheng C, Jovanovic M, Chow A, Cai L, McDonel P, Garber M, and
Guttman M. Higher-Order Inter-chromosomal Hubs Shape 3D Genome
Organization in the Nucleus. Cell. 2018 Jul 26; vol. 174, no. 3 :744–
757.e24

180. Quinodoz SA, Bhat P, Chovanec P, Jachowicz JW, Ollikainen N, Detmar
E, Soehalim E, and Guttman M. SPRITE: a genome-wide method for
mapping higher-order 3D interactions in the nucleus using combinatorial
split-and-pool barcoding. Nature Protocols. 2022 Jan; vol. 17, no. 1.
Number: 1 Publisher: Nature Publishing Group:36–75

181. Quinodoz SA, Jachowicz JW, Bhat P, Ollikainen N, Banerjee AK, Goronzy
IN, Blanco MR, Chovanec P, Chow A, Markaki Y, Thai J, Plath K, and
Guttman M. RNA promotes the formation of spatial compartments in the
nucleus. Cell. 2021 Nov 11; vol. 184, no. 23 :5775–5790.e30

182. Arrastia MV, Jachowicz JW, Ollikainen N, Curtis MS, Lai C, Quinodoz
SA, Selck DA, Ismagilov RF, and Guttman M. Single-cell measurement of
higher-order 3D genome organization with scSPRITE. Nature Biotechnol-
ogy. 2022 Jan; vol. 40, no. 1. Number: 1 Publisher: Nature Publishing
Group:64–73

123

Bibliography

183. Zheng M, Tian SZ, Capurso D, Kim M, Maurya R, Lee B, Piecuch E,
Gong L, Zhu JJ, Li Z, Wong CH, Ngan CY, Wang P, Ruan X, Wei CL, and
Ruan Y. Multiplex chromatin interactions with single-molecule precision.
Nature. 2019 Feb; vol. 566, no. 7745. Number: 7745 Publisher: Nature
Publishing Group:558–62

184. Lai B, Tang Q, Jin W, Hu G, Wangsa D, Cui K, Stanton BZ, Ren G, Ding
Y, Zhao M, Liu S, Song J, Ried T, and Zhao K. Trac-looping measures
genome structure and chromatin accessibility. Nature Methods. 2018 Sep;
vol. 15, no. 9. Number: 9 Publisher: Nature Publishing Group:741–7

185. Langer-Safer PR, Levine M, and Ward DC. Immunological method for
mapping genes on Drosophila polytene chromosomes. Proceedings of the
National Academy of Sciences of the United States of America. 1982 Jul;
vol. 79, no. 14 :4381–5

186. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, and Bickmore WA.
Differences in the Localization and Morphology of Chromosomes in the
Human Nucleus. Journal of Cell Biology. 1999 Jun 14; vol. 145, no. 6
:1119–31

187. Westendorf C, Bae AJ, Erlenkamper C, Galland E, Franck C, Bodenschatz
E, and Beta C. Live cell flattening — traditional and novel approaches.
PMC Biophysics. 2010 Apr 19; vol. 3 :9

188. Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, Solovei
I, and Cremer T. Multicolor 3D Fluorescence In Situ Hybridization for
Imaging Interphase Chromosomes. The Nucleus: Volume 1: Nuclei and
Subnuclear Components. Ed. by Hancock R. Methods in Molecular Biology.
Totowa, NJ: Humana Press, 2008 :205–39

189. Jerkovic´ I and Cavalli G. Understanding 3D genome organization by
multidisciplinary methods. Nature Reviews Molecular Cell Biology. 2021
Aug; vol. 22, no. 8. Number: 8 Publisher: Nature Publishing Group:511–28

190. Xie SQ, Lavitas LM, and Pombo A. CryoFISH: Fluorescence In Situ Hy-
bridization on Ultrathin Cryosections. Fluorescence in situ Hybridization
(FISH): Protocols and Applications. Ed. by Bridger JM and Volpi EV.
Methods in Molecular Biology. Totowa, NJ: Humana Press, 2010 :219–30

191. Hu M and Wang S. Chromatin Tracing: Imaging 3D Genome and Nucleome.
Trends in Cell Biology. 2021 Jan 1; vol. 31, no. 1 :5–8

192. Beliveau BJ, Apostolopoulos N, and Wu Ct. Visualizing genomes with
Oligopaint FISH probes. Current protocols in molecular biology / edited
by Frederick M Ausubel [et al]. 2014 Jan 6; vol. 105 :14.23.1–14.23.20

193. Bouwman BAM, Crosetto N, and Bienko M. The era of 3D and spatial
genomics. Trends in Genetics. 2022 Oct 1; vol. 38, no. 10. Publisher:
Elsevier:1062–75

124

Bibliography

194. Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M, Kinrot
S, Yamaya K, Boettiger AN, and Zhuang X. Super-resolution chromatin
tracing reveals domains and cooperative interactions in single cells. Science.
2018 Oct 26; vol. 362, no. 6413. Publisher: American Association for the
Advancement of Science:eaau1783

195. Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu Ct, and Zhuang X.
Spatial organization of chromatin domains and compartments in single
chromosomes. Science (New York, NY). 2016 Aug 5; vol. 353, no. 6299
:598–602

196. Nir G, Farabella I, Estrada CP, Ebeling CG, Beliveau BJ, Sasaki HM,
Lee SD, Nguyen SC, McCole RB, Chattoraj S, Erceg J, Abed JA, Martins
NMC, Nguyen HQ, Hannan MA, Russell S, Durand NC, Rao SSP, Kishi
JY, Soler-Vila P, Pierro MD, Onuchic JN, Callahan SP, Schreiner JM,
Stuckey JA, Yin P, Aiden EL, Marti-Renom MA, and Wu Ct. Walking
along chromosomes with super-resolution imaging, contact maps, and
integrative modeling. PLOS Genetics. 2018 Dec 26; vol. 14, no. 12.
Publisher: Public Library of Science:e1007872

197. Cardozo Gizzi A, Cattoni D, Fiche JB, Espinola S, Gurgo J, Messina O,
Houbron C, Ogiyama Y, Papadopoulos G, Cavalli G, Lagha M, and Noll-
mann M. Microscopy-Based Chromosome Conformation Capture Enables
Simultaneous Visualization of Genome Organization and Transcription in
Intact Organisms. Molecular Cell. 2019; vol. 74, no. 1 :212–222.e5

198. Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, and Boettiger
AN. Visualizing DNA folding and RNA in embryos at single-cell resolution.
Nature. 2019 Apr; vol. 568, no. 7750. Number: 7750 Publisher: Nature
Publishing Group:49–54

199. Liu M, Lu Y, Yang B, Chen Y, Radda J, Hu M, Katz S, and Wang S.
Multiplexed imaging of nucleome architectures in single cells of mammalian
tissue. Nature Communications. 2020; vol. 11, no. 1

200. Liu M, Yang B, Hu M, Radda JSD, Chen Y, Jin S, Cheng Y, and Wang S.
Chromatin tracing and multiplexed imaging of nucleome architectures
(MINA) and RNAs in single mammalian cells and tissue. Nature Protocols.
2021 May; vol. 16, no. 5. Number: 5 Publisher: Nature Publishing
Group:2667–97

201. Su JH, Zheng P, Kinrot S, Bintu B, and Zhuang X. Genome-Scale Imaging
of the 3D Organization and Transcriptional Activity of Chromatin. Cell.
2020; vol. 182, no. 6 :1641–1659.e26

202. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, and Cai L. Single-cell
in situ RNA profiling by sequential hybridization. Nature Methods. 2014
Apr; vol. 11, no. 4. Number: 4 Publisher: Nature Publishing Group:360–1

125

Bibliography

203. Eng CHL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin
C, Karp C, Yuan GC, and Cai L. Transcriptome-scale super-resolved
imaging in tissues by RNA seqFISH+. Nature. 2019 Apr; vol. 568,
no. 7751. Number: 7751 Publisher: Nature Publishing Group:235–9

204. Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M,
Wohlfahrt KJ, Boucher W, O’Shaughnessy-Kirwan A, Cramard J, Faure
AJ, Ralser M, Blanco E, Morey L, Sansó M, Palayret MGS, Lehner B, Di
Croce L, Wutz A, Hendrich B, Klenerman D, and Laue ED. 3D structures
of individual mammalian genomes studied by single-cell Hi-C. Nature.
2017 Apr; vol. 544, no. 7648. Number: 7648 Publisher: Nature Publishing
Group:59–64

205. Gu B, Swigut T, Spencley A, Bauer MR, Chung M, Meyer T, and Wysocka
J. Transcription-coupled changes in nuclear mobility of mammalian cis-
regulatory elements. Science. 2018 Mar 2; vol. 359, no. 6379. Publisher:
American Association for the Advancement of Science:1050–5

206. Oudelaar AM, Davies JO, Hanssen LL, Telenius JM, Schwessinger R, Liu Y,
Brown JM, Downes DJ, Chiariello AM, Bianco S, Nicodemi M, Buckle VJ,
Dekker J, Higgs DR, and Hughes JR. Single-allele chromatin interactions
identify regulatory hubs in dynamic compartmentalized domains. Nature
genetics. 2018 Dec; vol. 50, no. 12 :1744–51

207. Olivares-Chauvet P, Mukamel Z, Lifshitz A, Schwartzman O, Elkayam NO,
Lubling Y, Deikus G, Sebra RP, and Tanay A. Capturing pairwise and
multi-way chromosomal conformations using chromosomal walks. Nature.
2016 Dec; vol. 540, no. 7632. Number: 7632 Publisher: Nature Publishing
Group:296–300

208. Allahyar A, Vermeulen C, Bouwman BAM, Krijger PHL, Verstegen MJAM,
Geeven G, Kranenburg M van, Pieterse M, Straver R, Haarhuis JHI, Jalink
K, Teunissen H, Renkens IJ, Kloosterman WP, Rowland BD, Wit E de,
Ridder J de, and Laat W de. Enhancer hubs and loop collisions identified
from single-allele topologies. Nature Genetics. 2018 Aug; vol. 50, no. 8.
Number: 8 Publisher: Nature Publishing Group:1151–60

209. Belton JM, McCord RP, Gibcus J, Naumova N, Zhan Y, and Dekker
J. Hi-C: A comprehensive technique to capture the conformation of
genomes. Methods (San Diego, Calif). 2012 Nov; vol. 58, no. 3
:10.1016/j.ymeth.2012.05.001

210. Arima-HiC Kit: User Guide for Mammalian Cell Lines. 2019 Nov

211. Garg S, Fungtammasan A, Carroll A, Chou M, Schmitt A, Zhou X, Mac S,
Peluso P, Hatas E, Ghurye J, Maguire J, Mahmoud M, Cheng H, Heller
D, Zook JM, Moemke T, Marschall T, Sedlazeck FJ, Aach J, Chin CS,
Church GM, and Li H. Chromosome-scale, haplotype-resolved assembly of
human genomes. Nature Biotechnology. 2021 Mar; vol. 39, no. 3. Number:
3 Publisher: Nature Publishing Group:309–12

126

Bibliography

212. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A,
Lajoie BR, Dekker J, and Mirny LA. Iterative correction of Hi-C data
reveals hallmarks of chromosome organization. Nature Methods. 2012
Oct; vol. 9, no. 10. Number: 10 Publisher: Nature Publishing Group:999–
1003

213. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, Heard E,
Dekker J, and Barillot E. HiC-Pro: an optimized and flexible pipeline for
Hi-C data processing. Genome Biology. 2015 Dec 1; vol. 16, no. 1 :259

214. Zhang H, Song L, Wang X, Cheng H, Wang C, Meyer CA, Liu T, Tang M,
Aluru S, Yue F, Liu XS, and Li H. Fast alignment and preprocessing of
chromatin profiles with Chromap. Nature Communications. 2021 Nov
12; vol. 12, no. 1. Number: 1 Publisher: Nature Publishing Group:6566

215. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth
G, Abecasis G, Durbin R, and 1000 Genome Project Data Processing
Subgroup. The Sequence Alignment/Map format and SAMtools. Bioin-
formatics (Oxford, England). 2009 Aug 15; vol. 25, no. 16 :2078–
9

216. Docker for 4DN Hi-C processing pipeline. original-date: 2017-03-
03T05:30:33Z. 2023 Sep 14

217. Goloborodko A, Venev S, Spracklin G, Abdennur N, agalitsyna, Shaytan
A, Flyamer I, Tommaso PD, and sergey-kolchenko. open2c/distiller-nf:
v0.3.4. Version v0.3.4. 2022 Nov

218. ENCODE. ENCODE Hi-C uniform processing pipeline. original-date:
2018-02-01T23:47:50Z. 2023 Sep 28

219. Servant N, c bot nf-core, Ewels P, Garcia MU, Talbot A, Peltzer A,
Miller E, Rossini R, Zohren J, Menden K, and Philippe LR. nf-core/hic:
nf-core/hic v2.1.0. Version 2.1.0. 2023 Jun

220. Abdennur N and Mirny LA. Cooler: scalable storage for Hi-C data and
other genomically labeled arrays. Bioinformatics. 2019 Jul 10; vol. 36,
no. 1 :311–6

221. Wolff J, Bhardwaj V, Nothjunge S, Richard G, Renschler G, Gilsbach R,
Manke T, Backofen R, Ramírez F, and Grüning BA. Galaxy HiCExplorer:
a web server for reproducible Hi-C data analysis, quality control and
visualization. Nucleic Acids Research. 2018 Jul 2; vol. 46 :W11–W16

222. Wolff J, Rabbani L, Gilsbach R, Richard G, Manke T, Backofen R, and
Grüning BA. Galaxy HiCExplorer 3: a web server for reproducible Hi-
C, capture Hi-C and single-cell Hi-C data analysis, quality control and
visualization. Nucleic Acids Research. 2020 Jul 2; vol. 48 :W177–W184

223. Lee S, Bakker CR, Vitzthum C, Alver BH, and Park PJ. Pairs and Pairix:
a file format and a tool for efficient storage and retrieval for Hi-C read
pairs. Bioinformatics. 2022 Mar 4; vol. 38, no. 6 :1729–31

127

Bibliography

224. Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited
files. Bioinformatics. 2011 Mar 1; vol. 27, no. 5 :718–9

225. Open2C, Abdennur N, Fudenberg G, Flyamer IM, Galitsyna AA,
Goloborodko A, Imakaev M, and Venev SV. Pairtools: from sequencing
data to chromosome contacts. bioRxiv: The Preprint Server for Biology.
2023 Feb 15 :2023.02.13.528389

226. Soohyun Lee. pairix: 1D/2D indexing and querying on bgzipped text file
with a pair of genomic coordinates. original-date: 2016-10-28T18:57:34Z.
2023 Oct 5

227. Lun ATL, Perry M, and Ing-Simmons E. Infrastructure for genomic
interactions: Bioconductor classes for Hi-C, ChIA-PET and related
experiments. F1000Research. 2016; vol. 5 :950

228. The HDF Group. Hierarchical Data Format, version 5. 1997

229. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES,
and Aiden EL. Juicebox Provides a Visualization System for Hi-C Contact
Maps with Unlimited Zoom. Cell Systems. 2016 Jul 27; vol. 3, no. 1
:99–101

230. .hic format specification. original-date: 2020-07-08T13:32:40Z. 2022 Mar
17

231. Hansen AS, Pustova I, Cattoglio C, Tjian R, and Darzacq X. CTCF
and cohesin regulate chromatin loop stability with distinct dynamics.
eLife. 2017 May 3; vol. 6. Ed. by Sherratt D. Publisher: eLife Sciences
Publications, Ltd:e25776

232. Rodríguez-Carballo E, Lopez-Delisle L, Zhan Y, Fabre PJ, Beccari L,
El-Idrissi I, Huynh THN, Ozadam H, Dekker J, and Duboule D. The
HoxD cluster is a dynamic and resilient TAD boundary controlling the
segregation of antagonistic regulatory landscapes. Genes & Development.
2017 Nov 15; vol. 31, no. 22. Company: Cold Spring Harbor Laboratory
Press Distributor: Cold Spring Harbor Laboratory Press Institution: Cold
Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory
Press Publisher: Cold Spring Harbor Lab:2264–81

233. Rodríguez-Carballo E, Lopez-Delisle L, Willemin A, Beccari L, Gitto
S, Mascrez B, and Duboule D. Chromatin topology and the timing of
enhancer function at the HoxD locus. Proceedings of the National Academy
of Sciences. 2020 Dec 8; vol. 117, no. 49. Publisher: Proceedings of the
National Academy of Sciences:31231–41

234. Bailey TL and Gribskov M. Combining evidence using p-values: application
to sequence homology searches. Bioinformatics (Oxford, England). 1998;
vol. 14, no. 1 :48–54

128

Bibliography

235. Kim T, Han S, Chun Y, Yang H, Min H, Jeon SY, Kim Ji, Moon HG,
and Lee D. Comparative characterization of 3D chromatin organization in
triple-negative breast cancers. Experimental & Molecular Medicine. 2022
May; vol. 54, no. 5. Number: 5 Publisher: Nature Publishing Group:585–
600

236. Wang X, Yan J, Ye Z, Zhang Z, Wang S, Hao S, Shen B, and Wei
G. Reorganization of 3D chromatin architecture in doxorubicin-resistant
breast cancer cells. Frontiers in Cell and Developmental Biology. 2022;
vol. 10 :974750

237. Servant N, Varoquaux N, Heard E, Barillot E, and Vert JP. Effective
normalization for copy number variation in Hi-C data. BMC Bioinformatics.
2018 Sep 6; vol. 19, no. 1 :313

238. Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, and
Duboule D. The Dynamic Architecture of Hox Gene Clusters. Science.
2011 Oct 14; vol. 334, no. 6053. Publisher: American Association for the
Advancement of Science:222–5

239. Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E,
Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-
Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke
M, Timmermann B, Hecht J, Spielmann M, Visel A, and Mundlos S.
Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring
of Gene-Enhancer Interactions. Cell. 2015 May 21; vol. 161, no. 5 :1012–
25

240. Giorgio E, Robyr D, Spielmann M, Ferrero E, Di Gregorio E, Imperiale
D, Vaula G, Stamoulis G, Santoni F, Atzori C, Gasparini L, Ferrera D,
Canale C, Guipponi M, Pennacchio LA, Antonarakis SE, Brussino A,
and Brusco A. A large genomic deletion leads to enhancer adoption by
the lamin B1 gene: a second path to autosomal dominant adult-onset
demyelinating leukodystrophy (ADLD). Human Molecular Genetics. 2015
Jun 1; vol. 24, no. 11 :3143–54

241. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-
Rachamimov AO, Suvà ML, and Bernstein BE. Insulator dysfunction and
oncogene activation in IDH mutant gliomas. Nature. 2016 Jan; vol. 529,
no. 7584. Number: 7584 Publisher: Nature Publishing Group:110–4

242. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, Goldmann J,
Lajoie BR, Fan ZP, Sigova AA, Reddy J, Borges-Rivera D, Lee TI, Jaenisch
R, Porteus MH, Dekker J, and Young RA. Activation of proto-oncogenes
by disruption of chromosome neighborhoods. Science. 2016 Mar 25;
vol. 351, no. 6280. Publisher: American Association for the Advancement
of Science:1454–8

129

Bibliography

243. Thiecke MJ, Wutz G, Muhar M, Tang W, Bevan S, Malysheva V, Stocsits
R, Neumann T, Zuber J, Fraser P, Schoenfelder S, Peters JM, and
Spivakov M. Cohesin-Dependent and -Independent Mechanisms Mediate
Chromosomal Contacts between Promoters and Enhancers. Cell Reports.
2020 Jul 21; vol. 32, no. 3 :107929

244. Valton AL and Dekker J. TAD disruption as oncogenic driver. Current
opinion in genetics & development. 2016 Feb; vol. 36 :34–40

245. Taberlay PC, Achinger-Kawecka J, Lun ATL, Buske FA, Sabir K, Gould
CM, Zotenko E, Bert SA, Giles KA, Bauer DC, Smyth GK, Stirzaker C,
O’Donoghue SI, and Clark SJ. Three-dimensional disorganization of the
cancer genome occurs coincident with long-range genetic and epigenetic
alterations. Genome Research. 2016 Jun 1; vol. 26, no. 6. Company:
Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor
Laboratory Press Institution: Cold Spring Harbor Laboratory Press Label:
Cold Spring Harbor Laboratory Press Publisher: Cold Spring Harbor
Lab:719–31

246. Luo H, Wang F, Zha J, Li H, Yan B, Du Q, Yang F, Sobh A, Vulpe C,
Drusbosky L, Cogle C, Chepelev I, Xu B, Nimer SD, Licht J, Qiu Y, Chen
B, Xu M, and Huang S. CTCF boundary remodels chromatin domain and
drives aberrant HOX gene transcription in acute myeloid leukemia. Blood.
2018 Aug 23; vol. 132, no. 8 :837–48

247. Campbell MJ. Tales from Topographic Oceans: Topologically associated
domains and cancer. Endocrine-related cancer. 2019 Nov; vol. 26, no. 11
:R611–R626

248. San Martin R, Das P, Dos Reis Marques R, Xu Y, Roberts JM, Sanders
JT, Golloshi R, and McCord RP. Chromosome compartmentalization
alterations in prostate cancer cell lines model disease progression. Journal
of Cell Biology. 2021 Dec 10; vol. 221, no. 2 :e202104108

249. Ren B, Yang J, Wang C, Yang G, Wang H, Chen Y, Xu R, Fan X, You L,
Zhang T, and Zhao Y. High-resolution Hi-C maps highlight multiscale 3D
epigenome reprogramming during pancreatic cancer metastasis. Journal
of Hematology & Oncology. 2021 Aug 4; vol. 14, no. 1 :120

250. Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016
May 1; vol. 533, no. 7604. Number: 7604 Publisher: Nature Publishing
Group:452–4

251. Miyakawa T. No raw data, no science: another possible source of the
reproducibility crisis. Molecular Brain. 2020 Feb 21; vol. 13, no. 1 :24

252. Gosselin RD. Statistical Analysis Must Improve to Address the
Reproducibility Crisis: The ACcess to Transparent Statistics
(ACTS) Call to Action. BioEssays. 2020; vol. 42, no. 1. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bies.201900189:1900189

130

Bibliography

253. Gundersen OE. The fundamental principles of reproducibility. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences. 2021 Mar 29; vol. 379, no. 2197. Publisher: Royal
Society:20200210

254. Moonesinghe R, Khoury MJ, and Janssens ACJW. Most Published
Research Findings Are False—But a Little Replication Goes a Long
Way. PLoS Medicine. 2007 Feb; vol. 4, no. 2 :e28

255. Freedman LP, Cockburn IM, and Simcoe TS. The Economics of
Reproducibility in Preclinical Research. PLOS Biology. 2015 Jun 9;
vol. 13, no. 6. Publisher: Public Library of Science:e1002165

256. Genome Biology - reporting standards. BioMed Central. Available from:
https : / / genomebiology. biomedcentral . com / submission - guidelines /

preparing-your-manuscript/software [Accessed on: 2023 Nov 21]

257. Oxford Bioinformatics: Instructions for Authors. Oxford Academic.
Available from: https : / / academic . oup . com / bioinformatics / pages /

instructions_for_authors [Accessed on: 2023 Nov 21]

258. zlib Home Site. Available from: https://www.zlib.net/ [Accessed on: 2023
Nov 9]

259. LZ4 - Extremely fast compression. Available from: https : / / lz4 . org/

[Accessed on: 2023 Nov 9]

260. XZ Utils. Available from: https://tukaani.org/xz/ [Accessed on: 2023 Nov
9]

261. Apache Parquet. Available from: https://parquet.apache.org/ [Accessed
on: 2023 Oct 28]

262. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, and
Notredame C. Nextflow enables reproducible computational workflows.
Nature Biotechnology. 2017 Apr; vol. 35, no. 4. Number: 4 Publisher:
Nature Publishing Group:316–9

263. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat
V, Forster J, Lee S, Twardziok SO, Kanitz A, Wilm A, Holtgrewe M,
Rahmann S, Nahnsen S, and Köster J. Sustainable data analysis with
Snakemake. 10:33. Type: article. F1000Research, 2021 Jan 18

131

Papers

Paper I

MoDLE: high-performance
stochastic modeling of DNA loop
extrusion interactions

Roberto Rossini, Vipin Kumar, Anthony Mathelier, Torbjørn
Rognes, Jonas Paulsen

Published in Genome Biology, 2022 Nov 30;23(1):247

DOI: 10.1186/s13059-022-02815-7.

I

135

MoDLE: high‑performance stochastic
modeling of DNA loop extrusion interactions

Roberto Rossini1, Vipin Kumar2, Anthony Mathelier2, Torbjørn Rognes3,4 and Jonas Paulsen1,3*

Background

DNA loop-extrusion, in which DNA is progressively reeled into transient loops, emerges

as a key process in genome structure and function. �e growing list of cellular processes

where loop-extrusion plays a critical role now includes transcriptional regulation [1, 2],

DNA repair [3], VDJ-recombination [4], and cell division [5]. Recent single-molecule

imaging experiments have provided direct observations of loop extrusion in vitro [6, 7].

High-throughput chromosome conformation capture sequencing, including Hi-C [8]

and Micro-C [9, 10], has advanced our abilities to map three-dimensional (3D) genome

organization through quantification of spatially proximal genome regions. �e resulting

data is usually rendered as a matrix of intrachromosomal and interchromosomal contact

frequencies. �ese data increasingly deepen our understanding of 3D genome organiza-

tion and show DNA loop extrusion as a key process shaping genome structure [11–13].

In fact, topologically associating domains (TADs), which show up as sub-megabase-

sized domains covering most of higher eukaryote genomes, are formed by loop extru-

sion [12]. TADs are relevant units of gene expression regulation and are associated with

disease when disrupted [14].

Abstract

DNA loop extrusion emerges as a key process establishing genome structure and
function. We introduce MoDLE, a computational tool for fast, stochastic modeling of
molecular contacts from DNA loop extrusion capable of simulating realistic contact
patterns genome wide in a few minutes. MoDLE accurately simulates contact maps in
concordance with existing molecular dynamics approaches and with Micro-C data and
does so orders of magnitude faster than existing approaches. MoDLE runs efficiently
on machines ranging from laptops to high performance computing clusters and opens
up for exploratory and predictive modeling of 3D genome structure in a wide range of
settings.

Keywords: Loop extrusion, Stochastic modeling, Hi-C, Micro-C, TAD

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Rossini et al. Genome Biology (2022) 23:247

https://doi.org/10.1186/s13059‑022‑02815‑7
Genome Biology

*Correspondence:
jonas.paulsen@ibv.uio.no

1 Department of Biosciences,
University of Oslo, 0316 Oslo,
Norway
2 Centre for Molecular Medicine
Norway (NCMM), Nordic EMBL
Partnership, University of Oslo,
0318 Oslo, Norway
3 Centre for Bioinformatics,
Department of Informatics,
University of Oslo, 0316 Oslo,
Norway
4 Department of Microbiology,
Oslo University Hospital,
Rikshospitalet, 0424 Oslo,
Norway

137

Page 2 of 24Rossini et al. Genome Biology (2022) 23:247

DNA loop extrusion is carried out by ring-shaped proteins (including cohesin and

condensin) belonging to the structural maintenance of chromosomes (SMC) family.

�ese proteins are often referred to as loop extrusion factors (LEFs) [15]. �e exact

mechanism of how loop extrusion takes place in interphase is not fully understood.

�ere is, however, convincing evidence that SMCs bind DNA to perform ATP-

dependent loop extrusion in a symmetric or asymmetric fashion. Recent evidence

suggests that cohesin can extrude DNA with a “swing-and-clamp” mechanism [16]

and in a nontopological configuration where DNA is not encircled by the cohesin ring

[17, 18]. A loop starts extruding when a LEF binds to a genomic region and continues

processively until it is stalled by a DNA-bound CCCTC binding factor (CTCF) ori-

ented with its N-terminus pointing towards the extruding cohesin complex. A pair

of CTCFs arranged in a convergent orientation can thus stall loop growth on both

sides creating semi-stable loops visible in Hi-C as a characteristic "dot" at TAD cor-

ners [19]. Similarly, when extruding loops are stalled only on one side, a “stripe” can

be observed along one or both TAD borders [20]. �e protein WAPL transiently

releases cohesin from chromatin, terminating the loop extrusion process [21, 22]. �e

resulting loop-extrusion patterns have been found in a range of Hi-C datasets so far,

emphasizing the evolutionary conserved role of loop extrusion in shaping 3D genome

organization [19, 23].

Disrupting any of the key proteins involved in DNA loop extrusion has a dramatic

effect on genome 3D structure. WAPL depletion causes an increase in loop stability,

with an accumulation of axial elements and weakening of compartments [21, 24]. Deple-

tion of cohesin causes a large fraction of TADs and loops to disappear [24–26]. Similarly,

depletion of CTCF induces loss of loops and TADs [24, 27].

Modeling and simulation of DNA-DNA contact patterns is a powerful approach for

understanding underlying molecular mechanisms and for predicting the effect of DNA

perturbations. Polymer simulations and molecular dynamics (MD) have been used for

modeling of TADs to study their structure and dynamics [28–31]. Computational mod-

eling and simulation of loop extrusion has proven useful for predicting the effects of

perturbations to TAD borders and to properly understand patterns seen in Hi-C data.

Initial models [15, 32] of loop extrusion used the Gillespie algorithm to characterize

looping properties and chromatin compaction and did not sample contact maps. Subse-

quent models used HOOMD particle simulation [33] to perform homopolymer simula-

tions where modeled LEFs extrude the polymers and halt at boundaries with properties

defined from CTCF motif instance orientation and ChIP-seq signal strength [11, 25].

Recently, to efficiently simulate larger genome regions, a combination of one-dimen-

sional (1D) simulations with 3D polymer modeling has been applied to sample multiple

conformations combined into contact maps. LEF binding, release, and stalling probabili-

ties are then modeled explicitly [34–36]. �ese simulations are typically implemented

using the OpenMM molecular simulation framework [37]. �e simulations can be used

to explore and rule out molecular mechanisms. For example, Banigan et al. assessed the

level of DNA compaction that can be achieved by different loop extrusion mechanisms

and concluded that one-sided loop extrusion alone fails to achieve the level of compac-

tion observed in large metazoan genomes [36]. Other approaches embed epigenetic data

in combination with crosslinking proteins to model and study conformational variability

138

Page 3 of 24Rossini et al. Genome Biology (2022) 23:247

across complex chromatin regions [38, 39]. To the best of our knowledge, no standalone

software for modeling and simulation of loop extrusion exists.

We introduce MoDLE (modeling of DNA loop extrusion), a high-performance sto-

chastic model of DNA loop extrusion capable of efficiently simulating contacts from

loop extrusion genome wide. In contrast to MD simulation approaches, simulating

loop extrusion contacts using MoDLE is a straightforward process only requiring two

input files and execution through a command line interface (CLI). MoDLE can simulate

a contact matrix with the molecular interactions generated by DNA loop extrusion on

the entire human genome in a matter of minutes using less than 1 GB of RAM. Typical

use cases include predicting Hi-C contact patterns from ChIP-seq (or similar) data and

predicting the effect of alterations, mutations, and structural variation to TAD borders.

MoDLE opens up for rapid simulation and parameter exploration of DNA loop extru-

sion on genomes of any size, including large mammalian genomes.

Results

MoDLE: modeling of DNA loop extrusion

MoDLE uses fast stochastic simulation to sample DNA-DNA contacts generated by loop

extrusion. Binding and release of LEFs and barriers and the extrusion process is mod-

eled as an iterative process (see Fig. 1). At the beginning of a simulation, MoDLE goes

through a burn-in phase where LEFs are progressively bound to DNA, without sam-

pling molecular contacts. �e burn-in phase runs until the average loop size has sta-

bilized. Active LEFs are extruded through randomly sampled strides along the DNA in

reverse and forward directions. Each epoch, LEFs are released with a probability based

on the average LEF processivity and extrusion speed. LEFs that are released in the cur-

rent epoch will rebind to randomly sampled DNA regions in the next epoch. Extrusion

barriers (e.g., CTCF binding sites) are modeled using a two-state (bound and unbound)

Fig. 1 Schematic and simplified overview of MoDLE. Input files specify genome regions to be simulated
(e.g., a chrom.sizes file) and their barrier positions (e.g., CTCF binding sites and orientation) in BED format.
Optional parameters control the specifics of a simulation. Loop extruding factors (LEFs) bind to, extrude, and
release from the regions and interact with modeled barriers according to input parameters. Loop extrusion
and intra-TAD contacts of a randomized subset of loops are recorded each epoch and aggregated into an
output cooler file containing the final simulated contact frequencies. Simulation halts when a target number
of epochs or a target number of loop extrusion contacts have been simulated

139

Page 4 of 24Rossini et al. Genome Biology (2022) 23:247

Markov process. Each extrusion barrier consists of a position, a blocking direction and

the Markov process transition probabilities. �e occupancy of each extrusion barrier

can be specified individually through the score field in the input BED file. Alternatively,

users can specify a uniform barrier occupancy that is applied to all extrusion barriers.

MoDLE accepts a large number of optional parameters to specify the model’s behavior.

For example, users can specify the number of LEFs to be instantiated for each Mbp of

simulated DNA using the --lef-density parameter. LEF-barrier and LEF-LEF collisions

are processed each simulation epoch. Collision information is used to update candidate

strides to satisfy the constraints imposed by collision events and to compute how extru-

sion in the next epoch should proceed.

During a simulation, sampled molecular contacts are accumulated into a specialized

contact matrix data structure with low memory overhead. MoDLE execution continues

until a target number of epochs or a target number of loop extrusion contacts are simu-

lated. Finally, contacts generated by all simulation instances for a given chromosome are

written to an output file in cooler format [40] (Fig. 1).

With default settings, MoDLE will run over 500 simulation instances for each chro-

mosome simulated. �us, simulation instances can run in parallel, making efficient use

of the computational resources of modern multi-core CPUs. We designed MoDLE such

that each simulation instance requires less than 10 MB of memory to simulate loop

extrusion on large mammalian chromosomes, such as chromosome 1 from the human

genome. To achieve high-performance, MoDLE stores most of its data in contiguous

memory. Data is indexed such that extrusion barriers and extrusion units in a simula-

tion instance can be efficiently traversed in 5′-3′ and 3′-5′ directions. �is allows MoDLE

to bind/release LEFs, process collisions, register contacts, and extrude DNA in linear

time-complexity.

More design and implementation details are available in Additional file 1 as well as

MoDLE’s GitHub repository github. com/ pauls engro up/ modle.

Comparison with Micro-C data and MD simulations

To assess MoDLE’s ability to reproduce contact data features known to be stemming

from loop extrusion, we simulated genome-wide DNA-DNA contacts based on avail-

able CTCF and RAD21 ChIP-seq data in H1-hESC cells (see Methods). MoDLE is capa-

ble of simulating loop extrusion molecular contacts and intra-TAD contacts separately

(see Additional file 1: Section 9 for details). A rendering of the resulting loop extrusion

molecular contacts heatmaps show characteristic stripe and dot patterns at TAD borders

(Fig. 2A). Simulated TAD contacts show enrichment of contacts within TADs, including

a nested structure of the TADs (Fig. 2B). In combination, these patterns resemble well-

characterized patterns observed in Micro-C and Hi-C data (Fig. 2C).

Even though no stand-alone software exists for direct side-by-side comparison, we

adapted available code based on OpenMM [36] to systematically compare the output

with that of MoDLE (see Methods). We chose OpenMM for comparison as it is an effi-

cient and widely used system for simulating loop extrusion [12, 34–36, 41].

Using the same input data, we simulated contacts in five different 10 Mbp regions on

five different chromosomes. In general, MoDLE produces contact patterns similar to

OpenMM (Fig. 2D and Additional file 2: Fig. S1), and MoDLE output and OpenMM

140

Page 5 of 24Rossini et al. Genome Biology (2022) 23:247

Fig. 2 Comparison of MoDLE with OpenMM and Micro-C data. A Simulated MoDLE contact frequencies
solely mediated by LEFs. B Intra-TAD contacts (only) generated with MoDLE. C Lower triangle: Loop extrusion
and intra-TAD contacts from MoDLE in the same region as for A and B. Upper triangle: Micro-C data from the
same region. D Side-by-side comparison of Micro-C data, MoDLE output, and OpenMM output for a region
on chromosome 3 in H1-hESC. E Quantitative comparison of the accuracy (fraction of correctly classified
pixels relative to all pixels) of MoDLE and OpenMM in reproducing stripe and dot pixel-patterns observed
in modeled regions in H1-hESC cells (see the “Methods” section). F In silico simulated molecular contacts
mimicking CTCF and WAPL depletion. Left: Wildtype (WT) output of MoDLE in a region on chromosome 6 in
H1-hESC. Middle: effect on MoDLE output when CTCF barriers weakly associate with their binding sites. Right:
effect on MoDLE output when LEFs are less likely to be released from DNA, thus mimicking WAPL depletion

141

Page 6 of 24Rossini et al. Genome Biology (2022) 23:247

correlate strongly (Pearson ρ = 0.93; see Additional file 2: Fig. S2). By comparing con-

tacts with corresponding Micro-C and Hi-C data (Fig. 2D), we see a median pixel accu-

racy (i.e., the ability to correctly classify pixels as a dot/stripe or not, relative to all pixels;

see Methods) of 0.69 for MoDLE and 0.68 for OpenMM, signifying that MoDLE indeed

simulates contacts observed in Micro-C similar to OpenMM (Fig. 2E). Note that con-

tacts generated by OpenMM involve 3D polymer modeling and thus, unlike MoDLE,

considers random polymer contacts. As a consequence, contacts not generated by

loop-extrusion will be included in the OpenMM output. �erefore, long-range contacts

(~2–3 Mbp) are generally not as enriched in the MoDLE output as these contacts are

mainly compartmental or dominated by random polymer interactions. �is can be seen

when employing a diagonal-by-diagonal correlation between MoDLE and OpenMM,

which shows that the two methods correlate better at short range contacts than at long

range contacts (see Additional file 2: Fig. S3). It implies that MoDLE does not by default

recapitulate the relationship between the distance from the diagonal and the contact fre-

quencies as seen in Hi-C or Micro-C data. However, when LEF processivity is increased,

this trend is gradually approached (see Additional file 2: Fig. S4). Comparing the output

of MoDLE and OpenMM in A and B compartments separately shows minimal differ-

ence of performance between compartments (Additional file 2: Fig. S5).

Altering MoDLE’s input parameters to in silico mimicking depletion of CTCF and

WAPL shows an expected loss of TAD insulation patterns [27] upon in silico depletion

of CTCF and more pronounced stripe and dot patterns [22] when mimicking WAPL

depletion (Fig. 2F). Similarly, altering the parameters specifying LEF density, LEF pro-

cessivity and LEF-LEF collisions shows relevant and predictable consequences in the

data output (see Additional file 2: Fig. S6-10). We conclude that MoDLE is capable of

simulating loop extrusion and TAD contact patterns similar to existing state-of-the-art

molecular dynamics (OpenMM) approaches.

Benchmarking of execution time and memory usage

MoDLE is designed for fast genome-wide simulation of loop extrusion contact pat-

terns. A genome-wide run with default settings, simulating loop extrusion on the

entire human genome using barriers from H1-hESC (38,815 CTCF barriers and

61,766 LEFs; see Methods) takes ~40 s on a compute server (server A; see Table 1)

and ~5 min on a laptop (laptop A; see Table 1), generating over 370 million con-

tacts. To systematically compare MoDLE execution time and memory usage with

OpenMM, we generated synthetic input datasets with increasing genome size (1–500

Mbp) and number of CTCF barriers (4 barriers per Mbp of DNA simulated) (see the

“Methods” section for details). �e inputs were identical in MoDLE and OpenMM.

Each measurement was repeated 10 times for MoDLE and 5 times for OpenMM. For

MoDLE, we run benchmarks using 1–52 CPU cores, while for OpenMM, we tested

the CPU (server C; see Table 1) and GPU (server D; see Table 1) implementations.

We computed median elapsed wall clock time and peak memory usage for MoDLE

and OpenMM. �e resulting comparisons show that MoDLE simulations using 52

CPU cores complete within 0.7–71 s from the smallest to the largest genome region.

OpenMM requires 2 h and 35 min for the smallest genome region and over 41 h for

a genomic region of 250 Mbp (Fig. 3A). Due to very long execution times, OpenMM

142

Page 7 of 24Rossini et al. Genome Biology (2022) 23:247

runs above 250 Mbp were not performed. For the compared genome regions, MoDLE

is 4000–5000 times faster than OpenMM (Fig. 3A). OpenMM simulations without

GPU acceleration were particularly slow and were only used to simulate genome

regions below 5 Mbp and required up to 35 h and 20 min of execution time (Fig. 3A).

�us, in practice running OpenMM requires access to GPUs, while MoDLE runs effi-

ciently using CPUs.

Table 1 Hardware specifications of computational resources used for simulation and benchmarking

Identi�er CPU model System memory Operating system Accelerator (GPU)

Laptop A Intel Core i9-9880H(8
cores)

64 GB (4x 16 GB, DDR4
UDIMM 2667 MT/s
dual-channel)

Arch Linux (Linux
v5.17.1)

NVIDIA Quadro RTX
4000 (8 GB)

Server A 2x
AMD EPYC 7742 (2x 64
cores)

2048 GB (32x 64 GB,
RDIMM DDR4 2933
MT/s eight-channel)

RHEL 8.5 (Linux v4.18.0-
305)

N/A

Server B 2x
Intel Xeon Gold 6138
(2x 20 cores)

192 GB (12x 16 GB,
RDIMM DDR4 2666
MT/s six-channel)

RHEL 7.9.2009 (Linux
v3.10.0-1160.6.1)

Server C 2x
Intel Xeon Gold 6230R
(2x 26 cores)

192 GB (12x 16 GB,
RDIMM DDR4 2933
MT/s six-channel)

Server D 2x
Intel Xeon Gold 6126
(2x 12 cores)

384 GB (24x 16 GB,
RDIMM DDR4 2666
MT/s six-channel)

4x
NVIDIA Tesla P100
(16 GB)

Fig. 3 Benchmarking MoDLE and OpenMM. A Median memory usage (in MBs) of MoDLE with
multithreading (blue) compared to OpenMM with GPU (orange) for chromosome regions ranging in
size from 1 to 250 Mbp. Inset shows comparison between MoDLE (blue) OpenMM with CPU (gray) for
chromosome regions ranging in size from 1 to 5 Mbp. B Median elapsed execution time (hours) of MoDLE
with multithreading (blue), OpenMM with CPU (gray), OpenMM with GPU (orange), and the ratio of OpenMM
(GPU) to MoDLE. Dotted lines are extrapolated. C Comparison of the median elapsed execution time
(seconds) of MoDLE with (blue) and without (pink) multithreading for chromosome regions ranging in size
from 1 to 500 Mbp. D Comparison of median elapsed execution time (hours) of MoDLE utilizing from 1 to
52 CPU cores. Blue line shows elapsed wall clock time (hours), whereas the orange line shows the CPU time
(hours). The dotted line illustrates the corresponding theoretical perfect scaling of the executing time. Green
line shows median peak memory usage (right axis; MB)

143

Page 8 of 24Rossini et al. Genome Biology (2022) 23:247

Comparing peak memory usage, MoDLE uses less memory than OpenMM for regions

smaller than 200 Mbp and requires more memory for larger systems. Nevertheless,

memory usage of both MoDLE and OpenMM scales linearly for increasing genome

region sizes and is for all practical purposes within reasonable limits on today’s comput-

ers regardless of genome size (Fig. 3A, B).

Multithreading efficiently reduces MoDLE’s execution time for increasingly large

genome sizes. With multithreading (52 CPU cores on server B; see Table 1), MoDLE

can simulate loop extrusion contacts for a genome size of 500 Mbp in a little over one

minute (Fig. 3C). Using a single thread (1 CPU core on server B; see Table 1), the same

run takes around 12 minutes (Fig. 3C), which is still reasonable from a practical perspec-

tive and much faster than GPU accelerated OpenMM simulations. MoDLE peak mem-

ory usage is only slightly affected by multithreading, as each simulation instance only

requires an additional 1–10 MB of memory (Fig. 3D). When simulating more than one

chromosome, peak memory usage does not follow a simple linear pattern (Fig. 3D), as it

is affected by the order in which simulation tasks are executed. �is can lead to scenarios

where, for a brief period, two or more contact matrices are stored in system memory.

We conclude that MoDLE, in contrast to OpenMM, runs efficiently even on systems

with few CPU cores, such as laptop computers.

Further, we analyzed the strong scaling properties of MoDLE by simulating loop extru-

sion on the entire human genome (GRCh38; 3088 Mbp). Increasing the number of CPU

cores from 1 to 52, MoDLE execution time scales close to theoretical optimum (see the

“Methods” section for details) (Fig. 3D; blue lines). Simulating loop extrusion on the

human genome takes from 1 h and 21 min (1 CPU core on server B; see Table 1) to 1

min and 48 s (52 CPU cores on server B; see Table 1). We conclude that MoDLE can effi-

ciently run on machines with a wide range of capabilities, ranging from laptop comput-

ers with 4–8 CPU cores, to multi-socket servers with over 50 CPU cores. Memory usage

increases with the number of CPU cores, but never beyond reasonable limits on modern

computers (Fig. 3D; orange line).

In conclusion, MoDLE is orders of magnitude faster than OpenMM in simulating loop

extrusion contacts and is especially efficient in simulating large genome regions or large

input data sets. MoDLE can run efficiently on machines ranging from low-powered lap-

top computers to powerful multi-socket servers.

Genome wide parameter optimization

Since MoDLE simulates genome-wide loop extrusion in a few minutes, systematic explo-

ration of features underlying loop extrusion becomes feasible. To illustrate this point, we

optimized the parameters underlying the modeled binding kinetics of CTCF. MoDLE

implements this as a Markov process with an “Unbound” and a “Bound” state. With

this model, the self-transition probabilities PUU and PBB specify how stably associated

CTCF is once bound to DNA. �e stationary distribution of the Markov chain reflects

the probability of a given CTCF binding site to be bound (πB) in a simulation epoch (see

Fig. 4A). Simulation of loop extrusion contacts using MoDLE or OpenMM can take

advantage of ChIP-seq data from CTCF or cohesin to infer CTCF binding probabilities.

Yet, when ChIP-seq data is not available, it is possible to simulate loop extrusion using

a constant and uniform CTCF binding probability that is chosen to optimize similarity

144

Page 9 of 24Rossini et al. Genome Biology (2022) 23:247

with the Micro-C (or Hi-C) data. To optimize these parameters, we make use of an

approach based on Bayesian optimization using Gaussian processes (see the “Meth-

ods” section). �is optimization procedure attempts to minimize an objective function

without making assumptions on its analytic form. To assess MoDLE’s performance, we

devised an objective function representing the similarity in stripe position and length

between two contact matrices using H1-hESC Micro-C data (see the “Methods” section

for details). After convergence (Fig. 4B), the optimization procedure revealed a range

of near-optimal combinations of transition probabilities and CTCF occupancy proba-

bilities instead of a single, optimal combination (Fig. 4C). Comparing the resulting loop

contacts of selected parameter combinations with the optimal combination (πB = 0.747

and PUU = 0.963) confirms that CTCF can occupy its motif instances with probabilities

ranging widely between 0.6 and 0.9 as long as the stability of binding (PUU) is high (>

0.8). However, low binding stabilites (PUU < 0.8) can also yield near-optimal concord-

ance with the Micro-C data when CTCF occupancies >0.9. Notably, the latter parameter

Fig. 4 Genome-wide optimization of CTCF binding kinetics underlying loop extrusion. A A Markov
chain with an Unbound (red) and Bound (blue) state underlies MoDLE loop extrusion barrier modeling.
The self-transition probability for the Bound state (P

BB
) reflects how stably barrier elements (i.e., CTCF) are

bound to their binding sites. The stationary distribution of the Markov chain (π
B
) provides the CTCF binding

probability at a given epoch in the simulation. The bottom diagram (red/blue boxes) shows an illustration
of how the binding state (Bound in blue, and Unbound in red) of a single CTCF site would change during
a simulation depending on P

UU
 and P

BB
. B Convergence of the objective function during the Bayesian

optimization procedure. The objective function is a dissimilarity score comparing the pixels showing stripes
and dots in the observed Micro-C data with the corresponding stripes and dots in the MoDLE output. See
the “Methods” section (part 6) for details. C Comparison of objective function in the parameter search space
of P

UU
 and π

B
. Optimal, near-optimal, suboptimal and non-optimal combinations are highlighted with a red

star, orange pentagon, blue square and green triangle respectively. D Side-by-side comparison of H1-hESC
Micro-C data (top panel) and progressively less optimal combinations of P

UU
 and π

B
 parameters

145

Page 10 of 24Rossini et al. Genome Biology (2022) 23:247

combination is compatible with a dynamic exchange model where CTCF transiently

occupies its motif instances but still maintains stable loops [42]. From a selected set

of parameter combinations (Fig. 4C), we simulated genome-wide loop extrusion con-

tacts aiming at comparing these with Hi-C and Micro-C data. �e resulting comparison

shows that even uniform, optimized CTCF binding probabilities (Fig. 4C red star) can

recapitulate many of the features seen in Micro-C and Hi-C data (Fig. 4D). Visualiza-

tion of simulated contacts using a near-optimal parameter combination from another

part of the plot (Fig. 4C; orange pentagon) reinforces that a range of parameter combina-

tions can recapitulate the patterns seen in the Hi-C and Micro-C data (Fig. 4D). Select-

ing a suboptimal or non-optimal combination of parameters (Fig. 4C, green triangle and

blue square) results in unrealistic contact patterns (Fig. 4D; Additional file 2: Fig. S11 for

an extensive comparison of different parameter combinations). In conclusion, MoDLE

opens up for efficient exploration of parameters underlying DNA-DNA contact dynam-

ics genome wide.

Predicting e�ects of TAD border alterations

To illustrate how MoDLE can be used to predict the effects of alterations to borders

between TADs, we picked the well-characterized HoxD cluster which harbors sev-

eral coordinated chromatin looping changes critical for proper limb formation in tet-

rapods [43, 44]. We focused on deletions between the centromeric and telomeric

domain (C-Dom and T-Dom, respectively) known to cause an increase in interactions

between the two domains [43], including a rewiring of multiple enhancers [44]. First,

using the same parameter optimization approach described above, we inferred CTCF

barrier occupancies in the wildtype condition based on JM8.N4 data. �en, we inacti-

vated (in silico) inter-domain barrier elements by setting the occupancy of the CTCF

motif instances to 0 and used MoDLE to simulate the resulting changes to the predicted

loop extrusion contact maps. MoDLE correctly predicts that loops protrude beyond the

deleted borders merging the two (C-Dom and T-Dom) TADs (Fig. 5). We also confirm

that the border is highly resilient and requires a deletion of a large region encompass-

ing the entire HoxD cluster to merge the TADs (see Fig. 5D–E). Inspecting enhancer

signals in the region (Fig. 5E upper panel) confirms that the merging of the two domains

indeed involves a rewiring of interactions of several enhancer elements, and a depletion

of stripes at their borders. In conclusion, MoDLE can be used to predict changes to loop

extrusion contact patterns from in silico alterations of TAD border properties.

Optimization of individual barrier parameters

In the absence of CTCF or Cohesin ChIP-seq data, MoDLE can utilize Micro-C or Hi-C

data in combination with CTCF motif instances to effectively infer the occupancy of each

individual barrier. To illustrate this, we selected a 5 Mb region on chromosome 1 with

2103 CTCF candidate binding sites, corresponding to over 4000 parameters to be inferred.

�e large number of parameters for this genome region renders a Gaussian optimiza-

tion approach computationally infeasible and inadequate. �us, we developed a system

to optimize extrusion barrier parameters using genetic algorithms (GA) (see the “Meth-

ods” section part 10 for details). A comparison of the input Micro-C data (Fig. 6A) and

the corresponding optimized MoDLE output (Fig. 6B) shows that even without ChIP-seq

146

Page 11 of 24Rossini et al. Genome Biology (2022) 23:247

information, MoDLE can be used to infer CTCF barrier occupancies individually to repro-

duce patterns seen in the Micro-C data. Comparing this MoDLE output with the corre-

sponding output from MoDLE based on Rad21 ChIP-seq data (Fig. 6C) shows that TADs

and borders are placed in analogous regions, yet with local differences in barrier strengths

and stripe lengths. From MoDLE data simulated using optimized barrier occupancies

(Fig. 6D), it is possible to compute the modeled binding profile of the LEF during the sim-

ulation (Fig. 6E; see Additional file 1: Section 9 for details). Comparing these with ChIP-

seq profiles of CTCF and Rad21 (Fig. 6F and G, respectively) shows that peaks and valleys

coincide in a large fraction of regions, signifying that MoDLE can indeed infer biologically

Fig. 5 Using MoDLE to predict effects of deletions to TAD borders in the HoxD locus. A Micro-C data in JM8.
N4 mESC WT cells showing the interactions surrounding the HoxD cluster and the centromeric (C-DOM)
and telomeric (T-DOM) domains in a non-mutated wildtype (WT) condition. B MoDLE output from the
same region in the WT condition. C MoDLE output produced with a partial deletion of the border between
the domains. D MoDLE output with a complete deletion of the border between the domains. E Differential
contact map showing the ratio of MoDLE (WT condition; B) vs. MoDLE (full deletion, D). Regions enriched in
MoDLE full deletion are shown in red, whereas regions enriched in MoDLE WT are shown in blue

Fig. 6 Optimization of individual barriers and computation of barrier and LEF profiles. A Micro-C (hESC) data
from a 5Mb region on chromosome 1 (20–25 Mbp). B MoDLE output for the same region, where individual
barriers are optimized from Micro-C data. C MoDLE output for the same region using Rad21 ChIP-seq data
as input, D Computed barrier occupancy profile from MoDLE trained on Micro-C data (normalized with
P
UU

 = 0.7). E Computed LEF occupancy profile from MoDLE trained on Micro-C data. F CTCF ChIP-seq data
from the same region. G Rad21 ChIP-seq data from the same region

147

Page 12 of 24Rossini et al. Genome Biology (2022) 23:247

meaningful signals from its input data. We conclude that MoDLE, in the absence of ChIP-

seq input data, can reliably infer CTCF occupancies of individual barriers to simulate loop

extrusion contact patterns and to recapitulate binding profiles of CTCF and cohesin ChIP-

seq data.

Discussion

Efficient and realistic simulation of DNA-DNA spatial contacts is increasingly required for

modeling and exploring genome structure and regulation. For example, our ability to reli-

ably predict effects of mutations to TAD borders relies on available tools for simulating and

comparing spatial contact data from normal and pathogenic states [14]. Further, simula-

tions can be invaluable for exploring general genome folding principles [11] or underlying

principles of loop extrusion [12, 35, 36]. Efficient tools for loop extrusion simulation will

contribute to increasing our understanding of mechanisms ranging from gene regulation [1,

2] to DNA repair [3]. MoDLE represents, to the best of our knowledge, the first command-

line tool for high-throughput loop extrusion contact simulation. We expect MoDLE to

supplement, rather than replace existing MD tools; especially in cases where large genome

regions or large data sets need to be analyzed or simulated. �is would in particular be the

case for large-scale exploration of parameters underlying genome structure properties, as

exemplified here for the binding kinetics of CTCF. In cases where Hi-C data is not avail-

able, we expect MoDLE to be useful for high-throughput loop extrusion contact prediction

based on ChIP-seq, ATAC-seq, or similar data in combination with CTCF motif instances

(as exemplified in Figs. 2 and 4). In such cases, MoDLE could be useful for prediction of

enhancer-promoter contacts aiding identification of functional regulatory interactions [45].

When Hi-C (or similar) data is available in a wildtype condition, MoDLE can be used for

large scale prediction of mutations or alterations to TAD borders (as shown in Figs. 5 and

6). �is would be useful for prioritization of mutations in genome editing settings.

New developments in experimental techniques augmented by integrated computational

modeling will continue to shed light on new genome organization principles at a rapid

pace [46]. With MoDLE’s focus on computational speed and its modular architecture, new

developments and knowledge are expected to easily be integrated into the tool to increase

the complexity and realism of the underlying modeling parameters.

Conclusions

We have developed MoDLE (Modeling of DNA Loop Extrusion), allowing high-perfor-

mance stochastic modeling of DNA loop extrusion. MoDLE simulates loop extrusion

contact matrices on large genome regions in a few minutes, even on low-powered laptop

computers. MoDLE is available as a command line tool and can be accessed at github. com/

pauls engro up/ modle.

Methods

MoDLE implementation and design overview

MoDLE is implemented in C++17 and is compiled with CMake. MoDLE uses a

producer-consumer architecture where a single producer (a thread) communicates

with multiple consumers through asynchronous message passing. �e producer

thread is responsible for reading input files and generating a set of simulation tasks

148

Page 13 of 24Rossini et al. Genome Biology (2022) 23:247

to be consumed by a pool of worker threads. Tasks are implemented as light-weight

C++ structs that are computationally cheap to generate and consume. A single task

contains all the information needed for simulating DNA loop extrusion on a single

chromosome in a specific simulation instance. Simulation instances are for the most

part independent from each other and can thus run in parallel. We designed MoDLE

such that each simulation instance requires less than 10 MB of memory to simulate

loop extrusion on large mammalian chromosomes, such as chromosome 1 from the

human genome. �e space complexity of the thread–local state is linear with respect

to the number of LEFs or extrusion barriers, whichever is largest. For a more detailed

overview of MoDLE’s implementation, see Additional file 1: Section 1.

Most of MoDLE’s memory budget is used to store molecular contacts generated by

loop extrusion. MoDLE stores one instance of its custom contact matrix data struc-

ture for each chromosome that is being actively simulated. �e space complexity of

a contact matrix instance depends on the chromosome length, diagonal width and

bin size. With default settings, representing contacts for chromosome 1 of the human

genome requires approximately 120 MB of memory. Common operations on the con-

tact matrix class are made thread-safe using lock striping implemented through hash-

ing. For more details regarding the specialized contact matrix data structure, refer to

Additional file 1: Section 2.

To achieve high-performance, MoDLE stores most of its data in contiguous mem-

ory using simple data structures such as vectors and bitsets (see Additional file 1:

Section 3). Data is indexed such that extrusion barriers and extrusion units in a simu-

lation instance can be efficiently traversed in 5′-3′ and 3′-5′ directions (see Additional

file 1: Section 8). �is allows MoDLE to bind/release LEFs, process collisions, regis-

ter contacts, and extrude DNA in linear time-complexity and with good locality of

reference. �e only step relying on an algorithm with super-linear time complexity

is indexing, which has a worst-case time complexity of O(n log n) while approaching

O(n) for the typical case.

More design and implementation details are available in Additional file 1. �e lat-

est MoDLE source code can be obtained in MoDLE’s GitHub repository: github. com/

pauls engro up/ modle

Running a simulation instance

�e entire simulation instance is executed by a single worker thread and consists of

the following phases:

• Wait until one or more tasks are available on the task queue.

• Setup the simulation internal state based on the task specification, this includes

seeding the PRNG and setting the initial state for the extrusion barriers based on

the occupancy (see Additional file 1: Sections 1, 3, and 4).

• Run the simulation loop until a stopping criterion is met.

A single simulation epoch is articulated in the following steps:

149

Page 14 of 24Rossini et al. Genome Biology (2022) 23:247

• Select (inactive) LEFs that are currently not associated with DNA, and activate them.

�is is done by loading LEFs to a random position on the chromosome that is being

simulated. �e position is sampled from a uniform distribution (see Additional file 1:

Section 5).

• Index extrusion units moving in the same direction so that they can be visited in

5′-3′ and 3′-5′ order (see Additional file 1: Section 8).

• Randomly select a subset of the active LEFs and use their position along the chromo-

some to generate molecular contacts in the chromosome contact matrix (see Addi-

tional file 1: Section 9).

• Generate candidate moves for each extrusion unit (see Additional file 1: Section 10).

• Update the extrusion barrier states by computing the next state in the Markov chain

used to model extrusion barriers (see Additional file 1: Section 6).

• Detect collision events between LEFs and extrusion barriers as well as between LEFs

(see Additional file 1: Sections 12b-d and g).

• Update the candidate moves for extrusion units involved in collision events to satisfy

the constraints imposed by the collision events (see Additional file 1: Sections 12e-g).

• Advance LEFs’ extrusion units by their respective moves (see Additional file 1: Sec-

tion 5). Because of the preceding steps, this will yield a new valid simulation state, as

moves have been updated to satisfy all the constraints imposed by collision events.

• Iterate over active LEFs and release them based on the outcome of a Bernoulli trial

whose probability of success is computed based on the average LEF processivity and

LEF state (e.g., LEFs whose extrusion units are involved in collision events with a

pair of extrusion barriers in convergent orientation have a lower probability of being

released). LEFs that are being released go back in the pool of available LEFs and will

be loaded on a new genomic region during the next epoch (see Additional file 1: Sec-

tion 5).

MoDLE will continue iterating through the above steps until one of the simulation

stopping criteria is met:

• A given number of epochs have been simulated.

• Enough contacts have been registered to reach a target contact density.

Both stopping criteria can be modified by users. By default, MoDLE will simulate loop

extrusion until reaching an average contact density of 1 contact per pixel.

Hardware speci�cations

Analysis and benchmark code used to generate the data accompanying was run using

the hardware specifications listed in Table 1.

MoDLE simulations

MoDLE’s data used for the heat map comparison shown in Fig. 2 were generated using

the heatmap_comparison_pt1 Nextflow [47] workflow available on GitHub [48] and

archived on Zenodo [49].

150

Page 15 of 24Rossini et al. Genome Biology (2022) 23:247

�e list of candidate extrusion barrier positions and directions were generated by run-

ning MAST from the MEME suite [50] on GRCh38.p13 (GCF_000001405.39 [51] using

the CTCF frequency matrix MA0139.1 from JASPAR 2022 [52].

�e list of candidate barriers was then filtered using CTCF and RAD21 ChIP-seq data

(fold-change over control and optimal IDR thresholded peaks). In brief, candidate barri-

ers were intersected with the narrow-peak BED files for CTCF and RAD21. �en, each

filtered barrier region was assigned with an occupancy computed by passing the RAD21

fold-change over control signal through a logistic function. Finally, the output of the

logistic function was binned at 1 kbp to yield a barrier occupancy that is proportional

to the number of CTCF motif instances as well as RAD21 fold-change over control sig-

nal. �is procedure is largely based on [Fudenberg 2016]. �e result of the procedure

outlined above is a list of extrusion barrier occupancies binned at 1 kbp resolution.

CTCF and RAD21 ChIP-seq for H1-hESC data was downloaded from ENCODE [53,

54] (ENCFF255FRL [55], ENCFF473IZV [56], ENCFF821AQO [57], and ENCFF913JGA

[58].

Contact matrices were generated using MoDLE v1.0.0-rc.7 with the parameters from

Additional file 3: Table S1. Parameters not listed in the table were left at default.

Contact matrices produced by MoDLE were then subsampled to an average contact

density of 3 using cooltools random-sample v0.5.1 [59]. �e resulting cooler files were

then converted to multi-resolution cooler files using cooler zoomify [40]. Finally, multi–

resolution contact matrices were visualized in HiGlass (v1.11.7) [60].

Molecular dynamics (OpenMM) simulations

Molecular dynamics data used for the heat map comparison in Fig. 2 were generated

using the heatmap_comparison_pt1 Nextflow workflow available on GitHub [48] and

archived on Zenodo [49]. �is workflow uses OpenMM [37] to run MD simulations.

Simulation code is largely based on [61]. Simulations were carried out on 10 Mbp

regions from chromosomes 2, 3, 5, 7, and 17 using a monomer size of 1 kbp and 200 kbp

for LEF processivity and separation. Extrusion barrier positions, directions, and occu-

pancy were generated following the procedure outlined in the “Methods” section (part

1).

Contact matrices were generated with Polychrom [62] using a bin size of 5 kbp. �e

resulting cooler files were then converted to multi-resolution cooler files using cooler

zoomify v0.8.11 [40].

Assessing loop extrusion feature similarities from contact frequencies

To objectively compare the contact matrices produced by MoDLE with contact matrices

generated from Micro-C experiments and MD simulations, we developed a specialized

scoring algorithm. �e algorithm was inspired by Stripenn [63].

�e score is computed on rows and columns of a pair of contact matrices of identical

resolutions transformed as follows.

First, both matrices are convolved using the difference of Gaussian (DoG). �is high-

lights stripe and dot patterns found in contact matrices. Next, the transformed contact

matrices are discretized using a step function mapping values below a certain threshold

to 0 and all the others to 1. �is results in two binary matrices, where non-zero pixels

151

Page 16 of 24Rossini et al. Genome Biology (2022) 23:247

can be interpreted as part of a stripe or dot. Finally, we take advantage of the fact that

stripes produced by loop extrusion always should start from the matrix diagonal. �us,

given a row or column of pixels starting on the matrix diagonal, and extending away

from it, we stipulate that the last non-zero pixel in the vector of values represents the

end of a stripe produced by DNA loop extrusion.

Given the above, we can measure the similarity of stripes between two contact matri-

ces by considering the same row of pixels in a pair of contact matrices, computing

the last non-zero pixels in both rows, and counting the number of matches. �e same

approach can be applied to columns of pixels. Finally, counting mismatches instead of

matches can be used as a measure of dissimilarity. Contact matrix convolution and dis-

cretization, as well as computing this special score, can be done using MoDLE’s helper

tools (modle_tools transform and modle_tools evaluate respectively).

Contact matrix comparison

For comparison with MoDLE and OpenMM output, we used available Hi-C and Micro-

C data from H1-hESC because these were of high resolution and had accompanying

ChIP-seq data for both CTCF and RAD21 (4DNFIFJH2524 [64], 4DNFI9GMP2J8 [65],

ENCFF255FRL [55], ENCFF473IZV [56], ENCFF821AQO [57], and ENCFF913JGA

[58]). To assess stripe similarity of a pair of contact matrices, we used the scoring algo-

rithm described in the “Methods” section (part 6). �e score was computed using

Micro-C data as the ground truth. Pixel accuracy was computed as the ratio of correctly

classified pixels to the total number of pixels in a 3 Mbp subdiagonal window around

each barrier. �e Pearson correlation between OpenMM and MoDLE was calculated

based on all corresponding 5 kbp-pixel values in the 3 Mbp subdiagonal window of the

OpenMM simulation regions.

Benchmark methodology

Benchmarks were run on a computing cluster using the run_benchmarks Nextflow

workflow available on GitHub [48] and archived on Zenodo [49].

We ran two suites of benchmarks to assess the performance of MoDLE and compare it

with that of molecular dynamics simulations based on OpenMM.

�e first suite (Fig. 3A–C) compared the performance of MoDLE and OpenMM when

simulating loop extrusion on an artificial chromosome with increasing length (ranging

from 1 to 250 Mbp).

�is benchmark was run using MoDLE (1 and 52 CPU cores) as well as OpenMM

GPU and CPU implementation (1 CPU core, 1 GPU, and 8 CPU cores respectively).

CPU benchmarks were run on server C while benchmarks relying on GPU acceleration

were run on server D (see Table 1). For OpenMM CPU implementation, we limited the

number of CPU cores to 8 (16 SMT cores) as the CPU implementation is known to not

scale well past 16 threads [66]. OpenMM CPU implementation was used to simulate

chromosome lengths up to 5 Mbp for practical reasons. MoDLE was run with default

settings except for the number of cells, which was set to 104 to match the maximum

number of available SMT cores.

OpenMM simulations were run using a monomer size of 2 kbp and LEF processivity

and separation of 200 kbp.

152

Page 17 of 24Rossini et al. Genome Biology (2022) 23:247

�e second suite of benchmarks involved simulating loop extrusion on the human

genome (GRCh38) using MoDLE with a number of CPU cores ranging from 1 to 52.

MoDLE was run with default settings except for the number of cells which was set to

104. �e extrusion barrier annotation was generated as described in the “Methods” sec-

tion (part 1).

In both cases, measurements were repeated 10 times for MoDLE and 5 times for

OpenMM.

Genome-wide extrusion barrier parameter optimization

�e genome-wide optimization of parameters affecting extrusion barrier occupan-

cies was carried out using the gw_param_optimization Nextflow workflow available on

GitHub [48] and archived on Zenodo [49].

�e first step in the optimization procedure is running Stripenn v1.1.65.7 [63] on the

H1-hESC Micro-C (4DNFI9GMP2J8 [67]) dataset to identify architectural stripes, which

resulted in the identification of 5254 stripes. A small subset of these stripes were visually

validated by comparing the annotated stripes with stripes that are visible from Micro-C

data. Annotated stripes were split into two equally sized datasets by random sampling

without replacement. One dataset was used for parameter optimization while the other

was used for validation.

Parameter optimization is performed through the Bayesian optimization from scikit-

optimize v0.9.0 [68] using an objective function based on the scoring metric described in

Methods (part 6).

�e parameters that are being optimized are the extrusion barrier occupancy (πB) and

PUU, the self-transition probability of the unbound state.

�e evaluation of the objective function proceeds as follows:

• A new genome-wide simulation is performed using the parameters proposed by the

optimizer.

• �e resulting cooler file is transformed with modle_tools transform by applying the

difference of Gaussians followed by a binary discretization step, where pixel values

above a certain threshold are discretized to 1 and all the others to 0.

• �e score described in Methods (part 6) is then computed row and column-wise

on the entire genome using modle_tools eval, producing two BigWig files. Here, the

transformed Micro-C 4DNFI9GMP2J8 [67] dataset is used as reference.

• Scores are intersected with the extrusion barrier dataset for optimization and valida-

tion considering stripe direction (i.e., vertical stripes are intersected with column-

wise scores while horizontal stripes are intersected with row-wise scores).

• Scores resulting from the intersection are then averaged, producing a floating-point

number that is then returned to the optimizer, which will try to minimize this num-

ber.

In the transformation step, a σ of 1.0 and 1.6 are used to generate the less and more

blurry contact matrices to subtract when computing the difference of Gaussians. For the

binary discretization of the Micro-C data, a threshold of 1.5 was used, while simulated

data was discretized using 0.75 as threshold.

153

Page 18 of 24Rossini et al. Genome Biology (2022) 23:247

�e optimizer evaluated the objective function 400 times, each time computing the

average score for the training and validation datasets.

Finally, the parameters that yielded the best score on the training dataset were used

to generate a contact matrix in cooler format (see Fig. 4D, bottom panel).

Local extrusion barrier parameter optimization

�e local extrusion barrier parameter optimization was carried out using the extru-

sion_barrier_param_optimization Nextflow workflow available on GitHub [48] and

archived on Zenodo [49].

In brief, this workflow takes as input an extrusion barrier annotation consisting of

barrier position and direction, and then optimizes the parameters for each individual

barrier to maximize similarities with a reference HiC matrix.

�e optimization approach is based on evolutionary algorithms (EAs) and was

developed using primitives from the DEAP library [69].

Optimization was performed on a 5 Mbp region of the human chromosome 1 (20–

25 Mbp, GRCh38) using the list of candidate CTCF binding sites overlapping this

region as extrusion barrier annotation, for a total of 2103 extrusion barriers. Candi-

date CTCF binding sites were annotated using MAST as described in Methods (part

4). �e H1-hESC Micro-C (4DNFI9GMP2J8 [65]) matrix was used as reference.

At a high level, the optimization workflow consists of running the same optimiza-

tion script three times, using the output of an optimization run as input for the next

run. �e first run is tuned to favor exploration over exploitation, while the second and

third runs used more conservative optimization parameters to progressively reduce

the rate of exploration and favor exploitation.

�e following is an overview of how the optimization strategy was developed:

– �e optimization uses μ, λ as evolution strategy, where μ is the population size

and λ is the number of offspring produced each generation. With this strategy,

offspring that make it through the selection stage replace the previous population

entirely. By default, μ = 256 and λ = 512.

– Individuals are represented as two lists of real numbers of size N, where N is the

number of extrusion barriers to be optimized. �e first list of numbers represent s

extrusion barrier occupancies (πB), while the second list represents the self-transi-

tion probability of the unbound state (PUU).

– Individuals are mutated by adding a relatively small offsets to −→πB and
−−→

PUU . Offsets

are drawn from a normal distribution with μ = 0 and σ set based on the desired

degree of exploration. Values are clamped between 0.0 and 1.0, so mutating an

individual always leads to another valid individual.

– �e two-point crossover operator is used for mating.

– During selection, offsprings are sorted based on their fitness, and the top μ off-

springs are selected to proceed to the next generation.

– �e population is initialized differently depending on whether results from a pre-

vious optimization run are available.

154

Page 19 of 24Rossini et al. Genome Biology (2022) 23:247

– Results from previous optimization are available: population initialized through

random sampling with replacement from the set of fittest individuals that ever

lived in the previous optimization run.

– Otherwise, population is randomly initialized by generating μ individuals with πB

and PUU set to random numbers drawn from the uniform distribution U(0.0,1.0).

– Fitness is computed using a slightly modified version of the scoring function

f
(

−→
x

)

described in Methods (part 6). Function f
(

−→
x

)

 is not effective at guiding the

optimization when occupancy is relatively low (e.g., < 0.5), and there are no stripes

or dots in the reference matrix, as any parameter combination resulting in such a

low occupancy produces no visible stripe or dot. To this end, we define a penalty

function p(πB) that returns a coefficient between 1.0 and 2.0. �e returned coeffi-

cient is close to 2.0 when πB approaches 0.5 and rapidly falls to 1.0 when πB moves

towards 0.0 or 1.0. πB very close to 1.0 are also penalized. See Additional file 2: Fig.

S12 for more details regarding the penalty function p(πB).

– �e output of the scoring function f −→
x and penalty function p(πB) are multiplied

together to produce the score used to compute the fitness of an individual s
(

−→
x ,

πB

)

= f
(

−→
x

)

· p(πB) . �e fitness of an individual is computed as the average of the

scores s
(

−→
x , πB) computed in correspondence of each extrusion barrier object of the

optimization.

– �e optimization runs until one of the following conditions is met:

– A target number of generations have been simulated (i.e., 1000 generations).

– Optimizer failed to significantly improve the population fitness (e.g., less than

1% fitness improvement over the last 25 generations).

– �e population variability approaches 0.

To improve the performance of the optimizer on these regions, we split the popula-

tion into mainland population and one or more insular populations and change some

aspects of the optimization strategy.

First, we initialize and optimize the mainland population (μ = 256 and λ = 512).

When one of the stopping criteria is met, the fittest individuals from mainland are

used to initialize the population of m islands. For each island, we randomly select and

mask k consecutive alleles or barriers. k is generated by rounding a number drawn

from a normal distribution with μ = 25 and σ = 5.0. Crucially, masked barriers are

inactive and are not allowed to mutate.

For one of the m islands, instead of masking a random stretch of extrusion barri-

ers, we inactivate all weak barriers when initializing the population. �us, we replace

alleles with πB < 0.5 with the πB = 0.0; PUU = 1.0 allele. In this case, all loci are allowed

to mutate. Islands have μ = 128 and λ = 256. Islands evolve independently from each

other and from the mainland and follow the same stopping criteria used for the

mainland.

Once all islands have been optimized, half of the mainland individuals are replaced

with individuals from any of the islands. Island individuals are selected using fitness

proportionate selection (i.e., random sampling with replacement, weighted by fitness).

155

Page 20 of 24Rossini et al. Genome Biology (2022) 23:247

Mainland and island optimization continue alternating until a total target number of

mainland generations have been simulated, or when an optimization cycle fails to sig-

nificantly improve the average mainland population fitness.

Simulations to predict the e�ect of TAD border alterations

Data for this section was generated using the comparison_with_mut Nextflow workflow

available on GitHub [48] and archived on Zenodo [49].

Simulations were carried out using GRCm38.p6 as reference genome

(GCF_000001635.26 [70].

CTCF and RAD21 ChIP-seq fold-change over control for JM8.N4 was generated by

processing data from GSE90994 [71] (SRR5085152 [72], SRR5085153 [73], SRR5085154

[74], SRR5085155 [75], SRR5085156 [76], SRR5085157 [77]) using the ENCODE ChIP-

seq pipeline v2 [78] and using ENCODE4 genomic datasets for GRCm38.

�e wild-type extrusion barrier annotation was generated following the procedure

outlined in the “Methods” section (part 4).

�e barrier annotation was further refined using the parameter optimization strategy

described in the “Methods” section (part 10) using a JM8.N4 Micro-C dataset as refer-

ence (4DNFINNZDDXV [79]).

�e optimized extrusion barrier annotation was then mutated by removing extrusion

barriers overlapping the del1-13d9lac and delattP-Rel5d9lac regions from Rodríguez-

Carballo 2017 [43].

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 022- 02815-7.

Additional file 1. Supplementary text. Detailed description of MoDLE’s underlying simulation model and implemen-
tation [16, 88, 89].

Additional file 2. Supplementary figures. Supplementary Figures 1-12.

Additional file 3. Supplementary tables. Supplementary Tables 1-2 [90–93].

Additional file 4. Review history.

Acknowledgements

Simulations and data analyses were performed on resources provided by Sigma2 - the National Infrastructure for High
Performance Computing and Data Storage in Norway, with account number NN8041K.
Data produced by simulations and data analyses are stored in the NIRD Research Data Archive with the DOI:
10.11582/2022.00056.
We thank the ENCODE Consortium and the labs of Peter Park and Job Dekker for contributing with ENCODE data used as
part of this study.

Peer review information

Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Review history

The review history is available as Additional file 4.

Authors’ contributions

JP and RR conceived and designed the study; RR developed the software and the analysis code; RR performed bench-
marking analysis and genome wide and local parameter optimization as well as the comparative analysis for the HoxD
mutants; JP performed comparison analyses of MoDLE with OpenMM and Micro-C data; JP and RR wrote the original
draft; AM helped with the manuscript revising; VK, AM, and TR provided critical feedback and assisted in the improve-
ment of the tool and analyses; JP supervised the project. All authors read and approved the final manuscript.

Funding

JP acknowledges funding from the Norwegian Research Council (project 324137).

156

Page 21 of 24Rossini et al. Genome Biology (2022) 23:247

Availability of data and materials

Project name: MoDLE
Project home page: https:// github. com/ pauls engro up/ modle
Archived version: 10.5281/zenodo.6424697
License: MIT
Operative system(s): UNIX-like (Platform independent when using containers)
Programming language: C++

Other requirements:
• C++17 compiler (e.g., GCC 8+, Clang8+, AppleClang 10+)
• CMake 3.18 or newer
• Conan 1.50 or newer
• Python3 (to install and run Conan)
• Scipy (Python3 package, required to run unit tests)
• wCorr (R package, required to run unit tests)
The complete list of MoDLE dependencies is available in Additional file 3: Table S2. Dependency installation is automated
using CMake and Conan.
MoDLE source code is available on GitHub at https:// github. com/ pauls engro up/ modle [80] and is archived on Zenodo
at https:// doi. org/ 10. 5281/ zenodo. 64246 97 [81]. MoDLE’s version used throughout the manuscript is MoDLE v1.0.0-rc.7
[82], except for performance benchmarks which used MoDLE v1.0.0-rc.3 [83].
Code used for the data analysis is available on GitHub at https:// github. com/ pauls engro up/ 2021- modle- paper- 001- data-
analy sis [48] and is archived on Zenodo at https:// doi. org/ 10. 5281/ zenodo. 70729 39 [49].
Data produced by running the runme.sh script from the data analysis code repository, including simulated contact
matrices in cooler format were archived on the NIRD research data archive at DOI 10.11582/2022.00056 [84].
Reference genome assembly and assembly report for GCF_000001405.39_GRCh38.p13 [51] and GCF_000001635.26 [70]
were downloaded through the NCBI FTP server [85].
ChIP-seq data for the following accession numbers were downloaded from the ENCODE portal [53, 54]: ENCFF255FRL
[55], ENCFF473IZV [56], ENCFF821AQO [57], and ENCFF913JGA [58].
ChIP-seq data for the following accession number was downloaded from the Gene Expression Omnibus: GSM4665702
[86].
ChIP-seq sequencing data for GSE90994 [71] were downloaded from EBI’s mirror of the SRA: SRR5085152 [72],
SRR5085153 [73], SRR5085154 [74], SRR5085155 [75], SRR5085156 [76], and SRR5085157 [77].
H1-hESC Hi-C and Micro-C data as well as JM8.N4 Micro-C data in multi-resolution cooler format (4DNFIFJH2524 [64],
4DNFI9GMP2J8 [67], 4DNFINNZDDXV [79]) were downloaded from the 4DNucleome Data Portal [87].
The frequency matrix in MEME format for the CTCF motif (MA0139.1) was downloaded from JASPAR 2022 CORE non-
redundant database [52].

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 13 April 2022 Accepted: 17 November 2022

References

 1. Braccioli L, de Wit E. CTCF: a Swiss-army knife for genome organization and transcription regulation. Essays Biochem.
2019;63:157–65.

 2. Razin SV, Gavrilov AA, Vassetzky YS, Ulianov SV. Topologically-associating domains: gene warehouses adapted to
serve transcriptional regulation. Transcription. 2016;7:84–90.

 3. Arnould C, Rocher V, Finoux A-L, Clouaire T, Li K, Zhou F, et al. Loop extrusion as a mechanism for formation of DNA
damage repair foci. Nature. 2021;590:660–5.

 4. Peters J-M. How DNA loop extrusion mediated by cohesin enables V(D)J recombination. Curr Opin Cell Biol.
2021;70:75–83.

 5. Goloborodko A, Marko JF, Mirny LA. Chromosome compaction by active loop extrusion. Biophys J. 2016;110:2162–8.
 6. Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, et al. Real-time imaging of DNA loop extrusion by con-

densin. Science. 2018;360:102–5.
 7. Golfier S, Quail T, Kimura H, Brugués J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent man-

ner. Elife. 2020:9. https:// doi. org/ 10. 7554/ eLife. 53885.
 8. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of

long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.
 9. Hsieh T-HS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. Mapping nucleosome resolution chromosome fold-

ing in yeast by Micro-C. Cell. 2015;162:108–19.

157

Page 22 of 24Rossini et al. Genome Biology (2022) 23:247

 10. Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh T-HS, et al. Ultrastructural details of mammalian
chromosome architecture. Mol Cell. 2020;78:554–65.e7.

 11. Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH, Jewett AI, et al. Chromatin extrusion explains key features
of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A. 2015;112:E6456–65.

 12. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of chromosomal domains by
loop extrusion. Cell Rep. 2016;15:2038–49.

 13. Brandão HB, Ren Z, Karaboja X, Mirny LA, Wang X. DNA-loop-extruding SMC complexes can traverse one another
in vivo. Nat Struct Mol Biol. 2021;28:642–51.

 14. Lupiáñez DG, Spielmann M, Mundlos S. Breaking TADs: How alterations of chromatin domains result in disease.
Trends Genet. 2016;32:225–37.

 15. Alipour E, Marko JF. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res.
2012;40:11202–12.

 16. Bauer BW, Davidson IF, Canena D, Wutz G, Tang W, Litos G, et al. Cohesin mediates DNA loop extrusion by a “swing
and clamp” mechanism. Cell. 2021;184:5448–64.e22.

 17. Golov AK, Golova AV, Gavrilov AA, Razin SV. Sensitivity of cohesin-chromatin association to high-salt treatment cor-
roborates non-topological mode of loop extrusion. Epigenetics Chromatin. 2021;14:36.

 18. Pradhan B, Barth R, Kim E, Davidson IF, Bauer B, van Laar T, et al. SMC complexes can traverse physical roadblocks
bigger than their ring size [Internet]. bioRxiv. 2021:2021.07.15.452501 Available from: https:// www. biorx iv. org/ conte
nt/ 10. 1101/ 2021. 07. 15. 45250 1v1. abstr act. [Cited 2022 Apr 11].

 19. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at
kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.

 20. Vian L, Pękowska A, Rao SSP, Kieffer-Kwon K-R, Jung S, Baranello L, et al. The energetics and physiological impact of
cohesin extrusion. Cell. 2018;173:1165–78.e20.

 21. Tedeschi A, Wutz G, Huet S, Jaritz M, Wuensche A, Schirghuber E, et al. Wapl is an essential regulator of chromatin
structure and chromosome segregation. Nature. 2013;501:564–8.

 22. Haarhuis JHI, van der Weide RH, Blomen VA, Yáñez-Cuna JO, Amendola M, van Ruiten MS, et al. The cohesin release
factor WAPL restricts chromatin loop extension. Cell. 2017;169:693–707.e14.

 23. Nakamura R, Motai Y, Kumagai M, Wike CL, Nishiyama H, Nakatani Y, et al. CTCF looping is established during gastru-
lation in medaka embryos. Genome Res. 2021;31:968–80.

 24. Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, et al. Topologically associating domains and chroma-
tin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 2017;36:3573–99.

 25. Rao SSP, Huang S-C, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon K-R, et al. Cohesin loss eliminates all loop
domains. Cell. 2017;171:305–20.e24.

 26. Liu NQ, Magnitov M, Schijns M, van Schaik T, van der Weide RH, Teunissen H, et al. Rapid depletion of CTCF and
cohesin proteins reveals dynamic features of chromosome architecture [Internet]. bioRxiv. 2021:2021.08.27.457977
Available from: https:// www. biorx iv. org/ conte nt/ 10. 1101/ 2021. 08. 27. 45797 7v1. full. [Cited 2022 Apr 11].

 27. Nora EP, Goloborodko A, Valton A-L, Gibcus JH, Uebersohn A, Abdennur N, et al. Targeted degradation of CTCF
decouples local insulation of chromosome domains from genomic compartmentalization. Cell. 2017;169:930–44.
e22.

 28. Barbieri M, Chotalia M, Fraser J, Lavitas L-M, Dostie J, Pombo A, et al. Complexity of chromatin folding is captured by
the strings and binders switch model. Proc Natl Acad Sci U S A. 2012;109:16173–8.

 29. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, et al. Organization of the mitotic chromosome.
Science. 2013;342:948–53.

 30. Jost D, Carrivain P, Cavalli G, Vaillant C. Modeling epigenome folding: formation and dynamics of topologically
associated chromatin domains. Nucleic Acids Res. 2014;42:9553–61.

 31. Benedetti F, Dorier J, Burnier Y, Stasiak A. Models that include supercoiling of topological domains reproduce several
known features of interphase chromosomes. Nucleic Acids Res. 2014;42:2848–55.

 32. Goloborodko A, Imakaev MV, Marko JF, Mirny L. Compaction and segregation of sister chromatids via active loop
extrusion. Elife. 2016:5. https:// doi. org/ 10. 7554/ eLife. 14864.

 33. Anderson JA, Glaser J, Glotzer SC. HOOMD-blue: a Python package for high-performance molecular dynamics and
hard particle Monte Carlo simulations. Comput Mater Sci. 2020;173:109363.

 34. Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, et al. Two independent modes of
chromatin organization revealed by cohesin removal. Nature. 2017;551:51–6.

 35. Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA. Chromatin organization by an interplay of loop extru-
sion and compartmental segregation. Proc Natl Acad Sci U S A. 2018;115:E6697–706.

 36. Banigan EJ, van den Berg AA, Brandão HB, Marko JF, Mirny LA. Chromosome organization by one-sided and two-
sided loop extrusion. Elife. 2020:9. https:// doi. org/ 10. 7554/ eLife. 53558.

 37. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, et al. OpenMM 7: Rapid development of high
performance algorithms for molecular dynamics. PLoS Comput Biol. 2017;13:e1005659.

 38. Buckle A, Brackley CA, Boyle S, Marenduzzo D, Gilbert N. Polymer simulations of heteromorphic chromatin predict
the 3D folding of complex genomic loci. Mol Cell. 2018;72:786–97.e11.

 39. Zhang S, Übelmesser N, Josipovic N, Forte G, Slotman JA, Chiang M, et al. RNA polymerase II is required for spatial
chromatin reorganization following exit from mitosis. Sci Adv. 2021;7:eabg8205.

 40. Abdennur N, Mirny LA. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics.
2020;36:311–6.

 41. Gabriele M, Brandão HB, Grosse-Holz S, Jha A, Dailey GM, Cattoglio C, et al. Dynamics of CTCF and cohesin mediated
chromatin looping revealed by live-cell imaging [Internet]. bioRxiv. 2021:2021.12.12.472242 Available from: https://
www. biorx iv. org/ conte nt/ 10. 1101/ 2021. 12. 12. 47224 2v1. [Cited 2022 Apr 11].

 42. Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X. CTCF and cohesin regulate chromatin loop stability with
distinct dynamics. Elife. 2017:6. https:// doi. org/ 10. 7554/ eLife. 25776.

158

Page 23 of 24Rossini et al. Genome Biology (2022) 23:247

 43. Rodríguez-Carballo E, Lopez-Delisle L, Zhan Y, Fabre PJ, Beccari L, El-Idrissi I, et al. The HoxD cluster is a dynamic
and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev.
2017;31:2264–81.

 44. Rodríguez-Carballo E, Lopez-Delisle L, Willemin A, Beccari L, Gitto S, Mascrez B, et al. Chromatin topology and the
timing of enhancer function at the HoxD locus. Proc Natl Acad Sci U S A. 2020;117:31231–41.

 45. Xu H, Zhang S, Yi X, Plewczynski D, Li MJ. Exploring 3D chromatin contacts in gene regulation: The evolution
of approaches for the identification of functional enhancer-promoter interaction. Comput Struct Biotechnol J.
2020;18:558–70.

 46. Di Stefano M, Paulsen J, Jost D, Marti-Renom MA. 4D nucleome modeling. Curr Opin Genet Dev. 2021;67:25–32.
 47. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computa-

tional workflows. Nat Biotechnol. 2017;35:316–9.
 48. 2021-modle-paper-001-data-analysis: Data analysis code for the first paper about MoDLE (preprint available soon)

[Internet]. Github. Available from: https:// github. com/ pauls engro up/ 2021- modle- paper- 001- data- analy sis. [Cited
2022 Apr 11].

 49. Rossini R, Kumar V, Mathelier A, Rognes T, Paulsen J. Data analysis code for: “MoDLE: High-performance stochastic
modeling of DNA loop extrusion interactions.” 2022. Available from: https:// zenodo. org/ record/ 70729 39. [Cited 2022
Sep 13].

 50. Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches. Bioinfor-
matics. 1998;14:48–54.

 51. GRCh38.p13 - hg38 - Genome - Assembly - NCBI [Internet]. Available from: https:// ident ifiers. org/ assem bly: GCF_
00000 1405. 39. [Cited 2022 Apr 12].

 52. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, et al. JASPAR
2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res.
2022;50:D165–73.

 53. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature.
2012;489:57–74.

 54. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA elements (ENCODE):
data portal update. Nucleic Acids Res. 2018;46:D794–801.

 55. ENCFF255FRL – ENCODE [Internet]. Available from: https:// ident ifiers. org/ encode: ENCFF 255FRL. [Cited 2022 Apr 12].
 56. ENCFF473IZV – ENCODE [Internet]. Available from: https:// ident ifiers. org/ encode: ENCFF 473IZV. [Cited 2022 Apr 12].
 57. ENCFF821AQO – ENCODE [Internet]. Available from: https:// ident ifiers. org/ encode: ENCFF 821AQO. [Cited 2022 Apr

12].
 58. ENCFF913JGA – encode [Internet]. Available from: https:// ident ifiers. org/ encode: ENCFF 913JGA. [Cited 2022 Apr 12].
 59. Venev S, Abdennur N, Goloborodko A, Flyamer I, Fudenberg G, Nuebler J, et al. open2c/cooltools: v0.5.1 [Internet].

2022. Available from: https:// zenodo. org/ record/ 63242 29.
 60. Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K, Strobelt H, et al. HiGlass: web-based visual exploration

and analysis of genome interaction maps. Genome Biol. 2018;19:125.
 61. Banigan EJ, Mirny LA. The interplay between asymmetric and symmetric DNA loop extrusion. Elife. 2020:9. https://

doi. org/ 10. 7554/ eLife. 63528.
 62. Imakaev M, Goloborodko A, hbbrandao. mirnylab/polychrom: v0.1.0 [Internet]. 2019. Available from: https:// zenodo.

org/ record/ 35794 73. [Cited 2022 Sep 13].
 63. Yoon S, Chandra A, Vahedi G. Stripenn detects architectural stripes from chromatin conformation data using com-

puter vision. Nat Commun. 2022;13:1602.
 64. 4DNFIFJH2524.mcool – 4DN Data Portal [Internet]. Available from: https:// ident ifiers. org/ 4dn: 4DNFI FJH25 24. [Cited

2022 Sep 13].
 65. 4DNFI9GMP2J8.mcool – 4DN Data Portal [Internet]. Available from: https:// ident ifiers. org/ 4dn: 4DNFI 9GMP2 J8.

[Cited 2022 Sep 13].
 66. openmm [Internet]. Github. Available from: https:// github. com/ openmm/ openmm/ issues/ 3267. [Cited 2022 Apr

11].
 67. 4DNFI9GMP2J8.Mcool – 4DN data portal [Internet]. Available from: https:// ident ifiers. org/ 4dn: 4DNFI 9GMP2 J8. [Cited

2022 Apr 12].
 68. scikit-optimize: Sequential model-based optimization with a `scipy.optimize` interface [Internet]. Github. Available

from: https:// github. com/ scikit- optim ize/ scikit- optim ize. [Cited 2022 Apr 11].
 69. Fortin F-A, De Rainville F-M, Gardner M-A, Parizeau M, Gagné C. DEAP: evolutionary algorithms made easy. J Mach

Learn Res. 2012;13:2171–5.
 70. GRCm38.p6 - Genome - Assembly - NCBI [Internet]. Available from: https:// ident ifiers. org/ assem bly: GCF_ 00000 1635.

26. [Cited 2022 Sep 13].
 71. GEO Accession viewer [Internet]. Available from: https:// ident ifiers. org/ GEO: GSE90 994. [Cited 2022 Sep 13].
 72. GSM2418858: WT_IgG_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https:// ident ifiers.

org/ insdc. sra: SRR50 85152. [Cited 2022 Sep 13].
 73. GSM2418858: WT_IgG_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https:// ident ifiers.

org/ insdc. sra: SRR50 85153. [Cited 2022 Sep 13].
 74. GSM2418859: WT_Rad21_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https:// ident

ifiers. org/ insdc. sra: SRR50 85154. [Cited 2022 Sep 13].
 75. GSM2418859: WT_Rad21_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https:// ident

ifiers. org/ insdc. sra: SRR50 85155. [Cited 2022 Sep 13].
 76. GSM2418860: WT_CTCF_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https:// ident ifiers.

org/ insdc. sra: SRR50 85156. [Cited 2022 Sep 13].
 77. GSM2418860: WT_CTCF_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https:// ident ifiers.

org/ insdc. sra: SRR50 85157. [Cited 2022 Sep 13].

159

Page 24 of 24Rossini et al. Genome Biology (2022) 23:247

•

fast, convenient online submission

•

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 78. GitHub - ENCODE-DCC/chip-seq-pipeline2: ENCODE ChIP-seq pipeline [Internet]. GitHub. Available from: https://
github. com/ ENCODE- DCC/ chip- seq- pipel ine2. [Cited 2022 Sep 13].

 79. 4DNFINNZDDXV.mcool – 4DN Data Portal [Internet]. Available from: https:// ident ifiers. org/ 4dn: 4DNFI NNZDD XV.
[Cited 2022 Sep 13].

 80. modle: High-performance stochastic modeling of DNA loop extrusion interactions [Internet]. Github. Available
from: https:// github. com/ pauls engro up/ modle. [Cited 2022 Apr 11].

 81. Rossini R, Kumar V, Mathelier A, Rognes T, Paulsen J. MoDLE [Internet]. Zenodo; 2022. Available from: https:// zenodo.
org/ record/ 64246 97.

 82. Rossini R, Kumar V, Mathelier A, Rognes T, Paulsen J. MoDLE. 2022. Available from: https:// zenodo. org/ record/ 69925
33. [Cited 2022 Sep 13].

 83. Rossini R, Vipin K, Mathelier A, Rognes T, Paulsen J. MoDLE: High-performance stochastic modeling of DNA loop
extrusion interactions [Internet]. 2022. Available from: https:// doi. org/ 10. 5281/ zenodo. 64248 90.

 84. Nird research data archive [Internet]. https:// doi. org/ 10. 11582/ 2022. 00056. [Cited 2022 Nov 2].
 85. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at

NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45.
 86. GEO Accession viewer [Internet]. Available from: https:// ident ifiers. org/ GEO: GSM46 65702. [Cited 2022 Sep 13].
 87. Reiff SB, Schroeder AJ, Kirli K, Cosolo A, Bakker C, Mercado L, et al. The 4D Nucleome Data Portal: a resource for

searching and visualizing curated nucleomics data [Internet]. bioRxiv. 2021 . 2021.10.14.464435. Available from:
https:// www. biorx iv. org/ conte nt/ 10. 1101/ 2021. 10. 14. 46443 5v1. [Cited 2022 Apr 11].

 88. Blackman D, Vigna S. Scrambled linear pseudorandom number generators. ACM Trans Math Softw. New York, NY,
USA: Association for Computing Machinery; 2021;47:1–32.

 89. Levcopoulos C, Petersson O. Splitsort—an adaptive sorting algorithm. Inf Process Lett. 1991;39:205–11.
 90. The HDF Group. Hierarchical Data Format, version 5 [Internet]. Available from: http://www.hdfgroup.org/HDF5/.

[Cited 2022 Apr 11].
 91. Fan B, Andersen DG, Kaminsky M. MemC3: Compact and concurrent MemCache with dumber caching and smarter

hashing. Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI
13). 2013; 371–84.

 92. Xiaozhou Li Princeton University, David G. Andersen Carnegie Mellon University, Labs MKI, Michael J. Freedman
Princeton University. Algorithmic improvements for fast concurrent Cuckoo hashing [Internet]. ACM Conferences.
https:// doi. org/ 10. 1145/ 25927 98. 25928 20. [Cited 2022 Sep 13].

 93. Shoshany B. A C++17 thread pool for high-performance scientific computing [Internet]. arXiv [cs.DC]. 2021. Avail-
able from: http:// arxiv. org/ abs/ 2105. 00613. [Cited 2022 Sep 13].

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

160

MoDLE: High-performance stochastic
modeling of DNA loop extrusion
interactions

Supplementary text

1. MoDLE: design overview
One of the motivations for developing MoDLE is the need for a high-performance in-silico
model of DNA loop extrusion. In this day and age writing high-performance software almost
always requires developers to target parallel and heterogeneous hardware architectures, as
a single-threaded, sequential application can only take advantage of a miniscule fraction of
the performance offered by modern hardware. Given this, it was clear from the beginning
that in order to meet our performance target we would need to design MoDLE so that it could
efficiently run on machines with many CPU cores, ideally splitting the computation in many
small independent work units that can be executed on different CPU cores requiring little or
no synchronization.
The version of MoDLE presented in this manuscript uses a producer-consumer architecture,
where a single producer communicates with multiple consumers through asynchronous
message passing.
In this programming model we have a single thread with the role of producer, here and
onwards referred to as the main thread. The main thread is responsible for reading input files
and generating a set of simulation tasks to be consumed by a pool of worker threads. Tasks
are implemented as light-weight C++ structs, and are extremely cheap to generate and
consume. A single task contains all the information needed by a worker thread to run a
simulation instance, that is simulating DNA loop extrusion on a single chromosome in a
specific cell. Simulation instances are for the most part independent from each other and can
thus run concurrently. This means that when simulating loop extrusion on the human
genome with default settings using 512 cells, MoDLE could in theory run all 11776 simulation
instances in parallel. This level of parallelism is orders of magnitude larger than what is
available on modern high-performance servers and workstations. This means that MoDLE
can efficiently take advantage of all CPU cores available on the host machine, and this is
likely to remain true for the foreseeable future.
Another aspect we had to consider during MoDLE’s design was memory usage and layout.
Modern CPUs take advantage of several techniques such as instruction pipelining,
out-of-order and speculative execution to greatly improve the instruction throughput of a
single CPU core. Because of this, the bottleneck of many applications running on modern
CPUs is rarely instruction throughput, and is instead memory bandwidth. The most important
aspect to consider when optimizing a memory-bound application is memory locality of
reference, so that the CPU prefetcher can efficiently predict and prefetch data the application
will access next, making efficient use of the CPU cache and hiding memory access
latencies.
With this in mind we identified a data topology that would minimize the memory used by a

161

single simulation instance without significantly compromising locality of reference (see
Section 3).
Data stored by MoDLE in system memory can be partitioned into two logical classes: data
shared across multiple worker threads and data that is owned and accessed by a single
worker thread.
A small fraction of shared data is immutable, and can thus be accessed concurrently from
different threads without requiring any synchronization. Examples of shared immutable data
are the list of chromosomes that comprise the genome that is being simulated or the
position, direction and occupancy of extrusion barriers mapping on a given chromosome
(see Section 6).
Extrusion barrier state (i.e. occupied or not occupied), LEF positions and states are instead
examples of data that must be stored locally by each worker thread (see Sections 5 and 6).
MoDLE does not explicitly model DNA, as this is not necessary with the current design, and
would greatly increase MoDLE’s memory footprint. Instead, for each chromosome MoDLE
only tracks chromosome name, total length and begin/end position (in case chromosomes
subsets are being simulated). Extrusion barriers and LEFs are both stored in contiguous
memory. Extrusion barriers are sorted by their genomic coordinates, so visiting them in 5’-3’
or 3’-5’ direction is trivial and can be done in . Sorting needs to be done only once, as𝑂(𝑛)
extrusion barrier positions are immutable throughout the entire simulation (see Section 6).
LEFs are also stored in contiguous memory but in unspecified order (see Section 5). At the
beginning of every epoch, MoDLE builds two indices such that visiting extrusion units
moving in forward and reverse direction sorted by their genomic coordinates becomes trivial
and can be done in (see Section 8).𝑂(𝑛)
With the ability of visiting extrusion units sorted by their genomic coordinates, all kinds of
collision events can be detected by comparing the distance of adjacent elements (e.g. an
extrusion unit moving in forward direction and the first extrusion barrier located downstream
of said extrusion unit) with the distance the extrusion unit is set to travel during the epoch
that is being simulated (see Section 12). If the proposed move is greater than the distance
that separates the two entities, then MoDLE predicts a collision may occur in the current
epoch. Whether or not a collision actually takes place is determined by a stochastic process
(usually a Bernoulli trial). Collisions are processed one type at a time (e.g. first we process
collisions between extrusion units and extrusion barriers, next we process collisions between
extrusion units moving in opposite directions and so on). For each extrusion unit MoDLE
records whether a collision occurred as well as a reference to the entities involved in the
collision event (see Section 7). MoDLE also tracks instances where a collision was avoided
due to stochastic events (e.g. because two colliding extrusion units were able to bypass
each other). Once all collisions have been detected, the proposed moves are updated to
satisfy the constraints introduced by collision events (see Sections 12a and 12e-g). The
updated moves are then used to update the simulation state before registering contacts,
releasing a fraction of the active LEFs, and moving to the next epoch(see Section 6).

The majority of MoDLE’s memory budget is used to track molecular contacts generated by
DNA loop extrusion. Molecular contacts are stored using a specialized contact matrix data
structure described in Section 2, which was developed with three aims: enabling efficient
pixel random access, thread safety and low memory overhead.
Storing a single instance of the contact matrix for each chromosome that is being simulated
and sharing it across all worker threads allows MoDLE to minimize the amount of memory
required to store the state of a single simulation instance. The size of this state varies from

162

500 KB or less to 5-10MB depending on the number of LEFs and extrusion barriers involved
in the simulation instance (see Section 3). The size of the shared contact matrix depends on
chromosome size, width of the region along the diagonal that is being represented as well as
bin size. With default settings, the contact matrix for chromosome 1 from the human genome
requires approximately 120 MB of memory (see Section 2).

2. MoDLE: contact matrix
The main goal when designing the specialized contact matrix data structure used by MoDLE
was to take advantage of the nature of DNA loop extrusion to minimize the memory footprint
of the contact matrix as well as making most of the class public API thread-safe.
The main strategy used to limit the memory usage of the contact matrix class is to avoid
representing regions in the matrix where loop extrusion is unlikely to generate contacts. With
default setting the contact matrix is only representing contacts for a 3 Mbp window around
the diagonal of the upper triangle of the contact matrix. When a simulation instance tries to
set or increment a value outside of the space represented by the contact matrix, the action is
effectively a no-op and will lead to a missed update. The number of missed updates are
tracked using an atomic counter and a warning is issued if the fraction of missed updates
becomes significant. Attempts to fetch the value of a pixel that lies outside of the 3Mbp
window is also a no-op and always returns zero.
Using this strategy, storing contacts for chromosome 1 of the human genome using a bin
size of 5000 bp and 32-bit integers requires around 120 MB of memory while storing the
entire square matrix would require close to 10 GB.
The public API of the contact matrix class is rendered thread-safe through mutex locking.
When instantiating the contact matrix class with a certain shape (i.e. the number of rows and
number of columns, where the number of rows represents at most 3 Mbp of DNA with
default settings), the class constructor will also allocate a vector of mutexes that will be used
to protect subsets of the contact matrix from concurrent access from different threads.
Access to a given pixel is protected by a single mutex. Given the pixel corresponding to row
and column , to identify which mutex to acquire prior to accessing the pixels, the𝑟 𝑐

coordinates and are hashed. The output of the hash function is then divided by the𝑟 𝑐
number of mutexes protecting the current contact matrix instance, and the remainder of the
division is used to index the mutex protecting the pixel that we are about to access. The
exact number of mutexes protecting a contact matrix instance is computed based on the
matrix shape and the number of available CPU cores. This number is always rounded to the
next power of two so that the index of the mutex protecting a given pixel can be computed
using bitwise operations instead of slower modulo operations. The number of mutexes is
currently clamped between and , where is the maximum number of CPU cores2 1000 * 𝑡 𝑡
available on the machine where MoDLE is being executed. As an example, on server A (see
Table 1), MoDLE allocates up to 256,000 mutexes for each contact matrix, using roughly 10
MB of memory.

3. MoDLE: Private state of a simulation instance
As soon as the first task is consumed by a given worker thread, the worker thread will
allocate and initialize the memory required to store the private state of a single simulation
instance. The state object itself consists of a struct with several member variables allocated

163

on the stack, such as a 64-bit integer field used to keep track of the simulation epoch and
the state of the pseudo-random number generator used by the current simulation instance
(see Section 4). The state object also owns and manages a dozen buffers that are used for
various purposes throughout the simulation. These buffers are allocated once, then cleared
and resized when starting a new simulation instance after reading a new task. The majority
of these buffers have a size that depends on the number of LEFs that are being simulated.
Given that most of the time chromosomes are processed from the largest to the smallest,
and that in MoDLE the number of LEFs is a function of chromosome size, each worker
thread is expected to perform several relatively large allocations when processing the first
task, and then progressively shrink the buffers, which is a cheap operation to perform,
especially compared to growing buffers. This memory allocation strategy allows MoDLE to
greatly reduce memory re-allocations, preventing performance issues due to frequent
memory allocations and memory fragmentation.

4. MoDLE: PRNG and simulation reproducibility
The PRNG algorithm used by MoDLE to model stochastic events can be customized at
compile-time. By default MoDLE will be compiled to use xoshiro256++ [88] as PRNG.
Alternatively, the Boost or STL implementation of the Mersenne-Twister algorithm (64-bit)
can be used.
Each worker thread owns an instance of the PRNG class. After consuming a new task from
the queue, worker threads seed the PRNG using a seed computed by hashing chromosome
and cell metadata (namely chromosome name, chromosome size and cell ID) with a
user-provided seed (optional, specified through the --seed CLI option).
This seeding strategy not only makes simulation results reproducible across runs on the
same machine (assuming simulation parameters are unchanged), but also across machines
with a different number of CPU cores. It should be noted that result reproducibility is
currently not guaranteed across operating systems and on machines using different
standard library implementations. Users relying on result reproducibility are encouraged to
use the Docker images available on GHCR.io and DockerHub at
https://github.com/paulsengroup/modle/pkgs/container/modle or
https://hub.docker.com/r/paulsengroup/modle

5. MoDLE: modeling LEFs
Loop extrusion factors are modeled as pairs of extrusion units, with one extrusion unit
moving in reverse direction and the other in forward. In addition, each LEF keeps track of the
epoch corresponding to the latest re-bind event.
Extrusion units are implemented as C++ structs consisting of a single integer representing
their position along a chromosome and that implement most comparison operators to allow
comparing LEF positions with that of other objects, such as extrusion barriers. Every
simulation epoch MoDLE randomly samples a candidate moving distance for each extrusion
unit. Moves are drawn from a normal distribution parameterized using the extrusion speed
average and standard deviation. Candidate moves correspond to the maximum distance a
given extrusion unit will cover during the current epoch (assuming there are no collision
events). Upon activation, LEFs are bound to a random position on the chromosome that is

164

being simulated in the current simulation instance. Binding positions are sampled from a
uniform distribution. At the end of every epoch a subset of LEFs are released from the DNA,
so that they can be bound at a new location in the next epoch. Whether or not a specific LEF
will be released is determined by a Bernoulli trial whose probability of success is computed
based on the average LEF processivity and extrusion speed. This probability of success is
also affected by whether a LEF is stalled on both sides and for which reason. As an
example, with default settings, given a LEF whose extrusion units are stalled by a pair of
extrusion barriers in convergent orientation, the probability of release for this specific LEF is
reduced by a factor of 5.
With default settings extrusion units have a low probability of bypassing each other. This
probability can be controlled through the CLI and can be set to 0 to forbid extrusion unit
bypass.

6. MoDLE: modeling extrusion barriers
The version of MoDLE here presented models extrusion barriers based on the CTCF
transcription factor using a two-state Markov process.
The two states of the Markov process represent the occupied and not-occupied states of a
CTCF binding site by the CTCF transcription factor.
The state of each extrusion barrier at a given epoch is represented with a bitset and is stored
outside of the extrusion barrier class and in the thread-local simulation state, so that
extrusion barrier objects can be stored once, and shared across all simulation instances.
Each extrusion barrier consists of a position, blocking direction and two transition
probabilities. An extrusion barrier instance thus loosely represents a CTCF binding site on
the DNA, while its corresponding entry in the bitset signals whether a CTCF protein is bound
to this specific binding site.
The recommended way of setting transition probabilities for extrusion barriers is using the
data-driven approach described in the Method section, which relies on CTCF and Cohesin
ChIP-seq data. Should this data not be available, users can directly specify the transition
probabilities on the CLI through the options --extrusion-barrier-bound-stp and
--extrusion-barrier-not-bound-stp. Alternatively, users can specify the
--extrusion-barrier-occupancy option which is then used to compute the the
occupied-to-occupied transition probability with the following formula:𝑝𝐵𝐵 = 1 − 𝑝𝑈𝑈−(π𝐵 − 𝑝𝑈𝑈)π𝐵
where is the probability that a CTCF site that is currently bound by a CTCF protein will𝑝𝐵𝐵
remain in this state in the current epoch, while is the probability that an unoccupied𝑝𝑈𝑈
CTCF binding site will remain unoccupied throughout the epoch that is being simulated.
Finally, is the CTCF binding site occupancy.π𝐵
7. MoDLE: tracking collisions

MoDLE defines four different kinds of collision events:
● LEF-extrusion barrier collisions (LB) - any collision occurring between a LEF

extrusion unit and an extrusion barrier in the bound state.

165

● Primary LEF-LEF collisions (LL1) - collisions between two extrusion units belonging
to two different LEFs and moving towards each other.

● Secondary LEF-LEF collisions (LL2) - collisions between two extrusion units
belonging to two different LEFs that are moving in the same direction.

● Collisions between LEFs and chromosomal boundaries (CB).
MoDLE models chromosomal boundaries as impenetrable barriers to prevent LEFs from
falling off chromosome ends. Collision events are stored in two vectors, one for extrusion
units moving in reverse direction and the other for extrusion units moving forward.
Collision events are represented using unsigned 64-bit integers. Each integer encodes the
cause of collision as well as a reference to the entity that caused the collision.
The high bits of a collision event are used to encode the collision type while the lower bits
are used to encode the reference to the entity causing the collision. Usually, the reference is
an index pointing into one of the vectors of extrusion units or barriers.
Using this encoding scheme makes collision encoding and decoding very efficient, as both
operations can be implemented using bitwise operations such as bit shifting and masking.

CO CB LB LL1 LL2 Index

bit idx 63 62 61 60 59 … 3 2 1 0

bit value 1 0 1 0 0 0 1 1 0 1

Legend:
CO - Collision Occurred (1 when collision occurred, 0 when collisions did not occur).
CB - Collision with Chromosomal Boundary.
LB - LEF extrusion barrier collision.
LL1 - LEF-LEF primary collision.
LL2 - LEF-LEF secondary collision.

The above example encodes a collision between the extrusion unit at index and the𝑖
extrusion barrier at index 13 (1101 in binary), where is the index of the collision event in the𝑖
collision vector.

8. MoDLE: indexing LEFs
MoDLE stores LEFs in contiguous memory in an unspecified order. Extrusion units moving in
the same direction are indexed so that they can be visited in 5’-3’ or 3’-5’ direction.
Indexing is accomplished by indirectly sorting extrusion units by their positions and dealing
with ties using the LEF binding epoch. Ties are rare events which can occur when a newly
bound LEF is assigned a binding position that is already occupied by another extrusion unit.
Indexing is potentially an expensive operation due to the sorting step, as even state of the
art general-purpose sorting algorithms run in where is the number of LEFs in𝑂(𝑛 𝑙𝑜𝑔 𝑛) 𝑛
this case. MoDLE takes advantage of the fact that after the first epoch only a few index
entries need to be updated to significantly reduce the time complexity of the sorting step. In
other words, traversing extrusion units using the index from the previous epoch yields a
sequence of extrusion units that is for the most part already in the correct order. Extrusion
units are indirectly sorted using Splitsort [89], an adaptive sorting algorithm that can take

166

advantage of the level of pre-sortedness of extrusion units indexed using the index from the
previous iteration. In brief, given a collection of items to be sorted, Splitsort removes a
number of items from the collection, splitting the collection in two partitions: a partition
containing already sorted items, and a partition with items yet to be sorted. The unsorted
partition is then sorted using a traditional sorting algorithm (Quicksort in the Splitsort
implementation used by MoDLE). Finally the two sorted partitions are merged back into the
original sequence. Splitsort is not a stable sorting algorithm, meaning that the order of ties in
the sorted collection is not deterministic. MoDLE uses LEF activation epoch to make
Splitsort practically stable. Let us consider the following scenario: two LEFs and have𝑙1 𝑙2
been assigned to the same chromosome in the same simulation instance. At the end of
epoch , is active and extruding: its forward-moving extrusion unit is located at𝑒0 𝑙1 𝑒𝑓1
position . At this time, is inactive (i.e. not bound to the chromosome). During the next𝑝 𝑙2
epoch (), becomes active and is bound to position , the same position as . In this𝑒1 𝑙2 𝑝 𝑒𝑓1
scenario and , the forward-moving units of and respectively are tied. The tie is𝑒𝑓1 𝑒𝑓2 𝑙1 𝑙2
resolved by observing that became active after reached position , and that thus𝑒𝑓2 𝑒𝑓1 𝑝
reached position after . Because of this, is ranked lower than . The case where𝑝 𝑒𝑓1 𝑒𝑓2 𝑒𝑓1
two extrusion units become active at the same time and bind to the same position is not
explicitly handled, as under normal circumstances these are extremely rare events.

9. MoDLE: generating molecular contacts
At the end of each epoch after the burn-in phase, MoDLE selects a number of LEFs by
random sampling with replacement for contact registration. The genomic coordinates of
these LEFs will be used to generate molecular contacts. Contact sampling rate can be
tweaked through the --contact-sampling-interval parameter, which sets the average number
of base pairs a LEF extrudes between two subsequent sampling events (assuming loop
extrusion proceeds unencumbered). The default value for this parameter is 50 kbp.
MoDLE can sample two kinds of contacts:

● Molecular contact directly mediated by a LEF, that is contacts between the two
regions brought together by the extrusion units of a LEF. This type of contact will very
often occur in correspondence of stripes and dots, see Fig 2A.

● Contacts between regions within the same loop. This type of contact almost always
occurs inside squares on the diagonal corresponding to TADs, see Fig 2B.

Furthermore, contacts can be randomized by adding noise sampled from a GEV distribution
whose location, scale and shape parameters can be customized from the CLI.
At the time of writing, MoDLE supports the following contact sampling strategies:

● Loop only.
● TADonly.
● TAD + loop.
● Loop only with noise.
● TAD only with noise.
● TAD + loop with noise.

With default settings, MoDLE will, on average, sample 5 TAD contacts for every loop
contact. This ratio was determined empirically, with the aim of generating contact matrices
resembling that produced by Hi-C and Micro-C. The ratio between the two types of contacts

167

can be set through the --tad-to-loop-contact-ratio CLI option.
Let us consider LEF with extrusion units and , located ad positions and𝑙 𝑒1 𝑒2 𝑝1 𝑝2
respectively, where .𝑝1 ≤ 𝑝2
To sample one loop contact for LEF , random noise from GEV is added to positions and𝑙 𝑝1

producing positions and respectively. In case contact randomization was disabled by𝑝2 𝑝1* 𝑝2*
the user, a noise of 0 is added. Next, positions and are mapped to their respective bins𝑝1* 𝑝2*
in the contact matrix and by dividing them by the bin size . Finally the value of the𝑏1 𝑏2 𝑏𝑠
pixel corresponding to and is increased by 1.𝑏1 𝑏2
The procedure to sample one TAD contact is identical to the one described above except for

the last two steps. After computing and , MoDLE will sample two integral numbers𝑝1* 𝑝2*
between and from a uniform distribution, and respectively. and are then𝑝1* 𝑝2* 𝑝3* 𝑝4* 𝑝3* 𝑝4*
mapped to their corresponding bins and , and the value of the corresponding pixel is𝑏3 𝑏4
increased by one.
In MoDLE v1.0.0-rc.7 the CLI option --track-1d-lef-position can be used to track LEF
coordinates in 1D space. This information is written to disk in BigWig format. LEF occupancy
is recorded similarly as for loop contacts, except that the two positions are mapped to their
respective bins, and counts in a 1D vector corresponding to these two bins are incremented
accordingly.

10. MoDLE: generating candidate moves
At the beginning of every epoch each active extrusion unit is assigned a candidate move.
Moves are randomly sampled from a normal distribution with and , whereµ = 𝑠 σ = 0. 05µ
corresponds to the average extrusion speed. All three parameters , and can be𝑠 µ σ 𝑠

tweaked through MoDLE’s CLI. This strategy can lead to unlikely moves for consecutive
extrusion units, which is why once all moves have been sampled, moves for consecutive
extrusion units are adjusted as follows.
Let us consider two consecutive extrusion units and both moving in forward direction.𝑒𝑓1 𝑒𝑓2
Extrusion units are currently located at positions and respectively, and at a distance𝑝1 𝑝2

with . Let us also consider two candidate moves and which𝑑12 = 𝑝2 − 𝑝1 𝑝1 < 𝑝2 𝑚1 𝑚2
have been assigned to and respectively.Applying these moves to their respective𝑒𝑓1 𝑒𝑓2
units will bring and to positions and respectively.𝑒𝑓1 𝑒𝑓2 𝑝1* = 𝑝1 + 𝑚1 𝑝2* = 𝑝2 + 𝑚2
Finally let us stipulate that (i.e. will surpass by the end of the current𝑝1* ≥ 𝑝2* 𝑒𝑓1 𝑒𝑓2
epoch), and that is the only entity located between positions and (i.e. cannot be𝑒𝑓2 𝑝1 𝑝1* 𝑒𝑓1
stalled by an extrusion barrier). The scenario described above does not seem very plausible.
A more plausible scenario is that after approaching , pushes against , leading to a𝑒𝑓2 𝑒𝑓1 𝑒𝑓2
transient increase of the extrusion speed of , lasting until the end of the current epoch. To𝑒𝑓2
improve simulation realism, MoDLE, candidate moves are adjusted to reflect the second

168

scenario: is adjusted to , so that at the end of the current epoch𝑚2 𝑚2 = 𝑝1* − (𝑝2 + 1)
will be located immediately downstream of . A similar procedure is used to adjust the𝑒𝑓2 𝑒𝑓1

moves of adjacent extrusion units moving in reverse direction. The above procedure is used
to adjust moves for all pairs of consecutive extrusion units moving in the same direction.
Finally, moves are clamped such that no extrusion unit will move past chromosomal
boundaries.

11. MoDLE: burn-in phase
With the intent of progressively activate LEFs, as well as limiting the chance of having
batches of LEFs in highly correlated states (e.g. groups of LEFs all being bound or released
around the same epoch), MoDLE starts new simulation instances by running a burn-in
phase.
The burn-in phase consists of two stages: a first stage where LEFs are activated and bound
to chromosomes for the first time, and a second stage where all LEFs are active and
extruding. During both stages molecular contacts are not recorded. Thus LEF states and
positions during burn-in are not directly observable in the output contact matrix.
The burn-in phase is implemented as a bit of extra logic running at the beginning of every
epoch. The duration of the first burn-in stage is controlled through the
--burnin-target-epochs-for-lef-activation option, which controls the number of epochs over
which LEFs are activated. By default --burnin-target-epochs-for-lef-activation is computed
from the average LEF processivity and extrusion speed such that by the time the last LEF is
activated, the first LEF to have been activated has been released 5 times (approximately
190 epochs with default settings).
Let us consider a chromosome of size with a LEF density𝑐 𝑠𝑐 = 10 𝑀𝑏𝑝

. Let us also assume MoDLE was configured to activate LEFs during aλ𝐿𝐸𝐹 = 10 𝐿𝐸𝐹𝑠 / 𝑀𝑏𝑝
period of 25 epochs, . In this scenario, during the first burn-in stage, MoDLE will∆𝐴𝐿𝐸𝐹 = 25
activate on average 4 LEFs every epoch. The exact number of LEFs to be activated in a

given epoch are sampled from a Poisson distribution with . LEFs are activated byµ = λ𝐿𝐸𝐹 𝑠𝑐∆𝐴𝐿𝐸𝐹
drawing a genomic coordinate on chromosome from a uniform distribution, and binding𝑐
both LEF extrusion units at that position (see Section 5).
The second burn-in stage begins as soon as all LEFs have been activated and have
extruded some amount of DNA at least once. The purpose of the second burn-in phase is to
let the state of LEFs that have been activated during the same epoch to de-correlate from
one another, as well as allowing the formation of some large loops of DNA. MoDLE will
execute the second burn-in phase for a variable number of epochs, until the average loop
size has stabilized. Users can set an upper bound to the duration of the second burn-in
phase through the CLI.
The stages through which MoDLE steps every simulation epoch are the same, regardless of
whether or not the burnin phase has been completed. The only difference is that steps
involved in contact registration are not executed during the burn-in phase.

169

12. MoDLE: automatic parameter adjustment
MoDLE v1.0.0-rc.7 introduces functionality to automatically adjust certain parameters when
changing the average extrusion speed directly (i.e. through --rev-extrusion-speed or
--fwd-extrusion-speed CLI options) or indirectly (e.g. by changing resolution, as the overall
average extrusion speed is set to 1.6 times the resolution by default).
Automatic parameter adjustment is enabled by default, but can be disabled through the
--no-normalize-probabilities CLI option.
As of MoDLE v1.0.0-rc.7, the following parameters are adjusted:

- --extrusion-barrier-bound-stp
- --extrusion-barrier-not-bound-stp
- --probability-of-lef-bypass
- --lef-bar-major-collision-prob
- --lef-bar-minor-collision-prob

To motivate the existence of this functionality, let us consider the following scenario.
A MoDLE simulation is started with the following CLI options:

- --extrusion-barrier-occupancy=0.5 ()π𝐵
- --extrusion-barrier-not-bound-stp=0.5 ()𝑃𝑈𝑈
- --rev-extrusion-speed=4kbp ()𝑠𝑅𝐸𝑉
- --fwd-extrusion-speed=4kbp ()𝑠𝐹𝑊𝐷
- --probability-of-lef-bypass=0.1 ()𝑃𝑏𝑦𝑝𝑎𝑠𝑠

In this scenario, active LEFs are expected to extrude an average of 8kbp of DNA per
simulation epoch (assuming no collisions take place). With the above extrusion barrier
transition probabilities, we can expect barriers to switch between the occupied and
not-occupied states once every epoch (on average). Assuming LEFs being simulated are
Cohesin-like (extrusion speed=2.1kbp/s [16]), this means extrusion barriers switch states
once every 3.81 seconds. Following the same logic, LEF-LEF collisions are expected to
resolve themselves within ten epochs on average, which amount to about 50 seconds.
Let us now consider another simulation scenario, where:

- --extrusion-barrier-occupancy=0.5
- --extrusion-barrier-not-bound-stp=0.5
- --rev-extrusion-speed=500bp
- --fwd-extrusion-speed=500bp
- --probability-of-lef-bypass=0.1

With an overall average extrusion speed of just 1kbp/epoch, extrusion barriers are now
changing state once every 0.48 seconds, while LEF-LEF collisions are expected to only last
4.76 seconds on average. The two scenarios are clearly not equivalent, in fact simulating at
lower extrusion speeds will lead to weaker stripes (especially those produced by already
weak barriers).
The automated parameter adjustment here described addresses the above issue.
We introduce a normalization factor , which is equal to twice the default extrusion speed (𝑛

). The factor expresses that transition and collision probabilities specified𝑛 = 8000 𝑛
through the CLI are expressed assuming unencumbered LEFs extrude an average of base𝑛
pairs of DNA every epoch. The actual transition and collision probabilities used by MoDLE
are then recomputed based on the normalization factor.
We can now revisit the two scenarios described earlier.

170

In the first scenario probabilities require no adjustment, as the average extrusion speed is
already 8kbp/epoch.
In the second scenario, probabilities need to be updated, as the average extrusion speed
and are different. As an example, to update , first we compute the ratio between the𝑛 𝑃𝑏𝑦𝑝𝑎𝑠𝑠
average extrusion speed an the normalization factor : ,𝑛 𝑟 = 𝑠𝑅𝐸𝑉 + 𝑠𝐹𝑊𝐷𝑛 = 500 + 5008000 = 0. 125
the adjusted , is then computed as , which is the𝑃𝑏𝑦𝑝𝑎𝑠𝑠 𝑃*𝑏𝑦𝑝𝑎𝑠𝑠 𝑃*𝑏𝑦𝑝𝑎𝑠𝑠 = 𝑟 · 𝑃𝑏𝑦𝑝𝑎𝑠𝑠
probability of observing independent events with equal probabilities.𝑛
For the extrusion barrier transition probabilities, first we compute from and , then𝑃𝐵𝐵 π𝐵 𝑃𝑈𝑈
we compute the adjusted as . Finally we also compute the adjusted ,𝑃𝐵𝐵 𝑃*𝐵𝐵 = 𝑒𝑙𝑛(𝑃𝐵𝐵)·𝑟 𝑃𝑈𝑈

from and . Given that extrusion barriers are simulated with a 2 state Markov𝑃𝑈𝑈 𝑃*𝐵𝐵 π𝐵
process, the transition probability adjustment is equivalent to modeling extrusion barriers
using a continuous-time Markov chain.

13. MoDLE: detecting and processing collisions
a. Overview

MoDLE approach to simulate loop extrusion can be summarized as:
● Proposing a set of candidate moves (see Sections 5 and 9).
● Detecting collisions and adjusting the candidate moves to satisfy the constraints

introduced by collision events (see Section 12).
● Extrude DNA (i.e. advance extrusion units by their respective adjusted moves).

Collision detection is by far the most complex part of the model. This is one of the reasons
why MoDLE does not attempt to detect all kinds of collisions at the same time.
To detect whether a collision event has already occurred or will occur in the current epoch,
candidate moves are summed to the positions of forward-moving extrusion units or
subtracted to the position of units moving in reverse direction. Then, MoDLE checks whether
advancing extrusion units in this way will cause units to collide with other entities (e.g.
extrusion barriers or other extrusion units). MoDLE can be parametrized such that certain
collision events are not deterministic. For example, with default settings, two extrusion units
that are on track to collide with one another during the current epoch have a probability of
bypassing each others . Whether or not a stochastic collision event will take𝑝𝑏𝑦𝑝𝑎𝑠𝑠 = 0. 1
place in the current epoch is determined by a Bernoulli trial with probability of success
directly set or computed from the input parameters. The occurrence and avoidance of
collision events is recorded in a collision mask using the approach outlined in Section 7.
For reasons that will become clear in the next paragraphs, the order in which collisions are
detected and processed is important. In the implementation here presented collisions are
processed in the following order:

● Detect collisions with chromosomal boundaries (i.e. extrusion units that are located
at, or are about to reach the 5’ or 3’-end of a chromosome).

● Detect collisions between extrusion units and extrusion barriers (LB collisions).
● Detect primary LEF-LEF (LL1) collisions, that is collisions between extrusion units

belonging to different LEFs and moving towards each other.
● Correct moves for extrusion units involved in LB collisions.
● Correct moves for extrusion units involved in LL1 collisions.

171

● Detect secondary LEF-LEF (LL2) collisions and correct moves immediately. LL2
collisions are defined as collisions between extrusion units moving in the same
direction and belonging to different LEFs.

● Deal with rare edge-cases that have not been properly handled in the previous steps.

b. Detecting extrusion units at chromosomal boundaries
MoDLE models the 5’ and 3’ ends of chromosomes as impenetrable barriers to prevent
LEFs from falling off the simulated chromosome. Thanks to the LEF indexing strategy
described in Section 8, detecting collisions with chromosomal boundaries is trivial. First, let
us observe that collisions with the 5’-end can only involve extrusion units moving in reverse
direction, while collisions with the 3’-end can involve forward-moving units only.
Thus, we can detect all collisions with the 5’-end by traversing reverse-moving extrusion
units in 5’-3’ order, and looking for extrusion unit , which is the last extrusion unit in 5’-3’𝑒𝑟𝑖
order that satisfies the following two conditions:

● After extrusion, will be located upstream of unit , which is the first𝑒𝑟𝑖 𝑒𝑓0
forward-moving extrusion unit in 5’-3’ order.

● position after extrusion will be equal to , the position of the 5’-end (i.e. position𝑒𝑟𝑖 𝑝5𝑃
0 when simulating entire chromosomes).

The first condition is necessary, as if there are one or more extrusion units moving in
opposite direction between and the 5’-end, then it is possible that will be stalled by a𝑒𝑟𝑖 𝑒𝑟𝑖
LL1 collision (see Section 12d). Note that the second condition does not handle the case
where , as this cannot happen (see Section 10).𝑒𝑟𝑖 < 𝑝5𝑃
The same logic can be applied to detect collisions with the 3’-end.Collisions detected in this
step are registered in the appropriate collision mask (see Section 7). The index portion of the
encoded collision event is set to 5 and 3 for collisions with the 5’-end and 3’-end
respectively.

c. Detecting LEF-barrier (LB) collisions
To simplify the implementation of this step, MoDLE first detects LB collisions involving
reverse-moving extrusion units, and later LB collisions for forward-moving units.
Let us consider the algorithm to detect LB collisions with reverse units. A similar algorithm is
used to detect LB collisions involving forward-moving units. Throughout the rest of the
section, the term extrusion unit implicitly refers to reverse-moving extrusion units (unless
otherwise specified).
The algorithm for LB collision detection for reverse-moving units operates on the following
data:

● - Vector of extrusion units. Units are stored in an unspecified order.𝐸
● - Index vector used to traverse units in sorted by their genomic coordinates.𝐼 𝐸
● - Vector of candidate moves.𝑀
● - Vector of extrusion barriers sorted in 5’-3’ direction.𝐵
● - Bitset representing extrusion barrier states (i.e. whether a given barrier is𝐵𝑆

occupied in the current epoch and simulation instance).
● - Collision mask.𝐶

172

All of the above vectors except and have size , where corresponds to the number of𝐵 𝐵𝑆 𝑛 𝑛
LEFs that are being simulated in the current simulation instance. and are of size ,𝐵 𝐵𝑆 𝑚
where is equal to the number of extrusion barriers mapping on the chromosome that is𝑚
being simulated.
Finally let us consider indices , and , which point to extrusion barrier , index and𝑖 𝑗 𝑘 𝐵𝑖 𝐼𝑗
extrusion unit respectively.𝐸𝑘
First, indices , and initialized such that , and .𝑖 𝑗 𝑘 𝑖 = 0 𝑗 = 0 𝑘 = 𝐼𝑗 = 𝐼0
Next, we enter a loop that continues until or .𝑖 = 𝑛 𝑗 = 𝑚
Each loop iteration the following steps are performed:

1. If barrier is not occupied (i.e.), jump to step 8.𝐵𝑖 𝐵𝑆𝑖 = 0
2. Index is incremented until points to the first extrusion unit located𝑗 𝑘 = 𝐼𝑗

downstream of .𝐵𝑖
3. Compute distance between unit and barrier as .𝑑𝐸𝑘𝐵𝑖 𝐸𝑘 𝐵𝑖 𝑑𝐸𝑘𝐵𝑖 = 𝐸𝑘 − 𝐵𝑖
4. Distance is compared with move , which is the candidate move for extrusion𝑑𝐸𝑘𝐵𝑖 𝑀𝑘

unit .𝐸𝑘
5. If , then will not collide with in the current epoch and no further𝑀𝑘 < 𝑑𝐸𝑘𝐵𝑖 𝐸𝑘 𝐵𝑖

processing of this pair of extrusion barrier and unit is needed. Continue from step 8.
6. If , then it is possible that a collision between and will occur during𝑀𝑘 ≥ 𝑑𝐸𝑘𝐵𝑖 𝐸𝑘 𝐵𝑖

the current epoch. Whether or not a LB collision will occur depends on the outcome
of a Bernoulli trial with probability of success , where a success indicates a collision𝑝𝑆
will occur and a failure indicates that the collision will be avoided. is equal to𝑝𝑆

if the motif underlying points against the direction of extrusion and𝑝𝑏𝑙𝑜𝑐𝑘 𝑚𝑎𝑗𝑜𝑟 𝐵𝑖
otherwise. With default settings and ,𝑝𝑏𝑙𝑜𝑐𝑘 𝑚𝑖𝑛𝑜𝑟 𝑝𝑏𝑙𝑜𝑐𝑘 𝑚𝑎𝑗𝑜𝑟 = 1 𝑝𝑏𝑙𝑜𝑐𝑘 𝑚𝑖𝑛𝑜𝑟 = 0

meaning that the outcome of the Bernoulli trial is deterministic, and only depends on
barrier and extrusion directions.

7. Collision occurrence or avoidance is recorded in the collision mask at entry . In𝐶 𝐶𝑘
this case, the index portion of the encoded collision is set to , so that later𝐶𝑘 𝑗
simulation stages can inspect the collision mask and determine which extrusion
barrier caused the collision.

8. Increment index by one and continue from step 1.𝑖
Notice how indices and are never decremented, meaning that extrusion units and barriers𝑖 𝑗
are visited at most once, leading to a worst-case performance of .𝑂(𝑛 + 𝑚)
A similar procedure is followed to detect LB collisions involving forward-moving extrusion
barriers. In this case extrusion units are processed in 3’-5’ order.

d. Detecting primary LEF-LEF (LL1) collisions
The algorithm for LL1 collision detection for reverse-moving units operates on the following
data:

173

● and - Vector of reverse and forward-moving extrusion units respectively. Both𝐸𝑅 𝐸𝐹
vectors store units in an unspecified order.

● and - Index vectors for units from and respectively.𝐼𝑅 𝐼𝐹 𝐸𝑅 𝐸𝐹
● and - Vector of candidate moves for and respectively.𝑀𝑅 𝑀𝐹 𝐸𝑅 𝐸𝐹
● - Vector of extrusion barriers sorted in 5’-3’ direction.𝐵
● and - Collision masks for and respectively.𝐶𝑅 𝐶𝐹 𝐸𝑅 𝐸𝐹

All of the above vectors except have size , where corresponds to the number of LEFs𝐵 𝑛 𝑛
that are being simulated in the current simulation instance. is instead of size , where is𝐵 𝑚 𝑚
equal to the number of extrusion barriers mapping on the chromosome that is being
simulated.
Let us also consider indices and , which will be used to traverse extrusion units in 5’-3’𝑖 𝑗
order using and respectively.𝐼𝑅 𝐼𝐹
First, and are initialized such that and .𝑖 𝑗 𝑖 = 𝐼𝐹0 𝑗 = 𝐼𝑅0
Next, we enter a loop that will continue until the end of or is reached. In the loop, the𝐸𝑅 𝐸𝐹
following steps are performed:

1. Advance index until points to the first extrusion unit that is located downstream𝑗 𝑗 𝐸𝑅𝑗
of .𝐸𝐹𝑖

2. Advance index until points to the last extrusion unit that is located upstream of𝑖 𝑖 𝐸𝐹𝑖
.𝐸𝑅𝑗

3. Compute distance between units and using .𝑑𝐸𝑅𝑗𝐸𝐹𝑖 𝐸𝑅𝑗 𝐸𝐹𝑖 𝑑𝐸𝑅𝑗𝐸𝐹𝑖 = 𝐸𝑅𝑗 − 𝐸𝐹𝑖
4. Compare distance with the sum of candidate moves and .𝑑𝐸𝑅𝑗𝐸𝐹𝑖 𝑀𝑅𝑗 𝑀𝐹𝑖
5. If , then a LL1 collision between and during the current𝑀𝑅𝑗 + 𝑀𝐹𝑖 < 𝑑𝐸𝑅𝑗𝐸𝐹𝑖 𝐸𝑅𝑗 𝐸𝐹𝑖

epoch is not possible. Continue from step 1.
6. If , then a LL1 collision between and may take place𝑀𝑅𝑗 + 𝑀𝐹𝑖 ≥ 𝑑𝐸𝑅𝑗𝐸𝐹𝑖 𝐸𝑅𝑗 𝐸𝐹𝑖

during the current epoch. This depends on the outcome of a Bernoulli trial with
probability of success , where is the probability of LEF bypass𝑝𝑆 = 1 − 𝑝𝑏𝐿𝐸𝐹 𝑝𝑏𝐿𝐸𝐹
(with default settings). If the Bernoulli trial has a negative outcome, then𝑝𝑏𝐿𝐸𝐹 = 0. 1
the LL1 collision was avoided. Register collision avoidance in the appropriate
collision mask and continue from step 1.

7. The next depends on the current state of units and , more specifically on𝐸𝑅𝑗 𝐸𝐹𝑖
whether they can be moved, (i.e. whether one or both of them are already involved in
a LB or LL1 collision).

a. If both units are free to move, register a LL1 collision in the collision masks for
entries and using and for the index part of the encoded collision𝐶𝑅𝑗 𝐶𝐹𝑖 𝑖 𝑗
respectively (i.e. record that is colliding with and vice versa). Finally,𝐶𝑅𝑗 𝐶𝐹𝑖
jump to step 1.

b. If only one of the colliding extrusion units can be moved (i.e. one of the
extrusion units is already involved in another collision), then only register a
LL1 collision for the extrusion unit that is free to move.
In reality this step is more complicated than this, because we need to handle

174

an edge case where a LB collision needs to be converted to a LL1 collision.
This can happen when and are located on opposite sides of an𝐸𝑅𝑗 𝐸𝐹𝑖
extrusion barrier , and one of them is being stalled by the extrusion barrier .𝑏 𝑏
Depending on the effective extrusion speed of the two units, the LL1 collision
may occur before the LB does. If this is the case, then the LB collision should
be replaced with an LL1 collision.

Notice how also in this case, and are never decremented, meaning that extrusion units𝑖 𝑗
are visited at most once, leading to a worst-case performance of .𝑂(𝑛)

e. Correcting moves for units involved in LB collisions
Correcting moves to satisfy the constraints introduced by LB collisions is fairly trivial. All we
have to do is to loop over the collision masks for reverse and forward moving extrusion units,

and respectively, and look for entries where the appropriate bits are set, namely the𝑀𝑅 𝑀𝐹
CO and LB bits (see Section 7), and adjust the corresponding candidate move.
Let us consider the case where we are adjusting moves for extrusion units moving towards
the 5’-end. In this step we operate on the following data:

● - Vector of extrusion units. Units are stored in an unspecified order.𝐸
● - Vector of candidate moves.𝑀
● - Vector of extrusion barriers sorted in 5’-3’ direction.𝐵
● - Collision mask.𝐶

Let us stipulate that entry in the collision mask for has the following value (see𝐶𝑖 𝐶 𝑖 = 5
Section 7 for more details on the collision encoding scheme):

CO CB LB LL1 LL2 Index ()𝑗
bit idx 63 62 61 60 59 58-0

bit value 1 0 1 0 0 15 (decimal)

This entry encodes a LB collision between the reverse unit and extrusion barrier .𝐸𝑖 𝐵𝑗
With this information, we can now look up the positions for and , and compute the𝐸𝑖 𝐵𝑗
corrected move as . Advancing unit by will thus cause to be𝑀𝑖* 𝑀𝑖* = 𝐸𝑖 − 𝐵𝑗 − 1 𝐸𝑖 𝑀𝑖* 𝐸𝑖
located 1 bp upstream of barrier .𝐵𝑗
The same process is repeated for the remaining reverse-moving extrusion units as well as
for the forward-moving extrusion units.

f. Correcting moves for units involved in LL1 collisions
The procedure to correct moves for extrusion units involved in LL1 collisions is similar to the
one described in Section 12e, with two important differences. The first difference is that we
are now interested in collision mask entries where both the CO and LL1 bits are set. Second,
computing the corrected moves for a pair of colliding extrusion units is a bit more involved.

175

Let us consider two extrusion units and that are involved in the same LL1 collision𝑒𝑅 𝑒𝐹
event. Unit is located at position and is moving towards the 5’-end, while unit𝑒𝑅 𝑝𝑅 = 500 𝑏𝑝

is located at position and is moving towards the 3’-end. Let us also stipulate𝑒𝐹 𝑝𝐹 = 150 𝑏𝑝
that the candidate moves for and are p and respectively.𝑒𝑅 𝑒𝐹 𝑚𝑅 = 250 𝑏𝑝 𝑚𝐹 = 200 𝑏𝑝
The position of collision is then calculated with , and the corrected𝑝𝐶 = 𝑝𝐹 + 𝑚𝐹 𝑚𝑅−𝑚𝐹𝑚𝑅+𝑚𝐹()
moves and are computed as:𝑚𝑅* 𝑚𝐹*

g. Processing secondary LEF-LEF (LL2) collisions
In contrast to previous collision detection steps, candidate moves of extrusion units involved
in LL2 collisions are corrected immediately after they are detected.
First we process LL2 collisions for reverse-moving extrusion units, and later those involving
forward-moving units.
Unless otherwise specified, data and operations outlined in this section are assumed to refer
to extrusion units moving in reverse direction.
This step operates on the following data:

● - Vector of extrusion units. Units are stored in an unspecified order.𝐸
● - Index vector.𝐼
● - Vector of candidate moves.𝑀
● - Collision mask.𝐶

In brief, to detect LL2 collisions we loop over consecutive extrusion units in 5’-3’ order, and
we detect instances where the downstream unit is set to bypass the upstream unit. Given
how candidate moves are generated (see Section 10), this can only occur if the upstream
unit is being stalled.
Let us consider indices , and , which will be used to index extrusion𝑖 = 1 𝑗 = 𝐼𝑖−1 𝑘 = 𝐼𝑖
units and . Let us also consider the candidate moves and entries in the collision mask𝐸𝑗 𝐸𝑘
for and , , and , respectively.𝐸𝑗 𝐸𝑘 𝑀𝑗 𝑀𝑘 𝐶𝑗 𝐶𝑘
Next, we enter a loop that continues until , where is the number of LEFs in the𝑖 = 𝑛 𝑛
current simulation instance.
Each loop iteration, the following steps are performed:

1. Keep advancing until index points to a stalled extrusion unit and points to an𝑖 𝑗 𝑘
extrusion unit that is free to move.

2. Compute the position after extrusion for units and : and𝐸𝑗 𝐸𝑘 𝑝𝑗* = 𝑝𝑗 − 𝑀𝑗
, where and are the current positions of and .𝑝𝑘* = 𝑝𝑘 − 𝑀𝑘 𝑝𝑗 𝑝𝑘 𝐸𝑗 𝐸𝑘

176

3. If , then a LL2 collision is not possible. Continue from step 1.𝑝𝑗* < 𝑝𝑘*
4. , then we a LL2 collision between and may occur during the current𝑝𝑗* ≥ 𝑝𝑘* 𝐸𝑗 𝐸𝑘

epoch. Whether or not this is the case, is determined based on the outcome of a
Bernoulli trial with probability of success , where is the𝑝𝑆 = 1 − 𝑝𝑏𝐿𝐸𝐹 𝑝𝑏𝐿𝐸𝐹
probability of LEF bypass (with default settings). If the Bernoulli trial has𝑝𝑏𝐿𝐸𝐹 = 0. 1
a negative outcome, then the LL1 collision was avoided. Record collision avoidance
in the collision mask and continue from step 1.

5. If the Bernoulli trial from step 4 is successful, then register a LL2 collision with in𝐸𝑗
entry in the collision mask .𝐶𝑘 𝐶

6. Lastly, compute the corrected move with .𝑀𝑘* 𝑀𝑘* = 𝑝𝑘 − 𝑝𝑗* − 1
A similar procedure is used to detect LL2 collisions for forward-moving extrusion units.

After all LL2 collisions have been processed, we do a final pass over units involved in LL2
collisions to handle an edge-case not handled in the previous step.
Let us consider two consecutive extrusion units moving in forward direction, and ,𝑒𝑓1 𝑒𝑓2
with located upstream of . is stalled due to a LB collision with extrusion barrier .𝑒𝑓1 𝑒𝑓2 𝑒𝑓2 𝑏
Let us also stipulate that the position of after move is greater than that of unit after𝑒𝑓1 𝑒𝑓2
move, as well as that of barrier : and . In this scenario, a LL2𝑏 𝑝𝑒𝑓1

* > 𝑝𝑒𝑓2
* 𝑝𝑒𝑓1

* > 𝑝𝑏
collision may have occurred. However, if the LL2 collision was avoided, meaning that the
candidate move for has not been corrected, then extruding would cause this unit to𝑒𝑓1 𝑒𝑓1
jump past barrier (and any other obstacle between and for that matter).𝑏 𝑝𝑒𝑓1 𝑝𝑒𝑓1

*
The final pass through units involved in LL2 collisions detect instances like the scenario
outlined above, and corrects the move for such that after extrusion, will be located 1𝑒𝑓1 𝑒𝑓1
bp downstream of .𝑒𝑓2

177

MoDLE: High-performance stochastic
modeling of DNA loop extrusion
interactions

Supplementary figures

Fig. S1: Side-by-side comparison of Hi-C and Micro-C data (top two panels), MoDLE output with

179

and without subsampling (third and fourth panels respectively) and OpenMM output (bottom panels
for all selected 10Mbp simulation regions on chromosomes 2, 3, 5, 7 and 17).

Fig. S2: Density plot showing frequency (blue = low; red = high) of pixel values in MoDLE
(horizontal axis; log10-transformed) vs. OpenMM (vertical axis; log10-transformed).
Pearson correlation coefficient is ρ=0.93.

180

Fig. S3: Diagonal-by-diagonal correlation plots. Each panel shows the Pearson correlation
of MoDLE vs. OpenMM (blue), OpenMM vs. Micro-C (yellow), and MoDLE vs. Micro-C
(green) for all selected 10Mbp simulation regions on chromosomes 2, 3, 5, 7 and 17). The
correlation is shown for all contact map sub-diagonals from the diagonal to 2Mbp from the diagonal
(horizontal axes).

181

Fig. S4: Relationship between distance from diagonal (Mbp) and contact frequencies (log
of contact sum) for hESC Hi-C data (blue), hESC Micro-C data (yellow), MoDLE using low
processivity (150 kbp; green), MoDLE using default processivity (300 kbp; red), and
MoDLE using high processivity (600 kbp; purple).

182

Fig. S5: Comparison of mean and distribution of dissimilarity scores of MoDLE and
OpenMM simulations using H1 hESC Micro-C as reference.
Panel A and B contrast score distribution for MoDLE and OpenMM simulated matrices in
A and B compartments respectively.
Panel C and D contrast score distribution of A and B compartments for OpenMM and
MoDLE simulated matrices respectively.
Panel E shows the score distribution for OpenMM and MoDLE simulated matrices,
regardless of compartment.
Panel F shows the average score for OpenMM and MoDLE simulations in A and B
compartments.
Scores are computed as described in Methods (part 6). Before intersecting scores with
compartment information, scores are filtered by taking the intersection of the score
themselves, the architectural stripes on the reference matrix (stripes annotated with
Stripenn) and the genomic regions simulated with OpenMM (chr2:200-210Mbp,
chr3:30-40Mbp, chr5:80-90Mbp, chr7:10-20Mbp and chr17:65-75Mbp).

183

Fig. S6: Simulated heat maps showing the effect of increasing LEF density (ρLEF).
Higher LEF densities cause contacts to distribute closer to the diagonal. This is due to an
increased probability of LEF-LEF collisions. Furthermore, at very high ρLEF (panel C),
stripes and dots appear less defined. This can once again be explained by an increased
rate of LEF-LEF collisions, which are stochastic in nature, and do not necessarily occur at
or near extrusion barriers.

Legend:
ρLEF: LEF density expressed as the number of LEFs per Mbp of simulated DNA
λLEF: Average LEF processivity
PA: Probability of LEF-LEF collision avoidance

↓: Parameter is smaller than the default value
↑: Parameter is larger than the default value

Fig. S7: Simulated heat maps showing the interplay between LEF density (ρLEF) and
probability of LEF-LEF collision avoidance (PA).
This scenario further expands what is shown in Fig. S4, and shows how increasing PA can
partially counteract very high LEF densities.

184

Legend:
ρLEF: LEF density expressed as the number of LEFs per Mbp of simulated DNA
λLEF: Average LEF processivity
PA: Probability of LEF-LEF collision avoidance

↓: Parameter is smaller than the default value
↑: Parameter is larger than the default value

Fig. S8: Simulated heat maps showing the effect of (dis)allowing LEF-LEF collision
avoidance at increasing levels of LEF processivity (λLEF).
Increasing λLEF has virtually no effect when the rate of LEF-LEF collisions is high and
collisions are deterministic (i.e. LEF-LEF collisions cannot be avoided). Allowing LEFs to
bypass one another with a relatively low probability is sufficient to observe progressively
longer loops produced by increasingly higher λLEF.

Legend:
ρLEF: LEF density expressed as the number of LEFs per Mbp of simulated DNA
λLEF: Average LEF processivity
PA: Probability of LEF-LEF collision avoidance

↓: Parameter is smaller than the default value
↑: Parameter is larger than the default value

185

Fig. S9: Simulated heat maps showing the consequences of simulating with very low LEF
densities (ρLEF).
When simulating with very low ρLEF, the probability of two or more LEFs extruding the
same region at the same time is approximately 0. Thus, increasing PA has no effect in
practice.
This scenario also highlights one of the consequences of MoDLE simulations not
accounting for polymer physics. Very low ρLEF would likely result in no appreciable contact
enrichment due to loop extrusion in vivo or in MD polymer simulations, as once a loop has
been extruded, there is plenty of time for the chromatin polymer to relax before the
another LEF extrudes through the same region. This is not the case in MoDLE, as loops
cease to exist as soon as LEFs are released.

Legend:
ρLEF: LEF density expressed as the number of LEFs per Mbp of simulated DNA
λLEF: Average LEF processivity
PA: Probability of LEF-LEF collision avoidance

↓: Parameter is smaller than the default value
↑: Parameter is larger than the default value

186

Fig. S10: Simulated heat maps showing the effect of different LEF processivities (λLEF)
when LEF density (ρLEF) and probability of LEF-LEF collision avoidance (PA) are left at
default.
With realistic LEF concentrations, altering λLEF has the expected effect: higher
processivities lead to loops, which result in longer stripes and stronger dots even at
relatively high distances from the diagonal.

Legend:
ρLEF: LEF density expressed as the number of LEFs per Mbp of simulated DNA
λLEF: Average LEF processivity
PA: Probability of LEF-LEF collision avoidance

↓: Parameter is smaller than the default value
↑: Parameter is larger than the default value

187

Fig. S11: Side-by-side comparison of H1-hESC Micro-C data (top panel) and matrices
simulated by MoDLE. Panels B-N show a selection of the parameter combinations
explored by the Gaussian optimization described in Methods (part 9).
On the right, each panel is labelled with its corresponding score , occupancy and𝑠 π𝐵
self-transition probability of the unbound state .𝑃𝑈𝑈

188

Panels are sorted by score in descending order (lower scores are better).
Upwards and downwards arrows next to parameter values indicate whether a value is
higher or lower than the default parameter.

Fig. S12: Plot of the penalty function used in the GA optimization of extrusion barrier
parameters.

189

MoDLE: High-performance stochastic
modeling of DNA loop extrusion
interactions

Supplementary tables

Table S1: Parameter table for MoDLE simulations used to generate Fig. 2.

Figure Bin size
(bp)

Extrusio
n barrier
occupan
cy

Target
contact
density

of
LEFs
per Mbp

Diagona
l width
(Mbp)

Avg.
LEF
processi
vity
(kbp)

Contact
samplin
g
strategy

2A 5000
(default)

Variable 20.0 20
(default)

3
(default)

300
(default)

Loop
only with
noise

2B 5000
(default)

Variable 20.0 20
(default)

3
(default)

300
(default)

TAD only
with
noise

2C, 2D,
2F (WT)

5000
(default)

Variable 20.0 20
(default)

3
(default)

300
(default)

TAD plus
loop with
noise
(default)

2F
ΔCTCF

5000
(default)

0.2 20.0 20
(default)

3
(default)

300
(default)

TAD plus
loop with
noise
(default)

2F
ΔWAPL

5000
(default)

Variable 10.0 20
(default)

6 3000 TAD plus
loop with
noise
(default)

Table S2: List of MoDLE software dependencies.

Name Project URL Version License

Abseil C++ abseil.io 20211102 LTS Apache 2.0

bitflags github.com/m-peko/
bitflags

1.5.0 MIT

Boost C++ boost.org 1.79.0 BSL 1.0

bzip2 sourceware.org/bzip 1.0.8 BSD-like

191

2

Catch2 github.com/catchorg
/Catch2

3.1.0 BSL 1.0

CLI11 github.com/CLIUtils/
CLI11

2.2.0 BSD 3

cmake-git-version-tr
acking

github.com/andrew-
hardin/cmake-git-ver
sion-tracking

N/A MIT

concurrentqueue github.com/cameron
314/concurrentqueu
e

1.0.3 Simplified BSD

cpp-sort github.com/Morwen
n/cpp-sort

1.13.0 MIT

fast_float github.com/fastfloat/f
ast_float

3.5.1 MIT

fmt github.com/fmtlib/fmt 9.0.0 MIT

HDF5 [90] hdfgroup.org 1.12.2 BSD 3

libarchive libarchive.org 3.6.1 BSD 2

libBigWig github.com/dpryan7
9/libBigWig

0.4.7 MIT

libcuckoo [91,92] github.com/efficient/l
ibcuckoo

0.3.1 Apache 2.0

LZ4 lz4.org 1.9.3 BSD 2

LZO oberhumer.com/ope
nsource/lzo

2.1.0 GPL 2.0

range-v3 github.com/ericniebl
er/range-v3

0.12.0 BSL 1.0

readerwriterqueue github.com/cameron
314/readerwriterque
ue

1.0.6 Simplified BSD

spdlog github.com/gabime/s
pdlog

1.9.2 MIT

bshoshany-thread-p
ool [93]

github.com/bshosha
ny/thread-pool

3.3.0 MIT

TOML++ marzer.github.io/tom
lplusplus

3.1.0 MIT

Xoshiro-cpp github.com/Reputele 1.1 MIT

192

ss/Xoshiro-cpp

xxHash xxhash.com 0.8.1 BSD 2

XZ Utils tukaani.org/xz 5.2.5 GPL 3.0

zlib zlib.net 1.2.11 Zlib

zstd github.com/facebook
/zstd

1.5.2 BSD 3

193

Paper II

hictk: blazing fast toolkit to work
with .hic and .cool files

Roberto Rossini, Jonas Paulsen

Submitted for publication.

DOI: doi.org/10.1101/2023.11.26.568707

II

195

Paper III

Multi-level 3D genome organization
deteriorates during breast cancer
progression

Roberto Rossini, Mohammadsaleh Oshaghi, Maxim Nekrasov,
Aurélie Bellanger, Renae Domaschenz, Yasmin Dijkwel, Mo-
hamed Abdelhalim, Philippe Collas, David Tremethick, Jonas
Paulsen

Submitted for publication.

DOI: doi.org/10.1101/2023.11.26.568711

III

223

Appendices

Appendix A

A slightly longer history of MoDLE

The current version of MoDLE (MoDLE v1.1.0) is a relatively large and complex
C++17 project, counting close to 30 thousand lines of code. However, MoDLE
started out as a much simpler project, counting less than 10 thousand lines of
code.

In the initial version of MoDLE, v0.1.0 (09/03/2021), the genome was
represented as a collection of chromosomes, where each chromosome consisted of
a sequence of bins, each representing a fixed amount of DNA. Each bin could
be bound by one or more extrusion barriers and LEFs. Informations regarding
which molecules were bound to DNA was stored in the bin object itself. LEFs
were modeled as a pair of extrusion units, where each extrusion unit knew its
sibling unit, the bin to which it was currently bound and whether the unit was
stalled by an extrusion barrier or another extrusion unit. Extruding DNA thus
amounted to looping over each LEF, generating a candidate move and trying
to move LEFs by that distance. If performing the proposed move resulted in a
collision, the extrusion unit was assigned a number of iterations during which
the extrusion unit was not allowed to move (i.e., it was stalled). This number
was sampled from a geometric distribution P (i|p) = p · (1 − p)i with p equal to
the probability of collision avoidance. Upon binding, each LEF was assigned
a lifetime, that is a number of iteration the current LEF-DNA binding was
supposed to last. LEF lifetime could be increased in case of LEFs stalled by a
pair of convergent extrusion barriers. This was done to simulate the increased
DNA-binding stability observed when cohesin is stalled by a pair of convergent
CTCF sites.

This design was simple to understand and implement, however it was affected
by several issues. First, performance was acceptable but not excellent, with most
of the CPU time spent re-assigning extrusion units to different bins. Memory
usage was also fairly large, and depended on the resolution at which loop extrusion
was being simulated. This seemed incredibly wasteful, as on average only one
every 20 bins was bound by a LEF, meaning that at any given time, most of
the memory used to store genomic bins was used to represent genomic regions
where nothing was happening as far as loop extrusion is concerned. Another
issue was that the level of parallelism achievable with this implementation was
limited by the number of chromosomes in a genome, as parallelizing past this
level would require very fine locking and tight synchronization, likely resulting
in a complex and only marginally faster implementation. Besides performance
issues, the model logic was also affected by several issues. To explain one of
the more severe issues, let us consider the following scenario. It is epoch 0. An
extrusion unit EU1 with lifetime 100 collides with extrusion barrier B0 and is
stalled for the next 10 iterations. Fast forwarding 10 iterations, EU1 is now free

297

A. A slightly longer history of MoDLE

to move past B0, meaning that during epoch 10, barrier B0 is non-blocking (i.e.,
is not bound by CTCF). In the same epoch, another extrusion unit EU2 collides
with barrier B0 and is stalled for the next 7 epochs. The fact that an extrusion
barrier can appear as occupied and unoccupied in the same epoch to different
extrusion units brought the model to an inconsistent state.

Despite the outlined issues, MoDLE v0.1.0 was already capable of generating
heatmaps that looked realistic and were able to recapitulate important features
of Hi-C data, such as stripes and dots (see Figure 4.1). Not being happy with
the computational performance of our model, we went back to the drawing board
to develop MoDLE v0.2.0.

The differences between MoDLE v0.1.0 and v0.2.0 (21/03/2021) are several.
First, we re-designed the in-memory representation of chromosomes. Second,
we developed a new set of algorithms to process collision events. Third, we
reworked the way simulation load was spread across multiple CPU cores. In
MoDLE v0.2.0, chromosomes consisted of a chromosome name, length and a
list of extrusion barriers, making memory usage proportional to the number of
extrusion barriers instead that to the number of bins. This meant we could no
longer depend on bin objects to keep track of extrusion unit positions, nor to
detect collisions between LEFs and extrusion barriers. Instead, we developed a
set of algorithms to detect collisions in linear time-complexity given two lists of
genomic entities (i.e., extrusion barriers or units) sorted by genomic coordinates.
The idea behind these algorithms is simple, and is based on the same idea of the
merge step of the merge-sort algorithm.

Let us consider the following example. Given a sorted list of extrusion
barriers

−→
B and a sorted list of extrusion units moving in forward direction

−−→
EU ,

we assume that forward-moving extrusion units can be blocked only by extrusion
barriers blocking in reverse direction. Next, we initialize two pointers Bi and
EUi pointing to the beginning of

−→
B and

−−→
EU , respectively. Because we know

that all units in
−−→
EU are moving in forward direction, we know that no collisions

can occur between barriers located upstream of EU0 and EU0, so we advance
pointer Bi until the pointer points to the first barrier located downstream of
EU0. Next, we generate a candidate move mi for EUi, and we try to advance
EUi by mi bp. If the Bi is located downstream of position pEUi

+ mi, then the
move is, for the time being, legal, as it doesn’t cause any collision with extrusion
barriers. However, if pBi

< pEUi
+ mi, then there is a possibility that extrusion

barrier Bi will stall EUi for k epochs, where k is a number sampled from a
geometric distribution similarly to what was done in MoDLE v0.1.0. The number
of epochs the extrusion unit EUi will be stalled by barrier Bi is stored inside EUi

similarly to what was done in MoDLE v0.1.0. Once EUi has been processed, we
move onto EUi+1, find the first barrier located downstream of EUi+1 and detect
and process collision events as outlined above. A similar procedure is followed
to detect collisions between extrusion barriers and extrusion units moving in
reverse direction as well as collisions between extrusion units themselves. This
means that detecting and processing collisions is now an operation with linear
time-complexity, and that the most expensive operation is keeping extrusion

298

units indexed (i.e., sorted by genomic coordinates).
The best general-purpose sorting algorithms have a time complexity of

O(n log n). However, we reasoned that after the first indexing, extrusion units
will for the most part already sorted, as ordering can be broken only by LEF
rebinding and bypass events between consecutive extrusion units moving in the
same direction. Thus, we looked for sorting algorithm that could take advantage
of the high level of pre-sortedness of our data, and found a family of sorting
algorithms named Inv-adaptive algorithms that were designed exactly for this
type of applications. Given a collection of sortable objects, such as a list of
integral numbers, the amount of work performed by Inv-adaptive algorithms is
proportional to the number of inversions in the collection to be sorted. After
benchmarking available Inv-adaptive sorting algorithms against general-purpose
algorithms such as mergesort and quicksort, we decided to use drop-mergesort
to sort extrusion units at the beginning of every simulation epoch.

Another important change introduced with MoDLE v0.2.0 is the notion of
simulation instances. Instead of instantiating one simulation instance for each
chromosome, MoDLE v0.2.0 instantiates multiple instances per chromosome,
thus enabling efficient scaling and load-balancing when running simulations
on multicore machines. This required developing a class implementing an in-
memory, thread-safe interaction matrix such that multiple simulation instances
simulating the same chromosomes could use a single interaction matrix instance
to track simulated interactions. This means that the result of multiple, possibly
concurrent, simulation instances, is aggregated into a single interaction matrix
to achieve a result similar to that of bulk Hi-C, where interactions from multiple
nuclei are combined into a single dataset.

While MoDLE v0.2.0 was significantly faster than v0.1.0 (took 4 minutes 6
seconds to simulate loop extrusion on hg38 using 256 CPU cores versus over 8
hours in v0.1.0), the model was still susceptible to falling in an inconsistent state
due to the way collisions were handled.

It was in MoDLE v0.3.0 (14/06/2021), that the logic bug affecting previous
versions was finally fixed. Addressing this bug required a significant rework of
how extrusion barriers were modeled and how collisions were handled.

In previous versions, extrusion barriers were modeled as objects with a
genomic position, direction and a probability of blocking (i.e., a probability of
being bound by CTCF). When an extrusion unit collided with an extrusion
barrier, the barrier used to sample a number from the geometric distribution,
which corresponded to the number of iterations the extrusion unit will be stalled.
Starting with MoDLE v0.3.0, extrusion barriers are modeled as a two-state
(bound and unbound) Markov process. In this way, at any given time, an
extrusion barrier is either bound by CTCF (i.e., blocking) it is not. Another
change introduced by v0.3.0 was the removal of the concept of LEF lifetime.
Instead of, upon LEF binding, computing the epoch in which a given LEF will be
released, each LEF is now characterized by a probability of being released, which
depends on the average LEF processivity. This probability is decreased when
LEFs are stalled by a pair of convergent extrusion barriers. At the end of every
epoch, k LEFs are selected for release by weighted random-sampling without

299

A. A slightly longer history of MoDLE

replacement, where k is a random number sampled from a Poisson distribution
P (i|µ) µi

i!
e−u, i ≥ 0 with µ equal to the average number of LEFs to be released

every epoch.

Given the introduction of the above changes, LEF-barrier and LEF-LEF
collsions are now checked every iteration and stalls last a single epoch. We
define three types of collisions: (1) LEF-barrier collisions; (2) primary LEF-LEF
collisions; (3) secondary LEF-LEF collisions. Primary LEF-LEF collisions are
collisions taking place between extrusion units moving in opposite directions,
while secondary LEF-LEF collisions take place between extrusion units moving
in the same direction. The latter type of collisions are called secondary because
they are direct consequence of other of collision events.

Distinghushing between different kinds of collisions allowed us to refactor
MoDLE collision handling into a detection and processing phase, which enabled
us to properly handle complex collision events. First, we stipulate that LEF-
barrier collisions have precedence over all other types of collisions and that
primary LEF-LEF collisions have precedence over secondary LEF-LEF collisions.
Next, we proceed to detect LEF-barrier and primary LEF-LEF collisions. The
order in which collisions are detected is important, as when detecting LEF-barrier
collisions, it is possible that some LEF-LEF collisions will be incorrectly labeled
a LEF-barrier collisions.

Let us consider the following scenario. In a simulation instance, extrusion
barrier Bi is located at position 100 and is oriented such that it blocks extrusion
units moving in forward direction. In the same simulation instance there are
two extrusion units EUi and EUj belonging to two different LEFs and moving
in forward and reverse direction, respectively. Furthermore, both units are free
to move and are located at position 50 and 101, respectively. EUi is assigned
a candidate move of 51 bp, while EUj is set to move 100 bp. Given that we
first detect collisions between LEFs and extrusion barriers, we may conclude
that EUi collides with barrier Bi, thus ending up at position 99, and then EUj

collides with unit EUi, thus ending up at position 100. However, this would
be incorrect, as assuming extrusion units are moving at uniform speeds, EUj

will cross barrier Bi before EUi is able to reach it, and a primary LEF-LEF
collision will occur at position 67 bp, which is computed as the collision point
between two bodies moving towards each other at uniform speeds. Thus, after
detecting LEF-barrier collisions and before correcting candidate moves, MoDLE
detects primary LEF-LEF collisions, such that scenarios like the one outlined
above are correctly handled. Collision events are stored in a vector using one
integral number to encode each collision. Integers can then be decoded to get the
collision type and the index of the entities involved in the collision event. After
detecting LEF-barrier and primary LEF-LEF collisions, candidate moves are
corrected to not violate the constraints imposed by collisions. Finally, secondary
LEF-LEF collisions are detected and processed one by one.

Besides changes outlined above, this release also involved improvements to
MoDLE’s test suite, improvements to the CLI interface and various other small
changes to MoDLE’s algorithm. Most of the changes to the simulation algorithm

300

were aimed at making MoDLE’s output reproducible across different platforms
as well as reworking the implementation of several stochastic processes, such
as how candidate moves are generated. Performance of MoDLE v0.3.0 was in
line with that of MoDLE v0.2.0, taking 4 minutes 49 seconds to simulate loop
extrusion on hg38.

The simulation algorithm of MoDLE v0.3.0 was also implemented using
CUDA. However, this implementation did not yield the expected performance
improvements, and so the GPU implementation was abandoned in favor of the
CPU one.

MoDLE v0.4.0 (09/07/2021) introduced a new mode of running MoDLE
that was removed in later version. This new mode was named “perturbate”
and allowed to run MoDLE on a subset of the genome, perturbating extrusion
barriers to test the effects of the removal/addition of extrusion barriers on the
resulting heatmap. For the sake of brevity, I will not discuss MoDLE perturbate
further, as this mode was never part of a stable release of MoDLE.

MoDLE v0.4.1 (14/09/2021) introduced a new subcommand, MoDLE replay,
that could be used to replay simulations generated by MoDLE perturbate.
Similarly to MoDLE perturbate, I will not discuss this subcommand further,
as its implementation was removed before the first stable release of MoDLE.
Besides MoDLE replay, v0.4.1 introduced several change to make simulations
behave as expected even when using unconventional simulation parameters (e.g.,
very low LEF density or very large extrusion speeds). This release also involved
several minor performance optimizations and bugfixes.

After v0.4.1, we released 7 release candidates of MoDLE v1.0.0 where we
fixed many bugs, added several features, and further improved performance.
However, the core of MoDLE’s simulation algorithm remained for the most part
unchanged.

MoDLE v1.0.0-rc.7 (15/08/2022) is the version described in Paper I. From
an algorithmic perspective, the main difference between MoDLE v0.4.1 and
v1.0.0-rc.7 is how molecular interactions are sampled and collected.

The latest version of MoDLE is v1.1.0. This version includes several
improvements to modle_tools, MoDLE’s suite of helper tools, bugfixes,
improvements to the CLI, and minor performance improvements. MoDLE
v1.1.0 also supports writing LEF occupancy as 1D vector in bigWig format.
Simulating loop extrusion on hg38 using 256 CPU cores with MoDLE v1.1.0
takes 2 minutes 59 seconds.

301

Appendix B

Improving existing file formats
used to store Hi-C interactions

Both the .hic and cooler file formats (reviewed in Chapter 3) are valid
format specifications, with implementations that can achieve good to excellent
performance when reading and writing .hic and .cool files [60, 220]. However,
after having implemented the hictk library to read both formats and write cooler
files, I have developed some opinions on how each format could be improved.

.hic

The .hic format specification mandates that blocks of interactions should be
compressed individually with zlib [258]. Zlib is a widely popular implementation
of the DEFLATE compression algorithm that was developed in 1995 and has
since been used to compress all kinds of data, including genomic data, image
data, and web traffic. However, there are many alternatives to zlib, some
trading compression ratio for (de)compression speeds and vice versa [259, 260].
Zstandard, also known as zstd was developed in 2016 by Facebook with the
aim of achieving compression ratios similar to DEFLATE while providing much
greater (de)compression speed. For this reason, in recent years, zstd replaced
zlib in many applications, such as various parts of the Linux kernel and several
components of web services hosted by Facebook and other big-tech companies.
I believe zstd is particularly suitable for compressing interaction blocks in .hic
files for the following reasons:

• zstd offers excellent compression and decompression speeds (540 MB/s and
1700 MB/s on the Silesia corpus, where zlib achieves throughputs of 95
MB/s and 400 MB/s).

• zstd offers 22 compression levels instead of the 9 levels offered by zlib.
This could help finding a better compromise between compression and
decompression speed.

• zstd can make use of a compression dictionary to greatly improve
compression and decompression speeds as well as compression ratio when
compressing small amounts of data. This could be leveraged by .hic by
embedding the compression dictionary e.g., in the header section of the .hic
file, and using smaller block sizes without compromising on compression
ratio and (de)compression speed. Providing a good training set for zstd
should be fairly simple, given that interaction blocks consist of triplets of
numeric data with similar properties (e.g., positive, relatively small integer
numbers).

303

B. Improving existing file formats used to store Hi-C interactions

The .hic format specification defines an efficient indexing scheme for blocks
of interactions but does not specify how interactions should be stored inside
individual blocks. In practice, JuicerTools and HiCTools, the only two software
currently capable of creating .hic files, simply store interactions sorted by their
genomic coordinates. I believe that there is a missed opportunity to also index
interactions within blocks. My suggestion would be to sort interactions by
genomic coordinates (like is already done in practice), and then to index each
row using an index stored at the end of each block. Each block would then start
with an offset to the beginning of the block index. This offset is then followed
by all genomic interactions sorted by their genomic coordinates, without storing
the interaction row (see below). Finally, the index consists of a list of pairs of
numbers, where the first number represents the row coordinates and the second
number represents the offset in the interaction block with the first interaction
overlapping the current row. Empty rows are not listed in the index. Using this
index, applications can quickly determine whether a block contains interactions
overlapping a query by parsing the index and by occasionally checking the first
interaction in a row stored in the interaction block. If blocks are compressed using
zstd or any other compression algorithm supporting compression dictionaries,
index and interactions could be compressed separately, such that most negative
hits can be identified without decompressing interactions.

Finally, as already mentioned in Section 3.5, the .hic specification does not
specify the endianness that should be used when writing serialized data. I propose
that the specification should be updated to state that serialized data should be
written using little-endianness, as this is the native bit-ordering employed by
most modern desktop and server CPU architectures.

Cooler

Before hictk was released to the public, one of the advantages of cooler was the
ability to efficiently traverse genome-wide interactions sorted by their genomic
coordinates. While developing hictk, I implemented the functionality required
to traverse two or more chromosome-chromosome matrices as if they were one
large matrix, returning pixels sorted by their genomic coordinates. Careful
implementation of this functionality enabled hictk to achieve a low overhead
in terms of CPU time and memory usage. This means that any application
using hictk or hictkpy to read .hic and cooler files gets this functionality for
free. Given the above, there are fewer reasons left for cooler to continue
storing interactions using a single matrix. Splitting interactions across multiple
chromosome-chromosome matrices would have the following benefits:

• Improved performance of trans queries, as by using cooler’s current indexing
strategy with chromosome-chromosome matrices, it would be trivial to
know the first row in the chromosome-chromosome matrix overlapping
queries. With the current implementation, it is only possible to know the
first row in the genome-wide matrix overlapping a query, and extra work

304

(such as a binary search) must be carried out to figure out the index of the
first pixel overlapping the queried chromosome-chromosome matrix.

• Splitting the current genome-wide index into multiple chromosome-
chromosome indexes would open the possibility of opportunistically loading
only portions of the index that are required to satisfy a given query,
thus reducing peak memory usage (especially at high resolutions). hictk
currently implements a strategy to opportunistically load parts of the
cooler index. However, the current implementation of this strategy is
more complex than it needs to be if pairs of chromosomes were indexed
individually.

Another improvement to the cooler format could be to make the bins group
optional for files using a constant bin size (i.e., the vast majority of publicly
available cooler files), as in this case the bin table can be constructed at runtime
based on the list of chromosome sizes and the bin size. hictk already implements
this strategy, meaning that the bin table is not read from the cooler files, but
instead is constructed from the list of chromosomes with their sizes, the prefix sum
of chromosome sizes (i.e., the first bin in the genome-wide table corresponding
to a given chromosome) and the bin size. All operations required to map bins
to genomic coordinates and vice-versa can then be efficiently achieved through
simple arithmetic operations, meaning that the memory usage of the bin table
only depends on the number of chromosomes, not on the resolution.

Finally, while using HDF5 greatly simplifies the implementation of the file
format, as all low-level IO operations are taken care by the HDF5 library, HDF5
itself has some design flaws that make it difficult to achieve peak performance
in multithreaded applications. The HDF5 runtime keeps several global data
structures that are shared across files opened by the same process, this includes
one file opened in two different threads, two different files opened in one or
multiple threads, and a single file opened in one thread and shared across
multiple threads. This makes HDF5 inherently thread-unsafe. The C API can
be made thread-safe by specifying the appropriate flags when building the HDF5
library. However, this is suboptimal, as thread safety is achieved by using a
global lock that is acquired by the library before any IO operations modifying
the global state (this includes most read and write operations). In an era when
even entry-level CPUs have multiple cores, the single-threaded nature of HDF5
poses a significant limit to IO throughput. Luckily there are alternative formats,
such as Apache Parquet [261], that offer a similar set of features as HDF5 while
supporting concurrent reads and writes, and that could be used instead of HDF5.

305

Appendix C

Components of a reproducible
analysis pipeline

Analysis pipelines often consist of a number of tools that, through a series of
steps, transform data provided as input. In this context, code can be broadly
classified into two families: application code and glue code. The first type of
code is responsible for performing a specific analysis step, while the second type
is code interconnecting different components of a computational pipeline.

Reproducibility at the application level

Reproducibility starts at the lowest level, the application level. If running a given
application twice on the same data using the same parameters yields different
outputs, then there is no chance of achieving replicability of the data analysis.
However, achieving reproducibility may still be possible.

Applications can produce non-deterministic outputs due to a variety of
reasons. It is often the case that applications use Pseudo-Random Number
Generator (PRNG) as part of the data processing. Subsampling the original
data is for example one step that usually involves random number generation.
The default behavior in most programming languages is that if a PRNG is not
explicitly seeded (i.e., initialized), then the PRNG is initialized using one of the
available sources of entropy, such as the time when the code is being executed.
Thus, not initializing PRNGs is one way to make the output of an application,
and thus of pipelines where the application is being used, not replicable. In
this case, making the application replicable is simple: update the application to
properly seed the PRNG. Unfortunately, there are other factors that are more
difficult to control that can make applications non-deterministic. One such factor
is concurrency. In concurrent applications, the order in which operations are
performed is not pre-determined. Careful application design and implementation
can often ensure that the final result does not change when the order in which
intermediate steps are performed is changed, however, in practice, this is not
always possible. There are also bugs, such as logic bugs and data races that can
make applications non-deterministic.

The bottom line is that if an application does not produce the same output
when given the same inputs, replicability of data analysis is not possible. However,
reproducibility may still be possible. For example, if an application is simulating
a stochastic process without seeding the PRNG, running the application multiple
times and comparing its output may be an approach to ensure that different
runs produce similar outputs, thus fulfilling the requirements for reproducibility.

307

C. Components of a reproducible analysis pipeline

Containers enable reproducible software setup and
configuration

Modern applications often rely on a complex network of software dependencies.
Applications often interact with their dependencies through APIs. When
APIs change, applications break, as users of an API try to interact with their
dependency in ways that are no longer supported.

Let us consider the following example. Application A was written in 2022
using v1.0.0 of library B. As soon as application A is released, a user installs
and uses application A to produce some results that end up part of a scientific
publication. In 2023, library B is updated to v2.0.0. The update includes
changes to library B’s API. Another user, while trying to reproduce the results
of the study mentioned above, tries to install application A using their favorite
package manager. If the package manager is not aware of the API changes
introduced by v2.0.0 of library B, the package manager will likely install the
latest version of library B, which will break application A. Unless the user trying
to reproduce the results of the study has the technical capabilities to debug API
incompatibilities, the user will not be able to reproduce the findings from the
original study. To make things worse, even minor updates that do not involve
API changes may silently change the application behavior, leading to different
outputs.

Let us consider another scenario. A computational pipeline takes file F1 as
input for program A v1.0.0, which generates file F2 as its output. File F2 is then
given to application B that generates the final output F3. File F2 consists of a
list of terms. At the time when the pipeline was written, program A produced
the list of terms sorted in alphabetical order. Accordingly, application B was
designed to take advantage of this property of file F2. Thus, application B will
properly function if and only if terms in F2 are sorted alphabetically. Let us
assume that the original pipeline was used to generate the results upon which
the conclusions of a scientific study are based. Some time later, application A

is updated to v1.1.0. The update involves a rework of application A internals,
which causes the output of application A to no longer be sorted in alphabetical
order. In the best-case scenario, application B checks that its input is sorted
alphabetically before proceeding. In this case, the pipeline will be aborted and
the results from the original study will not be reproducible, and the detected
issue with F2 is reported to the user. In the worst-case scenario, application
B does not validate its inputs and will produce incorrect outputs, making the
study certainly not replicable, and likely not reproducible. A solution to this
problem is to meticulously specify the version of each application used by the
pipeline. However, this is often not practical, as application A may depend on
library C, which in turn depends on library D and so on.

A better approach is to take advantage of software containers, such as Docker
and Apptainer containers. Software containers are standard units of software
that package applications with their dependencies and configuration files to allow
running applications across different systems as installed and configured by e.g.,

308

the application developer. In this scenario, the developers of the above pipeline
test their pipeline with v1.0.0 of application A and make a container including
both application A v1.0.0 and application B. The pipeline developers then adapt
the pipeline to use containers, thus providing their users with a combination of
software that has been tested and is known to function properly. The results of
the pipeline are now not only reproducible but also replicable, regardless of the
system where the pipeline is executed.

Workflow systems enable writing containerized analysis
pipelines at scale

Writing pipelines can be tedious and difficult work, especially when a pipeline is
supposed to run on different systems. Furthermore, writing complex pipelines
in common scripting languages, such as bash and Python, can be prohibitively
complex, and often leads to pipelines that are not very robust.

For this reason, a number of domain-specific languages known as scientific
workflow systems have been developed. Examples of popular bioinformatics
workflow management systems are Nextflow and Snakemake [262, 263]. These
languages and frameworks greatly simplify composing and executing many
applications in a way that is independent of available computational resources,
meaning that workflows can be developed locally, on a development machine,
and later deployed to a compute cluster or to the cloud. These systems often
represent tasks as a graph, where nodes represent tasks to be executed and edges
represent data and execution dependencies between different tasks.

Most workflow systems are tightly integrated with containers, thus enabling
reproducible, and often replicable data analysis.

Furthermore, workflow systems like Nextflow and Snakemake provide
integration with common cluster schedulers, such as SLURM, LFS, and PBS, as
well as integration with common cloud providers, thus enabling writing parallel
and distributed pipelines.

Another common feature of scientific workflow systems is that of checkpoint-
ing, meaning that before executing each task, the task inputs are hashed, and
the results produced by the task are associated with the hashed inputs. Thus, if
a workflow is launched a second time, the task inputs are hashed one more time,
and if the resulting hash matches any of the known hashes, then the task can
be safely skipped, as the task’s outputs have already been computed. This can
greatly simplify developing and debugging pipelines, as in case of failures, the
pipeline will resume from the last known successful task.

In recent years, a number of communities have developed around Nextflow,
Snakemake, and other workflow systems. nf-core is a community-driven project
developing high-quality Nextflow workflows for bioinformatics analysis. As of Nov
2023, the project counts 55 pipelines released and 26 under development. Another
community-driven collection of scientific workflows is the Snakemake workflow
catalog, which counts 195 standard-compliant pipelines. These communities
enable any bioinformatician to conduct state-of-the-art data analysis without

309

C. Components of a reproducible analysis pipeline

having to reinvent the wheel to work around known application bugs or convert
between file formats to appeal to some applications. Furthermore, the fact that
these workflows are open-source, allows community members to chime in and
suggest improvements to the pipelines so that pipelines can remain up-to-date
with the state of the art, something that individual bioinformaticians would
struggle to accomplish.

310

