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A B S T R A C T   

Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be 
significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are 
reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of 
extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while 
failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many 
targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. 
Comparative investigations against cell viability have found several potent natural and manmade substances. In 
this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression 
of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and 
metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat 
cancer, and emerging therapeutic approaches.   

1. Introduction 

Fatty acids contribute to the cellular lipid pool to maintain homeo
stasis in cellular biochemical processes like forming the biological 
membrane and maintaining membrane fluidity, acting as secondary 
messengers in signaling pathways, and serving as energy storage. Fatty 
acids are the fundamental component of many lipid species, including 
phospholipids, sphingolipids, diacylglycerol (DAG), triacylglycerol 
(TAG), etc. [1,2]. It is abundantly clear that fatty acids play a role in 
carcinogenesis since they are required for energy during metabolic stress 
conditions in rapidly proliferating cancer cells, which rely on external 
absorption and de novo fatty acid production [3,4]. This review will 
look at the various roles that fatty acids play in the development of 

tumors and the progression of cancer, as well as recently discovered and 
potential natural and synthetic compounds that block the uptake and 
metabolism of fatty acids and their side effects when used in combina
tion with other inhibitors to treat cancer. 

2. Sources of fatty acids in cancer cells 

Mammalian cells obtain fatty acids through direct uptake from the 
surrounding microenvironment or de novo synthesis using nutrients, e. 
g., glucose, glutamine, etc. Lipidomic remodeling of cancer cells, such as 
modulating fatty acid transport and metabolism, storing lipid droplets, 
and de novo lipogenesis, is a well-known metabolic hallmark [5]. 
Although pathways driving specific lipid phenotypes are unclear. 
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Endothelial cells predominantly take in and metabolize fatty acids based 
on the length, number, and position of double bonds in the chain [6]. 
Essential fatty acids and their long-chain polyunsaturated fatty acids 
(LCPUFAs) and their derivatives, such as arachidonic acid,20:4n-6 
(ARA), eicosapentaenoic acid,20:5n-3 (EPA), docosahexaenoic acid, 
22:6n-3 (DHA) play essential roles in human health and disease [6,7]. 

Furthermore, one kind of n-3 and n-6 fatty acids interfere with the 
metabolism of the other. For example, an excess of n-6 fatty acids can 
limit the metabolism of n-3 fatty acids, potentially leading to a defi
ciency of n-3 LCPUFA metabolites [6–8]. Endothelial cells metabolize 
ARA through three main pathways: cyclooxygenase (COX), lip
oxygenase, and cytochrome P450. The COX pathway generates primary 
metabolites like PGI2, prostaglandin E2 (PGE2), TxA2, and 12-hydroxy
heptadecatrienoic acid. Lipoxygenase produces 12- and 15-hydroxy 
eicosatetraenoic acids. Epoxyeicosatrienoic acids (EETs), particularly 
14,15- and 11,12-EETs, are significant metabolites synthesized through 
cytochrome P450. PGE2 and TxA2 are vital for vascular balance. PGI2 
acts as a vasodilator and platelet aggregation inhibitor, while TxA2 
constricts vessels and activates platelets. An imbalance in PGI2 or TxA2 
production is linked to thrombotic and cardiovascular disorders. PGI2’s 
protective effects involve inhibiting platelet activation and leukocyte 
adhesion, enhancing cell survival through Bcl-2 upregulation, and 
activating the PI3-kinase-Akt pathway [9]. N-6 LCPUFAs produce 
pro-inflammatory eicosanoids in acute inflammatory responses. 

On the other hand, n-3 LCPUFAs generate anti-inflammatory or 
neutral eicosanoids. Eicosanoids derived from ARA, an n-6 LCPUFA, 
regulate various processes such as cellular membrane composition, 
inflammation, coagulation, and vascular balance. Additionally, ARA- 
triggered cytokines and adipokines contribute significantly to meta
bolism and inflammation control. Another n-6 long-chain fatty acid, 
linoleic acid,18:2n-6 (LA), promotes inflammation by elevating in
flammatory markers like TNF-α, MCP-1, VCAM-1, and ICAM-1. This 
effect is achieved through the activation of NF-κB and activator protein 
1. Furthermore, LA also impacts the release of nitric oxide. These fatty 
acids play distinct roles in mediating inflammatory and metabolic re
sponses within the body [6–9]. Both eicosapentaenoic and docosahex
aenoic acids, types of n-3 fatty acids, compete with ARA in forming 
pro-inflammatory compounds like leukotrienes and prostaglandins. 
They also affect cytokine production. Beyond competing with n-6 fatty 
acids, n-3 fatty acids inhibit the generation of inflammatory markers 
such as C reactive protein, TNFα, matrix metalloproteinases (MMP)− 2 
and MMP-9, and tissue inhibitors of MMP. 

Moreover, n-3 fatty acids have the potential to act as a therapeutic 
tool by inhibiting COX-2 expression. This is particularly valuable since 
COX-2 overexpression is implicated in various inflammatory and 
degenerative conditions, including cancer [4,7–9]. Cancer cells over
express fatty acid translocase (FAT/CD36), fatty acid transport protein 
family (FATPs), and plasma membrane fatty acid-binding proteins 
(FABPpm) to facilitate exogenous fatty acid uptake [7,10]. Fatty acid 
uptake and storage in lipid droplets, along with altered fatty acid 
oxidation products due to higher expression of CD36, are correlated 
with poor prognosis across various cancer types [11–13]. FAT/CD36 
supports tumor growth by promoting lipidomic remodeling [13]. 
FAT/CD36 plays a vital role in cancer microenvironment metabolic 
crosstalk by shifting the allegiance of cancer cells towards exogenous 
lipid uptake. 

Interestingly metastatic dissemination of various cancer cells e.g. 
kidney, gastric, colon, breast, prostate and ovarian cancer cells, prefer
ably home to adipose tissue located in periglandular regions and visceral 
omentum [14], which might activate endogenous lipolysis of tri
glycerides to produce free fatty acids that could be subsequently 
secreted and taken up by metastatic cells overexpressing FABP4 and 
potentiate AMP-activated protein kinase (AMPK) to culminate β-oxida
tion through carnitine palmitoyl transferase 1 (CPT1) and acyl-CoA 
oxidase 1 activation [15]. Even overexpression of FAT/CD36, as well 
as a hypoxia-inducible factor (HIF)− 1α-dependent overexpression of 

FABP3 and FABP7, drive the progression of cancer through rapid uptake 
of long-chain fatty acids and cholesterol, that obtained from the adi
pocytes in the microenvironment [12,16]. 

These fatty acids are subsequently stored in cytoplasmic lipid drop
lets in cancer cells that sequester excess fatty acids in triacylglycerols 
and sterol esters [17]. The accumulated lipid droplets maintain lipid 
homeostasis, prevent lipotoxicity, and provide a vital source of ATP and 
NADPH during metabolic stress (Fig. 1) [17,18]. The stored lipids pro
duce acetyl-CoA through β-oxidation, which subsequently enter the 
tricarboxylic acid (TCA) cycle to produce six times more ATP than 
oxidation of carbohydrates [19,20]. However, oxidation of 
acetyl-CoA-derived citrate by isocitrate dehydrogenase 1 is considered a 
significant source of cellular NADPH synthesis [21]. Henceforth, 
β-oxidation of lipid droplets produces sufficient ATP to fuel the meta
static cascade and provides NADPH for anabolic metabolism and 
detoxification of reactive oxygen species [22–25]. Obesity-associated 
adipose tissue induces persistent inflammation by secreting tumor ne
crosis factor α, interleukin (IL)− 6, IL-8, vascular endothelial growth 
factor, prostaglandins, and leukotrienes [26]. Adipocyte-mediated 
endocrine and paracrine signaling maintains the crosstalk between 
adiposity and cancer cell fatty acid metabolism [27]. Secreted adipo
kines induce cancer cells to secrete exosomes containing pro-lipolytic 
factors (e.g., miRNA-144, miRNA-126) to promote lipolysis in adja
cent adipocytes through activation of AMPK signaling and induction of 
autophagy as well as the release of free fatty acids to shift the metabolic 
dependencies of migrating cancer cells towards exogenous lipid uptake 
and β-oxidation for energy supply [14,28,29]. Therefore, targeting the 
tumor microenvironment through inhibition of adipocyte lipolysis could 
be the potential therapy to reduce the availability of free lipids for 
cancer cells [30]. 

Cancer cells’ uptake and scavenging of extracellular fatty acids 
during metabolic stress compensate for the diminished flux from glucose 
to acetyl-CoA. Even upregulated uptake of exogenous lysophospholipids 
(e.g., lysophosphatidylcholine, lysophosphatidylethanolamines, lyso
phosphatidylglycerols) and oxygen-consuming enzyme stearoyl-CoA 
desaturase-1 (SCD-1) dependent conversion of saturated fatty acids 
into monounsaturated fatty acids by cancer cells might support prolif
eration and survival [31]. This regulation of exogenous lipid uptake 
under hypoxia and oncogenic Ras activation under normoxic conditions 
mainly occurs through the HIF-dependent overexpression of 
lipid-binding proteins, e.g., FABP4 [31,32]. And citrate synthesis from 
reductive carboxylation and ultimate independence from SCD-1 to 
derive unsaturated fatty acids [31]. These results depict that microen
vironmental conditions or oncogenic activation of signaling pathways 
resist SCD-1 inhibitors, which might open novel opportunities for ther
apy to rely on fatty acid uptake by cancer cells. 

When fatty acids are formed from glucose and amino acid-derived 
carbon atoms, the process is known as de novo lipogenesis [33]. The 
process commonly occurs in hepatocytes and adipocytes, but tumor cells 
reactivate the process even in the presence of exogenous lipid sources [3, 
34]. Glucose or glutamine-derived carbons contribute to citrate 
biosynthesis [35,36]. Citrate or acetate-derived cytoplasmic acetyl-CoA 
is the basic substrate for de novo lipogenesis (Fig. 1) [3]. Metabolic 
stress, e.g., hypoxia or lipid depletion, induces acetyl-CoA synthetase 2 
upregulation in cancer cells [37]. The irreversible carboxylation of 
acetyl-CoA into malonyl-CoA is known as the rate-limiting step of de 
novo lipogenesis and condensation of seven malonyl-CoA molecules and 
one molecule of acetyl-CoA by fatty acid synthase (FASN), ultimately 
produces palmitate (saturated 16-carbon fatty acid) [30,38]. Tran
scriptional modulation (e.g., sterol regulatory element-binding proteins 
(SREBPs) activation) contributes predominantly to de novo lipogenesis 
[39–41]. Sustained upregulated de novo lipogenesis followed by 
downstream elongation and desaturation pathways by cancer cells are 
flexible to shunt them into various biosynthetic pathways to synthesize a 
distinct cellular pool of lipid species with diverse functions from the 
required nutrients (e.g., glucose, glutamine, and acetate) [42]. 
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Subsequently, saturated palmitate synthesizes fatty acids (Fig. 1) [30,43, 
44]. As the prime product of de novo lipogenesis, palmitate can be 
elongated and desaturated through the activity of SCD-1, elongation of 
very long-chain fatty acids, and fatty acid desaturases (FADSs) to pro
duce additional fatty acid species, including stearate and oleate to 
contribute to producing more complex lipids [45]. 

Considerably, oleate feeds into phosphatidic acid synthesis through 
the enzymatic activities of glycerol-3-phosphate acyltransferase one and 
acyl-CoA:LPA acyltransferase. Oleic acid,18:1n-9 (OA) is incorporated 
into triacylglycerides for storage in a glycerol-3-phosphate acyl
transferase 1-dependent fashion [46–48]. Even phosphatidic acid has 

vital structural and signaling roles and is one of the main substrates for 
DAG and complex glycerolipids biosynthesis [49–53]. Several compen
satory fatty acid metabolism pathways in cancer cells have been eluci
dated recently. SCD-1 enzymes are the most extensively studied, which 
regulate the cellular pool of unsaturated fatty acids as building blocks 
for phosphoglycerides, phosphoinositides, eicosanoids and sphingoli
pids. Albeit inhibitors targeting SCD-1 enzymes have shown modest 
effects that suggests possible alternative desaturation pathways e.g., 
fatty acid desaturase (FADS) 2 to generate functionally useful lipid 
species to support their membrane synthesis during proliferation 
[54–56]. 

Fig. 1. Sources of Fatty acids by cancer cells and contribution to resistance to therapy. Cancer cells obtain FAs from surrounding microenvironment as well as by de novo 
lipogenesis. Exogenous FA uptake is facilitated by specialized transporter, such as LDLR, CD36, FATPs and FABPpm. FAs and synthetic products are stored as lipid 
droplets and used for acetyl-CoA and NADPH production through β-oxidation. On the other hand, cancer cells depend on glucose, glutamine, and acetate for de novo 
lipogenesis. Palmitate is ultimately produced from citric acid and subsequently desaturated and elongated to form various group of lipid species. These changes result 
in decreased membrane fluidity, endocytosis, and passive diffusion of anticancer medicines, as well as decreased reactive oxygen species generation, ferroptosis, and 
apoptosis. Finally, it has enhanced signaling domains that promote cell survival and drug efflux via multidrug resistance drug pumps. 
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3. Direct uptake of fatty acid 

If glucose-based acetyl CoA synthesis is suppressed under hypoxia, 
cancer cells can boost the uptake of exogenous fatty acids [57]. Both de 
novo fatty acid synthesis and lipoprotein lipase (LPL) mediated extra
cellular lipolysis are found to be equipped by breast and liposarcoma 
tumors [58]. Cancer cells require more cholesterol than normal cells to 
obtain extra energy. 

3.1. Low-density lipoprotein receptor 

Low-density lipoprotein (LDL) carries and transfers cholesterol from 
the liver to the peripheral tissues through the LDL receptor (LDLR). 
LDLR has been found to be over-expressed in different cancers. Due to 
fulfilling the high cholesterol requirement to obtain more energy, cancer 
cells promote LDL uptake through endocytosis by the overexpressed 
level of LDLR [59]. 

3.2. CD36 

Cluster of differentiation 36 (CD36) is a multiligand scavenger cell- 
surface receptor which binds to the long-chain fatty acids. The extra
cellular domains of CD36 contain multiple ligand binding sites. The 
extracellular region’s CLESH (CD36 LIMP-II Emp sequence homology) 
motif interacts with thrombospondin-1/− 2 (TSP-1 and TSP-2). TSP-1 
and CD36 interaction induces apoptosis and inhibits angiogenesis in 
tumor-associated endothelial cells [60]. TSP-1 expression is lost in 
various major cancer types 268 during malignant progression. ABT-510 
(Abbott Laboratories, Abbot Park, IL) is a TSP-1 analog that exerts its 
biological effect via CD36 and inhibits tumor growth in vivo in different 
tumor models. Although ABT-510 could not show any significant ac
tivity in the phase II clinical trial, no significant toxicity was observed 
either by mono or combined therapy [61]. The extracellular region’s 
hydrophobic fatty acid binding cavity mediates the uptake of oxidized 
low-density lipoproteins (OxLDL), advanced glycation end products 
(AGEs), and peptides by the interaction with the plasma membrane 
[62]. OxLDL was found to play an important role in inducing muta
genesis, which results in inflammation, promotion of tumor growth, and 
metastasis of cancer [59]. OxLDL deletion slowed cancer progression, 
and inhibition by monoclonal antibody reduced cancer severity in pa
tients derived from preclinical models of prostate cancer [63]. 
Sulfo-N-hydroxy succinimidyl (NHS) ester of oleate (SSO) is an inhibitor 
that binds irreversibly to CD36 and inhibits OxLDL uptake by macro
phages in Chinese hamster ovary cells and FA uptake in hepatocellular 
carcinoma cells [64,65]. Recently, an anti-inflammatory natural drug, 
Nobiletin (5,6,7,8,3,4′-hexamethoxyflavone) was found to inhibit 
CD36-dependent tumor angiogenesis, migration, invasion, and sphere 
formation through binding to the extracellular domain of CD36 [66]. 
Nobiletin has been suggested to be a potent inhibitor of cancer stem cells 
in multiple ways. 

3.3. Fatty acid-binding proteins 

The intracellular lipid carrier or fatty acid-binding proteins (FABPs) 
are required to transport fatty acids throughout various cellular com
partments, including ER, lipid droplets, mitochondria, nucleus, and 
peroxisomes [67]. Alteration of FABP expression has been reported in 
various cancer types [68]. FABP1 was found to be upregulated in he
patocellular carcinoma and gastric cancer. FABP2 and FABP3 expression 
was reduced in breast cancer cells in in vitro studies [69]. In the case of 
FABP4, it has been suggested that exogenous FABP4 might promote 
prostate cancer cell progression [70]. From a cancer perspective, the 
role of FABP5 (alternative names epidermal-FABP or E-FABP) in 
pancreatic cancer has been mostly studied [69]. FABP5 enhances the 
transcriptional activity of the PPARβ/δ receptor by facilitating the de
livery of fatty acids from the cytosol to the PPARβ/δ receptor. The 

enhanced activation of FABP5/PPARβ/δ pathway induces the expres
sion of PPARβ/δ target genes and contributes to prostate cancer devel
opment [71]. Saturated long-chain fatty acids can inhibit the 
FABP5/PPARβ/δ pathway and suppress tumorigenic properties in 
gastric cancer [72]. FABP5 affects cancer invasiveness and fatty acid 
synthesis, while FABP4 promotes cancer cell invasion, angiogenesis, and 
inflammation [4]. These proteins have potential as diagnostic markers 
and therapeutic targets for obesity-associated cancers [4]. In breast 
cancer cells, considerable heterogeneity of FABP7 expression pattern 
has also been reported [73]. In the presence of chemotherapeutics 
Docetaxel or Cabazitaxel, two second-generation synthetic inhibitors 
-Stony Brook fatty acid-binding protein inhibitor 102 (SBFI-102) or 
SBFI-103 were able to reduce tumor growth in in vivo animal studies 
[74]. 

4. De novo fatty acid synthesis 

Cancer cells require an increased number of fatty acids for rapid cell 
proliferation. One of the pathways that cancer cells choose to fulfill the 
requirement is increased de novo fatty acid synthesis. Targeting de novo 
fatty acid synthesis is one of the simplest ways to reduce fatty acid 
synthesis (Table 1). The FA metabolism consists of different enzymes. 
Among them, ATP citrate lyase (ACLY), acetyl-CoA carboxylase (ACC), 
FA synthase (FASN), and acyl-CoA synthetases (ACS) are required to 
produce bioactive FAs. Citrate acts as the key signaling metabolite that 
determines fatty acid metabolism. Citrate inside mitochondria is used in 
the TCA cycle, and outside mitochondria is used for fatty acid synthesis 
[75]. The citrate carrier (CIC) protein is important for tumor prolifera
tion. To maintain electroneutrality across the mitochondrial membrane 
CIC exports tricarboxylate citrate with a proton outside mitochondria 
and imports dicarboxylate malate inside mitochondria. This transported 
dicarboxylate malate stimulates oxidative phosphorylation and main
tains mitochondrial membrane potential [76]. One of the discovered 
inhibitors of CIC, benzene tricarboxylate (BTA), which is an analog of 
CIC exhibits an antitumor effect in various cancer cell lines as well as in 
tumor-prone animal models. Because a high concentration (5 mM) of 
BTA is required in vivo, new analogues 4-Chloro-3-[[(3-nitrophenyl) 
amino] sulfonyl]-benzoic acid (CNASB or CTPI-1) and 2-(4-Chlor
o-3-nitro-benzenesulfonylamino)-benzoic acid) or CTPI-2 have been 
identified. The 3rd generation citrate analog CTPI-2 inhibits tumor 
proliferation and shows twenty-fold greater binding activity in vivo than 
the 2nd generation citrate analog CTPI-1. CIC is not rate-limiting for 
lipid synthesis because other CIC-independent pathways can provide 
cytosolic citrate. 

One of the plasma membrane citrate transporters (pmCIC), SLC13A5 
is found to provide a mechanism that can compensate for citrate in the 
cytosol when CTPI-2 inhibits CIC in diet-induced non-alcoholic fatty 
liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) [77]. 
Similar experiments are not conducted on tumor-prone animal models, 
so it cannot be concluded if the same scenario is possible for tumor cells. 
Combinatorial therapy can be an effective way to stop both citrate up
take through pmCIC and inhibit CIC. Gluconate, a competitive and 
irreversible inhibitor of SLC13A5, stopped human tumor growth in 
immunodeficient mice. Sodium antimony gluconate (Stibogluconate) 
showed significant tumor regression in vivo. Labeled gluconate can 
differentiate between benign and metastatic lesions and shows an af
finity for malignant cancers, although the attraction mechanism is still 
unknown. It is still unclear if gluconate acts solely as an inhibition 
because the positive antitumor effect is visible when it is combined with 
other putative anticancer agents. [78]. BI01383298, a newly identified 
and potent small molecule irreversible inhibitor of SLC13A5, shows 
time-dependent inhibition in the human liver cell line HepG2 [79]. 
Another inhibitor, dicarboxylate 2 (or PF-06649298) has been identified 
recently using a substrate-based design strategy. PF-06649298 is a 
competitive inhibitor that inhibits SLC13A5 in vitro in HEK-293-derived 
stable cell lines and blocks in vivo hepatic uptake of citrate in high-fat 
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Table 1 
Summary table for inhibitors (natural and synthetic) against CIC, pmCIC, ACLY, and ACC.  

Targets Inhibitors IC50 Ki Cells used Stage 

CIC BTA[77] 5–10 mM - tumor cell in vivo Preclinical 
CTPI-1[77] 1–2 mM - tumor cell in vivo Preclinical 
CTPI-2[77] 10–50 μM - tumor cell in vivo Preclinical 

pmCIC Gluconate[78] - - 99mTc-labeled gluconate showed antitumor effect on 
different carcinogenic cells 

- 

BI01383298[79] ~100 nM - HepG2 cells in vitro Preclinical 
PF-06649298[80] 0.41 μM - (i) HEKNaCT cell line. Preclinical 

4.5 μM - (ii) Mouse hepatocyte Preclinical 
ACLY SB-201076[84]  1 μM inhibits human and rat ACLY in enzymatic assay Preclinical 

SB-204990[84] 10–30 μM - inhibits de novo fatty acid and cholesterol synthesis in HepG2 
cells 

Preclinical 

HCA[88,338] - 300 μM ACLY from human liver in enzymatic assay Phase 4 clinical 
trial 

Cucurbitacin B[90] ~0.3 μM - (i)Human prostate cancer PC-3 and LNCaP cells in vitro 
(ii) Inhibits tumor growth in vivo 

Preclinical  

Bis-brominated emodin[92] 2.9 μM - (i) ACLY from human liver in enzymatic assay 
(ii) Inhibit cancer cells proliferation and reduce cancer 
stemness in vitro 

Preclinical 

Furan carboxylate derivative 1[93] 4.1 μM - (i) Human ACLY in ADP Glo ACL enzymatic assay 
(ii) Dose dependent decrease of cancer stem cell 

Preclinical 

Furan carboxylate derivative 2[93] 11.9 μM - (i) Human ACLY in ADP Glo ACL enzymatic assay 
(ii) Dose dependent decrease of cancer stem cell 

Preclinical 

Furan carboxylate derivative 3[93] 13.8 μM - (i) Human ACLY in ADP Glo ACL enzymatic assay 
(ii) Dose dependent decrease of cancer stem cell 

Preclinical 

Sulfoximine and 3-hydroxy-β-lactam containing 
analogue of citric acid[94] 

- 250 μM ACLY from rat liver in enzymatic assay Preclinical 

(+)− 2,2-difluorocitrate[95] - 0.7 μM ACLY from rat liver in enzymatic assay Preclinical 
(-)− 2,2-difluorocitrate[95] - 3.2 μM ACLY from rat liver in enzymatic assay Preclinical 
SC2193[96] 283 nM - ACLY from rat liver in enzymatic assay Preclinical 
Epoxide[97] - 18 μM ACLY from rat liver in enzymatic assay Preclinical 
Antimycins A2[98] - 4.2 μM ACLY from rat liver in enzymatic assay Preclinical 
Antimycins A8[98] - 4.0 μM ACLY from rat liver in enzymatic assay Preclinical 
Radicicol[99] - 13 μM ACLY from rat liver in enzymatic assay Preclinical 
2-hydroxy-N-arylbenzenesulfonamide 
[100] 

130 nM - Inhibit ACLY in hig fat diet mouse model Preclinical 

NDI-091143[101,102] 2.1 ± 0.3 nM - Human ACLY in ADP Glo ACL enzymatic assay Preclinical 
4.8 ± 0.05 nM - Human ACLY in coupled enzymatic assay 
44.0 ± 3.0 nM - Malate dehydrogenase coupled-enzyme assay  

7.0 
± 0.8 nM  

Compund 1[102] 69.7 ± 9.6 nM - Malate dehydrogenase coupled-enzyme assay Preclinical 
Leelamine[103] - - Suppresses SREBP1-ACLY expression and inhibits fatty acid 

synthesis in prostate cancer cells 
Preclinical 

DCV[104] 0.93 μM - ADP-Glo enzymatic assay Preclinical 
ETC-1002-CoA[105] - 0.2uM Human ACLY in enzymatic assay Preclinical 

ACC CP-640186[126] 53 nM - Inhibits rat liver ACC1 Preclinical 
61 nM - Inhibits rat skeletal muscle ACC2 
0.62 μM - Inhibits fatty acid synthesis in HepG2 cell line 

Compund 2[129] 101 nM - Inhibits recombinant human ACC1 in cell enzyme assay Preclinical 
23 nM - Inhibits recombinant human ACC2 in cell enzyme assay 
76 nM - Inhibits human ACC1/2 in enzyme assay 
0.34 μM - Inhibits human ACC1/2 in HepG2 cell-based assay 

Compound 3[130] 33 nM - Inhibits malonyl-CoA synthesis of human ACC1/2 Preclinica 
290 nM - Inhibits fatty acid synthesis in HepG2 cell-based assay 

Compound 4[130] 9.7 nM - Inhibits malonyl-CoA synthesis of human ACC1/2 Preclinical 
Compound 5[130] 8.4 nM - Inhibits malonyl-CoA synthesis of human ACC1/2 Preclinical 
Compound 6[131] 192 nM - Inhibits rhACC1 in cell enzyme assay Preclinical 

95 nM - Inhibits rhACC2 in cell enzyme assay 
58 nM - Inhibits human ACC1/2 in enzyme assay 
60 nM - Inhibits human ACC1/2 in HepG2 cell-based assay 

Compound 8[132] 12 nM - Inhibits rACC1 in vitro Preclinical 
20 nM - Inhibits human ACC2 in vitro 

Compound 9[133] 27.0 ± 2.7 - Inhibits human ACC1 in enzyme assay Preclinical 
33.0 ± 4.1 - Inhibits human ACC1 in enzyme assay 

WZ66[134] 435.9 nM - Inhibits human ACC1 in ADP-Glo kinase assay Preclinical 
141.3 nM - Inhibits human ACC2 in ADP-Glo kinase assay 

MK-4074[138] 3 nM - Inhibits human ACC1/2 in vitro Preclinical 
Compound 10135 0.30 μM - inhibited de novo lipogenesis in rat hepatocytes Preclinical 
Compound 11[136] 10 ± 5 nM - Inhibits ACC1 in vitro Preclinical 

4 ± 1 nM - Inhibits ACC2 in vitro 
Compound 12[137] 0.527 μM - Inhibits ACC1 in vitro Preclinical  

0.397 μM - Inhibits ACC2 in vitro 
Compound 13[139] 0.58 nM - Inhibits human ACC1 in vitro Preclinical 

100 μM - Inhibits human ACC2 in vitro 

(continued on next page) 
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diet-fed C57/B6 mice [80]. No experimental studies were recorded on 
the inhibition activity of BI01383298 or PF-06649298 against hepato
cellular carcinoma in vitro or in vivo. Further experiments in vitro and 
using tumor-prone animal models can shed light on the activity of these 
potent inhibitors against cancer cells. 

4.1. ATP citrate lyase 

The homotetrameric enzyme ACLY catalyzes the ATP-dependent 
reaction between cytosolic citrate and coenzyme A. One of the prod
ucts of the reaction is acetyl-coenzyme A, which is the precursor for the 
mevalonate pathway fatty acid synthesis pathway and is required for 
protein modification such as acetylation of histones. The next product is 
oxaloacetate, used in gluconeogenesis in the liver or reduced to malate. 
The malate can be converted to pyruvate in the cytosol or returned to the 
mitochondria to convert into citrate, depending on the system’s 
demand. 

Upregulation of de novo fatty acid synthesis is necessary for prolif
eration in cancer cells. To fulfill this requirement, glucose uptake in
creases, increasing lactate production to provide sufficient energy for 
cell proliferation [81]. It has been found that targeting ACLY is inef
fective if the cell line is not highly glycolytic cells [82]. A cytosolic 
enzyme, acyl-CoA synthetase short-chain family member 2 (ACSS2), can 
convert exogenous acetate to acetyl-CoA. A recent study confirmed the 
upregulation of ACSS2 in ACLY-deficient cells. Still, the level of histone 
acetylation was low, and the cell proliferation rate was damaged, 
although the cells survived [83]. This proves the importance of ACLY in 
maintaining cell survival, proliferation rate, and histone acetylation. 

Since the versatile ACLY enzyme initiates lipogenesis, inhibition of 
ACLY has been considered an effective way to stop FA synthesis. 
Increased expression of ACLY is found to be common in many tumor 
types. Inhibiting ACLY by genetic methods or an inhibitor SB-204990 (a 
γ-lactone prodrug of one of the (3 R*,5 S*)-ω-substituted-3-carboxy-3,5- 
dihydroxyalkanoic acids, SB-201076) was found to reduce the prolifer
ation and survival of tumor cells in a xenograft tumor model. This made 
ACLY a potential target in anticancer therapy. When administered 
orally, SB-204990 could induce a hypotriglyceridemic and hypo
cholesterolemic response in rats and dogs [82,84,85]. 

Hydroxycitric acid (or (2 S,3 S)− 2-hydroxycitrate, HCA) was the 
first discovered ACLY inhibitor that showed hypolipidemic effects in 

animal models [86,87]. Extensive studies on HCA have confirmed its 
effect on the regulation of lipogenesis in vitro and in vivo [88]. 
Combining the standard anticancer drug cisplatin or methotrexate with 
HCA and α-lipoic acid reduced tumor growth in a tumor-prone animal 
model. The efficacy of the tested anticancer drug was potentiated in 
combined therapy [89]. 

Both HCA and SB-201076 had the same problem of poor cell 
permeability, which was improved in SB-204990. Compared to SB- 
204990, for an equivalent reduction of de novo lipid synthesis in 
HepG2 cells in vitro, a 10-fold greater concentration of HCA was 
required [85]. SB-204990 showed antiproliferative activity in A549, 
PC3, and SKOV3 cell lines in vitro and antitumor activity in xenograft 
tumor models in nude mice using A549 and PC3 cell lines [82]. This 
shows the high potency of SB-204990 as a hypolipidemic and anti
tumorigenic agent. 

Another natural product inhibitor, Cucurbitacin B, inhibited prolif
eration in prostate cancer cells in vitro and inhibited PC-3 xenograft 
growth significantly in athymic mice [90]. Approximately 10% oral 
bioavailability of Cucurbitacin B was found, with a high volume of 
distribution to several organs in male Wister rats. This finding of poor 
bioavailability will be crucial in determining the appropriate dose in the 
future [91]. Bis-brominated emodin (1,3,8-Trihydroxy-2,4-dibromo-6-
methyl-anthraquinone) inhibits human ACLY in enzymatic ADP Glo 
assays and reduces proliferation of A549 non-small cell lung cancer cell 
line [92]. With the help of in silico screening of chemical databases, 11 
potential inhibitors containing furan carboxylate moiety have been 
identified. Three furoic acid derivatives among 11 virtual hits are found 
to be the most potent. Two inhibitors, which are 4-substituted-2-furoic 
acids with differently substituted 2-chromenone moieties, and one in
hibitor, which is a 5-sulfonamido-naphtofuran-3-carboxylic acid, were 
found to inhibit human ACLY in ADP-Glo ACL enzymatic assay [93]. 
Both emodin and furoic acid derivatives were found to reduce cancer 
stemness in vitro dose-dependent manner [92,93]. There are other in
hibitors, such as sulfoximine and 3-hydroxy-β-lactam containing analogs 
of citric acid, (+)− 2,2-difluorocitrate, (-)− 2,2-difluorocitrate, SC2193 
(or 2-Chloro-1,3,8-trihydroxy-6-methylanthracen-9(10 H)-one), cis-epo 
xide, which is a citric acid analog, antimycin A2 and A8 that belong to 
the antimycin class of antibiotics, and radicicol, which were identified to 
inhibit ACLY from rat liver in enzymatic assays [94–99]. SC2193 
inhibited human ACLY in an enzymatic assay with an IC50 of 283 nM 

Table 1 (continued ) 

Targets Inhibitors IC50 Ki Cells used Stage 

Compound 14[140] 1.5 μM - Inhibits human ACC1 in vitro Preclinical 
140uM - Inhibits human ACC2 in vitro 

ND-630[141,142,339] 2.1 nM - Inhibits human ACC1 in ADP-Glo kinase assay Phase 2 clinical 
trial 6.1 nM - Inhibits human ACC2 in ADP-Glo kinase assay 

> 20uM - poor cytotoxicity in A549 cell viability assay 
ND-646[142] 3.5 nM - Inhibits human ACC1 in ADP-Glo kinase assay Preclinical 

16.2 
± 10.6 nM 

- Showed cytotoxicity against A549 cells in cell viability assay 

ND-654[143] 3 nM - Inhibits human ACC1 in ADP-Glo kinase assay Preclinical 
8 nM - Inhibits human ACC2 in ADP-Glo kinase assay 

Soraphen A[145] 5 nM - Human ACC in HepG2 cell line in vitro Preclinical 
CPT1 Etomoxir[111,338] 5–20 nM - Inhibits CPT1 in rat liver Preclinical 

Perhexiline[338] 77 μM - Inhibits CPT1 in rat heart 
148 μM - Inhibits CPT1A 

CD36 ABT-51061 - - Inhibits tumor growth in vivo in both xenograft and syngeneic 
tumor model 

Phase 2 clinical 
trial 

Nobiletin[66] - - inhibits cancer stem cell growth Preclinical 
- - inhibits CD36-mediated in vitro angiogenesis 

FABP SBFI-102[74] - - Tumor reduction in in vivo animal model Preclinical 
SBFI-103[74] - - Tumor reduction in in vivo animal model 

SCD1 A-939572[206,221] - - In vitro and in vivo antitumor activity Preclinical  
65, 50, 65, and 
6 nM 

- Dose dependent decrease in proliferation of different 
carcinoma cells such as Caki1, A498, Caki2, and ACHN 

MF-438[223] 2.3 nM - Inhibits proliferation of ATC cells In vitro Preclinical 
XEN-103[224] 2 nM - Inhibits SCD1 in human HepG2 cells Preclinical 

* (-) refers that the data is unavailable. 
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[96]. Further studies on the inhibitory action against human ACLY in 
enzymatic assays can disclose their potentiality, like SC2193. They can 
be taken to the next steps: in vitro and in vivo experimental studies for 
cytotoxicity and effectiveness for cancer study, followed by clinical 
trials. 

A series of 2-hydroxy-N-arylbenzenesulfonamides was identified as a 
potent ACLY inhibitor, considering the cell permeation ability. The most 
potent one among 2-hydroxy-N-arylbenzenesulfonamides showed ACLY 
inhibition with IC50 of 130 nM in a high-fat diet mouse model but 
showed no cytotoxicity up to 50uM in HepG2 cells. However, it lowered 
plasma cholesterol, triglycerides, and glucose levels in mice fed on a 
high-fat diet [100]. Recently, a novel macrocyclic inhibitor NDI-091143 
of ACLY has been synthesized with a structure similar to the previous 
compound. From the co-crystal structure of ACLY bound to ND-091143 
by Cryo-EM, it has been found that extensive conformational changes in 
amino acid residues are required for ND-091143 to bind with the citrate 
domain of ACLY, which concludes ND-091143 as an allosteric inhibitor 
of human ACLY [101]. Recently, Y. Zang’s group synthesized a novel 
macrocyclic ACLY inhibitor with a ring-closing strategy and a structure 
similar to ND-091143. In the malate dehydrogenase (MDH) 
coupled-enzyme assay, compound 1 showed less potent inhibition with 
an IC50 of 69.7 ± 9.6 nM compared to the positive control ND-091143 
with an IC50 of 44.0 ± 3.0 nM. The metabolic stability of compound 
1 (T1/2= 531.22 min) significantly improved compared to Nd-091143 
(T1/2 = 3.36 min) in human liver microsomes. Further studies are 
being carried out on compound 1 by the same group [102]. Another 
natural product inhibitor Leelamine is found to suppress transcriptional 
activity of androgen receptors. This lipogenesis inhibitor showed 
downregulation of protein and/or mRNA expression of ACLY, 
acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), which 
resulted in the inhibition of fatty acid synthesis in both in vitro and in 
vivo experimental studies. In 22Rv1 tumor xenografts of Leelamine 
treated mice, a significant decrease in ACLY expression was observed 
[103]. 10, 11-de-hydrocurvularin (DCV) is another natural product that 
is the first potent irreversible inhibitor of ACLY. DCV showed ACLY 
inhibition with an IC50 of 0.93uM in ADP-Glo enzymatic assay and 
cytotoxicity in Jurkat cells [104]. Bempedoic acid or ETC-1002, devel
oped by Esperion Therapeutics, Inc. company, is an inhibitor that con
jugates with very long-chain acyl-CoA synthetase-1 (ACSVL1) to get 
activated. The activated ETC-1002-CoA inhibits human ACLY in enzy
matic assay [105]. Currently, ETC-1002 is in phase 3 clinical trials as a 
therapeutic agent to reduce low-density lipoprotein cholesterol (LDL-C). 
Still, no experimental studies have carried on in the context of cancer 
until now [106]. 

4.2. Acetyl CoA carboxylase 

Acetyl CoA carboxylase (ACC) is a multidomain enzyme containing 
biotin carboxylase (BC) and carboxyltransferase (CT) active sites [107]. 
In yeast ACC, biotin is covalently attached to the biotin carboxyl carrier 
protein domain [108]. BC catalyzes ATP-dependent carboxylation of 
biotin with bicarbonate, followed by the formation of malonyl CoA 
through carboxyl transfer from biotin to acetyl CoA by CT [107,109]. In 
the human genome, two isoforms of ACC exist. The first one, ACC1, is 
found in lactating mammary gland, liver, and adipose tissue and pro
duces malonyl-CoA, which synthesizes fatty acids. 

On the contrary, ACC2 exists on the outer membrane of more 
oxidative tissues, such as the heart and skeletal muscle. It produces 
malonyl-CoA, which allosterically inhibits carnitine palmitoyltransfer
ase Ӏ (CPT1) and prevents fatty acid degradation [107]. CPT1C -one of 
the three isotopes of CPT1, plays an important role in cancer cell lip
otoxicity regulation and cell senescence [110]. Genetic knockdown of 
CPT1 decreases cancer cell proliferation [111]. Two inhibitors of CPT1, 
Etomoxir or Perhexiline showed antitumor potential against various 
cancer cells, including breast, bladder, glioma, and prostate cancer 
[112–115]. But, in some cancer cell lines, Etomoxir reduced fatty acid 

oxidation with no effect on cancer cell proliferation. It has been sug
gested that cancer cell proliferation might be independent of fatty acid 
oxidation [111]. AMP-dependent protein kinase (AMPK) becomes 
inactivated by ATP when the AMP level is low. Inactivated AMPK cannot 
inactivate ACC through phosphorylation. At that moment, dephos
phorylation of ACC by protein phosphatase 2 A activates ACC. A natural 
compound Silibinin, can activate AMPK, thereby inhibiting sterol 
response element binding protein 1 (SREBP − 1) [116]. SREBP-1c and 
carbohydrate response element binding protein (ChERBP) regulate ACC 
at the transcription level [107,117,118]. In the presence of abundant 
intracellular sterol levels, SREBP cleavage-activating protein (SCAP) 
binds to insulin-induced genes (INSIGs) for the retention of SREBP in the 
endoplasmic reticulum (ER) [119]. A natural compound inhibitor 
Betulin promotes the retention process, which reduces SREBP-mediated 
lipogenesis and decreases hepatocellular carcinoma development and 
progression [120]. In case of scarce intracellular sterol level, the 
SREBP-SCAP complex translocates to the nucleus through Golgi to 
activate the transcription of the target genes [119]. Fatostatin -an in
hibitor of SCAP, blocks the translocation of the SREBP-SCAP complex 
and cell invasion in different cancer cells, including ER-positive breast 
cancer, prostate, and pancreatic cancer [121–124]. 

Harwood and co-researchers identified an isozyme nonselective in
hibitor (CP-497485) of ACC by 96-well plate high throughput screening 
method [125]. The reversible ACC inhibitor CP-610431, the R-enan
tiomer of the prototype CP497485, inhibited both ACC isozymes with an 
IC50 of 50 nM. CP-640186, the metabolically stable analog of 
CP-610431, inhibited both ACC with an IC50 of 55 nM. CP-640186 
inhibited fatty acid and triglyceride synthesis in HepG2 cell, CD1, and 
ob/ob mice with 2–3 times higher potency when administered orally 
than CP-610431 [126]. In yeast ACC, CP-640186 was found to bind 
tightly to the active site of CT domain [127]. CP-640186 showed anti
proliferative activity against lung cancer cells (H460) in a cell prolifer
ation assay [128]. Further in vitro and xenograft animal model studies 
must confirm its antitumor potency. A (4-piperidinyl)-piperazine de
rivative (compound 2) was identified in 2009 which binds similarly to 
the CT domain like CP-640186. Compound 2 was found to inhibit rat 
ACC1 (IC50 = 101 nM), rat ACC2 (IC50 = 23 nM), and human ACC1/2 
(IC50 = 76 nM) more actively than CP-640186 (IC50 for 
rACC1 =456 nM, rACC2 =194 nM, and hACC1/2 =116 nM) in enzy
matic assays. Compound 2 also inhibits FA synthesis in HepG2 cell assay 
(IC50 = 0.34uM/0.84uM), similarly with more activity than CP-640186. 
In inhibition and metabolic stability, compound 2 showed greater ac
tivity than CP-640286 in human liver microsomes (87/52) [129]. As 
compound 2 could act on multiple targets, further in vivo cytotoxicity 
studies are required to evaluate its potency against different cancer cells. 
Compound 3, compound 4, and compound 5 are indole derivatives of 
compound 2 that showed improved human ACC1/2 inhibition. Com
pound 3 also showed good hydrosolubility and cell permeability and 
could inhibit fatty acid synthesis in a dose-dependent manner in a 
HepG2 cell-based assay. Through structure-based analysis, it was found 
that compounds 4 and 5 show excellent potency as non-selective 
ACC1/2 inhibitors [130]. 1,1,1-trifluoro-2-methylpropan2-yl 
4-{4-[(2-amino-6-methyl-1-benzothiophen-3-yl) carbonyl] piperazin-1 
(Compound 6), another advanced analog of compound 2 inhibited 
human ACC1/2 in a similar range to compound 2 in enzyme assay but 
showed better fatty acid synthesis inhibition in a cell-based assay. A 
significant decrease in plasma and hepatic triglyceride levels was found 
in fructose-drinking SD rats when compound 6 was administered [131]. 

In 2010, cocrystal structure of yeast CT domain and a spi
rochromanone (compound 7) which was determined through screening 
of Pfizer compounds, resulting in several hits and improving the inhi
bition potency of the primary hit compound. Compound 7 binds to the 
CT domain similarly to CP-640186 but forms an additional hydrogen 
bond. Further optimization led to identifying a more potent analog, 
compound 8 (6-aza-5-alkoxyspirochromanones derivative), by 
improving the structure of compound 7 using SAR analysis for better 
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inhibitory action and ligand efficiency. Compound 8 inhibited rACC1 
with an IC50 of 12 and hACC2 with an IC50 of 20, and it exhibite
dreasonable pharmacokinetic properties in two species [132]. Another 
spirochromanone derivative, compound 9, was identified to inhibit he
patic DNL, hepatic malonyl-CoA and skeletal muscle malonyl-CoA in 
rats. Based on the satisfying preclinical studies (191), clinical studies 
have also been performed in type 2 diabetic patients [133]. However, no 
data have been recorded regarding the action of compound 9 on a 
tumor-prone animal model. Recently, a novel inhibitor of ACC isozymes, 
WZ66, was identified. It was designed based on spirochromanone. WZ66 
reduced malonyl-CoA levels in AML12 mouse hepatocytes. The bio
distribution of WZ66 is mostly liver-specific compared to other organs in 
mice. WZ66 also showed a reduction of hepatic steatosis in high fat fed 
mice. No information about the cytotoxic potentiality of WZ66 has been 
recorded yet [134]. 

A novel series of spirocyclic-diamine-based inhibitors was identified 
in 2015 which binds to the CT domain by mimicking the hydrogen 
bonding pattern and structural rigidity of spirochromanone. Among 
them, the most potent compound 10 (methyl-pyrrolidine–piperidine) 
showed moderate potency in inhibition of de novo lipogenesis in rat 
hepatocytes but marked unsuitable for further in vivo studies because 
compound 10 showed high lipophilicity which caused high clearance in 
vitro and vivo [135]. A spirocyclic salicylamide derivative was identified 
and the potentiality of inhibition was improved by using synthetic 
chemistry. The synthesized inhibitor compound 11 decreased de novo 
lipogenesis in acute rat PD studies and showed promising pharmacoki
netic properties in rats. Although toxicological studies and preclinical 
development of compound 11 were ongoing for T2DM, no data was 
recorded regarding the anticancer potentiality of compound 11 [136]. In 
2018, a series of spiropentacylamide derivatives were synthesized. 
Among all analogs, the most potent compound 12 was able to exhibit 
anti-proliferation activities against A549, Caco-2, H1975, HCT116, and 
SW620 tumor cell lines with IC50 values of 1.92 μM, 5.42 μM, 0.38 μM, 
1.22 μM, and 2.05 μM respectively. Compound 12 is considered a lead 
compound for anti-cancer therapy according to the SAR studies and 
inhibitory action on ACC [137]. 

MK-4074 is another potent human ACC inhibitor developed by high 
throughput screening and medicinal chemistry efforts in 2017. MK-4074 
inhibited both human ACC isozymes with an IC50 of 3 nM. MK-4074 
significantly decreased DNL in male KKAy mice and inhibited frac
tional DNL by 91–96%, depending on the daily dose in healthy young 
males in the phase one clinical trial. The clinical studies also revealed 
that MK-4074 reduces hepatic steatosis with an unexpected increase in 
plasma triglycerides [138]. These results are promising for hepatic 
steatosis, but nothing has been reported yet regarding the cytotoxicity of 
MK-4074. 

Takeda researchers optimized a series of 2-azetidyl-1,3-benzoxazole 
derivatives, and it was found that these derivatives show greater inhi
bition to ACC1 than ACC2. The most potent 2-phenyl-1,3-benzoxazole 
(compound 13), which is a monocyclic derivative of 2-azetidyl-1,3-ben
zoxazole, inhibited human ACC1 with an IC50 of 0.58 nM and human 
ACC2 with an IC50 of 100uM. The IC50 value shows a higher selectivity 
of compound 13 for human ACC1 than human ACC2 [139]. Recently, 
another inhibitor compound 14 has been identified by the same research 
group by developing the most potent bicyclic derivates of 2-azetidyl-1, 
3-benzoxazole [139,140]. Compound 14 also showed greater inhibi
tion to human ACC1 (IC50 = 1.5uM) than human ACC2 (IC50 = 140uM), 
but the difference in inhibition was similar to compound 13. In vivo 
studies of compounds 13 and 14 showed a significant reduction of 
malonyl-CoA concentration in HCT-116 xenograft tumors [139,140]. 
Compound 14 inhibited tumor growth in 786-O xenograft mice when 
administered orally [140]. Further pharmacological evaluation is 
required to count compound 13 and compound 14 as novel potential 
inhibitors of human ACC. 

Another ACC1/2 inhibitor ND-630 was identified and reported by 
the Harriman group in 2016 by structure-based drug design. This 

isozyme is a nonselective and reversible inhibitor that inhibits dimer
ization by interacting within the subunit dimerization site of the BC 
domain and phosphopeptide acceptor of the ACC enzyme. ND-630 
exhibited more potency compared Soraphen A, although the mecha
nism of inhibition is similar for both inhibitors. ND-630 reduced FA 
synthesis and induced FA oxidation in vitro and in vivo [141]. ND-630 
was able to reduce hypertriglyceridemia, hypercholesterolemia in 
different animal models (chow-fed rats) and is currently in phase II 
clinical trial studies of nonalcoholic fat liver disease but also showed 
poor cytotoxicity against A549 cells [141,142]. ND-646 is the amide 
derivative of ND-630, which showed hACC1 inhibition with an IC50 
value like that of ND-630 but showed cytotoxicity against A549 cells. 
The author has hypothesized that the specificity of ND-630 toward the 
liver could be the reason behind the poor cytotoxicity of ND-630 against 
A549 cells. Later, several ND-646 derivatives with a small structural 
change were synthesized; among them, the most potent compound 13 
showed cytotoxicity with an IC50 less than ND-646 in A549 cells [142]. 
Another liver-specific inhibitor ND-654, was identified in 2019, which 
could suppress hepatic DNL development and hepatocellular carcinoma 
and improve survival in tumor-bearing rats alone or in combination with 
sorafenib, a multi-kinase inhibitor [143]. 

A natural product, Soraphen A is one of the allosteric inhibitors of 
ACC. In yeast ACC, soraphen A binds to the BC domain and interferes 
with the oligomerization of the BC domain [144]. Soraphen A also 
showed ACC inhibitory action on de novo lipogenesis in HepG2 and 
LnCap cell lines [145]. The proliferation of LnCap and PC-3 M cell lines 
was reduced by the inhibitory action of soraphen A against FA synthesis 
at a nanomolar concentration [146]. 

4.3. Fatty acid synthase 

The key biosynthetic enzyme, fatty acid synthase (FAS), undergoes 
reductive synthesis of fatty acid (palmitate) using acetyl-CoA, malonyl- 
CoA, and nicotinamide adenine dinucleotide phosphate (NADPH) [147]. 
FAS plays a multifaceted role that supports anabolic metabolism and 
signaling in cancer cells [148]. Subsequent to the first exploration of FAS 
regulation in human breast cancer cells in 1980 [149], high level of FAS 
has been reported in different types of cancer cells such as colon [150], 
endometrium [151], ovary [152], prostate [153], thyroid [147], 
bladder [154], stomach [155], kidney [156], skin [157], pancreas 
[158], soft tissues [159] and head and neck [160]. Each of the two 
identical and multifunctional polypeptides of FASN contains seven cat
alytic domains [154]. Several inhibitors have been identified that bind 
to the active site of different domains. 

Cerulenin [(2 R,3 S), 2–3-epoxy-4-oxo-7,10- trans, trans
dodecadienamide] is the first identified non-competitive and natural 
inhibitor of FAS [161]. Cerulenin forms a covalent bond with a cysteine 
residue of the active site of the fungal FAS ketoacyl synthase (KS) 
domain and changes the active site conformation significantly [162]. 
Cerulenin treatment delays disease progression in an ovarian cancer 
xenograft model [163], significantly decreases de novo synthesized FA 
levels in MCF-7 breast cancer cells [164], retarded growth of liver 
metastatic tumors of murine colorectal cancer cell lines [165], reduces 
tumor burden in neuroblastoma cell lines [166]. However, it may be 
possible that Cerulenin’s highly reactive epoxy group interacts with 
other cellular processes such as palmitoylation [167], proteolysis [168], 

and antigen processing [154]. To solve this problem C75 (trans-4-
carboxy-5-octyl-3-methylenebutyrolactone), an analog of cerulenin, 
was synthesized by removing the epoxy group [169]. C75 is a compet
itive, reversible inhibitor of KS, enoyl reductase (ER), thioesterase (TE) 
domains of FAS [170]. C75 has been shown to reduce tumor growth in in 
vitro and in vivo studies on human breast [171], mesothelioma [154], 
ovarian [172], prostate 173, and renal cancer cell lines [174]. While 
inhibiting FAS activity, C75 was found to trigger activation of FA 
oxidation through direct activation of carnitine palmitoyl-CoA trans
ferase 1 (CPT1), which was expected to impact whole body energy 
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expenditure [175–177]. For this reason, as well as due to the suppres
sion of food intake, C75 induces weight loss in mice [176,178]. Another 
Cerulenin derivative, C93 was designed to solve the side effects caused 
by using both Cerulenin and C75. C93 showed a significant antitumor 
effect on xenograft tumors from human non-small cell lung cancer 
(NSCLC) cell lines without causing anorexia and weight loss [179]. 
Plant-derived natural compounds epigallocatechin gallate (EGCG) and 
epicatechin gallate (ECG) were found to inhibit the β-ketoacyl reductase 
(KR) domain of FAS. They showed induction of selective apoptosis in 
carcinogenic prostate and human breast cells [180,181]. EGCG has no 
effect on weight loss induction or FA oxidation in experimental animals 
as C75 [182], but it shows low potency in FAS inhibition (IC50 = 52 μM). 
ECG and EGCG are competitive inhibitors to NADPH, and ECG shows 
similar potency (IC50 = 52 μM) as EGCG [183]. G28, a naphthalene 
derivative of EGCG, showed anticancer activity in combination with 
gefitinib or Osimertinib, which are epidermal growth factor receptor 
(EGFR) tyrosine kinases inhibitors (TKI). G28 showed greater cytotox
icity (IC50 = 12–18 µM) than EGCG (IC50 = 75–90 µM) in different 
NSCLC models [184]. The Structure-Activity Relationship (SAR) study 
of G28 against FAS is required to consider it as a selective inhibitor for 
further in vivo studies. There are other natural compounds, such as 
Cacalol, Diosgenin, Luteolin, Mollugin, Quercetin, Resveratrol, Osthole, 
and Ornidonin, showed inhibition of FAS and anticancer activity against 
multiple cancer cell lines. In the case of inhibition of proliferation of MIA 
PaCa-2 pancreatic cancer cells, Resveratrol (IC50 = 163 μM), and 
Quercetin (IC50 = 178 μM) showed less potency compared to C75 (IC50 
= 65 μM) and Luteolin (IC50 = 75 μM) showed similar dose-dependent 
inhibition [185]. Many natural compounds could not pass the preclini
cal studies to become a selective inhibitor for phase I clinical trial [186]. 

Orlistat (tetrahydrolipstatin), a Food and Drug Administration (FDA) 
approved synthetic anti-obesity drug, inhibited the TE domain of FAS. 
Orlistat was able to halt tumor cell proliferation and promote tumor cell 
apoptosis in prostate cancer and melanoma cell lines and xenografts 
[187,188]. Orlistat inhibited metastasis in mouse metastatic melanoma 
cell line B16-F10188 and showed antitumor effects on breast cancer cells 
in vitro [189]. However, low cell permeability, poor solubility, oral 
bioavailability, lack of selectivity, and poor metabolic stability are the 
limitations of Orlistat for which its potential in clinical application is 
limited [190,191]. Another inhibitor Triclosan, an FDA-approved anti
microbial agent, inhibits ER domain of FAS, and shows superior cyto
toxicity compared to C75 or Orlistat in prostate cancer cell lines [192]. 
But Triclosan also enhances tumor progression in breast cancer cell lines 
and mouse xenograft model and tumor growth in Human BG-1 ovarian 
cancer cells via activation of estrogen signaling pathway [193,194]. 
Recently, some reversible imidazopyridine-based FASN inhibitors 
TVB-2640, and TVB-3166, were developed by 3-V-Biosciences and 
demonstrated antitumor activity both in vitro and in vivo [195]. 
TVB-3166 was found to bind to the KR domain of FAS. It inhibited tumor 
growth in multiple cancer cell lines and in vivo xenograft tumors as an 
orally available, potent, and selective inhibitor. TVB-3166 also showed 
well-tolerated in vivo toxicity compared to the high side effects of C75, 
Orlistat, and Cerulenin [196]. TVB-3166 also reduces cell viability and 
proliferation and promotes cell cycle arrest and cell death of oral 
squamous cell carcinoma (OSCC) cell lines SCC-9 and metastatic LN-1A. 

Further preclinical studies are required to confirm the anticancer 
effect of TVB-3166 in the future, to make TVB-3166 a selective inhibitor 
of FAS in clinical trials [195]. TVB-2460 was the first FAS inhibitor used 
in the human-dose-escalation study to determine the maximum toler
ated dose in phase I clinical trial and recommended phase II dose 
(RP2D). TVB-2460, in combination with a common chemotherapeutic 
drug Paclitaxel, showed a partial response (PR) of 11% and a disease 
control rate (DCR) of 70% in patients with breast, KRASMUT lung, and 
ovarian cancer. The side effects of the combined dose are reversible skin 
and ocular effects due to decreased lipid production. Skin effects were 
seen to be improved with concomitant use of emollients. 

Further investigation of TUV-2460 in patients with solid tumors 

could be promising [197]. A novel FAS inhibitor Triazolone 
GSK2194069 was identified by high throughput screening of Glax
oSmithKline (GSK) compound collection in an assay that measures 
NADPH consumption using full-length recombinant human FAS [198]. 
GSK2194069 binds to the KR domain of FAS and reduces the tumor 
volume and acetate uptake in prostate cancer xenograft [199]. α-Lino
lenic acid,18:3n-3 (ALA), an n-3 fatty acid, was found to reduce FAS 
expression and induce breast cancer cell apoptosis. ALA showed greater 
affinity towards FAS’s TE domain than palmitic acid,16:0 (PA) [200]. 
The reduction of osteosarcoma cell proliferation, invasion, and arrest of 
the cell cycle in breast cancer cells by ALA makes it a promising 
candidate for further studies in vivo [200,201]. We have summarized 
the FAS inhibitors in Table 2. 

Table 2 
Summary table of the inhibitors targeting different domains of the FAS.  

Inhibitors FAS 
Domains 

Effects 

Cerulenin[165,166] KS Showed antitumor effects in murine 
colorectal and neuroblastoma cancer cell 
lines 

C75[171–174] KS, ER, TE Antitumor effects in multiple cancer cell 
lines and xenografts 

C93[179] KS Significant antitumor effects in NSCLC cell 
lines and xenografts 

EGCG[182,183,340] KR Induced apoptosis in prostate and human 
breast cells. 
In phase 2 clinical trial 

G28[184] KR Showed anticancer effect combined with 
gefitinib or Osimertinib 

Resveratrol[185,341] KR Inhibition of proliferation of MIA PaCa-2 
cells 
Destroyed breast cancer stem cell in 
xenograft animal model 

Luteolin[185] - Inhibition of proliferation of MIA PaCa-2 
cells 

Quercetin[185] MAT Inhibition of proliferation of MIA PaCa-2 
cells 

Mollugin[342] - induced apoptosis in ovarian and breast 
cancer cells 

Diosgenin[343] 
Osthole[344] 

- Induced apoptosis in HER2-overexpressing 
human breast adenocarcinoma cell lines 

Cacalol[345] - Induced apoptosis in breast 
adenocarcinoma cell lines 

Oridonin[346] - Showed anticancer activity in human 
colorectal cancer cell lines 

Orlistat[187–189,347] TE Induced apoptosis in prostate cancer and 
melanoma cell lines and xenografts; 
In phase 3 clinical trial 
Inhibited metastasis and showed antitumor 
effect in melanoma and breast cancer cell 
lines 

Triclosan[192–194] ER Showed cytotoxicity greater than C75 in 
prostate cancer cells 
Enhanced tumor growth and tumor 
progression in different cell lines and 
xenografts 

TVB-3166[195,196] - Inhibited tumor growth and showed well 
tolerated cytotoxicity in multiple cancer 
cell lines and in vivo xenograft tumor 
Reduced tumor cell proliferation and 
induced cell cycle arrest in OSCC and 
metastatic LN-1A cell lines 

TVB-2640[197,348] - First FAS inhibitor that was used in phase I 
clinical trial in patients with breast, 
KRASMUT lung and ovarian cancer; 
In phase 2a clinical trial 

GSK2194069[199] KR Reduced the tumor volume in prostate 
cancer xenograft 

α-Linolenic acid,18:3n- 
3 (ALA)[200,201] 

TE Induced apoptosis and reduced metastasis 
and invasion in breast cancer cell lines 

* (-) refers that the data is unavailable. 
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4.4. Fatty acid desaturation 

A substantial fraction of de novo synthesized fatty acids need to get 
desaturated by stearoyl-CoA desaturase (SCD) enzyme with the intro
duction of a double bond at the cis-delta-9 position of saturated fatty 
acyl-CoAs and converted to D9-mono-unsaturated fatty acids (D9- 
MUFAs). For instance, SCD1, which is one of the two human isomers of 
SCD, converts palmitate (16:0) and stearate (18:0) to palmitoleate 
(16:1n-7) and oleate (18:1n-9), respectively [202]. SCD1 is overex
pressed in many tumors, including bladder cancer, hepatocellular car
cinoma, and breast cancer, and is involved in cancer cell proliferation, 
migration, metastasis, and tumor growth [203–206]. It has also been 
reported that most cancer cells have MUFAs in higher proportion than 
normal tissues, excluding colorectal cancer cells, which are enriched in 
polyunsaturated fatty acids (PUFAs) [207–209]. A specific balance be
tween saturated and unsaturated fatty acids is crucial for limiting lip
otoxicity and ferroptosis and promoting cell survival [210]. It has been 
suggested that inhibition of SCD1 decreases an endogenous membrane 
antioxidant CoQ10, which has been linked to ferroptosis [211]. In the 
case of different cancer cells, including bone, bladder, colon, and kidney 
carcinoma, it has been reported that chemical inhibition or genetic 
knockdown of SCD1 could be a promising therapeutic strategy 
[211–218]. Although primary human liver and lung carcinoma cells 
could follow an alternative FA desaturation pathway to overcome cell 

death, targeting both desaturation pathways simultaneously could 
damage cancer cell proliferation [219]. A-939572, a pyridazine and 
piperazine-based second-generation inhibitor of SCD, was identified in 
2005 [220]. A-939572 induced apoptosis and inhibited growth in tumor 
cells such as FaDu cells, clear cell renal cell carcinoma (ccRCC) in vitro 
[206,221]. Combined with temsirolimus, an FDA-approved mTOR in
hibitor, synergistically inhibited tumor growth in A498 ccRCC xeno
grafts [222]. Another SCD1 inhibitor MF-438, a thiadiazole–pyridazine 
derivative, was identified in 2010223. MF-438 showed better potency 
while inhibiting anaplastic thyroid carcinoma (ATC) cell proliferation in 
vitro than A-939572. Recently, a piperazin-1-ylpyridazine-based potent 
and selective SCD1 inhibitor XEN-103 has been identified as highly 
efficacious (ED 50 = 0.8 mg/kg) with a good oral bioavailability (F =
49%) [224]. XEN-103 showed inhibition of SCD1 in mouse liver 
microsomal (mSCD1), and HepG2 cell-based activity assay. The efficacy 
study was carried out on rats in the context of obesity and metabolic 
syndrome, but no studies have been recorded regarding cancer. 

5. Fatty acids mediated lipid peroxidation to modulate 
ferroptosis 

Fatty acid pool affects the ferroptosis sensitivity. n-6 LCPUFAs (ARA, 
adrenic acid,22:4n-6) synthesize from LA through the n-6 de novo PUFA 
synthesis pathway using elongation of very long-chain fatty acid protein 

Fig. 2. : PUFAs regulate ferroptosis. PUFAs can accumulate in cells via the n-6 de novo PUFA synthesis route and fatty acid transport pathways comprised of CD36, 
FATP, and FABP. Imported LA is transformed into ARA and adrenic acid,22:4n-6 by ELOVL and FADS, which are then used to generate membrane phospholipids. The 
PUFA pools convert to PE-PUFA, which enhances ferroptosis in cancer cell through lipid peroxidation process. 
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2 (ELOVL2), ELOVL5, FADS1, and FADS2, which play crucial role in 
ferroptosis (Fig. 2) [56,225–227]. Due to hypermethylation in the pro
moter region, intestinal-type gastric cancer cells express extremely low 
levels of ELOVL5 and FADS1. They are resistant to ferroptosis, but 
mesenchymal-type gastric cancer cells are sensitive to ferroptosis at high 
ELOVL5 and FADS1 219 levels. Isotope-tracing studies show 
intestinal-type cells are defective in synthesizing ARA and adrenic acid, 
22:4n-6 from LA. However, when supplemented with ARA, these cells 
become vulnerable to ferroptosis [225]. According to The Cancer Cell 
Line Encyclopedia, ELOVL5 and FADS1 are expressed in most cancer 
cells. Still, they are silenced in some cancer cells, including gastric and 
colorectal cancer cells, implying that these two enzymes could be used 
as prediction markers for ferroptosis-mediated cancer therapy [225]. 
Furthermore, FADS2 depletion or inhibition decreases (1 S,3 R)-RSL-3 
(RSL3)-induced ferroptosis [56,225]. It’s still a mystery how simply 
inhibiting PUFA production can prevent ferroptosis. According to tran
scriptome analysis, there were no significant changes in the levels of 
fatty acid transporters during this procedure. Interestingly, FATP2 levels 
in mesenchymal-type gastric cancer cells are very low, signaling that 
fatty acid import is somewhat limited in these cells; thus, these cells are 
dependent on PUFA production [225]. Although ARA is thought to be a 
key target for lipid peroxidation, ELOVL5-depleted gastric cancer cells 
still contain comparable levels of ARA and 
phosphatidylethanolamine-ARA, suggesting that ARA import is still 
active [225]. Instead, these cells have much lower amounts of adrenic 
acid,22:4n-6 and phosphatidylethanolamine (PE)-adrenic acid,22:4n-6 
and are resistant to ferroptosis, implying that adrenic acid,22:4n-6 is 
important for lipid peroxidation and ferroptosis in gastric cancer [225]. 
Unlike PUFAs, which are required for ferroptosis, MUFAs such as OA can 
protect cells from ferroptosis [228,229]. According to lipidomic study, 
OA reduces the number of ferroptosis-related phospholipids, such as PC- 
or PE-linked ARA or adrenic acid,22:4n-6, without affecting free ARA 
and adrenic acid,22:4n-6 levels, implying that MUFAs compete with 
ARA and adrenic acid,22:4n-6 for incorporation into phospholipids 
[228]. ACSL3, which mediates MUFA phospholipid incorporation, is 
needed for MUFA-mediated ferroptosis inhibition [228]. Surprisingly, 
OA treatment causes a buildup of free OA but not 
phospholipid-containing OA, showing that more complex processes 
govern phospholipid composition and ferroptosis [228]. An intriguing 
finding was that the levels of OA and glutathione in lymph fluid were 
higher than those in blood plasma; iron levels in lymph fluid were lower 
than those in blood plasma; and these expression patterns may protect 
tumor cells from ferroptosis, leading to increased survival rates during 
metastasis [230]. These findings suggest that ferroptosis plays a major 
inhibitory function in tumor metastasis via blood, although tumor cells 
metastasizing via lymph are shielded from ferroptosis. Given that the 
levels of fatty acids, including MUFAs and PUFAs, in human serum are 
much higher than in classical culture medium supplemented with fetal 
bovine serum (FBS), information on how cells maintain free fatty acid 
pools and phospholipids in cells is much more important in determining 
whether cells ferroptose or survive [31,228]. PUFAs are liberated from 
membrane phospholipids via phospholipase A2 (PLA2)-catalyzed hy
drolysis as membrane phospholipids undergo constant remodeling. ARA 
and EPA are preferentially produced by cytoplasmic PLA2 (cPLA2), 
whereas DHA is released by Ca2+-independent PLA2 (iPLA2) [231]. 
Although no research has directly examined whether these parameters 
are linked to ferroptosis, multiple studies have shown a possible rela
tionship between fatty acid transport and ferroptosis. According to 
recent research, chemoresistant tumors with high transforming growth 
factor-β (TGF-β) expression and epithelial-mesenchymal transition 
(EMT) gene profiles are more susceptible to ferroptosis [225,232,233]. 
Furthermore, most malignant tumors have abnormal lipid metabolism 
[234,235]. Furthermore, malignant tumors have enhanced CD36 
expression, which permits greater fatty acid intake from outside the cell 
and supports the EMT process [25,236]. In prostate cancer, for example, 
fatty acids imported by CD36 are retained in cellular complexes such as 

phospholipids, DAG, and TAG rather than being oxidized [13]. This 
could aid in the ferroptosis of malignant tumors that express CD36. 
CD36, conversely, has been demonstrated to activate cPLA2, releasing 
ARA from phospholipids [237]. ARA is either exported from cells or 
transformed into PGE [237]. This implies that CD36 can also suppress 
ferroptosis by reducing ferroptosis-related phospholipids, such as 
PE/PC-linked ARA or adrenic acid,22:4n-6. Therefore, the role of CD36 
in ferroptosis requires further investigation. Exogenous lipids, such as 
PUFAs and MUFAs, absorbed through CD36, as well as adiponectin 
cause metabolic and functional reprogramming of tumor-associated 
myeloid-derived suppressor cells [227,238]. CD36 also directly re
duces the anti-tumor immunological function of CD8+ tumor-infiltrating 
lymphocytes by increasing lipid peroxidation via the absorption of 
OxLDL [239]. Because glutathione peroxidase 4 (GPX4) overexpression 
can restore CD8+ tumor cell activity, ferroptosis may be implicated in 
this process [239]. Because attempts to stimulate ferroptosis in cancer 
cells can also inhibit anti-tumor immunity, a method based on the dif
ferences in ferroptosis processes between cancer cells and immune cells 
is required. FATP2 has recently been found to play critical roles in lipid 
buildup in polymorphonuclear myeloid-derived suppressor cells [240]. 
FATP2 knock out cells, in particular, have considerably lower free ARA 
levels. ARA tracing research further demonstrated that FATP2 knock-out 
polymorphonuclear myeloid-derived suppressor cells lack ARA absorp
tion, resulting in reduced levels of ARA-containing phospholipids and 
PGE2. Given that PGE2 mediates myeloid-derived suppressor cell tumor 
suppressive action, inhibiting FATP2 may reduce tumor growth via 
PGE2 [240,241]. FATP2 deletion, on the other hand, is expected to result 
in ferroptosis resistance by limiting ARA absorption. While gastric 
cancer cells exhibit low levels of FATP2, cells appear to compensate for 
the ARA deficit by activating the de novo synthesis pathway, making 
them more susceptible to ferroptosis [225]. Two studies published 
recently found that iPLA2 plays a function in ferroptosis. First, the sci
entists concentrated on peroxiredoxin 6 (PRDX6), which has phospho
lipid hydroperoxide and iPLA2 activity [242]. PRDX6 depletion causes 
RSL3- or elastin-induced ferroptosis, as well as an increase in lipid 
peroxidation levels, implying that PRDX6 is a negative regulator of 
ferroptosis [242]. The authors argue that PRDX6 iPLA2 activity is 
responsible for ferroptosis suppression using MJ33, a selective PRDX6 
phospholipase A2 (iPLA2) inhibitor [242]. The precise process by which 
iPLA2 remodels membrane phospholipids to reduce ferroptosis remains 
unknown. Another study looked specifically at the ability of PLA2G6 to 
hydrolyze Hp-PE molecules, which are the primary cause of ferroptosis 
[243]. The abundance of 15-HpETE-PE was increased in PLA2G6 
knock-out cells relative to control cells in both normal and RSL3-treated 
conditions [243]. PLA2G6 KO mice are more sensitive to ferroptosis 
caused by RSL3 and ischemia/reperfusion during pregnancy than 
wild-type mice, increasing fetal death rates [243]. Glucose is the 
fundamental energy source for cells, and it generates ATP via glycolysis. 
Excess glucose can be turned into fatty acids and stored in triglycerides 
via the de novo lipogenesis. Cells in mammals synthesize saturated fatty 
acids like PA and MUFAs like OA from glucose, but they cannot produce 
PUFAs. Glucose shortage can cause metabolic stress by depleting ATP 
and causing cell death [244]. ATP depletion, on the other hand, can 
activate AMPK, alleviating energy stress by saving ATP and boosting cell 
survival [245]. Glucose deprivation reduces ferroptosis triggered by 
various triggers, including cysteine deficiency, GPX4 deletion, erastin, 
and RSL3 [246]. By suppressing the de novo lipogenesis pathway, 
AMPK-mediated acetyl-CoA carboxylase (ACC) phosphorylation sup
presses ferroptosis [246]. Lipidomic studies show that AMPK activation 
downregulates free PA and free PUFAs such as dihomo-γ-linolenic acid 
(DGLA) and ARA [246]. Liver kinase 1 (LKB1, also known as STK11) acts 
as an upstream regulator, suppressing ferroptosis via the 
LBK1-AMPK-ACC-FAS axis [247]. Because PUFAs cannot be produced 
from PA, AMPK and PA may indirectly affect PUFA pools, suppressing 
ferroptosis. OA, which may be produced from PA via SCD1, on the other 
hand, suppresses ferroptosis, showing that AMPK may reduce ferroptosis 
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via a different route [31,229,230]. AMPK can also contribute to 
erastin-induced ferroptosis [248]. Erastin activates AMPK, which en
hances the phosphorylation of beclin 1 [248]. Phosphorylated beclin 1 
then inhibits system xc

- by direct binding to SLC7A11, hastening fer
roptosis [248]. Understanding how the de novo lipogenesis pathway 
collaborates with PUFA synthesis pathways to alter phospholipid 
metabolism under different situations may help us comprehend lipid 
peroxidation, ferroptosis, and other illnesses. Because cholesterol can 
undergo autoxidation and is abundant in cellular membranes and lipo
proteins, it may be linked to ferroptosis [249–251]. The mevalonate 
process can be used to manufacture cholesterol from acetyl-CoA. 
Because isopentenyl pyrophosphate, an intermediary of the mevalo
nate system, is required for the isopentenylation of selenocysteine-tRNA, 
the mevalonate process is also required for the formation of selenopro
teins, including GPX4 [252]. As a result, analysis of cancer cell line 
sensitivity data revealed that statins are selective inducers of ferroptosis 
in mesenchymal-type cancer cells, possibly by inactivating GPX4 [232]. 
Because statins can change tumor metabolism and reduce cell viability, 
it remains to be seen whether statins specifically trigger ferroptosis 
[253]. In addition to promoting GPX4 degradation, ferroptosis-inducing 
agent 56 (FIN56) activates squalene synthase (also known as 
farnesyl-diphosphate farnesyltransferase; FDFT1) in the mevalonate 
pathway, which makes squalene from farnesyl pyrophosphate [254]. 
Because coenzyme Q10 is generated from farnesyl pyrophosphate, 
activating squalene synthase with FIN56 depletes farnesyl pyrophos
phate and coenzyme Q10, contributing to ferroptosis [254]. Some ma
lignancies, such as ALK+ anaplastic large cell lymphoma, lose the 
expression of squalene monooxygenase, which mediates cholesterol 
synthesis from squalene, indicating that these tumors rely on exogenous 
cholesterols [255]. Surprisingly, squalene accumulates in the membrane 
of these cells, suppressing ferroptosis through modifying membrane 
phospholipids [255]. Inhibiting squalene synthase, which prevents 
squalene formation, can make cells more susceptible to ferroptosis 
[255]. This study contradicts the findings involving FIN56-induced 
ferroptosis in HT-1080 cells, where suppression of squalene mono
oxygenase or squalene synthase reduces ferroptosis via farnesyl pyro
phosphate and coenzyme Q10 accumulation [254]. Modulation of lipid 
metabolism could lead to new treatments for ferroptosis-related disor
ders. Because ferroptosis can kill cancer cells (Table 3) resistant to 
several anticancer medications, it is an emerging method for innovative 
cancer treatments. While certain ferroptosis-inducing compounds, such 
as RSL3 and erastin, are highly effective in vitro at killing cancer cells, 

their pharmacokinetic features, such as solubility and metabolic stabil
ity, make them unsuitable for in vivo application [256]. The most sig
nificant barrier to employing ferroptosis-inducing compounds for cancer 
treatment is that other tissues, such as the heart, liver, and kidney, are 
also susceptible to ferroptosis, which can result in unwanted side effects. 
Furthermore, ferroptosis can impair tumor-suppressing immune cells, 
decreasing anti-cancer immunity. To properly target this process, a 
cancer-specific ferroptosis induction method is required to treat cancer 
patients. 

6. Convergence of fatty acid metabolic, molecular 
heterogeneity, and oncogenic signaling in cancer cells 

Oncogenes and tumor suppressors maintain various metabolic pro
cesses in cancer cells. Oncogenic KRAS induces glucose metabolism by 
upregulating hexokinase 1 and hexokinase 2 and glutamine flux to 
malate to produce pyruvate [257,258]. Oncogenic MYC upregulates 
glutamine metabolism and anaplerosis (the metabolic pathway that re
plenishes the citric acid cycle intermediates) by transcriptionally acti
vating mitochondrial glutaminase 1 and the SLC1A5 glutamine 
transporter [259,260]. Overactivity of phosphoinositide 3-kinase (PI3K) 
and AKT pathway also upregulates glutamine anaplerosis via activation 
of glutamate pyruvate transaminase 2, enhances glucose uptake through 
stabilization of glucose transporter 1 and remodeling of the cellular 
lipidome [261–263]. Therefore, the role of complex regulatory networks 
in fatty acid metabolism cannot be ignored. 

Genes responsible for lipid metabolism are differently expressed in 
various cancer types and subtypes [5264]. For instance, 
receptor-positive breast cancers are associated with upregulated gene 
expression associated with de novo lipogenesis, fatty acid mobilization, 
and oxidation. In contrast, triple-negative breast cancers upregulate 
genes involved in exogenous lipid uptake and storage [265]. Interest
ingly overexpression of long-chain acyl-CoA synthetase 3 induces 
cholesterol synthesis and steroidogenesis in prostate cancer but is 
downregulated in triple-negative breast cancers [265,266]. Interest
ingly, α-methyl acyl-CoA racemase and carnitine palmitoyltransferase 
1b are upregulated in the prostate, colorectal, and hepatic cancers, while 
carnitine palmitoyltransferase 1a is upregulated in breast cancer [266, 
267]. So, it’s obvious that various types of cancer may exhibit unique 
metabolic adaptations to remodel their lipidome. As gene expression 
analyses don’t reflect enzyme activity or dependencies on specific 
metabolic pathways, studies have validated unique lipid-associated ge
netic signatures for therapeutic intervention [266,268]. For example, a 
genetic signature associated with fatty acid oxidation supports aggres
siveness and poor clinical outcome of MYC-overexpressed triple-
negative breast cancers [268]. Suppressing carnitine 
palmitoyltransferase 1 and fatty acid oxidation reduces the primary 
tumor growth of MYC-overexpressed breast cancers [268]. Therefore, it 
is crucial to understand the molecular subtype, tissue, and overall tumor 
microenvironment for better stratification methods and targeted appli
cation of lipid metabolism pathway inhibitors. 

Oncogenic signaling pathways can modulate enzymes involved in 
lipid metabolism and shape the tumor lipidome. PIK3CA is one of the 
most mutated genes in cancer to promote growth, proliferation, and 
survival [269–271]. Constant upregulation of de novo lipogenesis in 
HER2-positive breast cancers is associated with hyperactivation of PI3K 
signaling [272,273]. Either blocking of downstream signaling of HER2 
or de novo lipogenesis reduces oncogenic activity and induces apoptosis. 
Even AKT contributes to de novo lipogenesis by shuttling metabolic 
intermediates and synthesizing the cellular pool of NADPH [274–280]. 

As the main catalytic subunit of the mammalian target of rapamycin 
complex 1 (mTORC1) and mTORC2, the mammalian target of rapamy
cin (mTOR) mediated signaling is interlinked with PI3K and AKT ac
tivities [281]. Different metabolic processes such as Oxidative 
phosphorylation by inducing mitochondrial biosynthesis, de novo 
nucleotide synthesis and lipogenesis are known to be activated by 

Table 3 
Ferroptosis-inducing compounds.  

Mechanism of Actions Compound names 

Glutamate-cystine antiporter (Systems xc
- ) 

inhibitors 
Erastin[349] 
Sulfasalazine[349,350] 
Sorafenib[351,352] 
Diaryl-isoxazoles (Non- 
competitive inhibitor)[353] 

γ-glutamylcysteine synthetase inhibitor L-buthionine sulfoximine[256, 
354,355] 

GPX4 inhibitors RSL3[256] 
ML162[256,356] 
ML210256,356 

Artemisinin derivatives 
[357–359] 

GPX4 degradation inducer FIN56[254] 
GPX4 inhibitor and iron oxidation FINO2[360,361] 
Synergistic effect on ferroptosis induction through 

an increase in intracellular iron concentration 
Siramesine/Lapatinib[362] 

Systemic depletion of L-cysteine Engineered human cyst(e) 
inase[363] 

Triggers GPX4 degradation and HO-1 upregulation Withaferin[364] 
Cargoes include polyunsaturated fatty acids, 

peroxides, and iron, as well as their mixtures, 
which cause iron overload and peroxide- 
mediated cancer cell death 

Nanoparticle-based vehicles 
[365–368]  
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PI3K–AKT–mTORC1-dependent mechanisms [282–284]. Therefore, 
predominant key lipogenic enzymes, such as FASN, ACC1 and ACLY are 
upregulated by mTORC1 [282,285,286]. Although mTORC1 phos
phorylates and inactivates lipin-1 to sequestrate in the cytoplasm and 
modulate the lipid architecture in the nucleus and subsequently change 
nuclear lamina to directly affect SREBP activity in cancer cells (possibly 
dependent on lipid phosphatase activity of lipin-1 that specifically acts 
on phosphatidic acids) [285,287]. Various oncogenes e.g., Ras, KRAS, 
extracellular signal-regulated kinase 1/2 (ERK1/2) converge on 
mTORC1 to promote de novo lipogenesis [286,288–290]. 

Overactivation of PI3K induces mTORC2 to reprogram fatty acid 
metabolism in cancer cells by activating AKT, serum- and 
glucocorticoid-regulated (SGKs), and protein kinase Cs (PKCs) 
[291–293]. mTORC2 induces de novo synthesis of sphingolipids, glyc
erophospholipids, and cardiolipins to upregulate mitochondrial respi
ration [294]. Interestingly, blocking mTORC2, but not mTORC1, 
reduces overall lipid content, suggesting that mTORC1 activation alone 
is insufficient to induce lipid synthesis without functional AKT [294, 
295]. Although facilitating glucose uptake and glycolysis (Warburg ef
fect) is supported by PI3K–AKT pathway signaling, dysregulated fatty 
acid metabolic processes in cancer through PI3K signaling are still 
obscured [296]. In addition, AKT contributes to the uncoupling of 
glycolysis and mitochondrial oxidative phosphorylation [297]. It should 
re-investigate how upregulated aerobic glycolysis impairs oxidative 
phosphorylation. However, glucose-6-phosphate (produced during 
glycolysis) shunts the pentose phosphate pathway to generate NADPH to 
sustain anabolic processes and detoxification of ROS [280,298]. AKT 
facilitates NADPH biosynthesis, while PI3K supports phosphorylation 
through PGC-1α-dependent mitochondrial biosynthesis and cardiolipins 
to increase respiration and improve mitochondrial activity [279,294, 
299]. So, overstimulated PI3Ksignalling induces the synthesis of meta
bolic intermediates required for anabolic metabolism and supports 
respiration to produce citrate from acetyl-CoA for de novo lipogenesis. 
Despite having complex homeostasis between oxidation of fatty acids 
and glucose, PI3K/AKT signaling supports lipid synthesis and inhibits 
lipolysis and β-oxidation [300]. 

Given that the obesity and insulin resistance are closely associated 
with cancer, it is convincing that PI3K signaling might play a crucial role 
in lipid synthesis by inducing mTORC1-p70S6K and subsequent block
ing of insulin receptor substrate 1 [300–303]. As raised lipolysis in 
adipose-rich microenvironments supports cancer cells, and β-oxidation 
induces ATP and NADPH synthesis, therefore PI3K-mediated lipid 
metabolism and tumorigenesis supporting enhanced de novo lipogenesis 
are paradoxical [12,15,20]. Whole-body metabolism and obesity-related 
factors that support definite metabolic pathways during tumorigenesis 
might need to consider reuniting the anomalous regulatory pathways 
linking PI3K signaling and lipid metabolism. It is convincible that de 
novo lipogenesis and enzymatic networks reciprocally regulate onco
genic signaling throughout malignant transformation. For example, 
FASN and estrogen receptor α signaling or HER2 crosstalk bidirection
ally in breast cancers [304,305]. 

Besides pro-tumorigenic signaling, fatty acid metabolism affects 
cancer epigenome to regulate gene expression and cellular differentia
tion [306]. ACLY and ACSS2 serve not only as the main sources of 
acetyl-CoA, but also as the essential cofactors for several 
histone-modifying enzymes to promote the transcription of 
pro-proliferative and growth genes in cancer cells under 
nutrient-deplete conditions [307–310]. Acetyl-CoA also regulates cell 
differentiation and stemness of a tumor cell [311]. As an obligate 
cofactor for CREB-binding protein (CBP)/p300, acetyl-CoA induces 
expression of Oct4, Sox2, Klf4, and CSF1R genes [312]. Acetyl-CoA 
serves as the basic substrate for cholesterol and steroid synthesis along 
with the induction of epigenetic remodeling mediated pro-survival and 
metastatic genes upregulation [313,314]. Overall, induction of lipo
genic enzymes such as FASN, ACLY, and ACSS2 regulate hyperactive 
oncogenic signaling reciprocally and produce metabolic end products. 

7. Cancer progression regulation by fatty acids 

It is well known that fatty acids support cancer cells by providing an 
energy source during metabolic stress and sustaining membrane 
biosynthesis during proliferation. Therefore, upregulated de novo lipo
genesis in cancer cells contributes to the production of saturated and 
unsaturated fatty acids to reduce the susceptivity of chemotherapy- 
induced oxidative stress or cytotoxicity [315]. Interestingly, endoge
nously synthesized cholesterol is known to decrease membrane fluidity 
to reduce cellular migration and ultimate metastatic dissemination and 
develop multi-drug resistance [316,317]. However, the role of choles
terol metabolism in tumorigenesis is still controversial [318]. Low 
cholesterol levels support metastatic dissemination during cancer pro
gression, while primary tumor is highly dependent on membrane 
cholesterol concentrations by forming lipid rafts [319]. Hence, targeting 
cholesterol metabolism or blocking cholesterol synthesis could be more 
effective at inhibiting cancer initiation and proliferation [316,319]. 

Phosphatidylinositols (containing fatty acid chains connected to an 
inositol ring and glycerol backbone) act as secondary messengers to 
synthesize bioactive lipids for supporting cell survival and proliferation 
[269]. Hydroxyl groups of the inositol ring are phosphorylated into 
several species, including triphosphorylated PI (3− 5) P3 (also known as 
PIP3) [269]. PIP3 supports the localization of AKT to the cell membrane 
to activate phosphoinositide-dependent kinase 1 (PDK1) and mTORC2 
downstream of hyperactive PI3K signaling. AKT facilitates de novo 
lipogenesis, promotes cell survival, and inhibits apoptosis [263,278,279, 
320]. Lipid phosphatases e.g., PTEN and inositol 
polyphosphate-4-phosphatase type II may also regulate pro-oncogenic 
signaling [270,321,322]. As phosphoinositides are derived from phos
phatidylinositols and regulated by phosphatidylinositols transfer pro
teins, phosphatidylinositols transfer proteins are prime for several 
cellular processes and are associated with normal fatty acid metabolism 
[323]. Phosphatidylinositols transfer protein-α has a higher affinity for 
phosphatidylinositols to contribute to localized PIP3 generation and 
EGFR activation [324–326]. Phosphatidylinositols transfer protein-α 
contributes to cancer metastasis to distant tissues via linking PIP2 and 
inositol 1,4,5-triphosphate (IP3), signaling [327]. Therefore, it’s obvious 
that aberrant fatty acid metabolism has significant effects on the spatial 
production of secondary messengers that ultimately impact on 
cell-signaling pathways. Rapid PI3K–AKT signaling induction catalyzes 
the conversion of membrane-localized pools of phosphatidylinositols 
into pro-tumorigenic phosphoinositides by supporting the scaffold pro
tein IQGAP1 [328]. 100-fold higher expression of PIP2 than PIP3 at the 
plasma membrane and phosphatidylinositols at sites of activated RTKs 
act as the rate-limiting step in the efficient production of secondary 
messenger [327,328]. In addition to phosphatidylinositols, phosphatidic 
acids also serve as potent signaling molecules to bind and stabilize 
mTOR to increase the activity of mTORC1 and mTORC2 to coordinate 
cellular growth and proliferation [329–333]. Bioactive lipids e.g., 
lysophosphatidic acids, can stimulate cell proliferation by activating 
G-protein-coupled receptors [334]. Dysregulated lipid 
metabolism-regulated lysophosphatidic acids are produced either by 
cleavage of existing phospholipids at the sn-2 position by phospholi
pases to release a lysophospholipid and a fatty acid or by lysophos
pholipase D activity of autotaxin to convert lysophosphatidylcholine 
into lysophosphatidic acids extracellularly [335,336]. Lysophosphatidic 
acids bind with lysophosphatidic acid receptors to exert the 
pro-tumorigenic effects by serving as important intermediaries between 
tumor cells and the surrounding microenvironment [334,337]. 

8. Conclusion and future perspectives 

In recent years, there has been a growing appreciation of the sub
stantial influence of fatty acid metabolism on tumor growth, its role in 
ATP generation through beta-oxidation, and its contribution to glycer
ophospholipid synthesis. This encompasses maintaining fatty acid 
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homeostasis in response to redox stress, averting ferroptosis, and regu
lating membrane fluidity and permeability to facilitate cell motility and 
metastasis. Moreover, these alterations in fatty acid metabolism have 
been associated with the development of treatment resistance, particu
larly in cases related to obesity, shedding light on the shifts in cancer cell 
behavior observed in obese individuals. Significantly, recent discoveries 
regarding the potential of targeting fatty acid metabolism to overcome 
treatment resistance suggest that co-targeting strategies hold promise as 
a practical future approach, with particular relevance in the context of 
obesity and metabolic dysfunction. 

However, it is imperative to acknowledge that translating these 
findings into clinical practice will depend on developing pharmacolog
ical compounds capable of circumventing the known limitations and off- 
target effects associated with existing experimental and clinical in
hibitors. Moreover, for co-targeting approaches to be effectively applied 
in the clinical setting, more intricate three-dimensional models and 
patient-derived specimens should be employed in future research 
studies. Finally, we believe there is considerable potential in integrating 
tumor genetic classification with environmental factors such as dietary 
habits and systemic metabolism to enhance patient prognosis and 
establish more comprehensive precision medicine methodologies. 

Ethics approval 

Not applicable. 

Funding 

No funding was available. 

CRediT authorship contribution statement 

Conceptualisation RM Writing – original draft preparation, PB. RM 
review and editing, RM and A.D.R. All authors have read and agreed to 
the published version of the manuscript. 

Declaration of Competing Interest 

Authors express no conflicts of interest. 

Data Availability 

Not Applicable. 

References 

[1] P. Fagone, S. Jackowski, Membrane phospholipid synthesis and endoplasmic 
reticulum function, J. Lipid Res. vol. 50 (2009), https://doi.org/10.1194/jlr. 
R800049-JLR200. 

[2] S. Beloribi-Djefaflia, S. Vasseur, F. Guillaumond, Lipid metabolic reprogramming 
in cancer cells, Oncogenesis 5 (2016). 
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