
Risk Measures and Di�erential Games

by

Sven Haadem

for the degree of

Master of Science

(Master of Modeling and Data Analysis)

Faculty of Mathematics and Natural Sciences

University of Oslo

May 2009





Abstract

We study risk measures in relation to stochastic di�erential games in a Lévy -market. We mini-
mize a risk measure to get a min-max problem. The problem is to �nd an optimal solution for a
convex risk measure in zero-sum games with a 3-dimensional controller. To verify a solution we
develop a Hamilton-Jacobi-Bellman-Isacs (HJBI) equation and prove it. Moreover we provide a
Nash-equilibrium game that includes scenario optimization. These results are illustrated by en-
tropic risk measure and more general cases. Further, a HJBI equation for dynamic risk measures
are shown and proven. We extend our convex risk measure model to include stopping control.
Last, a theorem for viscosity solutions are shown and proven.
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CHAPTER 1

INTRODUCTION

�Uncertainty and mystery are energies of life. Don't let them scare you unduly,

for they keep boredom at bay and spark creativity� - R. I. Fitzhenry

L
ife is unpredictable and we forced to accept the fact that the future is uncertain. The ability

to recognize, quantify and calculate risk has proven vital for the evolvement and survival of

mankind. We are daily dependent on our ability to calculate risks. You may for example decide

that the risk of running a red light is acceptable if you are in a hurry. As well as being able to

change our lives in matter of second's, uncertainty are one of the elements that provide meaning

to our lives. Uncertainty fascinates and games of chance have existed almost as long as human

civilization. Since uncertainty is such a vital part of our lives we need to be able to understand,

represent and quantify it.

Measuring and managing risks is one of the key disciplines in the �nancial world. The ability to

analyze and measure a positions exposure to risk provides not only managers, but also regulators,

with powerful information and insight. Risk management provides methods to determine how

to best handle di�erent risk exposures and identify acceptable positions.

The last year or so has shaken the very foundation of modern economics. Keynesian economics

has convinced many right-winged, no-market intervention fundamentalist. Henry Paulson, who

was a �rm believer in non-market intervention, ended up as the treasury secretary that has

performed the greatest market interventions in the history of the US. The bank run that led to

the fall of Northern Rock, the acquiring of Bear Stearns by JP Morgan Chase, the overtaking of

Fannie Mae and Freddie Mac by the U.S. government, the fall of Lehman Brothers, the sell-o�
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2 CHAPTER 1. INTRODUCTION

of Merrill Lynch, the collapse of Iceland and the saving of A.I.G. started a chain of events that

would a�ect every aspect of the economy. It was a liquidity crisis that required an injection of

vast amount of capital into the �nancial market by institutions like the United States Federal

Reserve, Bank of England and the European Central Bank. A $700 billion bailout bill was

rushed into law by the United States government, and billions more pumped into struggling

companies. Several banks have, in e�ect, been nationalized (Northern Rock was nationalized by

an embarrassed British government) real estate prices are tumbling and it is harder to secure a

home loan. This is the reality and everyone is asking, or should be asking; what went wrong?

The constant search for higher yields has lead to a high demand for exotic instruments. This has

resulted in a rapid development of complex and often poorly tested structured products. Using

these new mathematical models rare events could be seen as �Black Swans�. Financial risks were

�normalized� and suddenly rare events were non-existing. The industry wide embracement of

David X. Li's Gaussian copula model function, that assumed that the price of Credit Default

Swaps was correlated with mortgage backed securities, strengthened this camou�age. All of this

allowed US banks to lower their requirements for sub-prime loans. �Ninjas�, people with �no

income, no job or assets�, were generously given loans even though they had no hope of repaying

them. These loans were then packaged into collateralized debt obligations (CDO's) and sold o�.

This took the loans o� the bank's balance sheets and the banks were able to lend out even more

money. As it turns out this complex �nancial instruments constructed by the large investment

banks and other �nancial institutions were economic bombs waiting to go o�.

In an extensive article in the New York Times, January 4. 2009, Joe Nocera [2009] discussed the

role risk measures, especially value at risk (VaR), played in the �nancial crisis. As he states: �the

fact that risk measures, such as VaR, do not measure the possibility of an extreme event was a

blessing to the executives. It made the black swans all the easier to ignore.� Everyone slept easy

as long as the VaR value was acceptable. Some people, like Taleb [2007], tried to point out our

blindness with respect to randomness. But few stopped to listen.

Regulators such as the U.S. Securities and Exchange Commission and the Financial Services

Authority are supposed to put a restrain on greedy executives, investors, analyst and other

�nancial players. They seemed to trust that the banks and investment �rms were run by people

that understand and adhered to the �nancial risks. With all the mathematical formulas, complex

instruments and leveraged deals they trusted them to have control. But it may seems like many of

these institutions were driven by the search for bonuses and higher returns and that the concept

of social responsibility and risk management were neglected or had a low priority. It is now

painfully clear that the risks in the largely unregulated collateralized debt obligation and credit

default swap markets was catastrophically underestimated. As the �nancial system is based on

credit creation this was a high stake game. But it was in everyone's interest to pretend the boom

could go on forever, and that securitization had taken the risk out of lending money. As the

former Citigroup chief executive Charles Prince said, �As long as the music is playing, you've got

to get up and dance.�
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Finally, regulators were left in no doubt of the perils hiding in the �nancial system. It became

unavoidable obvious that the risks taken by these banks and investment �rms were excessive and

non-neglectable. After the collapse of Lehman Brothers institutions all over the world realized

the scale of the threat. They promptly initiated stimulations to the economy that today seems

to have had a great e�ect.

Recent events are blamed on an extremely indebted US economy. It seems that, even with

precautions like the Glass-Steagall Act, history keeps repeating itself and debt de�ations are an

unavoidable �aw within the �nancial system.

In light of the recent event, risk management has proven more valuable than ever before. It

has shown that it is of great importance for banks and investment �rms to review their risk

management procedures and controls. The new market conditions and FSA expectations require

that the risk frameworks must be reconsidered and adapted to re�ect the new economic reality.

Risk measures, such as VaR the most commonly used in the industry, is not structured in an

axiomatic theory and do not adhere to a mathematic approach. A well-de�ned mathematically

theory for risk measures that adheres to �nancial reality is vital. This axiomatic way of de�ning a

risk measure is provided in the papers by Artzner et al. [1997], Artzner et al. [1999] and Delbaen

[2000]. This represented a breakthrough in �nancial mathematics as well as risk management.

It was the �rst attempt at a de�nition of a quantitative theory. To establish this mathematically

sound approach to risk measures Artzner et al. [1999] list four axioms that are inspired by a

supervisors point of view and based on �nancial theory;

(I) Translation invariance. For all x ∈ X and all real numbers α, ρ(x+ αr) + ρ(x)− α,
(II) Sub additivity. For all x1 and x2 ∈ X, ρ(x1 + x2) ≤ ρ(x1) + ρ(x2),

(III) Positive homogeneity. For all λ ≥ 0 and all x ∈ X, ρ(λx) = λρ(x),

(IV) Monotonicity. For all x and y ∈ X ′ with x ≤ y,ρ(y) ≤ ρ(x).

While these are reasonable assumptions, it can be argued that a position that is large relative

to the market could be less liquid, and therefore more risky, than that it of smaller positions.

Föllmer and Leukert [1999] took this into account and constructed the convex risk measure. The

idea was thoroughly de�ned by Föllmer and Penner [2006], Föllmer and Schied [2002], Föllmer

and Schied [2002] and Frittelli and Gianin [2002]. Convex risk measures were de�ned by replacing

the requirement of sub additivity in coherent risk measures with the requirement;

(II') Convexity. ρ(λx+ (1− λ)y) ≤ λρ(x) + (1− λ)ρ(y) for any λ ∈ [0, 1].

Risk managers work in a time-changing world, thus a static measure seems restrictive. Föllmer

and Leukert [1999] gives a construction for a dynamic risk measure that takes into account the

�exibility and dynamics of time. Before we give a thorough review of the existing work on the

subject of risk measures in chapter 3, we will in chapter 2 go through the necessary notations

and mathematical background.
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Finding an optimal investment strategy for an investor with a given utility function and a �xed

initial endowment is s well studied and frequent problem in �nancial mathematics. To solve

optimization problems one could try �nd a set of necessary conditions that an optimal solution

must satisfy, but this is often very complex and di�cult to solve. An important result given by

Pontryagin is the maximum principle. This principle states that any optimal control must solve

the Hamiltonian system (a forward-backward di�erential equation) and a maximum condition for

the function called the Hamiltonian. Another powerful approach for optimal control problems

is the method of dynamic programming. This approach was pioneered by R. Bellman in the

1950's. He considered a family of optimal controls with varying initial times and states to give

a relationship among them known as the Hamilton-Jacobi-Bellman equation (HJB-equation).

The HJB-equation is a nonlinear second-order partial di�erential equation (in the stochastic

case). This is a veri�cation technique which provides a solution to the whole family of problems.

Bellman [1957][p.83] describes the principle of optimality as,

�An optimal policy has the property that whatever the initial stat and initial

decision are, the remaining decisions must constitute an optimal policy with

regard to the state from the �rst decision.�

Optimizing a portfolio is one of the classical problems in �nance. Merton applied classical

stochastic control methods to reduce the portfolio problem to a matter of solving a HJB-equation

using dynamic programming. This has later been extended to more realistic models like the jump-

di�usion model. Inspired by the game theoretic approach in Mataramvura and Øksendal [2008]

we will investigate the problem of optimizing a performance functional which extends on risk

measures. This leads to a min-max problem of stochastic optimization. Then our problem will be

to �nd an optimal portfolio process while the market controls the scenarios and a control process.

This results in an asymmetric game with a performance functional that extends the case of convex

risk measures, and where the solution is characterized by a HJBI equation. The relation from risk

measures to game theory has been investigated by Delbaen [2002]. In chapter 4 we show a zero-

sum stochastic di�erential game between an agent and a market, this extends Mataramvura and

Øksendal [2008] to a 3-dimensional case. We establish a connection between the two dimensional

and the three dimensional problem. Moving on from zero-sum games to Nash-equilibrium we

will, in chapter 5, construct and prove a HJBI equation for a Nash-equilibrium. This is an

extension from the case in Mataramvura and Øksendal [2008] to a setting for two players where

the market plays a role through scenarios, a scenario driven Nash-equilibrium HJBI. Next, in

chapter 6, we will step out of the static setting and show and prove a HJBI equation for dynamic

risk measures. Our problem will be to optimize a dynamic risk measures constructed from a

g-expectation.

Optimal stopping problems are a class of mathematical problems in which a player may stop a

randomly moving process, such as a Levy process, in order to claim a prize equal in value to

some prede�ned function of the random process at the time of stopping. A fundamental problem

is to establish an optimal stopping strategy according to some optimization criteria. To allow
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our model to extend to optimal stopping problems, we will in chapter 7 include stopping control.

This is an useful extension of our model and has many real-life applications.

In the classical dynamic programming we require that the HJB equation admits a classical

solution, i.e. a smooth solution. As this is not always the case Crandall and Lions introduced

the viscosity solution in the 1980's. The requirement of a smooth solution is replaced by a

super/sub di�erential. Under some mild conditions the uniqueness of the solution is guaranteed.

In chapter 8 we show and prove that the value function Φ under some conditions is a viscosity

solution to our HJBI equation.

In the last chapter we will review our �ndings and discuss the vital parts of our paper. Finally

we look at some possibilities for further research.





Part 1

THEORETICAL BACKGROUND AND

NOTATION





CHAPTER 2

NOTATION AND MATHEMATICAL

BACKGROUND

I
n this chapter we review notations and technical language used throughout this paper. We will

construct our market model and look at the basics of a Lévy market. Further, we will discuss

the theory behind backward di�erential equations which will prove useful for us in chapter 6.

2.1. De�ntions

First, let us de�ne a topological vector space as in Pedersen [1995], de�nition 2.4.1;

Definition 2.1.1. A topological vector space is a vector space X equipped with a Hausdor�

topology such that the vector operations are continuous, i.e.

(x, y)→ x+ y,

(α, x)→ αx,

are continuous with respect to the product topology.

In this paper we let X be a normed topological vector space, understanding that X represents the

space of �nancial positions who's risk we need to measure. We let X ′ be the dual space (which

is a Banach space, B(X,R) ) consisting of real functionals on X with the weak *-topology (2.4.2

in Pedersen [1995]). Thus x ∈ X represent the portfolios pro�t and loss statements (P&L).

However, with some abuse of terminology x could represent the portfolios themselves. We let X ′

9



10 CHAPTER 2. NOTATION AND MATHEMATICAL BACKGROUND

be the space of our risk measures. Our state space will be the d-dimensional Euclidean space

equipped with the σ-�eld of Borel sets. We will assume that

X = Lp(Ω,F ,P); 1 ≤ p ≤ +∞

X ′ = Lq(Ω,F ,P); 1 ≤ q ≤ +∞.

One example would be to let p and q be conjugate (1
p + 1

q = 1) and τ = σ(Lp, Lq). In

this paper we will consider p = 2 and de�ne a scalar product between two elements in X as

(x, y)L2 := E[xy] so that this becomes a Hilbert space. We say that two variables x, y in X is

orthogonal if (x, y)L2 = 0. Let X ′+ be the set of all positive bounded linear functionals on X,

X ′+ ≡ {x′ ∈ X ′|x′(x) ≤ 0∀x ∈ X : x ≤ 0}

For a �xed point ω ∈ Ω, t → xt(ω) represents a sample path associated with ω. We will often

use the notion of càdlàg and càglàd processes. For two elements in X, let

f(t−) = lim
s→t,s<t

f(s),

and

f(t+) = lim
s→t,s>t

f(s).

If a function f : [0, T ]→ Rd is right-continuous with left limits, e.g for each t ∈ [0, T ] f(t−),f(t+)

exists and f(t) = f(t−), we denote

∆f(t) = f(t)− f(t−)

as the jump of f at t.

Definition 2.1.2. We say a process X is càdlàg if it is right-continuous with left limits, and

that a process X is càglàd if it is left-continuous with right limits.

Definition 2.1.3. We denote the space D(E,M) of all càdlàg process from E to M the Sko-

rokhod space.

For any F ⊆ E, we let
wf (F ) := sup

s,t∈F
|f(s)− f(t)|

and, for δ > 0, de�ne the càdlàg modulus as

$′f (δ) := inf
Π

max
1≤i≤k

wf ([ti−1, ti)),

with maxi(ti − ti−1) < δ. It can be shown that f is càdlàg if and only if $′f (δ) → 0 as δ → 0.

Now let Λ denote the set of all strictly increasing, continuous bijections from E to itself and let

‖f‖ := sup
t∈E
|f(t)|

denote the uniform norm on functions on E. We then de�ne the Skorokhod metric σ on D by

σ(f, g) := inf
λ∈Λ

max{‖λ− I‖, ‖f − g ◦ λ‖},
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where I : E → E is the identity function. The topology Σ generated by σ is called the Skorokhod

topology on D.

The space C of continuous functions on E is a subspace of D. Although D is not a complete space

with respect to the Skorokhod metric σ, there is a topologically equivalent metric σ0 to which D

is complete. With respect to either σ or σ0, D is a separable space. Thus, Skorokhod space is a

Polish space, see Billingsley [1995] and Billingsley [1999].

The choice between càdlàg and càglàd is based on the jump time. Since we for a càdlàg process

de�ne f(t) as the value after the jump it is unpredictable. On the other hand, the jump of a

càglàd process is foreseeable and can be predicted by following the path of f. We will in this

paper encounter predictable processes. While adapted processes are a function of time for �xed ω

we will consider both time and randomness by looking at X as a function on [0, T ]×Ω. A natural

σ-algebra would be the algebra generated by the section A × B ∈ [0, T ] × Ω. In this approach

we may end up with the previously de�ned non-anticipating càdlàg process as non-measurable.

To solve this we take the σ-algebra generated by the non-anticipating càdlàg processes.

Definition 2.1.4 (Optional processes). The σ-algebra A generated on [0, T ] × Ω by all non

anticipating càdlàg processes is called the optional σ-algebra. A process x : [0, T ]→ Rd which is

measurable with respect to A is called an optional process.

By de�nition, any non anticipating càdlàg process is optional.

Definition 2.1.5 (Predictable processes). The σ-algebra P generated on [0, T ] × Ω by all non

anticipating left continuous processes is called the optional σ-algebra. A process x : [0, T ]→ Rd

which is measurable with respect to P is called an predictable process.

We often need to compare to processes to see if they are the same. For two stochastic processes

we say they are the same if Xt(ω) = Yt(ω) for all t ∈ T . This is a very strong condition so we

have some weaker concepts:

Definition 2.1.6. We say Y is a modi�cation of X if, for every t ∈ T we have that

P [Xt = Yt] = 1.

Definition 2.1.7. X and Y have the same �nite-dimensional distribution if for any integer n ≥ 1,

0 ≤ t1 < · · · < tn <∞, and A ∈ B(Rnd), we have

P [(Xt1, . . . , Xtn) ∈ A] = P [(Yt1, . . . , Ytn) ∈ A].

Definition 2.1.8. X and Y are indistinguishable if almost all their sample paths agree, i.e.

P [Xt = Yt; ∀0 ≤ t <∞] = 1.

Where the third de�nition is the strongest one and imply the �rst one, which again implies the

second, see Karatzas and Shreve [2000].
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Definition 2.1.9. We say that a stochastic process X is measurable if, for every A ∈ B(Rd)

the set {(t, ω);Xt(ω) ∈ A} belongs to the product σ-�eld B(T )×F .

An important consequence of Fubini's theorem, pointed out in Karatzas and Shreve [2000], is

that the trajectories of a measurable stochastic function are Borel-measurable. If the components

of X have de�ned expectation then the same is true for the functional EXt. We will often use

that if
∫
I E|Xt|dt <∞ where I is a subinterval of T then∫

I
|Xt|dt <∞ a.s. and

∫
I
EXtdt = E

∫
I
Xtdt.

In this paper our model will allow discontinuities in the trajectories so we need to review the

theory behind Lévy processes.

2.2. The Lévy Model

Levy processes can be seen as a family of models that describe the path of a randomly moving

particle. These particles may di�use or undergo independent random jumps whose order of

magnitude is arbitrarily.

Definition 2.2.1 (Lévy process, Cont and Tankov [2004] De�nition 3.1). A càdlàg stochastic

process (Xt)t∈T on (Ω,F , P ) with values in the state space such that X0 = 0 is called a Lévy

process if it has the following properties;

1. Independent increments: for every increasing sequence of times t0, . . . , tn, the random

variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1are independent.

2. Stationary increments: the law of Xtj −Xtj−1 does not depend on t.

3. Stochastic continuity: ∀ε > 0, lim
H→0

P (|Xt+h −Xt| ≥ ε) = 0.

Remark 2.2.1. Item 3 does not mean that we cannot have jumps, or the sample paths are

continuous, it ensures that we cannot predict when the jumps or discontinuities occur.

We will work with a Lévy marked where η(t) = η(t, ω) is a Lévy process on a �ltered probability

space (Ω,F , {Ft}t≥0,P). Let N(dt, dz) be the jump measure of η(·) and

ν(V ) = E [N ((0, 1], V )] ;V ⊂ R\{0} Borel set,

be the Lévy measure of η(·). We know by the Lévy - Itô decomposition that

(2.2.1) η(t) = a(t)t+ b(t)B(t) +
∫
|z|<R

γ(t, z)Ñ(t, dz) +
∫
|z|≥R

zN(t, dz)

for some constant R where

Ñ(dr, dz) = N(dt, dz)− ν(dz)dt,

is the compensated Poisson process of η(·). Lets assume that E[|ηt|] <∞ for all t ≥ 0, then
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Theorem 2.2.1. If E[|ηt|] <∞ for all t ≥ 0 we have that∫
|z|≥1

|z|ν(dz) <∞,

and we can choose R =∞ and write

η(t) = a(t)t+ b(t)B(t) +
∫

R
γ(t, z)Ñ(t, dz)

(See e.g Øksendal and Sulem [2007] Theorem 1.8). We can then de�ne∫ t

0
H(s)dηs

for an adapted càglàd processes, H(·), in the space equipped with the topology of uniform

convergence on compacts in probability. From Itô -Lévy decomposition we can consider the

general stochastic integral on the form

X(t) = X(0) +
∫ t

0
α(s, ω)ds+

∫ t

0
β(s, ω)dB(s) +

∫ t

0

∫
R
γ(t, z)Ñ(t, dz)

where α, β and γ are Ft-predictable processes such that∫ T

0

[
|α(t)|+ β2(t) +

∫
R
γ2(t, z)ν(dz)

]
dt <∞ for all T <∞.

2.3. The Market Model

Fix T > 0 and let α,β and γ be as above. Let r(t) = r(t, ω) be adapted such that
∫ T

0 |r(t)|dt <∞
a.s. We let the marked be described by;

(i) a risk free asset

(2.3.2)

dS0(t) = r(t)S0(t)dt

S0(0) = 1,

(ii) and a risky asset

(2.3.3)

dS1(t) = S1(t−)
[
α(t)dt+ β(t)dB(t) +

∫
R γ(t, z)Ñ(dt, dz)

]
S1(0) > 0.

where γ(t, z) > −1 for a.a. t, z and where we also require that

E
[ ∫ T

0
{|r(s)|+

∫
R
| log(1 + γ(s, z))− γ(s, z)|ν(dz)}ds

]
<∞.

Then from Øksendal and Sulem [2007] we get that

S1(t) = S1(0) exp
[ ∫ t

0
{α(s)− 1

2
β2(s) +

∫
R

log(1 + γ(s, z))− γ(s, z)ν(dz)}ds

+
∫ t

0
β(s)dB(s) +

∫ t

0

∫
R
γ(s, z)Ñ(ds, dz)

]
.
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We let π(t) be a portfolio and V (t) = V π(t) be the wealth processes given by π with dynamicsdV (t) = V (t−)
[
{(1− π(t))r(t) + π(t)α(t)}dt+ π(t)β(t)dB(t) + π(t−)

∫
R γ(t, z)Ñ(dt, dz)

]
V (0) > 0.

where π is a càglàd predictable process, π(t−)γ(t, z) > −1 for a.a. t and for z a.s. and∫ T

0

[
|(1− π(t))r(t)|+ |π(t)α(t)|+ π(t)2β2(t) + π(t−)2

∫
R
γ2(t, z)ν(dz)

]
dt <∞

for all T <∞.

2.3.1. Geometric Lévy Processes. Assume we have a probability space (Ω;F ;P ) and a

�ltration {Ft; 0 ≤ t ≤ T}. We let the price process St = S0e
Zt be de�ned on this probability

space, Zt is a Lévy process. We call such a process St the geometric Lévy process (GLP).

Throughout this paper we assume that Ft = σ(Ss; 0 ≤ s ≤ t) = σ(Zs; 0 ≤ s ≤ t) and F = FT .

2.4. Backward Stochastic Di�erential Equations

In chapter 6 we will use g-expectations de�ned by the solution to a Backward Stochastic Di�er-

ential equation (BSDE) to construct a dynamic risk measure optimization model. Therefore we

will review some essential theory about BSDE.

First some notation used

• L2,d
T (Rd): is the space of all Ft-measurable r.v. X : Σ→ Rd s.t. E[|X|2] <∞.

• H2
T (L2): space of all predictable processes φ : Σ× [0, T ]→ Rd s.t

||φ||2 = E[
∫ T

0
|φs|2ds] <∞.

Next, for β > 0 we de�ne ||φ||β = E[
∫ T

0 eβt|φs|2ds] so that;

• H2
T,β : is the space H

2
T endowed with the nor || · ||β . (Its easily seen that || · ||β and || · ||

are equivalent.)

• L2FT (Ω,W 1,∞(Rn; Rm)) is the set of all functions f : [0, T ] × M × Ω → N , such

that for any �xed θ ∈ M , (t, ω) → f(t, ω) is {Ft}t≥0− progressively measurable with

f(t, 0, ω) ∈ L2
F ([0, T ];N), and there exists a constant L >, such that

|f(t, θ, ω)− f(t, θ̄, ω)| ≤ L|θ − θ̄|, ∀θ, θ̄ ∈M, a.e. t ∈ [0, T ], a.s.;

Definition 2.4.1. A backward stochastic di�erential equations (BSDE) is equation on the form

(2.4.4)

−dY (t) = g(t, Y (t), Z(t))dt− Z(t)dB(t).

Y (T ) = ξ,
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and where (Y,Z) is a solution to the BSDE such that Y (t), t ∈ [0, T ] is a continuous adapted

process and Z(t), t ∈ [0, T ] is a predictable process satisfying
∫ T

0 |Z(t)|2ds <∞ P -a.s. and

(2.4.5) Y (t) = ξ +
∫ T

t
g(s, Y (s), Z(s))ds−

∫ T

t
Z(s)dB(s), P -a.s.

Definition 2.4.2. We say that (f, ξ) is a pair of standard parameters for the BSDE if they

satisfy

• ξ ∈ L2
T .

• f(·, 0, 0) ∈ H2
T .

• f is uniformly Lipschitz.

Theorem 2.4.1 (Existence and uniqueness of solution, Zhang [2009] and also in Ma and Yong

[2007] section 4). Let (f, ξ) be a pair of standard parameters for the BSDE (2.4.5), then there

exists an unique pair (Y,Z) ∈ H2
T ×H2

T which solves the BSDE (2.4.5).

Theorem 2.4.2 (Theorem 3.1 in Øksendal and Zhang [2001]). Assume E[|φ|2H ] < ∞. Then

there exists an unique H × L2(K,H)-valued progressively measurable process (Yt, Zt) such that

(i) E[
∫ T

0 |Yt|
2
H ] <∞ and E[

∫ T
0 |Zt|

2
H ] <∞

(ii) φ = Yt +
∫ T
t AYsds+

∫ T
t b(s, YS , ZS)ds+

∫ T
t ZsdBs; 0 ≤ t ≤ T .

2.4.1. BSDE with Concave Generator. Assume the generator f(t, y, z) is concave w.r.t.

(y, z). De�ne

F (t, β, γ) = sup
(y,z)∈R×Rn

[f(t, y, z)− βy − γz] .

Since f is concave and continuous, we have from concave analysis that

f(t, y, z) = sup
(β,γ)∈DF

{F (t, β, γ) + βy + γz},

where we let, for a pair of predictable processes

fβ,γ(t, y, z) := F (t, β, γ) + βy + γz which is linear in (y, z),

and

DF = {(β, γ) : F (t, β, γ) <∞} ⊂ [−C,C]n+1.

Let

A = {(βt, γt) : E[
∫ T

0
F (t, βt, γt)2dt] <∞},

be the set of admissible controls. Then we have

Theorem 2.4.3. There exists an optimal control (β̄, γ̄) ∈ A s.t.

f(t, Yt, Zt) = f β̄,γ̄(t, Yt, Zt).

Proposition 2.4.4. Let f be a concave standard parameter and de�ne

fβ,γ(t, y, z) = F (t, βt, γt) + βty + γtz.
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Then for any t ≥ 0,

Yt = ess inf
(β,γ)∈A

{Y β,γ(t)},

where Y β,γ(t) is the solution of the BSDE associated with the linear generator fβ,γ

2.4.2. Forward-Backward Stochastic Di�erential Equations. We de�ne a Forward-

Backward stochastic di�erential equation (FBSDE) as follows:

dX(t) = b(X(t), u0(t), u1(t))dt+ σ(X(t), u0(t), u1(t))dB(t)

+
∫

Rk γ(X(t−), u2(t, z), z)Ñ(dt, dz).

dY (t) = −g(t, Y (t), Z(t),K(t))dt+ Z(t)dB(t) +
∫

Rk K(t, z)Ñ(dt, dz).

X(0) = x0, Y (τS) = −X(τS).

(2.4.6)

Theorem 2.4.5 (Ma and Yong [2007] Theorem 5.1). Let M = Rn × Rm × Rl, and b, σ, h and g

satisfy 

b ∈ L2
F ([0, T ],W 1,∞(M ; Rn))

g ∈ L2F([0, T ],W 1,∞(M ; Rm))

h ∈ L2FT (Ω,W 1,∞(Rn; Rm))

σ ∈ L2F([0, T ],W 1,∞(M ; Rn×d))

(2.4.7)

Moreover, we assume that

(2.4.8)


|σ(t;x; y; z;ω)− σ(t;x; y; z;ω)| ≤ L0|z − z̄|;

∀(x, y) ∈ Rn × Rn; z; z̄ ∈ Rm×d; a.e. t > 0; a.s.

|g(x;ω)− gx;ω)| ≤ L1|x− x̄|; ∀x; x̄ ∈ Rna.s.

with

L0L1 < 1.

Then there exists a T0 > 0, such that for any T ∈ (0, T0] and any x ∈ Rd (2.4.6) admits an

unique adapted solution (X;Y ;Z) ∈M [0, T ].

2.4.3. Backward Stochastic Di�erential Equations and g-Expectations. From the

above Peng [1997] and Gianin [2002a] de�ned the g-expectation and the conditional g-expectation

as follows:

Definition 2.4.3. For every x ∈ L2
T (Ft) and for every t ∈ [0, T ] the conditional g-expectation

of x under Ft is de�ned by

(2.4.9) εg[x|Ft] := Y (t),

where Y (t) is the �rst component of the solution to the FBSDE (2.4.5) with terminal condition

ξ = x. For t = 0 we have

(2.4.10) εg[x] := Y (0),
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which is called the g-expectation.

2.5. Stopping Times

A concept vital to this paper is stopping times. If we want to look at a particular time, τ ∈ [0, T ],

when an event occurs we would need the information concerning the event, {ω : τ(ω) ≤ t}, to
be included into our �ltration.

Definition 2.5.1 (Karatzas and Shreve [2000] de�nition 2.1). Let (Ω,F , P )be given, we call

random time τ a stopping time of the �ltration if the event {τ ≤ t} belongs to the σ-algebra Ft
for all t. A random time is an optional time of the �ltration if {τ < t} ∈ Ft, for every t.

We de�ne the �rst exit time as

τS = inf{t > 0 : Xt /∈ S},

which is a stopping time w.r.t. Ft since

{ω; τS ≤ t} =
⋂
m

⋃
r∈Q,r<t

{ω;Xr /∈ Km} ∈ Ft,

where {Km} is an increasing sequence of closed sets such that U =
⋃
m
Km.

2.6. Probability Measures

Definition 2.6.1. We denote the set of all probability measures that are absolutely continuous

w.r.t P (Q� P ) byM.

Let θ0(t) = θ0(t, ω) ∈ Rm and θ1(t, z) = θ1(t, z, ω) ∈ Rl be predictable processes, then let Qθ be
on the form

dQθ = exp
(
−
∫ T

0
θ0(s)dB(s)− 1

2

∫ T

0
θ2

0(s)ds+
l∑

j=1

∫ t

0

∫
R

log[1− θ1j(s, z)](2.6.11)

+
l∑

j=1

∫ t

0

∫
R

(
log[1− θ1j(s, z)] + θ1j(s, z)

)
ν(dz)ds

)
dP (ω) = Zθ(T )dP.

such that it is well de�ned and θ1(t, z) < 1 for a.a t,z, Zθ(0) = 1 and∫ T

0

[
θ2

0(t) +
∫
real

θ2
1(t, z)ν(dz)

]
<∞ a.s.

Using Ito's formula for Lévy processes, see Øksendal and Sulem [2007] Theorem 1.14, we get

dZθ(t) = −Z(t)θ0(t)dB(t)− Z(t)
∫

R
θ1(s, z)Ñ(ds, dz)
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Remark 2.6.1. Note that from Øksendal and Sulem [2007] if we let θ0(t) and θ1(t, z) be such

that

E[Z(T )] = 1,

then Qθ(Ω) = 1, i.e. Qθ is a probability measure. If θ0 and θ1 is such that

σ(t)θ0(t) +
∫

Rl
γ(t, z)θ1(t, z)ν(dz) = α(t)− r(t) for a.a.(t, ω) ∈ [0, T ]× Ω.

then the probability measure Q on (Ω;F ) is called an equivalent local martingale measure

(ELMM). If X(t) is a martingale w.r.t. Q then Q is called an equivalent martingale measure

(EMM).

Definition 2.6.2. In this paper we will let Ma consist of all measures Q = Qθ of Girsanov

transformations given above.

We let EQ[x] denote the integral of x with respect to Q ∈Ma and EQ[x] = E[dQdP x] where dQ
dP is

the Radon-Nikodym derivative. ,

We think of a risk measure as a functional in the space X ′ which takes values in the space X.

The next chapter will show that a functional should satisfy certain conditions of consistency.



CHAPTER 3

A INTRODUCTION TO RISK

MEASURES

W
e will now give a thorough axiomatic approach to risk measures and review some central

theorems regarding coherent risk measures. We will look at an extension to coherent

risk measures, the convex risk measure. At the end of the chapter we turn our attention to the

dynamic setting, which give rise to dynamic risk measures.

3.1. The Evolution of Risk Measures

Risk management is a key concept in modern �nance. It is a discipline where the aim is to analyze,

identify, control and minimize unacceptable risks. According to McNeil et al. [2005] �nancial

institutions �manage risk by repacking them and transferring them to markets in customized

ways�. In order to manage risk we need to be able to measure risk. A probabilistic measure

would use the distribution of the position to measure the risk by moments or quantiles. Moment-

measures such as variance, which was �rst proposed by Markowitz, does not take into account

the asymmetric interpretation of the risk of a portfolio, the downside. Another traditional risk

measure, that takes this asymmetry into account, is the Value at Risk (VaR) introduced in

1994 by the leading investment bank JP Morgans. VaR captures asymmetry by measuring the

quantiles for the lower tail. According to Morgan Guarantee Trust Company [2005] VaR is widely

accepted in the �nancial industry and endorsed by regulatory agencies. VaR is de�ned as follows:

VaRα(L) = − inf{x ∈ R : P [L ≤ x] > α}

19
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Despite its easy computation and interpretation there has been raised several questions to the

use of VaR to quantify risk. In the Jorion-Taleb debate, Jorion and Taleb [1997] argued about

VaR. Taleb claimed that VaR:

1. Is charlatanism because it claimed to estimate the risks of rare events, which is impos-

sible.

2. Gives false con�dence.

3. Could be exploited by traders.

David Einhorn goes as far as saying �VaR is like an airbag that works all the time except when

you have a car accident.� In Brown and Einhorn [2008], David Einhorn also claims that VaR

1. Is potentially catastrophic, as it can create a false sense of security among executives

and regulators.

2. Leeds to excessive risk-taking and use of leverage.

3. Created an incentive to take remote but excessive risk.

4. Focuses on the manageable risks near the center of the distribution and ignored the

tails.

In December 2006 Goldman's various models, including VaR, gave a indication that something

was wrong. Goldman decided to get closer to home, meaning reining in the risk. The risk was

hedged and in the summer of 2007, Goldman Sachs avoided the faith that had fallen so brutally

upon giants such as Merrill Lynch and Lehman Brothers. In this example VaR proved to be of

value. However one cannot avoid the fact that there are some critical issues with VaR (see Artzner

et al. [1997]). First, VaR is completely ignorant of the seriousness of the worst cases, which could

create a false sense of security. By investing in asymmetric positions that generate small gains

and very rarely have losses, VaR could be constructed to underestimate the risk. An example is

the credit-default swap that generates steady income. If the probability of default is less than 1%,

99% Var is 0, but on the o�set of a default a substantial loss could be incurred. Second, a very

critical �aw is that VaR can generate scenarios where risk is decreased under decentralization.

To overcome these shortcomings, an axiomatic approach to risk measure has been a key point

for development in risk management and mathematical �nance in the recent years. The concept

of coherent measures and more generally convex measures follows a axiomatic approach and

are now well developed. Initial research into constructing a solid groundwork for risk measures

was initiated by Artzner, Delbaen, Eber, and Heath. Artzner and Delbaen provided the path-

breaking axiomatic de�nition of coherent risk measures in the papers Artzner et al. [1997] and

Artzner et al. [1999]. They provided four axioms for a coherent risk measure,

(I) Translation invariance. For all x ∈ X and all real numbers α, ρ(x+ αr) + ρ(x)− α,
(II) Sub additivity. For all x1 and x2 ∈ X, ρ(x1 + x2) ≤ ρ(x1) + ρ(x2),

(III) Positive homogeneity. For all λ ≥ 0 and all x ∈ X, ρ(λx) = λρ(x),

(IV) Monotonicity. For all x and y ∈ X ′ with x ≤ y,ρ(y) ≤ ρ(x).
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In �nancial theory hedging and pricing of claims has been given much attention. In a complete

market, if the payo� of a claim can be constructed from the payo� of basis assets, this value

is uniquely determined and other prices would lead to an arbitrage opportunity. Whenever

this perfect replication is unattainable, due to market frictions, transaction costs and sources of

unhedgeable risk, we get an incomplete market. In an incomplete market, the standard Black-

Scholes pricing methodology fails because the price of the focus asset is no longer unique. This

can be solved by the representative agent equilibrium, where the pricing functional is obtained

from the marginal utility of the optimized representative agent's consumption. Another way

to solve this problem is to construct good deal bounds so that the price of a non-redundant

contingent claim is not unique. As �erný and Hodges [2000] points out, no arbitrage is a rather

weak requirement as can be seen in their example of a claim with zero price that either earns 1000

or loses 1 with equal probability. Good deals are de�ned as an opportunity to buy a desirable

claim at no cost. To construct a good deal bound given a risk measure, one hedges the given

claim with a portfolio of self-�nanced, basic assets so to maximize w.r.t. the given risk measure.

Then one remove prices that give an undesirable good hedging strategy. This provides a price

interval for every contingent claim called generalized arbitrage bounds or good deal bounds by

�erný and Hodges [2000]. The connection to coherent risk measures were made by Jaschke and

Küchler [2001], who proved that coherent risk measures are essentially equivalent to generalized

arbitrage bounds.

A valuable property for risk measure is that they have a close relation to utility function and

asset pricing. If we consider the classical (µ, σ) portfolio optimization theory of Markowitz we

can use (µ, ρ), where ρ is coherent risk measure. This enables us to consider the (µ, ρ) problem,

which can be viewed as the problem of maximizing U = µ − λρ. When the preference function

Φ(X) = E[U(X)], where U denotes the utility function speci�c to each decision maker, do not

separate risk or value, Jia and Dyer [1996] proved that it is possible to derive an explicit risk

measures: ρ(X) = −E[U(X − E(X))].

So from the connection to utility functions and good deal bounds, we can conclude that coherent

risk measures are consistent with economic theories of arbitrage as well as utility maximization.

The sub linearity axiom of coherent risk measures gives us that ρ(λX) ≤ λρ(X) but we may want

to model cases where a single position (λX) could be less liquid, and therefore more risky, than

that of λ smaller positions, so convex risk measure was later extended to convex risk measures

by Föllmer and Schied [2002] and Frittelli and Gianin [2002]. Although these new risk measures

are very useful in risk management, they are static. Static risk measures only quantify risk at

a single instance in the future and was by Föllmer and Leukert [1999] generalized to a dynamic

setting. To construct a dynamic risk measure Riedel [2003] considered the changes of a position

and availability of new information with time. As additional information about the position may

be released with time and changes may occur in the position or there may be an intermediate

cash �ow, there may be a need for a reassessment of the position under this new information.

Changes in the position are to be taken into account by recalculating the (stochastic) present
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value of future positions. Information is processed in a Bayesian way on a set of generalize

scenarios. Dynamic risk measures allow a manager the �exibility of adjusting a position. They

take a random cash �ow and return a random process as a function of time.

We will now review the axioms for coherent risk measures in depth.

3.2. An Axiomatic Approach

Capturing reality necessitates a minimum set of requirements or proposition we consider self-

evident. This has been the starting point for every mathematical approach to model reality since

Euclid. For �nancial risk, capturing these propositions has been an area of neglect. Concepts

have been intuitively developed as they seem to give a logical measure of risk but no formal

requirement has been given. These intuitions need to be made concrete and unambiguous. To

answer this challenge Artzner et al. [1997] proposed a set of axioms that a risk measure needs to

ful�ll;

Axiom 3.2.1 (Translation invariance). []

For all x ∈ X and all real numbers α,

ρ(x+ αr) + ρ(x)− α.

This axiom, translation invariance, ensures that risk measures are given in the same units as the

�nal net worth. We see that by adding a sure return m to a position X the risk ρ(X) decrease

by m. The next axiom is probably the one that seems most intuitive

Axiom 3.2.2 (Sub additivity). For all x1 and x2 ∈ X,

ρ(x1 + x2) ≤ ρ(x1) + ρ(x2).

One would naturally think that if two independent �nancial institutions that separately have

adequate reserves to cover extreme scenarios would be in no greater risk after a merger. Therefore

the risk of a portfolio should be no more than the sum of its components. This is where VaR

often fails. It is coherent in the case of unimodal distributions like the normal- and t-distribution.

A perfectly diversi�ed portfolio, due to the Central Limit theorem, is normal distributed. Most

portfolios are not perfectly diversi�ed and have signi�cant deviation from the normal distribution.

Diversi�cation risk should be monitored as they can lead to inadequate capital reserves and

unexpected losses. Market risk factors such as equity indices, foreign exchange rates, commodity

prices and interest rates are continuously distributed. They exhibit properties of skewness and

excess kurtosis so they are not normally distributed. Many market risk return distributions are

not normally distributed but they are very often unimodal so that VaR is coherent. Credit rating

migrations and insurance risk are typical cases where the return distributions are not unimodal
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and VaR is not coherent. In this case VaR can be constructed to arti�cially lower risk. This is

mainly due to the large loses of low-probability events.

Example 3.2.1. A zero-coupon bond pays 100$ in 2 year if the issuer does not default. Let the

probability of default be 0.11%. Then VaR with 99% con�dence is zero. On the other hand, if

we construct a portfolio with 10 similar bonds which pays 10$ on the coupon date, issued by

independent counter parties with the same credit rating, VaR with 99% con�dence is $10. This

is due to the fact that the probability of one party defaulting is larger than 1%. Both position

has the same expected payo� and are as �nancial portfolios identical (liquidy issues aside), but

they poses di�erent risk when measured using VaR.

The above axiom gives us that ρ(λx) ≤ λρ(x), but we should not be able to lower the risk of

multiple identical portfolios by merging them.

Axiom 3.2.3 (Positive homogeneity). For all λ ≥ 0 and all x ∈ X,

ρ(λx) = λρ(x).

This axiom ensures us that multiplying a position multiply the risk by the same amount. Another

intuition we have about risk measures is that it seems clear that when a position is surely larger

than another position, the risk of the �rst should be lower than the risk of the last.

Axiom 3.2.4 (Monotonicity). For all x and y ∈ X ′ with x ≤ y,

ρ(y) ≤ ρ(x).

Remark 3.2.1. The axioms are motivated from a supervising agency's point of view. From this

perspective a risk measure is viewed as capital requirement, the amount needed to make the

position acceptable.

We can now de�ne a coherent risk measure.

Definition 3.2.1. A coherent risk measure is a functional ρ : X 7−→ <, that satis�es axioms

1.1.1 - 1.1.4.

Definition 3.2.2. We say a risk measure is continuous from below (resp. above) if for any

increasing (resp. decreasing) sequence Xn of elements of L∞(Ω,F , P )such that X = limXn a.s.,

the sequence ρ(Xn) has the limit ρ(X) a.s.
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Let us now look at some examples of a coherent risk measures.

Example 3.2.2 (Spectral risk measure). The measure Mφ : RS → R de�ned by Mφ(X) =

−δ
∑S

s=1 φsXs:S is a spectral measure of risk if φ ∈ RS satis�es the conditions

1. Non-negativity: φs ≥ 0 for all s = 1, . . . , S,

2. Normalization:
∑S

s=1 φs = 1,

3. Monotonicity : φs is non-increasing, that is φs1 ≥ φs2 if s1 < s2 and s1, s2 ∈ {1, . . . , S}.

Example 3.2.3 (Expected Tail Loss (ETL)). Expected Tail Loss is more sensitive to the shape

of the loss distribution in the tail of the distribution than VaR, and de�ned as;

ESq = E(x|x < µ),

where µ is determined by Pr(x < µ) = q. Expected Tail Loss is a spectral risk measure.

Example 3.2.4 (EVaR).

(3.2.1) EV aRα(X) = −rE[X|X ≤ −V aRα(X)],

where r is a normalization constant.

See Lüthi and Doege [2005] for more examples.

In Pedersen [1995] (2.3.1) we �nd the following de�nition;

Definition 3.2.3. Let X be a vector space. A Minkowski functional on X is a function ρ : X → R

such that

(a) ρ(x+ y) ≤ ρ(x) + ρ(y), x, y ∈ X

(b) ρ(αx) = αρ(x), x ∈ X, α ≥ 0,

We can see that a coherent risk measure is a Minkowski functional (a semi-norm if F = R).

Requirement 3.2.1. In most cases there will be no loss of generality by assuming ρ is normalized

in the sense that

ρ(0) = 0.

If ρ(x) is ≤ 0 we say the position is acceptable, if not ρ(x) is the amount that must be added to

the position to make it acceptable.
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Remark 3.2.2. It can be, by de�nition of axioms, argued that the stated axioms are not correct

ones, but they are nevertheless required as basis for a thorough mathematical approach.

It can be shown that every coherent risk measure can be represented in a speci�c form.

Theorem 3.2.1. [Representation theorem Föllmer and Penner [2006]] A functional ρ : X ′ → R is

a coherent risk measure i� there exists a closed convex set Q of P-absolutely continuous probability

measures on a set of states of nature, such that

ρ(x) = sup
Q
EQ[−x], ∀x ∈ L∞

This tells us that any coherent risk measure can be represented as the supremum of the expected

loss over a set of scenarios.

3.2.1. Axioms on Acceptance Sets. We have discussed the axioms that a risk measure

should arguably satisfy. We will now review the related concept of de�ning an acceptable position

through acceptance sets. As we will see later there is a strong correlation between these two

approaches.

Definition 3.2.4. We let Ai,j , j ∈ Ji be a set of �nal net worth. in currency i, which is accepted

by regulator j.

We now state some axioms on acceptance sets;

Axiom 3.2.5. The Acceptance set A contains X ′+.

Axiom 3.2.6. The Acceptance set A do not intersect the set X ′−− where

(3.2.2) X ′−− = {X| for each x ∈ X,X(x) < 0}

The meaning of these two axioms is that a non-negative net worth do not require additional

capital to be acceptable. On the other hand a strictly negative one needs additional security.

Axiom 3.2.7. The acceptance set A is convex.

This captures the risk aversion of the regulator, exchange director or trading room supervisor.

Artzner,Eber and Heath also suggest the less natural requirement of

Axiom 3.2.8. The acceptance set A is a positively homogeneous cone.
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The correlation between risk measures and acceptance sets will be made clear by using the two

de�nitions given below.

Definition 3.2.5 (Risk measure associated with an acceptance set). The risk measure associated

with the acceptance set A is the mapping from X into R de�ned by

(3.2.3) ρA(x) = inf{m|m+ x ∈ A}.

Definition 3.2.6 (Acceptance set associated with a risk measure). The acceptance set associated

with a risk measure ρ is the set

(3.2.4) Aρ = {x ∈ X|ρ(x) ≤ 0}

The next theorem given by Artzner et al. [1997], links acceptance sets to risk measures.

Theorem 3.2.2. If the set A satisfy the four axioms 3.2.5-3.2.8, the risk measure ρA is coherent.

Moreover AρA = Ā.

Earlier we gave a representation theorem for coherent risk measures. This representation has a

natural connection to acceptance sets, as shown by Delbaen [2002].

Theorem 3.2.3. Let ρ : L∞(Σ,F , P )→ R be a coherent risk measure. Then there exist a closed

convex set P of P -absolutely continuous probability measures such that

ρ(x) = sup
Q∈P

EQ[−x], ∀x ∈ L∞

⇔

the acceptance set {x ∈ L∞ : ρ(x) ≤ 0}is a σ(L∞, L1)− closed convex cone

This thorough approach is a breakthrough to risk management and provides a mathematical

understanding of risk. When coherent risk measure was �rst introduced in 1997 it created a

heated debate since VaR, which had a strong position amongst regulators and practioners, was

seen to not be coherent and not even convex (see below).
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3.3. A Generalization to Convex Risk Measures

By looking at liquidity issues for large portfolios or bonds issued by �rms as opposed to treasury

bonds or bills, Frittelli and Gianin [2002] argues against the requirement for sub-additivity and

positive homogeneity. There could be liquidity risks if an investor holds a portfolio that is large

relative to the marked depth. If the market is not able to absorb a sudden sell-o� of a large

position, doubling the investment in the position increases the risk by more than the double. To

account for this the concept of convex risk measures was proposed by Föllmer and Penner [2006].

Heath considered risk measures in �nite settings which was later extended to the in�nite case by

Föllmer and Schied [2002] and Frittelli and Gianin [2002]. They propose to relax the conditions

of positive homogeneity and of sub additivity. They required instead;

Axiom 3.3.1. Convexity. ρ(λx+ (1− λ)y) ≤ λρ(x) + (1− λ)ρ(y) for any λ ∈ [0, 1].

This axiom ensures that the risk is not increased by diversi�cation of the portfolio.

Definition 3.3.1. A map π : X ′ −→ R will be called a convex measure of risk if it satis�es

the condition of: translation invariance (axiom 3.2.1), monotonicity (axiom 3.2.4), and convexity

(axiom 3.3.1).

Let the risk measure, π, be normalized, meaning π(0) = 0. Then we can se that the axiom of

convexity gives

π(δx) ≤ δπ(x), ∀δ ∈ [0, 1],∀x ∈ X

π(δx) ≥ δπ(x), ∀δ ≥ 1, ∀x ∈ X

In light of the liquidity discussion these two axioms seem reasonable since large portfolios will

su�er from liquidity issues. The convexity requirement encourages diversi�cation of risk, which

is in coherence with our understanding of portfolio management.

As we showed, coherent risk measures have a representation form as the supremum of the ex-

pected loss. It turns out that this representation depends only on the sub-linearity axiom.

Frittelli and Gianin [2002] gives a representation for the larger class of convex risk measures.

Definition 3.3.2. Let π : X 7→ R. If it exists a convex functional F : X ′ 7→ R ∪+∞ satisfying

inf
x′∈X′

F (x′) = 0 such that

π(x) = sup
x′∈P
{x′(x)− F (x′)} < +∞, for all x ∈ X,
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where P = {x′ ∈ X ′ : F (x′) < ∞} is the e�ective domain of F. Then we say that π is repre-

sentable or that ρ(x) = π(−x) is a convex risk measure.

Theorem 3.3.1 (Frittelli and Gianin [2002]). (1) A functional π : X 7→ R is representable

if and only if it is convex and lower semi-continuous.

(2) A functional π : X 7→ R is representable with F = 0 on P if and only if it is sublinear

and lower semi-continuous.

The �nancial interpretation is that F represents a correction term and x′(x) the expected loss,

ρ is the supremum over a set of generalized scenarios where the correction term is dependent on

the scenario.

One type of penalty function F (Q) is the relative entropy of Q with respect to P, de�ned as

F (Q) ≡ I(Q;P) ≡ EQ
[
log

dQ
dP

]
= E

[
dQ
dP

log
dQ
dP

]
.

See Grandits and Rheinlander [2002]. Entropy is not a metric because d(p, q) 6= d(q, p) (but

d(p, q) ≥ 0,d(p, q) = 0 i� p = q.). Relative entropy, also called the Kullback-Leibler, gives the

proximity of two measures. In Cont and Tankov [2004] we see that if a measure are generated

by an exponential Lévy model, the relative entropy can be expressed in terms of Lévy measures:

Proposition 3.3.2. Let P and Q be two equivalent measures on (Ω, F ) generated by an expo-

nential Lévy model with Lévy triplet (σ2, νP , γP ) and (σ2, νQ, γQ). Assume σ > 0. The relative

entropy ξ(Q,P ) is given by

ξ(Q,P ) =
T

2σ2

{
γQ − γP −

∫ 1

−1
x(νQ − νP )(dx)

}2

+ T

∫ ∞
−∞

(
dνQ

dνP
log

dνQ

dνP
+ 1− dνQ

dνP
)νP (dx).

We can then see that the �rst term penalizes the di�erence in drifts while the second one penalizes

the di�erence in Lévy measures.

Another example is the quadratic distance:

E

[(
dQ

dP

)2
]
.

In Föllmer and Schied [2002] theorem 4.12 we have that the penalty function have a given

representation.
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Theorem 3.3.3. Any convex risk measure on X is on the form

ρ(x) = sup
Q∈Ma

EQ[−x]− Fmin(Q),

where Ma as above and the penalty function Fmin is given by

Fmin := sup
x∈Aρ

EQ[−x].

Moreover, Fmin(Q) is the minimal penalty function for ρ, i.e. for any penalty function F , F (Q) ≥

Fmin(Q) for all Q ∈Ma.

This functional representation has a connection to pricing functionals in incomplete markets.

For each non-attainable claim x ∈ X there is an interval of prices that gives absence of arbitrage.

The maximum price x̂ in this interval is given by

x̂ = sup
P ′
EP ′ [x],

see Lüthi and Doege [2005].

Remark 3.3.1. As pointed out by Acerbi [2004], the issue of designing a convex measure that

allow for sub additive violations solely due to liquidity is very di�cult, and if the measure is

allowed to break the sub additivity in general cases, not just to model liquidity, there is a

possibility for loss e�ect.

3.4. An Extension to Dynamic Risk Measures

The risk measures discussed all quantify risk at a single point in the future. They are static

risk measures. Most investors are making portfolio decisions dynamically and usually at discrete

times. As a consequence Föllmer and Leukert [1999] came up with the concept of dynamic risk

measures. Important research and development of dynamic risk measure include; Peng [1997],

Peng [2003], Frittelli and Gianin [2004] and Föllmer and Penner [2006],.

We now de�ne a dynamic (convex or not) risk measure, (ρt)t∈A, where A is not necessarily

countable, and the set of ρt is a net. At an instance t ∈ A, ρt represent the riskiness of our

position at time t. We also need the boundary requirement that ρ0 is a static risk measure.
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Definition 3.4.1 (Gianin [2002a] and Gianin [2002b]). A dynamic risk measure is a net (ρt)t∈A

such that

• ρt : Lp(Ft)→ L0(Σ,Ft, P ), for all t.

• ρ0 is a static risk measure.

• ρT (x) = −x P -a.s. for all x ∈ X ′

As before we will continue the axiomatic approach by listing some desirable properties for (ρt)t∈T .

Axiom 3.4.1. Convexity: ρt is convex for all t ∈ [0, T ] P-a.s.

Axiom 3.4.2. Positivity: x ≥ 0⇒ ∀t ∈ [0, T ], ρt(x) ≤ ρt(0) P-a.s.

Axiom 3.4.3. monotonicity: x ≥ y ⇒ ∀t ∈ [0, T ], ρt(x) ≤ ρt(y) P-a.s.

Axiom 3.4.4. Sub-additivity: ∀x, y ∈ Lp(Ft), ∀t ∈ [0, T ]ρt(x+ y) ≤ ρt(x) + ρt(y) P-a.s.

Axiom 3.4.5. Positive homogeneity: ∀α ≥ 0,∀x ∈ Lp(Ft),∀t ∈ [0, T ]ρt(αx) = αρt(x) P-a.s.

Axiom 3.4.6. Translation-invariance: ∀t ∈ [0, T ], ∀ Ft-measurable a ∈ Lp(Ft),∀ x ∈ Lp(Ft)

ρt(x+ a) ≤ ρt(x)− a P-a.s.

Axiom 3.4.7. Constancy: ∀c ∈ R, ∀t ∈ [0, T ]ρt(c) = −c P-a.s.

Definition 3.4.2 (Frittelli and Gianin [2002]). Let us now de�ne convex and coherent risk

measures respectively as;

1. A dynamic risk measure,(ρt)t∈T , is called coherent if it satisfy the axiom of positivity,

sub-additivity, positive homogeneity and translation invariance.

2. A dynamic risk measure,(ρt)t∈T , is called convex if it satisfy the axiom of convexity and

ρt(0) = 0.

Definition 3.4.3. Two important properties of dynamic risk measures are;

1. (ρt)t∈T is said to be time consistent if

ρ0[x1A] = ρ0[−ρt(x)1A], ∀t ∈ [0, T ],∀x ∈ Lp(Ft),∀A ∈ Ft.

2. A dynamic risk measure is continuous from below (resp. above) if each ρt is continuous

from below (resp. above).
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3.4.1. Dynamic Risk Measures from g-Expectations. We now look at the connec-

tion between g-expectations, introduced by Peng [1997] as a nonlinear expectations, and risk

measures. Let the BSDE be given as;dY (t) = g(t, Y (t), Z(t))dt− Z(t)dB(t).

Y (T ) = x,
(3.4.5)

then

Definition 3.4.4 (Peng [1997] de�nition 36.1-36.5). The conditional g-expectation of x under

Ft for every x ∈ L2(FT ) is de�ned as

εg[−x|Ft] := Yt,

where Yt is (the �rst component of) the solution to the BSDE (3.4.5) with terminal condition x.

In particular, for t = 0,

εg[−x] := Y0

is called a g-expectation.

Definition 3.4.5. Let g : Ω× [0, T ]× R× Rd → R and let ρ : L2(FT )→ L2(R) be de�ned as

(3.4.6) ρ = (ρt)t∈[0,T ], ρt(x) := εg[−x|Ft],∀x ∈ L2(Ft).

Theorem 3.4.1. Using the above de�nition we get two implications to dynamic risk measures;

1. If the functional g is convex in (y, z) ∈ R× Rd, then (ρt)t∈[0,T ] de�ned as in De�nition

3.4.5 is a dynamic convex risk measure. Moreover (ρt)t∈[0,T ] is time-consistent and

satis�es the axioms positivity, translation-invariance and constancy.

2. If the functional g is sub-linear in (y, z) ∈ R×Rd, then (ρt)t∈[0,T ] de�ned as in De�nition

3.4.5 is a dynamic coherent risk measure which is time-consistent.

Another dynamic risk measure that is time-consistent is the dynamic entropic risk measure with

threshold, see Nadal [2008].

With the arise of a solid theory for risk measures, how to allocate risk capital by selecting a

proper risk measure has become an important issue for further research.
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HJBI THEOREMS





CHAPTER 4

WORST CASE SCENARIO VERSION

OF THE HJBI EQUATION

N
ow, we look at a result obtained by Mataramvura and Øksendal [2008], and prove a gener-

alization to the 3 dimensional case. We will de�ne and prove an associated HJBI equation

for a zero-sum game. At the end of the chapter we will go through several examples that make

use of the theorem that we establish.

4.1. Worst Case Minimizing

We let the state of our �nancial position, Xu(t) = X(t) ∈ Rk, be given at time t by

dXu(t) = b(Xu(t), u0(t), u1(t))dt+ σ(Xu(t), u0(t), u1(t))dB(t)(4.1.1)

+
∫

Rk
γ(Xu(t−), u2(t, z), z)Ñ(dt, dz),

Xu(0) = x ∈ R

Where b : Rk × U → Rk, σ : Rk × U → Rk×k and γ : Rk × U × Rk → Rk×m. B(t) is a k-

dimensional Brownian motion, Ñ(·, ·) = (Ñ1(·, ·), . . . , Ñk(·, ·)) are a k-independent compensated

Poisson random measure and U a Polish space. The processes u0(t) = u0(t, ω), u1(t) = u1(t, ω)

and u2(t, z) = u2(t, z, ω) are the control processes, càdlàg and adapted to the �ltration Ft
generated by the driving processes B(·) and Ñ(·, ·), with u0(t) ∈ U , u1(t) ∈ U and u2(t, z) ∈ U
for a.a. t, a.s. Let u = (u0, u1, u2) and Xu(t) be the controlled jump di�usion.

35
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We then look at the problem of minimizing the risk of the portfolio π associated to the �nancial

position Xu(t);

Problem 4.1.1. Find the portfolio π(t) that minimize the worst case risk of the terminal wealth

Xu(T ).

Now, we let g : Rk → R be a given function called the bequest function. We assume a given

family, A, of admissible controls such that 4.1.1 has a unique strong solution and that

(4.1.2) Ex [|g(X(τs))|] <∞,

for all y ∈ S, where S ⊂ Rk is an open set (called the solvency region) and where

(4.1.3) τs = inf{t > 0;X(t) /∈ S}

is the bankruptcy time. Let the controls have the form

u0(t) = δ(t)

u1(t) = (θ0(t), π(t));

u2(t) = (θ1(t, z), π(t, z));

We will try to minimize the risk by the viewpoint of a regulatory agent. So we use a risk

measure, namely the generalization of coherent risk measures, convex risk measure. From the

representation theorem for convex risk measure we have the general form

ρ(X) = sup
Q∈M

{EQ[−X]− ζ(Q)}

for some familyM of measures Q which are absolutely continuous with respect to P and some

penalty function ζ : M → R. For ρ a given convex risk measure and u ∈ A we get from the

representation theorem the following performance functional;

Jδ,π,θ(y) = Ey[gθ(Xδ,π,θ(τs))].

Here, gθ(x) = −x − ξ0(θ), the bequest function, and ξ0, the penalty function, is given by the

representation theorem. Then, we have that sup
θ
Jδ,π,θ(y) is a convex risk measure. The problem

that we try to solve then gets the form

Problem 4.1.2. Given a convex risk measure, ρ, �nd the portfolio, π, which minimizes

sup
δ

[
inf
π

(
ρ(Xδ,π(T ))

)]
.

From the above we get that this is equal to solving

sup
δ

[
inf
π

(
sup
θ
Jδ,π,θ(y)

)]
.
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Here

Jδ,π,θ(y) = Ey[gθ(Xδ,π,θ(τs))],

is the corresponding performance functional given by the representation theorem.

To make things a little more intuitive we would use monetary utility functions.

Definition 4.1.1 (Mataramvura and Øksendal [2008] de�nition 2.3). A monetary utility func-

tion is a map U : F→ R such that

• Concavity: U(λX + (1− λ)Y ) ≥ λU(X) + (1− λ)U(Y ), for all X,Y ∈ F.

• Monotonicity: If X ≤ Y,X, Y ∈ F. then U(X) ≤ U(Y ).

• Translation invariance: If X ∈ F and m ∈ R then U(X +m) = U(X) +m.

It follows from this that if ρ is a convex risk measure, then U(X) := −ρ(X) is a monetary utility

function and conversely. So we have the following version of our problem:

Problem 4.1.3. Find

Φ := inf
δ

[
sup
π

(
U(Xδ,π,θ(T ))

)]
,

where

U(Xδ,π,θ(T )) = inf
Q∈Ma

{EQ[Xδ,π,θ(T )] + ζ(Q)} = −ρ(Xδ,π,θ(T )),

is a monetary utility function as in De�nition 4.1.1. Further, �nd optimal δ̂, π̂, θ̂ such that

Φ := U(X δ̂,π̂,θ̂(T )).

In the following we will use a generalization that includes convex risk measure by allowing for a

function f : Rk × U → R , the pro�t rate, in the performance functional.

Problem 4.1.4. Find

Φ := inf
δ

[
sup
π

(
sup
π
Jδ,πθ

)]
,

where

Jδ,π,θ(y) = Ey
[∫ τs

0
f(X(t), u0(t)) + g(X(τs))

]
.

Assume a given family A of admissible controls contained in the set U of controls u such that

(4.1.1) has a unique strong solution and

(4.1.4) Ey
[∫ τs

0
|f(Xu(t), u0(t))|

]
<∞,
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for all y ∈ S. Further, �nd optimal δ̂, π̂, θ̂ such that

Φ := J δ̂,π̂,θ̂(y).

This problem clearly includes convex risk measures as a special case. We now go on to formulate

the zero-sum game.

4.2. The Zero-Sum Game

We can think of controllers θ, π and δ as the control of players 1,2 and 3 respectively. Let

A = ∆×Π×Θ be our familie of admissible controls. We can den formulate the convex zero-sum

di�erential game problem as

Problem 4.2.1. Find Φ(y) and (δ∗, π∗, θ∗) ∈ ∆×Π×Θ such that

Φ(y) = inf
δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
where

Jδ,π,θ(y) = Ey
[∫ τs

0
f(X(t), u0(t))dt+ g(X(τs))

]
,

Remark 4.2.1. We will show that under some conditions the problem can be seen as

sup
π

(
inf
(δ,θ)

Jδ,π,θ(y)
)
,

which is a two player game with a two dimensional controller.

Remark 4.2.2. Under some conditions we can look at the problem as a minimax problem where

we can apply the minimax theorem from Delbaen [2002].

Theorem 4.2.1 (Minimax Theorem). Let K be a compact convex subset of a locally convex space

F. Let L be a convex set of an arbitrary vector space E. Suppose that u is bilinear function

u : E × F → R. For each l ∈ L we suppose that the partial (linear) function u(l, ·) is continuous

on F .Then we have that

inf
l∈L

(
sup
k∈K

u(l, k)
)

= sup
k∈K

(
inf
l∈L
u(l, k)

)

As in Øksendal [2007] we use Markov controls since under mild conditions Markov controls can

give just as good performance as more general adapted controls. When we use Markov controls
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we get that the generator Aδ,π,θ becomes

Aδ,π,θϕ(y) =
k∑
i=1

bi(y, θ0(y), π0(y), δ(y))
∂ϕ

∂yi
(y)

+
1
2

k∑
i,j=1

(σσT )ij(y, θ0(y), π0(y), δ(y))
∂2ϕ

∂yi∂yj
(y)

+
k∑
j=1

∫
R
{ϕ(y + γ(j)(y, θ1(y, zj), π1(y, zj), zj)− ϕ(y)

− Oϕ(y)γ(j)(y, θ1(y, zj), π1(y, zj), zj)}vj(dzj);

where ϕ ∈ C2
0 (Rk) and Oϕ is the gradient of ϕ. We let T be the set of all Ft -stopping times

τ ≤ τs.

4.3. A HJBI equation for zero-sum di�erential games with convex risk measures

We are now ready to state the main theorem.

Theorem 4.3.1. Suppose ϕ ∈ C2(S) ∩ C(S̄) and a Markov control (δ, π, θ) ∈ ∆ × Π × Θ such

that

(i) Aδ,π̂,θϕ(y) + f(y, δ, π̂, θ) ≥ 0 for all δ ∈ K1 and all θ ∈ K3.

(ii) Aδ̂,π,θ̂ϕ(y) + f(y, δ̂, π, θ̂) ≤ 0 for all π ∈ K2, for all y.

(iii) Aδ̂,π̂,θ̂ϕ(y) + f(y, δ̂, π̂, θ̂) = 0 for all y

(iv) Xδ,π,θ(τs) ∈ ∂S a.s. on {τs < ∞} and lim
t→τ−s

ϕ(Xδ,π,θ(t)) = g(Xδ,π,θ(τS))χ{τs<∞} a.s.

for all (δ, π, θ) ∈ ∆×Π×Θ, y ∈ S.

(v) The family {ϕ(Xδ,π,θ(τ))}τ∈T is uniformly integrable, for all (δ, π θ) ∈ ∆×Π×Θ, y ∈ S.
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Then

ϕ(y) = Φ(y) = J δ̂,π̂,θ̂(y)

= inf
δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
= sup

π

[
inf
δ

(
inf
θ
Jδ,π,θ(y)

)]
= inf

δ

[
inf
θ

(
sup
π
Jδ,π,θ(y)

)]
= inf

θ

[
inf
δ

(
sup
π
Jδ,π,θ(y)

)]
= sup

π

[
inf
θ

(
inf
δ
Jδ,π,θ(y)

)]
= inf

θ

[
sup
π

(
inf
δ
Jδ,π,θ(y)

)]
= sup

π

[
inf
θ
J δ̂,π,θ(y)

]
= sup

π

[
inf
δ
Jδ,π,θ̂(y)

]
= inf

δ

[
inf
θ
Jδ,π̂,θ(y)

]
= inf

δ

[
sup
π
Jδ,π,θ̂(y)

]
= inf

θ

[
sup
π
J δ̂,π,θ(y)

]
= inf

θ

[
inf
δ
Jδ,π̂,θ(y)

]
= sup

π
J δ̂,π,θ̂(y) = inf

δ
Jδ,p̂i,θ̂(y) = inf

θ
J δ̂,π̂,θ(y)

and

(δ̂, π̂, θ̂) is an optimal (Markov) control.

Proof. Step1. First let us prove that

Φ(y) = ϕ(y) = J δ̂,π̂,θ̂ = inf
δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
.

(a) First, from Dynkin's formula for jump processes (see Øksendal and Sulem [2007]

theorem 1.24);

(4.3.5) Ey[ϕ(Y (τNs ))] = ϕ(y) + Ey[
∫ τNs

0
Aδ,φ,θϕ(Y (t))dt],

then, from (i)

ϕ(y) ≤ Ey[
∫ τNs

0
f(Y (t), δ(Y (t)), π(Y (t)), θ(Y (t)))dt+ ϕ(Y (τNs ))].

Let N →∞ and (iv) and (v) to obtain

ϕ(y) ≤ Jδ,π̂,θ(y).

Since this holds for all δ and all θ we have that

ϕ(y) ≤ inf
δ

(
inf
θ
Jδ,π̂,θ(y)

)
,
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and on the other hand we see that

sup
π

(
inf
θ
Jδ,π,θ(y)

)
≥ inf

θ
Jδ,π̂,θ(y),

for every δ, so we can take in�mum over δ on both sides

inf
δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
≥ inf

δ

(
inf
θ
Jδ,π̂,θ(y)

)
.

This leaves us to conclude

(4.3.6) ϕ(y) ≤ inf
δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
= Φ(y).

(b) Again, using 4.3.5 and (ii) we get that

ϕ(y) ≥ Ey[ϕ(X(τNs ))].

It then follows that

ϕ(y) ≥ J δ̂,π,θ̂(y) ≥ inf
θ
J δ̂,π,θ.

This holds for all π, so

ϕ(y) ≥ sup
π
J δ̂,π,θ̂(y) ≥ sup

π

(
inf
θ
J δ̂,π,θ

)
Taking in�mum over δ gives

(4.3.7) ϕ(y) ≥ inf
δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
.

Combining (4.3.6) and (4.3.7) we have that

(4.3.8) Φ(y) = inf
δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
≤ ϕ(y) ≤ inf

δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
= Φ(y).

(c) Using 4.3.5 to δ̂, π̂, θ̂ ∈ ∆,Π,Θ and (iii) we get that

(4.3.9) ϕ(y) = J δ̂,π̂θ̂ = Φ(y).

Combining (4.3.6),(4.3.7) and (4.3.9) we get

Φ(y) = ϕ(y) = J δ̂,π̂,θ̂ = inf
δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
.

Step2. Next let us prove that

ϕ(y) = inf
θ

[
inf
δ

(
sup
π
Jδ,π,θ(y)

)]
.
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Using (4.3.5) with δ, π̂, θ ∈ ∆× π̂ ×Θ and (i), we have

ϕ(y) ≤ Jδ,π̂,θ(y).

Clearly,

Jδ,π̂,θ(y) ≤ sup
π
Jδ,π,θ(y).

This holds for all δ, θ so

ϕ(y) ≤ inf
θ

[
inf
δ

(
sup
π
Jδ,π,θ(y)

)]
.

Further, we have using (ii)

ϕ(y) ≥ sup
π
J δ̂,π,θ̂ ≥ inf

θ

[
inf
δ

(
sup
π
Jδ,π,θ(y)

)]
so we conclude that

ϕ(y) = inf
θ

[
inf
δ

(
sup
π
Jδ,π,θ(y)

)]
.

Step 3. Now let us prove that

ϕ(y) = sup
π

[
inf
θ

(
inf
δ
Jδ,π,θ(y)

)]
.

We have from Dynkin with (i)

ϕ(y) ≤ inf
θ

[
inf
δ
Jδ,π̂,θ

]
≤ sup

π

[
inf
θ

(
inf
δ
Jδ,π,θ(y)

)]
and using (ii) we get that

ϕ(y) ≥ Jδ,π̂,θ ≥ inf
θ

[
inf
δ
Jδ,π,θ(y)

]
.

Since this holds for all π, we have that

ϕ(y) ≥ sup
π

[
inf
θ

(
inf
δ
Jδ,π,θ(y)

)]
.

This leaves us to conclude that

ϕ(y) = sup
π

[
inf
θ

(
inf
δ
Jδ,π,θ(y)

)]
.

Step 4. Now let us prove that

ϕ(y) = inf
δ

[
inf
θ

(
sup
π
Jδ,π,θ(y)

)]
.
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As before, we have from Dynkin with (i)

ϕ(y) ≤ Jδ,π̂,θ.

It follows that

ϕ(y) ≤ sup
π
Jδ,π,θ.

Since this holds for all π

ϕ(y) ≤ inf
δ

[
inf
θ

(
sup
π
Jδ,π,θ(y)

)]
.

we have that from (ii)

ϕ(y) ≥ J δ̂,π,θ̂(y).

Since it holde fr all π

ϕ(y) ≥ inf
δ

[
inf
θ

(
sup
π
Jδ,π,θ(y)

)]
.

This leaves us to conclude that

ϕ(y) = inf
δ

[
inf
θ

(
sup
π
Jδ,π,θ(y)

)]
.

Step5. The same approach gives us

ϕ(y) = sup
π

[
inf
δ

(
inf
θ
Jδ,π,θ(y)

)]
= inf

θ

[
sup
π

(
inf
δ
Jδ,π,θ(y)

)]

Step6. Next thing we prove is that

ϕ(y) = sup
π

[
inf
θ
J δ̂,π,θ(y)

]
.

We do as before: Using Dynkin and (i

ϕ(y) ≥ J δ̂,π,θ̂ ≥ inf
θ
J δ̂,π,θ.

Since it holds for all π, we get

ϕ(y) ≥ sup
π

[
inf
θ
Jδ,π,θ

]
.

On the other hand usin g Dynkin and (i)

ϕ(y) ≤ Jδ,π̂,θ.
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Since this holds for all θ

ϕ(y) ≤ inf
θ
Jδ,π̂,θ.

So we get

ϕ(y) ≤ sup
π

[
inf
θ
J δ̂,π,θ(y)

]
.

And so we conclude

ϕ(y) = sup
π

[
inf
θ
J δ̂,π,θ(y)

]
.

Step7. The same approach gives us:

ϕ(y) = sup
π

[
inf
δ
Jδ,π,θ̂(y)

]
= inf

δ

[
inf
θ
Jδ,π̂,θ(y)

]
= inf

δ

[
sup
π
Jδ,π,θ̂(y)

]
= inf

θ

[
sup
π
J δ̂,π,θ(y)

]
= inf

θ

[
inf
δ
Jδ,π̂,θ(y)

]
Step8. Lets prove that

ϕ(y) = sup
π
J δ̂,π,θ̂.

Using Dynkin and (ii)

ϕ(y) ≥ J δ̂,π,θ̂.

Since it holds for all π, we get

ϕ(y) ≥ sup
π
J δ̂,π,θ̂.

On the other hand

ϕ(y) = J δ̂,π̂,θ̂ ≤ sup
π
J δ̂,π,θ̂.

And so we conclude

ϕ(y) = sup
π
J δ̂,π,θ̂.

Step9. Lets prove that

ϕ(y) = inf
δ
Jδ,π̂,θ̂.

Using Dynkin and (i)

ϕ(y) ≤ Jδ,π̂,θ.

Since it holds for all θ, we get

ϕ(y) ≤ inf
δ
Jδ,π̂,θ̂.
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It also holds for all δ, so we get

ϕ(y) ≤ Jδ,π̂,θ̂.

On the other hand

ϕ(y) = J δ̂,π̂,θ̂ ≥ inf
δ
Jδ,π̂,θ̂.

And so we conclude

ϕ(y) = inf
δ
Jδ,π̂,θ̂.

Step10. The same approach gives us:

ϕ(y) = inf
θ
J δ̂,π̂,θ(y).

�



46 CHAPTER 4. WORST CASE SCENARIO VERSION OF THE HJBI EQUATION

4.4. Examples

We will now apply the theorem to some examples. First, we look at the problem of optimizing

when the investor has a consumption function. We then try to maximize the portfolio and

the consumption process while the marked minimize through a scenario. Next, we look at a

similar example but where we let the investors consumption function be given and we maximize

a portfolio and minimize the marked by a scenario and the drift. We then extend this to a

Lévy setting. Then we will optimize a portfolio for a utility function where the drift is given a

posteriori. We will also give an example of a scenario optimization in a Lévy -market. Further we

give two example of optimization using convex risk measure one in a standard Black-Cox market

while the other one in a Lévy -market. Finally we look at a mean square hedging problem.

We consider the marked given by (2.3.2) and (2.3.3).

Example 4.4.1 (Consumption). Let us try to solve problem 4.2.1 by using the HJBI equation.

We will use an investor with consumption, who is controlling his rate of consumption. The

market is minimizing the investor expected return over a set of scenarios while the investor

tries to control his consumption and portfolio to maximize his expected return. Let Ma be as

before and let Γ(t) be a cumulative income process as in Karatzas and Shreve [1998], where

Γ(t) =
∫ t

0 c(u)du for a non-negative function c(·) such that
∫ T

0 c(u)du <∞ a.s. Further, let
dY (t) = (dY0(t), dY1(t), dY2(t));

Y (0) = y = (s, y1, y2),

where

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = −dΓ(t) + Y1(t)[α(t)π(t)dt+ β(t)π(t)dB(t)]; Y1(0) = y1 > 0.

dY2(t) = −θ(t)Y2(t)dB(t); Y2(0) = y2 > 0.

Let

Jc,π,θ(y) = Ey
[
Y2(T − s)

∫ T−s

0
U1(c(t))dt+ Y2(T − s)U2(Y1(T − s))

]
,

where U1 and U2 are utility functions be our performance functional. Then

Jc,π,θ(y) = Ey
[
Y2(T − s)

∫ T−s

0
U1(c(t))dt+ Y2(T − s)U2(Y1(T − s))

]
= Ey

[∫ T−s

0
Y2(t)U1(c(t))dt+ Y2(T − s)U2(Y1(T − s))

]
.
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Proof. We will show this in the general case for a s ∈ [0, T ]. By the de�nition of conditional

expectation, see e.g. Øksendal [2007] Appendix B, we have that∫
F
E[Y (T )

∫ T

s
u(t)dt|Fs]dP =

∫
F

∫ T

s
E[Y (T )u(t)|Fs]dtdP

=
∫
F

∫ T

s
Y (T )u(t)dtdP for all F ∈ Fs for some s ∈ [0, T ].

Since (Ω, P ) and ([0, T ], λ) are σ-�nite we can use Fubini and get∫
F

∫ T

s
E[Y (T )u(t)|Fs]dtdP =

∫ T

s

∫
F
E[Y (T )u(t)|Fs]dPdt

and Yt is a martingale so by using the tower property we get∫ T

s

∫
F
E[Y (T )u(t)|Fs]dPdt =

∫ T

s

∫
F
E[E[Y (T )u(t)|Ft|Fs]dPdt

=
∫ T

s

∫
F
Y (t)E[u(t)|Fs]dPdt

=
∫ T

s

∫
F
E[Y (t)u(t)|Fs]dPdt

=
∫ T

s

∫
F
Y (t)u(t)dPdt,

by de�nition. Again by Fubini∫ T

s

∫
F
Y (t)u(t)dPdt =

∫
F

∫ T

s
Y (t)u(t)dtdP =

∫
F
E[
∫ T

s
Y (t)u(t)dt|Fs]dP.

Since E[
∫ T
s Y (t)u(t)dt|Fs] is Fs-measurable we get that

E[Y (T )
∫ T

s
u(t)dt|Fs] = E[

∫ T

s
Y (t)u(t)dt|Fs].

Letting s = 0 we get the result. �

We need a constraint on the admissibility of the pair (c, π) to ensure that Y1(t) ≥ 0 so that we

don't get negative wealth. We therefor let the consumption process be a relative consumption

process, e.g. c(t) = λ(t)Y1(t), where EQθ [
∫ T

0 λ(t)dt] <∞, Qθ-a.s. so that

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = Y1(t)[(α(t)π(t)− λ(t))dt+ β(t)π(t)dB(t)]; Y1(0) = y1 > 0.

dY2(t) = −θ(t)Y2(t)dB(t); Y2(0) = y2 > 0.
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The problem can then be represented as

Φ(y) = Φ(s, y1, y2) = sup
c

[
inf
θ

(
sup
π
Jc,π,θ(y)

)]
= inf

θ

[
sup
π

(
sup
c
Jc,π,θ(y)

)]
.

We have that the generator of Y (·) is

Ac,π,θϕ(y) =
∂ϕ

∂s
+ y1(απ − λ)

∂ϕ

∂y1
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2θ
2 ∂

2ϕ

∂2y2
− y1y2βθπ

∂2ϕ

∂y1∂y2
;

The corresponding HJBI equation is

(4.4.10)


inf
θ

[
sup
π

(
sup
c
Ac,π,θ(y)

)]
+ U1(c)y2 = 0

ϕ(T, y1, y2) = U2(y1)y2

Fix π and λ and minimize

h(θ) := −y1y2βθπϕ12 +
1
2
y2

2θ
2ϕ22

with respect to θ.Minimum is attained at

θ = θ̂(y) =
y1βπϕ12

y2ϕ22

Substitute this and maximize

k(π) := y1απϕ1 +
1
2
y2

1β
2π2(ϕ11 −

ϕ2
12

ϕ22
)

with respect to π. The maximum is attained at

π = π̂(y) =
αϕ1ϕ22

y1β2(ϕ2
12 − ϕ11ϕ22)

.

Substituting this, we have

∂ϕ

∂s
− λy1ϕ1 +

α2ϕ2
1ϕ22

β2(ϕ2
12 − ϕ22ϕ11)

+
α2ϕ2

1ϕ
2
22ϕ11

2β2(ϕ2
12 − ϕ22ϕ11)2

+
α2δ2ϕ2

1ϕ
2
22ϕ22

2β2(ϕ2
12 − ϕ22ϕ11)2

− α2ϕ2
1ϕ

2
22ϕ22

β2(ϕ2
12 − ϕ22ϕ11)2

=
∂ϕ

∂s
− λy1ϕ1 +

α2ϕ2
1ϕ22

β2(ϕ2
12 − ϕ22ϕ11)

+
α2ϕ2

1ϕ22(ϕ22ϕ11 − ϕ2
12)

2β2(ϕ2
12 − ϕ22ϕ11)2

=
∂ϕ

∂s
− λy1ϕ1 +

α2ϕ2
1ϕ22

2β2(ϕ2
12 − ϕ22ϕ11)

Now, the condition

inf
θ

[
sup
π

(
sup
c
Ac,π,θ(y)

)]
+ U1(c)y2 = 0

gives us
∂ϕ

∂s
− λy1ϕ1 +

α2ϕ2
1ϕ22

2β2(ϕ2
12 − ϕ22ϕ11)

+ U1(λy1)y2
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to maximize with respect to λ. When then get

U ′1(λy1) =
ϕ1

y2

Which means that

λy1 = c = I1(
ϕ1

y2
),

where I1 is the inverse of U1. We get a partial di�erential equation for ϕ
∂ϕ
∂s − I1(ϕ1

y2
)ϕ1 + α2ϕ2

1ϕ22

2β2(ϕ2
12−ϕ22ϕ11)

= 0

ϕ(T, y1, y2) = U2(y1)y2

Let us try some a speci�c case where U1(x) = log(x), U2(x) = log(x),so that

Jc,π,θ(y) = Ey
[∫ T

0
log(c(t))Y2(t)dt+ log(Y1(T ))Y2(T )

]
.

We will then have that the HJBI equation is

(4.4.11)


inf
θ

[
sup
π

(
sup
c
Ac,π,θ(y)

)]
+ log(c)y2 = 0, s < T.

ϕ(T, y1, y2) = log(y1)y2,

and the generator of Y (·) is

Ac,π,θϕ(y) =
∂ϕ

∂s
− λy1

∂ϕ

∂y1
+ y1απ

∂ϕ

∂y1
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2θ
2 ∂

2ϕ

∂2y2
− y1y2βθπ

∂2ϕ

∂y1∂y2
;

Let us try a function on the form

ϕ(s, y1, y2) = h(s) log(y1)y2.

Then the corresponding generator becomes

Ac,π,θϕ(y) = h′(s) log(y1)y2 − λy2h(s) + απy2h(s)− 1
2
β2π2y2h(s)− y2βθπh(s);

Fix π and θ and maximize

h(λ) := log(λy1)− λy2

with respect to λ. This is clearly obtained at λ̂ = 1
y2
. So we now maximize the function

f(π) = απ − 1
2
β2π2.
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So π̂ = α
β2 .Then �nally we minimize

−y1y2βθπ.

Then we get that θ̂ = 0. Then from requirement (iv)

Aλ̂,π̂,θ̂ϕ(y) = h′(s) log(y1)y2 − 1 +
1
2
α2

β2
y2 = 0;

So

h′(s) = log−1(y1)[1− 1
2β2

α2].

and we have that

Φ(s, y1, y2) = ϕ(s, y1, y2) = [1− 1
2β2

α2]sy2.

Example 4.4.2 (Worst Case with Consumption). Let the setting be as above but now assume

the investor has a preferred consumption process where we want to maximize the value process

by choosing the optimal portfolio where the drift therm is given posteriori. This problem can be

represented as

Φ(y) = Φ(s, y1, y2) = inf
α

[
sup
π

(
inf
θ
Jα,π,θ(y)

)]
.

We have that the generator of Y (·) is

Ac,π,θϕ(y) =
∂ϕ

∂s
+ y1(απ − λ)

∂ϕ

∂y1
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2θ
2 ∂

2ϕ

∂2y2
− y1y2βθπ

∂2ϕ

∂y1∂y2
;

The corresponding HJBI equation is

(4.4.12)


inf
α

[
sup
π

(
inf
θ
Aα,π,θ(y)

)]
+ U1(c)y2 = 0

ϕ(T, y1, y2) = U2(y1)y2

Fix π and α and minimize

h(θ) := −y1y2βθπϕ12 +
1
2
y2

2θ
2ϕ22

with respect to θ.Minimum is attained at

θ = θ̂(y) =
y1βπϕ12

y2ϕ22

Substitute this and maximize

k(π) := y1απϕ1 +
1
2
y2

1β
2π2(ϕ11 −

ϕ2
12

ϕ22
)
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with respect to π. The maximum is attained at

π = π̂(y) =
αϕ1ϕ22

y1β2(ϕ2
12 − ϕ11ϕ22)

.

Substituting this, we have

∂ϕ

∂s
− λy1ϕ1 +

α2ϕ2
1ϕ22

β2(ϕ2
12 − ϕ22ϕ11)

+
α2ϕ2

1ϕ
2
22ϕ11

2β2(ϕ2
12 − ϕ22ϕ11)2

+
α2δ2ϕ2

1ϕ
2
22ϕ22

2β2(ϕ2
12 − ϕ22ϕ11)2

− α2ϕ2
1ϕ

2
22ϕ22

β2(ϕ2
12 − ϕ22ϕ11)2

=
∂ϕ

∂s
− λy1ϕ1 +

α2ϕ2
1ϕ22

β2(ϕ2
12 − ϕ22ϕ11)

+
α2ϕ2

1ϕ22(ϕ22ϕ11 − ϕ2
12)

2β2(ϕ2
12 − ϕ22ϕ11)2

=
∂ϕ

∂s
− λy1ϕ1 +

α2ϕ2
1ϕ22

2β2(ϕ2
12 − ϕ22ϕ11)

Now, the condition

inf
θ

[
sup
π

(
sup
c
Ac,π,θ(y)

)]
+ U1(c)y2 = 0

gives us
∂ϕ

∂s
− λy1ϕ1 +

α2ϕ2
1ϕ22

2β2(ϕ2
12 − ϕ22ϕ11)

+ U1(λy1)y2

to minimize with respect to α. When then get

α = 0.

We get a partial di�erential equation for ϕ
∂ϕ
∂s − λy1ϕ1 = 0

ϕ(T, y1, y2) = U2(y1)y2

Example 4.4.3 (Consumption in a Lévy Market). We now try to optimize in a setting where

the investor has the choice between two investments in a Lévy market. The market are given as

(2.3.2) and (2.3.3). Let Ma be as before. We will let the market control (θ0, θ1) and the investor

will control λ. As before, we let
dY (t) = (dY0(t), dY1(t), dY2(t));

Y (0) = y = (s, y1, y2),
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where

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = Y1(t)[(α(t)π(t)− λ(t))dt+ β(t)π(t)dB(t)]

+ Y1(t−)π(t−)
∫

R
γ(s, z)Ñ(ds, dz); Y1(0) = y1 > 0.

dY2(t) = −Y2(t)θ0(t)dB(t)− Y2(t)
∫

R
θ1(s, z)Ñ(ds, dz); Y2(0) = y2 > 0.

Further, let our performance functional be

Jλ,θ0,θ1(y) = Ey
[∫ T−s

0
Y2(t)U1(c(t))dt+ Y2(T − s)U2(Y1(T − s))

]
.

The problem can then be represented as

Φ(y) = Φ(s, y1, y2) = inf
θ0

[
sup
λ

(
inf
θ1
Jλ,θ0,θ1(y)

)]
.

We will then have that the HJBI equation is

(4.4.13)


sup
λ

[
inf
θ0

(
inf
θ1
Aλ,θ0,θ1(y)

)]
+ U1(λy1)y2 = 0,

ϕ(T, y1, y2) = U2(y1)y2,

and the generator of Y (·) is

Aδ,π,θϕ(y) =
∂ϕ

∂s
+ y1(απ − λ)

∂ϕ

∂y1
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2θ
2
0π

2 ∂
2ϕ

∂2y2
− y1y2βθ0π

∂2ϕ

∂y1∂y2

(4.4.14)

+
∫

R

[
ϕ(s, y1 + y1πγ(t, z), y2 − y2θ1(t, z))− ϕ(s, y1, y2)− y1πγ(t, z)

∂ϕ

∂y1
+ y2θ1(z)

∂ϕ

∂y2

]
v(dz).

Let λ and θ0 be �xed and minimize

f(θ1) :=
∫

R

[
ϕ(s, y1 + y1πz, y2 − y2θ1(t, z))− ϕ(s, y1, y2)

− y1πγ(t, z)
∂ϕ

∂y1
+ y2θ1(t, z)

∂ϕ

∂y2

]
v(dz),

for functions θ(t, z). We minimize pointwise and �nd minimum

(4.4.15)
∂ϕ

∂y2
(s, y1(1 + πγ(t, z)), y2(1− θ̂1)) =

∂ϕ

∂y2
(s, y1, y2).

We then use

g(λ) := y1(απ − λ)
∂ϕ

∂y1
+ U1(λy1)y2,
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to maximize over λ to get

λ̂ =
1
y1
I1(

ϕ1

y2
).

Further, for θ0, we let

l(θ0) =
1
2
y2

2θ
2
0π

2 ∂
2ϕ

∂2y2
− y1y2βθ0π

∂2ϕ

∂y1∂y2
,

and �nd

θ̂0 =
y1

y2

β

π

ϕ12

ϕ22
.

when ϕ22 6= 0. Then we have an optimal trippel (λ̂, θ̂0, θ̂1) which is substituted into (4.4.14) to

give

∂ϕ

∂s
+ y1(απ − 1

y1
I1(

ϕ1

y2
))
∂ϕ

∂y1
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2 θ̂0
2
π2 ∂

2ϕ

∂2y2
− y1y2βθ̂0π

∂2ϕ

∂y1∂y2

+
∫

R

[
ϕ(s, y1 + y1πγ(t, z), y2 − y2θ̂1(t, z))− ϕ(s, y1, y2)

− y1πγ(t, z)
∂ϕ

∂y1
+ y2θ̂1(z)

∂ϕ

∂y2

]
v(dz) = 0,

by requirement (iii).

Example 4.4.4 (Portfolio Optimization in Worst Case). We will now try to optimize in a setting

where the investor has the choice between two investments in a non-jump market. We assume

the drift is given a priori and minimized by the marked. The market are given as (2.3.2) and

(2.3.3) with γ(t, z) = 0. Let Ma be as above with θ1(t, z) = 0 Now,let
dY (t) = (dY0(t), dY1(t), dY2(t));

Y (0) = y = (s, y1, y2),

where

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = Y1(t)[(r(t) + (α(t)− r(t))π(t))dt+ βπ(t)dB(t)]; Y1(0) = y1 > 0.

dY2(t) = −Y2(t)θ(t)dB(t); Y2(0) = y2 > 0.

Let

Jπ,α,θ(y) = Ey [U(Y1(τs)ξ0(Y2(τs)))] .

The problem can then be represented as

Φ(y) = Φ(s, y1, y2) = inf
α

[
sup
π

(
inf
θ
Jα,π,θ1(y)

)]
.
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We will then have that the HJBI equation is

(4.4.16)


inf
α

[
sup
π

(
sup
θ
Aα,π,θ(y)

)]
= 0,

ϕ(T, y1, y2) = U(y1)ξ0(y2),

and the generator of Y (·) is

Aδ,π,θϕ(y) =
∂ϕ

∂s
+ y1(r + (α− r)π)

∂ϕ

∂y1
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2θ
2π2 ∂

2ϕ

∂2y2
− y1y2βθπ

∂2ϕ

∂y1∂y2
.

(4.4.17)

Let π and α be �xed and minimize

f(θ) :=
1
2
y2

2θ
2π2 ∂

2ϕ

∂2y2
− y1y2βθπ

∂2ϕ

∂y1∂y2
,

for functions θ(t, z). We minimize and �nd minimum

(4.4.18) θ̂ =
y1

y2

β

π

ϕ12

ϕ22
.

when ϕ22 6= 0. We then use

g(π) := y1(α− r)π ∂ϕ
∂y1

+
1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2 θ̂
2π2 ∂

2ϕ

∂2y2
− y1y2βθ̂π

∂2ϕ

∂y1∂y2
,

to maximize over π we get

π̂ =
r − α
y1β2

ϕ1

ϕ11
.

Further, for α, we let

l(α) =
1
β2
y2

1(r − α)2(
1
2
y2

1 − 1)
ϕ2

1

ϕ11

and �nd

α̂ = r.

So

π̂ = 0.

Then we have an optimal triple (α̂, π̂, θ̂) which is substituted into (4.4.17) to give

∂ϕ

∂s
+ y1(r + (α̂− r)π̂)

∂ϕ

∂y1
+

1
2
y2

1β
2π̂2 ∂

2ϕ

∂2y1
+

1
2
y2

2 θ̂
2π2 ∂

2ϕ

∂2y2
− y1y2βθ̂π̂

∂2ϕ

∂y1∂y2
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With requirement (iii), this gives

∂ϕ

∂s
+ y1r

∂ϕ

∂y1
= 0,

and we see that

ϕ =
− ln(y1)

r

∂ϕ

∂y1
.

So the investor puts everything into the risk free asset.

Example 4.4.5 (Scenario Optimization in a Lévy Marked). We now try to optimize in a setting

where the investor has the choice between two investments in a Lévy market. The market are

given as (2.3.2) and (2.3.3). Let Ma be as before. We will let the market control (θ0, θ1) and the

investor will control π. First let
dY (t) = (dY0(t), dY1(t), dY2(t));

Y (0) = y = (s, y1, y2),

where

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = Y1(t)[(r(t) + (α(t)− r(t))π(t))dt+ βπ(t)dB(t)]

+ Y1(t−)π(t−)
∫

R
γ(s, z)Ñ(ds, dz); Y1(0) = y1 > 0.

dY2(t) = −Y2(t)θ0(t)dB(t)− Y2(t)
∫

R
θ1(s, z)Ñ(ds, dz); Y2(0) = y2 > 0.

Let

Jπ,θ0,θ1(y) = Ey [U(X(τs)ξ0(Y2(τs)))] .

The problem can then be represented as

Φ(y) = Φ(s, y1, y2) = sup
π

[
inf
θ0

(
inf
θ1
Jπ,θ0,θ1(y)

)]
.

We will then have that the HJBI equation is

(4.4.19)


sup
π

[
inf
θ0

(
inf
θ1
Aπ,θ0,θ1(y)

)]
= 0,

ϕ(T, y1, y2) = U(y1)ξ0(y2),
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and the generator of Y (·) is

Aδ,π,θϕ(y) =
∂ϕ

∂s
+ y1(r + (α− r)π)

∂ϕ

∂y1
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2θ
2
0π

2 ∂
2ϕ

∂2y2
− y1y2βθ0π

∂2ϕ

∂y1∂y2

(4.4.20)

+
∫

R

[
ϕ(s, y1 + y1πγ(t, z), y2 − y2θ1(t, z))− ϕ(s, y1, y2)− y1πγ(t, z)

∂ϕ

∂y1
+ y2θ1(z)

∂ϕ

∂y2

]
v(dz).

Let π and θ0 be �xed and minimize

f(θ1) :=
∫

R

[
ϕ(s, y1 + y1πz, y2 − y2θ1(t, z))− ϕ(s, y1, y2)

− y1πγ(t, z)
∂ϕ

∂y1
+ y2θ1(t, z)

∂ϕ

∂y2

]
v(dz),

for functions θ(t, z). We minimize pointwise and �nd minimum

(4.4.21)
∂ϕ

∂y2
(s, y1(1 + πγ(t, z)), y2(1− θ̂1)) =

∂ϕ

∂y2
(s, y1, y2).

We then use

g(π) := y1(α− r)π ∂ϕ
∂y1

+
1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2 θ̂0
2
π2 ∂

2ϕ

∂2y2
− y1y2βθ̂0π

∂2ϕ

∂y1∂y2

+
∫

R

[
ϕ(s, y1 + y1πz, y2 − y2θ̂1(t, z))− y1πγ(t, z)

∂ϕ

∂y1

]
v(dz),

to maximize over π. Further, for θ0, we let

l(θ0) =
1
2
y2

2θ
2
0π

2 ∂
2ϕ

∂2y2
− y1y2βθ0π

∂2ϕ

∂y1∂y2
,

and �nd

θ̂0 =
y1

y2

β

π

ϕ12

ϕ22
.

when ϕ22 6= 0. Then we have an optimal trippel (θ̂0, π̂, θ̂1) which is substituted into (4.4.20) to

give

∂ϕ

∂s
+ y1(r + (α− r)π̂)

∂ϕ

∂y1
+

1
2
y2

1β
2π̂2 ∂

2ϕ

∂2y1
+

1
2
y2

2 θ̂0
2
π2 ∂

2ϕ

∂2y2
− y1y2βθ̂0π̂

∂2ϕ

∂y1∂y2

+
∫

R

[
ϕ(s, y1 + y1π̂γ(t, z), y2 − y2θ̂1(t, z))− ϕ(s, y1, y2)

− y1π̂γ(t, z)
∂ϕ

∂y1
+ y2θ̂1(z)

∂ϕ

∂y2

]
v(dz) = 0,

by requirement (iii). Motivated by requirement (iv) and Øksendal and Sulem [2006] we try a

function on the form

ϕ(s, y1, y2) = y2g(f(s)y1).
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for some deterministic function f with f(T ) = 1. From (4.4.21) we need that

g (f(s)y1(1 + πγ)) =
g(f(s)y1)

1− θ1
.

Then, we have that,

Aδ,π,θϕ(y) = y2g
′(f(s)y1)f ′(s)y1 + y1(r + (α− r)π)y2g

′(f(s)y1)f(s)

+
1
2
y2

1β
2π2y2g

′′(f(s)y1)f2(s)

− y1y2βθ0πg
′(f(s)y1)f(s)

+
∫

R

[
(y2 − y2θ1(z))g(f(s)(y1 + y1πγ(z)))− y2g(f(s)y1)

− y1πγ(t, z)y2g
′(f(s)y1)f(s) + y2θ1(z)g(f(s)y1)

]
v(dz).

If we minimize Aθ0,π̂,θ̂ we get

−π̂y1y2βg
′(f(s)y1)f(s) = 0

So we conclude that

(4.4.22) π̂ = 0.

We then minimize Aθ̂0,π̂,θ we get

−
∫

R
[y2g(f(s)y1(1 + π̂γ(y, z))) + y2g(f(s)y1)]ν(dz) = 0

Next we maximize Aθ̂0,π,θ̂1 over π and get

y1(α− r(s))y2g
′(f(s)y1)f(s) + y2

1π̂β
2g′′(f(s)y1)f(s)− θ̂0βg

′(f(s)y1)

+
∫

R
{(1− θ̂1(z, s))g′(f(s)y1)1 + π̂γ(y, z)))− g′(f(s)y1)}γ(y, z)ν(dz) = 0.

Substituting 4.4.22 into this gives

(α− r(s))g′(f(s)y1)− θ̂0βg
′(f(s)y1) +

∫
R
{(−θ̂1(y, z))g′(f(s)y1)γ(y, z)}ν(dz) = 0.

or

(4.4.23) θ̂0(y)β(y) +
∫

R
{(θ̂1(y, z))γ(y, z)}ν(dz) = α(y)− r(s).

From the HJBI equation we need

Aθ̂0,π̂,θ̂1ϕ(y) = 0
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Solving this we get that

y2g
′(f(s)y1)y1f

′(s) + y1r(s)y2g
′(f(s)y1)f(s)+∫

R
[y2(1− θ̂1(y, z))g(f(s)y1)− y2g(f(s)y1) + y2θ̂1g(f(s)y1)]ν(dz) = 0.

or

f ′(s) + r(s)f(s) = 0

which leads to

(4.4.24) f(s) = exp
(∫ T−s

0
r(u)du

)
.

So the agent is to put everything into the risk free asset i.e.

π̂(t) = 0,

and the market chooses the scenario Qθ where θ̂ = (θ0, θ1) satisfy

(4.4.25) θ̂0β(y) +
∫

R
{(θ̂1(y, z))γ(y, z)}ν(dz) = α(y)− r(s).

So the market chooses an equivalent martingale measure.

Example 4.4.6 (Convex Risk Measure in Classic Black-Scholes Marked). Let us try to solve

problem 4.1.3 by using the HJBI equation. Let the setting be the Classic Black-Scholes market

and assume the rate of return is unknown to the investor and given a posteriori to the portfolio

optimization. To keep it simple we assume that in our marked

(4.4.26) r(t) = 0, α(t) = α(k), β(t) = β(j), γ(t, z) = 0, where j, k ∈ R.

Let Ma be the set of all probability measures as de�ned above. Let

dY (t) = (dY0(t), dY1(t), dY2(t));Y (0) = y = (s, y1, y2),

where

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = Y1(t)[α(t)δ(t)π(t)dt+ β(t)π(t)dB(t)]; Y1(0) = y1 > 0.

dY2(t) = −θ(t)Y2(t)dB(t); Y1(0) = y1 > 0.
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We let the penalty function be on the form

ζ0(Qθ) = E

[
ζ0

(
dQθ
dP

)]
= E [ζ0(Y2(T ))] for a function ζ : R→ R.

Let

Jδ,π,θ(y) = Ey [gθ(Y1(τs))] ,

where gθ(x) = x+ ζ0(Qθ). The problem can then be represented as

Φ(y) = Φ(s, y1, y2) = inf
δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
= inf

δ

[
sup
π
− ρ(y),

]
where ρ(y) = inf

θ
(Ey[x] + ζ0(θ)) is a convex risk measure. Then the generator of Y (·) is

Aδ,π,θϕ(y) =
∂ϕ

∂s
+ y1αδπ

∂ϕ

∂y1
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2θ
2 ∂

2ϕ

∂2y2
− y1y2βθπ

∂2ϕ

∂y1∂y2
;

The corresponding HJBI equation is

(4.4.27)


inf
α

[
sup
π

(
inf
θ
Aα,π,θ(y)

)]
= 0,

ϕ(T, y1, y2) = y1y2 + ζ0(y2).

Fix π and α and minimize

h(θ) := −y1y2βθπϕ12 +
1
2
y2

2θ
2ϕ22

with respect to θ.Minimum is attained at

θ = θ̂(y) =
y1βπϕ12

y2ϕ22

Substitute this and maximize

k(π) := y1απϕ1 +
1
2
y2

1β
2π2(ϕ11 −

ϕ2
12

ϕ22
)

with respect to π. The maximum is attained at

π = π̂(y) =
αϕ1ϕ22

y1β2(ϕ2
12 − ϕ11ϕ22)

.

Substituting this, we have

∂ϕ

∂s
+
α2ϕ2

1ϕ22

β2M
+
α2ϕ2

1ϕ
2
22ϕ11

2β2M2
+
α2ϕ2

1ϕ
2
22ϕ22

2β2M2
− α2ϕ2

1ϕ
2
22ϕ22

β2M2

=
∂ϕ

∂s
+
α2ϕ2

1ϕ22

β2M
+
α2ϕ2

1ϕ22(ϕ22ϕ11 − ϕ2
12)

2β2M2

=
∂ϕ

∂s
+

α2ϕ2
1ϕ22

2β2(ϕ2
12 − ϕ22ϕ11)
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minimizing with respect to α we see that α = 0 gives minimum. Substituting this we get a

partial di�erential equation for ϕ
∂ϕ
∂s = 0

ϕ(T, y1, y2) = y1y2 + ζ0(y2)

Example 4.4.7 (Convex Risk Measure in Itô-Lévy Setting). We will now try to optimize a worst

case scenario in a setting where we have a convex risk measure in a Lévy market. The market

are given as (2.3.2) and (2.3.3).

Let Ma be First let

dY (t) = (dY0(t), dY1(t), dY2(t));Y (0) = y = (s, y1, y2),

where

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = Y1(t)[(r(t) + (α(t)− r(t))π(t))dt+ βπ(t)dB(t)]

+ Y1(t−)π(t−)
∫

R
γ(s, z)Ñ(ds, dz); Y1(0) = y1 > 0.

dY2(t) = −Y2(t)θ0(t)dB(t)− Y2(t)
∫

R
θ1(s, z)Ñ(ds, dz); Y2(0) = y2 > 0.

We let the penalty function be on the form

ζ0(Qθ) = E

[
ζ0

(
dQθ
dP

)]
= E [ζ0(Y2(T ))] for a function ζ : R→ R.

Let

Jπ,θ0,θ1(y) = Ey [gθ(Y1(τs))] .

where gθ(x) = x+ ζ0(Qθ). The problem can then be represented as

Φ(y) = Φ(s, y1, y2) = inf
θ0

[
sup
π

(
inf
θ1
Jθ0,π,θ1(y)

)]
= inf

θ0

[
sup
π
− ρ(y)

]
where ρ is a convex risk measure and the generator of Y (·) is

Aδ,π,θϕ(y) =
∂ϕ

∂s
+ y1(r + (α− r)π)

∂ϕ

∂y1
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2θ
2
0

∂2ϕ

∂2y2
− y1y2βθ0π

∂2ϕ

∂y1∂y2

(4.4.28)

+
∫

R

[
ϕ(s, y1 + y1πγ(t, z), y2 − y2θ1(t, z))− ϕ(s, y1, y2)− y1πγ(t, z)

∂ϕ

∂y1
+ y2θ1(z)

∂ϕ

∂y2

]
v(dz).
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Let π and θ0 be �xed and minimize

f(θ1) :=
∫

R

[
ϕ(s, y1 + y1πz, y2 − y2θ1(t, z))− ϕ(s, y1, y2)

− y1πγ(t, z)
∂ϕ

∂y1
+ y2θ1(t, z)

∂ϕ

∂y2

]
v(dz),

for functions θ(t, z). We minimize pointwise and �nd minimum

∂ϕ

∂y2
(s, y1(1 + πγ(t, z)), y2(1− θ̂1)) =

∂ϕ

∂y2
(s, y1, y2).

If we substitute into 4.4.28 we get

g(π) := y1(α− r)π ∂ϕ
∂y1

+
1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
− y1y2βθ̂0π

∂2ϕ

∂y1∂y2

+
∫

R

[
ϕ(s, y1 + y1πz, y2 − y2θ̂1(t, z))− y1πγ(t, z)

∂ϕ

∂y1

]
v(dz),

to maximize over π. Then we have an optimal trippel (θ̂0, π̂, θ̂1) which is substituted into 4.4.20

to give

∂ϕ

∂s
+ y1(r + (α− r)π̂)

∂ϕ

∂y1
+

1
2
y2

1β
2π̂2 ∂

2ϕ

∂2y1
+

1
2
y2

2 θ̂0
2
π2 ∂

2ϕ

∂2y2
− y1y2βθ̂0π̂

∂2ϕ

∂y1∂y2

+
∫

R

[
ϕ(s, y1 + y1π̂γ(t, z), y2 − y2θ̂1(t, z))− ϕ(s, y1, y2)

− y1π̂γ(t, z)
∂ϕ

∂y1
+ y2θ̂1(z)

∂ϕ

∂y2

]
v(dz) = 0.

Motivated by requirement (iv) we try a function on the form

ϕ(s, y1, y2) = f(s)y1 + ζ0(y2).

for some deterministic function f with f(T ) = 1. Then, we have that,

Aπ,θ0,θ1ϕ(y) = f ′(s)y1 + y1(r + (α− r)π)f(s)

+
1
2
y2

2θ
2
0π

2ζ
′′
0 (y2)

+
∫

R

[
f(s)(y1 + y1πγ(z)) + ζ0(y2 − y2θ1)− f(s)y1 + ζ0(y2)− y1πγ(z)f(s)− y2θ1ζ

′
0(y2)

]
v(dz).

If we minimize Aπ̂,θ0,θ̂1 we get

y2π̂ξ
′′(y2) = 0.

So we conclude that

(4.4.29) π̂ = 0.
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We then minimize Aπ̂,θ̂0,θ1 we get∫
R

[f(s)y1 + ζ0(y2 − y2θ1)− f(s)y1 + ζ0(y2)− y2θ1ζ
′
0(y2)]ν(dz) = 0

We then maximize Aπ,θ̂0,θ̂1 over π and get

y1(α− r)f(s)+∫
R

[
f(s)y1 + ζ0(y2 − y2θ1)− f(s)y1 + ζ0(y2)− y2θ1ζ

′
0(y2)

]
ν(dz) = 0.

or

(4.4.30)
∫

R

[
f(s)y1 + ζ0(y2 − y2θ1)− f(s)y1 + ζ0(y2)− y2θ1ζ

′
0(y2)

]
ν(dz) = y1(r − α)f(s).

From the HJBI equation we need

Aπ̂,θ̂0,θ̂1ϕ(y) = 0

Solving this we get that

f ′(s)y1 + y1rf(s)

+
∫

R

[
f(s)y1 + ζ0(y2 − y2θ1)− f(s)y1 + ζ0(y2)− y2θ1ζ

′
0(y2)

]
ν(dz) = 0.

or

f ′(s) + r(s)f(s) =
1
y1

(
ζ0(y2 − y2θ1) + ζ0(y2)− y2θ1ζ

′
0(y2)

)
.

which leads to

(4.4.31) f(s) = C exp
(
−
∫ s

0
r(u)du

)
+B

∫ s

0
e−

∫ s
u r(l)dldu,

where B = 1
y1

(
ζ0(y2 − y2θ1) + ζ0(y2)− y2θ1ζ

′
0(y2)

)
. Solving for f(T) =1 gives us

f(s) =
∫ T

0
e
∫ u
0 r(l)dldu exp

(
−
∫ s

0
r(u)du

)
+B

∫ s

0
e−

∫ s
u r(l)dldu.

So the agent is to put everything into the risk free asset i.e.

π̂(t) = 0,

and the market chooses the scenario Qθ such that

(4.4.32)
∫

R

[
f(s)y1 + ζ0(y2 − y2θ1)− f(s)y1 + ζ0(y2)− y2θ1ζ

′
0(y2)

]
ν(dz) = y1(r − α)f(s).
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Example 4.4.8 (Mean-Variance Hedging in a Lévy Market). In this example we would like to

�nd a self-�nancing hedging strategy that given a claim x ∈ X we minimize the terminal hedging

error by mean-square. Let x ∈ X(L2(Ω, F, P )) and

ρ(x) = sup
θ
E[Y2(T )(V0 +

∫ T

0
dY1(t)− x)2]

= sup
θ
EQ[(V0 +

∫ T

0
dY1(t)− x)2]

= sup
θ
E[(V0

√
Y2(T ) +

∫ T

0

√
Y2(t)dY1(t)−

√
Y2(T )x)2].

and let the problem be: Find π̂ such that

ρπ̂ ≤ inf
π
ρπ(x).

We can then rewrite this as

inf
π

sup
Q
EQ[g(π, x)2] = inf

A∈A
sup
Q
‖ x−A ‖2L2(Q) .

Where A is the set of all attainable payo�s and g(π, x) = V0 +
∫ T

0 dY π
1 (t)−x. Then this becomes

the problem of �nding the orthogonal projections in L2Q of the payo� x on the set of attainable

claims A. Decomposing a r.v. into a stochastic integral and an orthogonal component is known

as the Galtchouk-Kunita-Watanabe decomposition, see Cont and Tankov [2004].





CHAPTER 5

HJBI EQUATION FOR

NASH-EQUILIBRIA

I
n this chapter we extend the Nash-equilibria HJBI equation given in Mataramvura and Øk-

sendal [2008] to include the market as a participant who controls a set of scenarios. We will

give and prove a HJBI equation for the game.

5.1. Nash Equilibrium

Let the marked be as above and u = (π1, π2, θ) be admissible controls for player 1,2 and 3. Let

there be two performance functionals on the form

(5.1.1) Ju1 (y) = Ey[
∫ τs

0
f1(X(t), u(t))dt+ g1(X(τs))],

and

(5.1.2) Ju2 (y) = Ey[
∫ τs

0
f2(X(t), u(t))dt+ g2(X(τs))],

Definition 5.1.1. A triple (π̂1, π̂2, θ̂) ∈ Π1×Π2×Θ is called a Nash equilibrium for the stochastic

di�erential game if the following holds

Jπ1,π̂2,θ̂
1 ≤ J π̂1,π̂2,θ̂

1 ; for all π1 ∈ Π1

J π̂1,π2,θ̂
2 ≤ J π̂1,π̂2,θ̂

2 ; for all π2 ∈ Π2

65
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This means that when player 2 uses control π∗2, it is optimal for player 1 to use π∗1. So (π∗1, π
∗
2, θ
∗)

is an equilibrium point. As before we use Markov controls. We now have the following problem;

Problem 5.1.1. Find Φ(y)i, i = 1, 2, and (π∗1, π
∗
2, θ
∗) ∈ Pi×Π×Θ such that

Φ(y)1 = sup
π1

[
inf
θ
Jπ1,π2,θ(y)

]
and

Φ(y)2 = sup
π2

[
inf
θ
Jπ1,π2,θ(y)

]
where

Jπ1,π2,θ
i (y) = Ey

[∫ τs

0
fi(X(t), u(t)) + gi(X(τs))

]
,

5.2. A HJBI for Nash equilibria

To solve the above problem we give a veri�cation theorem for a function, ϕ, similar to the one

given in chapter 4.

Theorem 5.2.1. Suppose there exists functions ϕi ∈ C2((S)) ∩ C(S̄); i = 1, 2, and a Markov

control (π̂1, π̂2, θ̂) ∈ Π1 ×Π2 ×Θ such that

(i) Aπ̂1,π̂2,θϕ(y) + f(y, π̂1, π̂2, θ) ≥ 0 for all θ ∈ K3.

(ii) Aπ1,π̂2,θ̂ϕ(y) + f(y, π1, π̂2, θ̂) ≤ 0 for all π1 ∈ K1.

(iii) Aπ̂1,π2,θ̂ϕ(y) + f(y, π̂1, π2, θ̂) ≤ 0 for all π2 ∈ K2.

(iv) Aπ̂1,π̂2,θ̂ϕ(y) + f(y, π̂1, π̂2, θ̂) = 0.

(v) Xπ1,π2,θ(τs) ∈ ∂S a.s. on {τs < ∞} and lim
t→τ−s

ϕ(Xπ1,π2,θ(t)) = g(Xπ1,π2,θ(τs))χ{τs<∞}

a.s. for all (π1, π2, θ) ∈ Π1 ×Π2 ×Θ, y ∈ S.

(vi) The family {ϕ(Xπ1,π2,θ(τ))}τ∈T is uniformly integrable, for all (π1, π2 θ) ∈ Π1×Π2×Θ,

y ∈ S.

Then (π̂1, π̂2, θ̂) is a Nash equilibrium for the game and

ϕ1(y) = sup
π1

[
inf
θ
Jπ1,π̂2,θ

1 (y)
]

= inf
θ

[
sup
π1

Jπ1,π̂2,θ
1 (y)

]
= J π̂1,π̂2,θ̂

1 (y),(5.2.3)

ϕ2(y) = sup
π2

[
inf
θ
J π̂1,π2,θ

2 (y)
]

= inf
θ

[
sup
π2

J π̂1,π2,θ
2 (y)

]
= J π̂1,π̂2,θ̂

2 (y).(5.2.4)

Proof. To prove 5.2.3 for player 1 we will proceed as in chapter 4.
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Step1. Let us �rst prove that

ϕ1(y) = sup
π1

[
inf
θ
Jπ1,π̂2,θ

1 (y)
]

= J π̂1,π̂2,θ̂
1 (y).(5.2.5)

Fist from Dynkin, Y = Y π1,π̂2,θ̂ and (ii) to get

Ey[ϕ1(Y (τNs ))] = ϕ1(y) + Ey[
∫ τNs

0
Aπ1,φ,θϕ1(Y (t))dt](5.2.6)

≤ ϕ1(y)− Ey[
∫ τNs

0
f1(Y (t), u(Y (t)))dt]

so

ϕ1(y) ≥ Ey[
∫ τNs

0
f1(Y (t), u(Y (t)))dt+ ϕ1(Y (τNs ))]

Letting N →∞, we get

ϕ1(y) ≥ Jπ1,π̂2,θ̂
1 (y).

This holds for every π1 so

ϕ1(y) ≥ sup
π1

Jπ1,π̂2,θ̂
1 (y).

We also have

inf
θ
Jπ1,π̂2,θ

1 (y) ≤ Jπ1,π̂2,θ̂
1 (y),

for all π1, so taking supremum on both sides gives us that

sup
π1

[
inf
θ
Jπ1,π̂2,θ

1 (y)
]
≤ sup

π1

Jπ1,π̂2,θ̂
1 (y).

so

(5.2.7) ϕ1(y) ≥ sup
π1

[
inf
θ
Jπ1,π̂2,θ

1 (y)
]
.

Again using (i), Y = Y π̂1,π̂2,θ and Dynkin

ϕ1(y) ≤ Jπ1,π̂2,θ̂
1 (y).

Since it holds for every θ we have

ϕ1(y) ≤ inf
θ
J π̂1,π̂2,theta

1 (y).

Which implies that

(5.2.8) ϕ1(y) ≤ sup
π1

[
inf
θ
Jπ1,π̂2,θ

1 (y)
]
.
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If we apply this method to the control (π̂1, π̂2, θ̂) and use (iv) we see that

(5.2.9) ϕ1(y) = J π̂1,π̂2,θ̂
1 (y).

Combining (5.2.7), (5.2.8) and (5.2.9), we get

(5.2.10) ϕ1(y) = sup
π1

[
inf
θ
Jπ1,π̂2,θ̂

1 (y)
]

= J π̂1,π̂2,θ̂
1 (y).

Step2. Let us now prove that

ϕ1(y) = inf
θ

[
sup
π1

Jπ1,π̂2,θ
1 (y)

]
= J π̂1,π̂2,θ̂

1 (y).

Again, from Dynkin and (ii)

ϕ1(y) ≥ Jπ1,π̂2,θ̂
1 (y).

Since this holds for all π1 we get

ϕ1(y) ≥ sup
π1

Jπ1,π̂2,θ̂
1 (y) ≥ inf

θ

[
sup
π1

Jπ1,π̂2,θ
1 (y)

]
.

On the other hand, using Dynkin and (i) we get

ϕ1(y) ≤ Jπ1,π̂2,θ̂
1 (y) ≤ sup

π1

Jπ1,π̂2,θ̂
1 (y).

Since it holds for every θ we have

ϕ1(y) ≤ inf
θ

[
sup
π1

Jπ1,π̂2,θ
1 (y)

]
.

And we conclude that

ϕ1(y) = inf
θ

[
sup
π1

Jπ1,π̂2,θ
1 (y)

]
.(5.2.11)

Combining (5.2.10) and (5.2.11), we get

ϕ1(y) = sup
π1

[
inf
θ
Jπ1,π̂2,θ

1 (y)
]

= J π̂1,π̂2,θ̂
1 (y) = inf

θ

[
sup
π1

Jπ1,π̂2,θ
1 (y)

]
= J π̂1,π̂2,θ̂

1 (y).(5.2.12)

Step3. Using same approach we easily prove statement 5.2.4 for player 2.

�
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5.3. Examples

Now we will apply the above result to give some examples. First, we give an example in a Lévy

market for two companies with external driven scenarios. Then go on to a non-jump setting.

We then look at the same settings except for an internal market factor. Finally, we will give an

example of two highly correlated businesses.

We consider the marked given by (2.3.2) and (2.3.3).

Example 5.3.1 (Minimizing Worst Case External Factors for two Companies). Suppose we

have two companies described by X(·) = (X1(·), X2(·)) where σ is a 2 × 2 matrix, η = (η1, η2),

π = (π1, π2) and
dX1(t) = X1(t)[π1(t)dt+ µ1dB(t)] + σ11(t)X1(t−)dη1(t) + σ12(t)X1(t−)dη2(t)

X1(0) = x1 ∈ R.

and 
dX2(t) = X2(t)[π2(t)dt+ µ2dB(t)] + σ21(t)X2(t−)dη1(t) + σ22(t)X2(t−)dη2(t)

X2(0) = x2 ∈ R.

Here π = (π1, π2) is the control of company 1 and 2 respectively and ηi(t) =
∫ t

0

∫
R zÑi(ds, dz)

i = 1, 2. De�ne

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dX1(t); Y1(0) = y1 = x1.

dY2(t) = dX2(t); Y2(0) = y2 = x2.

dY3(t) = −Y3(t)θ0(t)dB(t)− Y3(t−)
∫

R
θ1(z)Ñ3(ds, dz); Y3(0) = y3 > 0.
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Let us try to model some external market factors by θ = (θ0, θ1), where we then get the generator

of Y (·) as

Aπ1,π2,θϕ(s, y1, y2, y3) =
∂ϕ

∂s
+ x1π1

∂ϕ

∂x1
+ x2π2

∂ϕ

∂x2
+

1
2
x2

1µ
2
1

∂2ϕ

∂2x1
+

1
2
x2

2µ
2
2

∂2ϕ

∂2x2

(5.3.13)

+
1
2
y2

3θ
2
0

∂2ϕ

∂2y3
− y1y2µ1µ2

∂2ϕ

∂y1∂y2
− y1y3µ1θ0

∂2ϕ

∂y1∂y3
− y2y3µ2θ0

∂2ϕ

∂y2∂y3

+
∫

R

[
ϕ(s, y1 + y1σ11z, y2 + y2σ21z, y3)− ϕ(s, y1, y2, y3)− y1σ11z

∂ϕ

∂y1
− y2σ21z

∂ϕ

∂y2

]
v(dz)

+
∫

R

[
ϕ(s, y1 + y1σ12z, y2 + y2σ22z, y3)− ϕ(s, y1, y2, y3)− y1σ12z

∂ϕ

∂y1
− y2σ22z

∂ϕ

∂y2

]
v(dz)

+
∫

R

[
ϕ(s, y1, y2, y3 + y3θ1(z))− ϕ(s, y1, y2, y3)− y3θ1z

∂ϕ

∂y3

]
v(dz)

The performance functionals to the companies have the form

Jπ,θ1 = inf
θ
E[−

∫ T−s

0
α1π

2
1(t)X2

2 (t)Y3(t)dt+ γ1X
2
1 (T )X2

2 (T )Y3(T )],

and

Jπ,θ2 = inf
θ
E[−

∫ T−s

0
α2π

2
2(t)X2

1 (t)Y3(t)dt+ γ2X
2
1 (T )X2

2 (T )Y3(T )].

As in Mataramvura and Øksendal [2008] we can interpret π1 and π2 as investment rates and the

payo� function as describing how the size of each company heats up the economy such that the

payo� and energy cost are proportional to the squared size of each other. Here we have
f1(s, x1, x2, y3, θ, π) = −α1π

2
1x

2
2y3,

g1(s, x1, x2, y3) = γ1x
2
1x

2
2y3,

and 
f2(s, x1, x2, y3, θ, π) = −α2π

2
2x

2
1y3,

g2(s, x1, x2, y3) = γ2x
2
1x

2
2y3.

The problem can then, for player 1, be represented as

Φ(y) = Φ(s, y1, y2) = sup
π1

[
inf
θ
Jπ1,θ(y)

]
.

Then from Theorem 5.2.1 and Theorem 4.3.1 we know that

sup
π1

[
inf
θ0

(
inf
θ1
Jπ1,θ0,θ1(y)

)]
= inf

θ0

[
inf
θ1

(
sup
π1

Jπ1,θ0,θ1(y)
)]

.
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The corresponding HJBI equation is

(5.3.14)


sup
π1

[
inf
θ0

(
inf
θ1
Aπ1,θ(y)

)]
+ f1 = 0

ϕ(T, y) = g1(y).

To �nd a Nash equilibrium for we �x π2 ∈ R and maximize

Aδ,π1,π2ϕ1(y) + f1(y)

with respect to π1. So we maximize

h1(π1) := x1π1
∂ϕ1

∂x1
− α1π

2
1x

2
2y3.

This maximum is attained at

(5.3.15) π1 = π̂1 =
x1

α1x2
2y3

∂ϕ1

∂x1

Substituting this into (5.3.13) we get the function

g(θ1) :=
∫

R

[
ϕ(s, y1, y2, y3 + y3θ1(z))− y3θ1(z)

∂ϕ

∂y3

]
v(dz)

We can minimize this point-wise, let

Ψ(θ1) = ϕ(s, y1, y2, y3 + y3θ1(z))− y3θ1(z)
∂ϕ

∂y3
.

The �rst order condition for a minimum θ̂1 of Ψ is

∂ϕ

∂y3
(s, y1, y2, y3 + y3θ̂1(z)) = −2y3θ̂1(z).

We then let

f(θ0) :=
1
2
y2

3θ
2
0

∂2ϕ

∂2y3
− y1y3µ1θ0

∂2ϕ

∂y1∂y3
− y2y3µ2θ0

∂2ϕ

∂y2∂y3
.

When we maximize f over θ0 we get

θ̂0 =
y1

y3
µ1
ϕ13

ϕ33
− y2

y3
µ2
ϕ23

ϕ33

Then for (π̂1, π̂2, θ̂) we require that

Aπ̂1,π̂2,θ̂ϕ(y) + f1(y) = 0,
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or

∂ϕ

∂s
+ y1

1
2α1y2

2

(
∂ϕ

∂y1
)2 + y2π̂2

∂ϕ

∂y2
+

1
2
y2

1µ
2
1

∂2ϕ

∂2y1
+

1
2
y2

2µ
2
2

∂2ϕ

∂2y2

(5.3.16)

+
1
2
y2

3θ
2
0

∂2ϕ

∂2y3
− y1y2µ1µ2

∂2ϕ

∂y1∂y2
− y1y3µ1θ0

∂2ϕ

∂y1∂y3
− y2y3µ2θ0

∂2ϕ

∂y2∂y3

+
∫

R

[
ϕ(s, y1 + y1σ11z, y2 + y2σ21z, y3)− ϕ(s, y1, y2, y3)− y1σ11z

∂ϕ

∂y1
− y2σ21z

∂ϕ

∂y2

]
v(dz)

+
∫

R

[
ϕ(s, y1 + y1σ12z, y2 + y2σ22z, y3)− ϕ(s, y1, y2, y3)− y1σ12z

∂ϕ

∂y1
− y2σ22z

∂ϕ

∂y2

]
v(dz)

+
∫

R

[
ϕ(s, y1, y2, y3 + y3θ̂1(z))− ϕ(s, y1, y2, y3)− y3θ̂1z

∂ϕ

∂y3

]
v(dz)− ϕ2

1

4α1x2
2Y

2
3

= 0.

We try two functions, ϕi, on the form

ϕi(s, x1, x2) = ki(s)x2
1x

2
2y3; i = 1, 2.

where ki(s) are some function we need to �nd. So from (5.3.15) we get that

π̂1 =
1

α1y3
k1(s)x1,

and

θ̂1 = −k1(s)
y2

1y
2
2

y3

and from (5.3.16) we have

k′1(s)y2
1y

2
2y3 +

1
α1
y2

1y
2
2y

2
3k

2
1(s) + 2y2

2y
2
1y3k1(s)π̂2 + y2

1y
2
2y3µ

2
1k1(s) + y2

1y
2
2µ

2
2k1(s)

(5.3.17)

− 4y2
1y

2
2y3µ1µ2k1(s)− 2y2

1y
2
2y3µ1θ0k1(s)− 2y2

1y
2
2y3µ2θ0k1(s)

+
∫

R

[
k1(s)(y1 + y1σ11z)2(y2 + y2σ21z)2y3 − k1(s)y2

1y
2
2 − 2y2

1y
2
2y3σ11zk1(s)− 2y2

1y
2
2σ21zk1(s)

]
v(dz)

+
∫

R

[
k1(s)(y1 + y1σ11z)2(y2 + y2σ21z)2y3 − k1(s)y2

1y
2
2y3 − 2y2

1y
2
2σ11zk1(s)− 2y2

1y
2
2σ21zk1(s)

]
v(dz)

+
∫

R

[
k1(s)(y2

1y
2
2(y3 + y3θ̂1(z))− k1(s)y2

1y
2
2y3 − Y 2

1 y
2
2y3θ̂1zk1(s)

]
v(dz) = 0
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If we let

a =
∫

R

[
(y1 + y1σ11z)2(y2 + y2σ21z)2y3 − y2

1y
2
2 − 2y2

1y
2
2y3σ11z − 2y2

1y
2
2σ21z

]
v(dz)

+
∫

R

[
(y1 + y1σ11z)2(y2 + y2σ21z)2y3 − y2

1y
2
2y3 − 2y2

1y
2
2σ11z − 2y2

1y
2
2σ21z

]
v(dz)

+
∫

R

[
(y2

1y
2
2(y3 + y3θ̂1(z))− y2

1y
2
2y3 − Y 2

1 y
2
2y3θ̂1z

]
v(dz)

we get that (5.3.17) is

k′1(s)y2
1y

2
2y3 +

1
α1
y2

1y
2
2y

2
3k

2
1(s) + 2y2

2y
2
1y3k1(s)π̂2 + y2

1y
2
2y3µ

2
1k1(s) + y2

1y
2
2µ

2
2k1(s)

− 4y2
1y

2
2y3µ1µ2k1(s)− 2y2

1y
2
2y3µ1θ̂0k1(s)− 2y2

1y
2
2y3µ2θ̂0k1(s) + ak1(s)

= k′1(s)y2
1y

2
2y3 + k2

1(s)
1
α1
y2

1y
2
2y

2
3 + k1(s)[2y2

2y
2
1y3π̂2 + y2

1y
2
2y3µ

2
1 + y2

1y
2
2µ

2
2

− 4y2
1y

2
2y3µ1µ2 − 2y2

1y
2
2y3µ1θ̂0 − 2y2

1y
2
2y3µ2θ̂0 + a] = 0

Lets do the same for player 2, �rst we �x π1 ∈ R and maximize

Aδ,π,θϕ2(y) + f2(s, x1, x2, x3, π, θ)

with respect to π2 we get that

(5.3.18) π2 = π̂2 =
1

α2y3
k2(s)y2

Using requirement (v) we have

k′2(s)y2
1y

2
2y3 +

2
α1
y2

1y
2
2y

2
3k1k2(s) +

1
α2
y2y

2
1k2(s) + y2

1y
2
2y3µ

2
1k2(s) + y2

1y
2
2µ

2
2k2(s)

(5.3.19)

− 4y2
1y

2
2y3µ1µ2k2(s)− 2y2

1y
2
2y3µ1θ0k2(s)− 2y2

1y
2
2y3µ2θ0k2(s)

+
∫

R

[
k1(s)(y1 + y1σ11z)2(y2 + y2σ21z)2y3 − k1(s)y2

1y
2
2 − 2y2

1y
2
2y3σ11zk1(s)− 2y2

1y
2
2σ21zk1(s)

]
v(dz)

+
∫

R

[
k2(s)(y1 + y1σ11z)2(y2 + y2σ21z)2y3 − k2(s)y2

1y
2
2y3 − 2y2

1y
2
2σ11zk2(s)− 2y2

1y
2
2σ21zk2(s)

]
v(dz)

+
∫

R

[
k2(s)(y2

1y
2
2(y3 + y3θ̂1(z))− k2(s)y2

1y
2
2y3 − Y 2

1 y
2
2y3θ̂1zk1(s)

]
v(dz)− y2

1y
2
2y

3
3k

2
2

α2
= 0

Equation 5.3.17 and 5.3.19 leads to the 2-dimensional Riccati equation

Example 5.3.2 (Minimizing Worst Case External Factors for two Companies in a Non-Jump

Market). Lets look at the same example as above but in a non-jump setting. X(·) = (X1(·), X2(·))
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where σ is a 2× 2 matrix, η = (η1, η2), π = (π1, π2) and
dX1(t) = X1(t)[π1(t)dt+ σ11(t)dB1(t) + σ12(t)dB2(t)]

X1(0) = x1 ∈ R.

and 
dX2(t) = X2(t)[π2(t)dt+ σ21(t)dB1(t) + σ22(t)dB2(t)]

X2(0) = x2 ∈ R.

As before π = (π1, π2) is the control of company 1 and 2 respectively. We now de�ne

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dX1(t); Y1(0) = y1 = x1.

dY2(t) = dX2(t); Y2(0) = y2 = x2.

dY3(t) = −Y3(t)θ(t)dB(t); Y3(0) = y3 > 0.

where the generator of Y (·) is

Aπ1,π2,θϕ(s, y1, y2, y3) =
∂ϕ

∂s
+ x1π1

∂ϕ

∂x1
+ x2π2

∂ϕ

∂x2
+

1
2
x2

1σ
2
1

∂2ϕ

∂2x1
+

1
2
x2

2σ
2
2

∂2ϕ

∂2x2
(5.3.20)

+
1
2
y2

3θ
2 ∂

2ϕ

∂2y3
+ y1y2σ1σ2

∂2ϕ

∂y1∂y2
− y1y3σ1θ

∂2ϕ

∂y1∂y3
− y2y3σ2θ

∂2ϕ

∂y2∂y3

The performance functionals to the companies have the form

Jπ,θ1 = inf
θ
E[−

∫ T−s

0
α1π

2
1(t)X2

2 (t)Y3(t)dt+ γ1X
2
1 (T )X2

2 (T )Y3(T )]

and

Jπ,θ2 = inf
θ
E[−

∫ T−s

0
α2π

2
2(t)X2

1 (t)Y3(t)dt+ γ2X
2
1 (T )X2

2 (T )Y3(T )]

Here we have 
f1(s, x1, x2, y3, θ, π) = −α1π

2
1x

2
2y3,

g1(s, x1, x2, y3) = γ1x
2
1x

2
2y3,

and 
f2(s, x1, x2, y3, θ, π) = −α2π

2
2x

2
1y3,

g2(s, x1, x2, y3) = γ2x
2
1x

2
2y3.

We �x π2 ∈ R and maximize

Aδ,π1,π2ϕ1(y) + f1(y)
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with respect to π1. So we maximize

h1(π1) := x1π1
∂ϕ1

∂x1
− α1π

2
1x

2
2.

This maximum is attained at

(5.3.21) π1 = π̂1 =
1

2α1x2
2y3

∂ϕ1

∂x1

Substituting this into (5.3.20) we get the function

f(θ) :=
1
2
y2

3θ
2 ∂

2ϕ

∂2y3
− y1y3σ1θ

∂2ϕ

∂y1∂y3
− y2y3σ2θ

∂2ϕ

∂y2∂y3
.

When we maximize f over θ we get

θ̂ =
y1

y3
σ1
ϕ13

ϕ33
− y2

y3
σ2
ϕ23

ϕ33
=

1
y3ϕ33

(y1σ1ϕ13 − y2σ2ϕ23).

Then for (π̂1, π̂2, θ̂) we require that

Aπ̂1,π̂2,θ̂ϕ(y) + f1(s, x1, x2, x3, π, θ) = 0,

or

∂ϕ

∂s
+ y1

1
2α1y2

2

ϕ2
1 + y2π̂2ϕ1 +

1
2
y2

1σ
2
1ϕ11 +

1
2
y2

2σ
2
2ϕ22 +

1
2

(y1σ1ϕ13 − y2σ2ϕ23)2

+ y1y2σ1σ2ϕ12 − y1σ1
1
ϕ33

(y1σ1ϕ13 − y2σ2ϕ23)ϕ13 − y2σ2
1
ϕ33

(y1σ1ϕ13 − y2σ2ϕ23)ϕ23 = 0

Inspired by requirement (v) let us try functions, ϕi, on the form

ϕi(s, x1, x2) = ki(s)x2
1x

2
2y3; i = 1, 2.

where ki(s) are some function we need to �nd. So from (5.3.21) we get that

π̂1 =
1

α1y3
k1(s)x1

k′1(s)y2
1y

2
2y3 +

2
α1
y2

1y
2
2y

2
3k

2
1(s) + 2y2

2y
2
1y3k1(s)π̂2 + y2

1y
2
2y3σ

2
1k1(s) + y2

1y
2
2σ

2
2k1(s)(5.3.22)

+ 4y2
1y

2
2y3σ1σ2k1(s)− 2y2

1y
2
2y3σ1θ0k1(s)− 2y2

1y
2
2y3σ2θ0k1(s) = 0

We �x π1 ∈ R and maximize

Aδ,π,θϕ2(y) + f2(s, x1, x2, x3, π, θ)
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with respect to π2 we get that

(5.3.23) π2 = π̂2 =
1

α2y3
k2(s)y2

Using requirement (v) we have

k′2(s)y2
1y

2
2y3 +

2
α1
y2

1y
2
2y

2
3k1k2(s) +

1
α2
y2y

2
1k2(s) + y2

1y
2
2y3σ

2
1k2(s) + y2

1y
2
2σ

2
2k2(s)(5.3.24)

+ 4y2
1y

2
2y3σ1σ2k2(s)− 2y2

1y
2
2y3σ1θ0k2(s)− 2y2

1y
2
2y3σ2θ0k2(s) = 0

Equation 5.3.22 and 5.3.24 leads to the 2-dimensional Riccati equation

Example 5.3.3 (Minimizing Worst Case Internal Market Factors for two Companies). Suppose

we have two companies described by X(·) = (X1(·), X2(·)) where σ is a 2×2 matrix, η = (η1, η2),

π = (π1, π2),
dX1(t) = X1(t)[π1(t)dt+ µ1dB(t)] + σ11(t)X1(t−)dη1(t) + σ12(t)X1(t−)dη2(t)

X1(0) = x1 ∈ R.

and 
dX2(t) = X2(t)[π2(t)dt+ µ2dB(t)] + σ21(t)X2(t−)dη1(t) + σ22(t)X2(t−)dη2(t)

X2(0) = x2 ∈ R.

Here π = (π1, π2) is the control of company 1 and 2 respectively and ηi(t) =
∫ t

0

∫
R zÑi(ds, dz)

i = 1, 2. De�ne

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dX1(t); Y1(0) = y1 = x1.

dY2(t) = dX2(t); Y2(0) = y2 = x2.

dY3(t) = −Y3(t)θ0(t)dB(t)− Y3(t−)
∫

R
θ(z)Ñ(ds, dz); Y3(0) = y3 > 0.
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where the generator of Y (·) is

Aπ1,π2,θϕ(s, y1, y2, y3) =
∂ϕ

∂s
+ x1π1

∂ϕ

∂x1
+ x2π2

∂ϕ

∂x2
+

1
2
x2

1µ
2
1

∂2ϕ

∂2x1
+

1
2
x2

2µ
2
2

∂2ϕ

∂2x2
(5.3.25)

+
1
2
y2

3θ
2
0

∂2ϕ

∂2y3
+ y1y2µ1µ2

∂2ϕ

∂y1∂y2
− y1y3µ1θ0

∂2ϕ

∂y1∂y3
− y2y3µ2θ0

∂2ϕ

∂y2∂y3

+
∫

R

[
ϕ(s, y1 + y1σ11z, y2 + y2σ21z, y3 + y3θ11)− ϕ(s, y1, y2, y3)

− y1σ11z
∂ϕ

∂y1
− y2σ21z

∂ϕ

∂y2
− y3θ11

∂ϕ

∂y3

]
v(dz)

+
∫

R

[
ϕ(s, y1 + y1σ12z, y2 + y2σ22z, y3 + y3θ12)− ϕ(s, y1, y2, y3)

− y1σ12z
∂ϕ

∂y1
− y2σ22z

∂ϕ

∂y2
− y3θ12

∂ϕ

∂y3

]
v(dz)

As oppose to the previous case we now see θ as an internal market factor that the market tries

to minimize. We continue with the same performance functionals, so we let them be on the form

Jπ,θ1 = inf
θ
E[−

∫ T−s

0
α1π

2
1(t)X2

2 (t)Y3(t)dt+ γ1X
2
1 (T )X2

2 (T )Y3(T )]

and

Jπ,θ2 = inf
θ
E[−

∫ T−s

0
α2π

2
2(t)X2

1 (t)Y3(t)dt+ γ2X
2
1 (T )X2

2 (T )Y3(T )]

Here we have 
f1(s, x1, x2, y3, θ, π) = −α1π

2
1x

2
2y3,

g1(s, x1, x2, y3) = γ1x
2
1x

2
2y3,

and 
f2(s, x1, x2, y3, θ, π) = −α2π

2
2x

2
1y3,

g2(s, x1, x2, y3) = γ2x
2
1x

2
2y3.

The problem can then be represented as

Φ(y) = Φ(s, y1, y2) = sup
π

[
inf
θ
Jπ,θ(y)

]
.

The corresponding HJBI equation is

(5.3.26)


sup
π

[
inf
θ
Aπ,θ(y)

]
+ fi = 0

ϕ(T, y1, y2) = gi.

To solve the Nash equilibrium we start by �xing π2 ∈ R and maximize

Aδ,π1,π2ϕ1(y) + f1(s, x1, x2, x3, π, θ)
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with respect to π1. So we maximize

h1(π1) := x1π1
∂ϕ1

∂x1
− α1π

2
1x

2
2y3.

This maximum is attained at

(5.3.27) π1 = π̂1 =
x1

α1x2
2y3

∂ϕ1

∂x1

Substituting this into (5.3.25) we get the function

t(θ) :=
∫

R

[
ϕ(s, y1 + y1σ11z, y2 + y2σ21z, y3 + y3θ11)− ϕ(s, y1, y2, y3)

− y1σ11z
∂ϕ

∂y1
− y2σ21z

∂ϕ

∂y2
− y3θ11

∂ϕ

∂y3

]
v(dz)

+
∫

R

[
ϕ(s, y1 + y1σ12z, y2 + y2σ22z, y3 + y3θ12)− ϕ(s, y1, y2, y3)

− y1σ12z
∂ϕ

∂y1
− y2σ22z

∂ϕ

∂y2
− y3θ12

∂ϕ

∂y3

]
v(dz).

We can minimize this point-wise, let

Ψ(θ) = ϕ(s, y1 + y1σ11z, y2 + y2σ21z, y3 + y3θ11)− ϕ(s, y1, y2, y3)

− y1σ11z
∂ϕ

∂y1
− y2σ21z

∂ϕ

∂y2
− y3θ11

∂ϕ

∂y3

+ ϕ(s, y1 + y1σ12z, y2 + y2σ22z, y3 + y3θ12)− ϕ(s, y1, y2, y3)

− y1σ12z
∂ϕ

∂y1
− y2σ22z

∂ϕ

∂y2
− y3θ12

∂ϕ

∂y3
.

Then for (π̂1, π̂2) we require that

Aπ̂1,π̂2,θ̂ϕ(y) + f1(y) = 0,
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or

∂ϕ

∂s
+ y1

1
2α1y2

2

(
∂ϕ

∂y1
)2 + y2π̂2

∂ϕ

∂y2
+

1
2
y2

1µ
2
1

∂2ϕ

∂2y1
+

1
2
y2

2µ
2
2

∂2ϕ

∂2y2

+
1
2
y2

3θ
2
0

∂2ϕ

∂2y3
+ y1y2µ1µ2

∂2ϕ

∂y1∂y2
− y1y3µ1θ0

∂2ϕ

∂y1∂y3
− y2y3µ2θ0

∂2ϕ

∂y2∂y3

+
∫

R

[
ϕ(s, y1 + y1σ11z, y2 + y2σ21z, y3 + y3θ̂11)− ϕ(s, y1, y2, y3)

− y1σ11z
∂ϕ

∂y1
− y2σ21z

∂ϕ

∂y2
− y3θ̂11

∂ϕ

∂y3

]
v(dz)

+
∫

R

[
ϕ(s, y1 + y1σ12z, y2 + y2σ22z, y3 + y3θ̂12)− ϕ(s, y1, y2, y3)

− y1σ12z
∂ϕ

∂y1
− y2σ22z

∂ϕ

∂y2
− y3θ̂12

∂ϕ

∂y3

]
v(dz)− ϕ2

1

4α1x2
2y

2
2

= 0

Example 5.3.4 (Worst Case Internal Market Factors in a Non-Jump Market). Lets look at the

same example as above but in a non-jump setting. X(·) = (X1(·), X2(·)) where σ is a 2 × 2

matrix, η = (η1, η2), π = (π1, π2) and
dX1(t) = X1(t)[π1(t)dt+ σ11(t)dB1(t) + σ12(t)dB2(t)]

X1(0) = x1 ∈ R.

and 
dX2(t) = X2(t)[π2(t)dt+ σ21(t)dB1(t) + σ22(t)dB2(t)]

X2(0) = x2 ∈ R.

As before π = (π1, π2) is the control of company 1 and 2 respectively. We now de�ne

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dX1(t); Y1(0) = y1 = x1.

dY2(t) = dX2(t); Y2(0) = y2 = x2.

dY3(t) = −Y3(t)θ0(t)dB(t); Y3(0) = y3 > 0.

where the generator of Y (·) is

Aπ1,π2,θϕ(s, y1, y2, y3) =
∂ϕ

∂s
+ x1π1

∂ϕ

∂x1
+ x2π2

∂ϕ

∂x2
+

1
2
y2

1(σ2
11 + σ2

12)
∂2ϕ

∂2x1
(5.3.28)

+
1
2
y2

2(σ2
21 + σ2

22)
∂2ϕ

∂2x2
+

1
2
y2

3(θ2
11 + θ2

12)
∂2ϕ

∂2y3
+ y1y2(σ11σ21 + σ11σ22)

∂2ϕ

∂y1∂y2

− y1y3(σ11θ11 + σ12θ12)
∂2ϕ

∂y1∂y3
− y2y3(σ11θ11 + σ22θ12)

∂2ϕ

∂y2∂y3
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The performance functionals to the companies have the form

Jπ,θ1 = inf
θ
E[−

∫ T−s

0
α1π

2
1(t)X2

2 (t)Y3(t)dt+ γ1X
2
1 (T )X2

2 (T )Y3(T )]

and

Jπ,θ2 = inf
θ
E[−

∫ T−s

0
α2π

2
2(t)X2

1 (t)Y3(t)dt+ γ2X
2
1 (T )X2

2 (T )Y3(T )]

Here we have 
f1(s, x1, x2, y3, θ, π) = −α1π

2
1x

2
2y3,

g1(s, x1, x2, y3) = γ1x
2
1x

2
2y3,

and 
f2(s, x1, x2, y3, θ, π) = −α2π

2
2x

2
1y3,

g2(s, x1, x2, y3) = γ2x
2
1x

2
2y3.

We �x π2 ∈ R and maximize

Aδ,π1,π2ϕ1(y) + f1(s, x1, x2, x3, π, θ)

with respect to π1. So we maximize

h1(π1) := x1π1
∂ϕ1

∂x1
− α1π

2
1x

2
2.

This maximum is attained at

(5.3.29) π1 = π̂1 =
1

2α1x2
2y3

∂ϕ1

∂x1

Substituting this into (5.3.28) we get the function

f(θ) :=
1
2
y2

3(θ2
11 + θ2

12)
∂2ϕ

∂2y3
− y1y3(σ11θ11 + σ12θ12)

∂2ϕ

∂y1∂y3
− y2y3(σ11θ11 + σ22θ12)

∂2ϕ

∂y2∂y3
.

Then for (π̂1, π̂2, θ̂) we require that

Aπ̂1,π̂2,θ̂ϕ(y) + f1(s, x1, x2, x3, π, θ) = 0,

or

∂ϕ

∂s
+ y1

1
2α1y2

2

ϕ2
1 + y2π̂2ϕ1 +

1
2
y2

1σ
2
1ϕ11 +

1
2
y2

2σ
2
2ϕ22 +

1
2

(y1σ1ϕ13 − y2σ2ϕ23)2

− y1y2σ1σ2ϕ12 − y1σ1
1
ϕ33

(y1σ1ϕ13 − y2σ2ϕ23)ϕ13 − y2σ2
1
ϕ33

(y1σ1ϕ13 − y2σ2ϕ23)ϕ23 = 0
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Example 5.3.5 (Minimizing Worst Case for two Companies with a Complementary Factor).

Lets look at two companies in di�erent industries where a factor is such that if it increases, the

pro�t of company 1 increases while the pro�t of company 2 decreases. Examples could be an

oil producing company and a fertilizer company, as the price of oil increases the �rm producing

oil increases its revenue while the cost of producing fertilizer, witch is a heavily oil dependent

process, increases so the pro�t of company 2 decreases. The investor has a utility function such

that opportunity cost is calculated according to a function Ui. We model the companies by

X(·) = (X1(·), X2(·)) where σ is a 2× 2 matrix, π = (π1, π2) and
dX1(t) = X1(t)[(π1(t) + k1λ(t))dt+ σ11(t)dB1(t) + σ12(t)dB2(t)]

X1(0) = x1 ∈ R.

and 
dX2(t) = X2(t)[(π2(t)− k2λ(t))dt+ σ21(t)dB1(t) + σ22(t)dB2(t)]

X2(0) = x2 ∈ R.

Here π = (π1, π2) is the control of company 1 and 2 respectively. De�ne

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dX1(t); Y1(0) = y1 = x1.

dY2(t) = dX2(t); Y2(0) = y2 = x2.

where the generator of Y (·) is

Aπ1,π2,θϕ(s, y1, y2) =
∂ϕ

∂s
+ x1(π1 − k1λ)

∂ϕ

∂x1
+ x2(π2 − k2λ)

∂ϕ

∂x2
+

1
2
x2

1(σ2
11 + σ2

12)
∂2ϕ

∂2x1

+
1
2
x2

2(σ2
21 + σ2

22)
∂2ϕ

∂2x2
+ y1y2(σ11σ21 + σ2

12)
∂2ϕ

∂y1∂y2

(5.3.30)

The performance functionals to the companies have the form

Jπ,λ1 = inf
λ
E[
∫ T

0
U1(π1(t))dt+Xλ

1 (T )]
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and

Jπ,λ2 = inf
λ
E[
∫ T

0
U2(π2(t))dt+Xλ

2 (T )]

Here we have 
f1(s, x1, x2, θ, π) = U1(π1),

g1(s, x1, x2) = x1,

and 
f2(s, x1, x2, θ, π) = U2(π2),

g2(s, x1, x2) = x2.

We �x π2 ∈ R and maximize

Aδ,π1,π2ϕ1(y)

with respect to π1. So we maximize

h1(π1) := x1π1
∂ϕ1

∂x1
− U1(π1).

This maximum is attained at

(5.3.31) π1 = π̂1 = I1(x1ϕ1),

where I1 is the inverse function of U1 over the strictly increasing domain. Substituting this into

(5.3.30) we get the function

g1(λ) := y1k1λϕ1 − y2k2λϕ2.

We get

ϕ1

ϕ2

k1

k2
=
y2

y1
.

Then for (π̂1, π̂2) we require that

Aπ̂1,π̂2,θ̂ϕ(y) + f1(s, x1, x2, x3, π, θ) = 0,

or

∂ϕ

∂s
+ x1(I1(y1ϕ1)− k1λ)

∂ϕ

∂x1
+ x2(I2(y2ϕ2)− k2λ)

∂ϕ

∂x2
+

1
2
x2

1(σ2
11 + σ2

12)
∂2ϕ

∂2x1

+
1
2
x2

2(σ2
21 + σ2

22)
∂2ϕ

∂2x2
+ y1y2(σ11σ21 + σ2

12)
∂2ϕ

∂y1∂y2
= 0



CHAPTER 6

DYNAMIC RISK MEASURES AND

THE CORRESPONDING HJBI

I
n this chapter we will extend our static setting to a dynamic one. We will use FBSDE and

g-expectation to formulate a dynamic zero-sum game problem. Then we show and prove a

HJBI equation for this dynamic zero-sum game.

6.1. The Dynamic Optimization Problem

While we previously have limited ourself to a static setting for our risk measure we will now extend

this to a dynamic model. Most investors are not only interested in expressing the riskiness of a

future position, but also to continuously monitor and manage the position. To construct such a

model, we introduce dynamic risk measure into our equation. Let

dXu(t) = b(Xu(t), u0(t), θ(t))dt+ σ(Xu(t), u0(t), θ(t))dB(t)

+
∫

Rk γ(Xu(t−), u1(t, z), z)Ñ(dt, dz).

dY u(t) = −g(t, Y u(t), Zu(t),Ku(t))dt+ Zu(t)dB(t) +
∫

Rk K
u(t, z)Ñ(dt, dz).

X(0) = x0, Y
u(τS) = −Xu(τS).

(6.1.1)

be our FBSDE, and assume b, σ and g satisfy (2.4.7). Let S, the solvency region, and τS , the bank-

ruptcy time, be as before, then from the above we get that Y (t) = Y (T )+
∫ τ
t g(s, Y (s), Z(s))ds−∫ τ

t Z(s)dB(s) = −X(T ) +
∫ τ
t g(s, Y (s), Z(s))ds−

∫ τ
t Z(s)dB(s). Here, X(t) is our wealth equa-

tion and our market is (2.3.2) and (2.3.3). Further let ρ = (ρt)t∈[0,T ] be a dynamic risk measure

where ρt(x) := εg[−x|Ft] := Yt,∀x ∈ L2(FT ). Then we get the following optimization problem
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Problem 6.1.1. Let our performance functional be

Jπ,θ(x) := ExQ

[∫ T

0
ρt(X π̂,θ̂)dt

]
:= ExQ

[∫ T

0
εg(−X π̂,θ̂(T )|Ft]dt

]
:= ExQ

[∫ T

0
Y π̂,θ̂
t dt

]
.

Find Φ(x) and (π∗, θ∗) ∈ Π×Θ such that

Φ(x) = sup
π

[
inf
θ
EQ

[∫ T

0
ρt(Xπ,θ(T ))dt

]]
= Jπ

∗,θ∗(x).

6.2. A HJBI Equation for a Zero-Sum Game with Dynamic Risk Measures

With our problem as stated above, we give the following theorem.

Theorem 6.2.1. Assume that for every (π, θ) ∈ Π × Θ there exists a function vπ,θ(t, x) Such

that

Y π,θ(t) = vπ,θ(t,Xπ,θ(t)).

Further, suppose we can �nd a function ϕ ∈ C2(S) ∩ C(S̄) and Markov controls (π, θ) ∈ Π×Θ

such that

(i) Aπ,θ̂ϕ(x)− vπ,θ̂(t, x) ≥ 0 for all t in[0, T ], all x ∈ S and all π ∈ Π .

(ii) Aπ̂,θϕ(x)− vπ̂,θ(t, x) ≤ 0 for all t in[0, T ], θ ∈ Θ and all x ∈ S.

(iii) Aπ̂,θ̂ϕ(x)− vπ̂,θ̂(t, x) = 0 for all t in[0, T ] and all x ∈ S.

(iv) lim
t→T

ϕ(Xπ,θ(t)) = 0.

(vii) Y π,θ(τs) ∈ ∂S a.s. on {τs <∞}.

(viii) The family {ϕ(Y π,θ(τ))}τ∈T is uniformly integrable for all (π, θ) ∈ Π×Θ, x ∈ S.

(ix) Xδ,π,θ(τs) ∈ ∂S a.s. on {τs <∞}.

(x) The family {ϕ(Xπ,θ(τ))}τ∈T is uniformly integrable for all (π, θ) ∈ Π×Θ, x ∈ S.

Then we have;

ϕ(x) = Φ(x) = J π̂,θ̂(x)

= inf
θ

[
sup
π
Jπ,θ(x)

]
= inf

θ

[
sup
π
Jπ,θ(x)

]
= sup

π
Jπ,θ̂(x) = inf

θ
J ,π̂,θ(x),

with

(π̂, θ̂) as an optimal (Markov) control.
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Further, vπ̂,θ̂ solves the quasi linear PDE:

Z π̂,θ̂ = vπ̂,θ̂x (t, x)σ(x, π̂, θ̂),

and

gπ̂,θ̂ = −(vπ̂,θ̂t (t, x) +
1
2
vπ̂,θ̂xx (t, x)σ2(x, π̂, θ̂) + vπ̂,θ̂x (t, x)b(x, π̂, θ̂)

+
∫

R
{vπ̂,θ̂(t, x+ γ(x, π̂, θ̂, z))− vπ̂,θ̂(t, x)− vπ̂,θ̂x (t, xγ(x, π̂, θ̂, z)}ν(dz)).

also

K π̂,θ̂ = vπ̂,θ̂(t, x+ γ(x, π̂, θ̂, z))− vπ̂,θ̂(t, x).

With the boundary value

vπ̂,θ̂(T, x) = x.

Proof. Step1. Let us prove that

ϕ(x) = sup
π∈Π

(
inf
θ∈Θ

Jπ,θ(x)
)

= Φ(x)

(a.) Choose θ̂ and let π ∈ Π. Using Dynkin, (i) and (iv)

ϕ(x) = Ex[
∫ T

0
−Aπ,θ̂ϕ(Xπ,θ̂)dt]

≥ Ex[
∫ T

0
vπ,θ̂(t,Xπ,θ̂)dt]

= Ex
[∫ T

0
Y π,θ̂(t)dt

]
= Jπ,θ̂(x).

So

ϕ(x) ≥ inf
θ∈Θ

Ex[
∫ T

0
Y π,θ(t)dt].

Since this holds for all π ∈ Π we get

ϕ(x) ≥ sup
π∈Π

[
inf
θ∈Θ

Ex[
∫ T

0
Y π,θ(t)dt]

]
= Φ(x).

(b.) Using same method and (iii) to (π̂, θ̂), we get equality so that

ϕ(x) = Ex[
∫ T

0
vπ̂,θ̂(t,X π̂,θ̂)dt] = J π̂,θ̂(x).
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(c.) Choose π̂ and let θ ∈ Θ. Using Dynkin, (ii) and (iv)

ϕ(x) = Ex[
∫ T

0
−Aπ̂,θϕ(X π̂,θ)dt]

≤ Ex[
∫ T

0
vπ̂,θ(t,X π̂,θ)dt]

= Ex
[∫ T

0
Y π̂,θ(t)dt

]
= J π̂,θ(x).

Since this holds for all θ ∈ Θ we get

ϕ(x) ≤ inf
θ∈Θ

Ex[
∫ T

0
Y π,θ(t)dt].

So

ϕ(x) ≤ sup
π∈Π

[
inf
θ∈Θ

Ex[
∫ T

0
Y π,θ(t)dt]

]
= Φ(x).

(d.) Combining a,b,c and d we get that

ϕ(x) == J π̂,θ̂(x) = sup
π∈Π

(
inf
θ∈Θ

Jπ,θ(x)
)

= Φ(x)

Using (π̂, θ̂) and Itô we can �nd vπ̂,θ̂

dY π̂,θ̂(t) = dvπ̂,θ̂(t,X(t)) = vπ̂,θ̂t (t,X(t))dt+ vπ̂,θ̂x (t,X(t))dX(t) +
1
2
vπ̂,θ̂xx (t,X(t))dX2(t)

+
∫

R
{vπ̂,θ̂(t,X(t−) + γ(X(t−), u1(t, z), z))− uπ̂,θ̂(t,X(t−))

− vπ̂,θ̂x (t,X(t−)γ(X(t−), u1(t, z), z)}ν(dz)dt

+
∫

R
{vπ̂,θ̂(t,X(t−) + γ(X(t−), u1(t, z), z))− vπ̂,θ̂(t,X(t−))}Ñ(dt, dz)

= (vπ̂,θ̂t (t,X(t)) +
1
2
vπ̂,θ̂xx (t,X(t))σ2(X(t), π̂, θ̂, ) + vπ̂,θ̂x (t,X(t))b(X(t), π̂, θ̂, )

+
∫

R
{vπ̂,θ̂(t,X(t−) + γ(X(t−), π̂, θ̂, z))− vπ̂,θ̂(t,X(t−))

− vπ̂,θ̂x (t,X(t−)γ(X(t−), π̂, θ̂, z)}ν(dz))dt

+ vπ̂,θ̂x (t,X(t))σ(X(t), u0(t), θ(t))dB(t)

+
∫

R
{vπ̂,θ̂(t,X(t−) + γ(X(t−), π̂, θ̂, z))− vπ̂,θ̂(t,X(t−))}Ñ(dt, dz).

So

Z π̂,θ̂ = vπ̂,θ̂x (t, x)σ(x, u0, θ),
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and

gπ̂,θ̂ = −(vπ̂,θ̂t (t, x) +
1
2
vπ̂,θ̂xx (t, x)σ2(x), π̂, θ̂) + vπ̂,θ̂x (t, x)b(x, π̂, θ̂)

+
∫

R
{vπ̂,θ̂(t, x+ γ(x, π̂, θ̂, z))− vπ̂,θ̂(t, x)− vπ̂,θ̂x (t, xγ(x, π̂, θ̂, z)}ν(dz)).

also

K π̂,θ̂ = vπ̂,θ̂(t, x+ γ(x, π̂, θ̂, z))− vπ̂,θ̂(t, x).

Further we have that

vπ̂,θ̂(T, Y π̂,θ̂(T )) = vπ̂,θ̂(T,X π̂,θ̂(T ))

= Y π̂,θ̂(T ).

so

vπ̂,θ̂(T, x) = x.

Step 3. Using the same approach give us the other equalities.

�

Remark 6.2.1. This theorem is complicated to apply in practice. The problem of �nding v for

each controller to �nd the optimal control would be very complex. This result only shows that

there are still work needed on this subject and �nding a way to optimize directly on the function

v is an area which require further research.





CHAPTER 7

A ZERO-SUM GAME WITH

OPTIMAL CONTROL AND

STOPPING

W
here we in the previous chapters limited ourself to control problems, we will now include

stopping into our equations as in chapter 4 in Øksendal and Sulem [2007].

7.1. The Zero-Sum Game

Consider the �nancial system given in chapter 4;

dXu(t) = b(Xu(t), u0(t))dt+ σ(Xu(t), u0(t))dB(t)(7.1.1)

+
∫

Rk
γ(Xu(t−), u1(t, z), z)Ñ(dt, dz),

Xu(0) = y ∈ R

Where b : Rk × U → Rk, σ : Rk × U → Rk×k and γ : Rk × U × Rk → Rk×m. B(t) is a k-

dimensional Brownian motion, Ñ(·, ·) = (Ñ1(·, ·), . . . , Ñk(·, ·)) are a k-independent compensated

Poisson random measure and U is a Polish space. The processes u0(t) = u0(t, ω), u1(t) = u1(t, ω)

and u2(t, z) = u2(t, z, ω) are the control processes, càdlàg and adapted to the �ltration Ft
generated by the driving processes B(·) and Ñ(·, ·), with u0(t) ∈ U and u1(t) ∈ U for a.a. t, a.s.

Let u = (u0, u1) and Xu(t) be the controlled jump di�usion and τ = τ(ω), a Ft -stopping time.

We then look at the problem of minimizing the performance functional of the portfolio π asso-

ciated to the �nancial position X(t);

89
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Problem 7.1.1. Find Φ(y) and (τ∗, π∗, θ∗) ∈ T ×Π×Θ such that

Φ(y) = inf
θ∈Θ

[
sup
τ∈T

(
sup
π∈Π

Jτ,π,θ(y)
)]

,

where

Jτ,π,θ(y) = Ey
[∫ τ

0
f(Xπ,θ(t), u(t))dt+ g(Xπ,θ(τ))χ{τ<∞}

]
,

where f : Rk × U → R, the pro�t rate and g : Rk → R the bequest function are given and

u = (π, θ).

We assume that the set A of admissible controls are such that (7.1.1) admits a strong solution,

and

• Ey
[∫ τ

0 |f(X(t), u(t))|dt
]
<∞, for all y ∈ S,

where τS = τs(y, u) = inf{t > 0;Xu(t) /∈ S}.
• The family {g−(Xu(τ)); τ ∈ T } is uniformly P y-integrable for all y ∈ S, where g−(y) =

max(0,−g(y)).

We let g(Xu(τ(ω))) = 0 for all ω such that τ(ω) = ∞ and we let S ∈ Rk be a �xed Borel set

such that

S ⊂ S̄0,

(i.e. S has no isolated points). Here, S0 is the interior of S and S̄ is the closure of S.

As in Øksendal [2007] we use Markov controls since under mild conditions Markov controls can

give just as good performance as more general adapted controls. When we use Markov controls

we get that the generator Aπ,θ becomes

Aπ,θϕ(y) =
k∑
i=1

bi(y, θ0, π0)
∂ϕ

∂yi
(y)

+
1
2

k∑
i,j=1

(σσT )ij(y, θ0, π0)
∂2ϕ

∂yi∂yj
(y)

+
k∑
j=1

∫
R
{ϕ(y + γ(j)(y, θ1(y, zj), π1(y, zj), zj)− ϕ(y)

− Oϕ(y)γ(j)(y, θ1(y, zj), π1(y, zj), zj)}vj(dzj);

where ϕ ∈ C2
0 (Rk) and Oϕ is the gradient of ϕ. We let T be the set of all Ft -stopping times

τ ≤ τs.

7.2. A HJBI equation with optimal stopping and control

We are now ready to state the our stopping and control theorem.
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Theorem 7.2.1. Suppose ϕ is a function ϕ : S̄ → R and a Markov control u = (τ, π, θ) ∈

T ×Π×Θ such that

(i) ϕ ∈ C1(S0) ∩ C(S̄), and

(ii) ϕ ≥ g on S0.

Further, de�ne

D = {y ∈ S;ϕ(y) > g(y)} the continuation region.

assume then that,

(iii) Ey[
∫ τs

0 χ∂D(Xu(t))dt] = 0, so X(t) spends 0 time on ∂D

(iv) ∂D is a Lipschitz surface

(v) ϕ ∈ C2(S0\∂D) and the second-order derivatives of ϕ are locally bounded near ∂D

(vi) Aπ,θ̂ϕ(y) + f(y, π, θ̂) ≤ 0 on S0\∂D for all π ∈ Π

(vii) Aπ̂,θϕ(y) + f(y, π̂, θ) ≥ 0 on S0\D0 for all θ ∈ Θ

(viii) Xu(τS) ∈ ∂S a.s. on {τs <∞} and

lim
t→τ−S

ϕ(Xu(t)) = g(Xu(t))χτs<∞ a.s.

(ix) Ey[|ϕ(Xu(τ))|+
∫ τS

0 |A
uϕ(Xu(t))|dt] <∞ for all u ∈ U2, τ ∈ T

(x) Aûϕ(y) + f(y, û) = 0 for all y ∈ S

(xi) τD := inf{t > 0;X û(t) /∈ D} <∞ for all y ∈ S

(xii) the family {ϕ(X û(τ)); τ ∈ T } is uniformly integrable with respect to P y for all y ∈ D

Then

ϕ(y) = Φ(y) = J τ̂ ,π̂,θ̂(y)

= sup
τ

[
sup
π

(
inf
θ
Jτ,π,θ(y)

)]
= sup

π

[
sup
τ

(
inf
θ
Jτ,π,θ(y)

)]
= sup

τ

[
inf
θ

(
sup
π
Jτ,π,θ(y)

)]
= inf

θ

[
sup
τ

(
sup
π
Jτ,π,θ(y)

)]
= sup

π

[
inf
θ

(
sup
τ
Jτ,π,θ(y)

)]
= inf

θ

[
sup
π

(
sup
τ
Jτ,π,θ(y)

)]
= sup

π

[
inf
θ
J τ̂ ,π,θ(y)

]
= sup

π

[
sup
τ
Jτ,π,θ̂(y)

]
= sup

τ

[
inf
θ
Jτ,π̂,θ(y)

]
= sup

τ

[
sup
π
Jτ,π,θ̂(y)

]
= inf

θ

[
sup
π
J τ̂ ,π,θ(y)

]
= inf

θ

[
inf
sup
Jτ,π̂,θ(y)

]
= sup

π
J τ̂ ,π,θ̂(y) = sup

τ
Jτ,p̂i,θ̂(y) = inf

θ
J τ̂ ,π̂,θ(y)
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and

(τ̂ , π̂, θ̂) is an optimal (Markov) control.

Proof. We will proceed as in the proof for Theorem 4.2 in Øksendal and Sulem [2007], but

�rst we need a supporting theorem:

Theorem 7.2.2 (Approximation theorem 2.1 in Øksendal and Sulem [2007]). Let D be an open

set, D ⊂ S. Assume that X(τS) ∈ ∂S a.s. on {τS <∞} and ∂D is a Lipschitz surface (i.e. ∂D

is locally the graph of a Lipschitz continuous function. and let ϕ : S̄ → R be a function with the

following properties

ϕ ∈ C1(S) ∩ C(S̄),

and

ϕ ∈ C2(S\∂D)

and that the second order derivatives of ϕ are locally bounded near ∂D. Then there exits a

sequence {ϕm}∞m=1 ⊂ C2(S) ∩ C(S̄) such that, with the generator A of Xt

1. ϕm → ϕ pointwise dominatatedly in S̄ as m→∞,

2. ∂ϕm
∂xi
→ ∂ϕ

∂xi
pointwise dominatatedly in S̄ as m→∞,

3. ∂2ϕm
∂xi∂xj

→ ∂2ϕ
∂xi∂xj

and Aϕm → Aϕ pointwise dominatatedly in S\∂D as m→∞.

Step1. First let us prove that

Φ(y) = ϕ(y) = Ey[
∫ τ̂

0
f( ˆY (t))dt+ g(Y (τ̂)χτ<∞]

= J τ̂ ,π̂,θ̂ = inf
θ∈Θ

[
sup
τ∈T

(
sup
π∈Π

Jτ,π,θ(y)
)]

.

(a) First, from theorem 7.2.2 above, we can assume that ϕ ∈ C2(S0)∩C(S̄). Then by

Dynkin's formula for jump processes applied to τm := min(τ,m),m = 1, 2, . . ., by

(viii) and (ix) we have

(7.2.2) Ey[ϕ(Y (τ ∧m))] = ϕ(y) + Ey[
∫ τ∧m

0
Aπ,θϕ(Y (t))dt],

Hence by (ii),and Fatous lemma

ϕ(y) = lim
m→∞

Ey[
∫ τNs

0
−Aπ,θϕ((Y π,θ(t), π(Y π,θ(t)), θ(Y π,θ(t)))dt+ ϕ(Y π,θ(τ ∧m)]

≥ Ey[
∫ τ

0
−Aπ,θϕ((Y π,θ(t), π(Y π,θ(t)), θ(Y π,θ(t)))dt+ g(Y π,θ(τ)χτ<∞].
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From (vi) we have that

ϕ(y) ≥ Ey[
∫ τ

0
f((Y π,θ̂(t), π(Y π,θ̂(t)), θ̂(Y π,θ̂(t)))dt+ g(Y π,θ̂(τ)χτ<∞]

= Jτ,π,θ̂(y).

We now have

ϕ(y) ≥ Jτ,π,θ̂(y).

So since this holds for all π ∈ Π and τ ≤ T we can conclude that

ϕ(y) ≥ sup
π∈Π

[
sup
τ∈T

Jτ,π,θ(y)
]
≥ inf

θ∈Θ

[
sup
τ∈T

(
sup
π∈Π

Jτ,π,θ(y)
)]

= Φ(y).(7.2.3)

(b) Using Dynkin to τ = τD, π̂, θ̂ ∈ T ,Π,Θ and (x) we get that

ϕ(y) = JτD,π̂,θ̂,

and τ̂ = τD.

(c) Using Dynkin to τ = τD = τ̂ , π̂, θ ∈ T ,Π,Θ and (iii) we get that

ϕ(y) = Ey[
∫ τ̂

0
−Aπ,θϕ((Y π,θ(t), π(Y π,θ(t)), θ(Y π,θ(t)))dt+ g(Y π,θ(τ̂)χτ̂<∞].

So by using (vii)

ϕ(y) ≤ Ey[
∫ τ̂

0
f((Y π̂,θ(t), π̂, θ̂)dt+ g(Y π̂,θ)(τ̂)χτ<∞]

= J τ̂ ,π̂,θ ≤ sup
π∈Π

[
sup
τ∈T

Jτ,π,θ(y)
]
.

Since this holds for all θ we get that

ϕ(y) ≤ inf
θ∈Θ

[
sup
τ∈T

(
sup
π∈Π

Jτ,π,θ(y)
)]

= Φ(y).

Combining this with (7.2.3) we get

ϕ(y) = Ey[
∫ τ̂

0
f(Y π̂,θ̂(t))dt+ g(Y π̂,θ̂(τ̂)χτ̂<∞]

= J τ̂ ,π̂,θ̂ = inf
θ∈Θ

[
sup
τ∈T

(
sup
π∈Π

Jτ,π,θ(y)
)]

= Φ(y).

Step2. Next let us prove that

ϕ(y) = sup
π

[
sup
τ

(
inf
θ∈Θ

Jτ,π,θ
)]

.
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By Dynkin's formula applied to τm := min(τ,m),m = 1, 2, . . . we have

Ey[ϕ(Y (τ ∧m))] = ϕ(y) + Ey[
∫ τ∧m

0
Aφ,θϕ(Y π,θ(t))dt],

Hence by (ii) and Fatous's lemma

ϕ(y) = lim
m→∞

Ey[
∫ τNs

0
−Aϕ((Y (t), π(Y (t)), θ(Y (t)))dt+ ϕ(Y (τ ∧m)]

≥ Ey[
∫ τ

0
−Aϕ((Y (t), π(Y (t)), θ(Y (t)))dt+ g(Y (τ)χτ<∞].

From (vi) we have that

ϕ(y) ≥ Jτ,π,θ̂(y) ≥ inf
θ∈Θ

Jτ,π,θ.

Since this holds for all π ∈ Π and τ ∈ T

ϕ(y) ≥ sup
π

[
sup
τ

(
inf
θ∈Θ

Jτ,π,θ
)]

.

On the other hand we have that

inf
θ∈Θ

Jτ,π,θ ≤ Jτ,π,θ′ for all θ′ ∈ Θ, π ∈ Π and τ ∈ T ,

so

inf
θ∈Θ

Jτ,π,θ ≤ sup
π
Jτ,π,θ

′
for all θ′ ∈ Θ, π ∈ Π and τ ∈ T ,

We thus have that, by taking supremum on both sides

sup
τ

(
inf
θ∈Θ

Jτ,π,θ
)
≤ sup

τ

(
sup
π
Jτ,π,θ

′
)

for all θ′ ∈ Θ and π ∈ Π,

Since this holds for all θ ∈ Θ

sup
τ

(
inf
θ∈Θ

Jτ,π,θ
)
≤ inf

θ

[
sup
τ

(
sup
π
Jτ,π,θ(y)

)]
.

Again, Since this holds for all π ∈ Π

sup
π

[
sup
τ

(
inf
θ∈Θ

Jτ,π,θ
)]
≤ inf

θ

[
sup
τ

(
sup
π
Jτ,π,θ(y)

)]
.

so we conclude that

Φ(y) = ϕ(y) = sup
π

[
sup
τ

(
inf
θ∈Θ

Jτ,π,θ
)]

.

Step3. By applying the same approach we get the other equalities.
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7.3. Examples

Let us look at some control problem where we include stopping times as one of the controls. We

then apply the result of the previous section to �nd a solution. We will look at both a jump and

a non-jump market.

As usual, we consider the marked given by (2.3.2) and (2.3.3).

Example 7.3.1 (Optimal Stopping and Control in a Classic Black-Scholes Marked). Let us apply

the above theorem to example 4.1 in Øksendal and Sulem [2007]. Let

dP (t) = P (t)[α(t)dt+ β(t)dB(t)];P (0) = y1 > 0.

Let Qt be the amount of remaining resource at time t, and let the dynamics be described by

dQt = −utQtdt;Q(0) = y2 ≥ 0.

where ut controls the consumption of resource Q, and m is the maximum extraction rate. We

let 

dY0(t) = dt

dY1(t) = dP (t);P (0) = y1 > 0,

dY2(t) = dQt;Q(0) = y2 ≥ 0,

dY3(t) = −θ(t)Y3(t)dB(t);Y3(0) = y3 > 0.

Let the running cost be given byK0+K1ut (K0,K1 ≥ 0, constants). Then we let our performance

functional be given by

Jτ,u,θ(s, y1, y2, y3)

= Ey
[∫ τ

0
e−δ(s+t)(u(t)P (t)Q(t)−K1)−K0)Y3(t)dt+ e−δ(s+τ)(MP (τ)Q(τ)− a)Y3(τ)

]
,

where δ > 0 is the discounting rate,δ ≥ 1, and M > 0, a > 0 are constant (a can be seen as a

transaction cost). Our problem is to �nd (τ̂ , û, θ̂) in T × U ×Θ such that

Φ(y) = Φ(s, y1, y2) = sup
u

[
inf
θ

(
sup
τ
Jτ,u,θ(y)

)]
= J τ̂ ,û,θ̂(y).
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Then the generator of Y u,θ is given by;

Au,θϕ(y) = Au,θϕ(s, y1, y2, y3) =
∂ϕ

∂s
+ y1α

∂ϕ

∂y1
− uy2

∂ϕ

∂y2
+

1
2
y2

1β
2 ∂

2ϕ

∂2y1
+

1
2
y2

3θ
2 ∂

2ϕ

∂2y3

− y1y3βθ
∂2ϕ

∂y1∂y3
.

We need to �nd a subset D of S = R4
+ = [0,∞)4 and ϕ(s, y1, y2, y3) such that

ϕ(s, y1, y2, y3) = e−δs(My1y2 − a)y3, ∀ (s, y1, y2, y3) /∈ D,

ϕ(s, y1, y2, y3) ≥ e−δs(My1y2 − a)y3, ∀ (s, y1, y2, y3) ∈ S,

Au,θϕ(s, y1, y2, y3) + e−δs(u(y1y2 −K1)−K0)y3 ≤ 0, ∀ (s, y1, y2, y3) ∈ S0\D̄, ∀ u ∈ [0,m],

Au,θϕ(s, y1, y2, y3) + e−δs(u(y1y2 −K1)−K0)y3 ≥ 0, ∀ (s, y1, y2, y3) ∈ S0\D0, ∀ u ∈ [0,m],

sup
u

[
inf
θ
{Au,θϕ(s, y1, y2, y3) + e−δs(u(y1y2 −K1)−K0)y3}

]
= 0, ∀ (s, y1, y2, y3) ∈ D.

θ̂ =
y1

y3
β
ϕ13

ϕ3
,

and û is the solution of

sup
u
{e−δsuy3(y1y2 −K1)− uy2ϕ2}.

Let us try a function on the form

ϕ(s, y1, y2, y3) = e−δsF (ω), where ω = y1y2y3.

Then

û =


m, if F ′(ω) < 1− K1

y1y2
.

0. otherwise.

and

θ̂ =
y1

y2
β(
F ′(ω) + F ′′(ω)y1y2y3

F ′(ω)y1
).

so for F ′(ω) < 1− K1
y1y2

we have

Aû,θ̂F (s, y1, y2, y3) = −δe−δsF (ω) + ωe−δsαF ′(ω)−mωe−δsF ′(ω) +
1
2
ω2β2F ′′(ω)e−δs

+
1
2
ω2F ′′(ω)e−δs

(
F ′′2(ω + 2F ′(ω)F ′′(ω)y1y3y3 + F ′′2(ω)y2

1y
2
2y

2
3

F ′2(ω)y2
1

)
− y1y3β

(e−δsF ′(ω)y2 + e−δsF ′′(ω)y1y
2
2y3)2

e−δsF ′(ω)y1y2
.
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Solving this equation provides us with the function, ϕ, that we then verify satisfy the requirements

so that we ensure that ϕ is our solution, i.e. ϕ = Φ.

Example 7.3.2 (Optimal control and stopping in a Lévy -market). Let our dynamics be given

by

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = (Y1(t)α(t)− u(t))dt+ Y1(t)βπ(t)dB(t)

+ Y1(t−)π(t−)
∫

R
γ(s, z)Ñ(ds, dz); Y1(0) = y1 > 0.

dY2(t) = −Y2(t)θ0(t)dB(t)− Y2(t)
∫

R
θ1(s, z)Ñ(ds, dz); Y2(0) = y2 > 0.

Solve

Φ(s, x) = sup
u

[
sup
τ

(
inf
θ0,θ1

Jθ,τ
])

where

Jθ,τ (s, x) = Ex
[∫ τS

0
e−δ(s+t)

uλ

λ
Y2(t)dt

]
Then our generator becomes

Aθϕ(s, y1, y2) =
∂ϕ

∂s
+ (y1α− u)

∂ϕ

∂y1
+ y2θ0

∂ϕ

∂y2
+

1
2
y2

1β
2 ∂

2ϕ

∂2y1

+
1
2
y2

2θ
2
0

∂2ϕ

∂2y2
− y1y2βθ0

∂2ϕ

∂y1∂y2

+
∫

R

[
ϕ(s, y1 + y1γ(t, z), y2 − y2θ1(t, z))− ϕ(s, y1, y2)− y1γ(t, z)

∂ϕ

∂y1
+ y2θ1(z)

∂ϕ

∂y2

]
v(dz).

and

Aθϕ(s, y1, y2) + f(s, y1, y2) =
∂ϕ

∂s
+ (y1α− u)

∂ϕ

∂y1
+ y2θ0

∂ϕ

∂y2
+

1
2
y2

1β
2 ∂

2ϕ

∂2y1

+
1
2
y2

2θ
2
0

∂2ϕ

∂2y2
− y1y2βθ0

∂2ϕ

∂y1∂y2

+
∫

R

[
ϕ(s, y1 + y1γ(t, z), y2 − y2θ1(t, z))− ϕ(s, y1, y2)− y1γ(t, z)

∂ϕ

∂y1
+ y2θ1(z)

∂ϕ

∂y2

]
v(dz)

+ e−δs
uλ

λ
y2.

Imposing the �rst-order condition we get

ϕ2 = ϕ(s, y1 + y1γ(t, z), y2 − y2θ1(t, z))2,
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and

θ0 =
y1

y2
β
ϕ12

ϕ22
− 1
y2

ϕ2

ϕ22
.

Then we get that

û = (
eδsϕ1

y2
)

1
λ−1 .

so

Aθϕ(s, y1, y2) + f(s, y1, y2) =
∂ϕ

∂s
+ y1(α− (

y1e
−δs

y2ϕ1
)

1
λ−1 )

∂ϕ

∂y1
+ y1β

ϕ12ϕ2

ϕ22

− ϕ2
2

ϕ22
+

1
2
y2

1

y2
2

β2 ϕ
2
12

ϕ22
− 1

2
ϕ2

2

y2
2

+
y1

y2
2

βϕ2ϕ12 +
1
2
y2

1β
2 ∂

2ϕ

∂2y1
− y2

1β
2ϕ12

ϕ22
− y1β

ϕ2ϕ12

ϕ22

+
∫

R

[
ϕ(s, y1 + y1γ(t, z), y2 − y2θ1(t, z))− ϕ(s, y1, y2)− y1γ(t, z)

∂ϕ

∂y1
+ y2θ1(z)

∂ϕ

∂y2

]
v(dz)

+ e−δs
(y1e

−δs

y2ϕ1
)

λ
λ−1

λ
y2.

Let us try a function

ϕ(s, y1, y2) = e−δsyλ1F (y2).

Then

û = (F (y2)λ)
1

λ−1 y1.

and

θ0 = β
λ

λ− 1
− 1
λ− 1

.

So

Aθϕ(s, y1, y2) + f(s, y1, y2) = −δe−δsyλ1F (y2) + (y1α− (F (y2)λ)
1

λ−1 y1)λe−δsyλ−1
1 F (y2)

+ y2(β
λ

λ− 1
− 1
λ− 1

)e−δsyλ1F
′(y2) +

1
2
y2

1β
2λ(λ− 1)e−δsyλ−2

1 F ′′(y2)

+
1
2
y2

2(β
λ

λ− 1
− 1
λ− 1

)2e−δsyλ1F (y2)− y1y2β(β
λ

λ− 1
− 1
λ− 1

)λe−δsyλ−1
1 F ′(y2)

+
∫

R

[
λe−δsyλ1F

′(y2)− e−δsyλ1F (y2)− y1γ(t, z)λe−δsyλ−1
1 F (y2) + y2θ1(z)e−δsyλ1F

′(y2)
]
v(dz)

+ e−δs
(F (y2)λ)

λ
λ−1

λ
yλ1y2.
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so

Aθϕ(s, y1, y2) + f(s, y1, y2) = −δe−δsF (y2) + (α− (F (y2)λ)
1

λ−1 )λe−δsF (y2)

+ y2(β
λ

λ− 1
− 1
λ− 1

)e−δsF ′(y2) +
1
2
β2λ(λ− 1)e−δsF ′′(y2)

+
1
2
y2

2(β
λ

λ− 1
− 1
λ− 1

)2e−δsF (y2)− y2β(β
λ

λ− 1
− 1
λ− 1

)λe−δsF ′(y2)

+
∫

R

[
λe−δsF ′(y2)− e−δsF (y2)− γ(t, z)λe−δsF (y2) + y2θ1(z)e−δsF ′(y2)

]
v(dz)

+ e−δs
(F (y2)λ)

λ
λ−1

λ
y2.

Solving this integro-di�erential equation and requiring that F > 0we see that the requirements

of the theorem are satis�ed and we conclude that we have

ϕ(s, y1, y2) = Φ(s, y1, y2).

Example 7.3.3 (Optimal control and stopping in a Lévy -market). In this scenario, let us look

at an investor who has invested in a risky-asset,Y1 and wants to �nd the optimal time to sell

where he would stress test over several scenarios by allowing the market to control a di�usion,

Y2 where the dynamics are given by

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = Y1(t)[r(t)dt+ βdB(t)]

+ Y1(t−)
∫

R
γ(s, z)Ñ(ds, dz); Y1(0) = y1 > 0.

dY2(t) = −Y2(t)θ0(t)dB(t)− Y2(t)
∫

R
θ1(s, z)Ñ(ds, dz); Y2(0) = y2 > 0.

Solve

Φ(s, x) = sup
τ

[
inf
θ0,θ1

Jθ,τ
]

where

Jθ,τ (s, x) = Ex
[
e−δτλY1(τ)Y2(τ)

]
,

where 0 < λ ≤ 1 and (1− λ) is a percentage transaction cost. Then our generator becomes

Aθϕ(s, y1, y2) + f(s, y1, y2) =
∂ϕ

∂s
+ y1r

∂ϕ

∂y1
+ y2θ0

∂ϕ

∂y2
+

1
2
y2

1β
2 ∂

2ϕ

∂2y1

+
1
2
y2

2θ
2
0

∂2ϕ

∂2y2
− y1y2βθ0

∂2ϕ

∂y1∂y2

+
∫

R

[
ϕ(s, y1 + y1γ(t, z), y2 − y2θ1(t, z))− ϕ(s, y1, y2)− y1γ(t, z)

∂ϕ

∂y1
+ y2θ1(z)

∂ϕ

∂y2

]
v(dz).
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Imposing the �rst-order condition we get

ϕ2 = ϕ(s, y1 + y1γ(t, z), y2 − y2θ1(t, z))2,

and

θ0 =
y1

y2
β
ϕ12

ϕ22
− 1
y2

ϕ2

ϕ22
.

We then have that

Ag = e−δsy1y2λ(−δ + r + θ0 − βθ0 + 1−
∫
γθ1ν(dz)).

So we see that if

r + 1 + θ0(1− β)− δ <
∫
θ1γν(dz),

it is best to stop immediately and ϕ = g. Otherwise U = {(s, y1, y2)|Ag(s, y1, y2) > 0} =

[0, T ]× R+ × R+ ⊂ D and its never optimal to stop.

Example 7.3.4 (Optimal control and stopping in a Lévy -market). In this scenario, let us look

at an investor who has invested in a risky-asset,Y1 and wants to �nd the optimal time to sell

where he would stress test over several scenarios by allowing the market to control a di�usion,

Y2 where the dynamics are given by

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = Y1(t)[(r(t) + (α(t)− r(t))π(t))dt+ βπ(t)dB(t)]; Y1(0) = y1 > 0.

dY2(t) = −Y2(t)θ(t)dB(t); Y2(0) = y2 > 0.

Solve

Φ(s, x) = sup
π

[
sup
τ

(
inf
θ
Jπ,θ,τ

)]
where

Jπ,θ,τ (s, x) = Ex
[
e−δτλY1(τ)Y2(τ)

]
,

where 0 < λ ≤ 1 and (1− λ) is a percentage transaction cost. The generator is

Aθϕ(s, y1, y2) + f(s, y1, y2) =
∂ϕ

∂s
+ y1(r + (α− r)π)

∂ϕ

∂y1
+ y2θ

∂ϕ

∂y2
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1

+
1
2
y2

2θ
2 ∂

2ϕ

∂2y2
− y1y2βθπ

∂2ϕ

∂y1∂y2
.
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From the �rst order condition we get that

π̂ =
(α− r)ϕ1 + y1y2βθϕ12

y2
1β

2ϕ11
,

and

θ̂ =
ϕ11

ϕ12
(ϕ12 + y2ϕ22) +

α− r
y1y2β

ϕ1.

From Ag we set that we get

π̂ = 0,

and

θ̂ = 0.

So if

r − δ ≤ 0,

the best thing is to stop immediately and ϕ = g. If

r − δ > 0,

then

D = [0, T ]× Rk × Rk,

so τ̂ =∞.

Example 7.3.5. Now, let us look at an investor who has invested in a risky-asset,Y1 and wants

to �nd the optimal time to sell when he consumes, let the dynamics are given by

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = Y1(t)[(α(t)− c(t))dt+ βdB(t)]; Y1(0) = y1 > 0.

dY2(t) = −Y2(t)θ(t)dB(t); Y2(0) = y2 > 0.

Solve

Φ(s, x) = sup
c

[
sup
τ

(
inf
θ
Jc,θ,τ

)]
where

Jc,θ,τ (s, x) = Ex
[∫ τ

0
λe−δtc(t)dt+ e−δτλY1(τ)Y2(τ)

]
,
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where 0 < λ ≤ 1 and (1− λ) is a percentage transaction cost. The generator is

Aθϕ(s, y1, y2) + f(s, y1, y2) =
∂ϕ

∂s
+ y1(α− c) ∂ϕ

∂y1
+ y2θ

∂ϕ

∂y2
+

1
2
y2

1β
2 ∂

2ϕ

∂2y1

+
1
2
y2

2θ
2 ∂

2ϕ

∂2y2
− y1y2βθ

∂2ϕ

∂y1∂y2
+ λe−δsc.

and we have that

θ̂ =
y1y2βϕ12 − y2ϕ2

y2
2ϕ22

.

and if y1ϕ1 < λe−δs, then ĉ = y1 otherwise ĉ = 0.

From

Ag + f = y1y2δ + y1y2(α− c) + y2
1β − y2

1 +
1
2
y2

1y
2
2β

2 − y2
1β

2 + y2
1β + c.

We see that

U = {(s, y1, y2)|Ag + f > 0} =


[0, T ]× R+ × R+; δ + (α− c) + θ(1− β)) ≥ 0.

0 < y1y2 <
−c

(δ+(α−c)+θ(1−β)) ; otherwise.

This gives us an indication about the our set D and ϕ. So we try a function on the form

ϕ(s, y1, y2) = e−δsF (ω); where ω = y1y2.

Then we have that

Aϕ+ f = −δF (ω)e−δs + ωF ′(ω)e−δs(α− c+ θ) + ω2e−δsF ′′(ω)(
1
2

(β2 + θ2)− βθ) + λe−δsc.

Solving this (Euler)di�erential equation AF = 0 we get that

F (ω) = C1ω
λ1 + C2ω

λ2 − λc

δ
,

where C1, C2 are constants and λ1, λ2 are solution to the equation

h(λ) = −δ + λ(α− c+ θ) + λ(λ− 1)(
1
2

(β2 + θ2)− βθ) = 0.

So we get that

F (ω)


λω if ω0 < ω,

C1ω
λ1 + C2ω

λ2 − λc
δ ; otherwise.
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Let us assume that C2 = 0. From the di�erentiability and continuity requirement we get

C1ω
λ1
0 −

λc

δ
= λω0,

and

C1λ1ω
λ1−1
0 = λ.

We �nd that

ω0 =
c

δ

1
1− λ

,

and

C1 = λ(
c

δ

1
1− λ

)1−λ1 +
λ

δ
c(
c

δ

1
1− λ

)−λ1 .

It remains to verify that F satisfy our requirements.

Example 7.3.6 (Another example of Optimal Stopping and Control in a Black-Scholes Marked).

Now we look at a non-jump dynamics given by

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = (Y1(t)α(t)− u(t))dt+ βY1(t)dB(t)]; Y1(0) = y1 > 0.

Solve

Φ(s, x) = sup
u,τ

[
inf
α
Ju,θ,τ

]
where

Ju,θ,τ (s, x) = Ex
[∫ τS

0
e−δ(s+t)

uγ

γ
dt+ λe−δ(s+τ)Y γ

1 (τ)
]
.

Then the generator becomes

Au,θϕ(s, y1) + f(s, y1) =
∂ϕ

∂s
+ (y1α− u)

∂ϕ

∂y1
+

1
2
y2

1β
2 ∂

2ϕ

∂2y1

Imposing the �rst-order condition we get

û = (ϕ1e
δs)

1
δ−1 ,

and

α̂ = 0.
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Let us try

ϕ(s, y1) = Ke−δsyγ1 .

Then we get that

û = (γK)
1
δ−1 y1

So

−δKe−δsyγ1 − y1(γK)
1

γ−1γKe−δsyγ−1
1 +

1
2
β2y2

1γ(γ − 1)Ke−δsyγ−2
1 + (γK)

γ
γ−1 yγ1

1
γ
.

or

−δKe−δs − (γK)
1

γ−1γKe−δs +
1
2
β2γ(γ − 1)Ke−δs + (γK)

γ
γ−1

1
γ
.

We require that

−δKe−δs − (γK)
1

γ−1γKe−δs +
1
2
β2γ(γ − 1)Ke−δs + e−δs(γK)

γ
γ−1

1
γ

= 0.

or

−δ − γ
γ
γ−1K

1
γ−1 +

1
2
β2γ(γ − 1) + γ

1
γ−1K

1
γ−1 = 0.

So

K =
1
γ

[
1

1− γ
(δ − 1

2
β2γ(γ − 1))]

1
γ−1 .

Assume δ − 1
2β

2γ(γ − 1)) > 0, then K > 0. Now if we assume λ ≥ K we let

ϕ(s, y1, ) = λe−δsyγ1 .

Then it is clear from (ii) that

ϕ(s, y1) ≥ Φ(s, y1).

But by choosing τ = 0, we get ϕ(s, y1) so

ϕ(s, y1) ≤ Φ(s, y1, y2).

and it follows that

ϕ(s, y1) = Φ(s, y1),

τ̂ = 0 and D = ∅.

If we now assume λ < K, let again

ϕ(s, y1) = Ke−δsyγ1 .
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then we always have that

ϕ(s, y1) > λe−δsyγ1 .

So D = R× (0,∞)× (0,∞) so we conclude that

Φ(s, y1) ≤ λe−δsyγ1 .

If we apply the control

û = (γK)
1
δ−1 y1,

and

α̂ = 0.

then we get that J û,α̂ = Ke−δsyγ1 .

So

Φ(s, y1) = Ke−δsyγ1 ,

and

τ̂ =∞.



CHAPTER 8

VISCOSITY SOLUTIONS FOR THE

HJBI EQUATIONS

I
n this chapter we will investigate the cases where Φ is not smooth, i.e. not C1. The assumption

that Φ should be smooth is restrictive, so to �nd a rigorous assertion without the restrictive

assumptions, Crandall and Lions introduced the viscosity solution. If this is the case Φ still

satisfy the corresponding veri�cation theorems if we consider this weak solution. In the cases

of linear partial di�erential operators the given viscosity solution is the same as the classical

solution.

8.1. Viscosity Solutions

We will now investigate the idea of viscosity solutions in our HJBI equations. Let our model be

described by (4.1.1) where we try to solve problem 4.2.1. Let us de�ne a viscosity solution as

follows;

Definition 8.1.1 (Modi�cation of de�nition 5.1 in Yong and Zhou [1999]). A function v ∈

C([0, T ]× Rn) is called a viscosity subsolution of the HJB equation if

(8.1.1) v(T, x) ≤ g(x), ∀x ∈ Rn,
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and for any ϕ ∈ C1,2([0, T ]×Rn), whenever v−ϕ attains a local maximum at (t, x) ∈ [0, T )×Rn,

we have

(8.1.2) Aδ,π,θϕ(x) + f(x, δ, π, θ) ≤ 0,

where A is as usual the generator of X. A function v ∈ C([0, T ] × Rn) is called a viscosity

supersolution if

(8.1.3) v(T, x) ≥ g(x),∀x ∈ Rn,

and for any ϕ ∈ C1,2([0, T ]×Rn), whenever v−ϕ attains a local minimum at (t, x) ∈ [0, T )×Rn,

we have

(8.1.4) Aδ,π,θϕ(x) + f(x, δ, π, θ) ≥ 0.

Further, if v ∈ C([0, T ] × Rn) is both a viscosity subsolution and a viscosity supersolution it is

called a viscosity solution.

We now show that under some conditions Φ is a viscosity solution to the equation in Theorem

4.3.1;

Theorem 8.1.1 (A viscosity solution theorem for HJBI ). If the set of admissible controls are

compact and such that (4.1.1) admits a strong solution, the the value function Φ is a viscosity

solution of problem 4.2.1.

Proof. To prove this we need a supporting theorem that gives us the following representa-

tion of the value function;

Theorem 8.1.2 (Theorem 3.3 in Yong and Zhou [1999]).

Φ(s, y) = inf
θ,δ

[
sup
π
E[
∫ ŝ

s
f(t,X(t), u)dt+ Φ(ŝ, X(ŝ))]

]
for all 0 ≤ s ≤ ŝ ≤ T.

For any ϕ ∈ C1,2([0, T ] × Rn), assume V − ϕ attains a local maximum at (s, y) ∈ [0, T ] × Rn.

Since U is closed, there is û = (δ̂, π̂, θ̂) ∈ U such that J δ̂,π̂,θ̂(s, y) = Φ(s, y).
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Let ŝ > s and û ∈ U . From theorem 8.1.2 we have that

0 ≤
E
[
V (s, y)− ϕ(s, y)− (V (ŝ, X û(ŝ))− ϕ(ŝ, X û(ŝ)))

]
ŝ− s

=
1

ŝ− s
E

[∫ ŝ

s
f(t,X û(t), û)dt+ ϕ(ŝ, X(ŝ))− ϕ(s, y)

]
=

1
ŝ− s

E

[∫ ŝ

s
f(t,X û(t), û) +

dϕ

dt
(t,X û(t))dt

]
.

We have from Itô

dϕ(t, x) = ϕt(t, x)dt+ ϕx(t, x)dX +
1
2
ϕx2(t, x)(dX)2

= ϕt(t, x)dt+ ϕx(t, x)bdt+ ϕx(t, x)σdBt +
1
2
ϕx2(t, x)σ2dt

= (ϕt(t, x)dt+ ϕx(t, x)b+
1
2
ϕx2(t, x)σ2)dt+ ϕx(t, x)σdBt

so

1
ŝ− s

E

[∫ ŝ

s
f(t,X û(t), û) +

dϕ

dt
(t,X û(t))dt

]
=

1
ŝ− s

E

[∫ ŝ

s
f(t,X û(t), û) +Aϕ(t,X û(t))dt

]
→̂
s→s

Aϕ(s,X û) + f(s,X û, û).

Since thes holds for all u ∈ U , we conclude that

(8.1.5) Aϕ(s,X û) + f(s,X û, û) ≥ 0.

To prove the opposite inequality, we assume V −ϕ attains a local minimum at (s, y) ∈ [0, T ]×Rn.

For ŝ > s we have

0 ≥ 1
ŝ− s

E [V (s, y)− ϕ(s, y)− (V (ŝ, X(ŝ))− ϕ(ŝ, X(ŝ)))]

=
1

ŝ− s
E

[∫ ŝ

s
f(t,X û(t), û) +Aϕ(t,X û(t))dt

]
→̂
s→s

Aϕ(s,X û(s)) + f(s,X û(s), û) for all u ∈ U.

This leaves us with

(8.1.6) Aϕ(s,X û)(s) + f(s,X û, û) ≤ 0.
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Combined with (8.1.5) we have that

Aϕ(s,X û) + f(s,X û, û) = 0.

So Φ is a viscosity solution of theorem 4.3.1. �

Remark 8.1.1. Notice that we have not shown uniqueness of the viscosity solution. This is vital

as it is often used as a veri�cation theorem. This uniqueness for the HJBI can be shown similar

to Øksendal and Reikvam [1998].
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8.2. Examples

We will now apply the result of the previous chapter to give a example of an optimal control

problem where the value function Φ, is not everywhere C1 so that we can not use the theorem

of chapter 4. (Note that as we mentioned above we have not shown uniqueness of the viscosity

solution.)

We consider the marked given by (2.3.2) and (2.3.3).

Example 8.2.1 (A viscosity solution for a non-C1 function). Let

f(x) =


−x, for x ≤ 0.

x, for x > 0.

where 0 < λ < 1, and

dY0(t) = dt; Y0(0) = s ∈ R.

dY1(t) = dV π(t) = Y1(t)[(r(t) + (α(t)− r(t))π(t))dt+ βπ(t)dB(t)]; Y1(0) = y1 > 0.

dY2(t) = −Y2(t)θ(t)dB(t); Y2(0) = y2 > 0.

Then, let our control problem be

Φ(y) = Φ(s, y1, y2) = inf
α

[
sup
π

(
inf
θ
Jα,π,θ(s, y)

)]
,

where

Jα,π,θ(s, y) = Ey
[
e−r(T−s)f(Y1(T ))Y2(T )

]
.

So, our generator becomes

Aα,π,θϕ(y) =
∂ϕ

∂s
+ y1(r + (α− r)π)

∂ϕ

∂y1
+

1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2θ
2 ∂

2ϕ

∂2y2
− y1y2βθπ

∂2ϕ

∂y1∂y2
.

(8.2.7)

Then we have that

ϕ(T, y1, y2) =


−y1y2, for y1 ≤ 0,

y1y2, for y1 > 0.
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Let π and α be �xed and minimize

f(θ) :=
1
2
y2

2θ
2π2 ∂

2ϕ

∂2y2
− y1y2βθπ

∂2ϕ

∂y1∂y2
,

for functions θ(t, z). We minimize and �nd minimum

θ̂ =
y1

y2

β

π

ϕ12

ϕ22
.

when ϕ22 6= 0. We then use

g(π) := y1(α− r)π ∂ϕ
∂y1

+
1
2
y2

1β
2π2 ∂

2ϕ

∂2y1
+

1
2
y2

2 θ̂
2π2 ∂

2ϕ

∂2y2
− y1y2βθ̂π

∂2ϕ

∂y1∂y2
,

to maximize over π. So we get

π̂ =
r − α
y1β2

ϕ1

ϕ11
.

Further, for α, we let

l(α) =
1
β2
y2

1(r − α)2(
1
2
y2

1 − 1)
ϕ2

1

ϕ11

and �nd

α̂ = r.

So

π̂ = 0.

Then we have an optimal triple (α̂, π̂, θ̂) which is substituted into (8.2.7) to give

∂ϕ

∂s
+ y1(r + (α̂− r)π̂)

∂ϕ

∂y1
+

1
2
y2

1β
2π̂2 ∂

2ϕ

∂2y1
+

1
2
y2

2 θ̂
2π2 ∂

2ϕ

∂2y2
− y1y2βθ̂π̂

∂2ϕ

∂y1∂y2

This gives

∂ϕ

∂s
+ y1r

∂ϕ

∂y1
= 0.(8.2.8)

Lets try a function

ϕ(s, y1, y2) = er(T−s)y1y2, for 0 < y1.

Then we have that

−re−r(T−s)φ+ y1re
−r(T−s) ∂φ

∂y1
= 0.
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We then let

ϕ(s, y1, y2) =


e−r(T−s)y1y2, for y1 ≤ 0.

er(T−s)y1y2, for 1 > y1 > 0.

Then ϕ(y) satisfy equation (8.2.8). This makes sense considering we only invest in the risk free

asset. We then verify that ϕ is a viscosity solution. Let h ∈ C2(R), h ≥ ϕ and h(y0) = ϕ(y0).

Then ϕ is C2 between 0 and 1, so it has a local minimum, so

D(h− ϕ)(y0) = 0,

where D is the di�erential operator. Because of the linearity of D we get that

Dh(y0)−Dϕ(y0) = 0,

so

− rh(y0) + y1r
∂h

∂y1
(y0) ≥ −rφ(y0) + y1r

∂ϕ

∂y1
(y0) = 0.(8.2.9)

and

Aα̂,π̂,θ̂h(y0) ≥ Aα̂,π̂,θ̂ϕ(y0) = 0.

so ϕ is a viscosity subsolution. The same approach applies to proving that ϕ is a viscosity

supersolution and hence a viscosity solution.
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CHAPTER 9

DISCUSSION

9.1. Summary and Conclusions

T
he main purpose of this paper was to develop HJBI equations for multidimensional opti-

mization problems that cohere to the theory of risk measures. We went through the pros

and cons of the widely used risk measure VaR. As a consequence of the unstructured approach to

most risk measures we concluded that there is a need for a solid theory on risk measures. It was

made clear that it was and still is, need for more research on the subject. We then went through

the existing work on risk measures in chapter 3. The extension from coherent risk measures

to convex risk measures were discussed. These risk measures were used as a starting point for

our model. In consummation we arrived at the problem of �nding a value functional, Φ(y), and

controls, (δ∗, π∗, θ∗) ∈ ∆×Π×Θ, such that

Φ(y) = inf
δ

[
sup
π

(
inf
θ
Jδ,π,θ(y)

)]
,

where our performance functional is de�ned as;

Jδ,π,θ(y) = Ey
[∫ τs

0
f(X(t), u0(t)) + g(X(τs))

]
.

The theory of risk measures provided us with a foundation for our model; it needed to be valid

for risk measures. Incorporating risk measures gives a solid and rigorous foundation that is in

accordance with established �nancial theory. This enabled us to construct and prove several

HJBI equations, both for convex risk measures and the extension to dynamic risk measures. We

proved a general HJBI for a 3 dimensional game which included the convex risk measure case.

One can interpret this by thinking of an investor as player 1 and the market as player 2. The
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market controls both the scenarios and a marked variable. This is proved to be equal to a 2

dimensional game with a 2 dimensional controller as is the case in Mataramvura and Øksendal

[2008]. Next, we found and proved a HJBI equation for a Nash-equilibrium. We extended on

Mataramvura and Øksendal [2008] by allowing the market to play a role through scenarios. As

we explained, most risk management decisions spans over a several time periods. So we provided

a model for dynamic risk measures. This gave us a HJBI equation that is linked to a FBSDE.

Choosing a time to maximize an expected reward or minimize an expected cost is known as an

optimal stopping problem. To incorporate this problem into our model, we did provide an optimal

control and stopping theorem. We showed that the optimal control and stopping problem could

be written in the form of a Bellman equation, and is therefore solved using dynamic programming.

This was not generalized to dynamic risk measures but adheres to both coherent and convex risk

measures.

Last, as the value function Φ is not always smooth, we introduced viscosity solutions where our

function need not to be everywhere di�erentiable. As the di�erential may not exist at some

points, the superdi�erential and the subdi�erential were de�ned. We then proved that the value

function was a viscosity solution of the HJBI equation in theorem 4.3.1.

9.2. Discussion

In our dynamic setting we constructed a performance functional by taking the expectation of

an integral over a dynamic risk measure. This provided us with the following performance

functional:

Jπ,θ(x) := ExQ

[∫ T

0
−ρt(X π̂,θ̂)dt

]
:= ExQ

[∫ T

0
εg(Xπ(T )|Ft]dt

]
:= ExQ

[∫ T

0
ytdt

]
.

By constructing the performance functional this way we remove some of the dynamics and loose

some information on the risks involved. Also, our theorem requires us to �nd a function, v, for

each controller. This is an unpractical theorem in applications and its usefulness is questionable.

9.3. Topics for Further Research

1. [Alternative representation for the dynamic risk measure model] Our perfor-

mance functional removes some of the dynamics of the risk measure. One possibility

for further study is to construct a performance functional as∫ T

0
ρt(X(T ))dt.

This gives us a stochastic function whose interpretation is not so obvious. It also requires

a stochastic version of the HJBI equation.
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2. [A simpler veri�cation theorem for dynamic risk measures] We developed a

HJBI which would require us to �nd a function, v, for each controller. This gives a

complex system to solve and a simpler model is a possibility for further research.

3. [Including optimal stopping in the Nash-equilibrium model] Optimal stopping is

a variant of stochastic games where two players may stop a randomly moving process.

The consequence of their actions is that, whoever stops �rst, player 1 will receive a

prede�ned function of the random process at the time of stopping which is to be paid

for by player 2. Extending our zero-sum game model for optimal stopping to Nash-

equilibrium games could be a valuable extension that could justify further study.

4. [A model with random jump �elds] We could try to extend our model to the case

where the dynamics is depended not on only on time but also some other space variable,

i.e. we get a partial di�erential equation dY (t, x). While it may be possible to solve

using dynamic programming, an approach could be to formulate a maximum principle,

see below.

5. [The zero-sum game with maximum principle] A useful alternative to the dynamic

programming veri�cation techniques we have studied in this paper is the maximum

principle. In the article by Framstad et al. [2004] it is remarked that the HJB-equation

in the jump di�usion case involves complicated integro-di�erential equations. Therefore

they provide a maximum principle alternative. It seems to be attainable to prove a

similar result for the games we have studied in this paper. In theorem 2.1 in Framstad

et al. [2004] we can exchange the requirement

H(t, ˆX(t), ˆu(t), ˆp(t), ˆq(t), ˆr(t)) = sup
u
H(t, ˆX(t), u(t), ˆp(t), ˆq(t), ˆr(t)),

with

H(t, ˆX(t), α̂, π̂, θ̂, ˆp(t), ˆq(t), ˆr(t)) = inf
α

[
sup
π

(
inf
θ
H(t, ˆX(t), u(t), ˆp(t), ˆq(t), ˆr(t))

)]
.

This would still lead to a similar proof.

6. [Uniqueness of the viscosity solution] As noted above we have not shown an unique-

ness theorem for the viscosity solution. This is an important concept in the case where

we want to verify that a function is a viscosity solution of the corresponding variational

inequalities. It seems provable from similar theorems that

Theorem 9.3.1 (Uniqueness). Suppose that

τ0
S <∞ a.s. for all y ∈ S0.

Let ϕ ∈ C(S̄) be a viscosity solution of the HJBI with the property that

the family {ϕ(Y (τ))|τ ≤ τ0
S} is uniformly integrable for all y ∈ S0.
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Then

ϕ(y) = Φ(y) for all y ∈ S̄.

This would require further studies.

7. [A model for singular control] To incorporate transaction costs to our model we

could look at singular control. If we let κ = [κij ] : Rk → Rk×p and the state described

by

dY u(t) = b(Y u(t), u(t))dt+ σ(Y u(t), u(t))dB(t)

+
∫

Rk
γ(Y u(t−), u(t−), z)Ñ(dt, dz) + κ(Y (t−))dξ(t).

Y u(0−) = y ∈ R

Further, we let the performance functional be given by

Jπ,ξ,θ = Ey[
∫ TR

0
f(Y (t), u(t))dt+ g(Y (TR))χ{τS<∞} +

p∑
j=1

∫ TR

0
ϑTj (Y (t−))dξ(t)]

Then we want to �nd a value function Φ(y) and an optimal control (π, u, ξ) ∈ A such

that

Φ(y) = sup
u

[
sup
π

(
inf
θ
Jπ,ξ,θ

)]
= J π̂,ξ̂,θ̂.

This control is called singular since the investment control measure dξ(t) is allowed

to be singular with respect to the Lebegue measure dt. We then want a veri�cation

theorem similar to the ones we have developed above. From Øksendal and Sulem [2007]

we derive that our theorem should be constructed in a sounding similar to: Suppose we

can �nd a function ϕ ∈ C2(S) ∩ C(Rk) such that

(i) Aπ,θ̂ϕ(y) + f(y, u) = 0 for all y ∈ S and all π ∈ Π.

(ii) Aπ̂,θ̂ϕ(y) + f(y, u) = 0 for all y ∈ S.
(iii)

∑k
i=1 κij(y) ∂ϕ∂yi (y) + ϑj(y) ≤ 0, ll y ∈ S, j + 1, . . . , p.

(iv) Ey[
∫ τS

0 {|σ
T (Y (t), u(t))∇ϕ(Y (t))|2

+
∑l

k=1

∫
R |ϕ(Y (t) + γ(k)(Y (t), u(t), z))− ϕ(Y (t))|2νk(dz)}dt] <∞ for all (u, ξ) ∈

A.
(v) lim

t→τ−s
ϕ(Xδ,π,θ(t)) = g(Xδ,π,θ(τS))χ{τs<∞} a.s. for all (u, ξ) ∈ A .

(vi) The family {ϕ(Xδ,π,θ(τ))}τ∈T is uniformly integrable, for all (u, ξ) ∈ A and all

y ∈ S.
De�ne the nonintervention region D by

D = {y ∈ S|max
1≤j≤p

{
k∑
i=1

κij(y)
∂ϕ

∂yi
(y) + ϑj(y)} < 0}.

(vii) Y û,ξ̂(t) ∈ D̄ for all t.

(viii)
∑p

j=1{
∑k

i=1 κij(y) ∂ϕ∂yi (y) + ϑj(y)}dξ̄(
jc) = 0, for all 1 ≤ j ≤ p, where ξ(c) is the

continuous part of ξ.
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(ix) ∆ξ̂ϕ(Y (tn)) +
∑p

j=0 ϑj(Y (t−n ))∆ξ̂j(tn) = 0 for all jumping times tn of ξ̂(t).

(x) lim
R→∞

Ey[ϕ(Y û,ξ̂(TR))] = Ey[g(Y û,ξ̂(TR))χτS<∞] where TR = min(τS , R) for R <

∞.

Then

ϕ(y) = Φ(y),

and

(û, ξ̂) is an optimal control

This would seem to be a simple extension to the case in chapter 5 of Øksendal and

Sulem [2007], and the proof would be a combination of our above methods and the proof

in Øksendal and Sulem [2007].

In the the proof in Øksendal and Sulem [2007], we have that by using Itô for semi-

martingales we get

Ey[ϕ(Y (TR))] = ϕ(y) + Ey
[ ∫ TR

0
Auϕ(Y (t))dt

+
∫ TR

0

k∑
i=1

∂ϕ

∂yi
(Y (t−))

p∑
j=1

κij(Y (t−))dξ(c)
j (t)

+
∑

0<tn≤TR

∆ξϕ(Y (tn))
]
.

By the mean value theorem

∆ξϕ(Y (tn)) = ∇ϕ(Ŷ (n))T∆ξY (tn) =
k∑
i=1

p∑
j=1

∂ϕ

∂yi
(Y (t−))κij(Y (t−))∆ξj(tn),

So we have

ϕ(y) ≥ Ey[
∫ TR

0
f(Y (t), u(t))dt+ ϕ(Y (TR))

−
k∑
i=1

p∑
j=1

{
∫ TR

0

∂ϕ

∂yi
(Y (t−))κij(Y (t−))dξ(c)

j (t)

+
∂ϕ

∂yi
(Y (t−))κij(Y (t−))∆ξj(tn)}]

≥ Ey[
∫ TR

0
f(Y (t), u(t))dt+ ϕ(Y (TR)) +

p∑
j=1

∫ TR

0
ϑj(Y (t−))dξj(t)].

Letting R→∞
ϕ(y) ≥ Ju,ξ(y) ≥ inf

θ
Ju,ξ(y).

Since this holds for all π ∈ Π

ϕ(y) ≥ sup
π

[
inf
θ
Ju,ξ(y)

]
.

Proving the opposite inequality seems to be similar to the proofs we have shown before,

but further research is required.
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