
A Comparison of existing Python modules

of MPI

by

WENJING LIN

THESIS

for the degree of

MASTER OF SCIENCE

(Master i Anvendt matematikk og mekanikk)

Department of Mathematics

Faculty of Mathematics and Natural Sciences

University of Oslo

August 2010

Det matematisk- naturvitenskapelige fakultet

Universitetet i Oslo

Preface

This is the written part of my master-degree project at the Department of Math-
ematics, University of Oslo.

I would like to thank a great number of people who helped and supported me
during the last years. First and foremost I want to thank my supervisor, Xing
Cai, for his work in this project. Without his inspiration, patience and guidance
I could not �nish this project.

Many thanks to my friends at Simula Research Laboratory for technical sup-
port and constructive criticism. Especially Wenjie Wei has given me great support
and help in programming techniques, research ideas and answering my strange
questions about MPI programming. Many thanks to Arne Jørgen Arnesen and
Else-Merete Bergene, with whom I share the study room with, for many inter-
esting discussions.

I also want to thank the IT-support group of Simula Research laboratory for
all kinds of technical support and IT-support group of Stallo at UiT for help with
installation of the packages.

A lot of thanks should be given to my parents for their long-term encourage-
ment and support. It is because of their love that I am what I am today. And
many thanks to my fellow students and friends who have helped me tremendously
with comments, discussion and encouragement. It is them who make studies and
life enjoyable here in Norway.

Wenjing Lin
Oslo, August 2010

i

ii Preface

Contents

Preface i

1 Introduction 1
1.1 Idea and motivation . 1
1.2 Problem description and research methods 2
1.3 Experimental environments . 3
1.4 Thesis structure . 3

2 Background Knowledge 5
2.1 MPI . 5
2.2 Python in parallel world . 6
2.3 Numerical Python packages . 6
2.4 A simple example to compare Python with C in MPI programming 6

2.4.1 Parallel computing inner product in Python with Pypar . . 7
2.4.2 Parallel computing inner product in C 8
2.4.3 Measurements and performance analyses 8

3 Presentation of Python MPI Modules 11
3.1 pypar . 12
3.2 MPI for Python (mpi4py) . 13
3.3 MYMPI . 14
3.4 pyMPI . 15
3.5 Scienti�c.MPI . 16
3.6 boostmpi . 17
3.7 Conclusion . 17

4 Comparison of Python MPI Modules 19
4.1 Important MPI functions . 19
4.2 Point-to-point communications . 20

4.2.1 Blocking communication mode 20
4.2.2 Non-blocking communication mode 23

4.3 Collective communications . 23
4.4 Conclusion . 28

iii

iv CONTENTS

5 Performance Comparison through Benchmarks 29
5.1 Performance comparison of point-to-point communication with Ping-

pong test . 30
5.2 Performance comparison of collective communication 31
5.3 Conclusion . 35

6 Test Cases and Numerical Experiments 37
6.1 Application I: Solving Wave Equation in 3-Dimensional Space in

Parallel . 37
6.1.1 Problem description . 38
6.1.2 Parallelization . 39
6.1.3 Implementation . 39
6.1.4 Measurements and performance comparison 46

6.2 Application II: Parallel Implementation of Conjugate Gradient
Method . 52
6.2.1 The Parallel Algorithm of Conjugate Gradient Algorithm 52
6.2.2 Implementation . 53
6.2.3 Measurements and performance comparison 57

6.3 Conclusion . 63

7 Conclusions and Future Work 65

A Testing Environments 67

B C-version MPI HelloWorld Example 69

Chapter 1

Introduction

Python programming language[1] has gradually gained popularity in the �eld of
scienti�c computing. It provides easy-to-use syntax and lots of build-in functions
operating e�ciently on arrays. In connection with parallel computing, Python has
been used to simplify, in particular, message-passing based parallel programming.
A number of di�erent Python Message Passing Interface (MPI) modules have
lately been developed. In this project, we will show the possibilities with Python
in parallel computing. Six of the existing Python MPI modules are presented and
compared through a set of well-designed experiments. A guideline on choosing
suitable MPI modules and implementation issues is produced after comparison.

1.1 Idea and motivation

In the last decade, computer clusters and supercomputers became an a�ordable
resource for many scienti�c researchers. The concept of high performance com-
puting is also widely spread with the rapid development of hardware. Considering
an advanced computation problem, parallel computing makes the computations
carried out simultaneously in which the e�ciency is greatly improved. The idea is
splitting up a large computational problem into small pieces of tasks and solving
them concurrently. In real world, a large group of applications require process-
ing of huge amounts of data in sophisticated ways, for instance, oil exploration,
weather forecast and early warning of tsunami. For common usage, there are
several parallel programming models developed for exploiting the parallel envi-
ronments: message passing, shared memory and threads. Among them, the mes-
sage passing model, which is commonly used on distributed-memory machines,
has proved to be a comparatively e�cient one.

Traditional MPI applications are mostly developed in compiled language like
C/C++ and Fortran. However, there are many other languages that have capa-
bility to wrap those routine libraries, for example Java, OCaml and Python[2].
Python is one of them with great features for the purpose of scienti�c computa-

1

2 Introduction

tions.
Nowadays, there are more and more researchers willing to use Python to solve

scienti�c problems. Python has its great advantage in friendliness and �exible
syntax. And it supports multi-dimensional array operations by slicing [3]. There
are a large number of e�cient numerical modules and extensions available as
open source [4]. These give huge convenience for scienti�c computing. More-
over, these features will not only simplify the vector operations dealing numerical
problems[5][6], but also greatly simplify MPI function calls in parallel program-
ming.

1.2 Problem description and research methods

This thesis will introduce the usage of six Python MPI modules for parallel pro-
gramming and apply them in two classic scienti�c applications. Through various
test cases and benchmarks to compare the functionalities and the parallel per-
formances. The work of this master thesis project consists of the following �ve
stages:

1. Searching for existing Python MPI modules and related libraries, then in-
stalling them on a Linux cluster.

2. Designing two representative numerical problems and implementing them
using di�erent Python MPI modules.

3. Designing a set of tests to compare the modules in di�erent aspects and
presenting them in tables and charts

4. Analyzing the measurements with respect to syntax, functionality and per-
formance.

5. Concluding a guideline on choosing suitable Python MPI modules.

Much time have been spent on implementing of the applications and com-
parison of di�erent packages on the basis of a large number of experiments. In
order to give a fair enough comparison results, we have made great e�orts on
optimization of the code in terms of parallel performance.

Two numerical applications, solving wave equation on 3-dimensional space in
parallel and parallel implementation of conjugate gradient method, are imple-
mented in di�erent Python MPI modules. The comparison is performed on the
following aspects:

• Completeness of functionality

• Programming style and usage

1.3 Experimental environments 3

• Parallel performance

The technical content of this thesis is written for a large group of Python users
willing to try MPI-based parallel programming in scienti�c computing. A basic
background knowledge of Python and MPI are also provided in next Chapter.
We remark that this thesis only concerns the functionalities and parallel per-
formances using Python in MPI-based parallel programming. For other parallel
processing models in Python, e�ciency and optimization issues of Python and
MPI performance topics, the readers are referred to [7],[8],[9].

1.3 Experimental environments

The experiments are all performed on a Linux cluster with Xeon(R) E5420
2.50GHz processors, inter-connected through Gigabit Ethernets network, which
has theoretical peak bandwidth of 1000Mbit/s. The detailed experimental envi-
ronments and package settings are described in Appendix A.

1.4 Thesis structure

Chapter 2 Background Knowledge. As background for MPI modules in Python,
Python programming language and Message Passing Interface are presented.
And some numerical python tools are brie�y introduced.

Chapter 3 Presentation of Python MPI modules. Six Python MPI mod-
ules Pypar [10],MPI for Python (mpi4py)[11],MYMPI (pydusa)[12], pyMPI [13],
Scienti�c.MPI [14] and boostmpi [15] are introduced.

Chapter 4 Comparison of Python MPI modules. Some detailed function-
ality and implementation features regarding to scienti�c programming are
discussed in this chapter.

Chapter 5 Performance comparison through benchmarks. We apply four
micro-benchmarks to evaluate some most important MPI routines in the six
Python modules and provide a performance comparison of them.

Chapter 6 Test Cases and Numerical Experiments. Six Python MPI mod-
ules are used in parallel programming to solve two real scienti�c problems.
The focus is on evaluating and comparing the �exibility and performance
of Python implementations with the MPI modules. Detailed programming
issues in using those modules are discussed.

Chapter 7 Conclusions and future work. This chapter concludes the project
with some plans for the future work.

4 Introduction

Appendix. Appendix A gives a presentation of the hardware and software ex-
perimental environments used in this project. And Appendix B provides a
C-version MPI Hello World example for comparison with Python-versions
with di�erent Python MPI modules.

All experiments and examples in this thesis can be downloaded as a tar package
from [16], and executed in the reader's own computing environment. There are
also a number of scripting codes for collecting and analyzing the experimental
results included in the source code package [16].

Chapter 2

Background Knowledge

There are many parallel programming models and a lot of programming languages
designed for all kinds of purposes. Some comparison and study are needed to
give most users an understanding about the packages and their features. In this
project, the combination of MPI and Python is presented for developing parallel
scienti�c applications e�ciently and conveniently.

The concept and theory of Message Passing Interface (MPI) is presented in
Section 2.1. Traditionally MPI programs are implemented in compiled languages
like C/C++ and Fortran. However, in this project, we show MPI implemen-
tations in a high-level script language Python. The concepts of Python pro-
gramming language in scienti�c computing are discussed in Section 2.2. A short
introduction to some essential Python numerical tools is presented in Section 2.3.

In order to show some basic ideas about MPI programming in Python, a sim-
ple example of computing inner product in parallel are implemented in Python
with Pypar [10] and NumPy [17] in Section 2.4. And a C version of implementa-
tion is also provided for comparison. Both wall-clock time and speedup results
are reported for performance comparison Python and C in MPI programming.
More information and discussions about these packages will be presented in the
following chapters.

2.1 MPI

MPI is an interface speci�cation of using message passing libraries including def-
inition of protocols and semantic of message passing routines on a wide variety
of parallel computers.[2][18]. The �rst version of MPI [19]was released in 1994
known as MPI-1, which has a static runtime environment. After two-year dis-
cussing and developing, some new features such as parallel I/O, dynamic process
management, additional language bindings for C++ and remote memory oper-
ations were added. It was �nalized in 1996 with the name MPI-2. At present,
MPI implementations are a combination of MPI-1 and MPI-2.

5

6 Background Knowledge

2.2 Python in parallel world

About thirty years ago, Python programming language was developed by Guido
van Rossum at National Research Institute for Mathematics and Computer Sci-
ence in Netherlands[20]. Nowadays, Python is considered to be a great pro-
gramming language for scienti�c computing and has attracted signi�cant interest
among computational scientists[1][21]. It has shown the advantage of script-
ing language for scienti�c programming and moreover for parallel programming.
Python's great properties for scienti�c application development has been dis-
cussed in paper [5] and [6]. In this project, we will specially discuss Python's
properties in parallel scienti�c programming and compare the existing Python
Interfaces for MPI.

2.3 Numerical Python packages

In order to achieve good performance of a scienti�c application, we use the fol-
lowing two numerical python modules: Numpy and Scipy.

Numpy [17] provides a large library of e�cient array operations implemented
in C. The computational capabilities are similar to MATLAB, where the array
operation involves a loop over all array entries is e�ciently implemented in C.
Moreover, the vectorization[22] and slicing[3] greatly simplify the scienti�c pro-
gram and improve the performance.

Scipy [23] is library of scienti�c tools for Python programming, including var-
ious high level science and engineering modules available as an open source pack-
age. We will use the 2D sparse matrix module from Scipy package to construct a
sparse matrix and apply the build-in functions to develop the parallel Conjugate
Gradient method in Chapter 6.

2.4 A simple example to compare Python with C

in MPI programming

Let us �rst take an example to see how well Python could be in high performance
computing. The idea is to show that Python give su�ciently good parallel per-
formance as C, but Python clearly has easy-to-read and intuitive syntax.
we will show that Python-MPI implementation with the Pypar package is able
to provide fully comparable parallel performance in comparison with C-MPI im-
plementation.
We write a program in C and Python to calculate the inner product of two arrays.
And we evaluate the parallel performance of inner product of two arrays in the
compiled language C and the scripting language Python.
We have prepared two arrays v1 and v2 with the same size n. Then we partition

2.4 A simple example to compare Python with C in MPI programming 7

them evenly to numproc1 processes. Each process gets two sub-arrays vs1 and
vs2 of length local_n=n/numproc. For each process myrank2, we �rst apply the
build-in function inner from the Numpy package to compute the inner product
res_local of the two sub-arrays. Then we sum those res_local values from
each process to the master process and store it in res by calling MPI function
MPI_Reduce. Here we just show some basic ideas, more details are described in
the following chapters.

We measure the wall-clock time (in seconds) of the part of code calculating the
inner product, and calculate the speed-up results. The performance comparison
is illustrated in the form of table and chart.

2.4.1 Parallel computing inner product in Python with Py-

par

We �rst see a segment of code to compute the inner product in Python with
package Pypar and numerical tool NumPy. For two given arrays v1 and v2 of
length n, each process gets two segments of the two arrays of length local_n. In
python, the operation is performed by using slicing, where sub-arrays vs1 and
vs2 take the references to two segments of the two arrays started from index
myrank*local_n to (myrank+1)*local_n. After that, the inner product of two
sub-arrays res_local is calculated by calling the build-in function provided in
numerical package Numpy. Then res_local is converted to the type of numerical
array with only one element. The type of this element is set to 'd' which is Python
standard �oating point numbers. . Another one-element numerical array res is
prepared as a pre-allocated bu�er for taking the result in the next operation. At
last, the inner product of v1 and v2 is calculated by calling the MPI routine
reduce in package Pypar. The value of res_local on each process is summed
up to process 0 and store in res. Here, The reason of preparing two one-element
numerical arrays instead of two scalers is that the function pypar.reduce can
only perform MPI reduce operation on array type. In chapter 4, this will be
explained in detail.

Python implementation of parallel inner product, using pypar[10] and NumPy[17]

1 import numpy

2 vs1=v1[myrank*local_n:(myrank+1)*local_n]

3 vs2=v2[myrank*local_n:(myrank+1)*local_n]

4 res_local=numpy.inner(vs1,vs2)

5 res_local=numpy.array(res_local,'d')

1The number of processes
2The rank number of one process

8 Background Knowledge

6 res=numpy.array(0.0,'d')

7 pypar.reduce(res_local,pypar.SUM,0,buffer=res)

2.4.2 Parallel computing inner product in C

In C, the procedure is almost the same, but three di�erences are necessary to point
out. Instead of using slicing, vs1 and vs2 take the �rst element's address of the
sub-arrays. And then the inner product res_local is calculated in a a for-loop
by adding the product of each element in two sub-arrays with length local_n.
Comparing to the Python version with Pypar, C-MPI reduce can perform on
scalers directly. res is initialized as a C double-precision �oating point number.

C implementation of parallel inner product

1 include "mpi.h"

2 int i;

3 double *vs1,*vs2,res=0.0,res_local=0.0;

4 #take the first element's address of the subarray on this process

5 vs1=&v1[myrank*local_n];

6 vs2=&v2[myrank*local_n];

7 for(i=0;i<local_n;i++){#for loop calculating inner product

8 res_local+=vs1[i]*vs2[i];

9 }

10 MPI_Reduce (&res_local, &res, 1,MPI_DOUBLE,MPI_SUM,0, MPI_COMM_WORLD

11);

2.4.3 Measurements and performance analyses

We prepare two arrays with length 218 to test our examples and measure the
wall-clock time for comparing performance.

From Table 2.1 and Figure 2.1 2.2 we can see that the wall-clock time con-
sumptions of the two implementations are of the same level. Python is little slow
due to wrappers overhead and numpy is little slower than pure C according to
reference.

The reason for the bad performance result while the number of processes is
larger than 16 may cause by the small computation/communication ratio. That
means the time spent on collecting and summing all the res_local results takes
the comparatively large part of the entire time cost.

2.4 A simple example to compare Python with C in MPI programming 9

Figure 2.1: A comparison of the wall-clock time measurements (in seconds) of computing
inner product in parallel among implementations in C and Python

 0.25

 0.5

 1

 2

 4

 1 2 4 8 16 32 64

R
un

 T
im

es
 (

se
co

nd
s)

 (
lo

gs
ca

le
 2

)

Number of processes (logscale 2)

Runtime Plot N=18

package=C
package=P

Figure 2.2: A comparison of the speedup results of computing inner product in parallel among
implementations in C and Python

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

S
pe

ed
up

 r
es

ul
ts

 (
lo

gs
ca

le
 2

)

Number of processes (logscale 2)

Speedup Plot N=18

package=C
package=P

Ideal speedup

10 Background Knowledge

Table 2.1: A comparison of the wall-clock time measurements (in seconds) and speedup results
of MPI implementations in C and Python for computing inner product of two vectors of length
218. The measurements on single core (free of communication) as the reference.

numproc C Python
wall-clock speed-up wall-clock time speed-up
(seconds) (seconds)

1 3.996 N/A 3.875 N/A
2 2.049 1.950 2.236 1.733
4 1.063 3.759 1.439 2.693
8 0.625 6.397 1.096 3.537
16 0.453 8.830 0.842 4.602
32 0.502 7.966 0.917 4.225
64 0.789 5.062 0.897 4.319

Chapter 3

Presentation of Python MPI

Modules

A number of Python MPI modules have been developed for parallel programming.
At the start of the present project, six of them were found warmly discussed on
Internet. This chapter provides a presentation and references for those available
MPI solutions to develop parallel scienti�c applications in the high-level program-
ming language Python. Six listing Python MPI modules are brie�y introduced
respectively in terms of implementation features for scienti�c computing.

• Pypar[10]

• MPI for Python[11]

• MYMPI[12]

• pyMPI[13]

• Scienti�c.MPI[14]

• boostmpi[15]

For the purpose of illustrate how to build a parallel application with Python
MPI modules from scratch, one simple parallel Hello-world program is imple-
mented with each Python MPI modules. From the simple Hello-world examples,
the following steps are discussed:

1. Importing the Python MPI module and initializing the MPI execution en-
vironment.

2. Determining the size of the group associated with a communicator and the
rank of the calling process in the communicator.

3. Terminating MPI execution environment.

11

12 Presentation of Python MPI Modules

A C-version MPI Hello-world example is given in Appendix for comparison. These
packages are all developed as an Python interface of the corresponding MPI rou-
tines in C. Some of them could transmit any type of Python objects, some pro-
vide a interactive parallel computing environment.We will discuss these features
of each module respectively.

In the last section, these di�erent features are collected in one table to give an
overview of these modules. The exhaustive comparisons of some most important
MPI routines from these modules are presented in Chapter 4 and the parallel
performance is measured and compared in Chapter 5.

3.1 pypar

Pypar [10] is developed as a project of the Australian National University since
2002. Pypar is well known for its simply syntax and su�ciently good performance.
It is considered as an e�cient and easy-to-use module for parallel programming
in the spirit of Python. It wrappers a small but essential subset of MPI routines.

Following is the parallel Hello-world example implemented with Pypar,

1 #!/usr/bin/env python

2 import pypar #automatically initialize MPI

3 numproc=pypar.size()

4 myrank=pypar.rank()

5 print "Hello, world! I'm process %d of %d."%(myrank,numproc)

6 pypar.finalize()

Running on four cores with

1 >>mpirun -np 4 small_pypar.py

In this example, there is no explicit function call to initialize MPI execution
environment. MPI is initialized automatically while importing the module using
import pypar. The number of processes are determined by command-line input
mpirun -np 4. At last, the MPI execution is terminated by calling finalize().
Pypar, as the best known Python MPI module, has the following features:

Easy-to-use. The syntax is easy and clear which we have already seen in the
parallel Hello-world example. Comparing with the 12 lines in the C-version
parallel Hello-world example, Python-version with Pypar takes only 6 lines.

Flexible. General Python objects of any types can be communicated with Pypar.
Pypar users don't need to specify the detailed information for a bu�er, like
the data type and the bu�er size.

3.2 MPI for Python (mpi4py) 13

Minimal MPI routines. Only some most useful and important MPI functions
are included in Pypar. Both and initializing MPI execution environment
and communicator are declared implicitly. The user has no control of how
and when MPI is initialized.

3.2 MPI for Python (mpi4py)

MPI for Python (mpi4py) package is constructed on top of the MPI-1/2 spec-
i�cations and provides an object oriented interface which closely follows MPI-2
C++ bindings[11]. The C MPI user could use this module without learning a
new interface[24]. Therefore It is widely used as an almost full package of MPI
library in Python. The parallel Hello-world example is shown as below.

1 #!/usr/bin/env python

2 from mpi4py import MPI

3 comm=MPI.COMM_WORLD

4 numproc=comm.Get_size()

5 myrank=comm.Get_rank()

6 print "Hello, world! I'm process %d of %d."%(myrank,numproc)

7 MPI.Finalize()

In this example, comparing with Pypar -version, there is one additional line be-
fore getting the number of processes. A MPI communicator MPI.COMM_WORLD is
declared explicitly, which signi�es that the operation is taking place within all
the processes associated with this communicator. Apart from this, mpi4py has
the following features:

Containing most of MPI routines. mpi4py is developed to have most MPI
routines. Not only point-to-point and collective communications, but also
dynamic process management and topologies are provided in this package.

Better syntax match with C MPI function calls. mpi4py provides most sim-
ilar syntax with MPI functions in traditional compiled languages. But on
the other hand, it is not easy for a Python user without MPI background,
which wants to build a parallel Python program from scratch.

Flexible mpi4py provides two types of communications according to data types.
The MPI function calls with capitalized �rst letter, i.e., the Send(), Recv(),

Sendrecv(), Reduce(), Gather() and Bcast() methods provide support
for communications of memory bu�ers. The variants send(), recv(),

sendrecv(), reduce(), gather() and bcast() can communicate gen-
eral Python objects. For the former type, mpi4py allows the user to con-
struct a derived MPI data types to describe complicated non-contiguous

14 Presentation of Python MPI Modules

data layouts, like what we do in C MPI programming. This helps to avoid
the overhead of packing/unpacking operations. One example of de�ning
derived data types for the communication of multidimensional arrays is
presented in Chapter 6.

MPI-enabled Python interpreter. Sometimes, it is convenient and easy for
debugging and learning with MPI-enabled interpreter. mpi4py provides
this capability, but the user need to re-build the package with some special
con�guration steps described in the user manual[11].

3.3 MYMPI

MYMPI (also called pydusa) [12] was developed by Tim Kasiser as part of the
National Biomedical Computation Resource. It contains about 30 of the most
important routines of MPI library and provide closely matched syntax with C
and Fortran MPI routines. We remark that MYMPI provides di�erent approach
for handling the received values. MPI routines provided by the module MYMPI
return the received values, instead for storing it directly in a pre-allocated bu�er,
like what we do in C-MPI implementation.

Following is the parallel Hello-world example implementation in Python with
MYMPI.

1 #!/usr/bin/env python

2 import mpi,sys

3 sys.argv=mpi.mpi_init(len(sys.argv),sys.argv)

4 comm=mpi.MPI_COMM_WORLD

5 numproc=mpi.mpi_comm_size(comm)

6 myrank=mpi.mpi_comm_rank(comm)

7 print "Hello, world! I'm process %d of %d."%(myrank,numproc)

8 mpi.mpi_finalize()

Explicit MPI_Init call. From the example we can see that one more line is
added comparing to thempi4py-version. The user needs to call mpi.mpi_init
explicitly on every process to initialize the MPI execution environment. It
provides better control of how and when MPI is initialized. And mpi.mpi_init
returns the command line arguments after called.

Better match with C and Fortran. MYMPI provides similar MPI syntax and
semantics with C and Fortran. The purpose is for implementing MPI pro-
grams in Python mixed with C and Fortran.

Only scalars and numerical arrays supported. MYMPI is one of the two
Python MPI modules which does not support communication of arbitrary

3.4 pyMPI 15

Python objects in these six modules. The other one is Scienti�c.MPI which
will be presented in section 3.5. The user needs to specify the bu�er size
and the data type as what we do in C MPI programming. The detailed
syntax is explained in Chapter 4.

3.4 pyMPI

pyMPI [13] was developed by Patrick Miller at Lawrence Livermore National Lab-
oratory in 2002. pyMPI provides a simpli�ed Python interface suitable for basic
parallel programming based on MPI. About 120+ of MPI routines are imple-
mented.

From the parallel Hello-world example we can see that it initialize the MPI
execution environment implicitly. The syntax is as clear and easy as Pypar. The
di�erence is that the size and rank attributes of the module indicate the number
of operating processes and the identi�er of the calling process, instead of calling
the MPI functions. We remark that the �rst line of the example, the environment
variable is set to pyMPI instead of python. Otherwise, a command-line argument
should be given while running. See the following example,

1 #!/usr/bin/env pyMPI

2 import mpi

3 numproc=mpi.size

4 myrank=mpi.rank

5 proc_name=mpi.name

6 print "Hello, world! I'm process %d of %d."%(myrank,numproc)

The user could also use command-line argument pyMPI instead of setting the envi-
ronment variable. An example of MPI running it without setting the environment
variable in code is:

1 >>mpirun -np 4 pyMPI small_pyMPI.py

In addition, pyMPI has following features:

Python interpreter with MPI. It can be used not only as a Python inter-
face of MPI routines, but also a custom version of Python interpreter with
MPI_Init built in.[25]. pyMPI provides a simple-to-use console input on
the master node and broadcast it to the slave nodes. This means the user
can test and learn parallel codes iteratively.

Value return model. The same with MYMPI, pyMPI provides a value return
model to return the received value for MPI calls like recv, reduce, allreduce
and gather. This allows pyMPI to make all objects communicated without
packing them into bu�ers.

16 Presentation of Python MPI Modules

Error check. pyMPI checks MPI calls strictly and converts MPI errors into
Python exceptions.

The "two message" model. In order to transmit large arbitrary Python ob-
jects, pyMPI cut the message into two parts: one with the size of the
message and a small part which smaller than the eager message limit sent
�rst, and the other carrying the rest of the message sent afterwards. This
may brings some extra overhead for communications.

3.5 Scienti�c.MPI

Scienti�c.MPI is one module of Scienti�cPython which is a package contains a
collection of Python modules specially for scienti�c computing. Only 14 MPI
routines are implemented. From the following parallel Hello-world example, we
remark that the �rst line of the example, the environment variable is set to
mpipython instead of python.

1 #!/usr/bin/env mpipython

2 from Scientific import MPI

3 comm=MPI.world.duplicate()

4 numproc=comm.size

5 myrank=comm.rank

6 print "Hello, world! I'm process %d of %d."%(myrank,numproc)

The user could also use command-line argument mpipython instead of setting
the environment variable. An example of MPI running it without setting the
environment variable in code is:

1 >>mpirun -np 4 mpipython small_Scientific.py

In addition, Scienti�c.MPI has following features:

Python interpreter with MPI The same with pyMPI, Scienti�c.MPI also patches
the interpreter. One can start with typing mpipython from command line
and run parallel code interactively.

Explicitly declaration of communicator The same with MYMPI, from the
example above we can see, Scienti�c.MPI declare a communicator explic-
itly. And the number of processes size and the identi�er of the calling
process rank are attributes of the communicator, instead of calling the
MPI functions.

Only string, scalers and numerical arrays supported The same withMYMPI,
for collective communication, i.e. broadcast(),reduce(),allreduce() and share(),
Scienti�c.MPI only supports numerical arrays. For blocking communica-
tion, i.e. send() and receive(), only string and numerical array are sup-
ported.

3.6 boostmpi 17

3.6 boostmpi

Boost.MPI is an alternative C++ interface to MPI which provides better support
of C++ development [26] than the existed C++ bindings for MPI. It o�ers more
MPI functionality over the C bindings. boostmpi [15] is a Python interface built
directly on top of the C++ Boost.MPI by using the Boost.Python library[26]. It
supports most commonly used MPI routines.

Any Python object can by communicated by apply boostmpi. User-de�ned
Python functions are needed for collective communication calls, such as reduce
and allreduce, which is explained and shown in next chapter. The programming
philosophy and style are more close to C++, so it is considered to be suitable for
mixed MPI programming with C++ and Python.

From the parallel Hello-world example below we can see that, boostmpi has
to declare a communicator explicitly. And the number of processes size and the
identi�er of the calling process rank are attributes of the communicator, instead
of calling the MPI functions.

1 #!/usr/bin/env python

2 import boostmpi

3 comm=boostmpi.world

4 numproc=comm.size

5 myrank=comm.rank

6 print "Hello, world! I'm process %d of %d."%(myrank,numproc)

7 boostmpi.finalize()

Apart from these, boostmpi has one special feature that for collective com-
munication, i.e. reduce() and allreduce() need a user-de�ned function as the
collective operation. For example,

1 result=allreduce(comm,result_local,lambda x,y:x+y)

where lambda x,y:x+y is a user-de�ned function with the same functionality as
the collective operation sum.

3.7 Conclusion

At last of this chapter, the di�erent features are collected in the Table 3.1 for
comparison. More comparison in functionality and implementation features are
presented in next chapter.

18 Presentation of Python MPI Modules

pypar mpi4py myMPI pyMPI Scienti�c.MPI boostmpi
Pre-allocated bu�er Yes Yes Yes
for send-recv
Explicit MPI_Initialize Yes Yes
Explicit communicator Yes Yes Yes
Interactively parallel run Yes Yes Yes
Arbitrary Python object Yes Yes Yes Yes

Table 3.1: Comparison of di�erent features in six Python MPI modules

Chapter 4

Comparison of Python MPI

Modules

Besides the characteristics presented in the previous chapter, some detailed func-
tionality and implementation features regarding to scienti�c programming will
be discussed in this chapter. For the purpose of better illustration, this chapter
is organized as following:

In section 4.1, a list of some important MPI routines are presented. In section
4.2 and 4.3, both point-to-point communications and collective communications,
the syntax of 12 MPI routines are compared. For each MPI routine, the main
functionality is described �rst, and then for each MPI routine, the syntax di�er-
ences are compared in a tabular form. At last, in section 4.4, some suggestions
and guidelines are discussed regarding to functionality and implementation fea-
tures.

The user can use this chapter as a brief user manual or reference for MPI
programming in Python. The parallel performance of each Python MPI module
is compared in Chapter 4. Examples and test cases in real scienti�c applications
are given in Chapter 6.

4.1 Important MPI functions

The MPI standard contains hundreds of functions. However, only a small essential
subset of MPI are used in the majority of scienti�c parallel applications. This
section describes 12 of the most important MPI functions listed in Table 4.1,
where we can see which of them are provided by the six di�erent packages. And
then we will compare the syntax di�erences among C-MPI and six Python MPI
modules one by one. Some detailed usage issues of each function calls are pointed
out for further implementation. Please refer to the MPI tutorial [18] for more
concepts and theories about MPI programming.

19

20 Comparison of Python MPI Modules

Table 4.1: A list of 12 most important MPI functions in di�erent Python MPI
modules

pypar mpi4py myMPI pyMPI Scienti�c.MPI boostmpi
MPI_Send

√ √ √ √ √ √

MPI_Recv
√ √ √ √ √ √

MPI_Sendrecv
√ √

MPI_Isend
√ √ √ √

MPI_Irecv
√ √ √ √

MPI_Bcast
√ √ √ √ √ √

MPI_Reduce
√ √ √ √ √ √

MPI_Allreduce
√ √ √ √

MPI_Gather
√ √ √ √ √

MPI_Allgather
√ √ √

MPI_Scatter
√ √ √ √ √

MPI_Alltoall
√ √ √

4.2 Point-to-point communications

A point-to-point communication involves the transmission of a message between
a pair of MPI processes, from one sender to one receiver. It is heavily used in
scienti�c applications for exchanging messages between adjacent processes. For
instance, we use point-to-point communications to exchanging boundary condi-
tions between the neighboring sub-domains in Chapter 6.

4.2.1 Blocking communication mode

From Table 4.2 we see the syntax di�erences of MPI_Send and MPI_Recv among
di�erent Python MPI modules. The C MPI routines are listed in the �rst entry
for comparison. Clearly, Python-MPI routines have clear and easy syntax and
some parameters are optional.

The following are some comments of the functions and parameters for the
blocking communication routines:

• In Pypar, the send and reveive routines provide three protocols which han-
dle any picklable Python objects. The three protocols are array, string and
vanilla, which can be decided by setting the optional argument vanilla to
corresponding value. Values 'array' and 'string' set the protocol to han-
dling numpy arrays and text strings respectively. Setting the value to
1 forces the protocal for any type which will be less e�cient. Besides,
there is another optional parameter bypass. The default value is 'False'.
When it is 'True', all error checks are set to passed in order to reduce the
latency. Furthermore, the user can choose the third keyword parameter

4.2 Point-to-point communications 21

Table 4.2: The funcion calls of the blocking communication in di�erent Python
MPI modules

C

int MPI_Send(void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status)

Pypar

pypar.send(sendbuf, destination, tag=default_tag,

use_buffer=False, bypass=False, vanilla=False)

recv_ref=pypar.receive(source, tag=default_tag, buffer=None,

return_status=False, bypass=False, vanilla=False)

mpi4py

mpi4py.MPI.COMM_WORLD.Send(sendbuf, int destination, tag=t)

mpi4py.MPI.COMM_WORLD.Recv(self, buf, int source, tag=t,

Status status=None)

myMPI

mpi.mpi_send(sendbuf, sendcount, sendtype, destination, tag,

communicator)

recvbuf=mpi.mpi_recv(recvcount, recvtype, source, tag, communicator)

pyMPI
mpi.send(sendbuf, destination, tag=t)

recvbuf, status=mpi.recv(source, tag=t)

Scienti�c.MPI

Scientific.MPI.MPICommunicator.send(sendbuf, destination, tag)

message, source, tag, count =

Scientific.MPI.MPICommunicator.receive(recvbuf, source, tag)

boostmpi
boostmpi.world.send(destination, tag=0, value=sendbuf)

recvbuf=boostmpi.world.recv(source=-1, tag=-1, return_status=False)

22 Comparison of Python MPI Modules

'use_buffer=True' which assume the existence of bu�er at the recipient.
Meanwhile, the corresponding pypar.receive will specify an optional pa-
rameter buffer=recvbuf, where recvbuf is pre-allocated. This is used to
avoid creating a new bu�er for received values.

• mpi4py is the only one of these six modules which implements MPI_PROC_NULL
correctly as it should be. It greatly simpli�es the exchanging procedure to
check whether the destination or the source process exists or not. We will
see an example in Chapter 6. However, in order to passing non-contiguous
memory bu�er e�ciently, the user needs to de�ne derived data types, as
what we do in C MPI programming.

• While using MYMPI, we remark that the received value is returned instead
of storing in a pre-allocated bu�er. And only scalars and numerical arrays
are supported for message-passing. The user needs to specify the size and
the date type of sendbuf.

• While using receive provided by pyMPI, the function returns a tuple
with received values and status. While using receive provided by Scien-
ti�c.MPI, the function returns a tuple with received values, source process
identi�er, tag and size received.

From Table 4.3 we see the syntax di�erences of MPI_Sendrecv between the
only two modules that provide this MPI routine, mpi4py and pyMPI. The MPI
routine is commonly used for avoiding deadlock1.

Table 4.3: The funcion calls of MPI_Sendrecv in di�erent Python MPI modules

C

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

int dest, int sendtag,

void *recvbuf, int recvcount, MPI_Datatype recvtype,

int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

mpi4py
mpi4py.MPI.COMM_WORLD.Sendrecv(self, sendbuf, int dest=0, int sendtag=0,

recvbuf=None, int source=0, int recvtag=0, Status status=None)

pyMPI recvbuf,status=mpi.sendrecv(sendbuf, dest, source)

1Deadlock: the message passing procedure cannot be completed, normally because of wrong
send-recv patterns.

4.3 Collective communications 23

4.2.2 Non-blocking communication mode

From Table 4.4 we see the syntax di�erences of MPI_Isend and MPI_Irecv among
di�erent Python MPI modules. Non-blocking communication mode is used for
overlapping of communication and computation to use the common parallelism
more e�cient. Comparing with blocking communications, while waiting for the
completeness of receive operations, the computation-only part is running simul-
taneously.

Table 4.4: The funcion calls of the non-blocking communication in di�erent
Python MPI modules

C

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Request *request)

mpi4py
mpi4py.MPI.COMM_WORLD.Isend(selfbuf, destination=0, tag=0)

mpi4py.MPI.COMM_WORLD.Irecv(recvbuf, source=0, tag=0)

pyMPI
mpi.isend(sendbuf, destination, tag=t)

request=mpi.irecv(source, tag=t)

Scienti�c.MPI

Scientific.MPI.MPICommunicator.nonblockingSend(sendbuf,

destination, tag)

Scientific.MPI.MPICommunicator.nonblockingReceive(sendbuf,

source=None, tag=None)

boostmpi

request=boostmpi.world.isend(communicator, destination ,

tag=0, value=sendbuf)

request_with_value=boostmpi.world.irecv(communicator,

source=-1, tag=-1)

4.3 Collective communications

A collective communication involves every process in a group. We will present
seven of the most commonly used routines. From Table 4.5 to Table 4.11, we

24 Comparison of Python MPI Modules

show the syntax and parameter di�erences among the six Python MPI modules.
C MPI routines are listed as the �rst entry for comparison. Some explanations
regarding to the syntax and implementation features are discussed.

• The collective MPI routines provided by Pypar and Scienti�c.MPI only
support numerical arrays, but not scalars. While transmitting a scalar, the
user needs to de�ne a numerical array with the scalar as the �rst element.

• The collective MPI routines provided byMYMPI,pyMPI and boostmpi need
to take the return values instead of storing them in pre-allocated bu�ers.

• The user needs to de�ne a collective operation while using collective MPI
routines provided by boostmpi. For instance, lambda x,y:x+y is de�ned as
the collective operation sum.

From Table 4.5 to Table 4.11 we see the syntax di�erences of MPI_Bcast,
MPI_Reduce, MPI_Allreduce, MPI_Gather, MPI_Allgather, MPI_Scatter and
MPI_Alltoall among di�erent Python MPI modules.

Table 4.5: The funcion calls of MPI_Bcast in di�erent Python MPI modules

C
int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm)

Pypar pypar.broadcast(sendbuf, root)

mpi4py mpi4py.MPI.COMM_WORLD.Bcast(sendbuf, root=0)

myMPI
recvbuf=mpi.mpi_bcast(sendbuf, sendcount, sendtype, root,

communicator)

pyMPI recvbuf=mpi.bcast(sendbuf, int root=host_rank)

Scienti�c.MPI Scientific.MPI.MPICommunicator.broadcast(sendbuf, root)

boostmpi recvbuf=boostmpi.broadcast(Communicator, sendbuf, root)

4.3 Collective communications 25

Table 4.6: The funcion calls of MPI_Reduce in di�erent packages

C
int MPI_Reduce(void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

Pypar pypar.reduce(sendbuf, op, int root, buffer=recvbuf)

mpi4py mpi4py.MPI.COMM_WORLD.Reduce(sendbuf=None, recvbuf=None, op=SUM, root=0)

myMPI
mpi.mpi_reduce(sendbuf, int sendcount, sendtype, op,

int root, communicator)

pyMPI recvbuf=mpi.reduce(sendbuf, op)

Scienti�c.MPI Scientific.MPI.MPICommunicator.reduce(sendbuf, recvbuf, op, root)

boostmpi recvbuf=boostmpi.reduce(communicator, sendbuf,op)

Table 4.7: The funcion calls of MPI_Allreduce in di�erent Python MPI modules

C
int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

mpi4py mpi4py.MPI.COMM_WORLD.Allreduce(sendbuf=None, recvbuf=None, op=SUM)

pyMPI recvbuf=mpi.allreduce(sendbuf, op)

Scienti�c.MPI Scientific.MPI.MPICommunicator.allreduce(sendbuf,recvbuf,op)

boostmpi recvbuf=boostmpi.all_reduce(communicator, sendbuf, op)

26 Comparison of Python MPI Modules

Table 4.8: The funcion calls of MPI_Gather in di�erent Python MPI modules

C

int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

int root, MPI_Comm comm)

Pypar recvbuf = pypar.gather(sendbuf, root, buffer=None, vanilla=False):

mpi4py mpi4py.MPI.COMM_WORLD.Gather(sendbuf=None, recvbuf=None, root=0)

myMPI
recvbuf=mpi.mpi_gather(sendbuf,sendcount,sendtype,recvcount,

recvtype,root,communicator)

pyMPI recvbuf = mpi.gather(sendbuf)

boostmpi recvbuf = boostmpi.gather(communicator=boostmpi.world, sendbuf, root)

Table 4.9: The funcion calls of MPI_Allgather in di�erent Python MPI modules

C

int MPI_Allgather(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

mpi4py mpi4py.MPI.COMM_WORLD.Allgather(self, sendbuf=None, recvbuf=None)

pyMPI recvbuf = mpi.allgather(sendbuf)

boostmpi recvbuf = boostmpi.all_gather(communicator=world, sendbuf)

4.3 Collective communications 27

Table 4.10: The funcion calls of MPI_Scatter in di�erent Python MPI modules

C

int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

int root, MPI_Comm comm)

Pypar pypar.scatter(x, root, buffer=None, vanilla=False):

mpi4py mpi4py.MPI.COMM_WORLD.Scatter(self, sendbuf, recvbuf, int root=0)

myMPI
recvbuf = mpi.mpi_scatter(sendbuf,sendcount,sendtype,

recvcount,recvtype,root,communicator)

pyMPI recvbuf = mpi.scatter(sendbuf)

boostmpi recvbuf = boostmpi.scatter(communicator=world, sendbuf, root)

Table 4.11: The funcion calls of MPI_Alltoall in di�erent Python MPI modules

C

int MPI_Alltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

mpi4py mpi4py.MPI.COMM_WORLD.alltoall(self, sendobj=None, recvobj=None)

myMPI
recvbuf = mpi. mpi_alltoall(sendbuf,sendcount,sendtype,

recvcount,recvtype,communicator)

boostmpi recvbuf = boostmpi.alltoall(communicator=world, sendbuf)

28 Comparison of Python MPI Modules

4.4 Conclusion

After comparing syntax and implementation features among the di�erent Python
MPI modules, we can now take a look back at Table 4.1. mpi4py provides all
the most important MPI routines and close syntax with C-MPI implementation.
However, Pypar and pyMPI are with clear and easy-to-use syntax. Compara-
tively, Pypar is more �exible with di�erent protocols for passing di�erent Python
objects, di�erent options for using bu�er and di�erent options for returned sta-
tus. Module boostmpi supports better C++ development style and nearly all the
features of C++ library are available in this Boost.MPI Python bindings. There-
fore, it is particularly suitable for mixed programming users in Python and C++.
The other two modules MYMPI and Scienti�c.MPI do not support communica-
tion of arbitrary Python objects. It is more speci�ed for the scienti�c computing
purpose as a part of package Scienti�cPython.

Chapter 5

Performance Comparison through

Benchmarks

In the previous chapter, we discussed the functionalities and implementation
features of six di�erent Python MPI modules. In order to compare the MPI
performance of each module, in this chapter, we apply four micro-benchmarks
to evaluate some most important MPI routines in these modules and provide a
performance comparison of them.

Four single micro-benchmarks are performed: ping-pong test, bcast test, re-
duce test and allreduce test. The timing is measured in the following manner[27]:

1: set up the test (initialize a message of length 223)
2: start timing
3: loop of the MPI operations over di�erent message sizes in power of two
4: stop timing
5: compute the appropriate metric

The experiments are all performed on a Linux cluster with Xeon(R) E5420
2.50GHz processors, inter-connected through Gigabit Ethernets network. The de-
tailed experimental environments and package settings are described in Appendix
A.

We measures messages with lengths from 8 bytes to 223 bytes. Each test is
run 200 iterations. To avoid the overhead of calling the timer for each operation,
we perform the timing operation outside the iteration loop. Then we take the
average value of measurements over a number of iterations. The measurements
may �uctuate based on the network tra�c and the load on the cluster.

After the measurements, performance reports are generated �rst in raw data
�les. Then we collect the raw data for each modules and plot graphs for better
illustration.

29

30 Performance Comparison through Benchmarks

In following text, each test is described in terms of purpose, methodology and
performance results. Then a performance comparison is generated in char form.

5.1 Performance comparison of point-to-point com-

munication with Ping-pong test

The combination of latency and bandwidth de�nes the speed and capacity of a
network. Through testing the latency and bandwidth of each implementation, we
could measure the communication overhead which the Python MPI modules bring
in To measure the actual performance of Python-MPI communication, in terms of
latency and bandwidth, we use the Ping-pong micro-benchmark. It makes the use
of MPI_Send and MPI_Recv. We test these six Python MPI modules and compare
them with a C-MPI implementation. The test methodology are described in the
Pypar tutorial documents provided in the Pypar distribution[10]. The C-MPI test
program and the Python-Pypar test program are provided in an early version of
Pypar distribution. We implemented �ve more versions of the Ping-pong test
program with mpi4py, MYMPI, PYMPI, Scienti�c.MPI and boostmpi.

The benchmark test involves two MPI processes. We measure the time used
for exchanging a series of messages with di�erent lengths between these two
processes. The time used to pass a message can be approximated by the following
mathematical model[10]:

t = latency +message_size× 1

bandwidth
(5.1)

The measurement results for each of the implementations include the message
size used for testing and the corresponding time used for passing the message
with this size.

After the measurements, we evaluated the actual values of latency and band-
width by using a least squares strategy.

C pypar mpi4py myMPI pyMPI Scienti�c.MPI boostmpi
Latency 8 25 14 33 133 23 162

Bandwidth 967.004 898.949 944.475 364.18 150.901 508.972 100.658

Table 5.1: Performance comparison among six Python MPI modules layered MPI and
C-version MPI on a Linux-cluster with respect to the latency (micro-seconds) and band-
width(Mbytes/second)

5.2 Performance comparison of collective communication 31

From Table 5.1 we can see that mpi4py provides the best performance in the
bandwidth and the latency.Regarding the latency, the extra Python layer of MPI
routines results in larger overhead than standard C MPI implementation. Com-
paratively, pyMPI and boostmpi have bad performance in both the bandwidth
and the latency. As we have mentioned in Chapter 3, pyMPI uses "two messages
model" to handle the communication of arbitrary Python objects. This may
bring some extra overhead to the communications. And for boostmpi, it builds
on top of a C++ MPI interface boost.MPI by using the Boost.Python library.
The bad performance may be caused by this reason.

5.2 Performance comparison of collective commu-

nication

Collective communications are heavily used in many parallel scienti�c applica-
tions. We use three micro-benchmarks provided by LLCBench.MPBench[27] to
test the performance of three collective MPI routines: MPI_Bcast, MPI_Reduce
and MPI_Allreduce. The original benchmarks are implemented in C. We imple-
mented each of them in Python with six di�erent Python MPI modules for our
purpose of comparison. These benchmarks measures the number of megabytes
per second computed from the iteration times and the lengths of messages.

From Figure 5.1, we can see that Scienti�c.MPI and mpi4py have as com-
paratively good performance comparing with other Python MPI modules. For
messages with size larger than 4MB, they have as good performance as a C-MPI
implementation.

From Figure 5.2, we can see that mpi4py has the best performance comparing
with the other �ve Python MPI modules. But both the performance of mpi4py
and Scienti�c.MPI are unstable related to the di�erent message sizes.

For some modules without MPI Allreduce routine provided(pypar andMYMPI
1), a combination of MPI_Bcast and MPI_Reduce is used instead ofMPI_Allreduce.
We �rst run a reduction operation to collect the values to the root process. And
then the result is broadcast from the root to the other processes.

From Figure 5.3, we can see that bothmpi4py and Scienti�c.MPI have a fairly
good performance. pyMPI and boostmpi have comparatively bad performance
in this experiments. The bad performance may be caused by the same reason
mentioned in the previous section.

1see Table 4.7 for more information

32 Performance Comparison through Benchmarks

 6
4

 2
56

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

e+
06

 4
 1

6
 6

4
 2

56
 1

02
4

 4
09

6
 1

63
84

 6
55

36
 2

62
14

4 1
.0

48
58

e+
06

KB/sec

M
es

sa
ge

 S
iz

e
(b

yt
es

)

bc
as

t b
en

ch
m

ar
k

pl
ot

py
pa

r
1

m
pi

4p
y

1
m

yM
P

I 1
py

M
P

I 1
S

ci
en

tif
ic

 1
bo

os
tm

pi
 1

C
 1

Figure 5.1: Performance comparison between six Python MPI modules layered MPI and
C-version MPI on a Linux-cluster, with bcast test

5.2 Performance comparison of collective communication 33

 1 4 1
6

 6
4

 2
56

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

e+
06

 4
 1

6
 6

4
 2

56
 1

02
4

 4
09

6
 1

63
84

 6
55

36
 2

62
14

4 1
.0

48
58

e+
06

KB/sec

M
es

sa
ge

 S
iz

e
(b

yt
es

)

re
du

ce
 b

en
ch

m
ar

k
pl

ot

py
pa

r
1

m
pi

4p
y

1
m

yM
P

I 1
py

M
P

I 1
S

ci
en

tif
ic

 1
bo

os
tm

pi
 1

C
 1

Figure 5.2: Performance comparison between six Python MPI modules layered MPI and
C-version MPI on a Linux-cluster, with reduce test

34 Performance Comparison through Benchmarks

 1
6

 6
4

 2
56

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 4
 1

6
 6

4
 2

56
 1

02
4

 4
09

6
 1

63
84

 6
55

36
 2

62
14

4
1.

04
85

8e
+

06

KB/sec

M
es

sa
ge

 S
iz

e
(b

yt
es

)

al
lre

du
ce

 b
en

ch
m

ar
k

pl
ot

py
pa

r
1

m
pi

4p
y

1
m

yM
P

I 1
py

M
P

I 1
S

ci
en

tif
ic

 1
bo

os
tm

pi
 1

C
 1

Figure 5.3: Performance comparison between six Python MPI modules layered MPI and
C-version MPI on a Linux-cluster, with allreduce test

5.3 Conclusion 35

5.3 Conclusion

In the chapter, some MPI routines are tested by micro-benchmarks. The exper-
imental results show that two of these six Python MPI modules, mpi4py and
Scienti�c.MPI have comparatively good performance in both point-to-point and
collective communications. In the next chapter, we will use these routines to
solve two scienti�c problems. Then we can see the actual performance of these
modules in real scienti�c applications.

36 Performance Comparison through Benchmarks

Chapter 6

Test Cases and Numerical

Experiments

In this chapter, the six Python MPI modules from the previous chapters will be
used in parallel programming to solve two real scienti�c problems. Our focus
will be on evaluating and comparing the �exibility and performance of Python
implementations with the MPI modules. Detailed programming issues in using
those modules will be discussed.

The upcoming numerical experiments of parallel Python implementations are
performed on the Linux cluster described in Section 1.3 and detailed information
and settings for each package are listed in Appendix A.

6.1 Application I: Solving Wave Equation in 3-

Dimensional Space in Parallel

The wave equation is an example of hyperbolic partial di�erential equation of
waves. The problem we solved is de�ned in three-dimensional space and solved
with �nite di�erence methods in both spatial and temporal directions. The prob-
lem is brie�y described in next section. After the problem description, a parallel
algorithm is generated in Section 6.1.2. In Section 6.1.3, the parallel algorithm is
implemented in six Python MPI modules. We will discuss the performance issues
according to the experimental pro�ling results in Section 6.1.4.

37

38 Test Cases and Numerical Experiments

6.1.1 Problem description

Consider a simple mathematical model for three-dimensional initial-boundary
value problem for the wave equation on a space-time domain ΩT := Ω × (0, T]

∂2u(x, t)

∂t2
= c2∇2u(x, t) in Ω (6.1)

~n · ∇u(x, t) = 0 on ∂Ω (6.2)

where c is a constant representing the propagation speed of the wave, coordinate
x is in three space dimensions, and ∇2u = ∂2u

∂x2 + ∂2u
∂y2

+ ∂2u
∂z2

. The mathematical
model Equation 6.1 and Equation 6.2 can have initial value conditions:

∂u(x, 0)

∂t
= 0 at t = 0, x in Ω (6.3)

u(x, 0) = I(x) (6.4)

Here we apply �nite di�erence method on uniform spacial computational mesh
with constant cell lengths ∆x = 1

NX−1
, ∆y = 1

NY−1
, ∆z = 1

NZ−1
. The mathe-

matical model Equation 6.1 and Equation 6.2 can be translated to the following
explicit scheme for one time-step forward in three dimensions:

ul+1
i,j,k =

c2∆t2

∆x2
(uli+1,j,k + uli−1,j,k)

+
c2∆t2

∆y2
(uli,j+1,k + uli,j−1,k)

+
c2∆t2

∆z2
(uli,j,k+1 + uli,j,k−1)

− 2
(c2∆t2

∆x2
+
c2∆t2

∆y2
+
c2∆t2

∆z2
− 1

)
uli,j,k − ul−1

i,j,k (6.5)

with subscripts i = 1, . . . , NX, j = 1, . . . , NY , k = 1, . . . , NZ,
and the superscript l = 0, 1, ... refer to the time level. Due to the stability reason,

∆t is set to be no greater than c
(

1
∆x2 + 1

∆y2
+ 1

∆z2

)− 1
2
, according to observation

based on some numerical calculation in book [28].

From the initial value conditions (6.3), we have u−1
i,j,k = u1

i,j,k, then the arti�cial
quantity

u−1
i,j,k =

c2∆t2

2∆x2
(uli+1,j,k + uli−1,j,k) +

c2∆t2

2∆y2
(uli,j+1,k + uli,j−1,k)

+
c2∆t2

2∆z2
(uli,j,k+1 + uli,j,k−1)−

(c2∆t2

∆x2
+
c2∆t2

∆y2
+
c2∆t2

∆z2
− 1

)
uli,j,k (6.6)

6.1 Application I: Solving Wave Equation in 3-Dimensional Space in Parallel 39

According to the boundary condition (6.2), the ghost grids[28] are formulated
as:
ul0,j,k = ul2,j,k and ulNX+1,j,k = ulNX−1,j,k
uli,0,k = uli,2,k and uli,NY+1,k = uli,NY−1,k
uli,j,0 = uli,j,2 and u

l
i,j,NZ+1 = uli,j,NZ−1

6.1.2 Parallelization

Regarding parallelization, the starting point is a partition of the global com-
putational work among the processes. For this type of explicit �nite di�erence
schemes, we will divide the work based on sub-domains, where the computational
work on one sub-domain is assigned to one process. The global solution domain
Ω is decomposed into P = Dimx×Dimy×Dimy

1 sub-domains for three dimen-
sional cases. Therefore, each sub-domain will have certain number of neighboring
sub-domains. The numbers of neighbors varies from three to six with respect to
the sub-domain positions.

We see Figure 6.1 as a two-dimensional example of partitioning the global
solution domain on four processes. The blue parts are the outer boundary and
the green parts are the internal boundary. The yellow parts are de�ned for ghost
grids. The area of interior points are marked as red. For each sub-domain, the
values of the ghost grids (marked with yellow)are updated by communicated with
the internal boundary points (marked with green) of neighboring sub-domains.
And the values of the interior points (marked with red) and the values of the
grid points on the outer boundary (marked with blue) of each sub-domain are
updated separately in serial.

The problem is devided into P small problems. For each sub-problem, the
mesh size is reduced from NX × NY × NZ to Lx × Ly × Lz where Lx ≈
NX/Dimsx, Ly ≈ NY/Dimsy and Lz ≈ NZ/Dimsz. For each small sub-
problem, the computational part for updating values of interior and boundary
points can be done simultaneously. The main algorithm is in Algorithm 1 on the
next page.

In the next section, we will implement the above algorithm and carry on some
measurements and performance analysis in Section 6.1.4.

6.1.3 Implementation

In this section, six versions of Python MPI implementations with di�erent pack-
ages are presented to solve the problem de�ned in Section 6.1.1. (Refer to the
source code [16] for the full implementation details). From Algorithm 1 we can see

1From the implementation point of view, P is the number of processes which the parallel
application is applied on.

40 Test Cases and Numerical Experiments

Figure 6.1: A 2D example of partitioning the global domain on four processes.

Algorithm 1 The Parallel 3D Wave Equation Solver
1: Partitioning the global sub-domains into P sub-domains
2: Setting initial conditions
3: Setting boundary conditions
4: while t <= tstop do
5: Updating the values of the grid points on the outer boundary
6: Exchanging the values of the ghost points on the internal boundary with

neighboring processes
7: Updating the values of the interior points of each sub-domain
8: t+ = dt
9: end while

6.1 Application I: Solving Wave Equation in 3-Dimensional Space in Parallel 41

that the implementation for each time step in while-loop consists of three stages.
The �rst and third stages, referring to the �fth and seventh lines in Algorithm
1, are the computational part for each sub-domain. They are carried out sequen-
tially on the assigned process. Since no communication is involved in this part,
those six versions call the same functions update_inner and update_boundary.
On the sixth line in Algorithm 1, the second stage is the parallel part de�ned
for exchanging the values of the ghost grids on the internal boundary between
neighboring sub-domains. Six di�erent versions of exchange_boundary are im-
plemented for this part. For both parts, a C-version of implementation is also
provided for comparison.

The Computational Part

The function update_inner is de�ned to calculate Equation 6.5. For Equation
6.6, the similar calculation is implemented with di�erent coe�cients.

Python version of update_inner :

1 def update_inner(un,u,up,dx2,dy2,dz2,Lx,Ly,Lz):

2 un[1:Lz+1,1:Ly+1,1:Lx+1]=\

3 dz2*(u[2:Lz+2,1:Ly+1,1:Lx+1]+u[0:Lz,1:Ly+1,1:Lx+1])\

4 +dy2*(u[1:Lz+1,2:Ly+2,1:Lx+1]+u[1:Lz+1,0:Ly,1:Lx+1])\

5 +dx2*(u[1:Lz+1,1:Ly+1,2:Lx+2]+u[1:Lz+1,1:Ly+1,0:Lx])\

6 -2*(dz2+dy2+dx2-1)*(u[1:Lz+1,1:Ly+1,1:Lx+1])\

7 -up[1:Lz+1,1:Ly+1,1:Lx+1]

8 return un

Here, the three-dimensional arrays un, u, up refer to ul+1, ul and ul−1, respec-
tively. The variables dx2, dy2, dz2 contains the values c2∆t2/∆x2, c2∆t2/∆y2

and c2∆t2/∆z2, respectively. The problem size for each sub-domain is de�ned as
Lx× Ly × Lz in the previous section.

From this Python version of update_inner, we can see that array slicing[3]
is heavily used for three-dimensional arrays. Slicing is considered to be one of
the best features of Python's NumPy package for scienti�c programming, which
returns a pointer to the original values. This feature greatly simpli�es the tra-
ditional approach to access multi-dimensional arrays which is shown in the C
version of update_inner.

C version of update_inner with three nested for loops:

1 #define IJKth(u,i,j,k) (u[(i)+(j)*(lxyz[0]+2)+(k)*(lxyz[1]+2)*(lxyz[0]+2)])

2 void update_inner(double dx2,double dy2,double dz2, int lxyz[3],

3 double* un, double *u, double *up) {

4 int i,j,k;

5 for (k=1;k<=lxyz[2];k++){

42 Test Cases and Numerical Experiments

6 for(j=1;j<=lxyz[1];j++){

7 for(i=1;i<=lxyz[0];i++){

8 IJKth(un,i,j,k)=(dz2*(IJKth(u,i,j,k+1)+IJKth(u,i,j,k-1)) \

9 +dy2*(IJKth(u,i,j+1,k)+IJKth(u,i,j-1,k)) \

10 +dx2*(IJKth(u,i+1,j,k)+IJKth(u,i-1,j,k)) \

11 -2*(dx2+dy2+dz2-1)*(IJKth(u,i,j,k))\

12 -IJKth(up,i,j,k));

13 }

14 }

15 }

16 }

Here, lxyz[3] is de�ned for the problem size of the sub-domain Lx, Ly and Lz.
One micro IJKth is de�ned for index operations of u, up, un in 3-dimension for
replacement of the long and repeat fragments of codes.

Communication Part

The communication part is mainly in function exchange_boundary for exchang-
ing internal boundary values with neighboring sub-domains. Each sub-domain is
adjacent with three to six other sub-domains depending on the position in global
solution domain. One exchanging operation is needed for each neighboring sub-
domain. We take the exchanging operations in x-direction as an example to show
the communication procedure. The y and z directions have the same exchanging
pattern.

In x-direction, the adjacent surfaces between sub-domains are exchanged,
namely a 2-dimensional arrays are sent to or received from left and right neigh-
bors.

This procedure is implemented with six di�erent Python MPI modules. Dif-
ferent interfaces for MPI_Send and MPI_receive calls will be presented. And
some detailed implementation issues will also be discussed in this section. We
will �rst see a C-version of the exchange operations in x-direction to illustrate
the MPI send-receive routines in the traditional approaches with the compiled
language.

C version of exchange_boundary:

1 MPI_Type_vector((lxyz[1]+2)*(lxyz[2]),1,(lxyz[0]+2),MPI_DOUBLE,&new_type_x);

2 MPI_Type_commit (&new_type_x);

3 MPI_Sendrecv(&(IJKth(u,pos_x[0],1,1)),1,new_type_x,ranks_x[0],tags_x[0],

4 &(IJKth(u,pos_x[1],1,1)),1,new_type_x,ranks_x[1],tags_x[1],

5 MPI_COMM_WORLD,&status);

6 MPI_Sendrecv(&(IJKth(u,pos_x[2],1,1)),1,new_type_x,ranks_x[2],tags_x[2],

6.1 Application I: Solving Wave Equation in 3-Dimensional Space in Parallel 43

7 &(IJKth(u,pos_x[3],1,1)),1,new_type_x,ranks_x[3],tags_x[3],

8 MPI_COMM_WORLD,&status);

The parameters lxyz,ranks_x,tags_x,pos_x are de�ned for the size of sub-
domain, the neighboring processes, the message tags and the position of the send-
bufs, respectively. They are all calculated before the exchanging operations. For
transmitting a non-contiguous memory bu�er, a derived data type new_type_x

is de�ned to index the two-dimensional array on the adjacent surface between
two neighboring sub-domains.

The following six implementations with di�erent Python MPI modules are
carried out to achieve the same communication procedure. But there are some
di�erences in using bu�er, return values and checking boundary processes. We
will see these di�erences from some small segments of the source codes.

The C-MPI provides a send-recv combination routine MPI_Sendrecv, we use it
for this exchanging operation to avoid deadlock. For those Python MPI modules
without this routine, we need to de�ne a "even-odd" (decided by the position
of the sub-domain) model for passing the messages. It is de�ned as the "odd"
processes choose to send while the "even" processes receive, followed by a reversal
order. For those Python MPI modules without MPI_PROC_NULL implemented, we
need to check whether the process is null for each sending or receiving operation.

An example of exchanging operations with pypar

Here, we take the Pypar version as an example to describe the procedure.
We de�ned six functions for the exchanging operations in x-direction. x1 and

x2 are the neighboring processes. In pypar version, we set optional parameter
use_buffer to True for avoiding re-allocate places for bu�er and set bypass to
True for avoiding the extra work of error checks. Both parameters are optional,
and the default value are False. However, this usage will greatly improve the
parallel performance while dealing with large numerical arrays.

pypar version of the exchanging operations in x direction

1 def sendrecv_x_even(myrank,lx,ly,lz,x2,buf_x):

2 pypar.send(u[1:lz+1,1:ly+1,lx],x2, use_buffer=True , bypass=True)

3 u[1:lz+1,1:ly+1,lx+1]=pypar.receive(x2, buffer=buf_x, bypass=True)

4 def sendrecv_x_even_null(myrank,lx,ly,lz,x2,buf_x):

5 pass

6 def sendrecv_x_odd(myrank,lx,ly,lz,x1,buf_x):

7 u[1:lz+1,1:ly+1,0] =pypar.receive(x1, buffer=buf_x, bypass=True)

8 pypar.send(u[1:lz+1,1:ly+1,1], x1, use_buffer=True , bypass=True)

9 def sendrecv_x_odd_null(myrank,lx,ly,lz,x1,buf_x):

10 pass

11 def comm_x_1(myrank,lx,ly,lz,x1,x2,buf_x):

12 sendrecv_even(myrank,lx,ly,lz,x2,buf_x)

13 sendrecv_odd(myrank,lx,ly,lz,x1,buf_x)

44 Test Cases and Numerical Experiments

14 def comm_x_2(myrank,lx,ly,lz,x1,x2,buf_x):

15 sendrecv_odd(myrank,lx,ly,lz,x1,buf_x)

16 sendrecv_even(myrank,lx,ly,lz,x2,buf_x)

We apply function pointers to prede�ne the send-recv order, the communication
pattern and null processes, so that we only need to de�ne them only once in
our program before the exchanging operation. After that, we don't need to
check the null processes and the send-recv orders anymore. The following is the
example to de�ne the function pointers. This procedure is also used in the other
implementation which the module does not provide MPI_Sendrecv and implement
MPI_PROC_NULL.

1 comm_x=comm_x_1 if np[0]%2==0 else comm_x_2 # to check the even/odd process

2 sendrecv_x_odd=sendrecv_x_odd if x1!=-2 else sendrecv_x_odd_null

3 sendrecv_x_even=sendrecv_x_even if x2!=-2 else sendrecv_x_even_null

4 comm_x(myrank,lx,ly,lz,x1,x2,buf_x) # do exchange operation in x-direction

An example of exchanging operations with mpi4py

Following we see the implementation withmpi4py. mpi4py has both MPI_Sendrecv
and MPI_PROC_NULL implemented. Therefore this version of exchanging opera-
tions has the almost same pattern with C-MPI version.

mpi4py version of the exchanging operations in x direction

1 new_type_x=mpi.DOUBLE.Create_vector((Ly+2)*(Lz+2),1,(Lx+2))

2 newtype_x.Commit()

3 ut=u.reshape(-1)#convert to 1-d array

4 comm.Sendrecv([ut[(pos_x[0]):],1,new_type_x],ranks_x[0],tags_x[0],\

5 [ut[(pos_x[1]):],1,new_type_x],ranks_x[1],tags_x[1])

6 comm.Sendrecv([ut[(pos_x[2]):],1,new_type_x],ranks_x[2],tags_x[2],\

7 [ut[(pos_x[3]):],1,new_type_x],ranks_x[3],tags_x[3])

Derived data type is specially needed for this module. The starting positions of
arrays, neighboring ranks and tags are calculated in advance for transmitting the
non-contiguous memory bu�ers.

An example of one exchanging operation with MYMPI

The MYMPI version has the same procedure with pypar version. The codes
below only shows the message-passing to the right neighbor, the other directions
are quite similar but with correct positions of sendbuf, corresponding tags and
destination ranks. The version looks like in between pypar and mpi4py . Slicing
is supported but the user needs to specify the size and data type of the bu�er.

MYMPI version of one exchanging operation in x direction

1 mpi.mpi_send(u[1:Lz+1,1:Ly+1,Lx],size_x,mpi.MPI_DOUBLE,x2,\

2 tags_x[0],mpi.MPI_COMM_WORLD)

6.1 Application I: Solving Wave Equation in 3-Dimensional Space in Parallel 45

3 u[1:Lz+1,1:Ly+1,Lx+1]=array(mpi.mpi_recv(size_x,mpi.MPI_DOUBLE,\

4 x2,tags_x[1],mpi.MPI_COMM_WORLD)).reshape(Lz,Ly)

There are two small details that need to pay attention to. One is that the bu�er
received is not numerical array, and need to convert to numerical arrays manually
and reshape to �t in the correct position. The other is that MPI_PROC_NULL is
not implemented as it is in C version. If the destination is MPI_PROC_NULL, the
sending will run anyway. But the receiver receives an array with all zero values.
It will end up to wrong calculation results without any MPI error messages.

An example of one exchanging operation with pyMPI

The pyMPI version also has the same procedure with pypar version. The
codes below only shows the message-passing to the right neighbor, the other di-
rections are quite similar but with correct positions of sendbuf and corresponding
destination ranks.

pyMPI version of one exchanging operation in x direction

1 mpi.send(u[1:Lz+1,1:Ly+1,Lx],x2)

2 u[1:Lz+1,1:Ly+1,Lx+1],status=mpi.recv(x2)

The module provides MPI_Sendrecv routine, so we could also use the function
mpi.sendrecv instead.

An example of one exchanging operation with Scienti�c.MPI

The Scienti�c.MPI version has the same procedure with pypar version and
similar syntax with pyMPI. The codes below only shows the message-passing to
the right neighbor, the other directions are quite similar but with correct positions
of sendbuf and corresponding destination ranks.

Scienti�c.MPI version of one exchanging operation in x direction

1 comm.send(u[1:Lz+1,1:Ly+1,Lx],x2,100)

2 u[1:Lz+1,1:Ly+1,Lx+1], source, tag, count=comm.receive(buf_x,x2)

We remark that the tag is of type integer and could not be great than 231. And
the returned values of function comm.receive is a tuple including the reference
of the received bu�er, the source process, the message tag and the size of the
received bu�er.

An example of one exchanging operation with boostmpi The boostmpi
version has the same procedure with pypar version. The codes below only shows
the message-passing to the right neighbor, the other directions are quite similar
but with correct positions of sendbuf and corresponding destination processes.

boostmpi version of one exchanging operation in x direction

1 comm.send(value=u[1:Lz+1,1:Ly+1,Lx],x2)

2 u[1:Lz+1,1:Ly+1,Lx+1]=comm.recv(source=x2)

We remark that the received value is returned instead of storing it in a pre-
allocated bu�er. This may have some impact on the parallel performance.

46 Test Cases and Numerical Experiments

6.1.4 Measurements and performance comparison

We have chosen a test problem with the wave speed c = 1 and initial values

I(x) = 2 cos(πx) cos(πy) cos(πz) (6.7)

Two global uniform meshes are de�ned in Table 6.1. We chose the mesh size as
the power of 2 and one grid point in addition (27 + 1 = 129 and 28 + 1 = 257)
to reduce the roundo� error. The size and the number of time steps are inde-
pendent of the number of processes, only determined by the global mesh size.
Figure 6.2 - 6.5 shows the performance comparison of the wall-clock time mea-
surements and speedup results among seven di�erent implementations: pypar,
mpi4py, myMPI, pyMPI, Scienti�c.MPI, boostmpi and C. The experimental en-
vironments are described in Appendix A. All the measurements in this section
measures the wall-clock time (in seconds) of the time-stepping part for solving
the wave equation. The number of processes is varied between 1 and 64. The
speedup results use the measurements on single core (free of communication) as
the reference. The measurements are labeled respectively with di�erent colors
and point types. For the purpose of better illustrating, both x and y axes are
scaled with log 2.

Mesh size 129× 129× 129 257× 257× 257
The size of time step 0.004510 0.002255

The number of time steps 444 887

Table 6.1: Two global meshes and time steps de�ned for solving the wave equation

We can observe from Figure 6.2 - 6.5 that C implementation is 8 to 10 times
faster than any of the implementations with Python MPI wrapper. The overhead
of Python MPI wrapper is one of the reasons, as we have discussed in the pre-
vious chapter. But we notice that the measurements with the program executed
on a single core also have this kind of distribution, even without communication
overhead. From Table 3 in paper [5], we see that the stand-alone C program
is more than 9 times faster than vectorized Python version slices provided by
numerical python modules, while updating a seven-point �nite di�erence sten-
cil on a 100 × 100 × 100 grid mesh. Vectorized Python use slicing provided
by numerical Python modules implemented in C. Because of the large computa-
tion/communication ratio, the most time-consuming part for solving this problem
is the computation part.

In Figure 6.2, the wall-clock time measurements show slightly di�erent from
each other, while the number of processes is as large as 16. The computation
load on each process became comparatively smaller, then the di�erence may
caused by the communication overhead. The communications are mainly on

6.1 Application I: Solving Wave Equation in 3-Dimensional Space in Parallel 47

boundary exchanging operations. In connection with the performance comparison
of pingpong test in the previous chapter, we can see that the module with large
latency have relatively bad performance in this case.

In Figure 6.3, the speed-up results show that the implementations are no
longer e�cient while the number of processes is larger than 32. The communi-
cation time took the most part of the overall time comsumption for solving this
problem.

In Figure 6.4, the wall-clock time measurements of six di�erent versions almost
draw on the same line. The large computation/communication ratio of this test
case makes the di�erences of the communication overhead from di�erent modules
have small in�uence on the overall parallel performance.

However, the speed-up results on the mesh size 257 × 257 × 257 illustrates
that all the seven implementations have almost same speedup results. These
Python MPI modules provide su�cient parallel e�ciency regarding to Python
MPI programming for solving scienti�c problems.

48 Test Cases and Numerical Experiments

Figure 6.2: A comparison of the wall-clock time measurements (in seconds) of solving the
wave equation on mesh 129×129×129 among seven di�erent implementations: pypar, mpi4py,
myMPI, pyMPI, Scienti�c.MPI, boostmpi and C

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64

R
un

 T
im

es
 (

se
co

nd
s)

(lo
gs

ca
le

 2
)

Number of processes (logscale 2)

3Dwave Runtime Plot on Mesh 129x129x129

package=pypar
package=mpi4py
package=myMPI
package=pyMPI

package=Scientific
package=boostmpi

package=C

Figure 6.3: A comparison of the speedup results of solving the wave equation on mesh
129× 129× 129 among seven di�erent implementations: pypar, mpi4py, myMPI, pyMPI, Sci-
enti�c.MPI, boostmpi and C

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64

S
pe

ed
up

 r
es

ul
ts

 (
lo

gs
ca

le
 2

)

Number of processes (logscale 2)

3Dwave Speedup Plot on mesh 129x129x129

package=pypar
package=mpi4py
package=myMPI
package=pyMPI

package=Scientific
package=boostmpi

package=C
Ideal speedup

6.1 Application I: Solving Wave Equation in 3-Dimensional Space in Parallel 49

Figure 6.4: A comparison of the wall-clock time measurements (in seconds) of solving the
wave equation on mesh 257×257×257 among seven di�erent implementations: pypar, mpi4py,
myMPI, pyMPI, Scienti�c.MPI, boostmpi and C

 16

 32

 64

 128

 256

 512

 1024

 2048

 1 2 4 8 16 32 64

R
un

 T
im

es
 (

se
co

nd
s)

(lo
gs

ca
le

 2
)

Number of processes (logscale 2)

3Dwave Runtime Plot on Mesh 257x257x257

package=pypar
package=mpi4py
package=myMPI
package=pyMPI

package=Scientific
package=boostmpi

package=C

Figure 6.5: A comparison of the speedup results of solving the wave equation on mesh
257× 257× 257 among seven di�erent implementations: pypar, mpi4py, myMPI, pyMPI, Sci-
enti�c.MPI, boostmpi and C

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

S
pe

ed
up

 r
es

ul
ts

 (
lo

gs
ca

le
 2

)

Number of processes (logscale 2)

3Dwave Speedup Plot on mesh 257x257x257

package=pypar
package=mpi4py
package=myMPI
package=pyMPI

package=Scientific
package=boostmpi

package=C
Ideal speedup

50 Test Cases and Numerical Experiments

One Python implementation with mpi4py non-blocking communication is also
implemented for comparison. The same environmental conditions are used for
testing. In Figure 6.6, we can see the non-blocking version has better perfor-
mance than the blocking version. The large computation takes the advantage
of the waiting time for non-blocking communications. However, In Figure 6.7,
the advantage of non-blocking communication is not obvious any more. Even on
some point, blocking version is slightly faster than the non-blocking version. For
more discussion about the overlapping communication and computation mode
can be found in most of the MPI tutorials, i.e.[18].

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64

R
un

 T
im

es
 (

se
co

nd
s)

Number of cores

3Dwave Runtime Plot on mesh 129x129x129

package=mpi4py
package=mpi4pynb

Figure 6.6: A comparison of the wall-clock time measurements (in seconds) of solving the
wave equation on mesh 129 × 129 × 129 between blocking and non-blocking communications
implemented with the module mpi4py

6.1 Application I: Solving Wave Equation in 3-Dimensional Space in Parallel 51

 64

 128

 256

 512

 1024

 2048

 1 2 4 8 16 32 64

R
un

 T
im

es
 (

se
co

nd
s)

Number of cores

3Dwave Runtime Plot on mesh 257x257x257

package=mpi4py
package=mpi4pynb

Figure 6.7: A comparison of the wall-clock time measurements (in seconds) of solving the
wave equation on mesh 257 × 257 × 257 between blocking and non-blocking communications
implemented with the module mpi4py

52 Test Cases and Numerical Experiments

6.2 Application II: Parallel Implementation of Con-

jugate Gradient Method

In computational mathematics, while numerically solving PDEs by �nite dif-
ference methods or �nite element methods, it always leads to a large system
of linear algebraic equations. Iterative methods[29] play an important role in
solving those large linear systems. In contrast to direct methods(like Gaussian
elimination[30]), iterative methods achieve better performance in computational
e�ciency. One of the best known iterative methods is the Conjugate Gradi-
ent(CG) Method[31], which is widely used for �nding successive approximations
to the solutions of symmetric positive-de�nite systems. Here in this section, we
introduce a parallel algorithm of Conjugate Gradient Method and implement it
with six di�erent Python MPI modules. Then we apply them on solving the
Poisson's equation on two-dimensional space for experiments and performance
comparison.

Through the implementations, we compare the usages and functionalities of
these Python MPI modules, and measure the parallel performances on a Linux
cluster described in Appendix A. The comparisons of parallel performances are
intuitively illustrated in chart form.

6.2.1 The Parallel Algorithm of Conjugate Gradient Al-

gorithm

Suppose we want to solve the system of linear equations

Ax = b (6.8)

where A is a n-by-n symmetric1 and positive de�nite2 sparse3 matrix, and b is a
vector of length n. For a given matrix/vector partitioning scheme(i.e.row parti-
tioning scheme), the vectors b and x is partitioned among computing processes.
The distribution of the matrix A should be consistent with the distribution of the
vectors. We de�ne As as a sub-matrix of A, bs as a sub-vector of b and xs as a
sub-vector of x on one process. x0s is de�ned as a sub-vector of the initial vector
x0. Remarking x0l and pl are extra vectors prepared for matrix-vector multipli-
cation. According to the partitioning scheme, on each process, only a segment
of the original vector is stored. In order to do matrix-vector multiplication, all
non-zero entries in the sub-matrix should be multiples with the corresponding ele-
ments of the global vector. Some more elements are needed besides the elements

1Symmetric matrix: AT = A. See more about symmetric matrix in [32]
2Positive de�nite matrix: xTAx > 0 for all non-zero vectors x ∈ Rn. See more about

symmetric matrix in [33]
3Sparse matrix: a matrix that allows special techniques to take advantage of the large

number of zero elements[34].

6.2 Application II: Parallel Implementation of Conjugate Gradient Method 53

in the sub-vector. Therefore x0l and pl are prepared as the local vectors with
all the elements needed for one multiplication operation with the corresponding
sub-matrix.

The main content of the parallel algorithm of Conjugate Gradient Method is
shown in Algorithm 2. The red marked parts in the algorithm involve MPI-based
parallel implementation, which will be explained in Section 6.2.2

6.2.2 Implementation

In this section, six versions of Python implementations of the Algorithm 2 are
presented with di�erent Python MPI modules. We can see that in each iteration
step, three matrix/vector operations are involved, matrix-vector multiplication,
vector inner product, vector addition and scalar-vector multiplication. In the
following text, we will explain them one by one with emphasize on the matrix-
vector multiplication and the vector inner product which involve message-passing
communications. The main di�erences among those six implementations are in
the message-passing communication part. Before that, the sparse storage format
used in the implementations is introduced �rst.

The sparse matrix storage format

In chapter 2, we have introduced the scienti�c tools for Python SciPy [23]. SciPy
provides seven sparse matrix types4 for di�erent purposes. For more explanations
about the types, the readers are referred to the reference guide[23]. Among those
seven types, Compressed Sparse Column format(CSC) and Compressed Sparse
Row format(CSR) are specially de�ned for performing matrix multiplication such
as matrix-vector multiplication e�ciently. Therefore we choose CSR formats
in related to the given matrix/vector partitioning scheme(i.e. row partitioning
scheme).

Matrix-vector multiplication

As we have explained that local vector pl is necessary for matrix-vector mul-
tiplication with the corresponding sub-matrix As. On each process, besides the
elements already locate in this sub-vector ps, some more elements are needed from
the other processes. These elements are obtained from the relevant processes ac-
cording to the partitioning scheme. The function local_value are de�ned for
this purpose. The procedure is the same for di�erent implementations. However,
the obtaining operation, which is performed by calling MPI routines, have some
di�erences in using MPI send-recv function calls among di�erent Python MPI

4Seven sparse matrix types: Compressed Sparse Column format, Compressed Sparse Row
format, Block Sparse Row format, List of Lists format, Dictionary of Keys format, Coordinate
format, and Diagonal format. [23]

54 Test Cases and Numerical Experiments

Algorithm 2 The Parallel Conjugate Gradient Algorithm

1: Calculate Ax = b
2: As ← sub_matrix(A), bs← sub_vector(b)
3: x0s ← bs {initializing problem vector for �rst iteration step}
4: x0l ← local_value(x0s) {preparing a local vector corresponding to each

nonzero entry in sub-matrix by point-to-point communication with relevant
processes containing certain elements As}

5: rs ← bs − matvec(As, x0l) {generating local residual rs by multiply sub-
matrix and corresponding local vector x0l }

6: ps ← rs
7: ρ0 ←< rs, rs >
8: ρ0 ← all_reduce(ρ0, op = sum)
9: k = 0
10: while ρk/ρ0 > tolerance do
11: pl ← local_value(ps)
12: vs ←matvec(As, pl)

matrix-vector multiplication

13: a1s ←< rs, rs >
vector inner product

14: a1← all_reduce(a1s, operation = sum)
15: a2s ←< ps, vs >

vector inner product

16: a2← all_reduce(a2s, operation = sum)
17: a← a1/a2
18: xs ← xs + a ∗ ps

vector addition and scalar-vector multiplication

19: rs ← rs − a ∗ vs
vector addition and scalar-vector multiplication

20: ρk+1 ←< rs, rs >
vector inner product

21: ρk+1 ← all_reduce(ρk+1, operation = sum)
22: β ← ρk+1/ρk
23: ps ← rs + β ∗ ps

vector addition and scalar-vector multiplication

24: k ← k + 1
25: end while

6.2 Application II: Parallel Implementation of Conjugate Gradient Method 55

modules. The detailed usage of MPI send-recv has been explained in the previ-
ous application case. Here we will take one of the six di�erent implementations
as an example to show how it works.

Python implementation of obtaining the missing elements, using pypar[10]

1 pypar.send(send_buf,dest,tag=tag1,use_buffer=True, bypass=True)

2 pypar.recv(source,buffer=recv_buf,tag=tag2)

For each process, the elements needed for the other processes are stored in
send_buf and sent to the relevant processes. Then the missing elements are
received from the corresponding processes and stored in recv_buf. Putting the
received elements together with the sub-vector p_s already on the process, we
get the local vector p_l ready for matrix-vector multiplication operation.

The matrix-vector multiplication operation is performed by calling the build-
in function provided by SciPy.sparse.

1 vs=As._mul_vector(p_l)

Here As is the sub-matrix de�ned of CSR format in package SciPy.sparse and
vs is a sub-vector for storing the matrix-vector multiplication results. For this
computational part, the implementation is the same for all the six di�erent ver-
sions, since no communication is involved. Refer to the source code for the full
implementation details.

Vector inner product

Another important operation in Algorithm 2 is the vector inner product. The op-
eration is performed three times in each iteration step. The procedure is almost
the same with the example shown in Chapter 2. However, the only di�erence
is here we need the global vector inner product results available on all processes
instead of only on the root process. The reason is the results are needed for the
upcoming matrix/vector operations. For instance, Line 15-18 in Algorithm 2,
after calculating the inner product of two sub-vectors p_s and v_s, a MPI Allre-
duce function is called to sum the value a2_s from each process. The sum a2 is
returned to all processes. Then the global vector inner product result a2 is avail-
able on each process for the oncoming vector addition and scale multiplication
operations.

The Python implementation of vector inner product of two sub-vectors is the
same of all six implementations.

1 a2_s=numpy.inner(p_s,v_s)

The six di�erent implementations of summing the result on each process are
presented next. For those modules who have not provided MPI Allreduce (pypar

56 Test Cases and Numerical Experiments

and MYMPI 5), we use a combination of MPI Reduce and MPI Bcast instead.
The procedure is mainly the same, but we sum the value from each process to
the master process �rst and broadcast it to all the other processes afterwards.

For some modules(pypar, MYMPI and Scienti�c.MPI), the collective oper-
ations do not support the arbitrary Python objects. The user needs to convert
the value on each process to the type of numerical array �rst.

Python implementation of summing the global inner product result a2, using pypar[10]

1 a2s=array(a2s,'d')

2 a2=array(0.,'d')

3 pypar.reduce(a2s,pypar.SUM,0,buffer=a2)

4 pypar.bcast(a2,0)

For this case, the local value a2s contains only one element. We can use the
reduction operation without specifying the pre-allocated bu�er and taking the
returned value instead. For instance,

1 a1=pypar.reduce(a2s,pypar.SUM,0)

Python implementation of summing the global inner product result a2, using mpi4py[11]

1 comm.Allreduce([a2s,mpi.DOUBLE],[a2,mpi.DOUBLE], op=mpi.SUM)

In module mpi4py, this Allreduce is de�ned for transmitting numerical arrays.
Alternatively, we can use the collective operations de�ned for arbitrary Python
objects and take the returned values instead of specifying the pre-allocated bu�er.

1 comm.allreduce(a2s,a2,op=mpi.SUM)

Python implementation of summing the global inner product result a2, using MYMPI[12]

1 a2s=array(a2s,'d')

2 a2=array(0.,'d')

3 a2=mpi.mpi_reduce(a2s,1,mpi.MPI_DOUBLE,mpi.MPI_SUM,0,comm)

4 a2=mpi.mpi_bcast(a2,1,mpi.MPI_DOUBLE,0,comm)

For module MYMPI, We remark that both the values returned by mpi_reduce
and mpi_bcast are array type. For the upcoming operations, the user need to
convert them to desired data types.

Python implementation of summing the global inner product result a2, using pyMPI[13]

1 a2=mpi.allreduce(a2s, mpi.SUM)

5see Table 4.7 for more information

6.2 Application II: Parallel Implementation of Conjugate Gradient Method 57

For the pyMPI version, the syntax is quite simple and clear. The user don't need
to pre-allocate a bu�er or convert the types. We remark that the returned value
has to be taken while using pyMPI.

Python implementation of summing the global inner product result a2, using Scienti�c.MPI[14]

1 a2s=array(a2s,'d')

2 a2=array(0.,'d')

3 comm.allreduce(a2s,a2,mpi.sum)

The user has to convert the local value a2s to numerical array and prepare
another numerical array for received value while using collective communications
provided by Scienti�c.MPI.

Python implementation of summing the global inner product result a2, using boostmpi[15]

1 a2=boostmpi.all_reduce(comm,a2s,lambda x,y:x+y)

No collective operation is implemented in module boostmpi. The user has to
de�ne a function used as a collective operation for the collective communication
routines in boostmpi.

Vector addition and scalar multiplication

For the computation part of vector addition and scalar multiplication, no com-
munication is needed. We simply multiply a scalar with a sub-vector or add two
sub-vectors.

6.2.3 Measurements and performance comparison

We choose a test problem, solving the Poisson's equation on two-dimensional
space, for measure the parallel performances of six Python MPI modules.

∇2u(x) = f(x) for x ∈ R2 (6.9)

The coe�cient matrix of the Poisson's equation is constructed by applying
central di�erence method on two dimensions. After performing some linear trans-
formations to the coe�cient matrix, we have a symmetric positive-de�nite matrix
A. The matrix/vector partitioning scheme comes from the subdomain-based divi-
sion on two-dimensional mesh with size N ×N . Therefore, the vector x and the
vector b are of size N2. The size of the matrix A is N2×N2. Figure 6.8 gives an
example of the row partitioning scheme with mesh size 4 × 4 on four processes.
The elements of one vector are partitioned on corresponding processes with the
same marked colors and stored in a one-dimensional array. Then the rows of the
matrix are assigned to di�erent processes corresponding to the distribution of the

58 Test Cases and Numerical Experiments

Figure 6.8: 2D row partitioning scheme with mesh size 4× 4 on four processes

6.2 Application II: Parallel Implementation of Conjugate Gradient Method 59

vector elements. Figure 6.9 shows an example of the matrix-vector multiplication
operation on process 0. The blue entries are the non-zero entries of the sparse
matrix. The blue elements in the local vector is stored originally on process 0,
and the other four elements with green and red colors are obtained from process
1 and 2.

Figure 6.9: An example of matrix-vector multiplication on process 0

All the measurements in this section measures the wall-clock time (in seconds)
of the iteration steps. The number of processes is varied between 1 and 64. The
speedup results use the measurements on single core (free of communication) as
the reference. The measurements are labeled respectively with di�erent colors
and point types. For the purpose of better illustrating, both x and y axes are
transformed into log 2 scale.

We chose the mesh size as the power of 2 and one grid point in addition
(210 + 1 = 1025 and 211 + 1 = 2049) to reduce the roundo� error. Two meshes
size 1025 × 1025 and 2049 × 2049 are de�ned for this two dimensional problem.
We use 10−8 as the tolerance for the stop criteria of the while loop.

In Figure 6.10, the wall-clock time measurements show slightly di�erent from

60 Test Cases and Numerical Experiments

Figure 6.10: A comparison of the wall-clock time measurements (in seconds) of solving
the Poisson's equation with parallel CG method on mesh 1025 × 1025 among six di�erent
implementations: pypar, mpi4py, MYMPI, pyMPI, Scienti�c.MPI and boostmpi

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64

R
un

 T
im

es
 (

se
co

nd
s)

 (
lo

gs
ca

le
 2

)

Number of processes (logscale 2)

Runtime Plot N=1025

package=pypar
package=mpi4py
package=myMPI
package=pyMPI

package=Scientific
package=boostmpi

Figure 6.11: A comparison of the speedup results of solving the Poisson's equation with
parallel CG method on mesh 1025× 1025 among six di�erent implementations: pypar, mpi4py,
MYMPI, pyMPI, Scienti�c.MPI and boostmpi

 0.5

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

S
pe

ed
up

 r
es

ul
ts

 (
lo

gs
ca

le
 2

)

Number of processes (logscale 2)

Speedup Plot N=1025

Ideal speedup
package=pypar

package=mpi4py
package=myMPI
package=pyMPI

package=Scientific
package=boostmpi

6.2 Application II: Parallel Implementation of Conjugate Gradient Method 61

Figure 6.12: A comparison of the wall-clock time measurements (in seconds) of solving
the Poisson's equation with parallel CG method on mesh 2049 × 2049 among six di�erent
implementations: pypar, mpi4py, MYMPI, pyMPI, Scienti�c.MPI and boostmpi

 32

 64

 128

 256

 512

 1024

 1 2 4 8 16 32 64

R
un

 T
im

es
 (

se
co

nd
s)

 (
lo

gs
ca

le
 2

)

Number of processes (logscale 2)

Runtime Plot N=2049

package=pypar
package=mpi4py
package=myMPI
package=pyMPI

package=Scientific
package=boostmpi

Figure 6.13: A comparison of the speedup results of solving the Poisson's equation with
parallel CG method on mesh 2049× 2049 among six di�erent implementations: pypar, mpi4py,
MYMPI, pyMPI, Scienti�c.MPI and boostmpi

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

S
pe

ed
up

 r
es

ul
ts

 (
lo

gs
ca

le
 2

)

Number of processes (logscale 2)

Speedup Plot N=2049

Ideal speedup
package=pypar

package=mpi4py
package=myMPI
package=pyMPI

package=Scientific
package=boostmpi

62 Test Cases and Numerical Experiments

each other, while the number of processes is as large as 16. The computation load
on each process became comparatively smaller, then the di�erence may caused
by the communication overhead. The communications are mainly on reduction
operations. In connection with the performance comparison of the allreduce test
in the previous chapter, we can see that the module with large latency have
relatively bad performance in this case.

In Figure 6.11, the speed-up results show that the implementations are no
longer e�cient while the number of processes is larger than 32. The communi-
cation time took the most part of the overall time consumption for solving this
problem.

In Figure 6.12, the wall-clock time measurements of six di�erent versions
almost draw on the same line. The large computation/communication ratio of
this test case makes the di�erences of the communication overhead from di�erent
modules have very small in�uence on the overall performance. The di�erences
while the number of processes smaller than 8 may be attributed to the cache
e�orts.

However, the speed-up results on the mesh size 2049 illustrates that all the six
implementations have almost same speedup results. These Python MPI modules
provide su�cient e�ciency for MPI programming in real scienti�c applications.
measurements show slightly di�erent from each other, while the number of pro-
cesses is as large as 16. The computation load on each process became compar-
atively smaller, then the di�erence may caused by the communication overhead.
The communications are mainly on boundary exchanging operations. In connec-
tion with the performance comparison of pingpong test in the previous chapter,
we can see that the module with large latency have relatively bad performance in
this case. show that the implementations are no longer e�cient while the number
of processes is larger than 32. The communication time took the most part of the
overall time consumption for solving this problem. 257×257×257 illustrates that
all the seven implementations have almost same speedup results. These Python
MPI modules provide su�cient e�ciency for MPI programming in real scienti�c
applications.

6.3 Conclusion 63

6.3 Conclusion

After the experiments of solving the two scienti�c applications, we �nd that all
the six Python MPI implementations give su�ciently good performance. Some
modules have comparatively large communication overhead. However, when the
computation/communication ratio is large, the communication overhead becomes
a small part of the whole time consumption and have very little in�uence on the
overall performance.

Regarding the programming issues, mpi4py clearly provides more MPI rou-
tines which is convenient for scienti�c application. Both MPI_Sendrecv and
MPI_PROC_NUll are implemented, which greatly simplify the exchanging pro-
cedure in the �rst application. pyMPI and pypar provide �exible syntax and
easy-to-use Python style function calls, which gives great convenience in devel-
oping parallel Python applications. boostmpi supports better C++ development
style and nearly all the features of C++ library are available in this module. It
is particularly suitable for C++ programmers or mixed programming users in
Python and C++. As to the other two modules MYMPI and Scienti�c.MPI, al-
though they provide less MPI routines and have some limitation of transmitting
arbitrary Python objects, they are also suitable parallel programing specially in
scienti�c computing.

64 Test Cases and Numerical Experiments

Chapter 7

Conclusions and Future Work

In this thesis, we have compared the functionality, the implementation features
and the parallel performance of six Python MPI modules. And through two sci-
enti�c applications, we have compared the programming features and application
performance of these modules.

Pypar is more �exible with di�erent protocols for passing di�erent Python
objects, di�erent options for using bu�er and di�erent options for returned status.
Since it's easy to learn and su�ciently e�cient, it is suitable for those Python
users with less knowledge of MPI programming or tired of complicated syntax in
C-MPI, but willing to try the great advantages of parallel programming.

On the other hand, mpi4py provides closely matched syntax with standard C
MPI implementation and the most MPI routines, which is suitable for the users
with some experiences on MPI programming. Furthermore, mpi4py has the best
performance among the six Python MPI modules in our experiments.

Besides, Scienti�c.MPI has also very good performance in our tests, although
only several MPI routines are provided. The messaging style is array-based in-
stead of arbitrary Python objects. As a part of the package Scienti�cPython, this
module is suggested for the usage of scienti�c computing.

As to the other three modules, the parallel performance we tested is not as
good as the above three modules. MYMPI provides closely matched syntax with
standard MPI implementation in C or Fortran, and supports only scalars and
arrays. pyMPI supports the communication of any Python Objects and pro-
vides interfaces for over 120 MPI routines. It can be used for developing parallel
applications for general purposes like password checkers and searching engines.
About boostmpi, since it builds directly on top of a C++ interface of standard C
MPI library, it works like the wrapper of wrapper. The communication overhead
is quite large according to our performance tests with benchmarks. However,
it supports better C++ development style and nearly all the features of C++
library are available in this Boost.MPI Python bindings. Therefore, boostmpi is
particularly suitable for mixed programming users in Python and C++.

65

66 Conclusions and Future Work

Future Work

A uni�ed wrapper of MPI routines could be generated based on the studies of
these six packages. This module allows a uni�ed interface to these six packages.
One reason for wanting the �exibility is that the di�erent modules may be in-
stalled on di�erent clusters. It enables writing scripts that are independent of
the particular choice of the six Python MPI modules installed. The idea is that
any of these modules can be replaced by one of the alternatives, and the same
script should still work without modi�cation. This will be a powerful tool for the
MPI-based parallel programming in Python.

In order to have a more sophisticated comparison, more tools can be used
to test the parallel performance of those MPI Python modules. TAU (Tuning
and Analysis Utilities)[35] is one of them. Together with the pro�le visualization
tool, paraprof, it provides a sophisticated and intuitive performance analysis of
parallel programs written in Python, Fortran, C, C++ and Java.

Appendix A

Testing Environments

All the tests are done on an IBM multi-core based cluster with following hardware
and software con�gurations.

• 84 compute nodes, 672 cores in total

• Each compute node has dual Intel(R) quad-core Xeon(R) E5420 2.50GHz
processors, 8 cores per node

• nodes connected Gigabit Ethernets,

• 8 GB shared memory per node

• L2 cache: 12 MB + 12 MB

• Linux 2.6.24-25-server operating system

• Compilers: GCC 4.2.4

• MPI library: openmpi 1.2.5

• MPI compiler wrapper:

gcc -I/usr/lib/openmpi/include/openmpi

-I/usr/lib/openmpi/include

-pthread -L/usr/lib/openmpi/lib

-lmpi -lopen-rte -lopen-pal -ldl -Wl,

--export-dynamic -lnsl -lutil -lm -ldl

• Python Version: 2.5.2

• Numerical Python modules: Numpy 1.4.3 and Scipy 7.1

67

68 Testing Environments

• Python MPI modules:

Pypar 2.1.4

mpi4py 1.2.1

MYMPI 1.15

pyMPI 2.5b0

Scienti�c.MPI 2.9.0

boostmpi 1.38.0.1

Appendix B

C-version MPI HelloWorld Example

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <mpi.h>

4 int main(int nargs,char** args){

5 int numproc, myrank;

6 MPI_Init(&nargs,&args);

7 MPI_Comm_size(MPI_COMM_WORLD,&numproc);

8 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

9 printf("Hello, world! I'm process %d of %d.\n",myrank,numproc);

10 MPI_Finalize();

11 return 0;

12 }

69

70 C-version MPI HelloWorld Example

Bibliography

[1] Hans Petter Langtangen. Python Scripting for Computational Science.
Springer-Verlag New York, Inc., 2009.

[2] WikiPedia page of Message Passing Interface. http://en.wikipedia.org/
wiki/Message_Passing_Interface.

[3] Python Docs for slicing. http://docs.python.org/release/2.3.5/

whatsnew/section-slices.html.

[4] Python Numeric and Scienti�c Packages. http://wiki.python.org/moin/
NumericAndScientific.

[5] Xing Cai, Hans Petter Langtangen, and Halvard Moe. On the performance
of the Python programming language for serial and parallel scienti�c com-
putations. Sci. Program., 13(1):31�56, 2005.

[6] Xing Cai and Hans Petter Langtangen. Parallelizing PDE solvers using the
Python programming language, volume 51. 2006.

[7] Parallel Processing and Multiprocessing in Python. http://wiki.python.
org/moin/ParallelProcessing.

[8] Python Speed Performance Tips. http://wiki.python.org/moin/

PythonSpeed/PerformanceTips.

[9] MPI Performance topics. http://www.mhpcc.edu/training/workshop2/

mpi_performance/MAIN.html.

[10] Pypar Homepage. http://code.google.com/p/pypar/.

[11] mpi4py Homepage. http://mpi4py.scipy.org/.

[12] MYMPI Homepage. http://www.nbcr.net/software/doc/pydusa/.

[13] pyMPI Homepage. http://pympi.sourceforge.net/.

[14] Scienti�cPython Homepage. http://dirac.cnrs-orleans.fr/

ScientificPython/ScientificPythonManual/.

71

http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://docs.python.org/release/2.3.5/whatsnew/section-slices.html
http://docs.python.org/release/2.3.5/whatsnew/section-slices.html
http://wiki.python.org/moin/NumericAndScientific
http://wiki.python.org/moin/NumericAndScientific
http://wiki.python.org/moin/ParallelProcessing
http://wiki.python.org/moin/ParallelProcessing
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://www.mhpcc.edu/training/workshop2/mpi_performance/MAIN.html
http://www.mhpcc.edu/training/workshop2/mpi_performance/MAIN.html
http://code.google.com/p/pypar/
http://mpi4py.scipy.org/
http://www.nbcr.net/software/doc/pydusa/
http://pympi.sourceforge.net/
http://dirac.cnrs-orleans.fr/ScientificPython/ScientificPythonManual/
http://dirac.cnrs-orleans.fr/ScientificPython/ScientificPythonManual/

72 BIBLIOGRAPHY

[15] boostmpi Homepage. http://documen.tician.de/boostmpi/.

[16] Source codes for running the experiments and examples in the present thesis.
http://folk.uio.no/wenjinli/master/source/codes.tar.

[17] Numpy Homepage. http://numpy.scipy.org/.

[18] MPI tutorial. https://computing.llnl.gov/tutorials/mpi/.

[19] First version of MPI. http://www-unix.mcs.anl.gov/mpi.

[20] WikiPedia page of Python programming language. http://en.wikipedia.
org/wiki/Python_(programming_language).

[21] John K. Ousterhout. Scripting: Higher level programming for the 21st cen-
tury. IEEE Computer, 1998.

[22] Matlab vectorization guide. http://www.mathworks.com/support/

tech-notes/1100/1109.html.

[23] Scipy Homepage. http://www.scipy.org/.

[24] Lisandro Dalcín, Rodrigo Paz, and Mario Storti. MPI for Python. Journal
of Parallel and Distributed Computing, 65(9):1108 � 1115, 2005.

[25] P Miller. pyMPI - An introduction to parallel Python using MPI. Available
at: http://www.llnl.gov/computing/ develop/python/pyMPI.pdf, 2002.

[26] boost.MPI Homepage. http://boost.org/doc/libs/1_44_0/doc/html/

mpi.html.

[27] LLCBench.MPBench Homepage. http://icl.cs.utk.edu/projects/

llcbench/mpbench.html.

[28] Hans Petter Langtangen. Computational Partial Di�erential Equations: Nu-
merical Methods and Di�pack Programming, pages 646�670. Springer-Verlag
New York, Inc., 2003.

[29] WikiPedia page of Iterative methods. http://en.wikipedia.org/wiki/

Iterative_method.

[30] WikiPedia page of Gaussian elimination. http://en.wikipedia.org/wiki/
Gaussian_elimination.

[31] Jonathan R Shewchuk. An introduction to the conjugate gradient method
without the agonizing pain. Technical report, Pittsburgh, PA, USA, 1994.

[32] Explanation of Symmetric Matrix. http://mathworld.wolfram.com/

SymmetricMatrix.html.

http://documen.tician.de/boostmpi/
http://folk.uio.no/wenjinli/master/source/codes.tar
http://numpy.scipy.org/
https://computing.llnl.gov/tutorials/mpi/
 http://www-unix.mcs.anl.gov/mpi
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
 http://www.mathworks.com/support/tech-notes/1100/1109.html
 http://www.mathworks.com/support/tech-notes/1100/1109.html
http://www.scipy.org/
http://boost.org/doc/libs/1_44_0/doc/html/mpi.html
http://boost.org/doc/libs/1_44_0/doc/html/mpi.html
http://icl.cs.utk.edu/projects/llcbench/mpbench.html
http://icl.cs.utk.edu/projects/llcbench/mpbench.html
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Gaussian_elimination
http://en.wikipedia.org/wiki/Gaussian_elimination
http://mathworld.wolfram.com/SymmetricMatrix.html
http://mathworld.wolfram.com/SymmetricMatrix.html

BIBLIOGRAPHY 73

[33] Explanation of Positive De�nite Matrix. http://mathworld.wolfram.com/
PositiveDefiniteMatrix.html.

[34] Explanation of Sparse Matrix. http://mathworld.wolfram.com/

SparseMatrix.html.

[35] TAU (Tuning and Analysis Utilities) Homepage. http://www.cs.uoregon.
edu/research/tau/home.php.

http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
http://mathworld.wolfram.com/SparseMatrix.html
http://mathworld.wolfram.com/SparseMatrix.html
http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/home.php

	Preface
	Introduction
	 Idea and motivation
	Problem description and research methods
	Experimental environments
	Thesis structure

	Background Knowledge
	MPI
	Python in parallel world
	Numerical Python packages
	A simple example to compare Python with C in MPI programming
	Parallel computing inner product in Python with Pypar
	Parallel computing inner product in C
	Measurements and performance analyses

	Presentation of Python MPI Modules
	pypar
	MPI for Python (mpi4py)
	MYMPI
	pyMPI
	Scientific.MPI
	boostmpi
	Conclusion

	Comparison of Python MPI Modules
	Important MPI functions
	Point-to-point communications
	Blocking communication mode
	Non-blocking communication mode

	Collective communications
	Conclusion

	Performance Comparison through Benchmarks
	Performance comparison of point-to-point communication with Ping-pong test
	Performance comparison of collective communication
	Conclusion

	Test Cases and Numerical Experiments
	Application I: Solving Wave Equation in 3-Dimensional Space in Parallel
	Problem description
	Parallelization
	Implementation
	Measurements and performance comparison

	Application II: Parallel Implementation of Conjugate Gradient Method
	 The Parallel Algorithm of Conjugate Gradient Algorithm
	Implementation
	Measurements and performance comparison

	Conclusion

	Conclusions and Future Work
	Testing Environments
	C-version MPI HelloWorld Example

