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CHAPTER 1

Introduction

During the last few decades huge technological developments have taken place. Technological inventions

have made an enormous impact on how we live our lives and completely changed our way of living. In

scientific research the technological development during the information age has had a similar influence

by enabling methods for collection and investigation of larger amounts of information. In most scientific

disciplines the possibilities that arise when large amounts of data are available can be extremely important

and may reveal new and valuable insight and discoveries.

The importance of using and developing proper methods to analyze these large amounts of data becomes

even more crucial. In the analyses, it is most often a matter of finding patterns in data, which can be used

to predict what will happen in the future. Throughout the ages we have been seeking patterns. An example

may be a sailor seeking patterns in the weather before crossing an ocean, a store owner seeking patterns

in his customers’ preferences and demands, or a doctor seeking patterns in his patients’ symptoms of

disease.

The new challenges within statistical sciences arise with the explosive growth of information.

While one in traditional statistical methodology assumed a few well chosen variables, today

automatic methods for data collection leaves us with vast amounts of measurements without

knowing which are relevant for the phenomenon under study (Donoho, 2000). Classical methods

are not designed for these kinds of problems and may not be possible to use or may not behave

as expected.

For instance in regression analysis, having a very large number of explanatory variables p when

the sample size n is small, will not be in accordance with the assumptions in the usual regression

model, where p ≤ n. A lot of novel and effective strategies have been established to circumvent

this problem, and shrinkage methods are one approach which is commonly used when doing

regression with p > n, or even p >> n.

As the volume of existing data expands, an increased interest in data integration has also

aroused. Methods combining information from different data sources could be of great relevance

and importance in different scientific fields. One area where high-dimensional data frequently

occur is within biology and medicine. Large high-dimensional data sets with thousands of

covariates are a result of the great advances and new methods in biotechnology which are able

to conduct high-throughput experiments of gene expression and other biological features of
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CHAPTER 1. INTRODUCTION

interest. The underlying aim analyzing these data, is to search for novel biomarkers which can

be used to predict outcome of a disease for future patients. Incorporating more than one type

of such biological high-dimensional data in a single model may therefore be appropriate. By

effectively taking advantage of known underlying biological processes, the idea of using more of

the information available is just as beneficial from a biological point of view as from a statistical

perspective.

The aim of this thesis is to propose a model for data integration of high-dimensional data in

a regression setting where p > n. The suggested method will be a shrinkage method with

L1-penalties of the lasso type. By introducing penalty terms which could be uniquely defined

for each covariate, the model may provide different amounts of shrinkage to the regression

coefficients based on external information from additional data sources.

The model will be presented in a biological context and applied to a high-dimensional data set

The Radium Hospital Cervix Cancer Cohort Data. The data set includes survival data and both

gene expression measurements and aCGH data for patients diagnosed with cervical cancer at the

Norwegian Radium Hospital in the period 2001-2004. The intent is to identify genes which are

important for survival and to study the possibility of predicting the outcome for future patients.

The aCGH data measures gains and losses in DNA copy number, which may cause changes in

the expression of a gene. Abnormalities in a gene’s expression level may disturb the primary

function of the gene, which may cause highly aggressive disease and poor outcome. To take this

process into account in a conventional regression model is unfeasible, but the aCGH data could

be incorporated in the model by interpreting the data as prior information on each gene, giving

genes within aberrated regions a larger chance of being selected in the final model.

The thesis is organized as follows: First the data at hand are introduced in Chapter 2. This

also involves a description of cervix cancer and some of the underlying biological aspects related

to cancer in general. In Chapter 3 and 4 the statistical background theory is presented by

first reviewing the needed theory of survival analysis. Further it is focused on problems of

high-dimensionality and some well known methods designed for handling such problems. Lasso

regression analyses are carried out on both the gene expression data and aCGH data in Chapter

5. In this connection different methods for reducing the data set prior to the analysis are applied

and advantages and disadvantages by reducing the data are pointed out. In Chapter 6 a method

for data integration through genewise lasso penalization is introduced. The general idea is

discussed and some asymptotic properties are derived. The computational aspects regarding the

genewise lasso penalization procedure are discussed, as well as aspects regarding an additional

tuning parameter q. To complete this chapter it is discussed how the methodology for integration

of different data sources can be seen from a Bayesian perspective. The methodology introduced

will in Chapter 7 be illustrated by an analysis of The Radium Hospital Cervix Cancer Cohort
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Data, where the aCGH data are used in different penalization schemes to weight the penalties

in a lasso regression analysis of the gene expression data. Both a biological validation of the

selected genes, and a validation of the performance of the selected genes as biomarkers on a

new independent data set are carried out. In the last chapter a summary and some concluding

remarks are given to sum up the work and point out some possible topics for further research.
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CHAPTER 2

The Radium Hospital Cervix Cancer Cohort Data

Cancer is one of the leading causes of human death in the western world and belongs to a

complex group of diseases for which the clinical factors and causes vary a lot. The underlying

biological course is in general similar for most cancers. Abnormal growth of cells develops to

larger populations of cells which may invade tissue and metastasize and cause morbidity and

if not treated, death of the individual (Ruddon, 2007, chap. 1). One way the cells can be

disturbed is by genetic gains and losses, leading to abnormal copy numbers and again a change

in expression level, which could be motive forces in tumor progression.

The technology of microarrays has been developed to be able to compare the genetic information

in a tumor with a normal reference sample. The most recent microarrays are now able to contain

information of ten thousands of genes. It can therefore be an enormously useful tool in the search

for biological markers and contribute to possible new treatment strategies.

The data investigated in this thesis contain large scale microarray expression and gene copy

number (aCGH) data for samples from cervix cancer patients. Survival data for the patients

are also available. The aim is to collect the information in the data sets by combining methods

dealing with problems connected to the high dimensions of these data. The data are supplied by

Heidi Lyng at the Norwegian Radium Hospital and collected in a study approved by the regional

committee of medical research ethics in southern Norway. The patients were all diagnosed in the

period 2001-2004 at The Norwegian Radium Hospital having primary squamous cell carcinoma

of the uterine cervix (Lyng et al., 2006).

Before describing the specific data at hand I will give a brief introduction to cervix cancer and

some biological aspects related to cancer. A description of the technology of microarrays will

also be given. It is natural to then consider the patients and the survival data, before the gene

expression and aCGH data are described separately.

2.1. Cervix Cancer

Cervical cancer is one of the most common cancers among women. Yearly 470 000 incidences of

the disease occur in the world, and 230 000 of these incidences end in death. 80% of the cases in
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the world occurs in developing countries. This makes cervix cancer a very frequent disease and

one of the most common causes of death for women in developing countries (Ruddon, 2007).

The causes for developing cervix cancer are related to an infection of a virus called Human

Papilloma Virus (HPV). The virus is the most common sexual transmitting infection and belongs

to a group of more than 100 viruses, where about 40 give rise to infections in the areas around

the genitals. Only a smaller number of the different types of HPV is considered as high-risk

type and associated with cervix cancer. HPV is a virus, which usually transmits through sexual

contact and the chance of getting a HPV-infection is strongly connected to sexual habits (early

sexual debut and multiple sex partners). It is estimated that about 20% of the population is

infected at any time and about 70% of all women will be undergoing a HPV-infection during

their life (Kreftregisteret, 2009, webpage). Not all infections are resulting in higher risk for

cervical cancer and some are not even noticeable.

The virus is believed to be a necessary cause for developing cervix cancer since it may dispose

cellular changes, but it is not sufficient (Hofvind et al., 2001). This means that not all women

who get an infection will get cervix cancer, but the women who are diagnosed with cervical

cancer have most likely had an infection. It is therefore believed that there may be other

cofactors which are necessary for developing cervical cancer.

The disease often develops through stages and it is common to consider four different stages

divided according to tumor size and how much the disease has spread. In the first stage the

carcinoma is limited to the cervix, and in Norway this corresponds to 50% of all cases. Getting

the diagnosis on an early stage gives larger possibilities for recovery and 9 out of 10 patients are

still alive after 5 years. In the following stages, the tumor spreads to surrounding structures as

upper and lower part of the vagina and after that to other parts of the body (Stage 4). When

the disease has reached Stage 4, the situation is very serious and the recovery much worse.

Only 1 out of 10 women are still alive after 5 years (Hofvind et al., 2001, Kreftregisteret, 2009,

webpage). The differences observed in development countries compared to most of the western

countries are due to organized screening programmes with routine PAP smears and gynecologic

examinations in the latter countries, which detect most of the cases in an early stage and thereby

reduce the incidence and mortality of cervix cancer. For example in Norway, all women in the

age of 26-69 are invited to take a biopsy of the cervix every third year through an organized

program.

2.2. Some Biological Aspects in Relation to Cancer

Changes in the expression of genes may cause the normal balance in the cell to be disturbed. This

results in an imbalance between cell replication and cell death and thus a growth of a tumor cell
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population. The gene expression changes can be due to different mechanisms including deletion

and amplification of chromosomal segments (Ruddon, 2007, chap. 5).

Chromosomal DNA copy number corresponds to the number of copies of genomic DNA in the

cell. Normally the copy number is 2 in each cell. Males have also one copy of each of the X and

Y chromosomes, in contrast to women having two copies of the X chromosomes. As opposed

to these normal cases, the copy number in cancer cells may vary substantially over the genome

(Wieringen et al., 2007).

Genetic alterations by gains and losses may influence the gene expression levels to increase the

ability of cells to reproduce and increase in number. An oncogene will promote cells to evolve

to cancer cells when it is activated. A suppressor gene suppresses the cancer by controlling

cells, such that they will not become cancer cells. If a suppressor gene is inactivated, increased

profileration may occur and cells may become cancer cells. When the gene expression levels are

influenced by genetic abnormalities, the proper function of the gene is disrupted. For example

may suppressor genes be obstructed from functioning as a consequence of a copy number deletion.

Oncogenes will be reinforced by an amplification (Bejjani et al., 2005, Ruddon, 2007, chap.1 and

5).

This indicates that copy number changes, which influence the function of different genes may

lead to development and progression of cancers. It may, however, be challenging to identify the

important genes. Not all genes which are overexpressed have to be in a region with increased

copy number and not all regions with increased copy number will contain genes which are highly

expressed (Bejjani et al., 2005). To only study genes which have an increased/decreased copy

number, may therefore exclude relevant information. Thus both gene expression data, aCGH

data and the understanding of these in combination are of interest in the search for biological

markers in cancer research.

2.3. Microarray Technology

The technology of microarrays may be used both for measuring of gene expression and chro-

mosomal copy number changes. The gene expression microarrays have been subject to much

statistical research. Increasing interest has also been shown for the aCGH data, which may be

used in the search for chromosomal regions for which the DNA is aberrated (van de Wiel &

Wieringen, 2007). In the following, I will start by describing the practical methodology of gene

expression microarrays. This will be similar for aCGH, apart from aCGH using chromosomal

DNA instead of cDNA to hybridize to the array (Wieringen et al., 2007). Other differences will

be considered in the end of the section.
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Gene expression microarrays allow for comparison of mRNA levels in a tumor sample with a

reference sample. The main advantage with the microarrays is the possibility to examine ten

thousands of genes at the same time. mRNA is obtained from cancer tissue and a reference.

The samples are labeled with different fluorescent dyes and hybridized together to a microarray.

A normal use for the labeling is green fluorescent dye Cy3 and red fluorescent dye Cy5. The

microarray is a glass-slide where samples of the mRNA have been spotted by an advanced

printer technique. Each spot on the slide represent a gene and will be able to hybridize with

the corresponding labeled mRNA derived. The position for each gene is known in advance. The

mRNA which do not hybridize will be washed away before the array is scanned to detect the

level of fluorescence in each spot. The level of fluorescence in a spot is considered proportional to

the expression of a gene. That is, the amount of fluorescent in each spot reflects the amount of

mRNA in the cell (Xiong, 2006, chap. 18). The more hybridization for a gene, the more intense

will the signal be, indicating a higher level of expression for that particular gene. The red

and green signals are combined in a color image representing the relative expression of a gene.

Further image analysis techniques have to be applied to locate the spots and extract numerical

data for the expression levels based on the pixel intensities (Quackenbush, 2006, Ruddon, 2007,

chap.7).

In the extraction of the numerical data different preprocessing steps have to be performed

before analysis, such as correction of saturated intensities, filtering of bad spots and lowess

normalization are some examples, see Lando et al. (2009) for a description of the preprocessing

performed on the data studied in this thesis. The data are typically represented in a matrix

where one row represents a specific gene and each column represents a different biological sample

(i.e. patients). Each entry in the matrix will correspond to a spot for one patient. The numerical

value represents the relative expression level for a patient in a specific gene. The log2-ratio is

convenient to use making the data more symmetric and more easy to compare both up- and

down-regulated genes. The sign will indicate whether it is the red or the green channel that had

the highest intensity.

The microarray technology used to extract the gene copy number data is similar to that described

for gene expression, but DNA instead of mRNA is used in the hybridization. The DNA isolated

from both the sample of interest and the reference will hybridize to a representation of the genome

such that sequences may bind at different genomic locations (Pinkel & Albertson, 2005). As for

the gene expression microarrays the hybridization intensity will be proportional to the relative

copy number for the given sequences. The ratio for a sequence where no alteration in copy

number is observed will be 0 on a logarithmic scale.

8



2.4. PATIENTS

Figure 2.1. Illustration of the microarray method. Samples are extracted and labeled with different

fluorescent dyes. The labeled samples are mixed together and allowed to hybridize to a microarray.

The microarray is then scanned and the numerical data are extracted. The figure is from Quackenbush

(2006)

2.4. Patients

The data set consists of 102 patients in total. All of them have been diagnosed with squamous

cell carcinoma of the uterine cervix in the period 2001-2004 at the Norwegian Radium Hospital.

All patients were from Stage 2 and 3 of the disease and received the same type of treatment;

external irradiation and brachytherapy in combination. For a more detailed description of the

therapy used, see Lando et al. (2009).

A relapse of the disease is considered as the event of interest, and the time to the event is

recorded for each patient. In the thesis both ”time until a relapse” and ”survival time” will be

used for the time to the event. The observation times are thus defined as the time from the

patients got their diagnosis and until the first event of loco regional or distant relapse and/or

cancer related death. All patients who did not experience a relapse before end of study are

censored. Some general comments on censoring will be given in Chapter 3.

The data are plotted for all of the patients in Figure 2.2 where the red bars correspond to

the patients whose survival time is censored and the blue the observed survival times. All 102

survival times are sorted (from high to low) and plotted in the lower panel. In the top and

middle panel the aCGH measurements and gene expression measurements for each patient are

plotted. Note that we have both gene expression and aCGH data for only 95 of the patients. A

summary of the survival data are also given in Table 2.1. From the table one may see that the

observation times range from 2.95 to 71.11 months, and about 2/3 of the patient’s survival times

are censored. The number of patients in the gene expression data and aCGH data respectively

are also given, together with the proportion of censored and observed cases in both data sets.
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Figure 2.2. Plot of the survival times for each patient and their corresponding copy number and

gene expression vectors. Red indicate data for the patients for which the survival times are censored

and blue the observed survival times. The patients are ordered by their survival times.

The median survival times are also reported, and it seems obvious that the survival times for the

observed cases are relatively smaller compared to the censored. For instance, for the observed

patients in the gene expression data, the median of the survival times are 10.9 months whereas

41.6 months for the censored patients. This may not be unreasonable since most patients will

either get a relapse in a short period of time or the patients will be cured.

There are a few patients standing out among the censored observation times. These patients are

observed for less than five months which is short compared to the other censored observation

times. This is because the patients died of another reason (not related to cancer), but they are

still included in the study. There are six patients who are censored for this reason (Lando et al.,

2009).

2.5. Gene Expression Data

The gene expression data are data extracted from microarray experiments as described in Sec-

tion 2.3. The data are reported as the log2-ratio between the test and reference sample. A

positive gene expression value corresponds to an up-regulation of the gene and a negative value

corresponds to a down-regulation. Of the total 102 patients, gene expression measurements

10
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Summary of Survival Data

Data
Number of Median Minimum Maximum

Patients Survival Time Survival Time Survival Time

Gene Expression

All Patients 100 33.69 2.95 71.11

Observed 32 10.94 2.95 28.20

Censored 68 41.61 3.70 71.11

aCGH

All Patients 97 33.70 3.21 71.11

Observed 31 11.25 3.21 28.20

Censored 66 41.61 3.70 71.11

Table 2.1. Summary of the survival data showing the median, minimum and maximum survival

time of all, observed and patients.

are available for 100 of them. The expression values are given for 12204 gene identifications

and some of these identifications belong to the same gene. This is because some genes may be

represented in more than one spot on the microarray, but the different spots are representing

different parts of a gene.

The gene expression vectors were already normalized and imputed to take care of problems with

missing values, according to standard methods and procedures. When a gene had more than

10% missing values, the gene was eliminated from the data. Since we in this thesis are interested

in the genes for which we have both gene expression and aCGH data, we will concentrate on the

genes for which this is the case. This involves elimination of genes where there are more than

10% missing values in the aCGH data and/or where aCGH measurements not exist. Genes for

which we know the position, have both expression and aCGH data for, and which have more

than 10% missing values in the gene expression data and more than 10% missing values in the

aCGH data will constitute the data set. This corresponds to 7754 genes.

The gene expression data are plotted in Figure 2.3(a). The genes are located on chromosomes

1-X and in the plot the chromosomes are separated through vertical lines. The values of the

log2-ratios in the data range from -11.4 to 17.2. The plot illustrates the behavior of the data,

that is, some genes are up-regulated and some are down-regulated whereas others are more

concentrated around zero.

2.6. Array Comparative Genomic Hybridization (aCGH) Data

We have copy number data for 97 patients. Each data vector represents a region of one or more

genes which we call a “probe”. When the probes with more than 10% missing values in the

aCGH data and gene expression data are eliminated, 2138 probes are included. The probes

contain information on the 7754 genes and are located on one of 23 chromosomes 1-X.
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(a)

(b)

Figure 2.3.

(a) : Plot of the gene expression data with the position on the genome along the x-axis. The vertical

lines separate the chromosomes.

(b): Plot of the aCGH data with the position on the genome along the x-axis. The vertical lines

separate the chromosomes.
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Figure 2.4. Plot of three aCGH data vectors for three patients. From the plot we may see the step

form, indicating that many of the values for one patient are identical.

In a normal cell the copy number is 2, corresponding to 0 in our data which are the log2-ratios

of the test and reference intensities. A loss in copy number (deletion) thus corresponds to a

negative value. Amplifications which correspond to gains of DNA copy number are represented

by positive values in the data. The copy number data are plotted in Figure 2.3(b) where the

vertical lines separate each of the chromosomes. Note that -2 is the absolute minimum the values

in the aCGH data can take, because it is not possible to loose more than two copies if the copy

number in a normal cell is 2.

The aCGH data achieved by the procedures described in Section 2.3 are relative, which makes

interpretation and comparison across experiments difficult (Lyng et al., 2008). Relative aCGH

data are influenced by other features (total DNA content of the tumor cells, proportion of normal

cell in the sample, experimental bias), than the DNA copy number. GeneCount is a method

for genome-wide calculation of absolute copy numbers based on smoothed ratio levels, which

account for these features. The absolute copy numbers for the aCGH data at hand have been

extracted by GeneCount. The method is described in detail in Lyng et al. (2008). Note that in

the following both “copy number” and “gene dosage” is used in the text to describe the aCGH

data although the data are reported in terms of gene dosage, which is the output of GeneCount.

The nature of the aCGH data is somehow different from the expression data, since the vectors

representing two different probes may be very correlated. Two or more probes may represent

the copy number changes of neighboring regions on the chromosomes. This is often reflected by

the vectors corresponding to neighboring regions as being very correlated. Some of them may

also be 100% identical. If the data vector for one patient is plotted, the plot will remind of a

step function. Copy number changes for three patients are plotted in Figure 2.4 to illustrate

this. In addition to problems of collinearity when p > n, the aCGH data may be even more

challenging to analyze in regression models because of the very high correlation among probe

vectors.
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CHAPTER 3

Survival Analysis

In this chapter some basic concepts of survival analysis will be introduced. The focus will be

on the theory of survival analysis relevant for this thesis, which includes a brief introduction to

some basic functions and aspects. The Kaplan-Meier estimator and the log-rank test will also

be considered. Finally a more thorough presentation of the Cox proportional hazards model is

given. The theory is mainly obtained from Aalen et al. (2008, chap. 1-4), which can be consulted

for further explanation and references.

3.1. Basic Concepts of Survival Analysis

Survival analysis is a large field within statistics, which aims on studying the occurrence of

events. An event could be any occurrence of scientific interest in a lifetime. Many scientific

fields are interested in understanding the cause of events and to identify risk factors. In biology

and medicine, survival analysis is central when the time until death or a certain development in

a disease is studied. By understanding risk factors one may for example, investigate whether one

should start with certain medical treatments or understand mechanisms of biological phenomena.

By introducing the concepts of censoring, analyses of survival data differ from analyses of other

data in ordinary settings. A statistical framework especially suited for handling censored survival

data is therefore needed in order to analyze the data properly.

We denote T as the time from an initiating event and to an event of interest (endpoint). T is

thus called a survival time and is a nonnegative random variable. Although we use the term

survival time, T could measure the time from a starting point to any event. It is worth noticing

that the term survival time not necessarily relates to the study of death, it could measure the

time until a relapse of a disease, a divorce or a failure of a technical system. In the analyses done

in this thesis, survival time is solely used for the time until the patients experience a relapse of

the disease or cancer related death.

3.1.1. Survival function. We let the random variable T denote the survival time with a

cumulative distribution function F (t). The survival function S(t) is the probability of survival
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beyond time t, and may be defined as

S(t) = P (T > t).

Thus S(t) is the probability that the event has not yet happened at time t. Note that S(t) =

1 − F (t), but it is customary to use the survival function in analyses of time to event data

rather than the cumulative distribution. The relation between S(t) and F (t) makes it possible

to obtain the density function as f(t) = −S′(t).

In situations where the survival time is the time from a starting point and until death, the

survival function will go to zero as t increases. When the event of interest not necessarily

happens, that is, for instance if all patients will not experience a relapse of a disease, the

survival function will decrease toward a positive value as t goes to infinity.

3.1.2. Hazard Rate. We now consider another central quantity in the theory of survival

analysis. That is, the hazard rate α(t). While the survival function is specified as the uncondi-

tional probability that an event has not happened at time t, the hazard rate is defined with the

help of a conditional probability. The conditional probability of experiencing an event in the

next small time interval [t, t + ∆t], given that it has not yet happened at time t equals α(t)dt.

We may then define the hazard rate α(t) as

α(t) = lim
∆t→0

1
∆t

P (t ≤ T < t+ ∆t|T ≥ t). (3.1)

The hazard rate could be any nonnegative function.

3.1.3. Censoring. As already indicated, censoring is one of the main things that has to be

handled specifically when analyzing survival data. What we mean by “censoring”, is nevertheless

not yet defined. When a study is carried out and it is of interest to measure the time until a

specific event for a group of individuals, one may experience at the end of study that not all

individuals have experienced an event. For instance, studying cancer patients and the time

from the patients get their diagnosis until they get a relapse, some patients will experience a

relapse while others will not. These patients may experience the event later, but this will not be

known when the data are analyzed. The data will thus contain both complete and incomplete

observations of the event, and the incomplete observations are called censored survival times.

Throughout this thesis, we mean right-censoring when the term censoring is used, which is most

relevant in this setting. There may be different reasons for a survival times being right-censored.

The event may simply not occur before the study is ended, an individual may withdraw from

the study, get lost in follow up or censored by other reasons. For example, may a cancer patient

who experience death from another reason than cancer, be censored if death of cancer is the

event of interest.
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To express this more formally, define C to be the censoring time, that is the time from the

initiating event to the individual gets censored. Let T be the complete observation time for the

individual. The survival time may thus be expressed as Z = min(T,C) and it is common to

introduce the censoring indicator δ = I(Z = T ) which indicates whether the observed survival

time are censored (δ = 0) or not (δ = 1). The survival data are then completely specified

through the data pair (Z, δ).

3.1.4. The Kaplan-Meier Estimator. The Kaplan-Meier estimator can be used to es-

timate the survival function from a sample of censored survival data. Assume a sample of n

individuals from a population, for which we have right-censored survival data and assume that

there are no ties between the survival times. The Kaplan-Meier estimator can the be written as

Ŝ(t) =
∏
t0k≤t

{
1− 1

Y (t0k)

}
,

where Y (t) is the number of individuals at risk “just before” time t, and t01 < t02 < ... are the

ordered times for which an event is observed. The estimated survival curve can thus be plotted

in a Kaplan-Meier plot, by plotting Ŝ(t) versus t.

The Kaplan-Meier estimator may also be used to estimate the median (or other fractiles) survival

time, and 100(1− α)% confidence intervals for S(t) may be derived using that when evaluated

at a given time t, Ŝ(t) is approximately normally distributed in large samples.

3.1.5. The Log-Rank Test. A highly relevant issue when studying survival data, is to

compare the hazard rates for two or more populations. The log-rank test is one test which could

be used for this purpose, performing a test on whether the hazard rates are equal. In the case

of two samples this corresponds to

H0 : α1(t) = α2(t) for all t ∈ [0, t0],

where α1(t) is the hazard for Group 1 and α2(t) for Group 2. A test statistic will then be

X2(t0) =
Z1(t0)2

V11(t0)
, (3.2)

where Z1(t0) can be interpreted as the difference between the observed and the expected number

of cases in the first sample and V11(t0) is the variance of Z1(t0). The test statistic X2(t0) will

be approximately chi-squared distributed with one degree of freedom under the null hypothesis.

The log-rank test can be extended to be applicable in situations with more than two groups,

Aalen et al. (2008, chap. 3) may be consulted for an extensive description.
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3.1.6. Counting Processes. Another important tool when survival data are to be an-

alyzed is the theory of counting processes. In the following section we will make use of the

formulation of counting processes and we therefore define some basic counting processes. A

counting process N(t) is defined as the number of events that has happened up to and including

time t. Considering a small time interval [t, t+ dt) and assuming that only one event may occur

in such an interval, the intensity process λ(t) is the conditional probability that one observes

an event given what is observed up to time t. For n ≥ 1 individuals, one may define the aggre-

gated counting process N�(t) =
∑n

i=1Ni(t), which counts how many of the individuals who has

experienced an event, and the corresponding aggregated intensity process λ�(t) =
∑n

i=1 λi(t).

3.2. Cox Regression

As often in statistics one turns to regression for the study of the effect of many covariates

simultaneously. There are different approaches for doing regression when studying survival

data, but one common approach is to model the effect the covariates have on the intensity

process of a counting process (Aalen et al., 2008, chap. 4).

Suppose a set of data on the form (Zi, δi,xi) for each individual i. Here Zi is the observation

time for the ith individual, δi is a censoring indicator which is either 0 or 1 depending on whether

the observed survival time Zi is censored or not. Finally xi is the vector xi = (xi1, ..., xip)T of

covariate measurements for individual i which are assumed to be constant in time.

If we consider a counting process Ni(t) for each individual i, λi(t) is the intensity process,

corresponding to the probability that an event occurs in the time interval [t, t+ dt) conditional

on the past. Let Yi(t) be an indicator on whether individual i is at risk just before time t or

not, and α(t|xi) the hazard rate for individual i given covariates xi. We then have the relation

λi(t) = Yi(t)α(t|xi), (3.3)

and want to identify differences in survival due to the set of covariates. It is possible to examine

this if one is able to specify how α(t|xi) depends on the covariates xi. This dependency is usually

described either by relative risk regression models or additive regression models. Relative risk

regression is however most frequently used and Cox regression, which will be considered here is

a relative risk regression model. In relative risk regression models one assumes a relationship of

the form

α(t|xi) = α0(t)r(β,xi). (3.4)

Here α0(t) is called the baseline hazard at time t. The baseline hazard is assumed to be the same

for all individuals, but is otherwise left unspecified. In the Cox regression setting, the baseline

hazard may be considered as the hazard for an individual with all covariates equal to zero.

The relative risk function r(β,xi) describes the effect of the covariates on the hazard. Because
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the baseline hazard α0(t) does not depend on the covariates, the model may be separated into

one parametric and one nonparametric part. Hence, the model is usually referred to as being

semiparametric. We therefore have to turn to the partial likelihood, since estimation of regression

parameters β through ordinary likelihood methods is impossible.

By combining (3.3) and (3.4) we may express the intensity process for Ni(t) as

λi(t) = Yi(t)α0(t)r(β,xi).

Then by introducing the aggregated counting process N�(t), which register events among all

individuals, the aggregated intensity process is given by

λ�(t) =
n∑
l=1

Yl(t)α0(t)r(β,xl).

The conditional probability that an event is observed for person i at time t, given the past and

that there is an observed event at time t, is given as

π(i|t) =
λi(t)
λ�(t)

=
Yi(t)r(β,xi)∑n
l=1 Yl(t)r(β,xi)

. (3.5)

The partial likelihood is thus obtained by multiplying the probabilities in (3.5) over all observed

events times. We let t01 < t02 < ... be the ordered survival times Zi with δi = 1, and assume

that there are N events and that there are no tied events (tied events have to be handled

specifically). Since each event contributes with one term as that in Expression (3.5), the partial

likelihood is obtained as the product of the conditional probabilities over the observed event times

t01 < t02 < ... < t0N . We therefore let (k) be the label for the individual experiencing an event at

t0k such that the covariate vectors corresponding to the N events are given as x(1),x(2), ...,x(N).

Lpl(β) =
N∏
k=1

π(k|t0k) =
N∏
k=1

Yk(t0k)r(β,x(k))∑n
l=1 Yl(t

0
k)r(β,xl)

(3.6)

We note that Yk(t0k) is always equal to one for individuals with an event (because they have

to be at risk) and these may therefore be excluded in the numerator. Introducing the notation

Rk = {l : Yl(t0k) = 1} that is the risk set at time t0k corresponding to the set of individuals who

are still under study at a time just before t0k, we may write (3.6) as

Lpl(β) =
N∏
k=1

r(β,x(k))∑
l∈Rk

r(β,xl)
, (3.7)

for a specified risk function. The censored survival times are not assumed to carry information

on β. The occurrence of censoring is however important for identifying the correct risk set for

each t0k and are thus included in the risk set Rk (Marubini & Valsecchi, 1995, chap. 6). For an

individual with censored survival time ci, the individual is considered to be at risk up to ci and

is thereafter excluded from the risk set.

19



CHAPTER 3. SURVIVAL ANALYSIS

For the Cox model the relative risk function is given by r(β,xi) = exp(βTxi). Inserting this for

r(β,xi) in (3.4), the Cox hazard function is given by

α(t|xi) = α0(t) exp(βTxi),

and the Cox partial likelihood;

Lpl(β) =
N∏
k=1

exp(βTx(k))∑
l∈Rk

exp(βTxl)
. (3.8)

We may then estimate the regression coefficients in the Cox model by maximizing the Cox log

partial likelihood;

lpl(β) =
N∑
k=1

{βTx(k) − log
∑
l∈Rk

exp(βTxl)}. (3.9)

The size and sign of the estimated regression coefficients will indicate each covariate’s influence

on the survival. A positive coefficient βj in front of a positive covariate will increase the hazard

and contribute negatively on the survival and vice versa.
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CHAPTER 4

Regression Analysis of p > n Data

Analysis of high-dimensional data has developed into a large field in statistics, especially in

connection with microarray data. One approach is regression analysis, where the aim is to sort

out the most significant variables connected to the response and/or to predict outcome and

examination of the prediction capability. For microarray data an aim will therefore be to sort

out the most significant genes connected to survival or time to relapse and to predict these for

new patients based on the gene expression/copy number profile. The regression coefficients can

thus be estimated through Cox regression, but will often involve a need for special methods,

because the number of variables (genes) p, in most cases are much larger than the number of

samples n (e.g. in cancer research where the number of patients is limited). Different methods

are designed especially for p > n problems. These imply dimension reduction either by for

example variable selection and/or shrinkage methods, which makes it possible to estimate the

regression coefficients.

This chapter reflects some methods used in this regression perspective. The mathematical and

computational need for such methods is described in Section 4.1, whereas the methods are

described in Section 4.2 and Section 4.3 and later introduced to the Cox setting in Section

4.4. Finally in Section 4.5, K-fold cross-validation is described in the context of the regression

methods discussed and some computational aspects are considered in 4.6. Unless otherwise is

stated, the theory of this chapter is obtained from Hastie et al. (2001, chap. 2-3 and 7), which

gives an exhaustive overview of the relevant statistical theory.

4.1. Challenges in Regression Analysis of p > n Data

The method of least squares is a well known method for estimating regression coefficients and

is maybe the most used method for this purpose. If we let X be the n × p matrix with n

measurements of p explanatory variables, and y the vector of n responses, the method of least

squares is concerned with minimizing the residual sum of squares given by

RSS(β) = (y−Xβ)T (y−Xβ).

The least squares estimates of the p regression coefficients will then be

β̂ = (XTX)−1XTy. (4.1)
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In some situations the least squares estimates are not possible to compute. If the columns of

the matrix X are linearly dependent (i.e. the covariate measurements are correlated), the least

squares estimates are inadequate. If the number of columns p is larger than n, two or more

columns of X have to be collinear causing XTX to be singular. Since XTX has to be inverted in

order to find the least squares estimates given in (4.1), and since a matrix has to be nonsingular

to be inverted, the least squares method will not give satisfying results and specific statistical

methods are required when p > n.

Since X in practice will not be exactly collinear, the matrix XTX will only be almost singular

as opposed to exactly singular. It will be possible to invert the matrix, but this may lead to

some very large entries along the diagonal of (XTX)−1. This may be compared to taking the

reciprocal of a very small number. Since the variance of each regression coefficient is given as the

corresponding diagonal element in σ2(XTX)−1, this will cause least squares coefficients which

may have a very large variance.

The problems arising doing regression with many covariates are therefore both a statistical and

a computational problem. Numerical inaccuracy will be a consequence of trying to invert an

almost singular matrix, and statistically, the variance of the regression coefficients will be large

and cause uncertain estimates and prediction results (Birkes & Dodge, 1993, chap. 8).

By the Gauss Markov theorem the least squares estimates will be BLUE (best linear unbiased

estimator), which means that the least squares estimates are the estimates of the parameters

having the smallest variance among all linear unbiased estimates (Hastie et al., 2001, chap. 3). In

situations where p > n, these estimates with the restriction of being unbiased are not preferable

if the variance becomes too large and may in prediction settings lead to a lower prediction

accuracy. In this case it may exist estimates which are biased, but have a smaller variance and

which will lead to better prediction results.

Generally there is a trade-off between bias and variance due to the model complexity. Typically,

the more complex the model is, the variance will increase, but the bias will be lower. If the

model complexity is decreased the lower variance and the higher bias. This is illustrated in

Figure 4.1, where the prediction error curves for a “training” and a “test” set are given as a

function of model complexity. This shows that one will be able to predict well for the training

set (for which the model is constructed), when using a complex model. But for an independent

“test set” the prediction error will increase if the model is too complex. The “right” model

will take into consideration to find the perfect balance between bias and variance. Methods

handling situations where p > n and/or where the covariate vectors are linearly dependent,

reduce the model complexity to trade a little bias for a reduction in the variance. Prediction

accuracy may be improved by shrinking the regression coefficients or setting some regression
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Figure 4.1. The figure illustrates the trade-off between bias and variance. The prediction error for

a training and test set are drawn as functions of model complexity. From the figure it is obvious that

in manner to get a low prediction error for an independent test set, one has to choose a model, which

finds the perfect balance between bias and variance. Figure reproduced from Hastie et al. (2001,

chap. 2)

coefficients equal to 0, as motivated above in terms of model complexity. Both setting some

least squares coefficients equal to 0 and shrinking them will lead to biased estimates, but will

reduce the variance (Hastie et al., 2001, chap. 3). Another reason for using a selection method to

select a subset of covariates to use in the model is interpretation. By selecting a smaller number

of variables, the results will often be easier to interpret compared to when a large number of

predictors are used (Tibshirani, 1996). Subset selection and shrinkage methods are therefore

widely used to improve interpretation and prediction accuracy when dealing with regression on

p > n data.

4.2. Subset Selection

There are several different approaches for doing subset selection. Selection of variables could

be according to a number of different criteria, either specific for the data type at hand or by

other mathematical criteria typically minimizing an estimate of the expected prediction error.

When a criterion is chosen, the subset is produced by selecting all variables which satisfy the

criterion. Variables which do not fulfill the criterion are eliminated from the model. In this way
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only the variables in the subset are retained in the model. Best subset regression is one example,

which for each k ∈ {0, 1, 2, ..., p}, finds the subset of size k, which minimizes the residual sum of

squares. The subsets may vary in size and methods like forward and backward stepwise selection

or combinations of these may be used to define the subsets.

4.3. Shrinkage Methods

Shrinkage methods shrink the regression coefficients toward 0 by minimizing the residual sum

of squares subject to a constraint on the parameters. The minimization problem will therefore

correspond to minimization of

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2, subject to
p∑
j=1

|βj |s,

for s ≥ 0 and where xi = (xi1, ..., xip)T is the covariate vector for person i. This is mathematically

equivalent to
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ

p∑
j=1

|βj |s, (4.2)

introducing λ
∑p

j=1 |βj |s as a penalty term by the method of Lagrange multipliers and where λ

controls the amount of shrinkage. In the case of a Gaussian likelihood this corresponds to sub-

tracting the penalty term from the log-likelihood to be maximized. As λ increases, the regression

coefficients are shrinked toward zero. Different values of s may be chosen and correspond to

different constraint regions as illustrated in Figure 4.2. The constraint region has influence on

whether the method is a selection or a shrinkage method depending on whether some regression

coefficients are set to zero or not. The estimated solutions of the regression problem will be in

the first point where the elliptical contours of the residual sum of squares hits the constraint

region.

Shrinkage methods are improving the prediction accuracy by adding a penalty term as described

above. Why this actually reduces the variance becomes more obvious by writing the problem

in matrix form. The main reason is that an extra term is added to the diagonal elements of

the matrix XTX to be inverted. This will cause not as high entries in the inverted matrix such

that the regression coefficients become lower (shrinked), but also cause lower variance which is

desired. More comments on this are given in the next section, considering ridge regression.

4.3.1. Ridge Regression. Ridge regression corresponds to minimizing (4.2) when s = 2,

that is, minimizing
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ

p∑
j=1

β2
j . (4.3)
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Figure 4.2. Different shapes of the constraint region depending on the value of s considering two

input variables (Hastie et al., 2001, chap. 3). The constraint region when s = 2 corresponds to ridge

regression and the region where s = 1 corresponds to the lasso.

In the case of two parameters, the constraint region corresponds to a circle and will rarely set

regression coefficients equal to zero. Figure 4.3(a) gives a geometrical illustration of the ridge

solution in the case of two covariates.

It is convenient to describe ridge regression also in matrix notation. The expression in (4.3) may

be written as:

RSS(λ) = (y−Xβ)T (y−Xβ) + λβTβ.

The ridge solutions will then be given by

β̂Ridge = (XTX + λI)−1XTy. (4.4)

This shows that by adding the term λ to the diagonal of the matrix to be inverted, XTX is

modified so that it is farther from singularity. From (4.4) it is obvious that this also makes the

estimates smaller than the least squares estimates. It is also clear that since the least squares

estimates are unbiased, the ridge estimates are not. But if we look at the variance, the penalty

term in (4.3) should reduce the variance compared to the variance of the least squares estimates.

The covariance matrix is given by (Gruber, 1998, chap. 3)

COV (βRidge) = (XTX + λI)−1σ2(XTX)(XTX + λI)−1, (4.5)

which indicates that the variance given by the diagonal elements of the covariance matrix will

be smaller than the diagonal elements in σ2(XTX)−1.
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4.3.2. The Lasso. As described in Tibshirani (1996) both subset selection and ridge re-

gression have drawbacks. Subset selection gives a more interpretable model, but the performance

may be unstable because the method is a discrete process where the variables are either included

in the model or not. Ridge regression is a continuous process and is more stable, but may give

results which are hard to interpret if the number of covariates is large. The least absolute shrink-

age and selection operator (The lasso) was proposed by Tibshirani (1996) to keep some of the

positive features of both subset selection and ridge regression. The lasso shrinks some coefficients

and sets others equal to 0. The method differs from ridge regression simply by minimizing the

residual sum of squares subject to another constraint region and will as a consequence produce

some regression coefficients equal to zero.

The minimization problem in the lasso corresponds to (4.2) with s = 1, that is
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ

p∑
j=1

|βj |. (4.6)

The constraint region when s = 1 will be a diamond in dimension 2 (see Figure 4.3). In

higher dimensions it will, as opposed to when s = 2 in ridge regression, often be corners on the

constraint region for the contours of the least square error function to hit. Since the solution

of the regression problem will lie in the intersection of the constraint region and the contours

of the residual sum of squares, the estimates will be equal to 0 much more often than for ridge

regression, especially for higher dimensions. This will produce regression coefficients equal to 0,

and classifies the lasso as a selection method in addition to being a shrinkage method.

In Tibshirani (1996) the covariance matrix is approximated by writing the penalty∑
|βj | ≈

∑ β2
j

|βj |
.

The lasso estimates may then be approximated with the solution in a ridge regression, that is

β∗Ridge = (XTX + λW−)−1XTy.

Here W is a diagonal matrix with diagonal elements |β̃j | and W− is the generalized inverse of

W . Then the approximate covariance matrix of the estimates in the lasso will by using (4.5) be

COV (βLasso) = (XTX + λW−)−1σ2(XTX)(XTX + λW−)−1, (4.7)

where σ2 can be estimated by an estimate of the error variance σ̂2.

4.4. Shrinkage Methods in the Cox Setting

The shrinkage methods may also be defined in terms of the likelihood instead of the residual sum

of squares. In the case of a Gaussian likelihood, minimization of (4.2) corresponds to adding a

penalty −λ
∑p

j=1 |βj |s to the log-likelihood to be maximized.
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Figure 4.3. The two figures illustrate the ridge and the lasso solutions in two dimensions, which are

in the intersection of the residual sum of squares error and the constraint regions. Similar illustrations

may be given for the other constraint regions shown in Figure 4.2. The figure is from Tibshirani (1996).

Shrinkage methods in the Cox setting will correspond to maximizing a penalized version of the

Cox log partial likelihood;

l(β) = lpl(β)− λ
p∑
j=1

|βj |s.

The lasso (s = 1) in the Cox setting was proposed by Tibshirani (1997). He assumes standardized

input for the use of the lasso and this is also often assumed for ridge regression. This is to assure

that the variables are treated in the same way by the penalization scheme, and is especially

important if the variables are not measured at the same scale. This is mainly because one

adds the same number λ to each diagonal entry in the matrix XTX. In van Houwelingen et al.

(2006) it is pointed out that in Cox regression analysis of microarray data there is no need for

standardization because the covariates are already on the same scale. For instance, in the gene

expression data all of the variables measure gene expression level and are therefore measured on

the same scale. This is opposed to weight, age, height and other covariates of interest, which are

measured in different units. Centering is neither necessary because a centering of the covariates

will be compensated by the baseline hazard.

4.5. Cross-Validation

In the previous sections the models introduced all depend on a tuning parameter λ. In shrinkage

methods the tuning parameter controls the amount of shrinkage whereas in subset selection the

tuning parameter may be the number of variables to include in the model. In all of these methods

the tuning parameter varies the complexity of the model.
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Figure 4.4. Illustration of K-fold cross-validation. We concentrate on the observations of the training

set and these are divided into K folds. In each iteration the marked fold is kept outside the fitting of

the model. By keeping one fold outside the estimation procedure we may consider the left out fold as

a test set, and test the prediction capability for this left fold. By iterating and keeping one new fold

outside the estimation in each iteration, we end up with K estimates of prediction capability. The K

estimates may be combined to estimate the prediction capability of the overall model.

The discussion opening this chapter points on the challenges in analyzing high dimensional data

and the interplay of bias, variance and model complexity. This is illustrated in Figure 4.1. It

was explained how the model which will produce a low prediction error for an independent test

set, has to find the perfect balance between bias and variance. By estimating the performance

of a group of models one may choose the model with the best estimated performance. In an

ideal situation with enough data, this could be done by dividing the data into three parts: one

which should be used to fit the models, a second part which should compare the performance of

the suggested models, and a third part which should test the performance of the model on an

independent test set. The comparison of the performance in the different models corresponds

to estimating the performance of the model and evaluate them for different values of the tuning

parameter λ, to finally select the (approximate) best model.

In most cases we are not in a situation with a lot of samples, and it would be insufficient to divide

the data in three parts. In many situations, dividing into training and test set is costly enough.

Setting aside too much data for testing may give a poor fit and having a too small test set, the

estimated test error may not be as reliable. The evaluation step may, however be approximated.

There are several methods for doing this including analytical methods as AIC, BIC and other

related measures of test error, but the most widely used approach is cross-validation.

4.5.1. K-fold Cross-Validation. K-fold cross-validation uses one part of the training data

to fit the model and a separate part to test the model. The general idea of K-fold cross-validation

is to divide the data into K folds and leave one fold out to calculate the prediction error. This

procedure is repeated for all K folds, leaving a new fold out at a time. The measures of prediction
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error may be combined in an estimate of the prediction error;

CV (λ) =
1
n

n∑
i=1

L(yi, f̂−κ(i)(xi, λ)). (4.8)

Repeating this for a grid of λ values, one may minimize the cross-validation curve CV (λ) to

find the model, which minimize the prediction error. In expression 4.8 the cross-validation

function is expressed in terms of the loss function L(yi, f̂(xi, λ)). The cross-validation function

may just as well be written in terms of the log-likelihood. For the Cox regression setting the

criterion of Verweij & van Houwelingen (1993) is one option. Verweij & van Houwelingen (1993)

present leave-one-out cross-validation in survival analysis which is modified to yield K-fold cross-

validation in Bøvelstad et al. (2007).

Assume n observations and denote the Cox log partial likelihood by l(β). We let l(−k)(β) be

the Cox log partial likelihood when the kth fold is left out and k = 1, 2, ...,K. The estimates of

the regression coefficients β, when the kth fold is left out and the tuning parameter λ is used,

are denoted β̂−k(λ). The cross-validation function may then be written by

CV (λ) =
K∑
k=1

{l(β̂(−k)(λ))− l(−k)(β̂(−k)(λ))}.

The cross-validation criterion CV (λ) gives a measure of the prediction capability of the mod-

els corresponding to different λ-values, and by maximizing CV (λ) with respect to λ, we may

optimize the prediction capability and find the optimal tuning parameter λ̂.

To perform K-fold cross-validation we also have to define K. The maybe most commonly used

are K = 5 and 10. K = N corresponds to “leave-one-out” cross-validation which gives a nearly

unbiased estimate for the true prediction error but may suffer from large variance (Hastie et al.,

2001, chap. 7).

4.6. Computational Aspects

To carry out the ridge and lasso analyses in the Cox regression setting, programs developed by

Bøvelstad et al. (2007) are applied. The main aim in Bøvelstad et al. (2007) was to compare the

predictive performance of microarray data by using different dimension reduction methods. The

programs are therefore especially designed to handle high dimensional microarrays in combina-

tion with survival data. The programs are coded in Matlab and R and take the data organized

in a n× (p+ 2) matrix as input. The output is the estimated cross-validation parameter λ and

the estimated regression coefficients for the chosen method (i.e ridge, lasso).

The ridge procedure is coded in Matlab whereas the lasso is coded in R. Both programs apply

the Cox regression model in combination with the shrinkage methods as proposed for the lasso
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in Tibshirani (1997) and discussed in Verweij & Houwelingen (1994) for ridge regression. In

the R program code for the lasso, the R package glmpath containing a lasso implementation of

Cox regression is applied. By using a predictor-corrector method the entire path of coefficient

estimates are determined as λ varies. Park & Hastie (2007) gives a comprehensive presentation

of the implementation of the methods found in the glmpath package. See also http://cran.r-

project.org/web/packages/glmpath/glmpath.pdf, which gives the instructions for use.

As described in the previous section, shrinkage methods require estimation of a tuning pa-

rameter. To estimate the cross-validation parameter λ, 10-fold cross-validation is used. The

cross-validation criterion is, as described in the previous section, a more general form of the

leave-one-out cross-validation criterion based on the Cox log partial likelihood (Verweij & van

Houwelingen, 1993).

Some parameter values are to be determined in the program of Bøvelstad et al. (2007). In the

analyses applied to the data we use their default values. All of them are evaluated by studying

the manual of glmpath and is appropriate for our data set. We must have λ > 0 and the lower

bound l in the grid of λ-values was set to be; l = e−100. For further description of the programs of

Bøvelstad et al. (2007), see http://www.med.uio.no/imb/stat/bmms/software/microsurv/.
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CHAPTER 5

Lasso Regression Analyses of the Cervix Cancer Data

We have already addressed the statistical challenges involving a large number of covariates and a

relatively small sample size related to regression analyses. Two different methods which enable

regression in these settings, that is ridge regression and the lasso, were discussed in Chapter

4. Even if these methods make it possible to fit the regression models, it is not obvious that

our concerns handling the large number of covariates are solved. Microarrays contain a large

number of predictors, presumably only few are important for survival Park et al. (2007). Thus,

keeping all available covariates in regression analyses may not be preferable since the data will

contain a lot of noise (covariates not related to survival). Shrinkage methods are supposed to

handle this by shrinking the coefficients of unimportant covariates, but including a huge number

of covariates, which are not related to the response of interest, may interfere the analysis. No

nonzero regression coefficients as a result in the lasso can be a consequence.

To overcome these issues it seems that reducing the data set prior to the analyses is conve-

nient and necessary, even if shrinkage methods are applied. This also seems appropriate in the

literature where reduction of the number of covariates is commonly used before the regression

methods are applied. Fitting univariate Cox regression models for each gene and thereafter

select significant genes based on the p-values is one approach, which is commonly used for this

purpose, see for instance Park et al. (2007) among others. The problems, involved in selecting

genes according to their significance in a univariate Cox regression model, are two-fold;

• Genes are selected according to their marginal influence on survival.

• The survival data are used for selection.

When applying selection methods, the aim is to select the genes that are related to the event

of interest and exclude those that are not. Methods evaluating genes one by one may however,

not fulfill this wish. Since genes may depend on each other in some unknown fashion (Bøvelstad

et al., 2007), they may be found important in a joint analysis even if they are not explaining

survival alone. If the aim is to exclude non significant genes, the fact is that some of the genes

excluded by a univariate criterion may explain survival together with other genes. The other

issue is related to prediction. A method which uses the survival data in different steps of the

analysis may cause prediction results that are overoptimistic.
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Park et al. (2007) also address the need of imposing methods to reduce the dimension of the data

prior to running the lasso. They suggest to apply hierarchical clustering on the gene expression

data to thereafter define ”supergenes”, which are the average of the genes in a cluster and use

these ”supergenes” as regressors in the lasso. A drawback with defining “supergenes”, is that

the actual gene expressions are not used in the analyses. Not defining “supergenes” as done in

Park et al. (2007) may, however, reveal other challenges which are not desirable. For instance

the selection of a representative may not be obvious and the determination of groups or clusters

may not be sensible if there in no obvious grouping in the data.

Another approach discussed by van de Wiel & Wieringen (2007) is directed to aCGH data. The

method aims on dimension reduction with minimal information loss and is concerned of defining

a smaller number of regions, which can be used for further downstream analysis. Based on the

high correlation between the vectors for the probes in the aCGH data, they determine regions

consisting of vectors which are almost equal when coding for loss, normal and gain (-1,0,1)

and which correspond to genes within the same chromosome. The regions are constructed by

restricting the maximum distance between any two vectors in a region by a given threshold.

A representative for each region could thus be used in further analyses. Also van de Wiel

& Wieringen (2007) emphasize the benefits (interpretation, computational time) of dimension

reduction in large data sets.

In the next sections we will study the gene expression data and the aCGH data separately by

fitting Cox-lasso regression model. The aim of the analyses is to evaluate different methods,

which can be used to reduce the data, and the analyses will illustrate some of the issues con-

cerning data reduction. A couple of simple criteria are determined to define data sets of smaller

size. All genes or regions that are selected in the analyses are listed in Appendix A.

5.1. Lasso Regression Analyses on the Gene Expression Data

The original gene expression data set were fitted in a Cox-lasso regression model. Only one gene

was selected, that is gene (307660) which is located on chromosome 8 and corresponds to the

copy number probe with probe-identification RP11-34M16. The gene symbol is FABP4. Two

different approaches were used to reduce the number of covariates in the gene expression data;

• Variance

• Univariate Cox regression

5.1.1. Variance. The first example used variance as a criterion for selection. When search-

ing for genes which cause differences in survival time, it is necessary that the gene expressions

are different across the patients. The gene expression for a patient with poor survival should be
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Figure 5.1. (a): Histogram of the standard deviations for all of the genes and the thresholds indi-

cating the four gene sets of size 3000,1000, 200 and 100 are marked as vertical lines.

(b): The gene expression data are plotted when the genes are sorted by their standard deviations.

The genes to the right of the vertical lines, corresponding to the same thresholds as in (a), are those

included in the gene sets.

different than the gene expression for a patient with no relapse of the disease, for the gene to

explain these differences. Genes with higher variance in expression over the patients will there-

fore be crucial in the analysis and genes with less variance seem less important when explaining

(predicting) survival.

To select genes according to variance, the empirical standard deviation of the gene expressions

was calculated for each gene. The top ranked genes were picked out to be used in the analysis,

whereas genes showing less variance were kept outside the regression. Since there are no obvious

limit for which a standard deviation is high, the top ranked genes are used to determine the

gene sets. Subsets of 3000, 1000, 300 and 200 top ranked genes according to their variance were

defined and used as covariates in the lasso regression analyses.

A histogram of the calculated standard deviations are given in Figure 5.1(a), and the thresholds

determining the sets of covariates are marked as vertical lines. In Figure 5.1(b) the data are

plotted when sorted by their standard deviations in an increasing order from left to right. The

vertical lines are corresponding with the thresholds in the histogram, and the genes to the right

of the vertical lines are those included in the gene sets. From the plot it seems obvious that

there are relatively large differences in variation from gene to gene. All four lasso regression

analyses using variance as a criterion for data reduction prior to the regression, resulted in one
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selected gene by the lasso. The gene is the same as the one selected when no preselection was

used, and is marked black in Figure 5.1(b). In the plot we see that the gene has a large variance

and was thus included in all of the four subsets.

Using variance as a selection criterion showed not to gain further insight, as the only gene

selected is the same as for the total gene expression set of 7754 genes. The motivation for

reducing the data according to variance was that a gene will not contribute to differences in

survival if the expression of the gene is equal for all of them. It is, however, not necessarily

the genes with the largest variance that are responsible for these contributions. When selecting

genes according to their variance, one most likely include many genes which are subjects to noise

or measurement error. Even if one may remove redundant information by excluding the genes

with small variance, one is possibly still dealing with a high level of noise.

5.1.2. Cox Univariate Regression. A frequently used method for reducing the data set

is to select genes, which are found to influence survival through univariate Cox regression. This

is done by fitting a univariate Cox regression model for each gene and find which regression coef-

ficients are significantly different from zero. Although reduction methods applying a univariate

Cox regression to reduce the data is directly using the survival data, it is frequently used in the

literature. This is not always a good method and when the (prediction) performance is to be

evaluated, overoptimistic results may occur.

The univariate Cox regression model

h(t|xj) = h0(t) exp(xjα),

was applied, where xj is the gene expression vector for gene j. When the model is fitted, one

may test the hypothesis H0 : α = 0, and small p-values indicate that gene j has an influence on

survival and will be reasonable to include in the analysis.

Four thresholds were defined to produce the four subsets; p ≤ 0.15, 0.1, 0.05, 0.025. It is most

common to use a significance level of 0.05 for this purpose, but the two higher levels are included

in this example to include genes which are close to significant. For each of the four gene sets

some genes were selected and are listed in Appendix A.

All of the genes selected by the lasso for the four different gene sets are included in the smallest

gene set, that is, the set only containing genes which are significant on a 0.025 level. The number

of genes selected increases when the significance level is low. This is sensible since we remove

genes which do not show as strong significant influence on survival marginally. The genes with

p ≤ 0.025 are plotted in Figure 5.3, to be able to differentiate between the results for each of the

four subsets. The analysis for the largest gene set including genes with a p ≤ 0.15 only selected

one gene (FABP4). In the set where p ≤ 0.1, two genes were selected and three in the gene set
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Figure 5.2. (a): Histogram of the Cox univariate p-values for all of the genes. The thresholds

indicates the four significant levels 0.15, 0.1, 0.05 and 0.025 and are marked as vertical lines.

(b): The gene expression data are plotted when the genes are sorted after their marginal ability of

explaining the survival (p-values). Note that here it is the genes to the left of the vertical lines which

are included in the analyses, for this to coincide with the histogram.

Figure 5.3. Genes selected by the lasso in the four gene sets with p ≤ 0.025, 0.05, 0.1 and 0.15

respectively

containing genes with a univariate p ≤ 0.05. For the 186 genes with p ≤ 0.025, 13 genes were

selected by the lasso.

Obviously an analysis where only genes which explains the survival one by one are included,

will be more likely to select genes which are able to explain the survival together. Genes that

are excluded because of a high univariate p-value, may however be important in a joint analysis.

The excluded genes may therefore be just as relevant in the search of important biomarkers.
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One should also stress that the survival data are not used when selection is performed. This is

especially important when the prediction performance is to be assessed.

5.2. Lasso Regression Analyses on aCGH Data

Regression analysis with survival as an outcome and aCGH data as covariates has to our knowl-

edge not been extensively studied. From a regression perspective, analyzing the aCGH data

may be even more challenging than the gene expression data, due to the high correlation among

aCGH probe vectors. It could also be less correlated to survival than expression data since a

change in copy number does not effect survival unless it also influences the expression for corre-

sponding gene(s). The aCGH data may, however, be of better quality than expression data and

may reveal interesting regions related to survival.

For the aCGH data, zero probes were selected when the complete data set containing 2138

probes were analyzed in the lasso. It was thus convenient to reduce the number of covariates

for these data as well. The four approaches studied to reduce the number of covariates in the

aCGH data were

• Variance

• Univariate Cox regression

• Clustering

Here variance and univariate Cox regression are selection methods (the same as studied for the

gene expression data) and the actual probes are used to fit the model. The last approach cluster

the covariates into groups according to how similar they are and chooses a representative for

each group to use in the regression.

One should note that it may be difficult to strictly compare the results of these analyses. This

is due to the fact that the lasso tends to select one (Zou & Hastie, 2005) or some of the variables

in blocks of correlated covariates. Because of the very correlated behavior of the aCGH data

this may occur more frequently than for the gene expression data. It is thus a risk that the lasso

selects different probes in different analyses, but which are very correlated. For a selected probe,

the lasso could just as well has chosen another probe which are very correlated to the selected

gene. This is important if the selected probes are to be compared for the different approaches

and subsets.

5.2.1. Variance. Selecting probes by their variance can be motivated in the same way as

for the gene expression data. A gene showing a large variation in copy number alteration across

the patients is believed to influence the survival time for the patients. Probes which are equal
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Figure 5.4. (a): Histogram of the empirical standard deviations for every aCGH probe. The vertical

lines show the thresholds used to determine the gene sets of size 1000, 500, 300 and 200 probes.

(b) Probes plotted when sorted by their standard deviation and the colored lines correspond to those

in the histogram in (a).

for all patients will not contribute to differences in the survival times, since they will all influence

the survival in the same way.

As for the gene expression data the empirical standard deviation of each probe was calculated

to reduce the aCGH data. The probes with the largest standard deviations are included in

smaller subsets of size 1000, 500, 300 and 200. Figure 5.4(b)gives the histogram of the empirical

standard deviations and a plot of the probes sorted by their variance. Six genes are selected for

the subset of 200 probes. The probes are marked in Figure 5.4(b), and given in appendix A.

For the large subsets, zero probes were selected by the lasso.

From the analysis where variance is used as a selection criterion for the gene expression data, it is

discussed that including only genes with high variance may correspond to keeping a lot of noise

in the analysis. To improve this method for the aCGH data one could for instance implement a

sliding window, which checks that genes included in the subsets also have to be correlated with

its neighbors, say a window of 5 or 10 neighbors. This could have excluded some of the noise,

since the probes in the aCGH data are correlated in blocks and a probe is most likely not noise

if it is correlated with its neighbors. Other problems may enroll using this approach connected

to the many evaluations which have to be done; window size, the degree of dependence required,

and the number of variables to constitute the subsets.
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Figure 5.5. (a): Histogram of the Cox univariate p-values for each probe.

(b): Probes plotted when sorted by their p-values.

(c)-(d): The probes with the smallest p-values are plotted to get a clearer view of the selected probes.

5.2.2. Univariate Cox Regression. The second method studied for selection of probes

in the aCGH data was univariate Cox regression. As for the same approach for gene expression,

a univariate Cox regression model was fitted for each probe and a test was performed indicating

the probes influence on survival. Small p-values in the test indicate that probe j has an influence

on survival. The four thresholds p ≤ 0.15, 0.1, 0.05, 0.025 define the subsets.
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Including all probes with a p-value less than 0.15 and 0.1 did not lead to selection of any probes

by the lasso. Reducing the data to only include probes with p ≤ 0.05 and 0.025 corresponding

to subsets of size 255 and 128 probes respectively, lead to selection of 47 and 42 probes. The

aCGH data ordered by their univariate p-values are plotted in Figure 5.5(b). Some of the

selected probes differ in the two analyses, as may be seen in Figure 5.5(c)-(d). This could be

due to the fact that the lasso may not select the same probes in both settings if the probes are

very correlated. This makes it somehow difficult to compare the results. It seems that when

reducing the subsets from including probes with p ≤ 0.05 to 0.025, some probes were excluded,

but other probes with a p-value less than 0.025 were selected by the lasso.

As commented for the gene expression data, one should not rely completely on these results

since the survival data are already used in the preselection. Since the probes included in the

analysis are found to individually have a significant influence on survival, it is sensible that more

probes are selected than for the other methods.

5.2.3. Clustering. The third approach is related to the approach described in Park et al.

(2007). The method utilizes the special features of the aCGH data being very correlated. By

dividing the probes into groups according to how similar they are, one may use only one represen-

tative for each cluster and thus reduce the number of covariates. This is reasonable considering

the copy number probes which are very correlated and appear in blocks of nearly similar probes.

Hierarchical clustering was used to group the probes in a smaller number of clusters. Complete

linkage and Spearman correlation as a distance measure were used. A representative for each

cluster could then be defined. Both randomly chosen probes in a cluster and an average of the

probes in a cluster were used as representatives. Using clustering as a method for reducing the

number of covariates in the regression analysis did not lead to any nonzero regression coefficients.

There are a few decisions, which have to be taken when using this approach and other choices

could have lead to different results. The number of clusters are chosen manually and the choice

of representatives may not be the optimal to represent a cluster.

5.3. Integrated Data Reduction

Having both gene expression and copy number data available, it could be convenient to integrate

the information in both data sources when reducing the data. If a gene’s expression shows

correlation with gene dosage it is considered as a possible driving force for cancer progression

(Lando et al., 2009). Gene expression vectors which are correlated with the corresponding aCGH

probe vector, are therefore believed to influence survival and are thus of specific interest when

the gene expression data are analyzed. A similar approach may be used to reduce the aCGH
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data as well. Probes which do not show a high correlation with gene expression are reasonable to

exclude from the analysis since they can not influence the survival if none of the corresponding

gene expression vectors are correlated with the probe.

To use correlation as a criterion, the Spearman rank correlation between each gene expression

vector and its corresponding aCGH probe, was calculated after matching the vectors in the two

data sources. The Spearman rank coefficient is equivalent to Pearson’s product-moment correla-

tion between the ranks of each gene’s expression and dosage. Spearman correlation differs from

the more commonly used Pearson correlation by not measuring the linear relationship, but rather

any monotonic relationship between two data vectors. There is monotonic dependence between

gene expression and gene dosage, if gene dosage increase when gene expression increase and

vice versa. The coefficient may be interpreted the same way as Pearson correlation coefficient,

where 1 indicates perfect positive correlation of the ranks indicating a monotonic increasing

relationship, and −1 a monotonic decreasing relationship (Berrar et al., 2003, chap. 17).

5.3.1. Gene Expression Data. When the Spearman correlation coefficients was calcu-

lated, subsets with genes showing a relatively large correlation with gene dosage were defined.

A histogram of the calculated Spearman correlations are given in Figure 5.6(a) where the thresh-

olds used to define the gene sets are shown as vertical lines. The thresholds are decided to be

r > 0, 0.2, 0.3, 0.4. Note also that the genes of interest are those showing a positive correlation

whereas the change in gene expression showing a large negative correlation with gene dosage

are not considered as a consequence of a change in copy number. The negative correlations are

therefore of less interest in this setting.

In Figure 5.6 (b) the sorted gene expression values are plotted with the thresholds indicted as

horizontal lines. The subsets of gene expressions correlated with copy number corresponds to

those to the right of the colored lines. Genes selected by the lasso in the various analyses are

also marked in colors. For the set of genes which are only restricted to be positively correlated

with aCGH, two genes are selected. One of them is the gene (307660, chromosome 8) also

selected when no preselection was used. This gene is marked black in Figure 5.6 (b). The other

gene selected is located on chromosome 9 and is marked blue in the plot. Reducing the data

further to only include those showing a higher correlation between expression and aCGH, that

is r > 0.2, 0.3, involved removing the two selected genes from the first subset from the analysis.

This results in that the lasso does not select any genes. Reducing the data even further, to only

include genes where r > 0.4 gives a data set of 320 genes. The lasso is then selecting 5 genes

and these are marked green in Figure 5.6(b). In this last analysis it seems that the reduction

involves removing some noise and making the dimension of the problem smaller. This enables

the lasso to select the 5 genes which are not found in the larger gene sets.
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Figure 5.6. (a): Histogram of the spearman correlations for all of the genes, the thresholds defining

the gene sets are marked as vertical lines.

(b): The gene expression data are plotted when the genes are sorted by the correlation with gene

dosage. The genes to the right of the vertical lines, corresponding to the same thresholds as in (a),

are those included in the gene sets.

These results confirm somehow that reducing the number of covariates may lead to selection of

covariates which are not found when the number of covariates is large and where noise in the data

may dominate the analysis. The thresholds here are arbitrary and one could imagine that other

thresholds would yield a different number of selected genes. The fact that over 7000 covariates

actually are completely removed in this last gene set should also be a concern. Having all of

these data, it is preferable to include as much as possible in an analysis rather than deciding

on arbitrary thresholds which either include the variables or completely remove them from the

analysis.

5.3.2. aCGH Data. In the analyses of the aCGH data where correlation with gene ex-

pression was used as a criterion for reduction, the Spearman correlations was calculated and

compared to find aCGH probes which were correlated with gene expression. The aCGH probes

correspond to regions possibly involving more than one gene, and it is thus enough for a copy

number probe to be highly correlated (exceeding a certain threshold) with one of the genes to

be included in the smaller gene sets. For this approach, no probes were selected for any of the

reduced data sets (r ≥ 0.4, 0.3, 0.2, 0).
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5.4. Discussion

Different strategies for reducing the data set prior to the lasso regression analysis were tried out

in this chapter. We learn from some of these strategies that the resulting number of selected

variables by the lasso strongly depends on the size of the data set. When selecting variables

according to their univariate Cox p-value, more and more variables are found to be important

by the lasso when the number of covariates decrease.

Reducing the number of covariates by only including genes with a high standard deviation did

neither improve on the analysis on the complete data set. One reason for this may be that

selecting genes with high variance also favors “noise-genes” to be included in the model. This

does not make variance a good criterion for selection.

A good selection method should exclude most of the noise in the data. Selecting genes according

to their ability of explaining survival one by one, is one approach where one may be be able to

exclude most noise, because we know that the genes selected are related to survival one by one.

It is, however, not a good approach to utilize the survival data in the selection, especially not

when prediction is the aim.

Another drawback with most of the approaches discussed is that they utilize information on the

genes one by one and not together. Since the Cox-lasso regression analysis is a joint analysis,

taking into account how the gene expressions explain the survival together, selecting variables

this way may not be optimal. Genes which may be able to explain the survival jointly can thus

be completely excluded from the analysis.

When using reduction criteria as described in this chapter one has to determine strict thresholds

for which the variables should be retained in the model or not. Making ad hoc choices for these

thresholds as done here, may be too strict and does not include variables which should have

been included or opposite, exclude variables which should have been included. This could

be improved by evaluating different thresholds and choose the threshold/number of included

variables by cross-validation.

For the reasons discussed above, to do selection prior to the regression analysis is not an optimal

approach. Applying different methods for reducing the dimensions of the problem is, however,

necessary in the context of microarrays. A reduction method should

• not include too much noise

• not utilize the survival data (the response)

• preferably take into account the gene’s ability of explaining the response together with

other genes
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• not exclude too much of the data from the analysis

To fulfill all of these preferences is nevertheless difficult. Even if we want to reduce the dimension

of the problem by selecting smaller subsets of genes, the last mark on the list is also important.

The lasso selects only one probe to be significant in the analysis on the full dataset, from which

one believes that reducing the data is necessary. This is also sensible considering the small

sample size versus the large number of covariates. Preferably one would, however, rather use

all of the data available in the analysis. Most of the methods in this chapter analyze the gene

expression data and the aCGH data separately. Dividing the analysis in two parts also involves

excluding a lot of information. That is, when the gene expressions are studied, we exclude the

information available in the aCGH data.

The approach in Section 5.3 uses correlation between aCGH and gene expression, and is the only

approach utilizing any information from both of the data sets and is hence a first step toward

integration of the two data types.
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CHAPTER 6

Data Integration by Genewise Lasso Penalization

Much attention has been directed to statistical regression analysis of gene expression data, for

example through penalized regression. As described in Chapter 4, these methods may be used in

regression settings when p > n. Even if these methods may reveal interesting results themselves,

it is also of interest and importance to combine gene expression data with other types of data.

By integrating other data types with gene expression data, one may be able to utilize more of

the information available.

It is interesting to study the possibilities of combining information in different types of biological

high dimensional data. By using data containing information of other biological features, one

may be able to utilize underlying biological relationships in the analysis. One option may simply

be to add the additional covariates to the model. This may nevertheless not be the optimal choice

if two types of high dimensional data are to be analyzed, since the number of predictors in these

data most often is very large. Adding even more covariates in a model may simply increase the

difficulty of the problem.

Nyg̊ard et al. (2008) describe a method for inclusion of clinical variables in addition to gene

expression data in a PLS regression model in the Cox regression setting. Since the number of

clinical variables most often is small, they propose to include the variables in the model, but

keeping them outside the PLS dimension reduction. In Ferkingstad et al. (2008) they present a

method for multiple testing in an empirical Bayesian setting. The methodology allows for mod-

ulation of the posterior distribution of the null hypothesis based on external information. They

manage to obtain a longer and differently ordered list of significant hypotheses by incorporating

the external information on the covariates.

In this chapter a methodology for integration of gene expression data with other biological

information is proposed. The aim in the integrated analyses is still to identify genes which

are important for survival. Other types of biological data and the relationships between these

and gene expression data are used in a suitable way to help identify differently expressed genes

related to survival. The output will still be a list of genes which are assumed to influence the

survival times, but the combined analysis may expose undiscovered genes, which may not be

present when the gene expression data are studied alone.
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CHAPTER 6. DATA INTEGRATION BY GENEWISE LASSO PENALIZATION

The idea is to introduce genewise penalty terms λj instead of one common λ in the lasso analysis

and to use other data sources, like for example aCGH data, to modify the penalty for each

gene. The procedure involves two steps. The first step will be to define the genewise penalty

modifications, and the second step will be to carry out the genewise penalized Cox regression

analysis. The genewise penalties should reflect the importance of the present gene due to other

biological knowledge than gene expression data and are supposed to make the penalty term in

the regression smaller for genes which are believed to be of more importance due to external

information. An individual penalty term will encourage the individual genes to be included in

the model or not. Less penalty for a gene will indicate that the gene is more probable to have

an influence on the survival times.

For The Radium Hospital Cervix Cancer Cohort Data different criteria may be considered when

the genewise penalties are to be determined. Since both aCGH data and gene expression data

are available it is convenient to use the aCGH data to define weights which should differentiate

the amount of shrinkage for the covariates (genes). This is reasonable since we have the relation;

Genetic alteration

(deletion/amplification)
⇒

Differently

expressed gene
⇒

Abnormal

cell growth
⇒

Development of larger

cell populations (tumor)

as described in Chapter 2.2. The relationship between aCGH data and gene expression data

is that an increase/decrease in copy number might affect the gene to be differently expressed

resulting in progression of tumors. This is what we want to utilize in the model. Exactly how this

can be utilized in analyses of the Radiumhospitalet cervix cancer cohort data will be described

in detail when the method is applied on the data in Chapter 7. The theory in this chapter will

therefore not relate directly to the specific data at hand.

Next we will concentrate on the model in general and describe the effect of imposing individual

penalty terms. Thereafter some asymptotic properties are considered, before a reparametrization

to simplify the computations is described. Furthermore we discuss how to choose a new tuning

parameter which will be a part of the model. To end this chapter a Bayesian perspective is

described to illustrate the connections to a Bayesian setting.

6.1. Genewise Lasso Penalization

When the genewise lasso penalization is presented in this section, it is as for the general theory

presented in Chapter 4, convenient to first describe the situation in a linear regression setting

before presenting how the method may be applied in the Cox regression model, as will later be

used in the analyses.
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The lasso as it is described in Chapter 4 jointly shrinks the regression coefficients by adding a

penalty term λ
∑p

j=1 |βj | to the residual sum of squares to be minimized. By imposing a penalty

term
∑p

j=1 λj |βj | where the amount of shrinkage λj is different for each gene, one may give some

genes advantages such that they are more probable of being selected. For a large value of λj
the regression coefficient for gene j is subject to a larger penalty and therefore less probable of

being included in the model. A smaller value of λj will decrease the amount of shrinkage and

will encourage the lasso to select gene j to be included in the model. This may be done by

defining

λj = λwj .

Here wj is a positive weight deciding the relative size of the individual penalty parameters λj ,

whereas λ is a global penalty common for all genes in the analysis.

In a linear regression setting a weighted lasso penalization analysis will correspond to minimizing

the penalized residual sum of squares

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ

p∑
j=1

wj |βj | , (6.1)

where wj is a predefined weight.

The lasso procedure in the Cox setting was described in Chapter 4.4 corresponds to maximizing

a penalized version of the Cox log partial likelihood

lpl(β) =
N∑
k=1

{βTx(k) − log
∑
l∈Rk

exp(βTxl)}. (6.2)

In the situation where we want to do a weighted shrinkage, this corresponds to maximizing

l(β) = lpl(β)− λ
p∑
j=1

wj |βj |.

The estimated regression coefficients will indicate which genes have a copy number aberration

and gene expression which together have an effect on survival. A summary of the general

procedure for the weighted penalization is given in Table 6.1.

6.2. Asymptotic Properties

Fan & Li (2006) give a comprehensive overview of statistical challenges concerning high dimen-

sionality and feature selection. The paper discuss how statistical challenges of this type arise

in different disciplines as bioinformatics and health studies as well as financial econometrics.

Further they define a unified approach to handle these challenges through penalized likelihood

methods. Their notation and penalized likelihood method in the Cox regression setting was
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CHAPTER 6. DATA INTEGRATION BY GENEWISE LASSO PENALIZATION

Systematic Description of the Procedure in General

Assume the data matrix X is a n×p matrix consisting of p gene expression vectors for n patients.

(1) Determination of weights wj .

(2) Fit a weighted lasso regression model with X = (X1, ..., Xp) as covariates. The penalty

term will be weighted such that genes with a weight giving reason to believe the gene

is related to survival through step 1, will have a larger probability of being selected by

the lasso in Step 2.

The likelihood to be maximized will therefore be

l(β) = lpl(β)− λ
p∑
j=1

wj |βj |.

Here lpl(β) is the Cox log partial likelihood and λ is selected through K-fold cross-

validation.

Output: p regression coefficients βj indicating the influence gene j has on survival.

Table 6.1. The table describes the two steps in the procedure for a general weight.

introduced already in Fan & Li (2002) which consider variable selection for the Cox propor-

tional hazards model and frailty model. Both Fan & Li (2002) and Fan & Li (2006) emphasize

the possibility of letting the penalty function be defined individually for each variable, that is

allowing for a variable specific λj and the option for incorporating prior information. To our

knowledge this possibility has, however, not been pursued fully in applications to real data.

In the following mainly all theory, if not other is stated, is obtained from Fan & Li (2006) and

Fan & Li (2002). For the rest of the section we assume that we are in a survival data setting as

in Chapter 3, where we let Ti be the survival times, Ci the censoring times and xi the covariates

associated with the survival data for each patient i, where i = 1, ..., n. We define Zi to be the

observed survival time for patient i, that is Zi = min (Ti, Ci) and δi the censoring indicator

corresponding to δi = I(Ti ≤ Ci). The ordered observed event times are given as t01, ..., t
0
k and

(k) is the label for the event t0k with corresponding covariate vector x(k).

In the following we let the partial log likelihood lpl(β) be as in (6.2) and assume that the reg-

ularity conditions A-D in Appendix B hold. Conditions A-D entail that the local asymptotic

quadratic property for the partial likelihood is guaranteed. The local asymptotic quadratic prop-

erty for the partial likelihood implies asymptotic normality of the maximum partial likelihood

estimates. Defining the penalty function as pλj
(·) their penalized partial likelihood is given by

Q(β) =
N∑
k=1

[xT(k)β − log {
∑
l∈Rl

exp(xTl β)}]− n
d∑
j=1

pλj
(|βj |).
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6.2. ASYMPTOTIC PROPERTIES

By imposing some conditions on the penalty functions, the variable selection through penalized

likelihood methods could be made more efficient. For instance it can be shown that under some

conditions, the penalized partial likelihood estimator that converges at rate Op(n−1/2+an) where

an is defined below. Some results are stated in Fan & Li (2002) concerning the convergence rate

of the penalized partial likelihood estimator.

We consider an asymptotic set up with the penalty parameter λn,j depending on the sample size

n and let β0 = (β10, ..., βd0)T = (βT10,β
T
20) be the true regression coefficients and where β10 are

the s nonzero regression coefficients and β20 are the remaining regression coefficients which all

are zero. Further we define the two sequences

an = max{p′λn,j
(|βnj0|) : βnj0 6= 0}

bn = max{|p′′λn,j
(|βnj0|)| : βnj0 6= 0},

(6.3)

which are needed in order to prove that there exists a local maximizer β̂ for the penalized partial

likelihood function that converges at rate Op(n−1/2 + an). The following result can be found in

Fan & Li (2002):

Theorem 1. Assume that (x1, T1, C1), . . . , (xn, Tn, Cn) are independent and identically dis-

tributed according to the population (x, T, C), T and C are conditionally independent given

x, and Conditions (A)-(D) hold. If bn → 0, then there exists a local maximizer β̂ of Q(β) such

that ||β̂ − β0|| = Op(n−1/2 + an), where an is given by (6.3).

The proof of Theorem 1 can be found in Fan & Li (2002). In order to show that Theorem 1

hold for the method proposed for data integration in this chapter we define the two sequences

an and bn in (6.3) for our specific case. Note that wj is decided externally prior to the analysis

and is not necessarily dependent on the sample size n. The penalty function in our situation

thus corresponds to

pλn,j
(|βj0|) = λn,j

d∑
j=1

|βj0|

and the first and second derivatives are given by

p′λn
(|βj0|) = λn,j

p′′λn
(|βj0|) = 0.

(6.4)

We then have

an = λn,j

bn = 0.
(6.5)

For the result of Theorem 1 to hold, we must have bn → 0 when n→∞. This is obviously sat-

isfied. It also follows from Theorem 1 that if λn,j is chosen properly and if an = O(n−1/2), there
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CHAPTER 6. DATA INTEGRATION BY GENEWISE LASSO PENALIZATION

exists a
√
n-consistent penalized partial likelihood estimator. Since an = λn,j ,

√
n-consistency

requires that λn,j = Op(n−1/2).

Fan & Li (2002) also demonstrate the oracle property. For a selection method to enjoy the oracle

properties it should show

• Consistency in variable selection (it identifies the right subset model).

• Asymptotic normality of the estimated regression coefficients.

The following theorem from Fan & Li (2002) is necessary in order to show that a method possess

the oracle property. First we define

Σ = diag{p′′λn,j
(|β10|), ..., p′′λn,j

(|βs0|)}

and

b =
(
p′λn,j

(|β10|)sgn(β10), ..., p′λn,j
(|βs0|)sgn(βs0)

)T
,

here s is the number of components of β10, that is the number of true regression coefficients that

are different from zero.

Theorem 2 (Oracle property). Assume that the penalty function pλn,j
(|θ|) satisfies the condition

lim inf
n→∞

lim inf
θ→0+

p′λn,j
(θ)/λn,j > 0.

If λn,j → 0,
√
nλn,j → ∞ and an = O(n−1/2), then under the conditions of Theorem 1, with

probability tending to 1, the
√
n consistent local maximizer β̂ = (β̂T1 , β̂

T
2 )T in Theorem 1 must

satisfy:

(i) (Sparsity) β̂2 = 0;

(ii) (Asymptotic normality)

√
n(I1(β10) + Σ)

{
β̂1 − β10 + (I1(β10) + Σ)−1b

}
→ N {0, I1(β10)} ,

where I1(β10) is the first s× s submatrix of the Fisher information matrix I(β0) of the partial

likelihood.

From Theorem 1 we found that for a
√
n-consistent penalized partial likelihood estimator to exist,

λn,j = Op(n−1/2) must hold. Since both λn,j = Op(n−1/2) and
√
nλn,j →∞ can not be satisfied

simultaneously, the oracle property does not hold for the genewise lasso penalization procedure.

This is however the same as for the standard lasso, which neither enjoys the oracle property of

the same reason that the two conditions cannot be satisfied at the same time. By these results,

the genewise lasso penalization procedure has proven to hold the same asymptotic properties as
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6.2. ASYMPTOTIC PROPERTIES

the lasso and that by introducing the individual penalty parameters λj the asymptotic behavior

of the lasso is not changed.

The idea of imposing individual weights to the penalization in a lasso regression model has

also been discussed in Zou (2006) where they define the adaptive lasso. The adaptive lasso is

later introduced in relation with the Cox proportional hazards model by Zhang & Lu (2007)

and studied in high dimensional settings in Huang et al. (2006). The computational scheme of

the adaptive lasso is much similar to the one used in the integrated analyses done here. The

difference lies in the purpose of the weights and how they are defined. The motivation for the

adaptive lasso is that there exists some scenarios where the lasso is inconsistent for variable

selection (Zou, 2006). The adaptive lasso is therefore suggested as a method enjoying the oracle

property in Theorem 2, and is shown in Zou (2006).

The adaptive lasso defines the individual penalty parameters as λj = λwj and the weights wj
as being the reciprocal of a consistent estimator for the regression coefficients β; which are to

be estimated in the model. Any consistent estimator can be used and will make the adaptive

lasso, a method having the oracle properties. One option is to define the vector of weights as

w =
1

|β̂OLS |q
, (6.6)

where q > 0, and β̂OLS is the vector of ordinary least squares estimates, if these exist, estimated

from the same single dataset. The paper also shows that the nonnegative garotte, which is

another popular variable selection method, may be considered as a special case of the adaptive

lasso setting q = 1.

The vector of weights in (6.6) is suggested for the adaptive lasso when collinearity is not a con-

cern. When the covariate vectors are very correlated, for instance if the number of explanatory

variables is larger than the number of samples (p > n), the ordinary least squares estimates can

not be computed and the weights have to be chosen in a different way. A practical solution

would be to use the estimated regression coefficients from a ridge regression (Zou, 2006). An-

other option suggested by Huang et al. (2006) is to use the marginal regression estimators to

obtain the initial estimators and weights. Under a partial orthogonality condition Huang et al.

(2006) show that the adaptive lasso with these initial weights indeed has the oracle properties

as well.

The main difference from the adaptive lasso and the integrating lasso procedure considered here,

is thus that the weights in the integration procedure will be based on external data in addition

to the gene expression data, hence representing real prior information. The determination of

wj should be carefully evaluated such that the individual penalty terms are sensible. If a gene’s

influence on survival is reflected through λj being small, the gene is believed to have an influence
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on survival and vice versa. Apriori unimportant variables receive larger penalties if λj is large

and are more likely to be discarded in a selection process. Some comments on how to determine

the genewise weights wj are considered separately in Section 6.4 for the integration procedure.

6.3. Reparametrisation and Computational Aspects

The separate analyses using ridge and lasso in a Cox regression may be done straightforwardly

using the program code in Bøvelstad et al. (2007) which is described in Section 4.6. The genewise

penalty terms, however, have to be handled with special care. To perform the weighted analysis

we have introduced the individual penalty parameters

λj = λwj ,

where wj is a positive weight which is small if gene j is believed to influence the response.

The model we want to fit corresponds in a linear regression setting to minimization of
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ

p∑
j=1

|wjβj |. (6.7)

To be able to use the standard program to fit the model with individual weights, a manipulation

of this criterion is convenient. We may rewrite (6.7) as
n∑
i=1

(yi − β0 −
p∑
j=1

xij
wj
wjβj)2 + λ

p∑
j=1

|wjβj |.

Defining αj = wjβj , the standard lasso procedure may be used to minimize
n∑
i=1

(yi − β0 −
p∑
j=1

xij
wj
αj)2 + λ

p∑
j=1

|αj |,

with respect to αj , which corresponds to a standard lasso minimization criterion with each entry

in the data matrix given as xij

wj
. Note that this transformation does not change the collinearity

among the variables and will neither make the estimation more complicated nor easier.

A similar approach may be used in the Cox regression setting, by defining the data matrix to

have entries xij

wj
, and maximizing

l(α) = lpl(α)− λ
p∑
j=1

|αj |,

with respect to α. The estimated parameters α̂ can in this way be obtained from the program

code in Bøvelstad et al. (2007). When α̂j is found by using the algorithm, one may find the

actual regression coefficients β̂j from the weighted analysis as

β̂j =
α̂

wj
.
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Systematic Description of the Two-Dimensional

Cross-Validation Procedure

(1) Define ηj for gene j.

(2) Set a grid of q-values.

(3) For a fixed q ;

a Define weights wj = 1
|ηj |q .

b Define the input data xij

wj
for the lasso procedure as described in Section 6.3.

c Compute CV (q, λ).

(4) Repeat all parts of step 3 by iterating through all q-values in the grid.

(5) Find the pair of (q, λ) which maximizes CV (q, λ).

(6) Fit the final model with the cross-validated parameters (q̂, λ̂).

Table 6.2. Overview of the two-dimensional cross-validation procedure.

The estimated regression coefficients β̂j then reflect the importance of covariate j in the model.

The variables that are selected, that is, those with a corresponding regression coefficient β̂j 6= 0,

represent the variables which are most important for the response and which are found to be

important when the information from the two data sources is combined.

6.4. Two-Dimensional Cross-Validation

The individual amount of shrinkage depends on individual weights determined through prior

knowledge connected to the covariates. To weight the penalty term in the regression analysis, it

is important to carefully evaluate the possible alternatives to use as weights. The weights should

be positive and reflect the covariates’ importance for the response due to external information.

In the following we will define ηj to represent any quantity that will be used to weight the penalty

term. The values of ηj should increase with the prior believed importance of the covariate. The

weights may then have the form

wj =
1
|ηj |q

, (6.8)

such that a small value of ηj , indicating a less importance, produces a large weight wj which

will cause a large penalty for covariate j. To have one example of such a ηj in mind, one could

think to ηj as the rank correlation between copy number and gene expression for gene j. Various

possibilities for ηj will be discussed in connection to the data at hand in Chapter 7.

By introducing the weights as in expression (6.8) we also introduce a second tuning parameter

q in the model. While the tuning parameter λ controls the amount of shrinkage imposed on the
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coefficients simultaneously, the tuning parameter q controls the form on the weight function and

its ability to distinguish between variables which will be given a relatively high or low weight.

Depending on the size of |ηj |, different values of q will be necessary to form reasonable and

effective weights. The value of q could be any positive value and is not restricted to integers.

By setting the parameter q manually without any assessment, one risks to overfit the model. It

will therefore be sensible to cross-validate q as well as λ. The genewise lasso penalization thus

involves cross-validation of two parameters q and λ. The values for q and λ chosen through

cross-validation should be the pair of q and λ that optimize the prediction capability. This

involves a two-dimensional cross-validation procedure with maximization on a two-dimensional

grid.

To implement such a cross-validation procedure, one should first define a cross-validation cri-

terion. We want to choose parameter values for λ and q that maximize the prediction ca-

pability. We can then use a criterion on the same form as discussed for the one-dimensional

cross-validation of λ in Chapter 4.5, but where the criterion varies both with q and λ;

CV (q, λ) =
K∑
k=1

{l(β̂(−k)(q, λ))− l(−k)(β̂(−k)(q, λ))}.

A grid of q-values is decided, and for a fixed q, we may search for the optimal λ value through

K-fold cross-validation in the same way as for the ordinary lasso model. By iterating through

all values of q, defining the cross-validated log-likelihood for each grid value, we may find the

best pair q̂ and λ̂ as the pair maximizing CV (q, λ). The estimates q̂ and λ̂ are the two pa-

rameters optimizing the prediction capability. A systematic description of the two-dimensional

procedure is given in Table 6.2 and the R-script performing two-dimensional cross-validation for

the genewise lasso procedure is given in Appendix C.

6.5. Bayesian Interpretation

The method introduced for data integration in this chapter is presented in a classical Cox re-

gression setting. Individual penalty terms are added to the partial log-likelihood. The method

may just as well be considered in a Bayesian framework which may illustrate and reveal differ-

ent aspects of the method. Bayesian regression methodology is concerned with utilizing prior

information, that is, external information and/or expert knowledge on the covariates in the anal-

ysis. This makes it natural to give a Bayesian interpretation of the introduced method which

is presented especially with the aim to combine the gene expression variables with the external

information in the aCGH data.

6.5.1. Bayesian Regression. To set up a Bayesian regression model one has to specify a

conditional distribution for the response data p(y|θ) i.e. the likelihood, and a prior distribution
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p(θ) for the parameters θ. By combining these, one may compute the posterior distribution

p(θ|y) which represents our updated knowledge about the parameters when the data are intro-

duced (Hastie et al., 2001, chap. 8).

In the classical regression approach the only information that is used explicitly is the data.

The Bayesian approach for regression differs from the classical approach by introducing a prior

distribution for the parameters θ, which reflects beliefs one has about the parameters prior to

the analysis. To specify this distribution one should utilize what one knows or believes about

the parameters and which values are likely for them, and translate this prior knowledge into

the form of a probability distribution p(θ). When the prior distribution is specified, it should

be combined with the conditional distribution of y|θ to obtain the posterior distribution of θ|y
through Bayes’s formula

p(θ|y) ∝ p(θ)p(y|θ). (6.9)

From the posterior distribution one is able to make inference about the parameters. The pa-

rameters may be estimated by the posterior mode θ̂ = arg maxθ p(θ|y) or the posterior mean

θ̂ = E(θ|y). When the posterior mode is used as Bayes estimate, there is only the prior distri-

bution making the Bayesian approach different from maximum likelihood estimation since the

posterior inference will be based on maximizing prior × Likelihood

The focus in this section will be on the standard linear regression model y = Xβ + ε, where

we assume that ε ∼ N(0,σ2) and that σ2 is known. For fixed values of β, y thus follows a

multivariate normal distribution;

p(y|β) = (2π)−n/2|σ2I|−1/2 exp (− 1
2σ2

(y −Xβ)T (y −Xβ)), (6.10)

that is y|β ∼ N(Xβ, σ2I).

Prior Distributions. Different prior distributions may be used depending on what knowledge

one has on the behavior of the parameters. Ordinary linear regression may be interpreted in

a Bayesian perspective with a non-informative prior for the parameters. This corresponds to

having no prior belief on what values of the coefficients β are sensible before one looks at the

data.

In situations where there are many measured responses and only a few parameters to be esti-

mated, the non-informative prior gives acceptable results, but the choice of prior distributions is

however more important when the sample size is small and there is a large number of parameters

to be estimated. This is due to the less sharply peaked likelihood in these situations (Gelman

et al., 2004, chap. 14).
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Genewise Lasso Penalization. To make a Bayesian interpretation of the procedure imposing

an individual penalty for each variable, one should assume a prior distribution with the desir-

able properties. The prior distribution should concentrate more mass in exactly zero for the

unimportant variables, while the important variables should have a prior with larger variance

to allow for the estimated regression coefficients to take on other values.

The Laplace distribution is appropriate for our purpose, having a peak in zero and fat tails.

The variance in the distributions should be different for each variable and a small variance will

favor zero as the value for the regression coefficients, while larger variance will not give reason

for setting the regression coefficient to zero. The individual penalty parameters should therefore

be incorporated in the variance. A large penalty parameter λj indicates a small variance which

should set the regression coefficients to zero. We assume the variance 2τ2
j for each regression

coefficient and the prior distribution of βj ;

p(βj) =
1

2τj
exp

{
−|βj |
τj

}
.

The joint distribution of the βjs may be found to be

p(β) ∝ exp

−
p∑
j=1

|βj |
τj

.

By assuming a linear model and the distribution given in 6.10, we have by applying Bayes

formula in (6.9) that the posterior distribution is found to be

p(β|y) ∝ exp

−
p∑
j=1

|βj |
τj

× exp
{
− 1

2σ2
(y −Xβ)T (y −Xβ)

}

= exp

− 1
2σ2

(y −Xβ)T (y −Xβ)−
p∑
j=1

|βj |
τj

,
The regression parameters may be estimated by the posterior mode. Maximizing p(β|θ) to find

the posterior mode corresponds to maximizing the log-posterior distribution

log p(β|y) = − 1
2σ2

(y −Xβ)T (y −Xβ)−
p∑
j=1

|βj |
τj
. (6.11)

This may be recognized as the part of the log-likelihood relevant for maximization minus a

term
∑p

j=1
|βj |
τj

which corresponds to an individual penalty term
∑p

j=1 λj |βj | when λj = 1
τj
. The

special case when all variances are equal, that is τj = τ ∀j, corresponds to the lasso. Thus both

the genewise lasso and the lasso can be interpreted in a Bayesian way by assuming a Laplace

prior on the regression coefficients.
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Method Prior distribution

Genewise Lasso Penalization p(βj) = 1
2τj

exp
{
− |βj |

τj

}
The Lasso p(βj) = 1

2τ exp
{
− |βj |

τ

}
Ridge Regression p(βj) = 1√

2πτ
exp

{
− 1

2τ2β
2
}

Table 6.3. The table shows the three penalization methods and the corresponding prior distributions.

Ridge penalization. Ridge regression may also be derived from a Bayesian point of view by

adopting a Gaussian prior

p(β) = (2π)−p/2|τ2I|−1/2 exp
{
− 1

2τ2
βTβ

}
,

that is β ∼ N(0, τ2I) where I is the p × p identity matrix. From this it is straightforward to

find the posterior distribution by using Bayes’s formula:

p(β|y) ∝ exp {− 1
2σ2

(y −Xβ)T (y −Xβ)− 1
2τ2

βTβ}. (6.12)

The regression parameters may be estimated by the posterior mean or mode. We are only

concerned with proportionality when the posterior mode is to be found and it is therefore

enough to maximize the expression in (6.12). This is equivalent with maximizing the log-

likelihood minus a ridge penalty term with λ = 1
2τ2 . One may show, by rewriting expression

(6.12), that the posterior distribution will be a normal distribution. Because mean and mode

are identical in Gaussian distributions, the ridge estimates may be derived both as the mean

and the mode of the posterior distribution.

6.5.2. Comments. It is natural to end this section with some comments on the Bayesian

interpretation of the penalization methods and how the three different priors in Table 6.3 cor-

respond to the three different penalization methods; the covariatewise lasso, the lasso and ridge

regression.

In Figure 6.1(a) a normal and a Laplace distribution are plotted. The normal distribution

corresponds to the ridge prior and we see that it differs from the lasso prior, which is the

Laplace, by having more mass concentrated around zero and less for higher values. The Laplace

distribution seems however to favor zero as a value for the regression coefficients by having a

well defined peak at zero. This is in coincidence with what we know about the lasso which is

likely to produce regression coefficients exactly equal to zero. We also know that ridge regression
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Figure 6.1. Plot of prior distributions for the different regression model.

(a): Illustration of the difference between the prior distribution for the regression coefficients in a

ridge regression and in the lasso. The normal distribution corresponds to the prior for ridge regression

and the Laplace distribution corresponds to the prior for regression coefficients in the lasso.

(b): Illustration of the difference between prior distributions in the method performing individual/-

genewise penalization, the priors on the regression parameters have different variance.

shrinks the regression parameters, but seldom sets the regression coefficients to be exactly zero,

and the normal prior therefore has more mass in small values surrounding zero.

In Figure 6.1(b), four illustrations of Laplace distributions are given. This illustrates the dif-

ferent priors for the regression coefficients when individual penalties are used. The regression

coefficients for a covariate which is believed to have an influence on the response, will have a less

sharply peaked prior than the regression coefficient for a covariate which is not believed to have

an influence on the response a priori. We have also seen that there is a connection between the

variance of the prior distribution and the amount of shrinkage λ. A small variance will produce

many regression coefficients equal to zero corresponding to a large amount of shrinkage. By let-

ting the variance in the Laplace prior distributions vary depending on the external information,

some covariates will be more probable of being selected while others are less probable.

It is important to note that this Bayesian interpretation is considered in a linear regression

setting and not for survival data and the Cox model. It does, however, just as well illustrate

the Bayesian way of thinking where inclusion of prior information is crucial.
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CHAPTER 7

Genewise Lasso Penalization Analysis and Results

In this chapter the genewise lasso penalization method is applied to the cervix cancer data. The

gene expression data are used as covariates in the Cox-lasso regression model, whereas the aCGH

data are used through three different penalization schemes to weight the lasso penalty terms.

Each of the three penalization schemes involves estimation of the quantity η̂j and the values of q

and λ are decided through two-dimensional cross-validation as described in the previous chapter.

The results for the three approaches will be reported and some discussions of the results will be

given. The three penalization schemes are based on the following:

PS1 The gene copy number’s correlation with gene expression

(Spearman correlation coefficients)

PS2 The gene copy number’s effect on survival (estimated Ridge regression coefficients)

PS3 The gene copy number’s variability (empirical standard deviation)

The three different approaches are considered separately and a motivation for the different

schemes will be given before applying them to the data.

7.1. Penalization Scheme 1; Spearman Correlation

In the end of Chapter 5, we considered a method for reducing the data set which utilized the

correlation between gene expression and copy number. The method was applied both in the

analysis of gene expression and aCGH data. As opposed to the other methods used in Chapter

5, this method utilized a relationship between gene expression and gene copy numbers, and

combined the two data sources in the analysis. The motivation was that genes showing high

correlation between gene expression and copy number, are considered as possible driving forces

for cancer development and progression (Lando et al., 2009). This chapter will concentrate on

analyzing the gene expression data, but a similar motivation can be given when applying the

genewise lasso penalization model. The correlation between gene expression and copy number ρ̂j
can be used to determine weights on the penalty term for gene j, as explained in the following.

Genes corresponding to high correlations should be more probable of being selected. Negative

correlations between gene expression and aCGH will be less interesting in this setting, since

gene expression alterations which are negatively correlated with gene copy number are not

59



CHAPTER 7. GENEWISE LASSO PENALIZATION ANALYSIS AND RESULTS

considered as consequences of copy number alterations. The genes which show high correlation

should therefore be given less penalty than genes which are negatively or not correlated. For

the penalties to achieve this effect we consider a weight of the form

wj =
1
|ηj |q

,

as described in the previous chapter. We then have to define ηj . As discussed in Chapter 5 the

Spearman rank correlation is convenient to use as a measure of correlation, since it measures

any monotonic relationship between gene expression and copy number. The Spearman rank

correlation is sensible to use in this setting as well, and we may define ηj = ρ̂j for all ρ̂j > 0. For

negative or zero correlation, ηj should be some small positive value which will give gene j a large

penalty. Genes showing zero correlation should also be adjusted in order to avoid division with

zero. One option is to use ηj = min{ρ̂ : ρ̂ > 0}, for all genes with ρ̂j ≤ 0. Where ρ̂ is the vector

of estimated Spearman coefficients. That is, all genes which show negative or zero correlation

will be given the same weight as the smallest positively correlated gene. The quantity ηj in PS1

can thus be expressed as

ηj =

 ρ̂j if ρ̂j > 0

{min ρ̂ : ρ̂ > 0} if ρ̂j ≤ 0.
(7.1)

To carry out the analysis of the data, the gene expression vectors were matched together with

their corresponding copy number vector and the Spearman correlation coefficients ρ̂j were cal-

culated for each gene j. The Spearman correlations are plotted in Figure 7.1(a). A plot of ηj
for all genes after adjusted for negative and zero correlations is also given in Figure 7.1(b).

To fit the model, the two-dimensional cross-validation procedure was applied to find the best

pair of parameters (q, λ). The grid of q-values was set to range from 0 to 5, increasing with 0.25

for each step. For each given value of q, we find the value of λ which maximizes CV (q, λ), λ∗q .

More specifically for a given value of q:

λ∗q = arg max
λ

CV (q, λ).

This is done using exactly the same procedure as described in Chapter 4 about K-fold cross-

validation. In Figure 7.2(a) λ∗q is plotted versus q. Defining the cross-validation curve CV as

a function of q for given values λ∗q , will give us the function CV (q, λ∗q) as plotted in Figure

7.2(b). Maximizing this with respect to q will give us the preferable value q̂ according to cross-

validation and the pair (q̂, λ̂), where λ̂ = λ∗q̂ , will be the pair used to fit the final model. The

value of q maximizing the cross-validation curve CV (q, λ) is marked with a star. In the case of

Penalization Scheme 1, q̂ = 1.5 and global penalty parameter λ̂ = 1.6254.

From a statistical point of view, it is interesting to examine the results of the cross-validation.

By having a closer look on Figure 7.2(a)-(c) we may get a better understanding of how the
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Figure 7.1. (a): Plot of the calculated Spearman correlation coefficients ρ̂j for each gene.

(b): Plot of ηj , that is, when adjusted for non-positive correlations.

(c): Plot of |ηj |q̂ for the final model. The selected genes are marked.

The genes are ordered by their position on the genome in both panels.
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Systematic Description of the Procedure: Penalization Scheme 1

Assume data matrices X and Z, where X is a n × p matrix consisting of p gene expression

vectors for n patients. Z is a n × r matrix which consists of the r copy number probes for the

same n patients. Assume also survival data for the n patients.

(1) Determination of ηj :

a Calculate the Spearman correlation ρ̂ between each gene expression vector and

corresponding copy number vector.

b Adjust for negative and zero correlations such that

ηj =

 ρ̂j if ρ̂j > 0

{min ρ̂ : ρ̂ > 0} if ρ̂j ≤ 0.

(2) Determination of λj :

a Define λj = λwj , where wj = 1
|ηj |q .

b Estimate λ and q through two-dimensional cross-validation.

(3) Fit the model with X = (X1, ..., Xp) as covariates and the survival data as response.

That is, maximize

l(β) = lpl(β)− λ
p∑
j=1

wj |βj |,

where lpl(β) is the Cox log partial likelihood and λ and wj are estimated as described

in Step 2.

Output: p regression coefficients βj indicating the influence gene j has on survival.

Table 7.1. Summary of the procedure using Penalization Scheme 1. The penalty term will be

weighted such that the regression coefficients for genes corresponding to a high positive correlation in

Step 1, will have a larger probability of being estimated to be nonzero in Step 3.

method actually behaves and performs when applied to data for different combinations of q and

λ. There are several interesting aspects regarding the cross-validation results, which can be seen

from Figure 7.2.

First, by looking at Figure 7.2(a) we may see that by increasing q, the cross-validated value of

λ, λ∗q decreases. When 0 < ηj < 1 (which is the case for all three penalization schemes studied

in this thesis), all weights will be larger when q increases. This indicates that in addition to

produce weights which reasonably differentiate between the genes based on whether they are

believed to be important or not, the penalization schemes will produce overall larger penalties

when q increases. Some of the simultaneous shrinking is thus left to the weights.
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Figure 7.2. Plots for cross-validation of q when using Penalization Scheme1:Spearman correlation.

Figure 7.2(b) shows the cross-validation curve CV (q, λ∗q), that is, where λ∗q is inserted for λ. We

see that the curve has its maximum at q = 1.5. The area where 1 < q < 3 is where the values

of CV (q, λ∗q) are largest. Comparing with Figure 7.2(c) we see that the two curves show some

similar tendencies, that is when the number of selected genes changes with q, the performance

due to the cross-validation changes as well.

Two peaks can be seen in the curve in Figure 7.2(c), for which eight genes are selected in

both cases. A considerable drop is seen for the cross-validation curve in Figure 7.2(b) for

these q-values. It is interesting to see whether the eight genes are the same in both situations.

Investigating the eight genes in both cases, two of the genes are eliminated and replaced by two

others for the second peak. So even if the same number of genes are selected by using different

q-values, it is not necessarily the case that it is the same eight genes.
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For the q-values for which two or less genes are selected, the values for CV (q, λ∗q) are on the

same low level and there is a markable difference when a few more genes are included in the

model. This indicates that due to cross-validation for PS1, the models corresponding to q-values

which select more genes, seem to perform better than for q-values where no genes are selected.

Note also that it is not strange that there are some variations in the values of CV (q, λ∗q), even if

all regression coefficients in the final model are estimated to be zero. The estimated regression

coefficients when the kth fold is left out, might not be zero and may therefore give different

contributions to the cross-validation criterion for different values of q and λ.

The final model was fitted with the estimated parameters, resulting in eight selected genes.

In Figure 7.1(c), |ηj |q̂ is plotted. The genes selected by the lasso are marked red in the plot.

Note that the genes corresponding to large values of |ηj |q̂ in the plot are promoted in the

analysis. Genes could still be selected in the analysis if the gene expression shows a strong

effect. Large values of ηq̂j indicate that gene j is believed to influence survival because of a high

positive correlation with gene dosage. From the plot we see that the selected genes correspond

to relatively large values of η̂j which indicate that the correlation between gene expression and

gene dosage is relatively large for these genes. Note, however, that these are not necessarily

the eight genes corresponding to the eight largest values of |ηj |q̂. MMP10 corresponds to the

rightmost marked gene in Figure 7.1(c). Gene MMP10 is chosen although the value of ηj is

not as large as for the other chosen variables, indicating that the gene expression for MMP10

is not as correlated with gene dosage as the other chosen variables. The gene probably has a

relatively strong influence on survival through its expression alone and is not helped as much

by the weighting of the penalty. All selected genes (including MMP10) are, however, subject

to much less penalty than the genes with very low correlation. All selected genes are listed in

Table 7.2.

Results; Penalization Scheme 1

Gene Symbol Gene Identification Probe Identification Chromosome cytoBand β̂j λ̂j

EFNA1 25k 1474684 RP11-307C12 1 1q21-q22 0.385 4.139

PPP1R7 814508 RP11-556H17 2 2q37.3 −0.021 3.908

RFC4 25k 309288 RP11-119E13 3 3q27 −0.541 3.850

FNTA 25k 530359 CTD-2115H11 8 8p22-q11 0.289 5.247

SMARCA2 814636 RP11-48M17 9 9p22.3 −0.045 4.060

ATP5C1 25k 845519 RP4-542G16 10 10p15.1 0.003 7.226

PRDX5 292519 RP11-147G6 11 11q13 0.333 5.402

MMP10 25k 1384851 RP11-750P5 11 11q22.3 −0.003 14.737

Table 7.2. Genes selected when Spearman correlation coefficients are used to determine the weights

and two-dimensional cross-validation is used to determine the tuning parameters q and λ.
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Four of the selected genes (EFNA1, PRDX5, FNTA, RFC4) were also selected when correlation

between gene expression and copy number (r > 0.4) was used to reduce the data in Chapter 5.

This is reasonable since the two methods are strongly related. The difference lies in that the

previous analyses used more or less randomly chosen thresholds to decide the set of explana-

tory variables and that the genes for which the correlation did not exceed the threshold were

completely removed from the analysis. In the weighted analysis, all genes are included in the

analysis and genes with gene expression showing a strong relation to survival might get selected

although the penalty is relatively large due to a high weight. We also see this from the results.

We gain something by applying the weighted analysis compared to the reduction method in

Chapter 5 in the sense that the weighted analysis selects four genes which not were selected in

Chapter 5.

7.2. Penalization Scheme 2; Ridge Regression Coefficients

In this second penalization scheme we want to find a weight wj based on whether the gene’s

copy number explains survival or not. If a gene has changes in copy number that explains

survival, the gene should be given less penalty than others. Since a copy number alteration

influences survival by first affecting the gene’s expression, the genes within aberrated regions

are more likely to explain survival through their expressions as well. A quantity that indicates

the influence of each genes copy number on survival, could therefore be used as a weight on the

penalty terms.

We may find such a quantity by fitting a Cox-ridge regression model to the copy number data

and estimate the regression coefficients γi in this model. PS2 is performed by doing a Cox-ridge

regression on the copy number data where the regression coefficients γi are estimated for each

copy number probe. The regression coefficients indicate each probe’s effect on survival. For gene

j the weights may be defined to have the general form

wj =
1
|ηj |q

,

where we insert γ̂j for ηj .

The genes found to influence survival through it’s copy number are thus given smaller penalties.

Genes corresponding to probes found to have less influence on survival are given larger penalties.

The weights were determined by first fitting a Cox-ridge regression model on the aCGH data

with the survival data as response. The estimated regression coefficients γ̂i are plotted in Figure

7.3(a). The absolute value of the regression coefficients are used to calculate the weights. Note

that the plot of regression coefficients are given for the 2138 probes in the aCGH data in Figure

65



CHAPTER 7. GENEWISE LASSO PENALIZATION ANALYSIS AND RESULTS

0 2000 4000 6000 8000

−
0.

05
0.

00
0.

05
0.

10

Gene index

γγ̂

(a)

0 2000 4000 6000 8000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Gene index

γγ̂

(b)

0 2000 4000 6000 8000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

Gene index

γγ̂q̂

●

●

●●●●

●●●●●●●

●
●

●

●●

●

●

●

(c)

Figure 7.3. (a): Plot of the estimated ridge coefficients γ̂j for each probe.

(b): Plot of |ηj | for all genes j.

(c): Plot of |ηj |q̂ for all genes j. The genes selected in the final model are marked.

The genes are ordered by their position on the genome.
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Systematic Description of the Procedure: Penalization Scheme 2

Assume data matrices X and Z, where X is a n1 × p matrix consisting of p gene expression

vectors for the n1 patients. Z is a n2× r matrix which consists of the r copy number probes for

n2 patients. Assume also survival data for the patients.

(1) Determination of ηj :

a Fit a Ridge regression where Z = (Z1, ..., Zr) is used as covariates and survival

data as response. In the Cox regression setting this corresponds to maximizing;

lpl(γ)− λR
r∑
i=1

γ2
i ,

and where lpl(γ) is the Cox log partial likelihood and λR is determined by K-fold

cross-validation.

b Let ηj = γ̂j .

(2) Determination of λj :

a Define λj = λwj where wj = 1
|ηj |q .

b Estimate λ and q through two-dimensional cross-validation.

(3) Fit the model with X = (X1, ..., Xp) as covariates and the survival data as response.

That is, maximize

l(β) = lpl(β)− λ
p∑
j=1

wj |βj |

where lpl(β) is the Cox log partial likelihood and λ and wj are estimated as described

in Step 2.

Output: p regression coefficients βj indicating the influence gene j has on survival.

Table 7.3. Summary of the procedure using Penalization Scheme 2.

7.3(a), whereas in the plot in Figure 7.3(b), ηj = |γ̂j | are plotted for all 7754 genes in the gene

expression data after matching the copy number probes with the expression data. We define

ηj as the absolute value of the estimated regression coefficient γ̂j since the importance of the

covariates depends on the magnitude of the regression coefficient and not its sign.

To decide on a proper value of q and λ, the two-dimensional cross-validation procedure is applied.

The same grid ranging from 0 to 5 was set for PS2, but for q > 3.5 the cross-validation of λ

fails. This is probably because λ gets too close to zero, which corresponds to not adding any

penalty to the partial likelihood.
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Figure 7.4. Plots for cross-validation of q when using Penalization Scheme 2: ridge regression coef-

ficients.

Figure 7.4 illustrates the cross-validation results. The three plots are set up in the same way as

the corresponding figures for PS1 in Figure 7.2. In the first plot in Figure 7.4(a) λ∗q found to

maximize the cross-validation curve CV (q, λ) is plotted for each given q. In Figure 7.4(b) the

cross-validation function CV (q, λ∗q) is plotted as a function of q, for which we want to maximize.

The maximum is marked with a star to indicate the chosen value of both q in Figure 7.4(b) and

λ∗q in Figure 7.4(a). In the case of PS2, q̂ = 2.75 and global penalty parameter λ̂ = 0.0031.

We may study the results of the cross-validation a bit closer here as well. As for PS1 we see

that as q increase, λ∗q decreases. The same justification can be applied here as for PS1. The

weights will contribute to the simultaneous shrinkage by creating overall larger penalty terms

for all genes when q increases.
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For 0 < q ≤ 1.5 zero genes are selected and we see that the values of CV (q, λ∗q) are relatively

low compared to when a larger number of genes are selected. For the values of q that lead

to selection of more than one gene we observe higher values for the cross-validation criterion

CV (q, λ∗). For different q-values the selected genes seem to be in agreement and all are included

in the 50 genes which are selected for q = 3.

In Figure 7.4(c) the number of nonzero regression coefficients is plotted for each value of q.

Values of q which lead to some nonzero regression coefficients in the final model seem to perform

better than the q-values where zero genes are selected, according to the cross-validation curve.

The number of genes selected for the preferable value of q, q = 2.75 was found to be 21 genes.

By comparing Figure 7.4(b) and 7.4(c) one may see that the two curves show some similar

behavior for the same values of q. The cross-validation curve CV (q, λ) seems to increase when

the number of variables included in the model is larger than one. The figures, however, illustrate

that including too many genes in the model may not necessarily give a better performance. When

50 genes are included for q = 3, the value of the cross-validation curve decreases,thus q = 3 seems

to overfit the model.

When the weights were chosen and the parameters decided through cross-validation we fitted

the final model for which the gene identification numbers and gene symbols are listed in Table

7.4. In Figure 7.3(c) |ηj |q̂ are plotted for all genes j. In the plot the selected genes are marked

in red. The genes corresponding to large values of |ηj |q̂ in the plot are promoted in the analysis.

Genes could still be selected in the analysis if the gene expression shows a strong effect. In fact,

we see that not solely the genes with the largest estimated ridge regression coefficients γ̂j were

selected in the final analysis.

Two of the selected genes listed in Table 7.4 turned out to be the same gene. Some genes

were represented by different gene identifications in the data and therefore represented by two

different variables in the analysis. This concerned the two genes with gene symbols SRP72 and

CXCL1.

Comparing these results with the results of PS1, we may see that two of the genes selected for

PS2 also were selected for PS1. This applies to the two genes FNTA and MMP10. That the two

genes were selected in both penalization schemes gives even stronger reason to believe that the

two genes are related to survival. Studying the estimated individual penalty parameters for the

selected genes, we see that in neither of the two penalization schemes the two genes are among

the genes which were given very small penalties. Of the selected genes, these are the two which

got less help from the penalization. Studying Figure 7.3(c), it is obvious that there are several

genes corresponding to larger values of |ηj |q̂ that were not selected, and it is reason to believe

that the gene expressions for these genes do not explain survival and are therefore not selected.
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Results; Penalization scheme 2

Gene Symbol Gene Identification Probe Identification Chromosome cytoBand β̂j λ̂j

CSTA 25k 345957 RP11-299J3 3 3q21 0.007 7.853

TXK 148421 RP11-100N21 4 4p12 −0.241 2.717

KIAA1211 272531 RP11-738E22 4 4q12 0.024 1.646

PAICS 273546 RP11-738E22 4 4q12 0.066 1.646

SRP72 811842 RP11-738E22 4 4q11 0.466 1.646

SRP72 25k 814702 RP11-738E22 4 4q11 0.422 1.646

COX18 121420 RP11-447E20 4 4q13.3 0.013 2.030

ANKRD17 179143 RP11-447E20 4 4q13.3 0.051 2.030

RASSF6 282564 RP11-447E20 4 4q13.3 0.230 2.030

CXCL6 2315207 RP11-447E20 4 4q21 0.093 2.030

CXCL1 324437 RP11-447E20 4 4q21 0.244 2.030

CXCL1 25k 324437 RP11-447E20 4 4q21 0.012 2.030

MTHFD2L 701417 RP11-2G10 4 4q13.3 0.305 2.030

SDHA 80915 CTD-2265D9 5 5p15 −0.018 9.574

FNTA 530359 CTD-2115H11 8 8p11 0.022 10.221

MRPL21 809517 RP11-554A11 11 11q13.2 0.235 1.593

MMP10 25k 1384851 RP11-750P5 11 11q22.3 −0.064 5.717

EST 25k 324492 RP11-750P5 11 11q22.3 −0.044 5.717

HGS 25k 264646 RP11-475F12 17 17q25 −0.004 7.305

EST 144797 RP11-15H6 21 21q21.2 −0.098 2.298

MPP1 296880 RP11-296N8 X Xq28 −0.014 4.485

Table 7.4. Genes selected when ridge regression coefficients are used to determine the weights and

two-dimensional cross-validation is used to determine the tuning parameters q and λ.

This was important to see since it indicates that the method works well. A gene should not be

selected due to a small penalty alone, but due to the gene expression in combination with our

prior belief from aCGH data.

7.3. Penalization Scheme 3; Standard Deviation

The last penalization scheme is based on how much variation one observes for the copy number

data for a gene. This is as for the two other penalization schemes motivated from the fact that

copy number alterations can result in changes of the expression. A gene with a copy number that

is constant over the patients is therefore not considered as a possible driving force for cancer

progression due to changes in copy number. A gene which shows high variation in its copy

number can, however, be more probable of influencing survival through its gene expression. To

define the weights

wj =
1
|ηj |q

, (7.2)
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Systematic description of the procedure: Penalization Scheme 3

Assume data matrices X and Z, where X is a n1 × p matrix consisting of p gene expression

vectors for the n1 patients. Z is a n2 × r matrix which consist of the r copy number probes for

n2 patients. Assume also survival data for the patients.

(1) Determination of ηj :

a Calculate the empirical standard deviation σ̂ for each copy number probe.

b Let η̂j = σ̂j .

(2) Determination of λj :

a Define λj = λwj where wj = 1
|ηj |q and ηj may be replaced by η̂j .

b Estimate λ and q through two-dimensional cross-validation.

(3) Fit the model with X = (X1, ..., Xp) as covariates and the survival data as response.

That is, maximize

l(β) = lpl(β)− λ
p∑
j=1

wj |βj |,

where lpl(β) is the Cox log partial likelihood and λ and wj is estimated as described in

Step 2.

Output: p regression coefficients βj indicating the influence gene j has on survival.

Table 7.5. Summary of the procedure using Penalization Scheme 3. The penalty term will be

weighted such that the regression coefficients for genes corresponding to a high standard deviation in

Step 1, will have a larger probability of being estimated to be nonzero in Step 3.

a quantity ηj measuring the variability for the gene’s copy number is needed. One option is

to use the empirical standard deviation σ̂j for the copy numbers of gene j, hence let ηj = σ̂j .

The weights will be small when there is high variability in the copy number values for gene j,

and the gene will be given a smaller penalty which will encourage the gene to be selected in the

genewise lasso procedure. If there is low variability in the copy number, the gene will be given

a larger penalty.

To apply PS3 to the data the empirical standard deviations, σ̂j , were calculated for each probe

j and matched together with the corresponding gene expression. These are plotted in Figure

7.5(a). The standard deviations range from 0.17 to 0.94.

The figures illustrating the cross-validation results for PS3 look different than for the two other

penalization schemes. There was a need to expand the cross-validation grid for q, since zero

genes were selected when the grid was ranging from 0 to 5. By expanding the grid using q-values

ranging from 0 to 10, we ensured that the right q-value was selected in the cross-validation. When
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Figure 7.5. (a): Plot of the standard deviations σ̂j for each gene.

(b): Plot of |ηj |q̂ for each gene and the genes selected by the lasso are marked in red.

The genes are ordered by their position on the genome.

comparing the plots in Figure 7.6 with the two previous penalization schemes, remember that

the grid values for q range from 0 to 10. We first consider Figure 7.6(a) where the cross-validated

values of λ, λ∗q are plotted for the different values of q. We see that λ∗q does not decrease as fast

as for the two other penalization schemes. For q ≤ 3.25 the values of λ∗q exceeds 5. This is quite

large compared to the same values of q in the other penalization schemes. This indicates that

the introduction of weights with q ≤ 3.25 will not differentiate enough between the genes such

that a larger common penalty term is still needed. It is reason to believe that this is related to

the value of q and ηj , and some brief comments on this is given in the discussion ending this

chapter. For q > 3.25, λ∗q is on the same level as for the two other penalization schemes.
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Figure 7.6. Plots for cross-validation of q when applying Penalization Scheme1: Standard deviation.

For these values of q more genes were selected. The preferred value of q was found to be 6.25.

The cross-validation curve seems to behave properly, except for at q = 5.25. By first looking at

Figure 7.6(a) we see that there is a peak at q = 5.25. This indicates that a relatively high value

is chosen for λ∗q . It is difficult to point on any good reason for this to happen for this exact value

of q, but it may be due to some computational uncertainties in the cross-validation of λ.

The two plots in Figures 7.6(b)-(c) show much less variable results for different values of q, than

for the two previous penalization schemes. In PS1 and PS2 some variables were excluded and

some retained for different values of q. For PS3 the same genes seem to be selected for different

values of q.

The two-dimensional cross-validation procedure chose the optimal parameters q̂ = 6.25 and

global penalty parameter λ̂ = 0.4642. This corresponds to nine selected genes which are listed
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in Table 7.6. The weights are plotted in Figure 7.5(b) where the selected genes are marked in

red.

Results; Penalization scheme 3

Gene Symbol Gene Identification Probe Identification Chromosome cytoBand β̂j λ̂j

RCL1 125148 RP11-125K10 9 9p24.1-p23 −0.001 3.639

MLANA 266361 RP11-218I7 9 9p24.1 −0.401 3.642

GLDC 248261 RP11-106A1 9 9p24.1 0.011 3.642

YAP1 308163 RP11-21G19 11 11q22 0.037 0.694

BIRC3 201890 RP11-315O6 11 11q22 0.335 0.678

BIRC3 428231 RP11-315O6 11 11q22 0.631 0.678

BIRC2 34852 RP11-315O6 11 11q22 −0.382 0.678

MMP10 25k 1384851 RP11-750P5 11 11q22.3 −0.201 1.466

EST 25k 324492 RP11-750P5 11 11q22.3 −0.132 1.466

Table 7.6. Genes selected when empirical standard deviation is used to determine the weights and

two-dimensional cross-validation is used to determine the tuning parameters q and λ.

Another important aspect is related to using the standard deviation for the gene’s copy number

as a weight. One has to keep in mind that the negative copy numbers represent deletion and

the positive values amplifications. Normally the copy number is 2 in each cell, this corresponds

to 0 in our data. A deletion of DNA copy number corresponds to loss of genetic material,

whereas an amplification corresponds to gain. This is described in Chapter 2. A region could

therefore be high-amplified corresponding to a very high copy number. Since 2 is the normal

copy number, there is a lower bound for the copy numbers at -2, while there is no upper

bound for amplifications. Regions that are subject to high amplification will probably have

larger standard deviations as well. This indicates that high-amplified regions will be favored in

Penalization Scheme 3, since these regions correspond to high copy numbers and consequently

high variance in the data. The penalization scheme is, however, not completely biologically

wrong. The selected genes can be interpreted as being related to survival as a consequence of

high variance in the copy number, but one should have in mind that we probably loose genes

in regions subject to deletion, and that amplified regions will be favored. All genes selected

are within regions with high amplification, that is, with five or more copies. This verifies our

assumptions.

7.4. Biological Validation

Genewise lasso analyses were in the previous sections carried out using three different penal-

ization schemes. For each of the three penalization schemes a list of the selected genes was

presented. It is of interest to study these genes in a biological context and whether the selected
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genes are known or previously studied in relation to (cervix) cancer. In the following, a brief

review is given to relate some of the genes found in the analyses to other biological findings.

EFNA1, selected in the analysis with PS1, is a known oncogene and high expression of EFNA1

was associated with poor survival of patients with cervical cancer in Holm et al. (2008). Up-

regulation of PRDX5 is also previously associated with poor survival: Overexpression of PRDX5

protects apoptosis and loss of cellular function during oxidative stress (Yuan et al., 2004). For

another of the selected genes in PS1, upregulation is also associated with poor survival. In

Nagase et al. (1999) overexpression of FNTA promoted cell growth, and FNTA-overexpressing

cells formed tumors in nude mice. FNTA was also selected when using Penalization Scheme 2.

CSTA is selected by Penalization Scheme 2 and has been shown to be upregulated in metastatic

cervical tumors in Lyng et al. (2006). Upregulation of CSTA has also been correlated with poor

prognosis of breast cancer (Kuopio et al., 1998). Moreover down-regulation of BIRC2 which

was selected in Penalization Scheme 3, has been associated with poor prognosis of renal cell

carcinomas (Kempkensteffen et al., 2007).

These known results are in agreement with the results found using the genewise lasso procedure

when comparing the signs of the regression coefficient. An upregulation of a gene associated with

poor survival should have a positive regression coefficient and a downregulated gene associated

with poor survival should have a negative regression coefficient in the analyses. The description

of all selected genes are given in Appendix A. For most of the genes the function is in agreement

with the signs of our estimated coefficients, but some of the genes have not been extensively

studied.

7.5. Further Comments on the Weights

As briefly commented, effective values of q will depend on the size of the ηj ’s. We may study

the weight functions

wj =
1
|ηj |q

, (7.3)

to get a better understanding.

For Penalization Scheme 1 we observe 0 < ηj < 0.7. For Penalization Scheme 2 we observe

0 < ηj < 0.11, whereas for Weighting scheme 3 we observe 0.2 < ηj < 0.9. If we plot the weight

functions in (7.3) in the respective intervals and for different values of q we will experience that

different values of q are needed in the three different schemes, depending on the relevant intervals

for which we observe ηj .
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Figure 7.7. Plot of the weight functions in the relevant intervals for each penalization scheme.

We may see that different q-values is effective in different intervals of |ηj | and thus for the different

penalization schemes.

Plots of these functions for the three penalization schemes are given in Figure 7.7 (a)-(c). For

Penalization Scheme 1, q = 2, ..., 6 seem to be able to distinguish between high and low values

of ηj . With q = 1 the genes corresponding to very low values of ηj (zero/negative correlations),

will be given large penalties in the genewise lasso penalization. Increasing q to q = 5 seems to

give almost all genes a large penalty. As seen in the cross-validation results in Figure 7.22(c),

q = 5 will result in zero genes selected.

Figure 7.7(b) illustrates the choices of q for Penalization Scheme 2. Since the values of ηj are

distributed in a lower interval, we see that for q > 3, all genes will be given large penalties.

This is in coincidence with what we experienced in the cross-validation for Penalization Scheme

2 which failed for q > 3.5. This could be due to the fact that when q > 3.5 all genes will be

given a very large penalty as a consequence of the small values of |ηj |.

For the third penalization scheme we see from Figure 7.7(c), that the values of ηj are not as

close to 0 as in the other penalization schemes and larger values of q are needed to find effective

weights. This was found in the cross-validation as well, where the grid was expanded to range

from 0 to 10 instead of 0 to 5. Setting q = 1, 2, 3 for PS3 corresponds to giving many genes

small penalties and it seems that weights using larger q-values will be more effective.

Note that the histogram in the background of Figures 7.7 (a)-(c) illustrates how the ηj-values

are distributed in the relevant interval, but should not be confused to be related to the weight

functions other than by indicating how many genes will be given a small penalty and how many

will be given a large penalty. It is also important that these figures do not consider λ which also

will influence the penalization when it is estimated. For the two first penalization schemes, this
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is not of major concern since the estimated λ∗q for q ≥ 1 seem to be on fairly the same level.

The same can be seen for the estimated λ∗q values for q > 3.5 in the last penalization scheme.
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CHAPTER 8

Validation on New and Independent Data

In this chapter we evaluate the performance of the selected genes as biomarkers on a new and

independent data set. As is previously commented, especially in Chapter 4, a complex model

may overfit the data. This means that although variables are found to be important for the

data used to train the model, they may not perform well as predictors for new and independent

data.

We concentrate on the genes selected in the three penalization schemes of Chapter 7 and the

genes selected when correlation between gene expression and aCGH data was used to reduce

the data in Chapter 5. Gene expression data have been collected for 41 new and completely

independent cervical cancer patients and the validity of the genelists was evaluated by clustering

the patients into two groups based on the listed genes and testing whether survival in the two

groups is significantly different through a log-rank test.

8.1. Data

A new data set for 41 patients in an independent cohort was provided by the biologists at the

Radium Hospital. The data contain survival data and gene expression data for the 41 patients.

The expression data were measured by a totally different method than cDNA microarrays, called

Illumnia. See Lando et al. (2009) for a description of how the data were extracted by Illumnia.

In the data sets there are many isoforms for the same gene. We chose to include all of these in

the following analyses.

Tumor samples were collected at the time of diagnosis, and all patients received the same

treatment as the patients in the cohort studied in the previous chapters. The survival times

are the time between diagnosis, and relapse or cancer related death. Patients that have not

experienced a relapse of the disease, or are dead of other reasons not related to cancer, are

censored. In Figure 8.1 the observation times for all patients are plotted when ordered from

high to low. A summary of the survival data is also given in Table 8.1. We may see that for

about 30% of the patients there is observed a relapse of the disease. The survival times range

from 2.033 to 46.131 months. The median survival time is also reported, and we see that the

survival times are relatively much longer for the censored compared to the observed.
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Figure 8.1. Plot of the survival times for the patients in the new cohort.

Summary of Survival Data

Data
Number of Median Minimum Maximum

Patients Survival Time Survival Time Survival Time

All Patients 41 27.836 2.033 46.131

Observed 12 30.525 24.000 46.131

Censored 29 6.475 2.033 27.213

Table 8.1. Overview of the survival data for the new cohort.

8.2. K-Means Clustering

We wanted to investigate whether the selected genes were able to separate the patients into

groups for which the survival is significantly different. One way of doing this is to cluster the

patients into groups based on the gene expression data for the relevant genes. Various methods

for clustering the data exist. For simplicity we chose to cluster the patients into two groups

(imagine possibly one positive and one negative for tumor progression). This could for instance

be done by K-means clustering, which cluster the data into K groups. To obtain two groups

we set K = 2. Based on an initial set of K cluster centers, the K-means algorithm alternate

through the following steps until convergence is reached;

• for each data point, identify the closest cluster center (in Euclidean distance), and

assign the data point to that cluster,

• recalculate the cluster means based on the data points currently assigned to the cluster

and define these as the new cluster centers.

When the assignments do not change, the K groups are defined. The procedure is described

in more detail in for instance Hastie et al. (2001, chap. 14). The clustering was done with the

standard routine for K-means clustering in R; kmeans().
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K-means clustering was performed for the new cohort of 41 patients based on the genes selected

in the three penalization schemes in genewise lasso penalization and the genes selected in the

method using correlation (r > 0.4) to reduce the data set. For all four methods we were able to

separate the patients into two groups based on the selected genes and there are several patients

in both groups. Table 8.2 shows the number of patients in the two groups for each of the four

approaches.

Number of Patients

Method Group 1 Group 2

PS1 23 (4) 18 (8)

PS2 25 (3) 16 (9)

PS3 9 (2) 32 (10)

R04 23 (4) 18 (8)

Table 8.2. The number of patients in the two groups for each of the four approaches. The number

of observed cases of relapse in each group is given in parenthesis.

For each of the four approaches the gene expression values for the two groups are plotted in

Figure 8.2. Studying these plots one may see that the gene expression values for some genes

seem to differentiate better between the two groups than others. For instance, for PS1 we see

that the gene expression values of PRDX5 seem to be very different in the two groups, taking

on much larger values in Group 2. For the other genes it is harder to distinguish the possible

differences in the gene expression values by eye. For PS2 we see a similar difference between

Group 1 and 2 for the gene PAICS. For PS3 it is difficult to distinguish from the plot, but

BIRC2 may show some higher values for Group 1. For the reduction method where r > 0.4 we

see the same as for PS1. This is reasonable since PRDX5 is selected in both approaches, and is

the gene showing the largest difference in expression between the two groups.

8.3. Kaplan-Meier Analysis and Log-Rank Test

When the patients were clustered into two separate groups for each of the four approaches, we

wanted to look for differences in survival in the two groups. This could be done by estimating

the survival curves for the two groups by the Kaplan-Meier estimator and visualize these in

Kaplan-Meier plots. The Kaplan-Meier estimator was briefly discussed in Chapter 3. Kaplan-

Meier plots are shown for the groupings in each of the four approaches in Figure 8.3. In addition

a log-rank test was performed to test whether the groups show significant differences in survival.

The Kaplan-Meier plot for PS1 indicates a clear difference between the two estimated survival

curves. The p-value of the log-rank test is 0.0346 and indicates that the hazards of the two groups
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(d) Reduction, r > 0.4

Figure 8.2. Plots of gene expression data for when the patients are clustered in two groups by

K-means clustering.
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8.3. KAPLAN-MEIER ANALYSIS AND LOG-RANK TEST
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(d) Reduction, r > 0.4

Figure 8.3. Kaplan Meier plots for the groups in each of the four methods under study. The p-value

of the log-rank test is indicated.

are significantly different. For PS2 there is an even more obvious separation between the two

curves, indicating an even clearer difference in survival. The log-rank test implies significantly

different hazards for the two groups with p = 0.0031.

The last penalization scheme seems to show less difference in the survival curves, indicating that

the genes selected in PS3 are not able to separate the patients into two groups with significant

differences in survival (p=0.614). This is, however, in accordance with our suspicions in Chapter

7, where it was indicated that the penalization scheme favors genes with high amplification (high
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CHAPTER 8. VALIDATION ON NEW AND INDEPENDENT DATA

copy number), and that PS3 may not be as good an approach as the two previous penalization

schemes. In Figure 8.2(c) the gene expression data are plotted for the selected genes in PS3.

Compared to the other plots in Figure 8.2 it is more difficult to see differences in the expression

values between the two groups. Based on this and the results of PS3 in the previous chapter,

the poor performance may not come as a surprise.

The Kaplan-Meier plot for the method reducing the gene expression data based on correlation

(r > 0.4) is given in Figure 8.3(d). From the Kaplan-Meier plot and the indicated p-value there

is a significant difference in the survival of the two groups. The p-value is 0.0346. The Kaplan-

Meier plots for SP1 and the reduction method (r > 0.4) looks quite similar. Studying the plots

of the gene expression data in Figure 8.2, we see that the gene PRDX5 was selected in both of

these two approaches. By simply studying the plots, it seems that PRDX5 is important when

the genes are clustered into two groups since the expression values of PRDX5 are very different

in the two groups.

8.4. Discussion

The data set for the new cohort was generated and ready for analysis just at the end of this study,

which made it possible to do an independent testing. The results of Chapter 7 are considerably

strengthened by the validation results in this chapter. Based on the genes selected in PS1 and

PS2, we were able to divide the patients into two groups showing significantly differences in

survival. The validation indicated robust results even for the new data set which contained gene

expressions measured with a totally different teqhnique compared to the original gene expression

data.

Time permitting, there are, however, several things which could be analyzed with more care

when evaluating the performance in this chapter. More attention could be drawn to the method

used to cluster the patients. We used K-means clustering and chose to cluster the patients

into two groups by convenience. Other approaches, for instance hierarchical clustering, could

be applied and a more careful determination of different alternatives for distance and linkage

measures could be done, as well as methods for estimating the number of clusters in the data.

In the gene expression data in this chapter, different isoforms for the same gene was included in

the clustering. It could be investigated further which of these should be used in the clustering.

Whether or not other preprocessing procedures should be applied to the data should also be

evaluated to the full extent.

Although the validation approach discussed in this chapter could be improved as indicated above,

the approach is convenient since only gene expression data are available for the new cohort. If
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8.4. DISCUSSION

aCGH data were available, one way of validating the results on the new cohort could be to apply

genewise lasso penalization on the independent data set and check whether the same genes are

selected or not.
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CHAPTER 9

Concluding Remarks

Data integration is a highly actual issue in connection with high-dimensional data sets. This

is particularly relevant in genomics where different types of measurements are related to the

same biological features. Such relations should be taken advantage of, by combining different

data sources properly in a statistical model. The main objective of this thesis was to study the

possibilities of data integration for genomic high-dimensional data in a Cox regression setting and

to propose a novel method for data integration, aiming on selection of genes that are important

for survival. The proposed method is a new version of a shrinkage method in a regression setting

with p > n, which imposes individual amounts of shrinkage to the regression coefficients based

on external information from another data source.

A high-dimensional data set, The Radium Hospital Cervix Cancer Cohort Data, was described

in Chapter 2. This data set contains both gene expression and copy number data for cervix

cancer patients, along with survival data. Before presenting the method for data integration,

the statistical background theory was presented, and analyses using the standard lasso in a Cox

regression model without data integration were carried out. For the original data sets, the lasso

selected one gene for the gene expression data and one region for the aCGH data. As often,

when analyzing data where the number of explanatory variables is very large, a reduction of the

data set was needed prior to the analyses, even when the lasso or other shrinkage methods were

applied. Some simple approaches for reducing the number of covariates were studied, where

different criteria were applied for both data sets. A first step toward integration of the two data

sources was to select variables depending on the size of the correlation coefficients between gene

expression and aCGH data.

Both some of the simple reduction methods and the integrated reduction method did lead to

a higher number of selected genes by the lasso. This is, however, not necessarily an optimal

approach for analyzing the data. In many settings it is difficult to decide on an effective criterion

to exclude some variables from the analysis. One also has to make a choice of a threshold value.

These thresholds are often difficult to decide, and variables are either excluded or retained in the

model exclusively depending on the choice. To circumvent these issues, the method for genewise

lasso penalization was introduced in Chapter 6. The idea was to suggest a regression model

which integrates the information in the two data sources in a suitable way. By modulating the

penalization terms in a lasso regression model, the explanatory variables in the model could be
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CHAPTER 9. CONCLUDING REMARKS

given penalty terms specific for each regression coefficient. By introducing a Bayesian interpre-

tation, it was illustrated that the method could be viewed in an (empirical) Bayesian framework

where inclusion of external knowledge is crucial.

In Chapter 7 the proposed method for data integration was applied to the data. Three different

genewise penalization schemes were suggested. For the three different schemes, the method

selected three sets of genes which are considered as possible biomarkers for the disease. An

independent gene expression data set for 41 new patients was introduced in the last chapter

to test whether the selected genes were able to predict survival for new patients. The genes

selected in two of the penalization schemes (PS1 and PS2) and the method reducing the gene

expression data based on correlation (r > 0.4) with the copy number data, were able to divide

the patients into two groups showing significantly different survival.

There are several subjects for discussion connected to the data and the analyses performed,

and comments and discussions are given in the appropriate chapters. One issue which not has

been discussed previously is related to the data at hand and relatively low number of observed

cases of relapse (or cancer related death). There is observed a relapse for only 1/3 of the

patients, while 2/3 are censored. Most of the patients that are censored will most probably not

experience a relapse. This is specific for the disease under study, for which the patients most

probably experience a relapse of the disease within 30 months after the diagnosis/treatment.

When fitting the Cox-lasso model with a large number of covariates, it would of course had been

preferable to have a larger number of observed cases to improve the fit. The heavy censoring

also makes it difficult to divide the data into a training and a test set for validation, since the

fit would probably suffer from having too few observations in the training data. It was therefore

necessary to introduce a completely new and independent data set in order to evaluate the

prediction ability of the selected genes.

As mentioned in Chapter 5, there has been much less attention directed to aCGH data in

connection with survival, than there has been on gene expression data. Although the main

focus in this thesis has been to the analysis of the gene expression data, Chapter 5 also describes

some analyses done of the aCGH data. The analyses of the aCGH data did however not give

any clear conclusions. There are a number of reasons for this. First and foremost, the aCGH

data are very correlated, hence the covariates in the regression model will be very correlated.

This is not infeasible for the lasso method, but there are reasons for this to be ineffective. One

reason is that the lasso in blocks of correlated covariates, tends to select only one or some of

these variables, disregarding the rest of the block. In further analyses one may then be focusing

on “wrong” regions. One way of resolving this particular problem is as we did in Lando et al.

(2009). When the lasso analysis is done, one may find the correlation between the selected

regions and all other regions. Regions which are highly correlated with the selected regions,
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should then be studied with the same importance as the regions selected by the lasso. This

worked well in Lando et al. (2009), where both selected and correlated regions were studied

and found to be in correspondence with biological findings. Another option also discussed in

Chapter 5 is to cluster the data and fit the regression model with representatives of the clusters

as covariates. This did not work out in our analysis, but has been showed to be successful in for

instance Park et al. (2007).

Another aspect concerning the separate analysis of the aCGH data which could be of interest,

is the fact that the data in addition to report the relative gene dosage, reflects three different

states: “normal”, “loss” and “gain” in copy number. It could be interesting to do a regression

analysis defining categorical variables for the copy number data. This is also a common way of

analyzing variables in the Cox regression model if they do not show a log-linear effect on the

hazard. This may lead to a more effective analysis and may improve upon the results.

We have seen that the new method applied to the data studied in this thesis, was able to select

groups of genes which can be considered as possible new biomarkers of cervix cancer. The results

of Chapter 8 strengthen the importance of most of the selected genes even more, when validated

on an independent data set. Hence the advantages in regression analyses of genomic data are

obvious, and one could imagine various other high-dimensional settings where data integration

in (lasso) regression models is sensible, for instance in climate on finance research. Although

we use the term Genewise lasso penalization and discuss the method in a biological context

motivated from the data at hand, the method could as mentioned be applied to any other type

of data where external information on the covariates are available. The external information

could be additional data collected on the covariates or any expert knowledge indicating whether

some variables may be of larger importance than others.

In other applications, analyzing other than survival data, one may be interested in fitting other

types of regression models. The new method could just as well be transformed to apply in other

regression designs, for instance in the family of glm-models. In addition to applying the method

to other types of data and in other applications and regression models, the new idea of giving

each variable an individual penalty could also be used in combination with different penalty

terms, such as for example ridge regression.

For the data analyzed in this thesis, the results suggest that there might be something to gain

by applying Genewise lasso penalization. With the possible extensions to other scenarios and

regression models, as well as other penalization terms, there are several interesting topics for

further research. As was the motive for this thesis, it is reason to believe that an increased

interest of data integration will evolve in the future. The proposed method may then be an

appropriate suggestion when data integration in penalized regression models is desired.
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APPENDIX A

Lists of Selected Genes and Gene Ontology

A.1. Lists of Selected Genes

Univariate Cox Gene Expression Data, p ≤ 0.15

Probe Identification Gene Identification chromosome cytoBand β̂

RP11-34M16 307660 8 8q21 0.0094

Univariate Cox Gene expression data, p ≤ 0.1

Probe Identification Gene Identification chromosome cytoBand β̂

RP11-506C8 45542 2 2q33-q36 −0.0061
RP11-34M16 307660 8 8q21 0.0717

Univariate Cox Gene expression data, p ≤ 0.05

Probe Identification Gene Identification chromosome cytoBand β̂

RP11-223L18 200814 3 3q25.1-q25.2 0.0001
RP11-506C8 45542 2 2q33-q36 −0.0056
RP11-34M16 307660 8 8q21 0.0716

Univariate Cox Gene expression data, p ≤ 0.025

Probe Identification Gene Identification chromosome cytoBand β̂

RP11-99J16 740027 1 1q42.1 0.3716
RP11-343C9 139835 4 4p15.1 −0.0019
RP4-542G16 25k 845519 10 10p15.1 0.1428
RP11-223L18 200814 3 3q25.1-q25.2 0.2022
CTC-307M15 1473471 5 5q33.1 0.2321
RP11-105I12 212198 1 1q42.1 0.1704
RP11-738E22 811842 4 4q11 0.0343
RP11-506C8 45542 2 2q33-q36 −0.0732
RP11-34M16 307660 8 8q21 0.1191
RP11-36J15 120881 18 18p11.3 0.1377
RP11-141E12 25k 45376 18 18q21.1 −0.1863
RP4-669K10 509588 1 1p35.3 −0.0424
RP11-71A24 855624 9 9q21.13 0.2196

Correlation Gene expression data, r ≥ 0

Probe Identification Gene Identification chromosome cytoBand β̂

RP11-34M16 307660 8 8q21 0.0091
RP11-545E17 741497 9 9q34 0.0005

Correlation Gene expression data, r ≥ 0.4

Probe Identification Gene Identification chromosome cytoBand β̂

RP11-119E13 25k 309288 3 3q27 −0.2407
RP11-307C12 25k 1474684 1 1q21-q22 0.2511
CTD-2115H11 25k 530359 8 8p22-q11 0.2264
RP11-147G6 292519 11 11q13 0.4289
RP5-1027G4 731073 20 20p11.23 0.0460

Table A.1. Genes selected by the lasso after reducing the data by Cox univariate regression and by
correlation with aCGH data.
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A.2. Lists of Selected Regions

Variance aCGH data, 200 top ranked probes

Probe Identification chromosome β̂ Probe Identification chromosome β̂

RP11-81P15 3 -0.454 RP1-128M19 21 -0.306
RP11-48M17 9 -0.12 RP11-102E10 21 -0.158
RP11-750P5 11 -0.105 RP1-128M19 21 -0.306

Univariate Cox aCGH data, p ≥ 0.025

Probe Identification chromosome β̂ Probe Identification chromosome β̂

RP1-128M19 21 -0.417 RP11-118O11 3 -0.0222
RP11-172O13 7 0.167 RP11-154H23 3 -0.0176
RP11-344B7 18 0.0312 RP11-522N9 3 -0.0176
RP11-39D15 18 0.0307 RP11-252O10 3 -0.0176
RP11-51B9 18 0.0307 RP11-11L10 3 -0.0176
RP11-36J15 18 0.0307 RP11-220O14 3 -0.0176
RP11-99M10 18 0.0307 RP11-16M12 3 -0.0176
RP11-411B10 18 0.0307 RP1-62O9 17 0.109
RP4-635E18 1 -0.0754 RP11-81K2 17 0.109
RP4-539L13 1 -0.0754 RP5-875H18 17 0.109
RP11-196P5 1 -0.0754 RP11-94C24 17 0.109
RP4-636F13 1 -0.0754 RP11-506D12 17 0.101
RP11-738E22 4 0.975 RP11-481C4 17 0.101
RP11-81P15 3 -0.285 RP11-515O17 17 0.101
RP11-45D17 X -0.465 RP11-436F9 7 0.0375
RP4-783C10 1 -0.2 RP11-556N21 13 -0.0788
RP5-884C9 1 -0.2 RP11-111G7 13 -0.0787
RP11-113D13 1 -0.2 RP11-570F6 13 -0.0787
RP1-118J21 1 -0.2 RP11-44J9 13 -0.0787
RP1-179D3 X -0.163 RP11-125I23 13 -0.0787
RP3-463A9 X -0.163 RP11-153M24 13 -0.0787
RP11-24O17 3 -0.0179 RP11-40A8 13 -0.156
RP11-79C12 3 -0.0176 RP11-327P2 13 -0.156
RP11-152N21 3 -0.0176

Univariate Cox aCGH data, p ≥ 0.05

Probe Identification chromosome β̂ Probe Identification chromosome β̂

RP1-128M19 21 -0.272 RP3-463A9 X -0.0583
RP11-172O13 7 0.00139 RP11-556N21 13 -0.0422
RP11-344B7 18 0.0063 RP11-111G7 13 -0.0419
RP11-39D15 18 0.00679 RP11-570F6 13 -0.0419
RP11-51B9 18 0.00627 RP11-44J9 13 -0.0419
RP11-36J15 18 0.00627 RP11-125I23 13 -0.0419
RP11-99M10 18 0.00627 RP11-153M24 13 -0.0419
RP11-411B10 18 0.00627 RP11-40A8 13 -0.193
RP4-635E18 1 -0.0623 RP11-327P2 13 -0.193
RP4-539L13 1 -0.0623 RP11-108L12 11 0.348
RP11-196P5 1 -0.0623 GS1-77L23 9 -0.35
RP4-636F13 1 -0.0623 RP4-796I11 20 0.0122
RP11-738E22 4 0.704 RP1-232N11 20 0.0122
RP11-102E10 21 -0.0213 RP4-781B1 20 0.0122
RP11-81P15 3 -0.342 RP5-1005L2 20 0.0122
RP11-45D17 X -0.423 RP5-1049G16 20 0.0122
RP4-783C10 1 -0.0855 RP11-347D21 20 0.0122
RP5-884C9 1 -0.0839 RP1-155G6 20 0.0122
RP11-113D13 1 -0.0839 RP3-470L14 20 0.0122
RP1-118J21 1 -0.0839 RP4-791K14 20 0.0122
RP1-179D3 X -0.058 RP5-894K16 20 0.0122

Table A.2. Probes selected by the lasso when variance and univariate Cox regression is used as
selection criterion.
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A.3. Gene Ontology; Genes Selected by the Lasso

Univariate Cox Gene Expression data, p ≤ 0.15
Gene Identification Gene Symbol Gene Ontology

307660 FABP4 Fatty acid binding protein 4, adipocyte

Univariate Cox Gene Expression data, p ≤ 0.1
Gene Identification Gene Symbol Gene Ontology

45542 IGFBP5 Insulin-like growth factor binding protein 5
307660 FABP4 Fatty acid binding protein 4, adipocyte

Univariate Cox Gene Expression data, p ≤ 0.05
Gene Identification Gene Symbol Gene Ontology

200814 MME Membrane metallo-endopeptidase
45542 IGFBP5 Insulin-like growth factor binding protein 5
307660 FABP4 Fatty acid binding protein 4, adipocyte

Univariate Cox Gene Expression data, p ≤ 0.025
Gene Identification Gene Symbol Gene Ontology

740027 TSNAX Translin-associated factor X
139835 UGDH UDP-glucose dehydrogenase
845519 ATP5C1 ATP synthase, H+ transporting, mitochondrial F1 complex, gamma

polypeptide 1
200814 MME Membrane metallo-endopeptidase
1473471 KIAA0194 KIAA0194 protein
212198 TP53BP2 Tumor protein p53 binding protein, 2
811842 SRP72 Signal recognition particle 72kDa
45542 IGFBP5 Insulin-like growth factor binding protein 5
307660 FABP4 Fatty acid binding protein 4, adipocyte
120881 RAB31 RAB31, member RAS oncogene family
45376 MYO5B Acetyl-Coenzyme A acyltransferase 2
509588 TAF12 TAF12 RNA polymerase II,

TATA box binding protein (TBP)-associated factor, 20kDa
855624 ALDH1A1 Aldehyde dehydrogenase 1 family, member A1

Correlation Gene Expression data, r > 0
Gene Identification Gene Symbol Gene Ontology

307660 FABP4 Fatty acid binding protein 4, adipocyte
741497 LCN2 Lipocalin 2

Correlation Gene Expression data, r > 0.4
Gene Identification Gene Symbol Gene Ontology

309288 RFC4 Replication factor C (activator 1) 4, 37kDa
1474684 EFNA1 Ephrin-A1
530359 FNTA Farnesyltransferase, CAAX box, alpha
292519 PRDX5 Peroxiredoxin 5
731073 NAT5 N-acetyltransferase 5

Table A.3. Gene ontology of the genes selected by the lasso after reducing the data by Cox univariate
regression and by correlation with aCGH data.
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A.4. Gene Ontology; Genes Selected by Genewise Lasso Penalization

Genewise Penalization Analysis, Penalization Scheme 1
Gene Identification Gene Symbol Gene Ontology

1474684 EFNA1 Ephrin-A1
814508 PPP1R7 Protein phosphatase 1, regulatory (inhibitor) subunit 7
309288 RFC4 Replication factor C (activator 1) 4, 37kDa
530359 FNTA Farnesyltransferase, CAAX box, alpha
814636 SMARCA2 SWI/SNF related, matrix associated,

actin dependent regulator of chromatin, subfamily a, member 2
845519 ATP5C1 ATP synthase, H+ transporting,

mitochondrial F1 complex, gamma polypeptide 1
292519 PRDX5 Peroxiredoxin 5
1384851 MMP10 Matrix metallopeptidase 10 (stromelysin 2)

Genewise Penalization Analysis, Penalization Scheme 2
Gene Identification Gene Symbol Gene Ontology

345957 CSTA Cystatin A (stefin A)
148421 TXK TXK tyrosine kinase
272531 KIAA1211 KIAA1211 protein
273546 PAICS Phosphoribosylaminoimidazole carboxylase
811842 SRP72 Signal recognition particle 72kDa
814702 SRP72 Signal recognition particle 72kDa
121420 COX18 COX18 cytochrome c oxidase assembly homolog (S. cerevisiae)
179143 ANKRD17 Ankyrin repeat domain 17
282564 RASSF6 Ras association (RalGDS/AF-6) domain family member 6
2315207 CXCL6 Chemokine (C-X-C motif) ligand 6

(granulocyte chemotactic protein 2)
324437 CXCL1 Chemokine (C-X-C motif) ligand 1

(melanoma growth stimulating activity, alpha)
324437 CXCL1 Chemokine (C-X-C motif) ligand 1

(melanoma growth stimulating activity, alpha)
701417 MTHFD2L Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-like
80915 SDHA Succinate dehydrogenase complex, subunit A, flavoprotein (Fp)
530359 FNTA Farnesyltransferase, CAAX box, alpha
809517 MRPL21 Mitochondrial ribosomal protein L21
1384851 MMP10 Matrix metallopeptidase 10 (stromelysin 2)
324492 Transcribed locus
264646 HGS Hepatocyte growth factor-regulated tyrosine kinase substrate
144797 Transcribed locus
296880 MPP1 Membrane protein, palmitoylated 1, 55kDa

Genewise Penalization Analysis, Penalization Scheme 3
Gene Identification Gene Symbol Gene Ontology

125148 RCL1 RNA terminal phosphate cyclase-like 1
266361 MLANA Melan-A
248261 GLDC Glycine dehydrogenase (decarboxylating)
308163 YAP1 Yes-associated protein 1, 65kDa
201890 BIRC3 Baculoviral IAP repeat-containing 3
428231 BIRC3 Baculoviral IAP repeat-containing 3
34852 BIRC2 Baculoviral IAP repeat-containing 2
1384851 MMP10 Matrix metallopeptidase 10 (stromelysin 2)
324492 Transcribed locus

Table A.4. Gene ontology of the genes selected by the Genwise lasso penalization procedure.
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APPENDIX B

Regularity Conditions

The theory of counting processes is used to describe the regularity conditions needed in Section

6.2. We define Ni(t) = I{Ti ≤ t, Ti ≤ Ci} ad Yi(t) = I{Ti ≥ t, Ci ≥ t} and allow for the

covariates to be time dependent, that is x(t) depending on t. We concentrate on the finite time

interval [0, τ ] and assume without loss of generality that τ = 1.

Conditions.

A
∫ 1

0 h0(t)dt <∞
B The processes x(t) and Y(t) are left-continuous with right hand limits, and

P{Y (t) ∀ t ∈ [0, 1]} > 0.

C There exists a neighborhood B of β0 such that

sup
t∈[0,1],β∈B

{Y (t)x(t)Tx(t) exp(βTx(t))} <∞.

D Define

s(0)(β, t) = EY (t)exp(βTx(t))

s(1)(β, t) = EY (t)x(t)exp(βTx(t))

s(2)(β, t) = EY (t)x(t)x(t)T exp(βTx(t)),

where s(0)(·, t), s(1)(·, t) and s(2)(·, t) are continuous in β ∈ B, uniformly in t ∈ [0, 1].
s(0), s(1) and s(2) are bounded on B× [0, 1]; s(0) is bounded away from zero on B× [0, 1].
The matrix

I(β0) =
∫ 1

0
v(β0, t)s(0)(β0, t)h0(t)dt

is finite positive definite where

v(β, t) =
s(2)

s(0)
− s(1)

s(0)

s(1)

s(0)

T

.

Conditions A-D entail that the local asymptotic quadratic property for the partial likelihood is

guaranteed, which implies asymptotic normality of the maximum partial likelihood estimates.
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APPENDIX C

R-Scripts

All R-scripts are available at: http://folk.uio.no/linncb/R-scripts/.

The R-script performing genewise lasso penalization is a modified version of

computeTuningParameterLasso() of Bøvelstad et al. (2007). The source code of Bøvelstad et al.

(2007) can be found on http://www.med.uio.no/imb/stat/bmms/software/microsurv/. The

script genewiseLassoPenalization() performs the two-dimensional cross-validation for two

tuningparameters q and λ.

#==========================================================================================#

genewi s eLas soPena l i za t i on <− function ( d a t a f u l l , weighttype , response ){
l ibrary ( glmpath )

#i n i t i a l parameters s e t by the d e f a u l t v a l u e s in the program of Bøve l s tad e t a l . (2007)

K = 10

M = 1000

maxsteps = 1000

n = nrow( d a t a f u l l )

p = ncol ( d a t a f u l l )

b l o ckS i z e = n/K

lambda .max = 10ˆ6

log . lambda .max = log ( lambda .max)

log . lambda .min = −100

log . lambda . vec = seq ( log . lambda .min , log . lambda .max, length . out=M)

lambda . vec = exp( log . lambda . vec )

t i m e f u l l = as . numeric ( response [ , 1 ] )

s t a t u s f u l l = as . numeric ( response [ , 2 ] )

l o g l i k = rep (0 ,M)

qgr id <− seq (0 ,10 , 0 . 25 )

CVlambda <− rep (0 , length ( qgr id ) )

CVbeta <− rep (0 , length ( qgr id ) )

CVcurve <− matrix (0 ,nrow = length ( qgr id ) , ncol = length ( l o g l i k ) )

# Two−dimensional Cross−Val ida t ion o f q and lambda

for ( j in 1 : length ( qgr id ) ){
q <− qgr id [ j ]

l o g l i k = rep (0 ,M)

print ( paste ( "q= " , q ) )

source ( "defineWeights.R" )

w <− def ineWeights ( weighttype )

wj <− abs (w)ˆq

weighted . genedata <− matrix (0 , ncol=p ,nrow=n)

for ( i in 1 : length ( wj ) ){
weighted . genedata [ , i ] <− d a t a f u l l [ , i ] / (abs ( wj [ i ] ) )

}
print (dim(weighted . genedata ) )

Xweighted <− matrix ( as . numeric ( as . matrix (weighted . genedata ) ) ,

ncol = ncol (weighted . genedata ) , byrow = F)

print (dim( Xweighted ) )

Z . a l l = l i s t ( x=Xweighted , time=t i m e f u l l , status=s t a t u s f u l l )
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rm( Xweighted )

for ( k in 1 :K){
print ( paste ( "k=" , k ) )

t e s t = ( ( k−1)∗ b lo ckS i z e +1):( k∗ b lo ckS i z e ) ;

t r a i n = ( 1 : n)[− t e s t ]

data . t r a i n = weighted . genedata [ t ra in , ]

time = as . numeric ( response [ t ra in , 1 ] )

status = as . numeric ( response [ t ra in , 2 ] )

Z = l i s t ( x=data . t ra in , time=time , status=status )

rm(data . t ra in , time , status )

f i t = coxpath (Z , s tandard i z e=FALSE,max. s t ep s=maxsteps )

l = which( lambda . vec<=max( f i t $lambda ) & lambda . vec>=min( f i t $lambda ) )

lmin = min( l ) ;

lmax = max( l ) ;

i f ( lmin>1) l o g l i k [ 1 : ( lmin −1)] = NA

l o g l i k . t r a i n = predict . coxpath ( f i t , Z , s=lambda . vec [ l ] , type="loglik" ,mode="lambda" )

l o g l i k . a l l = predict . coxpath ( f i t , Z . al l , s=lambda . vec [ l ] , type="loglik" ,mode="lambda" )

l o g l i k [ l ] = l o g l i k [ l ]+ l o g l i k . al l− l o g l i k . t r a i n

l o g l i k [ ( lmax +1):M] = l o g l i k [ ( lmax +1):M]+ l o g l i k . a l l [ lmax−lmin+1]− l o g l i k . t r a i n [ lmax−lmin +1]

}
rm( f i t , Z)

#f i t f i n a l model

f i t . a l l = coxpath (Z . al l , s t andard i z e=FALSE,max. s t ep s=maxsteps )

lambda = min( lambda . vec [ which .max( l o g l i k ) ] ,max( f i t . a l l $lambda ) )

#r e s u l t s

opt . beta=predict . coxpath ( f i t . al l , Z . al l , s=lambda , type = "coef" ,mode="lambda" )

beta = t ( as . vector ( opt . beta ) )

CVlambda [ j ] <− lambda

CVcurve [ j , ] <− l o g l i k

CVbeta [ j ] <− length (which(beta !=0) )

#w r i t e r e s u l t s to f i l e

f i l e 1 = paste ( weighttype , "/ResultaterCrossVal " , sep = "" )

f i l ename = paste ( f i l e 1 , j , sep="" )

save ( lambda , beta , CVlambda , CVcurve , CVbeta , f i l e = paste ( f i l ename , ".RData" , sep = "" ) )

rm( l o g l i k , f i t . al l , Z . a l l )

}
}

#===========================================================================================#

def ineWeights<−function ( method ){
i f ( method == "Spearman" ){

print ( paste ( "Weighttype: " , method ) )

load ( "SpearmanWeights.RData" )

wj <− 1/gamma

} else i f ( method == "StandardDeviation" ){
print ( paste ( "Weighttype: " , method ) )

load ( "SDWeights.RData" )

wj <− 1/gamma

} else i f ( method == "Ridge" ){
print ( paste ( "Weighttype: " , method ) )

load ( "RidgeWeights.RData" )

wj <− 1/gamma

}
return ( wj )

}
#===========================================================================================#

102



In order to run the genewise lasso penalization procedure on the data, the two data sources have

to be matched, such that the variables are given the correct weights in the penalization. The

script MATCHING.R below, illustrates how this was done on the data studied in this thesis.

#==========================================================================================#

#MATCHING.R

#read in data :

#response

response <− read . table ( "Respons genekspr.txt" , dec = "," , header = T)

responseCopy <− read . table ( "Respons kopitall.txt" , dec = "," )

#f i l e s conta in ing the matching o f the gene i d e n t i f i c a t i o n s and probe i d e n t i f i c a t i o n s

match <− read . csv2 ( "cDNA m genomiskID.csv" , s t r i ng sAsFac to r s=F)

matchGENE <− match [ , 2 ]

matchCOPYNUMBER <− match [ , 1 ]

#Informat ionvec tor f o r copy number data

#( probe i d e n t i f i c a t i o n s indexed as the order ing in the d a t a f i l e )

probeIn fo <− read . csv ( "probeInfo.cvs" , s t r i ng sAsFac to r s = F)

probeID <− probeIn fo [ , 1 ]

#Information v e c t o r f o r genedata

#( gene i d e n t i f i c a t i o n s indexed as the order ing in the d a t a f i l e )

gene In fo <− read . csv ( "probeInfo genekspr.cvs" , s t r i ng sAsFac to r s = F)

geneID <− gene In fo [ , 1 ]

#the data are contained in two separa te f i l e s ;

# ‘ ‘ genedata . csv ’ ’ and ‘ ‘ K o p i t a l l d a t a . csv ’ ’

#genedata

geneexpr <− read . csv ( "genekspr imp.csv" )

genedata <− t ( geneexpr )

#copy number data

copin <− read . csv ( "Kopitalldata.csv" )

copydata <− t ( copin )

#in some s e t t i n g s we need to remove the p a t i e n t s

#which are not inc luded in both d a t a s e t s

#( f o r example when c o r r e l a t i o n s between the data are c a l c u l a t e d )

nGene <− 1 :nrow( genedata )

rmGene <− c ( nGene [rownames( genedata)== "MM051" ] , nGene [rownames( genedata)== "MM058" ] ,

nGene [rownames( genedata)== "MM067" ] , nGene [rownames( genedata)== "MM085" ] ,

nGene [rownames( genedata)== "MM155" ] )

nCopy <− 1 :nrow( copydata )

rmCopy <− c (nCopy [rownames( copydata ) == "MM016" ] , nCopy [rownames( copydata ) == "MM045" ] )

#Matching o f the two data sources ;

#f i n d the genes and copy numbers f o r which we have

#measurements from both data sources a v a i l a b l e .

index <− rep (0 , length (matchCOPYNUMBER) )

for ( i in 1 : length ( probeID )){
index [matchCOPYNUMBER == probeID [ i ] ]= i

}

index2 <− rep (0 , length (matchGENE) )

for ( i in 1 : length ( geneID )){
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index2 [ matchGENE == geneID [ i ] ] = i

}

#The macthing ( geneID , probeID , chrom , cytoband ) i s kep t in the matrix MATCH

check <−rep (0 , length ( index ) )

for ( i in 1 : length ( index ) ){
check [ i ] <− index [ i ] !=0 && index2 [ i ] != 0

}
MATCH <− match [ check==1, 1 : 4 ]

MATCH

#s e l e c t the c o r r e c t measurements and make gene data se t s , ready f o r a n a l y s i s

Indexgenes <− rep (0 , nrow(MATCH) )

for ( i in 1 : length ( geneID )){
Indexgenes [MATCH[ ,2]== geneID [ i ] ] = i

}
gendata2 <− genedata [−rmGene , Indexgenes ] #f o r c o r r e l a t i o n

rmrespons <− response [−rmGene ]

gendata3 <− genedata [ , Indexgenes ] #f o r r e g r e s s i o n a n a l y s i s

#s e l e c t the c o r r e c t measurements and make copy number data se t s , ready f o r a n a l y s i s

Indexcopy <− rep (0 , nrow(MATCH) )

for ( i in 1 : length ( probeID )){
Indexcopy [MATCH[ ,1]== probeID [ i ] ] = i

}
copydata2 <− copydata [−rmCopy , Indexcopy ] #f o r c o r r e l a t i o n

copydata3 <− copydata [ , Indexcopy ] #f o r determinat ions o f we igh t s

#==========================================================================================#
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