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Abstract

This thesis has been written about the analytical and semi-analytical formulae
as an alternative to finite element analyses in computing lateral deflection, buck-
ling loads and ultimate capacity of steel elastomer sandwich plates. Since the
introduction of sandwich plates in the aerospace industry several decades ago, the
shipbuilding industry is now finding a use of their own for this type of construc-
tion. The major classification societies are all in the process of creating rules for
the design of sandwich plates for use in the maritime industry and in this process
Det Norske Veritas has created the classification note CN.30.11 Steel Sandwich
Panel Construction [1].

The thought behind these rules is to use formulae in the design of the sandwich
panels instead of the more time consuming finite element method. The work in
this thesis has involved finding the proper analytical formulae for buckling and
bending of simply supported sandwich plates from relevant theory and comparing
the results from these formulae with the finite element method. The formulae have
been implemented in a Visual Basic-automated Excel spread-sheet which has been
made available as a supporting tool for the classification note.

Another part of the thesis has been to develop a semi-analytical method, using
a Rayleigh-Ritz approach, for more accurate buckling strength assessments. This
model can be used for both simply supported and clamped plates and calculates
eigenvalues for all combinations of in-plane normal and shear forces. It also can
accurately account for pre-stresses in the buckling analyses.

The results from the analyses are presented along with the underlying theory
in this thesis. For the analytical models the results show a good agreement be-
tween the formulae and the finite element method for most cases, with the closed
form formulae often being a bit conservative on the safe side. The results for
the Rayleigh-Ritz model also show very good agreement with the finite element
method. Some problems were encountered in the modelling procedures of sand-
wich plates in ABAQUS, especially with the solid element models. This can be the
cause of some of the difference between the analytical and finite element models
in the results.
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Chapter 1

Introduction

1.1 Background

With the introduction of sandwich panels in shipbuilding there are several advan-
tages to be gained. Increased stiffness to weight ratio and a geometrically simpler
structure may be the two most important properties of this type of panels over
traditionally stiffened steel plates. One type of such a panel is the Sandwich Plate
System (SPS)1. With this new technology Det Norske Veritas (DNV) is currently
working on new guidelines for the SPS in order to correctly design such panels
for use in ships. In this ongoing project, there has already been one master the-
sis written about SPS in collaboration between the University of Oslo and DNV,
Fladby [2], focusing on the ultimate capacity of these plates subjected to a variety
of load combinations.

1.2 Sandwich composite constructions

A sandwich composite is a form of laminated composite made up of three distinct
layers of different materials; a thick, lightweight and relatively low-performing core
bonded on either side by a thin, stiff and relatively high-performing face plate.
Common core materials are honeycomb and corrugated profiles made of metals,
glass fibres or even paper and solid cores made from types of light-weight wood
or cellular plastic foams. In the same manner the face sheets can also be made
from a bewildering range of materials such as laminates of different fibre reinforced
composites or different types of metals and wood. In short, any material can be
used as a face material provided it can be produced in a thin sheet form. This
apparent freedom to choose among so many different materials is one of the major

1The SPS is a plated system patented by Intelligent Engineering, www.ie-sps.com
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(a) (b)

Figure 1.1: (a) Glass-fibre reinforced aluminium faces and honeycomb core typically
used in aerospace industry (image courtesy of NASA) and (b) steel faces and elastomer
core (SPS-panel) typically used in heavy engineering (image courtesy of Intelligent En-
gineering)

advantages of sandwich composites and makes it possible to tailor the structure
to different applications [3]. Two different types of sandwich panels are shown in
Figs. 1.1a and 1.1b.

The other major advantage of sandwich constructions is the ratio of stiffness over
weight. Laminates of fibre reinforced composites can be made with strength match-
ing that of metals but with stiffness often several magnitudes lower. In placing
the high-performing materials farther away from the neutral plane by separating
them with a lightweight core, the face sheets become analogous with the flanges
of an I-beam, a highly optimized structure which leaves just enough material in
the web to keep the flanges separated. The core will thus play the same role in
separating the faces and transferring shear stresses, but in sandwich structures (es-
pecially in plates) it can also play secondary roles such as contributing to damping
in oscillatory motions, absorption of impact energy from collisions or blast waves,
soundproofing and fire and thermal insulation. In this, the adhesive used to bond
the face sheets to the core is perhaps as important to the sandwich as the material
layers. If the faces and core are not properly bonded together they will not perform
as a single integrated structure and will not achieve the advantageous properties
mentioned above.

The history of sandwich can be summed up as follows. The first proper use of a
sandwich concept in a construction was perhaps Robert Stephenson’s locomotive
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Planet built in 1830. By cladding a wooden beam with wrought iron plates bolted
onto the wood, he utilized the properties of two different materials, thereby sav-
ing weight and maintaining the required performance. Just after the turn of the
last century, different honeycomb cores appeared, not for structural applications
at first, but for bee keeping and decorative paper arts. Several other honeycomb
cores were developed but it was not until the late 1930s that an adhesive was devel-
oped that made honeycomb cores possible in structural applications. During the
Second World War appears the British Mosquito combat aircraft made from balsa
core and veneer faces, a consequence of war-time shortage of the metals normally
used in aircrafts. After the war the aerospace industry embraced the honeycomb
cores, which to this day still offers the highest shear stiffness to weight ratio, but
the high cost of this type of sandwich prevails and it has not found any notable
use outside the aerospace industry. In the late 1950s and early 1960s the cellu-
lar foams invented during World War II were finally ready for use in structural
application, and in contrast with the complex honeycomb cores, the foams have
found widespread use in sandwich panels in low- and medium-cost applications.
Few new core materials have appeared since then, research has mainly focused on
the bonding of core and face materials and different face materials [3].

1.3 SPS - Sandwich Plate System

There is large focus in the maritime and offshore industries to come up with so-
lutions which will yield lighter structures, better fuel economy and simpler main-
tenance and repair. Because of this, several new innovations appear. It is not
possible to develop specific design guidelines for all the various solutions, but some
products have indeed reached a certain level in both market position and product
development that they merit further attention. One such system is the Sandwich
Plate System, or SPS.

SPS is a patented sandwich plate system made by Intelligent Engineering in
Canada. Made up of two metal face sheets bonded to a polyurethane elastomer
core, it has since its introduction in the mid-1990s been installed in new ships and
offshore structures, terraces in stadia and arenas, bridge decks, structural floors
in buildings and used in repairs of structural systems in ship and offshore struc-
tures. The biggest advantage associated with SPS panels is perhaps the increased
stiffness to weigh ratio which makes elimination of the lowest level of stiffeners in
a conventional plated structures possible. This also leads to a less complicated
structure with fewer welds, fewer surfaces to be coated and easier maintenance of
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the structures in use. Other benefits associated with SPS include prefabrication of
elements, which ensures simpler installation procedures and shortens the construc-
tion time, and the ease with which the system can be used in repair of damaged
ship components. Recently major shipyards in Asia have secured contracts with
Intelligent Engineering to mass produce ship components using SPS-technology.

1.4 Objective and scope of this thesis

This thesis will focus mainly on the verification of models for elastic buckling and
lateral pressure deformations, in addition to some simplified elasto-plastic models
for conservative ultimate strength assessments. The models to be verified include
both analytically closed-form formulae and Rayleigh-Ritz semi-analytical models.
The analytical models will include a lateral pressure deflection model and a buck-
ling of combined in-plane normal and shear loading for simply supported plates.
The semi-analytical model will exclude bending deflection analyses, but will for
buckling also include elastic springs on the boundary, thereby being able to model
both simply supported and clamped plates, and plates with pre-stresses. The the-
ories in this thesis all assume small deformation theory and thus the post-critical
reserve of plates is not considered, neither are the effects such as wrinkling of the
individual face sheets, shear fracture of the core and de-bonding of the face/core
interface.

A small convergence study has been done in ABAQUS before the verification
models were made. The analytical theories have been implemented in an auto-
mated Excel spreadsheet which has now been supplied as a support tool along
with the DNV classification note [1]. This tool has also been used to verify the
analytical formulae for this thesis. In addition to that, the Rayleigh-Ritz model
has been implemented in FORTRAN as an alternative to the analytical formulae
and the Finite Element method. The results from the verifications are presented
in graphs in this thesis and the results are discussed.

1.5 Presentation of chapters

In Chapter 1 a short introduction into the general history and theory of sandwich
structures, and especially plates, is presented. A short presentation of the scope
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of this thesis and a description of the chapters are also found here.

In Chapter 2 the analytical formulae for bending and buckling of simply sup-
ported sandwich plates are derived. The thin plate theory for isotropic plates is
extended by including the effect on transverse shear.

In Chapter 3 an overview of potential energy in plates and two approximate meth-
ods for finding the eigenvalues in buckling analyses are presented, the Rayleigh-Ritz
method and the Finite Element method.

In Chapter 4 the Rayleigh-Ritz model which was made during this thesis is pre-
sented. It includes both simply supported and clamped plates with or without
pre-stresses.

In Chapter 5 a summary of the modelling procedure in the Finite Element software
ABAQUS is presented along with a small convergence study on which elements
were to be used, and a summary on some of the most common problems encoun-
tered during the modelling procedures.

In Chapter 6 the automated Excel spreadsheet SPS-calculator is presented. It is
an implementation of the formulae presented in Chapter 2, and has been developed
simultaneously with this thesis and the work on the classification note CN.30.11[1].

In Chapter 7 the results from verification of the analytical and semi-analytical
(Rayleigh-Ritz) models is presented in graphical form and discussed.

In Chapter 8 the conclusions of the work carried out in this thesis are presented
along with a suggestion on further work.
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Chapter 2

Sandwich plate theory

2.1 Introduction

In plates with length to thickness ratio approaching 10 or lower [4], or plates
with materials of low shear stiffness, the classical plate theory (CPT) found in
literature like Timoshenko [5], Brush and Almroth [6] or Reddy [4] will no longer
not yield accurate solutions to typical plate problems like deflections, buckling and
vibrations. The reason is that this theory assumes that the cross-sectional rotations
stem from bending curvatures only, whereas in the sandwich plates described in
this thesis, and indeed in thick isotropic steel plates, the cross-sectional rotations
will arise from both curvatures and shear deformations which are induced by either
low shear stiffness, high shear stresses through the thickness of the plate or both.
This makes the CPT predict a stiffer plate than shear deformation theories, giving
erroneous deflections and eigenvalues.

2.2 Displacement field

In deriving the classical plate theory (CPT), or thin plate theory, a set of simplifi-
cations known as the Kirchhoff’s assumptions are fundamental. These appear in
different formulations in the literature, in Reddy [4] they are given as:

1. Straight lines perpendicular to the mid-surface before deformations remain
straight after deformation.

2. The transverse normals do not experience elongation - they are inextensible.

3. The transverse normals rotate such that they remain perpendicular to the
middle plane after deformation.
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In sandwich plates, the comparatively low transverse shear stiffness of the core can
have a profound impact on the performance of the plate, and the effects due to
transverse and in-plane shearing of the core layer cannot be correctly described by
the classical thin plate theory. By extending the classical theory to also include
these deformations, sandwich plates can be described to a far greater accuracy.
This theory is known as Mindlin-Reissner theory and was originally developed
for thick isotropic plates. Also known as first-order shear deformation theory, it
relaxes the third Kirchhoff assumption, allowing the cross-sectional normals to ro-
tate such that they remain straight but no longer normal to the deformed middle
plane. A further relaxation of the straightness assumption, number one in the list
above, is the basis for a third-order shear deformation theory, where the initially
straight normals may deform into cubic curves over the cross sections. For more
details on third order shear deformation theories, see Reddy [4]. For the type
of sandwich plates studied in this thesis, isotropic steel-elastomer sandwich, only
first-order shear deformations are relevant and included in the theory presented
here.

Figure 2.1: Breakdown of shear deformations in a sandwich plate. The undeformed
sandwich element shown in (a) is deformed as shown in (b) from both in-plane (c) and
transverse (d) shear strains.

Fig. 2.1 shows a small element of a sandwich plate subjected to shear deforma-
tions. The total shear deformations, γ, is the sum of in-plane and out-of-plane
(transverse) shear deformations, as shown in the figure. The out-of-plane shear
leads to a sliding of the cross-sections with respect to each other, while the in-plane
shear induces a sliding of the face sheets relative to each other. In both cases it
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is assumed that the shear deformations happen in the core only, and that the face
plates are stiff in shear compared to the core. The red line in the figure represents
shear over the whole cross-section, while the blue line assumes shear deformations
in the core only. The distance A to A′ is, however, the same and shows the hori-
zontal relative sliding of the face sheets coming from the out-of-plane shear. The
angle between the blue and the orange line is the in-plane shear γ0 and the distance
A′ to A′′ shows the corresponding horizontal sliding.

The displacement of a point in the plate is (u, v, w) and is defined as:

u(x, y, z) = u0(x, y) + zφx(x, y)

v(x, y, z) = v0(x, y) + zφy(x, y) (2.2.1)

w(x, y, z) = w0(x, y)

The main difference from classical plate theory is that the actual cross-sectional
rotations, φx and φy, are now not only due to the bending of the middle plane
but also the transverse shear deformations. They are found by differentiating the
displacement field in Eq. (2.2.1):

φx =
∂u

∂z
and φy =

∂v

∂z
(2.2.2)

The displacement field in Eq. (2.2.1) is from Reddy [4] and is a simple extension of
classical plate theory to include transverse shear deformations. This field is proba-
bly best used to describe isotropic plates which can experience these deformations,
i.e. thick plates where the length over thickness ratio is approaching 10 and below,
and assumes that the entire cross-sections experience the same constant rotations.
In sandwich plates the core is assumed to experience all the shear deformations,
and the faces should therefore not undergo the same rotations as the core. The
same displacement field is nonetheless used in the sandwich plate theory presented
by Zenkert [3] in what is called thin-face approximation.

2.3 Equilibrium equations

The equations of equilibrium for the plate are derived from an infinitesimal element
of size dx dy shown in Fig. 2.2. For graphic simplicity the element is first shown
with in-plane and transverse force intensities in one figure and with bending and
twisting moment intensities in another figure. To get the total force acting on a
side of the element, the force intensity is multiplied by the length of the side, either

9



(a)

(b)

Figure 2.2: Transverse and in-plane force intensities (a) and bending and twisting
moment intensities (b) acting on a small element of the plate

dx or dy. Summation of forces in the x-direction gives:

−Nxdy +

(
Nx +

∂Nx

∂x
dx

)
dy −Nyxdx+

(
Nyx +

∂Nyx

∂y
dy

)
dx = 0

⇒ ∂Nx

∂x
+
∂Nyx

∂y
= 0 (2.3.1)

and similar summation of forces in the y-direction gives:

−Nydx+

(
Ny +

∂Ny

∂y
dy

)
dx−Nxydy +

(
Nxy +

∂Nxy

∂x
dx

)
dy = 0

⇒ ∂Ny

∂y
+
∂Nxy

∂x
= 0 (2.3.2)
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The summation of forces in the z-direction is, however, not as straight forward as
the in-plane forces. As the plate bends, the in-plane forces are assumed to follow
the middle plane of the plate, and thus vertical components of the in-plane forces
develop. The vertical equilibrium equation must hence be derived from the plate
in a slightly bent configuration in order to include this effect.

Beginning with the projection of the Nx force intensity onto the z-axis the contri-
bution from Nx to the vertical equilibrium is found:

−Nxdy
∂w

∂x
+

(
Nx +

∂Nx

∂x
dx

)
dy

(
∂w

∂x
+
∂2w

∂x2
dx

)
=

−Nx
∂w

∂x
dy +Nx

∂w

∂x
dy +Nxdy

∂2w

∂x2
dx+

∂Nx

∂x

∂w

∂x
dx dy +

∂Nx

∂x

∂2w

∂x2
dx2 dy =

Nx
∂2w

∂x2
dx dy +

∂Nx

∂x

∂w

∂x
dx dy

(2.3.3)

where dx2 << dx and equal terms cancel each other out. Similarly the projection
of the Ny force intensity onto the z-axis yield:

Ny
∂2w

∂y2
dx dy +

∂Ny

∂y

∂w

∂y
dx dy (2.3.4)

The contribution from the shearing force intensity Nxy is found in the same way:

−Nxy
∂w

∂y
dy +

(
Nxy +

∂Nxy

∂x
dx

)
dy

(
∂w

∂y
+

∂2w

∂x ∂y
dx

)
=

−Nxy
∂w

∂y
dy +Nxy

∂w

∂y
dy +Nxy

∂2w

∂x ∂y
dx dy +

∂Nxy

∂x

∂w

∂y
dx dy +

∂Nxy

∂x

∂2w

∂x ∂y
dx2dy =

Nxy
∂2w

∂x ∂y
dx dy +

∂Nxy

∂x

∂w

∂y
dx dy

(2.3.5)

and similarly for the shearing force intensity Nyx:

Nyx
∂2w

∂y ∂x
dx dy +

∂Nyx

∂y

∂w

∂x
dx dy (2.3.6)

The final expression for the contribution to the vertical equilibrium is found by
summation of vertical components of Nx, Ny, Nxy and Nyx:

Nx
∂2w

∂x2
dx dy +

∂Nx

∂x

∂w

∂x
dx dy +Ny

∂2w

∂y2
dx dy +

∂Ny

∂y

∂w

∂y
dx dy +Nxy

∂2w

∂x ∂y
dx dy

+
∂Nxy

∂x

∂w

∂y
dx dy +Nyx

∂2w

∂y ∂x
dx dy +

∂Nyx

∂y

∂w

∂x
dx dy
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By using the in-plane equations (2.3.1) and (2.3.2) and crossing out the product
dx dy which appears in all terms, this expression can be reduced to:

Nx
∂2w

∂x2
+Ny

∂2w

∂y2
+Nxy

∂2w

∂x ∂y
+Nyx

∂2w

∂y ∂x
(2.3.7)

which is the final expression for the contribution of the in-plane normal and shear-
ing forces to the vertical equilibrium. This can now be added to the summation
of transverse forces and the pressure, to finally obtain the vertical equilibrium
equation:

∂Tx
∂x

+
∂Ty
∂y

+ q(x, y) +Nx
∂2w

∂x2
+ 2Nxy

∂2w

∂x ∂y
+Ny

∂2w

∂y2
= 0 (2.3.8)

As with the equilibrium of forces, one can also derive moment equilibrium equa-
tions. The bending and twisting moments acting on the same plate element dx dy
are shown in Fig. 2.2. The moment equilibrium about the y-axis is:

−Mxdy +

(
Mx +

∂Mx

∂x
dx

)
dy −Myxdx+

(
Myx +

∂Myx

∂y
dy

)
dx

+Ty
dx2

2
−
(
Ty +

∂Ty
∂y

dy

)
dx2

2
−
(
Tx +

∂Tx
∂x

dx

)
dy dx =

Tx −
∂Mx

∂x
− ∂Myx

∂y
= 0 (2.3.9)

Similarly for the moments about the x-axis:

Ty −
∂My

∂y
− ∂Mxy

∂x
= 0 (2.3.10)

and taking the moment about the z-axis reveals the known relationship:

Mxy = Myx (2.3.11)

It is quite clear from the derivations of the equations of equilibrium that these are
identical for isotropic plates and sandwich plates [3], [5].

By differentiating once and substituting the moment equilibrium equations (2.3.9)
and (2.3.10) for the derivatives of transverse forces in the vertical equilibrium
equation (2.3.8), one arrives at the differential equations:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x ∂y
+
∂2My

∂y2
=
∂Tx
∂x

+
∂Ty
∂y

(2.3.12)
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∂Tx
∂x

+
∂Ty
∂y

= −
(
q +Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x ∂y
+Ny

∂2w

∂y2

)
(2.3.13)

Before introducing the moment-curvature relations to obtain the fourth-order dif-
ferential equation in terms of the deflection, w, one should consider these relations.
Because the sandwich plate has a thick core with low shear stiffness, the transverse
shear forces Tx and Ty will also give significant contributions to the total deflection,
and hence the proper moment-curvature relations should be:

Mx = −D11

[
∂

∂x

(
∂w

∂x
− Tx
Sx

)
+ νyx

∂

∂y

(
∂w

∂y
− Ty
Sy

)]
My = −D22

[
∂

∂y

(
∂w

∂y
− Ty
Sy

)
+ νxy

∂

∂x

(
∂w

∂x
− Tx
Sx

)]
(2.3.14)

Mxy = −D33

2

[
∂

∂x

(
∂w

∂y
− Ty
Sy

)
+

∂

∂y

(
∂w

∂x
− Tx
Sx

)]
By introduction of these moment-curvature relations in the differential equation
above (2.3.12), this equation is not transformed into one equation in one variable
w, but rather three equations (including the original differential equation (2.3.12)
above) in the three variables w, Tx and Ty. These three coupled equations can be
separated into three uncoupled equations, each in one of the three variables, which
can then be written:

[D]w = −[M ]q

[D]Tx = −[N ]q (2.3.15)

[D]Ty = −[P ]q

where the bracketed terms represents sixth-order differential operators which can
be found in Zenkert [3]. It is quite clear that solving these equations will require
some effort. This can be overcome by introducing the concept of partial deflections.

2.4 Partial deflections

The plate described by the relatively complex set of differential equations in
(2.3.15) can be solved by another method called partial deflections. In this method
one mode of deformation is assumed at a time and the results superimposed. The
deflections due to bending alone, wb, and shear alone, ws, are computed separately
and the partial deflections are summed to get the total deflections w = wb + ws,
as shown in Fig. 2.3. For a general sandwich plate, which can have face sheets
made up of laminated fiber composites, this approach might be an approximation.
According to Zenkert [3] the concept will be exact for isotropic sandwich plates,
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Figure 2.3: In the concept of partial deflections, total deflection (a) is the sum of
bending (b) and shear (c) deflection components. The components are not coupled and
can thus be computed separately.

the type of sandwich plate considered in this thesis. In short the method can be
described as:

w = wb + ws (2.4.1)

In partial deflections, bending only induces cross sectional rotations, and shearing
only a sliding of the cross sections relative to each other. The consequence of this
is that the moment curvature-relations can be written on the form known from
Kirchhoff plate theory:

Mx = −D11

[
∂2wb
∂x2

+ ν
∂2wb
∂y2

]
My = −D22

[
∂2wb
∂y2

+ ν
∂2wb
∂x2

]
(2.4.2)

Mxy = −D33
∂2wb
∂x ∂y

and the relationship between the transverse forces and shear deformations is in-
troduced as:

∂Tx
∂x

= Sx
∂2ws
∂x2

∂Ty
∂y

= Sy
∂2ws
∂y2

(2.4.3)

Substituting the moment-curvature relations into the differential equations (2.3.12)
and (2.3.13) and combining these, it is clear that now the result is indeed the

14



normal fourth order differential equation in only one variable, wb, which describes
the bending only deformations:

D11
∂4wb
∂x4

+ 2(D12 +D33)
∂4wb
∂x2 ∂y2

+D22
∂4wb
∂y4

= q +Nx
∂2wb
∂x2

+ 2Nxy
∂2wb
∂x ∂y

+Ny
∂2wb
∂y2

(2.4.4)

In the same manner, the shear-sliding relations can be substituted into the same
equations to get a new differential equation in only one variable, ws, describing
the shear only deformations:

Sx
∂2ws
∂x2

+ Sy
∂2ws
∂y2

= −
(
q +Nx

∂2ws
∂x2

+ 2Nxy
∂2ws
∂x ∂y

+Ny
∂2ws
∂y2

)
(2.4.5)

It is worth noting that in the bending mode, the in-plane forces are functions
of derivatives of wb, while in shear mode they are functions of derivatives of ws.
This makes it possible to solve for one mode at a time and superimpose the results.

From Eqs. (2.4.4) and (2.4.5) one can see that the right hand side is similar
in both equations, and from that we get the relationship between bending and
shear deformations:

∆ws = −D
S

∆2wb (2.4.6)

where ∆ is the Laplace operator, D is the flexural rigidity and S the shear stiffness
of the plate.

As shown in Zenkert [3], for isotropic sandwich plates the concept of partial de-
flections can be replaced by an total deflection, w:

D

[
∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+
∂4w

∂y4

]
=

[
1− D

S
∆

] [
q +Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x ∂y
+Ny

∂2w

∂y2

]
(2.4.7)

2.5 Constitutive laws

In the general orthotropic sandwich plate, the Young’s modulus E, shear modulus
G, Poisson’s ratio ν and hence the flexural rigidity D, torsional stiffness Dxy and
shear stiffness S may vary in the different directions. In the beginning weeks of
the work in this thesis there was some uncertainty about how to arrive at accurate
expressions for the stiffness, so two different methods are presented here; one from
laminate theory and one found by extending the plate flexural rigidity formula for
isotropic plates. They were found to yield results within 1% of each other.

15



Figure 2.4: Cross-section of sandwich plate showing layer material constants and dis-
tances.

Laminate stiffness coefficients

For a laminated plate the extensional stiffness, coupling and bending stiffness
matrices are:

[A] =
N∑
k=1

[Q]k(zk − zk−1)

[B] =
1

2

N∑
k=1

[Q]k(z2k − z2k−1) (2.5.1)

[D] =
1

3

N∑
k=1

[Q]k(z3k − z3k−1)

where the [Q]-matrix is known as the reduced stiffness matrix for each layer. This
must be computed for each layer from k = 1 up to k = N . The [Q]-matrix is:

Q =

 Q11 Q12 0
Q21 Q22 0
0 0 Q66


Q11 =

E1

1− ν12ν21
Q22 =

E2

1− ν12ν21
Q12 =

ν21E1

1− ν12ν21
Q66 = G12

(2.5.2)

In computing the reduced stiffness matrix for a layer, one must use the properties
of that layer. In the isotropic sandwich plate this means that a total of four layers
will be computed, one for each face and two halves of the core. The final results
of the [D]-matrix is:

D =

 D11 D12 0
D21 D22 0
0 0 D66
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D11 =
1

12

[
Ef1

1− ν2f1

(
3t2ctf1 + 6t2f1tc + 4t3f1

)
+

Ef2
1− ν21

(
3t2ctf2 + 6t2f2tc + 4t3f2

)
+

Ec
1− ν2c

t3c

]
D22 = D11

D12 =
1

12

[
νf1Ef1
1− ν2f1

(
3t2ctf1 + 6t2f1tc + 4t3f1

)
+
νf2Ef2
1− ν21

(
3t2ctf2 + 6t2f2tc + 4t3f2

)
+

νcEc
1− ν2c

t3c

]
D21 = D12

D66 =
1

12

[
Gf1

(
3t2ctf1 + 6t2f1tc + 4t3f1

)
+Gf2

(
3t2ctf2 + 6t2f2tc + 4t3f2

)
+Gct

3
c

]
Stiffness coefficients derived from flexural rigidity

An alternative approach to the laminate stiffness is computing the flexural rigidity
of a unit width of a beam and correcting this with a Poisson’s ratio to include the
effect of secondary curvatures. The flexural rigidity of the beam is:

D =

∫
z

Ez2dz (2.5.3)

where the correct E must be used in the face and core. Assuming similar thickness
in the faces and defining the distance d = tf + tc, the plate stiffness can be written
as:

D =
Ef t

3
f

6(1− ν2f )
+

Ef tfd
2

2(1− ν2f )
+

Ect
3
c

12(1− ν2c )
= 2Df +D0 +Dc (2.5.4)

The stiffness of an isotropic sandwich plate is the same in all in-plane directions,
so the single D defined above correctly describes the plate, with D = D11 = D22 =
(D12 + D33). The term Df describes the stiffness of the two face plates bending
about their own axes, D0 is the stiffness from the two face plates bending about
the neutral axis of the assembled plate and Dc is the contribution to the stiffness
from the core bending about its own neutral axis (which, incidentally is the same
as the global neutral axis when considering similar face sheet thickness). It is seen
that for isotropic sandwich plates the two ways of computing the stiffness yield
approximately equal results (the difference is less than 1%), and for that reason
the simpler equation in (2.5.4) has been used in the expressions for deflection
and buckling. The laminate stiffness has the advantage, however, of correctly
computing the stiffness of plates where the two faces are not similar; the simpler
equation from Zenkert is for similar faces.

Shear stiffness

Like the flexural rigidity of the plate can be described by a single constant, D,
due to the isotropic material behaviour, the shear stiffness, S, is also defined by a
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single constant:

S =
Gc d

2

tc
(2.5.5)

where Gc is the shear modulus of the core material and tc is the thickness of the
core.

2.6 Bending of simply supported sandwich plate

The boundary conditions for a simply supported sandwich plate are:

w = 0, Mx = 0 at x = 0 and x = a

w = 0, My = 0 at y = 0 and y = b

and the deflection can be described by the double Fourier series which also satisfy
the boundary conditions:

w =
∞∑
n=1

∞∑
m=1

wmnsin
mπx

a
sin

nπy

b
(2.6.1)

The pressure load can also be written in the form of a double Fourier series:

q =
∞∑
n=1

∞∑
m=1

qmnsin
mπx

a
sin

nπy

b
(2.6.2)

For a uniform pressure, the load coefficient for odd values of m and n is (for even
values it is zero):

qmn =
16q

mnπ2
(2.6.3)

The deflection coefficient, wmn, is found by substitution of the double series into
the differential equation (2.4.7). By cancelling out equal terms, one is left with:

D

[(mπ
a

)4
+ 2

(mπ
a

)2 (nπ
b

)2
+
(nπ
b

)4]
wmn =

[
1 +

D

S

[(mπ
a

)2
+
(nπ
b

)2]]
qmn

(2.6.4)

This again can be written in terms of the coefficient wmn:

wmn =
qmn
D

1 +
D

S

[(mπ
a

)2
+
(nπ
b

)2]
[(mπ

a

)2
+
(nπ
b

)2] (2.6.5)
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Inserting for the coefficients wmn and qmn, one arrives at the expression for the
transverse deflection:

w =
16q

π6

∞∑
n=1,3,..

∞∑
m=1,3,..

[
1 +

D

S

[(mπ
a

)2
+
(nπ
b

)2]]
sin

mπx

a
sin

nπy

b

mnD

[(m
a

)4
+ 2

(m
a

)2 (n
b

)2
+
(n
b

)4] (2.6.6)

Because the total deflection was assumed to be the sum of that due to bending
and shear separately, the expression for deflection can conversely be split into two
parts:

wb =
16q

π6D

∞∑
n=1,3,..

∞∑
m=1,3,..

sin
mπx

a
sin

nπy

b

mn

[(mx
a

)2
+
(ny
b

)2]2 (2.6.7)

ws =
16q

π4S

∞∑
n=1,3,..

∞∑
m=1,3,..

sin
mπx

a
sin

nπy

b

mn

[(mx
a

)2
+
(ny
b

)2] (2.6.8)

Effect on bending of thick face plates

Because the face sheets of the isotropic SPS-plate are made from steel the effect
from the bending of the faces about their own axes had to be considered in the
overall performance of the plate. In 1950, Hoff [7] included the strain energy of
the faces bending about their own axes and this lead to a sixth order differential
equation. Zenkert [3] has compared this theory and the normal thin-face theory.
By defining a shear factor θ = D0/(Sb

2), the lateral deflection can be written as:

w =
16q

π6D

∞∑
n=1,3,..

∞∑
m=1,3,..

1 + π2θ

[(
mb

a

)2

+ n2

]

mn

[(
mb

a

)2

+ n2

]2 sin
mπx

a
sin

nπy

b
(2.6.9)

Zenkert [3] has prepared a graph which shows the effect of the thick faces compared
to the thin faces in terms of the shear factor θ and the ratio Df/D0, shown in Fig.
2.5. In this figure, however, the shear factor is shown with the symbol φ. In the
steel-elastomer plates considered in this thesis, the effect of using the sixth-order
differential equation over the fourth-order will be negligible and the comparatively
simpler fourth-order equation will yield results sufficiently accurate.
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Figure 2.5: This figure shows the normalised lateral deflection of the plate when the
effects of thick faces is accounted for and when it is not. It’s a function of the shear
factor θ and the ratio of Df/D0. In this figure taken from Zenkert [3], φ is used for the
shear factor.

2.7 Buckling of simply supported sandwich plate

2.7.1 General introduction

A plate with in-plane loads can be subjected to buckling. In theory this means
that for an initially perfect plate, an increasing in-plane compressive or shear load
will, after some limit is reached, produce a sudden out-of-plane displacement. This
limit is known as the elastic buckling load, or eigenvalue, and the corresponding
deflection shape is known as buckled mode, or eigenmode. The difference in the ul-
timate capacity of plates compared to that of columns is that the plate will exhibit
a post-critical reserve making it able to carry loads well above the elastic buckling
loads. In finding the ultimate capacity of a plate, the buckling load is thus often
not the governing criteria, this depends on the reduced slenderness of the plate.
However, the corresponding buckling mode can be used as a least-favourable im-
perfection in non-linear capacity analyses. Furthermore, the elastic buckling loads
are often used as a conservative limit in design of plates.

To find the buckling loads of the plate, Eq. (2.4.7) is used with q = 0 (no transverse
pressure).

D

[
∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+
∂4w

∂y4

]
=

[
1− D

S
∆

] [
Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x ∂y
+Ny

∂2w

∂y2

]
(2.7.1)

Depending on whether the plate being studied is subjected to uniaxial, biaxial or
shear loading, or a combination of these, the right hand side of Eq. (2.7.1) will
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differ. The same deflection shape is assumed as in the case for bending, this is
substituted into the differential equation.

w =
∞∑
n=1

∞∑
m=1

wmnsin
mπx

a
sin

nπy

b
(2.7.2)

2.7.2 In-plane compressive buckling

Introduction

Let the in-plane forces Nx and Ny equal −Px and −Py, respectively, so that com-
pressive forces act on the plate according to the assumptions made in Section 2.3
and shown in Fig. 2.2. If the plate is subjected to in-plane compression in one or
two (perpendicular) directions, then the differential equation (2.7.1) will be:

D

[
∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+
∂4w

∂y4

]
=

[
1− D

S

(
∂2

∂x2
+

∂2

∂y2

)][
−Px

∂2w

∂x2
− Py

∂2w

∂y2

]
(2.7.3)

Substitution of the deflection shape in Eq. (2.7.2) for w into this differential
equation yields:

∞∑
n=1

∞∑
m=1

{
D

[(mπ
a

)2
+
(nπ
b

)2]2
−
[
Px

(mπ
a

)2
+ Py

(nπ
b

)2] [
1 +

D

S

{(mπ
a

)2
+
(nπ
b

)2}]}
wmnsin

mπx

a
sin

nπy

b
= 0

(2.7.4)

For this expression to be valid for all x and y, the bracketed term must equate to
zero for all combinations of m and n. This equation can be used to find the elastic
buckling load for uniaxial and biaxial loads, by setting the values for Px and Py
accordingly.

Uniaxial loading

If the plate is subjected to a compressive force on two parallel sides while the
two sides perpendicular to these are load free, the plate is said to be in uniaxial
compression. On a plate with a non-unity aspect ratio, the lowest eigenvalue will
be found from loading the two shortest edges. Any load can be represented as a
product of a reference load and a scale factor, such that Px = ΛE P

ref
x , where the

reference load can be chosen arbitrarily. By varying the scale factor the buckling
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load can be found. This scale factor, ΛE, is known as the eigenvalue. The bracketed
term in the equation above will then be:

D

[(mπ
a

)2
+
(nπ
b

)2]2
= ΛE P

ref
x

(mπ
a

)2 [
1 +

D

S

{(mπ
a

)2
+
(nπ
b

)2}]
(2.7.5)

or expressed in terms of the eigenvalue:

ΛE =

D

[(mπ
a

)2
+
(nπ
b

)2]2
P ref
x

(mπ
a

)2 [
1 +

D

S

{(mπ
a

)2
+
(nπ
b

)2}] (2.7.6)

By re-arranging and simplifying this equation, an expression for the buckling co-
efficient, K, is found for the uniaxial buckling load:

K = ΛE
P ref
x b2

D π2
=

(
mb

a
+

a

mb

)2
(

1 + π2θ

[(
mb

a

)2

+ 1

])−1
(2.7.7)

and from this equation, an expression for the lowest eigenvalue ΛE is found:

ΛE =
D π2

P ref
x b2

Kmin (2.7.8)

The expression for the buckling factor, K, for the sandwich plate is seen to be
of similar form to that of an isotropic plate, given in Brush and Almroth [6] and
Bǎzǎnt [8] as:

K =

(
mb

a
+

a

mb

)2

(2.7.9)

but corrected for shear-deformations with the presence of the shear factor θ =
D/(b2S) in the denominator. If the transverse shear stiffness increases, the shear
factor decreases and the value of K computed with Eq. (2.7.7) approaches that
computed with Eq. (2.7.9). It is also seen that the expression for the critical
load in Eq. (2.7.8) is similar in form to that of the classical isotropic plate, but
with the different buckling coefficient K described above. For a given plate aspect
ratio, a/b, the minimum buckling load is found by varying m as shown in Fig.
2.6. The lowest eigenvalue is found by finding the smallest buckling coefficient.
This is achieved by finding the combination of m and n which give the smallest
K, where m and n describe the number of half-waves into which the plate buckles
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Figure 2.6: Buckling coefficient as a function of plate aspect ratio and shear factor θ.
θ is printed as φ in this graph, from Zenkert [3]

in the longitudinal and transverse directions. From Zenkert [3] it is known that
the minimum K always corresponds to a value of n = 1 (and indeed this has been
used already in arriving at Eq. (2.7.7)), but the value of m giving the smallest K
depends on the plate aspect ratio a/b. The buckling coefficient K for the isotropic
sandwich plate is plotted in Fig. 2.6. The main difference in this figure and the
one normally encountered for isotropic plates is that the factor K also depends
on the shear factor θ and the fact that even for an aspect ratio of a/b = 0 the
buckling load is finite. One can also see that as the shear factor increases, the
different modes are less distinct from each other.

Biaxial loading

If there are loads on all four edges, the plate is said to be in biaxial loading. Let
us call the two edges that were loaded in uniaxial compression analysis primary
edges and the remaining two edges secondary edges. The primary edges can be
either the shortest or the longest edges of the plate, depending on the problem
being studied. If the load on the secondary edges is compressive, this will have a
negative effect on the plate to carry loads on the primary edges. If, on the other
hand, the loads on the secondary edges are tensile, the plate will be able to carry
higher loads on the primary edges than in the uniaxial case. Thus, the type and
magnitude of the second force is either detrimental or stabilizing on the capacity
of the plate when compared to uniaxial loading. This effect can be represented in
plots called interaction curves in the load space. In the case where all forces are
tensional, buckling is not possible and the plate will not fail until material yield is
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reached.

As for the uniaxial case, let the forces be represented by reference values and
a common load scaling factor, ΛE,bi. By varying this single variable for differ-
ent combinations of P ref

x and P ref
y , the resulting eigenvalues can be used to plot

different interaction curves.

D

[(mπ
a

)2
+
(nπ
b

)2]2
= ΛE,bi

[
P ref
x

(mπ
a

)2
+ P ref

y

(nπ
b

)2] [
1 +

D

S

{(mπ
a

)2
+
(nπ
b

)2}]
(2.7.10)

or expressed in terms of the eigenvalue:

ΛE,bi =

D

[(mπ
a

)2
+
(nπ
b

)2]2
[
P ref
x

(mπ
a

)2
+ P ref

y

(nπ
b

)2] [
1 +

D

S

{(mπ
a

)2
+
(nπ
b

)2}] (2.7.11)

2.7.3 In-plane shear buckling

When the plate is subjected to in-plane shear loads, Nxy=−Pxy, the buckling
equation (2.7.1) is reduced to:

D

[
∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+
∂4w

∂y4

]
=

[
1− D

S

(
∂2

∂x2
+

∂2

∂y2

)][
−2ΛP ref

xy

∂2w

∂x∂y

]
(2.7.12)

There is no exact closed form solution to this equation as for the case of in-plane
normal forces, however, and one has to resort to using either approximate methods
or empirical formulae. An approach using an approximate method (Rayleigh-Ritz)
is presented in Chapter 4, and an approach using empirical formulae found by
Kuenzi and Ericksen [9] and referenced by Zenkert [3] is presented here.

Assuming that a is longer than b the general formula for a in-plane shear buckling
load is:

Pxy = K
π2D

b2
(2.7.13)

For a simply supported plate, Kunezi and Ericksen [9] suggest the buckling coef-
ficient, K, be computed as:

K =
K0

1 + π2θ

(
K0 − 1− b2

a2

) if 0 ≤ π2θ ≤ 1 +
b2

a2
(2.7.14)
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where

K0 =
16

3
+ 4

b2

a2
(2.7.15)

further details and formulae for clamped edges can be found in Zenkert [3] and the
development of the formulae can be found in Kuenzi and Ericksen [9].

2.7.4 Combined axial and shear buckling

When a combination of in-plane shear load and axial loads act on the plate at the
same time, the following parabolic formula can be used to find the elastic buckling
factor:

ΛE,bi+τ =
1

2
(ΛE,τ )

2

− 1

ΛE,bi

+

√(
1

ΛE,bi

)2

+ 4

(
1

ΛE,τ

)2
 (2.7.16)

where the eigenvalues found separately from uni- or biaxial loading ΛE,bi and shear
loading ΛE,τ are used. The parabolic formula is used in DNV CN.30.11 [1] and its
background is found in Smith [10].

2.8 Elasto-plastic buckling of sandwich plate

The elastic eigenvalues found via the procedures above assume that the plate is
perfectly flat and that the material is elastic. Consequently the elastic eigenvalue
does not take material yield or initial imperfections into consideration. This means
that the buckling loads found from elastic eigenvalue analyses can be too high for
practical use, because in real plates, where there is always some amount of initial
imperfection, second-order effects will lead to bending stresses in the plate and
thus eventually yielding of the material. This is true for plates where the length
to thickness ratio is low, so-called stocky plates. In DNV’s class note, CN.30.11
Steel Sandwich Panel Construction [1], the following method is used to account for
plasticity. This method takes the buckling loads found from eigenvalue analysis
and corrects these loads for plastic yield in the face plate material.

First the load factor, ΛF , which indicates the load level that will induce yield-
ing in the face plate material is defined as:

ΛF =
σF√

σ2
10 + σ2

20 − σ10σ20 + 3τ 20
(2.8.1)
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where σF is the yield stress of the face material. The applied loads Nx, Ny and
Nxy induce the stresses σ10, σ20 and τ0 in the face material. These stresses are
found from the formulae:

σ10 =
Nx

t1 + t2 + tc(Ec/Ef )
(2.8.2)

σ20 =
Ny

t1 + t2 + tc(Ec/Ef )
(2.8.3)

τ3 =
Nxy

t1 + t2 + tc(Ec/Ef )
(2.8.4)

From this load factor and the load factor found from elastic buckling analysis, ΛE,
the reduced slenderness of the plate is found:

λ̄ =

√
ΛF

ΛE

(2.8.5)

and from this the elasto-plastic buckling factor is found:

ΛB =
ΛF√

1 + λ4
(2.8.6)

This formula ensures that for any combination of loading in the load space, the
elasto-plastic buckling loads will not exceed either the von Mises ellipsis or the
elastic eigenvalue. The elasto-plastic buckling loads are then found by multiplying
the reference loads with ΛB.
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Chapter 3

Approximate methods

3.1 Introduction

In this chapter an overview of the principle of total potential energy is presented
along with two approximate theories which both spring out of this principle, the
Rayleigh-Ritz and the Finite Element methods. The theory in this chapter is based
on Brubak [11], Cook et. al. [12], Bažant [8] and Bergan & Syvertsen [13].

3.2 Potential energy

3.2.1 Expressions of potential energy

The potential energy of a system describes the system’s ability to do work, and is
made up of the internal/elastic strain energy and the potential of applied loads.
That the applied loads have potential means that the loads have the capacity to do
work on a system if they are displaced through a distance as the system deforms
[12]. In an elastic medium, the work done by the loads is stored in the medium,
and is recovered as the load is removed. The potential energy is a functional,
which is a map that transforms vector functions to scalar values. Thus, according
to Bergan & Syvertsen [13], a functional is a “function of functions”, accepting
functions as input and returning a scalar value.

In a static problem, the potential energy can be written:

Π = U +H (3.2.1)

where U is the internal strain energy and H the load potential. If the problem is
dynamic, then kinetic energy must also be included.
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The strain energy density is the energy that must be supplied to deform a unit
volume of material [12]:

U0 =

∫
ε

σTdε =
1

2
σTε =

1

2
εTEε (3.2.2)

and the strain energy of the body is found by integrating the strain energy density
over the volume of the body, V :

U =

∫
V

U0dV =
1

2

∫
V

εTEεdV (3.2.3)

If the material is elastic and all six strains in the strain tensor are included, the
stress σ and strain ε vectors each have six components and the material matrix E
is six by six. In the Kirchhoff thin plate theory, the transverse strains are neglected,
and the stress and strain vectors are of three components and the material matrix
three by three. Sandwich plates are of a different theory, the Mindlin-Reissner
theory. In this theory the transverse normal strain, but not the transverse shear
strains, is neglected, thus giving five components in the stress and strain vectors
and a five by five material matrix.
When looking at plates, one may also wish to divide up the total strain energy into
bending strain energy, membrane strain energy, strain energy from stiffeners and
if the plate is constrained to elastic springs, the strain energy from these springs
as well.

The load potential, H, can consist of body loads and surface loads. The body
loads are generally loads that affect the whole of the body, such as gravitational
(accelerating) or magnetic forces, whereas the surface loads are loads that act on
the surface. In its most general form the load potential H is:

H = −
∫
V

uTF dV −
∫
S

uTΦdS (3.2.4)

where the volume force is obtained by integrating the volume force of an infinites-
imal element over the volume, V , of the body, and the surface load is obtained
by integrating over the surface, S. Added together the strain energy and load
potential gives the expression for the potential energy:

Π =
1

2

∫
V

εTEεdV −
∫
V

uTF dV −
∫
S

uTΦdS (3.2.5)

The equation (3.2.5) is called weak form. Using this equation without first dis-
cretizing the continuous variables with a finite number of degrees of freedom, the
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partial differential equation and the non-essential boundary conditions can be de-
rived via the principle of stationary potential energy, as shown in Cook et.al. [12]
and Bergan & Syvertsen [13]. Non-essential boundary conditions are the bound-
ary conditions which include the derivatives of the continuous variables, such as
stresses and moments. If there are more than one continuous variable involved,
such as displacement in two directions or rotations, there will be a corresponding
number of differential equations. These equations are known as Euler equations,
and together with the non-essential boundary conditions they completely describe
the problem. This is known as the strong form.
If, however, the continuous variables are discretized, then the potential energy will
yield a set of algebraic equations. In this form the equilibrium and non-essential
boundary conditions are not satisfied at all points, but only in an average sense
[12].

3.2.2 Principle of virtual work

A fundamental principle in structural mechanics is the principle of virtual work or
virtual displacements. This states that a system is in static equilibrium if the sum
of work done by the internal and external forces, in acting through a small virtual
displacement, is zero. The work done by the external forces is the negative of the
potential, and the work done by the internal forces is equal to the strain energy.
This can be expressed as:

U = Wint and H = −Wext (3.2.6)

and inserted into the potential energy equation (4.2.1), this equation becomes:

Π = Wint −Wext (3.2.7)

The principle of virtual work can be expressed as:

δWint = δWext or

δΠ = δU − δW =

∫
V

εEδεdV −
∫
V

δuTF dV −
∫
S

δuTΦdS = 0 (3.2.8)

This leads to an important fact, that for a conservative1 system the internal strain
energy and external work are equal.

1That the system is conservative means that the work done in deforming the system is only
dependent on the initial and deformed configurations of the system, not the path taken between
the two configurations
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3.2.3 Principle of stationary potential energy

From the principle of virtual work another important principle in structural me-
chanics can be derived, the principle of stationary potential energy (PSPE). It
states that all configurations which make the potential energy stationary with re-
spect to small admissible variations of displacement will satisfy the equations of
equilibrium [12]. If this stationary point of Π is also a minimum, the configuration
is a stable one.

To illustrate, consider a spring with stiffness k, fixed at one end and with a load
P on the other end that works through a distance D. The potential energy of the
system is:

Π = U +H =
1

2
kD2 − PD (3.2.9)

By finding a stationary value of Π, an expression for the equilibrium state can be
found:

∂Π

∂D
= 0 → ∂Π = (kD − P )dD = 0 (3.2.10)

Because the equation must hold for all small admissible variations of displace-
ment dD, the expression in the brackets must equal zero. From this we get the
equilibrium equation:

Deq =
P

k
(3.2.11)

This expression says nothing about the stability of the equilibrium. It could very
well be an unstable configuration. However, by finding the second variation of the
potential energy, we see that it is equal to the spring stiffness k, thus positive and
the configuration is stable. For a system with linear-elastic material and conser-
vative loads this is identical to using the Principle of Minimum Potential Energy
(PMPE). Although a principle that is much less applicable than the PSPE, it is
nonetheless the same for this kind of system.

Using the principle on the potential energy equation (3.2.5) we get:

δΠ =
1

2

∫
V

(
δεTEε+ εTEδε

)
dV −

∫
V

δuTF dV −
∫
S

δuTΦdS = 0 (3.2.12)

which will lead to the Euler equations and the non-essential boundary conditions.

30



3.3 Rayleigh-Ritz method

The Rayleigh-Ritz method gets its name from Lord Rayleigh and Walter Ritz. In
the 1870s Lord Rayleigh used one degree of freedom to approximate the natural
vibration frequencies in vibration studies, while Ritz expanded the method when
he used a series of approximating functions (multiple d.o.f.) to study eigenvalue
problems in 1909 [12].

The above example of the bar is very good to show the power of the potential
energy. It is also a very simple example. Only the deformation at the end of the
spring is needed to describe the state of that system, the same cannot be said of
the deformation of single point when looking, for instance, on a plate. In the more
general systems, we need to know the deformations at many points in order to de-
scribe the state of the deformation. The Euler equations that can be derived from
the potential energy describe the continuous variable (deformation) at all points
in the body, but finding solutions to these equations can be challenging except for
relatively simple problems.

The problem of finding a solution to the differential equations can be overcome by
approximating the continuous variable as a linear combination of functions. Each
function is assigned an amplitude, and the solution is now to find the amplitudes of
each function such that the potential energy reaches a minimum. The amplitudes
of these functions are called degrees of freedom (d.o.f.). All the degrees of freedom
are collected in a displacement vector a. The use of the functions makes the po-
tential energy a functional of expressions containing these amplitudes, rather than
the single continuous variable:

Π = Π(a1, a2, a3, ..., am) (3.3.1)

and the requirement of equilibrium is now that the potential energy be stationary
with respect to all the degrees of freedom:

∂Π

∂a1
= 0,

∂Π

∂a2
= 0,

∂Π

∂a3
= 0, ...,

∂Π

∂am
= 0 or

∂Π

∂a
= 0 (3.3.2)

The functions used in the approximation are called trial or shape functions, and are
Fourier series which, with sufficient number of terms in the series, can approximate
the deflection and rotations. An example of a trial function is:

w =
M∑
i=1

aif(x)i (3.3.3)
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where f(x)i is the approximating functions and ai is the amplitude of the func-
tion. Thus, the problem has been reduced from finding a solution to the differential
equation, to solving a set of M algebraic equations in the unknown amplitudes ai.

This also brings on a major consequence of the Rayleigh-Ritz method. Because the
exact and smooth deflection shape is approximated by a combination of displace-
ment shapes, the system is made stiffer than it really is. This happens because
the shape functions constrain the system to deform in a manner similar, but not,
exactly as it wants. If the potential energy functional is quadratic, as is the case for
linear elastic systems, convergence will always be from above [8]. As a result, de-
flections are under-predicted with the Rayleigh-Ritz method, while buckling loads
are over-predicted. In the general case the relative difference between the approxi-
mated and exact values is decreasing as more terms are used in the trial functions.
An important exception, however, is when the exact deflection shape appears as a
term in the series. This is the case with uniaxial and biaxial loading of a simply
supported plate, but not in shear loading. The reason is that the deflection shape
of the plate due to uniaxial or biaxial loading can be described exactly by trigono-
metric functions. In this case the deflections and buckling loads will be exact. For
shear loading, however, there is no single function that can describe the deflection
shape. Here the method will use the shape functions to create an approximation
of the true deformations, selecting the amplitudes of each of these functions so
that the potential energy reaches a stationary point. The same is the case with
clamped plates, or plates with elastic springs at the boundaries.

The trial functions cannot be chosen arbitrarily. In Bažant [8] the theorem of
Ritz is given:

The limit for the approximation wM(x) =
∑M

i=1 aif(x)i for M →∞
is the exact solution w(x) if the system of chosen functions satisfies the
conditions:

1. Functions f(x)i are linearly independent

2. Functions f(x)i form a complete system of functions

3. Functions f(x)i satisfy the essential boundary conditions

They must be admissible, complete and they must converge as the series are ex-
panded. That they are compatible means that they must satisfy internal compati-
bility (continuous and smooth shapes) and they must satisfy the essential boundary
conditions, which are displacements and rotations at the boundaries. Complete-
ness is satisfied when the displacements and their derivatives can be matched
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closely if enough terms are used in the trial functions. Convergence is of course
also a requirement, as the whole purpose of the method is to approximate an exact
value.

When the correct trial functions have been found they must be inserted into the
potential energy expression. The potential energy is no longer an expression of
the unknown continuous variables, but the generalized degrees of freedom. If the
problem is described by more than one unknown, such as is the case with the
sandwich plate in this thesis, there must be one trial function for each unknown.
Also, if the problem is in more than one dimension, the trial functions must be
functions of the variables describing these dimensions, such as the Cartesian or
polar co-ordinates. While the procedure of solving the Rayleigh-Ritz model thus
becomes more complicated as more unknowns and variables are used, the proce-
dure still remains the same.

An example of potential energy using two unknowns, w1 and w2, approximated by
the trial functions [13]:

w1 =
M∑
i=1

aif(x)i w2 =
N∑
j=1

bjf(x)j (3.3.4)

Π(w1, w2)→ Π(a1, a2, ..., aN , b1, b2, ..., bN) (3.3.5)

The condition for buckling is that the potential energy has a stationary value:

δΠ = δU + δH = 0 (3.3.6)

δΠ =
M∑
i=1

∂Π

∂ai
δai +

N∑
j=1

∂Π

∂bj
δbi = 0 (3.3.7)
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Because the equilibrium must hold for all small variations of ai and bj, the problem
is reduced to requiring all the partial derivatives equal to zero:

∂Π

∂a1
=

∂U

∂a1
+

∂H

∂a1
= 0

...
...

...
...

∂Π

∂aM
=

∂U

∂aM
+

∂H

∂aM
= 0

∂Π

∂b1
=

∂U

∂b1
+

∂H

∂b1
= 0

...
...

...
...

∂Π

∂bN
=

∂U

∂bN
+

∂H

∂bN
= 0

If all the generalized degrees of freedom are collected in a vector A, the problem
can be expressed on vector form:

∂Π

∂A
δA =

(
∂U

∂A
+
∂H

∂A

)
δA = 0 (3.3.8)

From this equation we can formulate the eigenvalue equation used in buckling
analysis:

(KM − ΛKG)A = 0 (3.3.9)

where KM and KG are the material and geometric stiffness matrices, and Λ and
A is the eigenvalue and the corresponding vector of displacements (eigenvector).
The task is now to solve this eigenproblem and find the eigenvalue.

3.4 Finite Element method

3.4.1 Introduction

The distribution of displacements in a structure is known as a field problem and is
described by the differential equations. Just like the Rayleigh-Ritz method is a way
to avoid solving the differential equation by transforming it into a set of algebraic
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equations, the Finite Element method is another method with the same goal.
Indeed, the Rayleigh-Ritz and Finite Element methods have much in common.
Besides the Rayleigh-Ritz method from the early 20th century, other methods
had been developed before the Second World War by mathematicians in order to
solve differential equations, such as Finite Difference methods or weighted residual
methods (i.e. Galerkin). Comprehensive lists of these developments are given in
Cook et. al. [12] and Zienkiewicz & Taylor [14]. After the Second World War,
aerospace engineers in the United States developed the Finite Element method
from an engineering rather than a mathematical standpoint. Some years later,
in the 1960s, the foundation between the Finite Element method earlier methods
such as Rayleigh-Ritz was established, and the method that was previously con-
sidered an engineer’s tool was given a sound mathematical foundation.

The main features of the Finite Element method is that it can be used on very
complex geometries, non-linear deformations and materials and other iterative
problems. The essence of the method is that in order to find a solution to the field
problems, the structure is divided into a finite number of elements. The name
finite is to distinguish them from the infinitesimal elements of calculus. Although
the geometry of the structure can be very complex, the division into elements is
made so that each element is of simple shape. This makes it possible to formulate
equilibrium equations for each element in matrix form.

The elements are connected together through nodes, and the distribution of el-
ements through the structure is called a mesh. The nodes of each element are
numbered and then given a global number in the structure mesh. In this way, a
global stiffness matrix can be built by adding in the stiffness matrices of the ele-
ments based on the placement of each element in the mesh. When the global stiff-
ness matrix has been established, boundary conditions and loads are prescribed.

The problem is now on the form:

KD = R (3.4.1)

where K is the global stiffness matrix, D is the vector with degrees of freedom
(displacements and rotations) and R is the global load vector. The problem is
solved for the unknown displacements and loads.

3.4.2 Method

In order to get to the global equilibrium equation in Eq. (3.4.1), one has to
assemble the global stiffness matrix, the vector with global degrees of freedom
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and the vector with total loads. These are assembled from the element matrices
and vectors. In structural mechanics, the formulation of elements is most often
displacement based. That means that it is the displacements that are approxi-
mated from a set of trial functions, much like in the Rayleigh-Ritz method, and
the element stiffness matrix is developed from the approximated displacements.
Displacement based elements always satisfy the compatibility equations [12]. An
important distinction from the Rayleigh-Ritz method, where the field variables
are approximated over the whole structural domain, is that in the Finite Element
method this approximation is only defined inside each element. This leads to the
fact that the variables are continuous over each element, but not necessarily across
element borders [12].

The main difference in the formulation of plate elements which accounts for trans-
verse shear deformation, called Mindlin-Reissner elements, and plate elements that
disregard these deformations, called Kirchhoff elements, is that in the latter the
complete state of deformation can be described by a single field, the mid-surface
deflection w, while in the former the state of deformation is w and also the rota-
tion of cross sections with respect to the mid-surface, φx and φy. That makes the
matrices and vectors larger, but the process of element formulation is completely
the same for the two elements.

First, the field variables (displacement and rotations) are approximated from trial
functions. By interpolating each continuous variable from a set of trial functions,
the field is satisfied in a number of discrete points, namely the nodes of the mesh.
For a plate with shear deformation theory, the interpolation of the fields is:

w = N1w1 +N2w2 + ...+Niwi

φx = N1φx1 +N2φx2 + ...+Niφxi (3.4.2)

φy = N1φx1 +N2φx2 + ...+Niφxi

where each Ni is a trial function. The trial functions must be chosen with care,
so that they are able to accurately describe all deformations and rigid body trans-
lations and rotations. The field must not omit the lowest-order terms, and must
be balanced (i.e. not favour one coordinate axis to another)[12]. The interpolated
fields can be written on a matrix-vector form (where n is the number of nodes pr.
element):  w

φx
φy

 =
n∑
i=1

 Ni 0 0
0 Ni 0
0 0 Ni

 wi
φxi
φyi

 ⇔ u = Nd

The principle of virtual work can be used to formulate the element stiffness matrix
and load vector. Stated in Section 3.2.2, the principle says that for any admissible
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virtual displacement of a system in equilibrium, the sum of external and internal
work is zero: ∫

V

δεTσdV −
∫
V

δuTFdV −
∫
S

δuTΦdS = 0 (3.4.3)

The strains are derived from the displacements via the known relation:

ε = ∂u = ∂Nd = Bd (3.4.4)

where ∂ is a differential operator matrix, and B is known as the strain-displacement
matrix. From this we get the virtual displacements:

δεT = δdTBT and δuT = δdTNT (3.4.5)

which, when inserted into the expression for virtual work yield the equation:

δdT
(∫

V

BTEBdV d−
∫
V

NTFdV −
∫
S

NTΦdS

)
= 0 (3.4.6)

where Hooke’s law on matrix form σ = Eε has been used to insert for σ. For this
equation to be valid for any small virtual displacement δd, the expression inside
the brackets must equal zero, or:

kd = r (3.4.7)

where the element stiffness matrix and load vectors are:

k =

∫
V

BTEBdV and r =

∫
V

NTFdV +

∫
S

NTΦdS (3.4.8)

where dV is the volume and dS the surface of the element in question.
By expanding the element stiffness matrices and vectors to structure size, and
using the a matrix to couple local degrees of freedom to global, we get the global
relation in Eq. (3.4.1):

K =
N∑
i=1

aTi kiai D =
N∑
i=1

aTi di R =
N∑
i=1

aTi ri (3.4.9)

where N is the number of elements in the mesh.

The problem is not yet completely defined, however. If no constraints are im-
posed on Eq. (3.4.1), the stiffness matrix K will be singular and the solution will
fail. By imposing sufficient number of constraints known as boundary conditions
on the global degrees of freedom, the stiffness matrix can be re-arranged so that
one part of it relates to known degrees of freedom, and the other part to unknown
degrees of freedom. By a process of static condensation, the unknown degrees of
freedom are found and the field problem is solved [12].
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3.4.3 Eigenvalue problem and buckling in FEA

An idealized perfect and initially flat plate is susceptible to buckling when in-plane
forces are present. In buckling, the in-plane forces will reach a limit and large
transverse deformations will quickly develop. This happens because the plate has
far greater membrane stiffness than bending stiffness, and large membrane strain
energy can be stored with small deformations [12]. When the buckling occurs,
the large membrane strain energy must be absorbed by bending strain energy, but
because the bending stiffness is much smaller, the deformations conversely become
much larger.

Buckling is an eigenvalue problem, in which the material stiffness matrix is aug-
mented by a geometric stiffness matrix KG. The global geometric stiffness matrix
is assembled from element matrices, just as the material stiffness matrix KM .
According to Cook et. al [12], the first step is to load the structure with an arbi-
trary reference load Rref which will yield a geometric stiffness matrix KG

ref . Any
other load can be expressed by the reference load by multiplying it with a scalar,
R = ΛRref , and the geometric stiffness matrix for any load level is found the
same way KG = ΛKG

ref . At bifurcation buckling the loads will remain the same
but the lateral deflection will suddenly increase. By comparing the configuration
at buckling relative to the reference configuration, we get the two equations:(

KM + ΛcrK
G
ref

)
Dref = ΛcrRref and(

KM + ΛcrK
G
ref

)
[Dref + δD] = ΛcrRref (3.4.10)

where subtraction of the first from the second equation yields the eigenvalue prob-
lem: (

KM + ΛcrK
G
ref

)
δD = 0 (3.4.11)

and from this equation the critical loads can be found as:

Rcr = ΛcrRref (3.4.12)
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Chapter 4

Rayleigh-Ritz model for buckling

4.1 Introduction

The Rayleigh-Ritz model derived in this chapter extends the normal thin plate
theory to a model which can accurately model plates where transverse shear de-
formations might be of importance. By approximating not only the transverse de-
flection, w, but also the cross-sectional rotations, γxz and γyz, from Fourier series,
these effects are accounted for. The model is primarily developed with sandwich
plates in mind, but can also be used with thick isotropic steel plates. Both simply
supported and clamped plates have been considered. The derived model has been
implemented in the computer language FORTRAN.

4.2 Rayleigh-Ritz model

4.2.1 General model - simply supported plate

The total potential energy comes from the internal strain energy, U , and the
potential of external loads, W , as described above. The total potential energy is
written:

Π = U −W (4.2.1)

For the particular case of a sandwich plate, the strain energy comes from the
moments doing work through a curvature as the plate bends and transverse shear
forces sliding the cross sections relative to each other in shear deformations. The
work done by the moment Mx in bending a plate element dx dy through the
curvature w,xx is:

1

2
Mx

(
−∂

2 w

∂ x2

)
dx dy =

1

2
Mx

(
Mx

Dx

− νyx
My

Dy

)
dx dy (4.2.2)
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and similarly for moment My working through the curvature w,yy. The twisting
moment Mxy working through the twisting curvature w,xy is:

2× 1

2
Mxy

(
− ∂

2 w

∂x∂y

)
dx dy =

M2
xy

Dxy

dx dy (4.2.3)

In this shear deformation theory, the contributions to the strain energy from trans-
verse shear forces, Tx and Ty, in working through the shear angles must also be
considered:

1

2

T 2
x

Sx
dx dy and

1

2

T 2
y

Sy
dx dy (4.2.4)

In order to get the total strain energy of the plate, the preceding work equations
must be added together and the resulting equation integrated over the plate:

Uplate =
1

2

∫ b

y=0

∫ a

x=0

[
Mx

(
Mx

Dx

− νyx
My

Dy

)
+My

(
My

Dy

− νxy
Mx

Dx

)
+ 2

M2
xy

Dxy

+
T 2
x

Sx
+
T 2
y

Sy

]
dxdy

=
1

2

∫ b

y=0

∫ a

x=0

[
M2

x

Dx

−
(
νxy
Dx

+
νyx
Dy

)
MxMy +

M2
y

Dy+
+ 2

M2
xy

Dxy

+
T 2
x

Sx
+
Ty
Sy

]
dxdy

By using the moment curvature relations in Eq. (2.3.14) and using the facts that
Dx >> ν2 Dx and that γxz = Tx/Sx, the strain energy can be written:

Uplate =
1

2

∫ b

y=0

∫ a

x=0

[
Dx

(
∂

∂x

(
∂w

∂x
− γxz

))2

+ (DxνyxDyνxy)
∂

∂x

(
∂w

∂x
− γxz

)
∂

∂y

(
∂w

∂y
− γyz

)
+ Dy

(
∂

∂y

(
∂w

∂y
− γyz

))2

+
Dxy

2

(
∂

∂x

(
∂w

∂y
− γyz

)
+

∂

∂y

(
∂w

∂x
− γxz

))2

(4.2.5)

+ Txγxz + Tyγyz] dx dy

The potential of external loads is:

W =
1

2

∫ b

y=0

∫ a

x=0

[
−2qw +Nx

(
∂w

∂x

)2

+ 2Nxy

(
∂w

∂x

)(
∂w

∂y

)
+Ny

(
∂w

∂y

)2
]

(4.2.6)

4.2.2 Elastic springs on the boundary - clamped plate

The model above describes a simply supported plate. That is, the edges are free to
rotate at the four boundaries. If one wishes to consider a clamped plate, this can
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be achieved by stiffening the plate with elastic springs along each of the four edges.
By using very high spring stiffness coefficients, the rotations will be restrained and
the plate will behave as if it were clamped. In the Rayleigh-Ritz method, the
energy stored in the springs will be computed much like the stiffness matrix of the
plate itself and be added to the total potential energy:

Π = Uplate + Usprings −W (4.2.7)

where the energy from the springs is the sum of the energy of the springs at each
boundary:

Usprings = U s
x=0 + U s

x=a + U s
y=0 + U s

y=b (4.2.8)

The energy associated with the spring at the boundary x = 0 is written:

U s
x=0 =

1

2

∫ b

0

kx0

([
∂w

∂x
− γxz

] [
∂w

∂x
− γxz

])
x=0

dy (4.2.9)

and similarly for the three other edges:

U s
x=a =

1

2

∫ b

0

kxa

([
∂w

∂x
− γxz

] [
∂w

∂x
− γxz

])
x=a

dy (4.2.10)

U s
y=0 =

1

2

∫ a

0

ky0

([
∂w

∂y
− γyz

] [
∂w

∂y
− γyz

])
y=0

dx (4.2.11)

U s
y=b =

1

2

∫ a

0

kyb

([
∂w

∂y
− γyz

] [
∂w

∂y
− γyz

])
y=b

dx (4.2.12)

where the spring constant kxa is the stiffness of the spring located at the boundary
where x = a, and similarly for the springs located on the other three edges.

4.2.3 Displacement functions

The problem described by the Eqs. (4.2.1), (4.2.5), (4.2.6) and (4.2.8) can be
approximated by the Rayleigh-Ritz method. By assuming displacement functions,
the solution will converge to the exact solution as more degrees of freedom are
added. In this thesis, the following displacement functions are used:

w =
∞∑
m=1

∞∑
n=1

Amn sin
mπx

a
sin

nπy

b

γxz =
∞∑
m=1

∞∑
n=1

Bmn cos
mπx

a
sin

nπy

b
(4.2.13)

γyz =
∞∑
m=1

∞∑
n=1

Cmn sin
mπx

a
cos

nπy

b
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These displacement functions must be differentiated to be inserted into the expres-
sion for potential energy. These differentiated expressions are found in Appendix
A.1.

The Rayleigh-Ritz method rarely yields the exact solution. Rather, the computed
eigenvalues converge from above toward the exact eigenvalues as more terms in
the displacement series are added. These functions are approximated by adding a
finite number of terms in the series, from 1 up to M , N , P and Q, respectively.

4.2.4 Potential energy for simply supported plate

The displacement functions and their derivatives are inserted into the expressions
for strain energy and load potential. This procedure is shown in Appendix A.2,
and using the integrals in Appendix A.3 the expression for the potential energy of
the plate is:

U =
1

2

M∑
m=1

N∑
n=1

[
Dx

[
A2
mn

(mπ
a

)4
− 2AmnBmn

(mπ
a

)3
+B2

mn

(mπ
a

)2]
+ (Dxνyx +Dyνxy)

[
A2
mn

(mπ
a

)2 (nπ
b

)2
− AmnCmn

(mπ
a

)2 (nπ
b

)
− AmnBmn

(mπ
a

)(nπ
b

)2
+BmnCmn

(mπ
a

)(nπ
b

)]
(4.2.14)

+Dy

[
A2
mn

(nπ
b

)4
− 2AmnCmn

(nπ
b

)3
+ C2

mn

(nπ
b

)]
+
Dxy

2

[
A2
mn

(mπ
a

)2 (nπ
b

)2
− 2AmnCmn

(mπ
a

)2 (nπ
b

)
+ C2

mn

(mπ
a

)2
+ 2

(
A2
mn

(mπ
a

)2 (nπ
b

)2
− AmnBmn

(mπ
a

)(nπ
b

)2
− AmnCmn

(mπ
a

)2 (nπ
b

)
+BmnCmn

(mπ
a

)(nπ
b

))
+ A2

mn

(mπ
a

)2 (nπ
b

)2
− 2AmnBmn

(mπ
a

)(nπ
b

)2
+B2

mn

(nπ
b

)2]
+ SxB

2
mn + SyC

2
mn

]
ab

4
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W =
1

2

M∑
m=1

N∑
n=1

[
Nx A

2
mn

(mπ
a

)2
+Ny A

2
mn

(nπ
b

)2] ab
4

(4.2.15)

+
M∑
m=1

N∑
n=1

P∑
p=1

Q∑
q=1

AmnApqNxy

(mπ
a

)(qπ
b

)[a(1− (−1)m(−1)p)p

π(p2 −m2)

] [
b(1− (−1)n(−1)q)n

π(n2 − q2)

]
ImpInq

where Imp is a matrix which ensures that the only non-zero terms are the ones
where m is not equal to p, and similarly for Inq.

4.2.5 Potential energy for clamped plate

The elastic springs on the boundary will stiffen the plate. When inserting for w,
γxz and γyz, the expressions in Eqs. (4.2.9) to (4.2.12) are:

Usprings =
kx0
2

∫ b

0

(
M∑
m=1

N∑
n=1

[
Amn

(mπ
a

)
cos

mπx

a
sin

nπy

b
−Bmncos

mπx

a
sin

nπy

b

]
P∑
p=1

Q∑
q=1

[
Apq

(pπ
a

)
cos

pπx

a
sin

qπy

b
−Bpqcos

pπx

a
sin

qπy

b

])
x=0

dy

+
kxa
2

∫ b

0

(
M∑
m=1

N∑
n=1

[
Amn

(mπ
a

)
cos

mπx

a
sin

nπy

b
−Bmncos

mπx

a
sin

nπy

b

]
[

P∑
p=1

Q∑
q=1

Apq

(pπ
a

)
cos

pπx

a
sin

qπy

b
−Bpqcos

pπx

a
sin

qπy

b

])
x=a

dy

+
ky0
2

∫ a

0

(
M∑
m=1

N∑
n=1

[
Amn

(nπ
b

)
cos

mπx

a
sin

lπy

b
− Cmncos

mπx

a
sin

nπy

b

]
[

P∑
p=1

Q∑
q=1

Apq

(qπ
b

)
cos

pπx

a
sin

qπy

b
− Cpqcos

pπx

a
sin

qπy

b

])
y=0

dx

+
kyb
2

∫ a

0

(
M∑
m=1

N∑
n=1

[
Amn

(nπ
b

)
cos

mπx

a
sin

lπy

b
− Cmncos

mπx

a
sin

nπy

b

]
[

P∑
p=1

Q∑
q=1

Apq

(qπ
b

)
cos

pπx

a
sin

qπy

b
− Cpqcos

pπx

a
sin

qπy

b

])
y=b

dx
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Evaluating the integrals at their limits and using the condition in Eq. (A.3.1) one
gets:

Usprings =
bkx0

4

M∑
m=1

N∑
m=1

P∑
p=1

(
Amn

(mπ
a

)
−Bmn

)(
Apn

(pπ
a

)
−Bpn

)
+
bkxa

4

M∑
m=1

N∑
n=1

P∑
p=1

(
Amn

(mπ
a

)
−Bmn

)(
Apn

(pπ
a

)
−Bpn

)
cos(mπ)cos(pπ)

+
aky0

4

M∑
m=1

N∑
n=1

Q∑
q=1

(
Amn

(nπ
b

)
− Cmn

)(
Amq

(qπ
b

)
− Cmq

)

+
akyb

4

M∑
m=1

N∑
n=1

Q∑
q=1

(
Amn

(nπ
b

)
− Cmn

)(
Amq

(qπ
b

)
− Cmq

)
cos(nπ)cos(qπ)

(4.2.16)

and by collecting terms and simplifying one arrives at:

Usprings =
b

4

M∑
m=1

N∑
n=1

P∑
p=1

[(
Amn

(mπ
a

)
−Bmn

)(
Apn

(pπ
a

)
−Bpn

)]
(kx0 + kxacos(mπ)cos(pπ)) δn,q

(4.2.17)

+
a

4

M∑
m=1

N∑
n=1

Q∑
q=1

[(
Amn

(nπ
b

)
− Cmn

)(
Amq

(qπ
b

)
− Cmq

)]
(ky0 + kybcos(nπ)cos(qπ)) δm,p

where δn,q and δm,p are the Kronecker delta which ensures that the integrals are
only non-zero when p equals m and q equals n.

4.3 Stiffness matrices and eigenvalue equation

The eigenvalue problem to be solved is stated on the form:(
KM − ΛKG

)
A = 0 (4.3.1)

Where KM is the material stiffness matrix, KG is the geometric stiffness matrix, Λ
is the eigenvalue and A the corresponding eigenvector. The material and geometric
stiffness matrices are defined as:

KM =

 KM
AA KM

AB KM
AC

KM
BA KM

BB KM
BC

KM
CA KM

CB KM
CC

 and KG =

 KG
AA KG

AB KG
AC

KG
BA KG

BB KG
BC

KG
CA KG

CB KG
CC
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Both the material and stiffness matrices have nine elements, but the size of the
sub-matrices depends on how many terms in the series are needed for convergence.
Each of the sub-matrices in the stiffness matrices are computed from the expression
for potential energy:

KM =



∂2U

∂Aij∂Akl

∂2U

∂Aij∂Bkl

∂2U

∂Aij∂Ckl

∂2U

∂Bij∂Akl

∂2U

∂Bij∂Bkl

∂2U

∂Bij∂Ckl

∂2U

∂Cij∂Akl

∂2U

∂Cij∂Bkl

∂2U

∂Cij∂Ckl


and KG =



∂2W

∂Aij∂Akl

∂2W

∂Aij∂Bkl

∂2W

∂Aij∂Ckl

∂2W

∂Bij∂Akl

∂2W

∂Bij∂Bkl

∂2W

∂Bij∂Ckl

∂2W

∂Cij∂Akl

∂2W

∂Cij∂Bkl

∂2W

∂Cij∂Ckl


However, because the only coefficient to appear in the expressions in W is Aij, the
only non-zero term in the geometric stiffness matrix is KG

AA.

The terms appearing in the material and geometric stiffness matrices are all to
be differentiated first with respect to coefficients in k and l and then with respect
to coefficients in i and j. In the first derivation the chain rule is applied by first
setting all m and n equal to k and l and differentiating with respect to these new
coefficients and then setting all p and q equal to k and l and differentiating with
respect to these new coefficients. The result after this first differentiation is an
equation in m,n,p,q,k and l. Then the whole process is repeated when the result
from the first derivation is again differentiated, but this time using the chain rule
and replacing m and n with i and j and differentiating, and then p and q with i
and j and differentiating. The result is finally an expression in i,j,k and l.

This process is shown on the first term, or sub-matrix, in the material stiffness
matrix, the process is similar and therefore omitted for the other terms where only
the results are shown. The first term is to be differentiated with respect to Aij
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and Akl. Therefore it is only necessary to use the terms where Amn appears twice:

KM
AA =

∂2

∂Aij∂Akl

[
1

2

M∑
m=1

N∑
n=1

[
DxA

2
mn

(mπ
a

)4
+ (Dxνyx +Dyνxy)A

2
mn

(mπ
a

)2 (nπ
b

)2
+DyA

2
mn

(nπ
b

)4
+ 2DxyA

2
mn

(mπ
a

)2 (nπ
b

)2] ab
4

]

=
∂

∂Aij

[
1

2

M∑
k=1

N∑
l=1

[
Dx2Akl

(
kπ

a

)4

+ (Dxνyx +Dyνxy)2Akl

(
kπ

a

)2(
lπ

b

)2

(4.3.2)

+Dy2Akl

(
lπ

b

)4

+ 4DxyAkl

(
kπ

a

)2(
lπ

b

)2
]
ab

4

]

=
M∑
i=1

N∑
j=1

[
Dx

(
iπ

a

)4

+ (Dxνyx +Dyνxy)

(
iπ

a

)2(
jπ

b

)4

+ Dy

(
jπ

b

)4

+ 2Dxy

(
iπ

a

)(
jπ

b

)]
ab

4

The rest of the terms (sub-matrices) in the material stiffness matrix are:

KM
BB =

1

2

M∑
i=1

N∑
j=1

[
2Dx

(
iπ

a

)2

+Dxy

(
jπ

b

)2

+ 2Sx

]
ab

4
(4.3.3)

KM
CC =

1

2

M∑
i=1

N∑
j=1

[
2Dy

(
jπ

b

)2

+Dxy

(
iπ

a

)2

+ 2Sy

]
ab

4
(4.3.4)

KM
AB = −1

2

M∑
i=1

N∑
j=1

[
2Dx

(
iπ

a

)3

+ (Dxνyx +Dyνxy)

(
iπ

a

)(
jπ

b

)2

+ 2Dxy

(
iπ

a

)(
jπ

b

)2
]
ab

4

(4.3.5)

KM
AC = −1

2

M∑
i=1

N∑
j=1

[
2Dy

(
jπ

b

)3

+ (Dxνyx +Dyνxy)

(
iπ

a

)2(
jπ

b

)
+ 2Dxy

(
iπ

a

)2(
jπ

b

)]
ab

4

(4.3.6)
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KM
BC =

1

2

M∑
i=1

N∑
j=1

[
(Dxνyx +Dyνxy)

(
iπ

a

)(
jπ

b

)
+Dxy

(
iπ

a

)(
jπ

b

)]
ab

4
(4.3.7)

The only term in the geometric stiffness matrix is KG
AA. This term also include

the four series because of the integral requirements of Nxy:

KG
AA =

1

2

M∑
i=1

N∑
j=1

[
Nx

(
iπ

a

)2

+Ny

(
jπ

b

)2
]
ab

4
(4.3.8)

+
M∑
i=1

N∑
j=1

P∑
k=1

Q∑
l=1

[
Nxy

(
iπ

a

)(
lπ

b

)[
a[1− (−1)i(−1)k]k

π(k2 − i2)

] [
b[1− (−1)j(−1)l]j

π(j2 − l2)

]
IikIjl

+ Nxy

(
kπ

a

)(
jπ

b

)[
a[1− (−1)k(−1)i]i

π(i2 − k2)

] [
b[1− (−1)l(−1)j]l

π(l2 − j2)

]
IikIjl

]
The displacement vector contains the degrees of freedom and can be written as:

A =



Aij
...

AMN

Bij
...

BMN

Cij
...

CMN


=

 A
B
C



4.4 Contributions to stiffness matrix from elastic

springs

When the elastic springs are added to the plate system, the material stiffness
matrix is augmented by a stiffness matrix with terms from the elastic springs.
The eigenvalue system to be solved is of similar form, but must now include this
spring-stiffness matrix: ((

KM + KS
)
− ΛKG

)
A = 0 (4.4.1)

The terms in the spring stiffness matrix are found in the same way as the material
and geometric stiffness matrices, by differentiation as described in Eq. (4.3.2).
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The final terms are:

KS
AA =

b

2

M∑
i=1

N∑
j=1

P∑
k=1

(
kπ

a

)(
iπ

a

)
(kx0 + kxacos(kπ)cos(ıπ)) δn,q

+
a

2

M∑
i=1

N∑
j=1

Q∑
l=1

(
lπ

b

)(
jπ

b

)
(ky0 + kybcos(lπ)cos(jπ)) δm,p (4.4.2)

KS
BB =

b

2

M∑
i=1

P∑
k=1

(kx0 + kxacos(iπ)cos(kπ)) δn,q (4.4.3)

KS
CC =

a

2

N∑
j=1

Q∑
l=1

(ky0 + kybcos(lπ)cos(jπ)) δm,p (4.4.4)

KS
AB = − b

2

M∑
i=1

P∑
k=1

(
iπ

a

)
(kx0 + kxacos(iπ)cos(kπ)) δn,q (4.4.5)

KS
AC = −a

2

N∑
j=1

Q∑
l=1

(
jπ

b

)
(ky0 + kybcos(lπ)cos(jπ)) δm,p (4.4.6)

4.5 Contribution to stiffness matrix from pre-

stress

If a plate is already loaded up to some level when the buckling analysis begins, the
eigenvalues will be lower. This can for instance be if a plate loaded in the transverse
direction (normal to the longest edge) with a constant load and one wants to find
how much load it can take in the longitudinal direction before buckling occurs. This
pre-stress can easily be modelled in Rayleigh-Ritz by including the expressions for
the load, not in the geometric stiffness matrix, which is linked with the eigenvalue,
but subtracting it from the material stiffness matrix. Thus, just like the elastic
springs on the boundary will raise the overall stiffness of the plate, the pre-stress
loads will lower it. In mathematical terms this can be written as:((

KM −Kpre
)
− ΛKG

)
A = 0 (4.5.1)
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where the terms in the pre-stress stiffness matrix are all, just like the terms in the
geometric stiffness matrix, KG, terms in the coefficients AijAkl. The terms depend
on which load is used as pre-stress. Only one or two of the three N1, N2 and N3 is
used as pre-stress at any time, while the other(s) are used in the buckling analysis.
In this way interaction curves for pre-stressed plates can be plotted as well as those
for initially unstressed plates. The only non-zero terms in the matrix are equal to
those in the geometric stiffness matrix:

Kpre
AA =

1

2

M∑
i=1

N∑
j=1

[
Nx,pre

(
iπ

a

)2

+Ny,pre

(
jπ

b

)2
]
ab

4
(4.5.2)

+
M∑
i=1

N∑
j=1

P∑
k=1

Q∑
l=1

[
Nxy,pre

(
iπ

a

)(
lπ

b

)[
a[1− (−1)i(−1)k]k

π(k2 − i2)

] [
b[1− (−1)j(−1)l]j

π(j2 − l2)

]
IikIjl

+ Nxy,pre

(
kπ

a

)(
jπ

b

)[
a[1− (−1)k(−1)i]i

π(i2 − k2)

] [
b[1− (−1)l(−1)j]l

π(l2 − j2)

]
IikIjl

]
where the appropriate pre-stress is set to a desired value and the two others are
set equal to zero.

4.6 Static condensation of degrees of freedom

The Rayleigh-Ritz model of the sandwich plate has been implemented in FOR-
TRAN as code. With a compiler program, the code is run and the eigenvalues are
obtained. In order to make the code as fast as possible, the static condensation
method has been used to make the stiffness matrix dimensions as small as possible.
This can be done because the only term in the geometric stiffness matrix is KG

AA.
The process is independent of the presence of both an elastic spring stiffness ma-
trix and a pre-stress matrix, as these can both be included in the material stiffness
matrix before static condensation is carried out. The system is now:


KM
AA KM

AB KM
AC

KM
BA KM

BB KM
BC

KM
CA KM

CB KM
CC

− Λ


KG
AA 0 0

0 0 0

0 0 0





A

B

C

 =


0

0

0


From these three equations in A, B and C, we see that only the first has anything
to do with the external loads in KG

AA. This enables us to condense the system from
a matrix of three by three sub-matrices, to a system of one sub matrix. From the
last equation one can write out an expression for C:

C = −KM−1

CC

[
KM
CAA + KM

CB

]
(4.6.1)
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This expression can now be used in the second equation to eliminate out C and
obtain an expression of B:

B = −
[
KM
BB −KM

BCKM−1

CC KM
CB

]−1 [
KM
BA −KM

BCKM−1

CA KM
CB

]
A (4.6.2)

which can be used to eliminate out B from the first equation, and express this
only in terms of A:[ [

KM
AA −KM

ACKM−1

CC KM
CA − ΛKG

AA

]
(4.6.3)

−
[
KM
AB −KM

ACKM−1

CC KM
CB

] [
KM
BB −KM

BCKM−1

CC KM
CB

]−1 [
KM
BA −KM

BCKM−1

CC KM
CA

] ]
A = 0

The condensed system can now be written on the form:(
K̃M − ΛK̃G

)
A = 0 (4.6.4)

where the condensed material stiffness matrix is:

K̃M =

[ [
KM
AA −KM

ACKM−1

CC KM
CA

]
(4.6.5)

−
[
KM
AB −KM

ACKM−1

CC KM
CB

] [
KM
BB −KM

BCKM−1

CC KM
CB

]−1 [
KM
BA −KM

BCKM−1

CC KM
CA

] ]

and the condensed geometric stiffness matrix is:

K̃G = KG (4.6.6)

4.7 Implementation of Rayleigh-Ritz in FORTRAN

The matrices derived in the previous section have been implemented in a FOR-
TRAN computer program, and a eigenvalue solver has been used to solve for the
eigenvalues. The model can be used for plates loaded in in-plane uni- or biax-
ial normal forces, in-plane shear forces, or any combination of these. The script
includes the material and geometric stiffness matrixes for eigenvalue analyses of
simply supported plates, and spring stiffness matrix which can be activated for
analysis of clamped plates.

In reality a plate is almost always found to be elastically supported, that is a
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place between simply supported and clamped, and because the boundary springs
can be set to whatever value, this can be modelled too. In addition, because the
springs on the boundary are independent of each other, these can be activated
individually in order to model plates with some edges fixes and some edges simply
supported. Free edges are for the moment not possible. A pre-stress matrix has
also been programmed so that plates which are already under some load can be
checked for buckling.

The FORTRAN script is shown in Appendix B.
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Chapter 5

Modelling in ABAQUS CAE

5.1 Introduction

This chapter deals with the creation of the models in ABAQUS CAE (Complete
Abaqus Environment)1 and the challenges encountered in modelling different types
of sandwich plates with this software. Before starting with the reference models,
to which the results from the analytical models could be compared, a verification
study was carried out to ensure correct results from these FEA models. A vari-
ety of elements were tested, mesh-refinements were carried out for the different
elements and the models were checked for convergence. With the lessons learned
from this small study, the next step was to create the Finite Element models for
validation of the analytical and semi-analytical models developed in the previous
chapters of the thesis.

There were also several problems encountered during the work of the thesis, some
modelling techniques that worked well for some plates did not work at all for
others. Some of the combinations of element type and mesh-size did not yield
satisfactory results, some even failed completely. Others performed well, and from
these analyses the 20-node solid brick element C3D20R and the 8-node shell ele-
ment S8R have been chosen as the elements to use in the further analyses.

Throughout the thesis the notation of the plate has been L1xL2xt1− tc− t2mm,
where L1 and L2 are the in-plane dimensions and t1, t2 and tc denote the thickness
of the plate layers as defined in the notation list.

1ABAQUS is a Finite Element software created by Simulia www.simulia.com
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Figure 5.1: ABAQUS solid element model with the out-of-plane boundary conditions
along the two red intersecting lines in the bottom of the plate. In this way, the edges
are free to move out-of-plane, while the two lines are fixed in this direction.

5.2 Modelling

5.2.1 Different element types

In Finite Element analyses, plates can be modelled either as a three-dimensional
solid or as a two-dimensional shell. For an isotropic plate the difference in mod-
elling with solids or shells will probably be negligible as the proper shell elements
can accurately describe the behaviour exhibited by a plate in bending or buckling.
For the type of sandwich considered in this thesis, however, an often considerable
part of the deflections will be the transverse shear deformations in the core due
to the low shear stiffness of this layer. This means that the cross-sections will be
linearly continuous only within each layer, but have a change of slope between the
core and face layers. This behaviour will not be caught either by the analytical
formulae presented in Chapter 2, the Rayleigh-Ritz model presented in Chapter 4
or the shell elements in ABAQUS. These theories all include the transverse shear
deformations because of the low shear stiffness of the core, but they also assume
that this shear deformation is linear and continuous over the entire cross-section.
Modelling with solid elements, however, will make this effect visible.

5.2.2 Solid elements

The plates that were modelled with solid elements were all made up geometrically
of three distinct layers, with different material properties assigned to each layer.
The three layers were assembled into one structure. All plates were meshed with
respect to element size, type and number of elements according to the conclusions
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found in the convergence study described below. For pressure analyses the load
was simply applied as a uniform pressure load to one of the face plates, and the
plate was laid up as a simply supported plate at the lower edge of the lower face
plate. For clamped plates it was very easy to perform the buckling analyses as the
edges were fixed, but it quickly became apparent that this was not as easy when
it came to the buckling analyses of simply supported plates.

Figure 5.2: Buckling shape of solid model plate in ABAQUS. The dark green quarter
shows the modelled plate, while the red lines show the boundaries of the theoretical
plate. Symmetry has been used to achieve this.

After some problems, which are described in Section 5.3, the following method
was found to be the most accurate. Two adjacent edges were fixed for rotation
and in-plane displacement and were only free to move out-of-plane. On the two
opposing edges, symmetry conditions were used. The out-of-plane boundary con-
dition was specified along two intersecting lines on the bottom of the lower face
plate, see Fig. 5.1.

The theory behind this approach was that by using symmetry conditions on the
two edges not used for in-plane support, one fourth of the modelled plate would
represent the theoretical plate (see Fig. 5.2). This ensured that the edges of the
modelled plate remained free of rotations, making it easier to correctly introduce
the in-plane loads to the structure. As the edges with symmetry conditions of
the modelled plate would represent the middle of the theoretical plate this would
also be correct. The reason is that the rotation of planes parallel with the edges
of a plate should at the middle of the plate, (a/2, b/2), remain zero during de-
formation (this assumes that the plate buckles into an odd number of half-waves
and is symmetrically loaded by normal forces). In the same manner, the edges at
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the centre of the modelled plate would rotate freely, thus representing the edges
of the boundary of the theoretical simply supported plate, shown in red in the
figure. It is important to point out that this approach will only work for buckling
modes with an odd number of half-waves. Another limitation of solid modelling
of sandwich plates is that in-plane shear loading proved to be so difficult to model
correctly that it was abandoned completely and these loading scenarios were suc-
cessfully modelled with shell elements instead. The approach described above was
nonetheless perfect for visually showing the effect of shear deformations through
the layers of the plate in uniaxial buckling and pressure loading, see Fig. 5.3.

Partial deflections

The partial deflection theory laid out in Section 2.4 says that the total transverse
deflection w can be split into two parts - wb from bending and ws from transverse
shear. To verify this theory, some of the solid element models were first allowed
to deform as they should when the effect of transverse shear is included. Then a
constraint was enforced on the plate, which specified that all nodes that initially
shared x- and y-coordinates through the plate should remain on a straight line
during the analysis. In essence this is the same as enforcing Navier’s hypothesis
and thereby stiffening the plate against transverse shear deformations.

By using the constraint called slider on all nodes through the thickness of the
plate (sharing x- and y-coordinates) this was easily achieved in ABAQUS. This
constraint specifies two reference nodes and forces any slave nodes to lie on a
straight line created between the two master nodes. In the models in question, the
two reference nodes were always the bottom node of the lower face plate and the
corresponding top node in the upper face plate. Because ABAQUS CAE does not
support the slider constraint in the graphical interface, a Python script had to be
developed. This script is shown in Appendix C.1. After running a normal analysis
without any sliders, the script was used to loop through the coordinate list in the
output files. For each node with z-coordinate equal to zero (bottom node of lower
face plate) the corresponding top node on the upper face plate was found, these
were the two reference nodes. Then the script looped through all the nodes not on
the top or the bottom of the plate and if the in-plane coordinates were the same
as a set of top and bottom nodes, a slider MPC command was written to a text
file; one line for each intermediate node. The lines written with the script were
then copied into the model via the Edit keyword option in ABAQUS CAE. The
analysis was then run one more time, and the plate was thus forced to disregard
transverse shear deformations in the core.
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Figure 5.3: Screen capture from ABAQUS shows the edge of a deformed solid model
plate. The red lines show the change of slope in the different layers of the sandwich
plate. This effect can only be observed by using solid elements in ABAQUS.

5.2.3 Shell elements

Shell element models were created by applying a composite lay-up to a two-
dimensional rectangular part. The material properties of each layer and the layer
thicknesses were entered into the composite lay-up manager and from that the
program created an equivalent stiffness, much like what is done in the analytical
and Rayleigh-Ritz approaches in this thesis, and applied that to the plate. One
major disadvantage over the solid element models was, of course, that there was no
longer any way to visually observe the cross-sectional rotations, and especially the
variation in slope between the core and the face layers. The advantages, however,
of using shell elements included faster modelling time, possibility of in-plane shear
(and combined) loading, accurate comparison between FEA and Rayleigh-Ritz and
analytical solutions, more control over boundary conditions and easier loading of
the model. It was apparent though, that the shell elements did not perform well
in every situation either, as described in Section 5.3.
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5.3 Problems encountered in modelling

5.3.1 Problems with solid model plate

In order for the buckling analyses of the simply supported plates to be accurate,
the load would have to be introduced into the plate as correctly as possible and
the edges of the plate would have to be able to deform as they wanted, with no
constraints. The most obvious thing to do would be to use nodes along the middle
plane edges of the plate for both in-plane and out-of-plane support and apply
the load to the steel face plates. When the analyses were run, however, the soft
material of the core made the supports move into the plate (or the plate warp
around the supports), see Fig. 5.4. One solution to this problem was to use the
slider constraint on the nodes along the edges of the core. Now the master nodes
were not the top and bottom nodes of the plate, but the nodes in the interface
between the core and face layers. In this way the core would remain straight during
deformation and the observed change in rotation between the core and face layers
would be preserved. This fixed the warping effect, but as the slider constraint
does not specify the distance between the nodes a new problem arose instead. In
some cases the effect was now that the plate collapsed onto itself instead. This
could have been fixed by another constraint in ABAQUS called link, but it was
not found to be possible to use both sliders and links at the same time.

Figure 5.4: Screen capture from ABAQUS shows the edge of a deformed solid model
plate. Here the core has stretched because the forces were applied in the steel face plates
and the boundary conditions in the relatively soft core. This erroneous buckling shape
was one of several problems encountered with solid models.
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5.3.2 Problems with shell model plate

When the shell elements models were created, they were first compared to PULS
2 using steel in the core layer. For the simply supported plate, the correct values
were only found when the nodal degrees of freedom on the boundary were fixed
against rotations in the two directions normal to the edge. In most cases this
worked well, however in some cases there seemed to be some wrinkling (individual
face layer buckling), thus giving both erroneous buckling loads and shapes. When
the two nodal rotation degrees of freedom were loosened, the wrinkling problem
disappeared but another problem could then occur. The number of half-waves in
the buckling shape was not the same as found with the Rayleigh-Ritz method or
the analytical formulae. When the plate was made bigger, this problem would
disappear, leading to the suspicion that there was some kind of limit in ABAQUS
where the type of isotropic sandwich plates considered here cannot be accurately
modelled. Looking back at Fig. 2.6 one can see that the buckling mode is very
sensitive to changes as the shear factor increases, and as π2θ reaches 0.5 and above,
it is difficult to even distinguish the modes from each other.

Another problem that was encountered was when looking at a large plate of
4190x2800mmx4-25-4, the same model would not work for a plate of 1600x800x5-
30-5mm. An eigenvalue would be found, but the buckling shape was completely
without relevance. This was only the case when the material properties were that
of the sandwich plate, not when changing the core layer to steel, meaning that
there exists some kind of limit in ABAQUS also for the slenderness of the plate or
ratio of stiffnesses. The problems were not investigated further in this thesis.

5.4 Convergence analysis

5.4.1 Analysis parameters

In order to verify that the analytical models gave accurate results they had to
be compared to something that was known to be correct. ABAQUS was used
to create these verification models. However, the accuracy of any Finite Element
model depends on several factors, including the type of element and the size of
the elements in the mesh. It cannot be known whether a model gives the correct
results before it has been checked for convergence, i.e. seeing if more elements in
the mesh leads to better results. If the model yields the same results after mesh
refinement the model has converged. Here lies the importance of this study.

2PULS - Panel Ultimate Limit Strength is a semi-analytical elastic buckling and ultimate
strength program for stiffened and unstiffened isotropic plates, developed at DNV.
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Steel Polyurethane

Young’s modulus - E 208000 MPa 750MPa
Shear modulus - G 80000 MPa 288 MPa
Poisson’s ratio - ν 0,3 0,3
Yield stressa- σF 235 MPa N/A
Strain hardening parametera- ET 1000 MPa N/A

a Only relevant for elasto-plastic and ultimate capacity analyses

Table 5.1: Material properties of core and face sheets used in Finite
Element models and analytical models.

The material properties as shown in Table 5.1. The size of the plate was set
to 800x800mm and created with face plate thickness of 5mm and core thickness
of 30mm for a total plate thickness of 40mm. Section properties were assigned to
each of the three layers. At first, the core was also modelled with steel material
in order to verify the model against the program PULS. When agreement was
obtained, the core material was changed to polyurethane.

The analyses were started with one element in each layer (one in each face plate
and one in the core) and if the results were not satisfactory in either eigenvalue,
buckling shape or both, the number of elements through each layer of the model
was increased. In the same way, all models were started with a relatively coarse
mesh of 50x50mm (in the plane of the plate) and the mesh refined to 40x40mm,
30x30mm and 20x20mm, and in some instances even 15x15mm and 10x10mm. Not
all models were refined through all the levels of element sizes, especially the second
order elements C3D20R gave satisfactory results already with the one element in
each layer and the largest element size (50x50mm). For this element type, mesh
refinement did not yield any improvement.

5.4.2 Results - solid element model

The plates in the solid model convergence analysis were modelled with the following
elements:

• C3D20R - A 20-node brick element with quadratic interpolation and reduced
integration

• C3D8R - An 8-node brick element with linear interpolation and reduced
integration
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• C3D8I - An 8-node brick element with linear interpolation and incompatible
modes

For the 800x800x5-30-5mm plate, the quadratic 20-node solids gave the correct
results already at 50x50mm element size and one element in each layer. This was
confirmed by refining the mesh and obtaining the same eigenvalue and buckling
shape and by comparing an all-steel plate model with results from PULS. The
linear 8-node solid element with reduced integration C3D8R did not give valid
buckling shapes until three elements were used in each layer and an element size
of 20x20mm. Even then, the computed eigenvalue was 12% higher than that com-
puted from the quadratic element C3D20R, and it was not until the element size
was reduced to 10x10mm that the results from the two element types were within
1% of each other. This requirement of extremely many elements in the model had
a significant impact on the computational time, in fact the model with 10x10mm
C3D8R elements and three elements in each layer took almost three hours to
compute, the 50x50mm C3D20R with one element in each layer took under five
minutes.

Figure 5.5: Eigenvalues computed for an 800x800x5-30-5mm plate in ABAQUS with
different solid element types and sizes. The eigenvalues have been normalised with
respect to the one found with the quadratic element C3D20R at 50x50mm element size,
which had converged.

In fully integrated first order elements, the interpolation functions make the ele-
ment unable to describe curved surfaces [12]. Hence, during bending, these ele-

61



Figure 5.6: Eigenvalues computed for a 1600x800x5-30-5mm plate in ABAQUS with
solid element C3D20R and linear element C3D8I with reduced integration. The eigen-
values have been normalised with respect to the one found with the quadratic element
C3D20R at 50x50mm element size, which had converged.

ments distort in a shearing rather than bending mode, and these artificial shear
deformations absorb strain energy making the element too stiff. This effect is
known as shear locking or parasitic shear. To overcome this, elements with re-
duced integration have been developed. While the second-order elements, such
as C3D20R and S8R performed well in most cases, the first-order elements such
as C3D8R and S4R suffered from another problem known as hourglassing. While
the fully integrated elements use several integration points within each element,
the reduced integration elements use very few. In fact, the fully integrated C3D8
element uses 8 points, while the corresponding C3D8R (reduced) uses only one
point. This is where the problem arises; with only one integration point, the el-
ement can deform in such a way that the strain energy calculated at the single
integration point equals zero. Hence, like the shear locking made elements too stiff
for fully integrated elements, hourglassing makes the reduced integration elements
too flexible. This can be overcome by using a fine mesh according to the ABAQUS
manual [15], but as seen above the computational time is very high.

Another type of element was also tested, a first order element with incompati-
ble modes, C3D8I. This element has been created to combat the parasitic shear by
introducing incompatible modes to improve bending behaviour. As can be seen in
Fig. 5.6, these elements perform, at least for the test plate, almost as well as the
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second order C3D20R element. Already at 50x50mm element size and one element
in each layer, this element was able to yield an eigenvalue within 2% of that com-
puted with quadratic element C3D20R. The second-order elements with reduced
integration do not suffer from hourglassing and is the best choice for modelling
bending behaviour [15] and [16].

5.4.3 Results - shell element model

The shell models were created with the same geometry and material parameters
as above, and two different elements were tested. These were:

• S8R - An 8-node shell element with reduced integration

• S4R - A 4-node shell element with reduced integration

The difference in the two elements was dramatically smaller than for the solid
elements. The quadratic element S8R with 50x50mm element size was used as
a baseline when it was clear that it had already converged. The model with the
linear S4R element and 50x50mm size yielded a buckling load only 0,3 percent
over that of the corresponding quadratic S8R element, see Fig. 5.7. This was
something completely different to the solid models. The S4R models were tried
out with progressively smaller element sizes, down to 20x20mm. This was done to
see if the eigenvalue had indeed converged already at 50x50mm, or if it was bound
for some lower level than the quadratic element.

Another interesting point was that for all the analyses, the shell element mod-
els yielded lower eigenvalues than the equivalent solid element models. This was
somewhat unexpected, as it was thought that introducing more degrees of free-
dom into the model, as is done with solid elements, would make it softer. Here, of
course, the difficulties in modelling exact boundary conditions for the solid model
might play a significant role.

5.4.4 Conclusions

Based on the findings of this convergence study and references [15], [16] and [17],
the second order elements with reduced integration C3D20R and S8R were chosen
for use in further ABAQUS analyses in this thesis. Shell elements have been
used for the most part for the analyses, except where the effect of transverse
shear deformation was to be visually verified. This leads to simpler models, easier
boundary conditions and easier loading, especially loading with in-plane shear,
than for solid element models.
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with respect to solid element C3D20R. Both shell element models yield lower eigenvalues
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Chapter 6

Sandwich plate calculator

6.1 Introduction

A classification note for Steel Sandwich Panel Construction, CN.30.11[1], has been
developed at DNV simultaneously with this thesis. The buckling part of the clas-
sification note is, like this thesis, based upon the analytical closed form formulae
found in Zenkert [3], so extensive testing has been carried out in verifying the the-
ory. The best way of doing this was in comparing the sandwich theory presented
in Chapter 2 with ABAQUS for a variety of different plates. In this process, Excel
has been used to make a calculator; a Visual Basic-automated spread-sheet. This
calculator accepts input such as material properties, loads and plate geometry,
and outputs this either as mid-plane deflection (if the load is lateral pressure) or
a set of eigenvalues (if the loads are in the plane of the plate). A combined load-
ing of lateral pressure and in-plane loads is currently not supported, although the
separate lateral pressure and buckling analyses can be run at the same time. The
results have been compared with both ABAQUS, for sandwich plates and all-steel
plates, and with PULS for all-steel plates.

6.2 SSPC calculator

A spread-sheet called SSPC calculator was made in Excel, see Fig. 6.1. The
spread-sheet and the classification note do not take into account the interaction
between lateral pressure and buckling loads, i.e. both analyses can be computed
simultaneously, but the results from the either does not affect the other.

The main concerns in designing the user interface were simplicity and clarity.
The column to the left are all input cells. These cells are arranged in groups of
geometric input, material input and input loads and allowable usage factors. The

65



column to the right include all the output values grouped by stiffness coefficients
(that are displayed in both types of analyses), buckling output (only displayed if
in-plane loads are present) and pressure output (only displayed if lateral pressure
is present). Different colours have been used in the columns, yellow indicate input,
while blue indicate output. The two shades of each colour were chosen to make it
easier to distinguish between the lines in the spread-sheet. The layout has changed
somewhat over the developing months, but it basically remains the same as when
first started.

By pressing the button called Calculate panel capacity, a sequence of Visual Basic
code will initiate the background calculations that will quickly be displayed in the
output cells. The code is made up of a number of smaller scripts, some of which
are common for all the plate analyses and some of which are only called in the
event of buckling or pressure. Built into the code are controls that ensure that
certain material property limits are not exceeded, and controls that determine if
the problem is one of buckling, pressure or both, depending on which input cells
are filled. Various pop-up warnings have been built in; some as messages with an
option of yes or no (such as telling that the core stiffness is higher or lower than
some limits and asking yes/no for continued calculations), some as pure messages
that say that the calculations have been halted (such as a core layer Young’s mod-
ulus higher than that of the face plate material). A plastic yield check for the
face plate material has also been included, that will halt the program and display
a pop-up message. If everything is ok, no pop-up messages should be presented
to the user, and the output is displayed in the right column. Also included in
the calculator are a check of core shear stress fracture and interface bonding shear
stress. These two factors are part of another on-going work at DNV and has not
been considered in this thesis. It has nonetheless been included in the calculator.

The values of capacity utilization are displayed in the top centre. These cen-
tre cells display the capacity values much larger and are meant to stand out as a
clear indicator whether or not the plate being considered will be OK under the
current configuration. In addition to the numerical values, the background colour
of these cells will assist in determining the plate capacity. If the value is lower than
that defined by the allowable usage factor input, the background will turn green.
If not, it will turn red. If the value is not available, such as pressure capacity
utilization in a pure in-plane load scenario, the background colour is yellow and
“N/A” will be displayed in lieu of a numerical value. Because the pressure will
give a known deflection value, this value can be used to find the maximum stress
in the face plates, the shear stress in the core and the shear stress in the interface.
Based upon this, the one actual usage factor closest to its corresponding allowable

66



usage factor will be used to calculate the maximum plate pressure. This will be
displayed just below the three usage factors, and a black arrow will point to the
one of the three usage factors that was the most critical.

A screen shot of the spread-sheet is shown in figure 6.1.
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Figure 6.1: Screenshot of the SSPC calculator in Excel
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Chapter 7

Results

7.1 Introduction

In this chapter the results from the verification of the various models are presented.
Both the analytical closed form solutions presented in Chapter 2 and the Rayleigh-
Ritz model presented in Chapter 4 have been compared to Finite Element models
in ABAQUS. For the lateral pressure analyses, simply supported plates both an-
alytical and with ABAQUS solid elements are compared. For the buckling analy-
ses, analytical simply supported and Rayleigh-Ritz simply supported and clamped
models are compared to ABAQUS shell elements. The last part is a comparison
between the simply supported analytical elasto-plastic model and an ABAQUS
ultimate capacity model using shell models.

7.2 Lateral pressure analysis

7.2.1 Introduction

A plate subjected to lateral pressure will deflect. In sandwich plates this deflection
will be the sum of two deformations, bending and transverse shear, as described in
Section 2.4 and computed by Eqs. (2.6.6) to (2.6.8). Failing to include the effects
of transverse shear deformations might for some plates severely under-predict the
lateral deflections, whereas for other plates it might not play a significant role
at all. It is known that for an isotropic steel plate, the effects of the transverse
shear become more important as the plate length to thickness ratio decreases to
around 10 [4], and that these effects will be less important as the ratio increases.
It is therefore reasonable to assume the same for sandwich plates. That is, for
some plates the shear deformations will be of great importance to the overall
deformations, whereas for other plates the shear deformations will be of little
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importance. For sandwich plates, however, it is not only the ratio of length over
plate thickness that will be governing, but also the thickness of the face sheets and
the thickness of the core.

Figure 7.1: ABAQUS solid element model showing deflection due to lateral pressure
on a simply supported plate.

7.2.2 Effect on transverse shear deformations of face to
core thickness ratio

Using Eqs. (2.6.6) to (2.6.8) the total deflection w, deflection due to bending
wb, and deflection due to shear ws, have been plotted for two square plates. One
plate was 2000mm square and the other was 500 square. Both plates had a total
thickness of 30mm, but the face and core thicknesses were varied. The boundary
conditions for these plates were simply supported along all four edges and the
applied load was 0.03MPa.

In the larger of the two plates the bending deformation is dominating the to-
tal deflection, as one can see from Fig. 7.2. As the core gets thicker and the face
sheets thinner, one can see that the total deflection increases but the shear defor-
mation are more or less constant. So changing the ratio of the core to face sheet
thickness has no apparent effect on the shear deformations other than making it a
smaller part of the total deformation, as long as the in-plane dimensions and the
total plate thickness remains the same. This can be explained by the expressions
for the bending and shear deformations, Eqs. (2.6.7) and (2.6.8), respectively.
The equation for bending deflection is inversely proportional to the flexural rigid-
ity, given by Eq. (2.5.4). This equation is itself proportional to both the face and
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the core thicknesses, but also to the Young’s moduli of the two materials. As the
core thickness increases, the third term in Eq. (2.5.4) also increases, but because
the relative insignificance of this term compared to the first two, which are cou-
pled with a Young’s modulus almost 300 times larger, the total flexural rigidity
decreases.

The equation for shear deflection is inversely proportional to the shear stiffness,
given by Eq. (2.5.5). This is only dependent on the shear modulus of the core,
not the Young’s moduli of the two materials. So as the face thickness decreases,
this has no apparent effect on the shear stiffness, and hence the shear deformation
part of the total deformations.

In the smaller plate, the shear deformations are still more or less constant, but
they are, for all the same configurations of core and face sheet thicknesses, larger
than the bending deformations. Seeing as the wb-term is equal to Kirchhoff thin
plate theory, shear deformation theory becomes more and more important as the
sandwich plate gets stockier and ws becomes more important.

The results have been compared to solid element models in ABAQUS (example
model in Fig. 7.1) and as one can see from the two graphs, Figs. 7.2 and 7.3, there
is good agreement between the analytical and Finite Element models. It is per-
haps the stockiest of the two plates (500mm) that has the best agreement overall.
The thinner plate (2000mm) has excellent agreement between the analytical and
Finite Element models for the bending deformation, while the shear deformation
is larger in the Finite Element model. For both cases the analytical models yield
a bit smaller total deflection than the Finite Element models, this might be due
to small differences in the boundary conditions between an analytical closed form
solution and a solid element model with several layers. For all practical purposes
the analytical formulae can be said to be in good agreement with Finite Element
analyses. It is also to be noted that the analytical closed form model might have
yielded better results compared to shell element models as these two theories are
more similar, but as described in Chapter 5 there was no method of enforcing
Navier’s hypothesis in shell elements like the sliders could do with the solid ele-
ments. The partition of the total deflection into bending and shear parts is thus
not possible with shell element models.
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Figure 7.2: Deflection of a square plate with sides of 2000mm and total thickness of
30mm. Different ratios of core and face sheet thicknesses along the x-axis.

Figure 7.3: Deflection of a square plate with sides of 500mm and total thickness of
30mm. Different ratios of core and face sheet thicknesses along the x-axis.
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7.2.3 Effect on transverse shear deformations of varying
face sheet thickness

To see the effect on shear deformations by varying the face thickness, 16 different
simply supported plates were checked for lateral deflections. The plates were all
square, with dimensions from 500mm to 4000mm, with increments of 500mm. For
8 of the plates the core thickness was set to 10mm and for the other 8 plates the
core thickness was set to 50mm. For each of the 16 plates, the face sheets were
varied between 2mm and 5mm with 1mm increments. The applied pressure was
again 0.03MPa.

Fig. 7.4 shows the shear deformation part of the total deformations for 4 dif-
ferent face thicknesses with the core constant at 10mm. Each core-face combi-
nation has been checked for the 8 different in-plane dimensions described above.
Fig. 7.5 shows the same for the plates with a 50mm core thickness and varying
face thickness, checked at the same 8 in-plane dimensions from 500mm to 2000mm.

For all cases the shear part of the total deflection decreases as the plate gets
bigger in the plane, and also as the face thickness is increased. With increased
face thickness comes increased flexural rigidity of the cross-section, and the plate
is able to carry more of the total deflection through bending of the faces, hence
the shear deformation part decreases. This can be explained in the same way as
in the previous section. The bending deflection part is dependent on the flexural
rigidity which is itself heavily influenced by the thickness of the faces, but not the
core. The shear deflection part is inversely on the shear stiffness, which is not very
sensitive to variations in the layer thicknesses.

Another thing one can see from comparing Figs. 7.4 and 7.5, is that for the
plates with a thick core at 50mm, the shear deformation ws is for all plates a
larger part of the total deformation w than in the case of the thinner plates with
core thickness of 10mm. The reason for this might be that the thicker the core
gets when keeping the face thicknesses the same, the more the face plates will be
able to slide relative to each other and the transverse shear deformation will be a
larger part of the same deformations. Another effect is that as the core thickness
is increased, the flexural rigidity of the plate increases. This makes the plate stiffer
in bending, and the bending part of the total deflection will be smaller.
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Figure 7.4: Shear deformation as part of total deformation for plates with constant
core thickness of 10mm and varying face thickness between 2mm and 5mm.

Figure 7.5: Shear deformation as part of total deformation for plates with constant
core thickness of 50mm and varying face thickness between 2mm and 5mm.
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7.2.4 Effect on transverse shear deformations of varying
the core thickness

To see the effect on shear deformations by varying the core thickness, a new set
of 16 plates was considered. The in-plane dimensions were still from 500mm to
4000mm with increments of 500mm. Eight of the plates had face thickness of 2mm
and eight had a face thickness of 5mm. The core was varied from 10mm to 50mm
with 10mm increments for each of the sixteen plates.

Figure 7.6: Shear deformations as part of total deformation for plates with constant
face thickness of 2mm and varying core thickness between 10mm and 50mm.

Just like the effects of varying the faces while keeping the core thickness con-
stant, described in the section above, varying the core thickness will yield similar
results. Looking at Fig. 7.6 for the plate with constant face sheets at 2mm, one
can see that the shear deformation part of the total deformations will decrease
both with increasing in-plane dimensions and decreasing core thickness. The same
can be noticed for the plate with thicker face sheets at 5mm, Fig. 7.7, but in this
case the shear deformation are for all different scenarios a larger part of the total
deformation.
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Figure 7.7: Shear deformations as part of total deformation for plates with constant
face thickness of 5mm and varying core thickness between 10mm and 50mm.

7.3 Eigenvalue analysis of simply supported plates

7.3.1 Introduction - importance of transverse shear defor-
mations

The relatively weak material of the core will have an impact on the computations
of buckling loads, just as it had on the computations of lateral deflections. The
lateral deflections will be under-predicted, but the elastic buckling loads will be
over-predicted if Kirchhoff thin plate theory is used. The reason for both are the
same, namely that failure to include the effects of transverse shear in the core will
make a plate too stiff in an analysis. Just as for the lateral deflections, this effect
will be prominent for some plates, but not significant for others.

The effect of shear deformations in buckling analyses is shown in Figs. 7.8 and
7.9, where the interaction curve for in-plane normal loads have been plotted for
shear deformation theory and thin plate theory, and verified with ABAQUS solid
models. The reason for the discrepancy between the analytical and the Finite El-
ement models is that the solid models are a bit softer than the analytical models.
This is probably due to the difference in boundary conditions between a simply
supported analytical plate model and a solid element model with several layers. A
more fitting comparison would be to use shell element models, but then it would
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Figure 7.8: Interaction curve for a thin plate at 4190x2800x4-25-4mm with plotted
with shear deformation theory presented in this thesis and Kirchhoff thin plate theory.
Verification of analytical formula against ABAQUS Finite Element model.

Figure 7.9: Interaction curve for a thin plate at 100x100x5-50-5mm with plotted with
shear deformation theory presented in this thesis and Kirchhoff thin plate theory. Veri-
fication of analytical formula against ABAQUS Finite Element model.

77



not be possible to enforce Navier’s hypothesis with sliders in ABAQUS, a proce-
dure which was explained in Chapter 5, and the effect of the difference in the two
theories would not have been possible to show. It is clear that for this relatively
thin plate at 4190x2800x4-25-4mm the difference in using thin plate theory is not
that large. The eigenvalues, and hence the buckling loads will be over-predicted,
but not significantly. In this case a large enough safety factor in design rules would
probably be enough to use thin plate theory safely.

As was found during the pressure analyses in the previous section, however, the
transverse shear deformations become increasingly important as the plate gets
stockier. In Fig. 7.9 a comparatively thicker plate at 1000x1000x5-50-5mm has
been computed using shear deformation and Kirchhoff thin plate theories and the
results have been verified against ABAQUS solid element models. It is easy to see
the large difference in the interaction curves, using thin plate theory for this kind
of stocky plate will significantly over-predict the eigenvalues and hence the buck-
ling loads of the plate. In fact, the eigenvalues computed with thin plate theory
are around three times as large as those computed with shear deformation theory.
In reality, however, such a thick plate will fail due to material yield at loads far
below the elastic buckling loads. It is nonetheless a theoretical result and shows
the importance of using this theory when designing SPS sandwich plates.

7.3.2 Verification of analytical model vs. ABAQUS shell
elements

The formulae in the analytical model which were presented in Chapter 2 have
been checked against ABAQUS shell element models. The plate dimensions are
4190x2800mm and 4-25-4mm thickness. The materials parameters were the same
as those used in the convergence analysis, shown in Table 5.1. The plate was
loaded in two different biaxial loading scenarios. One with a variation of N1 and
N2, i.e. in-plane normal forces, the other with N1 and N3, i.e. one in-plane nor-
mal and one in-plane shear force. In case of the first scenario, the applied loads
were calculated using points on a circle, starting from -30 degrees all the way up
to +120 degrees, with intervals at 10 degrees. In the second case of the second
scenario, the initial angle was -120 degrees going all the way up to +120 degrees
with 10 degree intervals. In both cases there were thus sufficient points to draw
up an accurate enough interaction curve.

The results for the first load scenario are shown in Fig. 7.10. In the figure, the axes
are those of the in-plane loads N1 and N2. In the first quadrant of the graph, both
forces are in compression, while in the second and fourth quadrants the applied
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N1 and N2 forces, respectively, are in tension. Pure uniaxial compression is shown
in the intersection points between the curve and the axes. As can be seen in the
second and fourth quadrant, tensile forces will stiffen the plate and make it carry
larger compressive forces in the perpendicular direction. The change of slope close
to the x-axis stems from the fact that this was a non-square sandwich plate. In
biaxial loading up to +10 degrees the buckling shape was two half-waves in the
longitudinal direction and for load combinations above +10 degrees the buckling
shape of the plate was one half-wave in each direction. As one can see there is very
good agreement between the analytical formulae and the Finite Element solution
for this load scenario.

Figure 7.10: Interaction curve for a simply supported 4190x2800x4-25-4mm plate with
varying in-plane normal forces N1 and N2. Verification of analytical formula against
ABAQUS Finite Element model.

The second load scenario with combination of in-plane normal force and shear
force is shown in Fig. 7.11. The intensity of the in-plane normal force N1 is shown
on the x-axis, while the intensity of the in-plane shear force N3 is shown along the
y-axis. A couple of things are different to the chart from the first load scenario,
shown in Fig. 7.10. Firstly, this curve is symmetrical about the x-axis. This stems
from the known fact that τxy = τyx, meaning that the direction of the applied shear
force is indifferent. The second difference is that this curve is smooth along its
entire length. This stems from the fact that a plate buckling under in-plane shear
forces cannot be described by the sine functions that are so useful to describe the
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buckling shape of a plate loaded by normal forces. This plate buckles into diagonal
buckles, see Fig. 7.14a, and there is no marked change from one buckling mode to
another. Because the formulae used in computing the buckling factor for a plate
in in-plane shear loading (see Section 2.7.3) are only approximate, there is a larger
discrepancy between the analytical and the Finite Element solutions, as shown
by the markers in Fig. 7.11, than for the first loading scenario. Nonetheless, the
agreement is very good, also for this kind of loading.

Figure 7.11: Interaction curve for a simply supported 4190x2800x4-25-4mm plate with
varying in-plane normal and shear forces N1 and N3. Verification of analytical formula
against ABAQUS Finite Element model.

7.3.3 Verification of Rayleigh-Ritz model vs. ABAQUS
shell elements

The same plate (4190x2800x4-25-4mm) that was compared to ABAQUS shell mod-
els in the previous section has also been used to verify the Rayleigh-Ritz semi-
analytical model. The Rayleigh-Ritz model was programmed in FORTRAN. The
loading scenarios were the same as for the verification of the analytical formulae
in the last section, but with an important addition. Because Rayleigh-Ritz is an
energy method, it is easy to include pre-stresses in the model (which was not the
case for the analytical models). What this means is that the plate is loaded by one
of the three main loads (N1, N2 or N3) before a linear buckling analysis is done.
Because the plate is already loaded when this analysis starts, it means that it has
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(a) (b)

Figure 7.12: (a) Buckling shape plot from ABAQUS for a simply supported sandwich
plate in longitudinal buckling and (b) from the Rayleigh-Ritz model in FORTRAN.

already used some of its capacity to carry loads and consequently the eigenvalues
should be lower.

The values of the pre-stress (measured in N/mm) were chosen as to correspond
with the face sheet thickness. Because the plate considered here had face sheet
thickness of 2x4mm, the applied pre-stress were chosen so that by dividing by 8
the stress in the steel plates were, for instance, 1343[N/mm]/8[mm]=166[MPa].

In ABAQUS the pre-stress analyses were done by using a static step with the pre-
stress load before the linear perturbation step (buckle analysis), while in Rayleigh-
Ritz it was done by inserting a pre-stress matrix into the eigenvalue equations, as
shown in Eq. (4.5.1). As one can see from Fig. 7.13 there is very good agreement
between the semi-analytical and the Finite Element solutions for the scenario with
varying in-plane normal loading, N1 and N2. The other scenario with varying
in-plane normal and shear forces, N1 and N3, also shows a very good agreement
between the semi-analytical model and the Finite Element solution. It is also clear
that for load scenarios that include in-plane shear loading (N3), the Rayleigh-Ritz
model will be superior to the approximate formulae in the analytical model. These
formulae, however, have the advantage of being very quick to use. It also worth
noting that the difference in the two methods is not very large, and that the ap-
proximate formulae will yield a conservative eigenvalue.
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Figure 7.13: Interaction curve for a simply supported 4190x2800x4-25-4mm plate with
varying in-plane normal forces N1 and N2. Verification of Rayleigh-Ritz model against
ABAQUS Finite Element model.

(a) (b)

Figure 7.14: (a) Buckling shape plot from ABAQUS for a simply supported sandwich
plate in shear buckling (b) and from the Rayleigh-Ritz model in FORTRAN.
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Figure 7.15: Interaction curve for a simply supported 4190x2800x4-25-4mm plate with
varying in-plane normal forces N1 and N2. Verification of Rayleigh-Ritz model against
ABAQUS Finite Element model.
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7.4 Eigenvalue analysis of clamped plates - Rayleigh-

Ritz model vs. ABAQUS shell elements

In order to model clamped plates in the Rayleigh-Ritz model, elastic springs were
used along the edges of the plate with a very high spring stiffness that made the
rotations of the edges approach zero. The magnitude of the spring stiffness was
found by simple trial and error in a convergence test; when the eigenvalue had
reached a maximum, the springs were stiff enough to prevent edge rotations. The
mathematical implementation of these springs is shown in the chapter describing
the Rayleigh-Ritz model. For the clamped plates, the eigenvalues did not con-
verge as quickly, i.e. with the same number of terms in the series, as the simply
supported plates, and for that reason the computational time of these plates was
several times higher. Nonetheless, the total time was still lower than that of anal-
ysis in ABAQUS.

Figure 7.16: Interaction curve for a clamped 4190x2800x4-25-4mm plate with varying
in-plane normal forces N1 and N2. Verification of Rayleigh-Ritz model against ABAQUS
Finite Element model.

The same plate as was used for the simply supported plate verifications (4190x2800x4-
25-4mm) was used here as well. Clamping the plate with springs will make it stiffer
and able to carry higher in-plane loads. The load scenarios were the same as for
the simply supported plates, one with varying in-plane normal forces, N1 and N2,
and one with varying in-plane normal and shear forces, N1 and N3. Pre-stressing
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(a) (b)

Figure 7.17: (a) Buckling shape plot from ABAQUS for a clamped sandwich plate in
longitudinal compression and (b) from the Rayleigh-Ritz model in FORTRAN.

of the plate was also done for the clamped models.

The results for the first load scenario with varying in-plane normal forces, N1
and N2, are shown in Fig. 7.16 and the comparison of the buckling shape from
ABAQUS and Rayleigh-Ritz is shown in 7.17a. The curve is smoother compared
with the simply supported plate with same loading in Fig. 7.13. This is due to
the fact that for a simply supported plate, the region in the load-space where the
buckling shape is similar, the curves are linear. For the clamped plate, the plate
buckling shape is not described by sine half-waves, and it may be that for the
clamped plate the change between different modes is not as pronounced as for the
simply supported plate. Again, there is very good agreement between the semi-
analytical and Finite Element solutions.

For the second load scenario with varying in-plane normal force, N1, and in-plane
shear force, N3, the results are shown in 7.18 and the corresponding buckling
shapes from ABAQUS and Rayleigh-Ritz are shown in Figs. 7.19a and 7.19b. As
for the first scenario, there is very good agreement between the Finite Element
method and the Rayleigh-Ritz method.
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Figure 7.18: Interaction curve for a clamped 4190x2800x4-25-4mm plate with varying
in-plane normal forces N1 and N3. Verification of Rayleigh-Ritz model against ABAQUS
Finite Element model.

(a) (b)

Figure 7.19: (a) Buckling shape plot from ABAQUS for a clamped sandwich plate in
shear buckling and (b) from the Rayleigh-Ritz model in FORTRAN.
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7.5 Elasto-plastic buckling analysis

7.5.1 Elasto-plastic formula vs. eigenvalue and von Mises

The elasto-plastic buckling formula in Eq. (2.8.6) is a simplified ultimate capacity
check. It corrects the elastic eigenvalue for material yield and initial imperfection.
It does not take the reserve capacity of plates, or the strain hardening of the steel,
into account. For the 4180x2800x4-25-4mm plate, the formula has been plotted
in Fig. 7.20 against the eigenvalue computed with the analytical formula, Eq.
(2.7.11) and the von Mises ellipse. The von Mises ellipse indicates the points on
the load curve where the plate will reach its ultimate capacity due to material
yield of the face plate material. The fit between the elasto-plastic formula and the
eigenvalue and von Mises curves is generally good with the elasto-plastic buckling
curve always being on the inside, or on top of, the two other curves.

Figure 7.20: Capacity curve with elasto-plastic loads compared with von Mises yield
and eigenvalues, all computed with the analytical formulae. All values have been nor-
malised with respect to the yield stress in the face plate material.
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7.5.2 Elasto-plastic formula vs. ABAQUS ultimate capac-
ity

The elasto-plastic formula has been compared with a solid element model in
ABAQUS. In this model the face plate steel is a bilinear material with a strain-
hardening parameter ET = 1000MPa. This model was run through a series of
non-linear Riks analyses in ABAQUS, thus taking into account both the material
plasticity and the reserve capacity in the plate. For the non-linear analyses the
imperfections used were the first buckling modes from the linear buckling analy-
sis. The script used to make the input files for ABAQUS is shown in Appendix C.2.

The shape and the amplitude of the imperfection can greatly influence the results
in a non-linear analysis. In Fig. 7.21 the ultimate capacity from the ABAQUS
solid model has been plotted for two different imperfection scenarios along with
the same curves that are shown in Fig. 7.20. The two ultimate capacity curves rep-
resent two different analysis methods. One where the imperfection from the first
buckling analysis, at -30 degrees on the load interaction curve, was used for all
the subsequent analyses, thus making it necessary to run only one linear buckling
analysis, and one where a new buckling analysis was run before each non-linear
analysis, thus obtaining the correct buckling shape as a basis for the imperfection
of each non-linear case. This was done in order to investigate the jump in the
blue curve (the one with a new imperfection for each case) around the x-axis of
Fig. 7.21. This area of the curves is where the buckling shape changes from two
half-waves to one half-wave in the longitudinal direction, and it was thought that
this jump might not indicate the smallest ultimate capacity.

The plotting of the beige line in Fig. 7.21 confirmed that this was indeed the
case. This line represents the ultimate capacity computed with the same imper-
fection shape for all analyses. It is seen that for the load cases below the x-axis
the blue and beige lines are indeed the same, because at these load cases the num-
ber of half-waves are similar for both scenarios and the imperfection shapes are
identical. As the load approaches +30 degrees where the two curves intersect,
it is clearly the blue line (updated imperfection) that yields the lowest ultimate
capacity for the next load cases. The reason for the beige line’s over-prediction is
that because the plate is forced to deform into a shape with two half-waves it is
made unnaturally stiff at these load combinations, essentially requiring that the
transverse deflection, w, is zero along the mid-span of the L1-direction. As the
curves approach +180 degrees, they seem to converge, but as the applied stresses
are increasingly tensile, this particular model becomes increasingly invalid. In this
thesis, however, the interesting part of the curve is the one plotted, between -30
and +120 degrees on the load interaction curve. In this part of the load space, the
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Figure 7.21: Interaction curve with von Mises stress, elasto-plastic and ultimate ca-
pacity and eigenvalues. All values have been normalised with respect to the yield stress
in the face plate material.

ultimate capacity is the minimum of the two curves, which, except for the small
jump around 0 to +10 degrees, coincides with the blue curve.

It is also interesting to compare the ultimate capacity and eigenvalue curves from
ABAQUS. In uniaxial compression in the longitudinal direction, the elastic buck-
ling load is higher than the ultimate capacity, but for the other load cases, above
+10 degrees on the load interaction curve, the ultimate capacity of the plate is the
highest. The reason is that because the plate is non-square, the reduced slender-
ness of the plate is different in the two principal load directions. Jumping ahead
and looking at Fig. 7.23 one can see that for small values (1.5 and lower) of the
reduced slenderness λ̄ the eigenvalue might be much higher than the elasto-plastic
value, or they might be fairly close, as they are from the region around 1.5. At
values below 1, the plate capacity is dominated by material yield, while at val-
ues higher than 1 the elastic eigenvalue is the dominant factor. In the eigenvalue
dominated region, where the reduced slenderness is below 1, non-linear analyses
will also include the reserve capacity of plates, something which is evident when
comparing the ABAQUS ultimate capacity and the elasto-plastic values in figure
7.23. These effects are not accounted for by the elasto-plastic formulae used in
this thesis and in the DNV classification note on Sandwich Panels [1].
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Figure 7.22: Interaction curve with the von Mises ellipse, the elasto-plastic buckling
load and two different ultimate capacity curves from ABAQUS which are dependent on
the amplitude of the imperfection in the analyses. Two different imperfection amplitudes
are used, L2/200mm and L2/650mm.

The amplitude of the imperfection has also been considered. In Fig. 7.22 the
blue ultimate capacity curve in Fig. 7.21 has been plotted for an imperfection
amplitude of L2/200 and L2/650, where L2 is the length of the shortest edge of
the plate. As can be seen there is a larger difference where the imperfection shape
is made up of two half-waves, than where there is only one half-wave.

7.5.3 Reduced slenderness curve

The elasto-plastic formula has also been plotted against the analytical eigenvalue
and the ABAQUS eigenvalue and ultimate capacity values in Fig. 7.23. The same
in-plane dimensions were used for these analyses as for the other buckling and
ultimate strength analyses as above, but the core was varied in thickness between
80mm and 10mm with steps of 5mm. The curve is seen to give a very good
approximation of the ultimate capacity for most cases. As the reduced slenderness,
λ̄, increases beyond 1 it can be seen that the elasto-plastic formula yields lower
values than the ultimate capacity of ABAQUS. The reason is that this formula
does not allow loads beyond elastic buckling and hence the reserve capacity which
is found in plates is not accounted for. As the reduced slenderness approaches 0.5
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it can be seen that the elasto-plastic curve converges towards the yield strength
of the material while the ABAQUS results suddenly rise above this line. This is
the effect of strain hardening in the steel. These effects have not been investigated
further in this thesis, but the point of the elasto-plastic formula is to be a safe and
easy-to-use approximation and, because it does not take any of these effects into
consideration, it is.

Figure 7.23: Capacity versus reduced slenderness plot of elastic buckling loads, elasto-
plastic load and ultimate capacity. Plate is subjected to uniaxial compression in the
longitudinal direction.

7.5.4 Load-displacement curves

ABAQUS has been used to create non-linear load-displacement curves for different
plates. Two of these plates are included here. The results are the same as used for
plotting the reduced slenderness curve in Fig. 7.23. Whereas, in that curve only
the ultimate load was extracted, here the data are used to plot a load-displacement
path.

Fig. 7.24 shows one such graph plotted for three different levels of imperfection
amplitudes, L2/2000, L2/500 and L2/200. Along with these three curves, the
elastic buckling load and the elasto-plastic buckling loads have been plotted. This
is a plate with a reduced slenderness of around 2.0 so according to Fig. 7.23 there
should be a large reserve capacity above the eigenvalue, and also the elasto-plastic
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Figure 7.24: Load-displacement curve for a plate with reduced slenderness of about 2.

buckling load.

Fig. 7.25 shows the same load-displacement curve for a stockier plate, with a
reduced slenderness of around 1.0. The same three imperfection amplitudes have
been plotted. Here the eigenvalue is higher than the ultimate capacity found in
ABAQUS, while the elasto-plastic buckling value touches the ultimate capacity of
the largest imperfection amplitude at L2/200.

What is also apparent is that for the slender plate, there is little difference be-
tween the three imperfection curves, whereas for the stockier plate there is differ-
ence both in shape and ultimate capacity. This indicates that the stockier plate
is more sensitive to the amplitude of the imperfections, but in reality this will be
countered by the fact that the geometrical imperfections are smaller and less
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Figure 7.25: Load-displacement curve for a plate with reduced slenderness of about 1.
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Chapter 8

Conclusions

8.1 Introduction

In this thesis alternative methods to the Finite Element method have been found
and verified for bending and buckling of steel elastomer sandwich plates. Because
the material of the core layer of this type of sandwich plate is so weak compared
to the face plate material, significant transverse shear deformations can arise in
the core. For this reason the normal Kirchhoff thin plate theory can not be relied
upon to yield satisfactory results in plate problems such as bending deflection and
eigenvalues for buckling.

Two methods have been considered, Mindlin-Reissner plate theory, which is an
analytical method that extends the Kirchhoff thin plate theory to include the ef-
fects of transverse shear deformations, and a semi-analytical Rayleigh-Ritz model.
The analytical formulae have been implemented in a automated Excel sandwich
plate calculator and the Rayleigh-Ritz model has been implemented into FOR-
TRAN as a code. The Rayleigh-Ritz model uses Fourier series to approximate
the problem variables. The analytical model can be used to check for lateral de-
flections and buckling loads in simply supported plates. The Rayleigh-Ritz model
does not check for lateral deflections due to transverse pressure, it is a pure eigen-
value solver. On the other hand it can model both simply supported and clamped
plates via elastic springs at the boundary edges, and indeed any elastic stiffness
between the simply supported and clamped cases. Prestress is also included in the
Rayleigh-Ritz model, as is a more accurate approximation of eigenvalues where
in-plane shear loading is present, than the analytical closed form model.

In addition to this, a conservative ultimate capacity formula has been checked
that takes the elastic eigenvalues found in the analytical models and corrects these
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for material yield. All the results from the different models have been verified
against the Finite Element software ABAQUS.

The results generally show very good agreement, with some small difference for
some cases. As an alternative to the Finite Element method, both the analytical
formulae implemented in Excel, and the semi-analytical model implemented in
FORTRAN will yield satisfactory results for the problems discussed in this thesis,
and often at a considerable lower cost of modelling and computational time.

8.2 Analytical models

The Mindlin-Reissner plate theory is a theory originally conceived for thick isotropic
plates, but by using stiffness coefficients computed for a sandwich plate, this
method is applicable also for the type of sandwich plates considered in this the-
sis. In Chapter 2 the differential equation for a sandwich plate was derived using
summation of forces and moments, and this equation was solved in order to arrive
at expressions for bending deflection and eigenvalues. The principle of partial de-
flections was also introduced, which states that the plate problems can be solved
for bending and shear deformations separately and the results superimposed to
get the total deformations. The expressions for eigenvalue are exact for applied
in-plane normal forces, but for applied in-plane shear forces an empirical formula
must be used. Formulae for combined loading in the buckling analyses are also
introduced. Much of the theory in Chapter 2 is shared with the new DNV classi-
fication note on sandwich plates [1], and has been implemented in an automated
Excel sandwich plate calculator, as shown in Chapter 6.

The results of the comparison between the analytical closed form solutions and
the Finite Element method are shown in Chapter 7. For the lateral pressure anal-
yses several plates were considered with varying ratio between core and face sheet
thickness, as well as varying face sheet thickness for a constant core thickness and
vice versa. In these analyses ABAQUS solid models were used in order to find
the total deformation, the bending deformation and shear deformation, and these
were compared to the analytical values.

For the core and face ratio analyses, the factor that most influenced the defor-
mations was the reduction of the face sheet thickness. The bending deformation
part increased between 50-100% for the considered plates, while the shear defor-
mation part was virtually unchanged.

In the analyses were the core thickness was kept constant and the face sheets
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were varied, and vice versa, the shear deformation was found to often be a large
part of the total deformation. This depended most heavily on the slenderness of
the plate. In all cases there was a good agreement between the analytical model
and the ABAQUS solid model, the small difference might be attributed to the
differences in boundary conditions between a analytical plate and a solid element
plate with several layers.

For the buckling analyses the analytical model yielded very good agreement with
to ABAQUS for the case where only in-plane normal forces were applied. The case
where in-plane shear forces are also present had some disagreement between the
two methods, but it must be stated again that for shear buckling, an empirical
formula had to be used in the analytical model.

The analytical model was finally used in a simplified ultimate capacity check,
where the elastic eigenvalues were corrected for material yield in the face plate. In
this check, the ultimate capacity can never exceed either elastic eigenvalues or von
Mises yield. Compared to ABAQUS ultimate capacity analyses done with geo-
metric and material non-linearity, this was shown as a safe and accurate approach
for plates with reduced slenderness below 1, while for thinner plates, the method
heavily under-predicted the ultimate capacity compared to ABAQUS. The reason
is that effects such as strain hardening or plate reserve capacity is not considered
in the simplified method.

8.3 Semi-analytical model - Rayleigh-Ritz

The principles of the Rayleigh-Ritz method are shown in Chapter 4 and the par-
ticular model developed for sandwich plates is shown in Chapter 4. The method
springs out from the potential energy expression of the plate. By using the
Fourier series to approximate the transverse deflection and shear deformations,
this method will transform the continuous variables in the differential equation
into a set of algebraic equations. The method is very powerful as is evident by
the relative ease with which both elastic springs at the boundary and prestresses
have been included. This method is also much better than the analytical formulae
when applied in-plane shear forces are present in buckling analyses. Because both
the Rayleigh-Ritz and Finite Element methods springs out of the same principle,
or theory, this was somewhat expected.

The results from the verification of the method are shown in Chapter 7. The
model was used to check buckling from in-plane normal and shear forces, and
the results were verified against ABAQUS shell element models. For the simply
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supported plates, the agreement between the two methods was very good, both in
cases with prestress and where in-plane shear forces were present. Especially in the
latter, the Rayleigh-Ritz was more accurate than the analytical formulae. For the
clamped plates, the agreement was also good, but the computational time in FOR-
TRAN was several times higher than for the simply supported plates. Nonetheless,
even the clamped plates were faster in FORTRAN than in ABAQUS because the
method does not require time for modelling of each case.

8.4 Suggestions for further work

During the work of this thesis, several ideas for further work was discussed. They
are mainly related to the Rayleigh-Ritz model, as this is the one with the most
potential. Examples of further work include:

• Extend the Rayleigh-Ritz model to also include stiffeners in the plate. Steel
elastomer sandwich plates are ideal for use in repair of damaged structures,
and this will most often include some kind of stiffened plate. Example of
Rayleigh-Ritz models for stiffened plates are given in Brubak (2003) [18] and
Brubak, Hellesland and Steen [18].

• Extend the Rayleigh-Ritz model to a non-linear model which can be used in
ultimate capacity analyses, as was done in Brubak [19].

• Connect the Rayleigh-Ritz model to the Excel spread-sheet calculator, so
that the buckling part of the calculator is done with semi-analytical methods.
This can be advantageous for cases with in-plane shear forces, or for pre-
stress.

• Creating a sandwich/thick plate element for PULS based on the Rayleigh-
Ritz model in this thesis has also been discussed as a suggested future work.
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Appendix A

Rayleigh-Ritz model

A.1 Differentiated series expressions

The derivatives of the assumed displacement functions for transverse deflection w,
and the cross-sectional rotations γxz and γyz are used in the expressions for the
potential energy of the plate. The differentiated expressions are:
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A.2 Expressions for potential energy in Rayleigh-

Ritz model

The Rayleigh-Ritz method rarely yields the exact solution. Rather, the computed
eigenvalues converge from above toward the exact eigenvalues as more terms in
the displacement series are added. These functions are approximated by adding a
finite number of terms in the series, from 1 up to M , N , P and Q, respectively.
When the displacement functions have been inserted into the expressions for strain
energy and load potential, these become:
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The occurrence of the series in the second power, prompts the using of four rather
than two series when the expressions are expanded, summing over m, n, p and q.
Using the trigonometric expressions for simplification:
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The terms δmp and δnq are the Kronecker delta, these ensure that the integrals
are only non-zero for terms where p equals m and q equals n. Similarly Imp and
Inq are matrices which ensure that the integrals are only non zero when, for this
integral, p is not equal to m and q is not equal to n.
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Because all the integrals in the expression for the potential energy (except the
shear load term, Nxy) are non-zero only when m = p and n = q, we can replace
p with m and q with n (except in the shear load term, Nxy) and then we get the
final expressions for the strain energy and load potential as shown in Eqs. (4.2.14)
and (4.2.15)

A.3 Integrals used in the potential energy

The integrals appearing in the potential energy expression are: Appearing in the
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Appearing in the terms with Dxy/2:∫ b
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Appearing in the terms with Sx and Nx:∫ b
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Appearing in the terms with Sy and Ny:∫ b
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Appearing in the term with Nxy:∫ b
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Appendix B

Rayleigh-Ritz FORTRAN scripts

B.1 Main program file

PROGRAM Eigenproblem

!Defines numeric precision

USE kind_values , only: wp => wp_swan

REAL(wp) :: a, b, t1 , t2 , tc, Ef, Ec, nuf , nuc , k_rot1 , k_rot2 , k_rot3 , theta , thetamax , thetamin , thetastep , &

k_rot4 , N10 , N20 , N30 , N10pre , N20pre , N30pre , lambda

INTEGER iLambda , maxMa , maxNa , maxMb , maxNb , maxMc , maxNc , Itheta , analysisnumber , analysistype

DOUBLE PRECISION ,PARAMETER :: PI = 3.141592654

DOUBLE PRECISION , DIMENSION (:), ALLOCATABLE :: LambdaArray

!****************************************************************************

!* Plate properties *

!****************************************************************************

a = 4190

b = 2800

t1 = 4

t2 = 4

tc = 25

Ef = 208000

Ec = 750

nuf = 0.3

nuc = 0.3

!****************************************************************************

!* Boundary conditions (Large stiffness = clamped plate) *

!****************************************************************************

!*********** Clamped *****************

k_rot1 = 1000000000000000000

k_rot2 = 1000000000000000000

k_rot3 = 1000000000000000000

k_rot4 = 1000000000000000000
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!********** Simply supported *********

!k_rot1 = 0

!k_rot2 = 0

!k_rot3 = 0

!k_rot4 = 0

!****************************************************************************

!* Number of the eigenvalue *

!****************************************************************************

iLambda = 1

!****************************************************************************

!* Degrees of freedom *

!****************************************************************************

maxMa= 20

maxNa= 20

maxMb= 20

maxNb= 20

maxMc= 20

maxNc= 20

iNumDof = maxMa*maxNa

kNumDof = maxMa*maxNa+maxMb*maxNb+maxMc*maxNc

!****************************************************************************

!* Load conditions - analysistype *

!****************************************************************************

! Analysistype= 1 if single load combination

! 2 if interaction curve with constant N30

! 3 if interaction curve with constant N20

! 4 if interaction curve with constant N10

analysistype =1

IF (analysistype ==1) THEN

N10 =33

N20=0

N30=0

Call Eigenvalue(a, b, t1, t2, tc , Ef , Ec , nuf , nuc , &

N10 , N20 , N30 , N10pre , N20pre , N30pre , iNumDof , kNumDof , iLambda , maxMa , &

maxNa , maxMb , maxNb , maxMc , maxNc , k_rot1 , k_rot2 , k_rot3 , k_rot4 , Itheta , lambda , analysistype)

PRINT *,"RAYLEIGH_RITZ :"

PRINT *, "LAMBDA :"

PRINT *,lambda

pause

ELSE IF (analysistype ==2) THEN

analysisnumber =16

thetastep=PI/18.0

theta=-3*PI/18.0

allocate(LambdaArray(analysisnumber ))

DO Itheta=1, analysisnumber

N10=cos(theta )*(t1+t2+tc)

N20=sin(theta )*(t1+t2+tc)

N30pre =0

Call Eigenvalue(a, b, t1, t2, tc , Ef , Ec , nuf , nuc , &
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N10 , N20 , N30 , N10pre , N20pre , N30pre , iNumDof , kNumDof , iLambda , maxMa , &

maxNa , maxMb , maxNb , maxMc , maxNc , k_rot1 , k_rot2 , k_rot3 , k_rot4 , Itheta , lambda , analysistype)

LambdaArray(Itheta )= lambda

PRINT *,"Analysis number", Itheta

PRINT *,"Eigenvalue",lambda

theta=theta+thetastep

END DO

!************************************************************************

!* Print the eigenvector to a file *

!************************************************************************

OPEN(unit=1, access='sequential ', status='replace ', name='LambdaArray.csv')
DO intI = 1 ,analysisnumber

WRITE (1,*) LambdaArray(intI) ! Use format '(A1 ,F20.2)' instead of * if needed

END DO

CLOSE (1)

!************************************************************************

!************************************************************************

ELSE IF (analysistype ==3) THEN

!analysisnumber =15

analysisnumber =25

thetastep=PI/18.0

theta =-12*PI /18.0

allocate(LambdaArray(analysisnumber ))

DO Itheta=1, analysisnumber

N10=cos(theta )*(t1+t2+tc)

N30=sin(theta )*(t1+t2+tc)

N20pre =267

Call Eigenvalue(a, b, t1, t2, tc , Ef , Ec , nuf , nuc , &

N10 , N20 , N30 , N10pre , N20pre , N30pre , iNumDof , kNumDof , iLambda , maxMa , &

maxNa , maxMb , maxNb , maxMc , maxNc , k_rot1 , k_rot2 , k_rot3 , k_rot4 , Itheta , lambda , analysistype)

LambdaArray(Itheta )= lambda

PRINT *,"Analysis number", Itheta

PRINT *,"Eigenvalue",lambda

theta=theta+thetastep

END DO

!************************************************************************

!* Print the eigenvector to a file *

!************************************************************************

OPEN(unit=1, access='sequential ', status='replace ', name='LambdaArray.csv')
DO intI = 1 ,analysisnumber

WRITE (1,*) LambdaArray(intI) ! Use format '(A1 ,F20.2)' instead of * if needed

END DO

CLOSE (1)

!************************************************************************

!************************************************************************

ELSE IF (analysistype ==4) THEN

analysisnumber =15

thetastep=PI/18.0
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theta=-3*PI/18.0

allocate(LambdaArray(analysisnumber ))

DO Itheta=1, analysisnumber

N20=cos(theta )*(t1+t2+tc)

N30=sin(theta )*(t1+t2+tc)

N10pre =0

Call Eigenvalue(a, b, t1, t2, tc , Ef , Ec , nuf , nuc , &

N10 , N20 , N30 , N10pre , N20pre , N30pre , iNumDof , kNumDof , iLambda , maxMa , &

maxNa , maxMb , maxNb , maxMc , maxNc , k_rot1 , k_rot2 , k_rot3 , k_rot4 , Itheta , lambda , analysistype)

LambdaArray(Itheta )= lambda

PRINT *,"Analysis number", Itheta

PRINT *,"Eigenvalue",lambda

theta=theta+thetastep

END DO

!************************************************************************

!* Print the eigenvector to a file *

!************************************************************************

OPEN(unit=1, access='sequential ', status='replace ', name='LambdaArray.csv')
DO intI = 1 ,analysisnumber

WRITE (1,*) LambdaArray(intI) ! Use format '(A1 ,F20.2)' instead of * if needed

END DO

CLOSE (1)

!************************************************************************

!************************************************************************

END IF

Pause

END PROGRAM

B.2 Plate stiffness matrices

SUBROUTINE Eigenvalue(a, b, t1, t2, tc, Ef, Ec , nuf , nuc , &

N10 , N20 , N30 , N10pre , N20pre , N30pre , iNumDof , kNumDof , iLambda , maxMa , &

maxNa , maxMb , maxNb , maxMc , maxNc , k_rot1 , k_rot2 , k_rot3 , k_rot4 , &

Itheta , lambda , analysistype)

USE EigenproblemHandler

IMPLICIT NONE

DOUBLE PRECISION a, b, t1 , t2 , tc, Ef, Ec, nuf , nuc , Dx, Dy, Dxy , Gc, Sx, Sy, &

darm , lambda , N10 , N20 , N30 , N10pre , N20pre , N30pre , &

k_rot1 , k_rot2 , k_rot3 , k_rot4 , xValue , yValue , &

xArgument , yArgument

INTEGER iLambda , maxMa , maxNa , maxMb , maxNb , maxMc , maxNc , iNumDof , &

kNumDof , IJ, KL, analysistype

INTEGER M, n, U, intI , intJ , intK , intL , intM , intN , intO , intP , intQ , intR , &

INFOB1 , INFOB2 , INFOC1 , INFOC2 , IPIVC(maxMc*maxNc), &

IPIVB(maxMa*maxNa), WORKB , WORKC , LWORKB , LWORKC , Itheta

DOUBLE PRECISION ,PARAMETER :: PI = 3.141592654
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! INITIALISE THE STIFFNESS MATRICES AND THEIR DIMENSIONS

DOUBLE PRECISION KMAA(maxMa*maxNa ,maxMa*maxNa), &

KMBB(maxMb*maxNb ,maxMb*maxNb), &

KMCC(maxMc*maxNc ,maxMc*maxNc), &

KMAB(maxMa*maxNa ,maxMb*maxNb), &

KMAC(maxMa*maxNa ,maxMc*maxNc), &

KMBC(maxMb*maxNb ,maxMc*maxNc), &

KMBA(maxMb*maxNb ,maxMa*maxNa), &

KMCA(maxMc*maxNc ,maxMa*maxNa), &

KMCB(maxMc*maxNc ,maxMb*maxNb), &

KGAA(maxMa*maxNa ,maxMa*maxNa), &

KMPLATE(kNumDof ,kNumDof), &

KGPLATE(kNumDof ,kNumDof), &

KMCOND(maxMa*maxNa ,maxMa*maxNa), &

KGCOND(maxMa*maxNa ,maxMa*maxNa), &

KGPRE(maxMa*maxNa ,maxMa*maxNa), &

KMCCinv(maxMc*maxNc ,maxMc*maxNc), &

KMCCinverse(maxMc*maxNc ,maxMc*maxNc), &

TEST(maxMc*maxNc ,maxMc*maxNc), &

KMABCinv(maxMb*maxNb ,maxMb*maxNb), &

KMABC(maxMb*maxNb ,maxMb*maxNb)

DOUBLE PRECISION , DIMENSION(kNumDof ,iLambda) :: EigenVec

DOUBLE PRECISION , DIMENSION(iLambda) :: YMU

DOUBLE PRECISION , DIMENSION (50 ,50) :: w_r

!**************** SANDWICH PLATE STIFFNESS COEFFICIENTS ****************

Dx = Ec * tc**3 / (12 * (1 - nuc **2)) + Ef / (4 * (1 - nuf **2)) * &

(t1 * (tc + t1)**2 + t2 * (tc + t2 )**2)

Dy = Ec * tc**3 / (12 * (1 - nuc **2)) + Ef / (4 * (1 - nuf **2)) * &

(t1 * (tc + t1)**2 + t2 * (tc + t2 )**2)

Dxy = Ec * tc**3 / (12 * (1 + nuc)) + Ef / (4 * (1 + nuf)) * &

(t1 * (tc + t1)**2 + t2 * (tc + t2 )**2)

darm = (t1/2)+( t2/2)+tc

Gc = Ec /(2*(1+ nuc))

Sx = Gc/tc*darm **2

Sy = Gc/tc*darm **2

!PRINT *,"Dx:"

!PRINT *,Dx

!PRINT *,"Dy:"

!PRINT *,Dy

!PRINT *,"Dxy:"

!PRINT *,Dxy

!***************** INITIALISE THE STIFFNESS MATRICES ********************

KMAA = 0

KMAB = 0

KMAC = 0

KMBB = 0

KMBC = 0

KMCC = 0

KMBA = 0

KMCA = 0

KMCB = 0

KGAA = 0

KMPLATE = 0

KGPLATE = 0

KMCCinv = 0

KMCCinverse =0

KMABC = 0

KMABCinv = 0
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KMCOND = 0

KGCOND = 0

TEST=0

!********************** COMPUTE THE AijAkl MATRIX **********************

DO intI=1,maxMa;

DO intJ=1,maxNa;

DO intK = 1, maxMa

DO intL = 1, maxNa

IJ=maxNa*intI -maxNa+intJ

KL=maxNa*intK -maxNa+intL

IF (analysistype ==1) THEN

IF (intI==intK .and. intJ==intL) THEN

KMAA(IJ ,KL)=KMAA(IJ,KL)+(a*b/8)*(2* Dx*(( intK*PI/a)**2*( intI*PI/a)**2)&

+(Dx*Nuf+Dy*Nuf )*(( intK*PI/a)**2*( intJ*PI/b)**2+( intI*PI/a)**2*( intL*PI/b)**2)&

+2*Dy*(( intL*PI/b)**2*( intJ*PI/b)**2)&

+(2* Dxy *(2*( intI*PI/a)*( intJ*PI/b)*( intK*PI/a)*( intL*PI/b))))

KGAA(IJ ,KL)=KGAA(IJ,KL)-(a*b/8)*(2* N10*(intI*PI/a)&

*(intK*PI/a)+2* N20*(intJ*PI/b)*( intL*PI/b))

END IF

IF (intI/=intK .and. intJ/=intL) THEN

KGAA(IJ ,KL)=KGAA(IJ,KL)-N30*(a*(1 -( -1)** intI *( -1)** intK)*intK)&

/(PI*(intK**2-intI **2))&*(b*(1 -( -1)** intJ *( -1)** intL)*intJ)&

/(PI*(intJ**2-intL **2))*( intI*PI/a)*( intL*PI/b)&

-N30*(a*(1 -( -1)** intK *( -1)** intI)*intI )/(PI*(intI**2-intK **2))&

*(b*(1 -( -1)** intL *( -1)** intJ)*intL)&

/(PI*(intL**2-intJ **2))*( intK*PI/a)*( intJ*PI/b)

END IF

ELSEIF (analysistype ==2) THEN

IF (intI==intK .and. intJ==intL) THEN

KMAA(IJ ,KL)=KMAA(IJ,KL) + (a*b/8)*(2* Dx*(( intK*PI/a)**2*( intI*PI/a)**2)&

+(Dx*Nuf+Dy*Nuf )*(( intK*PI/a)**2*( intJ*PI/b)**2+( intI*PI/a)**2*( intL*PI/b)**2)&

+2*Dy*(( intL*PI/b)**2*( intJ*PI/b)**2)&

+(2* Dxy *(2*( intI*PI/a)*( intJ*PI/b)*( intK*PI/a)*( intL*PI/b))))

KGAA(IJ ,KL) = KGAA(IJ,KL)-(a*b/8)*(2* N10*(intI*PI/a)&

*(intK*PI/a)+2* N20*(intJ*PI/b)*( intL*PI/b))

END IF

IF (intI/=intK .and. intJ/=intL) THEN

KMAA(IJ ,KL)=KMAA(IJ,KL)-N30pre *(a*(1 -( -1)** intI *( -1)** intK)*intK)&

/(PI*(intK**2-intI **2))*(b*(1 -( -1)** intJ *( -1)** intL)*intJ)&

/(PI*(intJ**2-intL **2))*( intI*PI/a)*( intL*PI/b)&

-N30pre *(a*(1 -( -1)** intK *( -1)** intI)*intI )/(PI*(intI**2-intK **2))&

*(b*(1 -( -1)** intL *( -1)** intJ)*intL)&

/(PI*(intL**2-intJ **2))*( intK*PI/a)*( intJ*PI/b)

END IF

ELSEIF (analysistype ==3) THEN

IF (intI==intK .and. intJ==intL) THEN

KMAA(IJ ,KL)=KMAA(IJ,KL)+(a*b/8)*(2* Dx*(( intK*PI/a)**2*( intI*PI/a)**2)&

+(Dx*Nuf+Dy*Nuf )*(( intK*PI/a)**2*( intJ*PI/b)**2+( intI*PI/a)**2*( intL*PI/b)**2)&

+2*Dy*(( intL*PI/b)**2*( intJ*PI/b)**2)&

+(2* Dxy *(2*( intI*PI/a)*( intJ*PI/b)*( intK*PI/a)*( intL*PI/b))))

KMAA(IJ ,KL) = KMAA(IJ,KL)-(a*b/8)*2* N20pre *(intJ*PI/b)*( intL*PI/b)

KGAA(IJ ,KL) = KGAA(IJ,KL)-(a*b/8)*2* N10*(intI*PI/a)*( intK*PI/a)

END IF

IF (intI/=intK .and. intJ/=intL) THEN
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KGAA(IJ ,KL)=KGAA(IJ,KL)-N30*(a*(1 -( -1)** intI *( -1)** intK)*intK)&

/(PI*(intK**2-intI **2))*(b*(1 -( -1)** intJ *( -1)** intL)*intJ)&

/(PI*(intJ**2-intL **2))*( intI*PI/a)*( intL*PI/b)&

-N30*(a*(1 -( -1)** intK *( -1)** intI)*intI )/(PI*(intI**2-intK **2))&

*(b*(1 -( -1)** intL *( -1)** intJ)*intL)&

/(PI*(intL**2-intJ **2))*( intK*PI/a)*( intJ*PI/b)

END IF

ELSEIF (analysistype ==4) THEN

IF (intI==intK .and. intJ==intL) THEN

KMAA(IJ ,KL)=KMAA(IJ,KL)+(a*b/8)*(2* Dx*(( intK*PI/a)**2*( intI*PI/a)**2)&

+(Dx*Nuf+Dy*Nuf )*(( intK*PI/a)**2&*( intJ*PI/b)**2+( intI*PI/a)**2*( intL*PI/b)**2)&

+2*Dy*(( intL*PI/b)**2*( intJ*PI/b)**2)&

+(2* Dxy *(2*( intI*PI/a)*( intJ*PI/b)*( intK*PI/a)*( intL*PI/b))))

KMAA(IJ ,KL) = KMAA(IJ,KL)-(a*b/8)*2* N10pre *(intI*PI/a)*( intK*PI/a)

KGAA(IJ ,KL) = KGAA(IJ,KL)-(a*b/8)*2* N20*(intJ*PI/b)*( intL*PI/b)

END IF

IF (intI/=intK .and. intJ/=intL) THEN

KGAA(IJ ,KL) = KGAA(IJ,KL) &

-N30*(a*(1 -( -1)** intI *( -1)** intK)*intK )/(PI*(intK**2-intI **2))*(b*(1 -( -1)** intJ&

*( -1)** intL)*intJ )/(PI*(intJ**2-intL **2))*( intI*PI/a)*( intL*PI/b)&

-N30*(a*(1 -( -1)** intK *( -1)** intI)*intI )/(PI*(intI**2-intK **2))*(b*(1 -( -1)** intL&

*( -1)** intJ)*intL )/(PI*(intL**2-intJ **2))*( intK*PI/a)*( intJ*PI/b)

END IF

END IF

!****************** ELASTIC SPRINGS AT THE BOUNDARY ****************

IF (intL==intJ) THEN

KMAA(IJ ,KL)=KMAA(IJ,KL )+(1.0/2)*b*(intI*PI/a)*( intK*PI/a)* k_rot1

KMAA(IJ ,KL)=KMAA(IJ,KL)&

+(1.0/2)*b*(intI*PI/a)*( intK*PI/a)* k_rot2*cos(intK*PI)*cos(intI*PI)

END IF

IF (intK==intI) THEN

KMAA(IJ ,KL)=KMAA(IJ,KL )+(1.0/2)*a*(intJ*PI/b)*( intL*PI/b)* k_rot3

KMAA(IJ ,KL)=KMAA(IJ,KL)&

+(1.0/2)*a*(intJ*PI/b)*( intL*PI/b)* k_rot4*cos(intL*PI)*cos(intJ*PI)

END IF

END DO

END DO

END DO

END DO

!********************** COMPUTE THE BijBkl MATRIX **********************

DO intI=1,maxMb;

DO intJ=1,maxNb;

DO intK = 1, maxMb

DO intL = 1, maxNb

IJ=maxNb*intI -maxNb+intJ

KL=maxNb*intK -maxNb+intL

IF (intI==intK .and. intJ==intL) THEN

KMBB(IJ ,KL) = KMBB(IJ,KL)&

+(a*b/4)*(Dx*(intI*PI/a)*( intK*PI/a)+Dxy /2*( intJ*PI/b)*( intL*PI/b)+Sx)

END IF

!****************** ELASTIC SPRINGS AT THE BOUNDARY ********************

IF (intL==intJ) THEN
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KMBB(IJ ,KL)=KMBB(IJ,KL )+(1.0/2)*b*k_rot1

KMBB(IJ ,KL)=KMBB(IJ,KL )+(1.0/2)*b*k_rot2*cos(intK*PI)*cos(intI*PI)

END IF

END DO

END DO

END DO

END DO

!********************** COMPUTE THE CijCkl MATRIX **********************

DO intI=1,maxMc;

DO intJ=1,maxNc;

DO intK = 1, maxMc

DO intL = 1, maxNc

IJ=maxNc*intI -maxNc+intJ

KL=maxNc*intK -maxNc+intL

IF (intI==intK .and. intJ==intL) THEN

KMCC(IJ ,KL) = KMCC(IJ,KL)&

+(a*b/4)*(Dy*(intJ*PI/b)*( intL*PI/b)+Dxy /2*( intI*PI/a)*( intK*PI/a)+Sy)

END IF

!****************** ELASTIC SPRINGS AT THE BOUNDARY ********************

IF (intK==intI) THEN

KMCC(IJ ,KL)=KMCC(IJ,KL )+0.5*a*k_rot3

KMCC(IJ ,KL)=KMCC(IJ,KL )+0.5*a*k_rot4*cos(intL*PI)*cos(intJ*PI)

END IF

END DO

END DO

END DO

END DO

!********************** COMPUTE THE AijBkl MATRIX **********************

DO intI=1,maxMa;

DO intJ=1,maxNa;

DO intK = 1, maxMb

DO intL = 1, maxNb

IJ=maxNa*intI -maxNa+intJ

KL=maxNb*intK -maxNb+intL

IF (intI==intK .and. intJ==intL) THEN

KMAB(IJ ,KL)=-(KMAB(IJ ,KL)+(a*b/8)*(2* Dx*(intI*PI/a)**2*( intK*PI/a)&

+(Dx*nuf+Dy*nuf)*( intK*PI/a)*( intJ*PI/b)**2&

+2* Dxy*(intI*PI/a)*( intJ*PI/b)*( intL*PI/b)))

END IF

!****************** ELASTIC SPRINGS AT THE BOUNDARY ********************

IF (intL==intJ) THEN

KMAB(IJ ,KL)=KMAB(IJ,KL) -(1.0/2)*b*(intI*PI/a)* k_rot1

KMAB(IJ ,KL)=KMAB(IJ,KL) -(1.0/2)*b*(intI*PI/a)* k_rot2*cos(intK*PI)*cos(intI*PI)

END IF

END DO

END DO

END DO

END DO

!********************** COMPUTE THE AijCkl MATRIX **********************

DO intI=1,maxMa;
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DO intJ=1,maxNa;

DO intK = 1, maxMc

DO intL = 1, maxNc

IJ=maxNa*intI -maxNa+intJ

KL=maxNc*intK -maxNc+intL

IF (intI==intK .and. intJ==intL) THEN

KMAC(IJ ,KL)=-(KMAC(IJ ,KL)+(a*b/8)*(2* Dy*(intJ*PI/b)**2*( intL*PI/b)&

+(Dx*nuf+Dy*nuf)*( intI*PI/a)**2*( intL*PI/b)&

+2* Dxy*(intI*PI/a)*( intJ*PI/b)*( intK*PI/a)))

END IF

!****************** ELASTIC SPRINGS AT THE BOUNDARY ********************

IF (intK==intI) THEN

KMAC(IJ ,KL)=KMAC(IJ,KL) -(1.0/2)*a*(intJ*PI/b)* k_rot3

KMAC(IJ ,KL)=KMAC(IJ,KL) -(1.0/2)*a*(intJ*PI/b)* k_rot4*cos(intJ*PI)*cos(intL*PI)

END IF

END DO

END DO

END DO

END DO

!********************** COMPUTE THE BijCkl MATRIX **********************

DO intI=1,maxMb;

DO intJ=1,maxNb;

DO intK = 1, maxMc

DO intL = 1, maxNc

IJ=maxNb*intI -maxNb+intJ

KL=maxNc*intK -maxNc+intL

IF (intI==intK .and. intJ==intL) THEN

KMBC(IJ ,KL)=KMBC(IJ,KL)&

+(a*b/8)*(( Dx*nuf+Dy*nuf)*( intI*PI/a)*( intL*PI/b)+Dxy*(intK*PI/a)*( intL*PI/b))

END IF

END DO

END DO

END DO

END DO

!*********************** OPTION ONE: FULL SYSTEM ***********************

!******************* COMPUTE THE TRANSPOSED MATRICES *******************

KMBA=Transpose(KMAB)

KMCA=Transpose(KMAC)

KMCB=Transpose(KMBC)

!********************** COMPUTE THE BijBkl MATRIX **********************

!**************** ASSEMBLE THE PLATE STIFFNESS MATRIX ******************

!

! MATRIX(from row:to row , from column:to column)

!

!***********************************************************************

KMPLATE (1: maxMa*maxNa , 1:maxMa*maxNa) = &

KMPLATE (1: maxMa*maxNa , 1:maxMa*maxNa) + KMAA

KMPLATE(maxMa*maxNa +1: maxMa*maxNa+maxMb*maxNb , maxMa*maxNa +1: maxMa*maxNa+maxMb*maxNb) = &

KMPLATE(maxMa*maxNa +1: maxMa*maxNa+maxMb*maxNb , maxMa*maxNa +1: maxMa*maxNa+maxMb*maxNb) + KMBB

KMPLATE(maxMa*maxNa+maxMb*MaxNb +1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc ,&

maxMa*maxNa+maxMb*maxNb +1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc) = &

KMPLATE(maxMa*maxNa+maxMb*MaxNb +1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc ,&

maxMa*maxNa+maxMb*maxNb +1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc) + KMCC

115



KMPLATE (1: maxMa*maxNa , maxMa*maxNa +1: maxMa*maxNa+maxMb*maxNb) = &

KMPLATE (1: maxMa*maxNa , maxMa*maxNa +1: maxMa*maxNa+maxMb*maxNb) + KMAB

KMPLATE (1: maxMa*maxNa , maxMa*maxNa+maxMb*maxNb +1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc) = &

KMPLATE (1: maxMa*maxNa , maxMa*maxNa+maxMb*maxNb +1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc) + KMAC

KMPLATE(maxMa*MaxNa +1: maxMa*maxNa+maxMb*maxNb ,&

maxMa*maxNa+maxMb*maxNb +1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc) = &

KMPLATE(maxMa*MaxNa +1: maxMa*maxNa+maxMb*maxNb ,&

maxMa*maxNa+maxMb*maxNb +1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc) + KMBC

KMPLATE(maxMa*maxNa +1: maxMa*maxNa+maxMb*maxNb , 1:maxMa*maxNa) = &

KMPLATE(maxMa*maxNa +1: maxMa*maxNa+maxMb*maxNb , 1:maxMa*maxNa) + KMBA

KMPLATE(maxMa*maxNa+maxMb*maxNb&

+1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc , 1:maxMa*maxNa) = &

KMPLATE(maxMa*maxNa+maxMb*maxNb&

+1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc , 1:maxMa*maxNa) + KMCA

KMPLATE(maxMa*maxNa+maxMb*maxNb&

+1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc , maxMa*maxNa +1: maxMa*maxNa+maxMb*maxNb) = &

KMPLATE(maxMa*maxNa+maxMb*maxNb&

+1: maxMa*maxNa+maxMb*maxNb+maxMc*maxNc , maxMa*maxNa +1: maxMa*maxNa+maxMb*maxNb) + KMCB

KGPLATE (1: maxMa*maxNa , 1:maxMa*maxNa) = &

KGPLATE (1: maxMa*maxNa , 1:maxMa*maxNa) + KGAA

!*******************************************************************

!* Solving the eigenvalue problem

!*******************************************************************

CALL GiveInPutData(iLambda , 'M' , kNumDof , M, -KGPLATE , KMPLATE)

CALL GetOutPutData(YMU , Eigenvec )

lambda = 1 / YMU(1)

!*******************************************************************

!************************** END OF OPTION ONE **************************

!******************** OPTION TWO: CONDITIONED SYSTEM *******************

!

! KMCCinv = KMCC

! CALL DPOTRF('U',maxNc*maxNc , KMCCinv , maxNc*maxNc ,INFOC1)

! CALL DPOTRI('U',maxNc*maxNc , KMCCinv , maxNc*maxNc ,INFOC1)

!

! CALL DGETRF(maxMc*maxNc , maxMc*maxNc , KMCCinv , maxMc*maxNc , IPIVC , INFOC1)

! CALL DGETRI(maxMc*maxNc , KMCCinv , maxMc*maxNc , IPIVC , WORKC , maxMc*maxNc , INFOC2)

!

! TEST=matmul(KMCCinv ,KMCC)

!

! CALL DGETRF(maxMc*maxNc , maxMc*maxNc , KMCCinv , maxMc*maxNc , IPIVC , INFOC1)

! CALL DGETRI(maxMc*maxNc , KMCCinv , maxMc*maxNc , IPIVC , WORKC , maxMc*maxNc , INFOC2)

!

!

! CALL DGETRF(maxMb*maxNa , maxMa*maxNa , KMABCinv , maxMa*maxNa , IPIVB , INFOB1)

! CALL DGETRI(maxMb*maxNa , KMABCinv , maxMa*maxNa , IPIVB , WORKB , maxMa*maxNa , INFOB2)

!

!

! KMCCinv = KMCC

! CALL DTRTRI('U', 'N', maxMc*maxNc , KMCCinv , maxMc*maxNc , INFOC1)

! KMABCinv=KMBB - matmul(KMBC , matmul(KMCCinv ,KMCB))
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!

!

! CALL DTRTRI('U', 'N', maxMc*maxNc , KMCCinv , maxMc*maxNc , INFOC1)

!

!

! KMABCinv=KMBB - matmul(KMBC , matmul(KMCCinv ,KMCB))

!

! CALL DTRTRI('U', 'N', maxMa*maxNa , KMABCinv , maxMa*maxNa , INFOB1)

!

! KMCOND =(KMAA -matmul(KMAC ,matmul(KMCCinv ,KMCA )))&

! -matmul(KMAB -matmul(KMAC ,matmul(KMCCinv ,KMCB)),&

! matmul(KMABCinv ,(KMBA - matmul(KMBC ,matmul(KMCCinv ,KMCA )))))

!

! KGCOND=KGAA

!

! !*******************************************************************

! !* Solving the eigenvalue problem

! !*******************************************************************

! CALL GiveInPutData(iLambda , 'M' , iNumDof , M, -KGCOND , KMCOND)

! CALL GetOutPutData(YMU , Eigenvec )

! lambda = 1 / YMU(1)

! !*******************************************************************

! !*******************************************************************

!

!**************** END OF OPTION TWO: CONDITIONED SYSTEM ****************

!*******************************************************************

!* The displacement matrix (radial displacement)

!*******************************************************************

DO intM = 1 ,50

DO intN = 1 ,50

xValue = (intN - 1)*a/49

yValue = (intM - 1)*b/49

intR = 0

DO intP = 1 ,maxMa

DO intQ = 1 ,maxNa

xArgument = PI*intP*xValue/a

yArgument = PI*intQ*yValue/b

intR = intR + 1

w_r(intN ,intM)=w_r(intN ,intM)&

+Eigenvec(intR ,1)* sin(xArgument )*sin(yArgument)

END DO

END DO

END DO

END DO

!*******************************************************************

!*******************************************************************

!* Print the eigenvector to a file

!*******************************************************************

!OPEN(unit=11, access='sequential ', status='replace ', name='Eigenmode.dat ')
! DO intI = 1 ,maxMa*maxNa

! WRITE (11,'(A1,F20 .15)') ',',Eigenvec(intI ,1)
! END DO

!CLOSE (11)

!*******************************************************************

END SUBROUTINE Eigenvalue
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Appendix C

ABAQUS PYTHON scripts

C.1 MPC Slider script

# Run syntax:

# abaqus viewer noGui=filename.py

import os

from odbAccess import *

from abaqusConstants import *

from abaqus import *

from visualization import *

from numpy import *

Analysisname='Buckle '
# Specify the edges of the plate , and the interface coordinates

a=4190

b=2800

platebottom =0

platemiddle =16.5

platetop =33

# Specify the file to write the slider commands

f = file('SliderThroughoutPlate.txt','w')

# Specify odb

odbName=Analysisname+'.odb'

#odbName=Analysisname +'.odb'
odb=openOdb(odbName)

#Thickness of the entire plate

tp=33

#Angi step

StepName='Buckle '
#angi hvilket increment i angitt steg

FrameNo =1

OutputC=odb.steps[StepName ]. frames[FrameNo ]. fieldOutputs['COORD ']
f.write(' *'+'MPC' '\n')
for Value1 in OutputC.values:

x1=Value1.data [0]
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y1=Value1.data [1]

z1=Value1.data [2]

# At the lower boundary where y=0:

if z1== platemiddle:

NodeA=Value1.nodeLabel

for Value1 in OutputC.values:

x2=Value1.data [0]

y2=Value1.data [1]

z2=Value1.data [2]

if z2==0:

NodeB=Value1.nodeLabel

if x2==x1 and y2==y1:

for Value1 in OutputC.values:

x3=Value1.data [0]

y3=Value1.data [1]

z3=Value1.data [2]

NodeP=Value1.nodeLabel

if x3==x1 and y3==y1 and z3!=z1

and z3!=z2:

f.write('SLIDER ,Part -1-1.''%s'
%

NodeP+',Part -1-1.'+'%s'
%

NodeA+',Part -1-1.'+'%s'
% NodeB+'\n')

f.close()

# '\n''SLIDER ,''%s' % NodeA #+ NodeP ,NodeA ,NodeB + '\n'

C.2 Script for interaction curves input files

#---------------------------------------------------------------------------------------------

# Write INPUT FILES for LINEAR and NONLINEAR analysis

# ABAQUS Solid models , takes two base input files , changes the load

combinations

# Ole J. Hareide , UIO/DNV 2012

#---------------------------------------------------------------------------------------------

import os, os.path , math , string , time

GO_input_base_linear = "Buckle.inp"

GO_input_base_nonlinear = "NonLinear.inp"

GO_out_base = "NonLinear"

GO_out_folder = "N30=0 SPS imp200"

GO_script = "./" + GO_out_folder + "/runme.bat"

Pi =3.14159265358979323846

starttheta =-3*Pi/18

thetastep=Pi/18

analysisnumber =16

analysistype =1

jobs = []

ln=0
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if os.path.isdir( ( "./" + GO_out_folder ) ) != 1:

os.mkdir( ( "./" + GO_out_folder ) )

fscr = open( GO_script , 'w' )

#---------------------------------------------------------------------------------------------

# Write input for eigenvalue analysis

#---------------------------------------------------------------------------------------------

if analysistype ==1:

theta=starttheta

for i in range(0, analysisnumber):

angle=theta *180/ Pi

last1=math.cos(theta)

last2=math.sin(theta)

GO_output_buckle = ( ( "Buckle_ %04.1 f_%04.2f_%04.2f" )

% ( angle , last1 , last2 ) )

finp = open( ( "./" + GO_input_base_linear ), 'r' )

fout = open( ( "./" + GO_out_folder + "/" + GO_output_buckle +

".inp" ), 'w' )

fscr.write( "call abaqus job=%s interactive\n" %

GO_output_buckle )

for line in finp:

if "BottomSurface , P" in line:

fout.write(line.replace(line ,("BottomSurface , P,

"+"%08.6f\n") %last2))

elif "LeftSurface , P" in line:

fout.write(line.replace(line ,("LeftSurface , P,

"+"%08.6f\n") %last1))

elif "RightSurface , P" in line:

fout.write(line.replace(line ,("RightSurface , P,

"+"%08.6f\n") %last1))

elif "TopSurface , P" in line:

fout.write(line.replace(line ,("TopSurface , P,

"+"%08.6f\n") %last2))

else:

fout.write(line)

theta=theta+thetastep

ln += 1

finp.close()

fout.close()

#---------------------------------------------------------------------------------------------

# Write input for non -linear analysis

#---------------------------------------------------------------------------------------------

if analysistype ==1:

theta=starttheta

for i in range(0, analysisnumber):

angle=theta *180/ Pi

last1=math.cos(theta)

last2=math.sin(theta)

GO_output_nonlinear = ( ( "NonLinear_ %04.1f_%04.2 f_ %04.2f" )

% ( angle , last1 , last2 ) )

finp = open( ( "./" + GO_input_base_nonlinear), 'r' )
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fout = open( ( "./" + GO_out_folder + "/" + GO_output_nonlinear

+ ".inp" ), 'w' )

fscr.write( "call abaqus job=%s interactive\n" %

GO_output_nonlinear )

for line in finp:

if "** MATERIALS" in line:

fout.write(line+'\n'+'**
IMPERFECTION '+'\n'+'*IMPERFECTION ,
FILE='+("Buckle_ %04.1f_%04.2 f_%04.2f")

% ( angle , last1 , last2 )+', STEP=1' +'\n'+'1, 14.0\n')
elif "** STEP: Buckle" in line:

fout.write(line.replace(line , "** STEP:

NonLinearRiks\n"))

elif "*Step , name=Buckle , perturbation" in line:

fout.write(line.replace(line , "*Step ,

name=NonLinearRiks , nlgeom=YES , inc =20\n"))

elif "*Buckle" in line:

fout.write(line.replace(line , "*Static , riks \n

1., 1., 1e-05, , ,"))

elif "BottomSurface , P" in line:

fout.write(line.replace(line ,("BottomSurface , P,

"+"%08.6f\n") %last2))

elif "LeftSurface , P" in line:

fout.write(line.replace(line ,("LeftSurface , P,

"+"%08.6f\n") %last1))

elif "RightSurface , P" in line:

fout.write(line.replace(line ,("RightSurface , P,

"+"%08.6f\n") %last1))

elif "TopSurface , P" in line:

fout.write(line.replace(line ,("TopSurface , P,

"+"%08.6f\n") %last2))

else:

fout.write(line)

theta=theta+thetastep

ln += 1

finp.close()

fout.close()

fscr.close()

#time.sleep (10)

#os.startfile ("C:/ ABAQUS/UlsteinNonLinearSS/N30 =0/ runme.bat")
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