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Introduction

For essentially all investors and �nancial institutions it is vital to measure levels
of risk. History gives enough examples on the consequenses of ignoring or miscal-
culating the risky part of investments. As time and �uctuations taught investors
costly lessons, VaR (Value at Risk) came forth as the preferred risk measure.
Practitioners quickly embraced VaR as it has advantages like wide applicability
and universality. Convex risk measures could not compete with the simplicity of
VaR, and was written o� as something describing an ideal fantasy world. This
contributed to an increasing gap between practitioners and researchers, as VaR
failed to ful�ll one or more properties de�ning a convex risk measure. These
properties were set to de�ne what we want a risk measure to tell us. Violating
these properties can therefore lead to strange conclusions, e.g. diversi�cation
gives higher risk, as in the example in Chapter 3. So when banks, regulators and
others with huge impact on a nations �nancial health uses non-convex measures
of risk this is a cause to worry.

Generalizations from the contiuous setting to the non-continuous setting is a
very popular subject in todays stochastic analysis. Articles written before the
millennium changed is in general restricting themselves to the continuous setting.
In more recent studies that involves stochastic processes, the Itô-Lévy setting is
a popular generalization from the setting with only the Brownian Motion, since
these processes seem to elicit more of the same behavior as real world prices. As
the title reveales, this thesis is no exception, since we will work in the Itô-Lévy
setting.

The primary target of this thesis is to familiarize the di�erent types of risk mea-
sures, with a more in depth view on convex risk measures. The secondary target
is to represent, and give applications to, the stochastic games arising from risk
minimization. The teriary target is to generalize theory on risk measures in the
contiuous setting, to the non-continuous setting. To meet these goals we will
refer to a selection of articles by others, give comments and examples, and lastly
generalize some of these results.

This thesis is organized as follows. In the �rst chapter we give a short recap
on Lévy measures and Poisson random measures. In the second chapter we look
at the families of risk measures arising from the axioms stated for risk measures
in general. In the third chapter we give an example that excludes Value at Risk
from the class of convex risk measures. In the fourth chapter we give a more
detailed look at convex risk measures. In the �fth chapter we minimize the risk
of a stochastic variable, dependent of the choice of portifolio. This is given in
the context where our random variable is represented as the end point of a value
process. This problem will be formulated as an HJBI problem, and the problem



is solved by the results represented in [20]. In the sixth chapter we give a short
introduction to pricing of contingent claims in incomplete markets, and look at
an example of risk indi�erence pricing based on the work in [18]. In the seventh
chapter we look at g-expectations, and their relation to convex risk measures.

This thesis will often give reference to results or statements given by other au-
thors. This will be done by inserting a square parenthesis on each side of a
number, for instance [1]. When this is written in bold text behind a de�nition or
proposition, it means that the de�nition or proposition is taken from the article
or book this reference leads to. Sometimes a footnote connected to the reference
will give a further explanation of how the referred article or book translates to
the given setting. All such refrences are listed on the last page.
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1 Lévy measures and Poisson random measures

As stated in the introduction and in the title of this thesis, we will work in
the non-continuous setting. Whilst the Brownian Motion setting is thoroughly
treated in many articles and graduate courses, the generalization to the jump
setting is lacking the same level of attention. Therefore we start this thesis by
a short introduction to the fundamentals of Lévy measures and Poisson random
measures.

Let (Ω,FT , {Ft}t≥0, P ) be a �ltered probability space. An Ft-adapted process
{ηt}t≥0 ⊂ R is called a Lévy process if

(i) η0 = 0

(ii) ηt is continuous in probability, i.e.

lim
s→t

P ({ω ∈ Ω : |ηs − ηt| > ε}) = 0

(iii) ηt has stationary increments, i.e. for some suitable t1, t2 and s

ηt1+s − ηt1
dist
= ηt2+s − ηt2

(iv) ηt has independent increments, i.e. for A,B ⊂ R

P (ηt1+s − ηt1 ∈ A ∩ ηt2+s − ηt2 ∈ B) = P (ηt1+s − ηt1 ∈ A)P (ηt2+s − ηt2 ∈ B)

If Xt, Yt are stochastic processes, we say that Xt is a version of Yt if

P
(
{ω ∈ Ω : Xt(ω) = Yt(ω)}

)
= 1 for all t ∈ [0, T ]

which is a weaker assumption than Xt and Yt being indistinguishable, i.e.

P
(
{ω ∈ Ω : Xt(ω) = Yt(ω), for all t ∈ [0, T ]}

)
= 1.

It is well known that a Lévy process has a càdlàg version (right continuous with
left limits), which is also a Lévy process. In the remainder any Lévy process will
be assumed to be càdlàg. Now de�ne the jump of ηt at time t > 0 by

∆ηt = ηt − ηt−

and let

B0 = {U ⊂ R : U is a Borel set, 0 /∈ Ū}.
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Then, for U ∈ B0, de�ne the Poisson random variable

N(t, U) =
∑

0<s≤t

χ
U

(∆ηs)

called the Poisson random measure of ηt. It is shown in [15] remark 1.3, that
N(t, U) is �nite for all U ∈ B0, hence the function U → N(t, U) is σ-�nite on
B0. Then the Lévy measure ν of ηt, de�ned by

ν(U) = E [N(1, U)]

also becomes a σ-�nite measure on B0. If ηt is a Lévy process it is common to
assume

E[|ηt|] <∞ for all t ≥ 0

which ensures that ηt has the decomposition

ηt = αt+ σB(t) +

∫
R0

zÑ(t, dz); R0 = R\{0}

for some constants α, σ ∈ R, and where

Ñ(dt, dz) = N(dt, dz)− ν(dz)dt.

This points us in the direction of stochastic integrals on the form1

X(t) = X(0) +

∫ t

0

α(s)ds+

∫ t

0

β(s)dB(s) +

∫ t

0

∫
R0

γ(s, z)Ñ(ds, dz) (1.1)

where α(t) = α(t, ω), σ(t) = σ(t, ω) and γ(t, z) = γ(t, z, ω) are adapted processes.
We call such processes Itô-Lévy processes.

As in the Brownian motion setting, a central result for Itô-Lévy processes is the
Itô Formula, which is used several times in this thesis. It states that if X(t) is an
Itô-Lévy process on the form (1.1), f ∈ C2(R2) and we de�ne Y (t) = f(t,X(t)),
then (in the 1-dimensional case)

1In the appendix we simulate X(t) to give a graphic example of the behavior of such
processes.
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dY (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))[α(t, ω)dt+ β(t, ω)dB(t)]

+
1

2
β2(t, ω)

∂2f

∂x2
(t,X(t))dt

+

∫
R0

{
f(t,X(t−) + γ(t, z))− f(t,X(t−))

− ∂f

∂x
(t,X(t−))γ(t, z)

}
ν(dz)dt

+

∫
R0

{f(t,X(t−) + γ(t, z))− f(t,X(t−))}Ñ(dt, dz).

If α, σ and γ are time homogeneous, X(t) is called a jump di�usion or a Lévy
di�usion. Then, for f ∈ C2

0(Rn), the generator Af(x) of X(t) ∈ Rn is given by

Af(x) =
n∑
i=1

αi(x)
∂f

∂xi
(x) +

1

2

n∑
i,j=1

(ββT )ij(x)
∂2f

∂xi∂xj
(x)

+

∫
R0

l∑
k=1

{f(x+ γ(k)(x, z))− f(x)−∇f(x) · γ(k)(x, z)}νk(dzk).

For a more detailed introduction to Itô-Lévy processes see [15] or [1].
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2 Introduction to the axiomatic theory of risk

measures

We view a �nancial position as a P -a.e. bounded and FT -measurable function
X : Ω → R where Ω is a �xed set of scenarios. The set of all such functions is
denoted by X , where X = L∞(Ω,FT , P ). From here we de�ne three families of
risk measures to assess the risk of a �nancial position.

2.1 Three families of risk measures

De�nition 2.1 [3] A coherent risk measure is a map ρ : X → R which has the
following properties:

(1) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y )

- This property gives that the risk of an aggregate position is bounded
by the sum of the risk of each position.

(2) Positive Homogenity: If λ ≥ 0, then ρ(λX) = λρ(X)

- This property suggest linear growth in risk with the size of the position.
We deduce that ρ(0) = 0.

(3) Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y )

- This property states that the risk decreases if the payo� increases.

(4) Translation Invariance: If m ∈ R, then ρ(Y +m) = ρ(Y )−m

- This property gives that if we add the amount m to the position in
a risk free manner, the capital requirement decreases with the same
amount m. We deduce that ρ(X + ρ(X)) = 0.

Property (2) suggest a linear growth in risk with the size of the position, which
in many situations can be too restrictive. Therefore we may relax some of these
properties and de�ne a convex risk measure.

De�nition 2.2a[21] A 'strong' convex risk measure is a map ρ : X → R
which has the following properties:

(3) Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y )

(4) Translation Invariance: If m ∈ R, then ρ(Y +m) = ρ(Y )−m

10
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(5) Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for λ ∈ [0, 1]

- This property ensures that the risk of a diversi�ed investemt is
bounded by the weighted average of each position's risk2.

De�nition 2.2b[19] A 'weak' convex risk measure is a map ρ : X → R which
has the following properties:

(3) Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y )

(5) Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for λ ∈ [0, 1]

In light of de�nitions 2.1, 2.2a and 2.2b we can see that any coherent risk mea-
sure is also a convex risk measure, but that the converse is not true. The set of
convex risk measures is the most important set of risk measures in this thesis.
In the remainder of this thesis, a 'strong' convex risk measure will be re�erd to
as just a convex risk measure. The third de�nition on risk measures that will be
represented here, is the one on monetary risk measures.

De�nition 2.3 [3] A monetary risk measure is a map ρ : X → R which has
the following properties:

(3) Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y )

(4) Translation Invariance: If m ∈ R, then ρ(Y +m) = ρ(Y )−m

2.2 The acceptance set of risk measures

We will call a �nancial position X ∈ X acceptable if ρ(X) ≤ 0. If we let ρ(0) = 0,
we can interpret ρ(X) as the amount that should be added to X in a risk free
manner to make it acceptable under the given risk measure ρ. It is then natural
to de�ne the set

Aρ := {X ∈ X | ρ(X) ≤ 0} (2.1)

2For more information on the interpretation of axioms (1)-(5) see e.g. [3].
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which we call the acceptance set of ρ, i.e. the set of all positions that do not
need additional investments to pass as acceptable. Conversely, if we start with a
acceptance set Aρ ⊂ X , the risk measure

ρAρ(X) = inf{m ∈ R | m+X ∈ Aρ}

ful�lls ρAρ(X) = ρ(X). This last statement is true because

inf{m ∈ R | m+X ∈ Aρ} = inf{m ∈ R | ρ(m+X) ≤ 0}
= inf{m ∈ R | ρ(X) ≤ m}
= ρ(X).

We also see that all constant functions are in X , and if ρ ful�lls translation in-
variance, all non-negative constant functions are in Aρ.

Proposition 2.1 A monetary risk measure ρA is convex if and only if A is
convex.

Proof. Let ρA be convex, and λ ∈ [0, 1]. Then

X, Y ∈ A ⇒ 0 ≥ λρA(X) + (1−λ)ρA(Y ) ≥ ρA(λX + (1−λ)Y )⇒ (λX + (1−λ)Y ) ∈ A.

Conversely, let A be convex and X, Y ∈ X . If ρA(X) = m and ρA(Y ) = n then
m + X and n + Y are both in A, and by convexity λ(m + X) + (1− λ)(n + Y )
are also in A. So

0 ≥ ρA(λ(m+X) + (1− λ)(n+ Y )) = ρA(λX + (1− λ)Y )− (λm+ (1− λ)n).

Hence,
ρA(λX + (1− λ)Y ) ≤ λρA(X) + (1− λ)ρA(Y )

12
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3 V aR in light of the axiomatic properties of risk

measures

In computing V aR (Value at Risk), we basically compute the quantile corre-
sponding to the distribution of X, given a probability measure P . One de�nition
among many equivalent de�nitions is the following.

De�nition 3.1 Let α ∈ (0, 1). We de�ne V aR(X) with level α as

V aRα(X) := inf{ m | P (X +m < 0) ≤ α}.

Next we look at an example that rules out V aR as an convex risk measure.

3.1 Example

Let the risk free rate of return be r ≥ 0. Our investment options is two
independent defaultable bonds, both with equal probability of default p, rate
of return r̃ which stais�es r ≤ r̃ ≤ 1 + 2r, and cost ω. For bond i we then have
that the discounted net gain is

Xi =

{
−ω in case of default

ω(r̃−r)
1+r

otherwise.

We then get

P

(
Xi −

ω(r̃ − r)
1 + r

< 0

)
= P (default) = p.

Hence, if α = 0.1 and p = 0.09

V aR0.1(Xi) = −ω(r̃ − r)
1 + r

< 0.

The interpretation of this is that the position do not need additional risk free
investments to pass as acceptable. This is without concern for the size of the
potential loss. If we now choose to diversify our investment by investing ω/2 in
each of the two bonds, the discounted net gain becomes Y = (X1 +X2)/2, i.e.

Y =


−ω in case of both default

−ω
2

(
1− (r̃−r)

1+r

)
in case only one default

ω(r̃−r)
1+r

otherwise.

13
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Then the probability that Y is negative is the same as the probability that one
or two of the bonds default: P (one or two bonds default) = p(2− p).
Since we have p(2− p) > α

V aR0.1(Y ) =
ω

2

(
1− (r̃ − r)

1 + r

)
> 0.

We conclude that

V aR0.1(Y ) >
1

2
V aR0.1(X1) +

1

2
V aR0.1(X2).

This example contradicts property (5) from the de�nition of convex risk mea-
sures, and hence V aR is not a convex risk measure. V aR gives the minimal loss
that can occur within the α-quantile. By other words V aR will compute the best
scenario among all bad scenarios, but it does not answer 'how bad is bad'. If risk
is measured with respect to V aR, this example shows that one might be inclined
to concentrate the investment in one single asset, without regard to the expected
loss in case of default. When, as in this example, V aR discourage diveri�cation
it clearly works against what we want from a risk measure.

When constructing such an example it is not needed much creativity. One only
need to exploit the fact that V aR fails to recognice the severity of 'bad' scenarios.
In general, V aR fails to ful�ll convexity when dealing with small probabilities of
default. Consequently, the worst deployment of V aR is in the case where we deal
with small probabilities and big losses.

14
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4 A characterization of a convex risk measure

To assess the risk of a �nancial position one could simply look at the 'worst case
scenario' measure.

ρwcs(X) = − inf
ω∈Ω

X(ω).

It is readily seen that ρwcs is a coherent, and therefore also convex, risk measure.

• X ≥ Y gives that infω∈ΩX(ω) ≥ infω∈Ω Y (ω) i.e. ρwcs(X) ≤ ρwcs(Y )

• m ∈ R gives that ρwcs(X +m) = ρwcs(X)−m

• ρwcs(X + Y ) ≤ ρwcs(X) + ρwcs(Y )

• λ ≥ 0 gives that ρwcs(λX) = λρwcs(X)

Here, the acceptance set Aρwcs is given by all non-negative functions in X . Since
this measure does not take into account the probability of such a 'worst case
scenario' it is very conservative. It may even not be interesting when dealing
with big losses on a set of measure zero. In fact, it is the most conservative of all
coherent risk measures on Aρwcs . This is seen by letting ρ be any coherent risk
measure on Aρwcs , then by properties (2), (3) and (4) from De�nition 2.1

ρ(X)
(3)

≤ ρ( inf
ω∈Ω

X(ω))

(2)
= inf

ω∈Ω
X(ω)ρ(1)

(4)
= inf

ω∈Ω
X(ω)[ρ(0)− 1]

= ρwcs(X).

If we letM be the set of all probability measures on (Ω,F) we see that ρwcs has
the alternative representation

ρwcs(X) = sup
Q∈M

EQ [−X].

To de�ne a less conservative measure we let Q ⊆M and γ : Q → [−∞,∞), with
supQ∈Q γ(Q) <∞, where γ(Q) will represent some 'lower bound' relative to the
probability measure Q . Now let the set of acceptable �nancial positions be

15
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A′ = {X ∈ X | EQ [X] ≥ γ(Q) for all Q ∈ Q} .

Observe that if X, Y ∈ A′ then γ(Q) ≤ EQ [X], and γ(Q) ≤ EQ [Y ] for all Q .
Then we have that

γ(Q)− EQ [λX + (1− λ)Y ] = γ(Q)− λEQ [X]− (1− λ)EQ [Y ]

≤ γ(Q)− λγ(Q)− (1− λ)γ(Q)

= 0.

So the acceptance set A′ is convex. By De�nition 2.3 and Proposition 2.1 we see
that the corresponding risk measure is convex. From the form of A′ we deduce
that the corresponding risk measure gets the form

ρA′(X) = sup
Q∈Q

(γ(Q)− EQ [X]).

From this point on ρ and ρA′ will have the same meaning.

An equivalent form of ρ is

ρ(X) = sup
Q∈Q

(EQ [−X]− ζ(Q)) (4.1)

where ζ(Q) = −γ(Q). We will call ζ a 'penalty' function, and say that ρ is
represented by ζ.

In (4.1) we have taken Q to be some arbitrary subset of M. A more speci�c
characterization of Q may be given when noted that it is natural to restrict our
class of convex risk measures to those who have the following property on X .

ρ(X) = ρ(Y ) if X = Y P -a.s. (4.2)

This assumption on ρ is not only useful in the study of Q. It also has the practical
interpertation that two �nancial positions with the same payo� will be regarded
as equally risky. If this assumption is violated one could have unexpected results,
e.g. an option being more risky than its replicating portifolio.

16
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Proposition 4.1,[10] Let ρ be a convex risk measure given by (4.1) with
property (4.2). Furthermore, let ζ be as in (4.1). Then ζ(Q) =∞ for all Q not
absolutely continous with respect to P .

Proof. Let
ρ(X) = sup

Q∈Q
(EQ [−X]− ζ(Q))

then
ζ(Q) ≥ EQ [−X]− ρ(X)

for all Q and X. Hence

ζ(X) ≥ sup
X∈X

(EQ [−X]− ρ(X))

≥ sup
X∈Aρ

(EQ [−X]− ρ(X))

≥ sup
X∈Aρ

(EQ [−X]) .

Here, Aρ is as in (2.1). Now let A ∈ FT be such that P (A) = 0. Then if X ∈ Aρ
and Xn = X − nIA then X = Xn P -a.e., so ρ(X) = ρ(Xn). Hence Xn ∈ Aρ.
Now let Q(A) > 0, then

ζ(Q) ≥ sup
X∈Aρ

EQ [−X] ≥ EQ [−Xn] = EQ [−X] + nQ(A)→∞

when n→∞.

By Proposition 4.1 we see that there is nothing to gain by including probability
measures not absolutely continuous with respect to P in Q.

Proposition 4.2, [8],[9] Every convex risk measure ρ : X → R is of the
form

ρ(X) = sup
Q∈P

(
EQ [−X]− ζ(Q)

)
for some family P of probability measures absolutely continuous with respect to
P , and some 'penalty' function ζ : P → (−∞,∞].

By the form of ρ we see that ζ(Q) ≥ infµ∈P{ζ(µ)} = − supµ∈P{−ζ(µ)} = −ρ(0)
for all Q ∈ P . And in retrospect, we see that the existence of the alternative
representation of ρWCS follows from Proposition 4.2.

17
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The following is another important result on convex risk measures, which says
that choosing a convex risk mesaure is equivalent to choosing a family of mea-
sures P , and a penalty function ζ.

Proposition 4.3, [8],[9] A map ρ : X → R is a convex risk measure if and
only if there exists a family P of measures Q � P on FT and a convex 'penalty'
function ζ : P → R ∪ {+∞} with infQ∈P ζ(Q) = 0 such that

ρ(X) = sup
Q∈P

(
EQ [−X]− ζ(Q)

)
In Proposition 4.3, we see that the assumtption infQ∈P ζ(Q) = 0 ensures that
ρ(0) = 0, i.e. the risk ρ(X) can be interpered as the amount needed to make the
investment X acceptable. Thanks to Proposition 4.3, the interpretation of the
acceptance set of ρ in Chapter 2.2 now holds for all convex risk measures. As
Proposition 4.2 and Proposition 4.3 does not single out one spesi�c risk measure,
one can to some degree let the �nal choice of risk measure allow economic consid-
erations and risk aversion to come into play. For instance, since not all investors
has the same level of risk aversion, or even the same regulating framework, the
choice of ζ may di�er to suit the situation at hand.

Example A well known family of measures absolutely continuous with respect
to P is the family arising from Girsanov transformations, i.e. on the form

dQ = Zθ(T )dP.

Example One choice of ζ is the relative entropy3 of Q with respect to P

ζ(Q) = E

[
dQ

dP
log

dQ

dP

]
= H(Q;P )

where the expectation is taken with respect to P , and dQ
dP

denotes the Radon-
Nikodym derivative of Q with respect to P .

Example To illustrate the ideas of convex risk measures and the relative entropy,
we introduce this simple example. Consider a given measure space (Ω,F , P ),
where Ω = {ω1, ω2, ω3} and F is the powerset of Ω. We de�ne P = {P,Q},
where the distribution of P and Q is given by

3See e.g. [4]
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P Q

ω1 0.2 0.2
ω2 0.5 0.6
ω3 0.3 0.2

The random variable X(ω) (e.g some �nancial option) will have payo�

ω1 ω2 ω3

X 0.2 −0.1 −0.05

The penalty function of ρ is in this example the relative entropy, so ρ(X) will
have the form

ρ(X) = max
Q∈P

{
EQ[−X]−

3∑
i=1

Q(ωi) log

(
Q(ωi)

P (ωi)

)}
First we compute this expression with resptect to P , then the relative entropy
will be 0, and

EP [−X] = −0.2× 0.2 + 0.1× 0.5 + 0.05× 0.3 = 0.025

If we use Q we will get

EQ[−X]−
3∑
i=1

Q(ωi) log

(
Q(ωi)

P (ωi)

)
= −0.2× 0.2 + 0.6× 0.1 + 0.2× 0.05︸ ︷︷ ︸

=0.03

− (0.2× log 1 + 0.6× log 1.2 + 0.2× log 0.67)

≈ 0.0017

Here we see that the most 'pessimistic' expectation of X ('optimistic' expectation
of −X) is achieved with Q. However, if the expectation is computed with
respect to Q, we recive a penalty for the distance4 from Q to P . In this case,
this penalty assures that the maximum is attained when P is used. From an
intuitional point, ρ (represented by the relative entropy) makes sense as the most
pessimistic expectation of X, given that we do not stray too far away from the
'true' probablility measure P .

4The relative entropy, also called the 'Kullback-Leibler divergence', measures the distance
(in some sense) from one probability distribution to another. It is non-cummutative, i.e.
H(Q; P ) 6= H(P ; Q)
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5 Risk minimizing portfolios

In this chapter we will look at what happens when our payo� is a�ected by
the choice of portfolio. The FT -measurable, P -a.e bounded random variable
X : Ω × Π → R will represent this payo�, where Π is a given set of allowed
portifolios. In this setting it will be of interest to �nd the portifolio π ∈ Π that
minimizes the risk, where the risk measure is as in Proposition 4.2. This leads to
a min-max problem on the form

inf
π∈Π

sup
Q∈P

(
EQ [−X(π)]− ζ(Q)

)
(5.1)

This problem can be reformulated by introducing the concave function U(X) :=
−ρ(X), where ρ is a given convex risk measure as in De�nition 2.2a. This func-
tion U(X) is an example of a monetary utility function, which is de�ned in the
following way.

De�nition 5.1 A monetary utility function is a map U : X → R with the
following properties:

(3)' Monotonicity: If X ≤ Y , then U(X) ≤ U(Y )

(4)' Translation Invariance: If m ∈ R, then U(Y +m) = U(Y ) +m

(5)' Concavity: U(λX + (1− λ)Y ) ≥ λU(X) + (1− λ)U(Y ) for λ ∈ [0, 1]

We can now reformulate (5.1) in the following manner.

Problem 5.1 Find

Φ(x) := sup
π∈Π

inf
Q∈P

(
Ex

Q [Xπ] + ζ(Q)
)

and �nd π∗ and Q∗ such that

Φ(x) = Ex
Q∗ [X

π∗ ] + ζ(Q∗).

In view of the original problem in (5.1) we see that −Φ(x) will give the solu-
tion we set out to �nd. If ζ(Q) = E[f(Q)] for some suitable f , this reformulation
of (5.1) has the advantage of being easy to translate into the existing theroy on
HJBI equations. More on this will follow in the sections below.
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5.1 The market model

In our jump di�ution market there will be two investment possibilities:

• A non-risky asset with price S0(t) given by

dS0(t) = r(t)S0(t)dt; S0(0) = 1 (5.2)

• A risky asset with price S1(t) given by

dS1(t) = S1(t−)[α(t)dt+ β(t)dB(t) +

∫
R
γ(t, z)Ñ(dt, dz)]; S1(0) > 0 (5.3)

where r, α, β and γ are Ft-adapted processes satisfying

E
[ ∫ T

0

{|r(s)|+ |α(s)|+ 1

2
β2(s) +

∫
R0

| log(1 + γ(s, z))− γ(s, z)|ν(dz)ds}
]
<∞.

The solution for S0(t) is straight forward

dS0(t) = r(t)S0(t)dt

⇓

S0(t) = e
∫ t
0 r(s)ds

By Itô's formula we �nd the solution for S1(t) by taking the derivative of logS1(t)

d logS1(t) =
1

S1(t)
S1(t)[α(t)dt+ β(t)dB(t)]− 1

2S2
1(t)

S2
1(t)β2(t)dt

+

∫
R

[
log(S1(t−) + S1(t−)γ(t, z))− logS1(t−)− 1

S1(t−)
S1(t−)γ(t, z)

]
ν(dz)dt

+

∫
R

[
log(S1(t−) + S1(t−)γ(t, z))− logS1(t−)

]
Ñ(dt, dz)

= α(t)dt+ β(t)dB(t)− 1

2
β2(t)dt+

∫
R

[log(1 + γ(t, z))− γ(t, z)] ν(dz)dt

+

∫
R

log(1 + γ(t, z))Ñ(dt, dz)

logS1(t) = log S1(0) +

∫ t

0

[
α(s)− 1

2
β2(s) +

∫
R

[log(1 + γ(s, z))− γ(s, z)] ν(dz)

]
dt

+

∫ t

0

β(s)dB(s) +

∫ t

0

∫
R

log(1 + γ(s, z))Ñ(ds, dz)
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S1(t) = S1(0) exp

{∫ t

0

[
α(s)− 1

2
β2(s) +

∫
R

[log(1 + γ(s, z))− γ(s, z)] ν(dz)

]
dt

+

∫ t

0

β(s)dB(s) +

∫ t

0

∫
R

log(1 + γ(s, z))Ñ(ds, dz)

}

We see that this solution is well de�ned for γ(t, z) > −1 for a.a. t,z, P -a.s. Here,
the random variable X(π) = V π(T ) will be a linear combination of the risky asset
and the non-risky asset. The function π : [0, T ] × Ω → R will represent the
proportion of wealth invested in the risky asset. Let η0 and η1 be number of units
held in asset 0 and 1 respectively. The wealth process then becomes

dV π(t) = η0(t)dS0(t) + η1(t)dS1(t)

= η0(t)r(t)S0(t)dt

+ η1(t−)S1(t−)
[
α(t)dt+ β(t)dB(t) +

∫
R
γ(t, z)Ñ(dt, dz)

]
= (1− π(t))V π(t)r(t)dt

+ π(t−)V π(t−)
[
α(t)dt+ β(t)dB(t) +

∫
R
γ(t, z)Ñ(dt, dz)

]
= V π(t−)

[
((1− π(t))r(t) + π(t)α(t))dt

+ π(t)β(t)dB(t) + π(t−)

∫
R
γ(t, z)Ñ(t, z)

]
(4.4)

By the same method used to �nd S1(t) we get

V π(t) = V π(0) exp

{∫ t

0

[
(1− π(s))r(s) + π(s)α(s)− 1

2
π2(s)β2(s)

+

∫
R

[log(1 + π(s)γ(s, z))− π(s)γ(s, z)] ν(dz)
]
dt

+

∫ t

0

π(s)β(s)dB(s) +

∫ t

0

∫
R

log(1 + π(s)γ(s, z))Ñ(ds, dz)

}

where we assume π(t)γ(t, z) > −1 for a.a. t,z, P -a.s.
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5.2 An HJBI equation for zero-sum di�erential games for

jump di�usions

Consider the controlled jump di�usion Y (t) = Y u(t), where

dY (t) = b(Y (t), u0(t))dt+ σ(Y (t), u0(t))dB(t)

+

∫
Rk
γ1(Y (t−), u1(t−, z), z)Ñ(dt, dz); Y (0) = y ∈ Rk (5.5)

Here, u(t, z) = (u0(t), u1(t, z)), where u0(t), u1(t, z) ∈ K ⊆ Rp represent the con-
trol (e.g. π and Q as in Problem 4.1), and it is assumed to be càdlàg and adapted
to the �ltration Ft generated by B(·) and Ñ(·, ·). Furthermore, b : Rk×K → Rk,
σ : Rk×K → Rk×k and γ1 : Rk×K×Rk → Rk×k are given, B(t) is a k-dimensional
Brownian motion, and Ñ(·, ·) are k independent compensated Poisson random
measures.

Now let S be a open subset of Rk where Y (t) is 'solvent', and de�ne the stopping
time

τS = inf {t > 0;Y (t) /∈ S} .

Let K be the set of admissible controls satisfying integrability conditions, and
such that (5.5) has a unique strong solution. For u ∈ K de�ne the performance
functional

Ju(y) = Ey

[∫ τS

0

f(Y (t), u0(t))dt+ g(Y (τS))

]
where f : Rk ×K → R, and g : Rk → R are given.

If we let u0(t) = (θ0(t), π0(t)), and u1(t, z) = (θ1(t, z), π1(t, z)) we can view
θ(t, z) = (θ0(t), θ1(t, z)) ∈ K1 as the control for player 1, and π(t, z) =
(π0(t), π1(t, z)) ∈ K2 as the control for player 2, for suitable sets K1 and K2.
Denote the set of such controls by Θ and Π, respectively. We then formulate the
following problem.

Problem 5.2 Find Φ(y) and (θ∗, π∗) ∈ Θ× Π such that

Φ(y) = sup
π∈Π

(
inf
θ∈Θ

Jθ,π(y)

)
= Jθ

∗,π∗(y)

where (θ∗, π∗) is called an optimal control if it exist.

We will not look at the general family of adapted controls, but focus on Markov
controls. This may not be a big loss of generality, since in many cases a Markov
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control gives the same performance as the more general family of adapted con-
trols5. This means that our control will only depend on the current state of the
system, and not e.g. the starting point.

Before stating Proposition 5.1 we need some notes of nomenclature. The gen-
erator of a process Y (t) ∈ Rn, with Y (0) = y = (s, y1, · · · , yn) will be denoted
Aθ,πϕ(y), and let T = {τ : τ is a Ft-stopping time, τ ≤ τS}.

Proposition 5.1,[20] Suppose there exist a function ϕ ∈ C2(S) ∩ C(S̄) and
a Markov control (θ̂(y), π̂(y)) ∈ Θ× Π such that

(i) Aθ,π̂(y)ϕ(y) + f(y, θ, π̂(y)) ≥ 0 for all θ ∈ K1, y ∈ S

(ii) Aθ̂(y),πϕ(y) + f(y, θ̂(y), π) ≤ 0 for all π ∈ K2, y ∈ S

(iii) Aθ̂(y),π̂(y)ϕ(y) + f(y, θ̂(y), π̂(y)) = 0 for all y ∈ S

(iv) Y θ,π(τS) ∈ ∂S a.s. on {τS <∞} and
limt→τ−S

ϕ(Y θ,π(t)) = g(Y θ,π(τS))χ{τS<∞}
a.s. for all (θ, π) ∈ Θ× Π, y ∈ S

(v) The family of {ϕ(Y θ,π(τ))}τ∈T is uniformly integrable,
for all y ∈ S, (θ, π) ∈ Θ× Π.

Then

ϕ(y) = Φ(y) = sup
π∈Π

(
inf
θ∈Θ

Jθ,π(y)

)
= inf

θ∈Θ

(
sup
π∈Π

Jθ,π(y)

)
= sup

π∈Π
J θ̂,π(y) = inf

θ∈Θ
Jθ,π̂(y) = J θ̂,π̂(y)

and
(θ̂, π̂) is an optimal (Markov) control.

For proof of Proposition 5.1 see [20].

5.3 Examples

One way to start the process of constructing an example regarding risk minimiz-
ing portifolios, is to look at more or less trivial situations. However, this may not
give the desired results, as the following example will show.

5As proven for the case without jumps in [17].
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Trivial case with constant coe�cients

Let us study the problem (5.1) in the context where Π = R, Θ = {0}, and ζ = 0.
Then (5.1) gets the form

inf
π∈Π

E[−V (π)(T )].

Let π be the number of assets held in the risky asset S(t), de�ned as in (5.3) by

dS(t) = S(t−)[αdt+ βdB(t) +

∫
R0

γÑ(dt, dz)]

for some given constants α, β and γ. If we let the risk free asset S0(t) = 1, i.e.
r(t) = 0, our value process V (π)(t) from (4.4) becomes

dV (π)(t) = π(t−)S(t−)[αdt+ βdB(t) +

∫
R0

γÑ(dt, dz)].

Thanks to Theorem 5.3.5 (Martingale representation 2) in [1], our problem can
be written as

inf
π∈Π

E[−(x+

∫ T

0

π(t)S(t)αdt)] = −x− α sup
π∈Π

E[

∫ T

0

π(t)S(t)dt].

which is degenerate, in the sense that

sup
π∈Π

E[

∫ T

0

π(t)S(t)dt] =∞.

This example shows that even close to trivial cases may not have a solution.

An example with constant coe�cients and no Brownian motion

In this example we will look at the following version of Problem 5.1.

sup
π∈Π

inf
θ∈Θ

EQθ [V
(π)(T )]

where Π = R and Θ = {θ : E[Zθ(T )] = 1}, with Zθ(t) given by

dZθ(t) = −Zθ(t−)

∫
R0

θ(t, z)Ñ(dt, dz)
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and

dQθ(ω) = Zθ(T )dP (ω), on FT .

In this case we consider the process

dY (t) =

dY0(t)
dY1(t)
dY2(t)

 =

 dt
dZθ(t)
dV (π)(t)

 =

 1
0

π(t)S(t−)α

 dt+

∫
R0

 0
−θ(t, z)Zθ(t−)
π(t)S(t−)γ

 Ñ(dt, dz)

with Y (0) = (s, y1, y2). Then, the generator of Y (t) has the form

Aπ,θϕ(y) = ϕs(y) + πy2αϕ2(y) +

∫
R0

[
ϕ(s, y1 − θy1, y2 + πy2γ)− ϕ(y)

+ θ1y1ϕ1(y)− πy2γϕ2(y)
]
ν(dz)

In light of (iv) from Proposition 5.1, we guess

ϕ(y) = h(s)y1y2

for some h : [0, T ] → R with h(T ) = 1. This gives that the generator can be
written as

Aπ,θϕ(y) = h′(s)y1y2 + παh(s)y1y2 −
∫

R0

[h(s)θy1πy2γ]ν(dz).

If we now maximize Aπ,θ̂ϕ(y) over all π ∈ Π we get the following �rst order
condition for π̂.

αh(s)y1y2−
∫

R0

[h(s)θ̂y1y2γ]ν(dz) = 0, i.e.

α =

∫
R0

[θ̂γ]ν(dz).

By this, we see that the market will choose a θ̂ that corresponds to Qθ being a
'risk-free' measure, as in Girsanov Theorem II in [15]. Also, we note that θ̂ will be
independent of t. The �rst order condition obtained when minimizing Aπ̂,θϕ(y)
over all θ ∈ Θ is ∫

R0

[h(s)y1π̂y2γ]ν(dz) = 0

which leads to π̂ = 0, as the optimal choice for the agent. By condition (iii)
in Proposition 5.1, the di�erential equation for the deterministic function h(s)
becomes

h′(s)y1y2 = 0,
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So

h(s) = 1 for t ∈ [0, T ].

We conclude that the solution to the problem in this example is

Φ(x) = y1y2.

An example with constant coe�cients

As a deployment of Proposition 5.1 we will study Problem 5.1 in the case where
α, β and γ are constants, and r(t) = 0.

Let P from Proposition 4.2 be the set of all probability measures on the form

dQθ(ω) = Zθ(T )dP (ω) on FT
where

Zθ(t) = exp
{
−
∫ t

0

θ0(s)B(s)− 1

2

∫ t

0

θ2
0(s)ds+

∫ t

0

∫
R0

log(1− θ1(s, z))Ñ(ds, dz)

+

∫ t

0

∫
R0

[log(1− θ1(s, z)) + θ1(s, z)]ν(dz)ds
}
.

By Itô`s formula we get

dZθ(t) = −Zθ(t−)
[
θ0(t)dB(t) +

∫
R0

θ1(t, z)Ñ(dt, dz)
]
.

Next, we let

Θ =
{
θ : E[Zθ(T )] = 1

}
.

In this case, our process will be given by

dY (t) =

dY0(t)
dY1(t)
dY2(t)

 =

 dt
dZθ(t)
dV (t)

 =

 1
0

π(t)V (t−)α

 dt+

 0
−θ0(t)Zθ(t

−)
π(t)V (t−)β

 dB(t)

+

∫
R0

 0
−θ1(t)Zθ(t

−)
π(t)V (t−)γ

 Ñ(dt, dz)
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with Y (0) = y = (s, y1, y2). The penalty function will be assumed to have the
form

ζ(Qθ) = E

[(
dQθ

dP

)2
]

= E[Zθ(T )2].

We see that Problem 5.1 can be written in the HJBI context as

Φ(y) = sup
π∈Π

{
inf
θ∈Θ
{Ey

[
Y1(T − s)Y2(T − s) + Y2(T − s)2

]
}
}
.

Here, γ1 from (5.5) becomes

γ1(Y (t−), u1(t−, z), z) =

0 0 0
0 −y1θ1(t, z) 0
0 π(t)y2γ 0



If we denote the i`th column of γ1 by γ
(i)
1 , the generator of Y (·) becomes

Aθ,πϕ(y) = ϕs(y) + πy2αϕ2(y) +
1

2
θ2

0y
2
1ϕ22(y)− θ0y1πy2βϕ12(y) +

1

2
π2y2

2β
2ϕ22(y)

+

∫
R

[
ϕ(y + γ

(2)
1 )− ϕ(y)−∇ϕ(y) · γ(2)

1

]
= ϕs(y) + πy2αϕ2(y) +

1

2
θ2

0y
2
1ϕ22(y)− θ0y1πy2βϕ12(y) +

1

2
π2y2

2β
2ϕ22(y)

+

∫
R

[
ϕ(s, y1 − y1θ1, y2 + y2πγ)− ϕ(s, y1, y2) + θ1y1ϕ1(y)− πy2γϕ2(y)

]
ν(dz).

Now that we have the form of Aθ,πϕ(y) we see from Proposition 5.1 (iii) and (iv)
that the equation to be solved is{

supπ∈Π

(
infθ∈ΘA

θ,πϕ(y)
)

= 0
ϕ(T, y1, y2) = y1y2 + y2

2

(5.6)

From the form of (5.6), one possible choice of ϕ is

ϕ(y) = h(s)y1y2 + y2
1

for some h : [0, T ]→ R with h(T ) = 1. Then
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Aθ,πϕ(y) = h′(s)y1y2 + πy2αh(s)y1 + θ2
0y

2
1 − θ0y1πy2βh(s)

+

∫
R0

[
h(s)(y1 − y1θ1)(y2 + y2πγ) + (y1 − y1θ1)2

− h(s)y1y2 − y2
1 + θ1y1(h(s)y2 + 2y1)− πy2γh(s)y1

]
ν(dz)

= h′(s)y1y2 + πy2αh(s)y1 + θ2
0y

2
1 − θ0y1πy2βh(s)

+

∫
R0

[
y2

1θ
2
1 − h(s)y1θ1y2πγ

]
ν(dz).

If we now maximize Aθ̂,πϕ(y) over all π, we get the following �rst order condition
for the minimum point π̂.

y2αh(s)y1 − θ̂0y1y2βh(s)−
∫

R0

h(s)y1θ̂1y2γν(dz) = 0

or equivalently

απy2 − θ̂0πy2β −
∫

R0

[θ̂1πy2γ]ν(dz) = 0

which gives that the optimal choice for the market is to choose θ such that Qθ is
an equivalent martingale measure (or risk-free measure) for X(t). Since α, β and
γ are constants, we note that θ̂ is deterministic. To �nd the optimal choice for
the agent, we note that Aθ,πϕ(y) is linear in π, and can be written on the form

Aθ,πϕ(y) = π

(
y2αh(s)y1 − θ0y1y2βh(s)−

∫
R0

[h(s)y1y2θ1γ]ν(dz)

)
+ h′(s)y1y2 + θ2

0y
2
1 +

∫
R0

[y2
1θ

2
1]ν(dz)

which gives that the optimal choice for the agent is

π̂ =


∞, if positive coe�cient
−∞, if negative coe�cient

remiss, if the coe�cient is 0

For instance, we can let π̂(θ̂) = 0. Then we have our candidate for the optimal
control (θ̂, π̂), and the solution of{

Aθ̂,π̂ϕ(y) = 0
ϕ(T, y1, y2) = y1y2 + y2

2
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will be our candidate for Φ(y) in Problem 5.2. It remains to determine h(s). By
(iii) in Proposition 5.1, and that the market will choose an equivalent martingale
measure, we have

Aθ̂,π̂ϕ(y) = h′(s)y1y2 + θ̂2
0y

2
1 +

∫
R0

θ̂2
1y

2
1ν(dz) = 0.

This equation has a unknown solution, if any, since h(s) is assumed to be a
deterministic function of s alone.
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6 Pricing of contingent claims

6.1 Pricing in complete and incomplete markets

In a complete market we have one and only one equivalent martingale measure.
If we �nd ourselves in the complete market setting we can also always �nd an
x ∈ R and a self-�nancing portifolio π such that for any contingent claim F with
maturity T > 0

V (π)
x (T ) = F P -a.s.

and the 'fair' price is given by

p(F ) = e−
∫ T
0 r(t)dtEQ [F ]

for some risk free rate r : [0, T ]→ R+ (see e.g. [6]).

In general, markets driven by jump processes such as in this thesis are not com-
plete. This leads to problems when trying to give a 'fair' price to a contingent
claim for two reasons. Firstly there is in�nitely many equivalent martingale mea-
sures, and secondly there may not exist a replicating portifolio. When using the
replicating portifolio argument the seller will not settle for less than

pup = inf
{
x | ∃ self-�nancing π such that V (π)

x (T ) ≥ F
}

and the buyer will not pay more than

plow = sup
{
x | ∃ self-�nancing π such that V (π)

x (T ) ≤ F
}
.

In a complete market we will have pup = plow, but in our setting there may be
a big gap between the acceptable prices for the two partisipants. Other prices
in incomplete markets are arising from utility indi�erence arguments and risk
indi�erence arguments, where the latter will be dicussed here.

Our market, equipped with a �xed terminal time T > 0, will consist of two
investment possibilities.

(i) A risk free investment, with discounted unit price S0(t) = 1, t ∈ [0, T ].

(ii) A risky investment, with discounted unit price S(t), given by{
dS(t) = S(t−)

[
α(t)dt+ β(t)dB(t) +

∫
R0
γ(t, z)Ñ(dt, dz)

]
; t ∈ [0, T ]

S(0) = s > 0
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A portfolio will in this chapter represent the number of units held in asset (ii).
Then the discounted wealth process V (t) = V (π)(t) becomes

{
dV (t) = π(t)dS(t) = π(t−)S(t−)

[
α(t)dt+ β(t)dB(t) +

∫
R0
γ(t, z)Ñ(dt, dz)

]
V (0) = x > 0

6.2 Risk indi�erence pricing

A seller can either agree to sell a contingent claim F ∈ X , or not. If the seller
has the amount x and agree to sell the contingent claim F for some price p, the
minimal risk involved is

ΦF (x+ p) = inf
π∈Π

ρ
(
V

(π)
x+p(T )− F

)
(6.1)

whereas the minimal risk if no sale is made is

Φ0(x) = inf
π∈Π

ρ
(
V (π)
x (T )

)
(6.2)

where Π is some subset of all admissible portifolios. We recall that a self-�nancing
portfolio π is called admissible if∫ T

0

{
|α(t)||π(t)|S(t) + β2(t)π2(t)S2(t) + π2(t)S2(t)

∫
R0

γ2(t, z)ν(dz)
}
dt <∞

and
V (π)(t) ≥ 0 for t ∈ [0, T ] a.s.

De�nition 6.1,[18] The seller's risk indi�erence price pseller of the claim
F ∈ X is the solution p of the equation

ΦF (x+ p) = Φ0(x). (6.3)

So one way to solve this problem would be to solve the stochastic games (6.1)
and (6.2). If we let

dY (t) =

dY0(t)
dY1(t)
dY2(t)

 =

 dt
dKθ(t)
dS(t)

 =

 1
0

S(t−)α(t)

 dt
+

 0
Kθ(t

−)θ0(t)
S(t−)β(t)

 dB(t) +

∫
R0

 0
Kθ(t

−)θ1(t, z)
S(t−)γ(t, z)

 Ñ(dt, dz)
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it is shown in [18] that we can view the the sellers risk indi�erence price pseller of
a contingent claim F = g(S(T )), as

pseller(F ) = sup
Qθ∈L

{
EQθ [F ]− ζ(Qθ)

}
− sup

Qθ∈L

{
− ζ(Qθ)

}
(6.4)

and the buyers risk indi�erence price pbuyer becomes

pbuyer(F ) = inf
Qθ∈L

{
EQθ [F ] + ζ(Qθ)

}
− inf

Qθ∈L

{
ζ(Qθ)

}
. (6.5)

Here L denotes the set of equivalent martingale measures for Y (t).

6.3 Prelude to example

As Proposition 5.1 assumes ϕ ∈ C2(S), we see that for A = {K − y2 ≥ 0}

ϕ(s, y1, y2, y3) = h(s)y1(y3 − (K − y2)χA) + y1 log y1

will not meet this assumption. However, if we let

f(n)(y2) = Cn
0 + Cn

1 y2 + Cn
2 y

2
2 + Cn

3 y
3
2 + Cn

4 y
4
2 + Cn

5 y
5
2

and determine (for each n) the constants Cn
0 , · · · , Cn

5 by the equations

f(n)(K +
1

n
) = 0, f(n)(K −

1

n
) =

1

n

f ′(n)(K +
1

n
) = 0, f ′(n)(K −

1

n
) = −1

f ′′(n)(K +
1

n
) = 0, f ′′(n)(K −

1

n
) = 0

we can de�ne, for y = (s, y1, y2, y3)

ϕ(n)(y) =

{
ϕ(y), if y2 /∈ [K − 1

n
, K + 1

n
]

h(s)y1(y3 − f(n)(y2)) + y1 log y1, if y2 ∈ [K − 1
n
, K + 1

n
]

to approximate ϕ(y). Since ϕ(n)(y) ∈ C2(S), our problem can be contained to
an arbitrary small interval around K. Also, the singularity is not severe, so this
problem is omitted in the following example.
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6.4 Example: Sellers risk indi�erence price

In this example we will solve (6.3) in the case where F = (K − S(t))χ{K−S(t)≥0},
and

ζ(Q) = E

[
dQ

dP
log

dQ

dP

]
called the relative entropy, as in Chapter 4. Further we assume that α, β and γ
are constants, Π = R, and that

Θ = {θ : E[Zθ(T )] = 1}

where

dZθ(t) = −Zθ(t−)
[
θ0(t) +

∫
R0

θ1(t, z)Ñ(dt, dz)
]
.

First we try to solve the stochastic di�erential game (6.1). From Chapter 5, we
can study the problem

ΨF (x+ p) = sup
π∈Π

inf
θ∈Θ

E

[
Zθ(T )

(
V (π)(T )− (K − S(T ))χA

)
+ Zθ(T ) logZθ(T )

]
where A = {K − S(T ) ≥ 0}. The process needed to solve this problem is given
by

dY (t) =


dY0(t)
dY1(t)
dY2(t)
dY3(t)

 =


dt

dZθ(t)
dS(t)
dV (t)



=


1
0

αS(t−)
απS(t−)

 dt+


0

−θ0(t)Zθ(t
−)

βS(t−)
βπS(t−)

 dB(t) +

∫
R0


0

−θ1(t, z)Zθ(t
−)

γS(t−)
γπS(t−)

 Ñ(dt, dz)

with Y (0) = (s, y1, y2, y3).

If we guess
ϕ(y) = h(s)y1(y3 − (K − y2)χA) + y1 log y1,

we get that the partial derivatives of ϕ is

ϕs(y) = h′(s)y1(y3 − (K − y2)χA); ϕ3(y) = h(s)y1

ϕ1(y) = h(s)(y3 − (K − y2)χA) + log y1 + 1; ϕ33(y) = 0
ϕ11(y) = 1

y1
; ϕ12(y) = h(s)χA

ϕ2(y) = h(s)y1χA; ϕ13(y) = h(s)
ϕ22(y) = 0; ϕ23(y) = 0
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and the generator becomes

Aθ,πϕ(y) = h′(s)y1(y3 − (K − y2)χA) + y2αh(s)y1χA + πy2αh(s)y1

+
1

2
θ2

0y1 − θ0y1y2βh(s)χA − θ0y1πy2βh(s)

+

∫
R0

{
h(s)(y1 − y1θ1)(y3 + πy2γ − (K − y2 − y2γ)χA)

+ (y1 − y1θ1) log(y1 − y1θ1)− h(s)y1(y3 − (K − y2)χA)

− y1 log y1 + y1θ1[h(s)(y3 − (K − y2)χA) + log y1 + 1]

− y2γh(s)y1χA − πy2γh(s)y1

}
ν(dz)

= h′(s)y1(y3 − (K − y2)χA) + y2αh(s)y1χA + πy2αh(s)y1

+
1

2
θ2

0y1 − θ0y1y2βh(s)χA − θ0y1πy2βh(s)

+

∫
R0

{
θ1y1 − θ1y1h(s)y2γχA + y1 log(1− θ1)

− θ1y1 log(1− θ1)− y1θ1πy2γh(s)
}
ν(dz).

To maximize Aθ̂,πϕ(y) for all π we obtain the �rst order condition

αy1y2h(s)− θ̂0βy1y2h(s)−
∫

R0

[θ̂1γy1y2h(s)]ν(dz) = 0, i.e.

αy2 − θ̂0βy2−
∫

R0

[θ̂1γy2]ν(dz) = 0, and

αy2π − θ̂0βy2π−
∫

R0

[θ̂1γy2π]ν(dz) = 0

We see that the market will choose a 'risk-free' measure, as in the last example
in Chapter 5. Also Aθ,πϕ(y) is linear in π, so the optimal choice for the agent is
again dependent on the coe�cient for π, i.e.

π̂ =


∞, if positive coe�cient
−∞, if negative coe�cient

remiss, if the coe�cient is 0
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To determine h(s) we use (iii) from Proposition 5.1, and write

0 = Aθ̂,π̂ϕ(y) = h′(s)y1(y3 − (K − y2)χA) +
1

2
θ2

0y1

+

∫
R0

{
θ1y1 + y1 log(1− θ1)− θ1y1 log(1− θ1)

}
ν(dz)

= h′(s)(y3 − (K − y2)χA) +
1

2
θ2

0

+

∫
R0

{
θ1 + log(1− θ1)− θ1 log(1− θ1)

}
ν(dz).

So

h′(s) =
−1

y3 − (K − y2)χA

[1

2
θ2

0 +

∫
R0

{
θ1 + log(1− θ1)− θ1 log(1− θ1)

}
ν(dz)

]
.

Again, this equation has no known solution. The case where F = 0 is somewhat
similar to the above and the last example of Chapter 5. The stochastic di�erential
game (6.2) can be formulated as

Ψ(x) = sup
π∈Π

inf
θ∈Θ

E

[
Zθ(T )V (π)(T ) + Zθ(T ) logZθ(T )

]
.

The process used will be

dY (t) =

dY0(t)
dY1(t)
dY2(t)

 =

 dt
dZθ(t)
dV (t)


=

 1
0

απS(t−)

 dt+

 0
−θ0(t)Zθ(t

−)
βπS(t−)

 dB(t) +

∫
R0

 0
−θ1(t, z)Zθ(t

−)
γπS(t−)

 Ñ(dt, dz)

Here, we guess ϕ(y) = h(s)y1y2 + y1 log y1. Then the corresponding generator
gets the form

Aθ,πϕ(y) = h′(s)y1y2 + πy1y2αh(s) +
1

2
θ2

0y1 − θ0y1y2πβh(s)

+

∫
R0

{θ1y1 − h(s)y1y2θ1πγ + y1 log(1− θ1)− y1θ1 log(1− θ1)}ν(dz)

As before, the maximization of Aθ̂,π for all π, gives the �rst order condition

αy2π − θ̂0βy2π −
∫

R0

[θ̂1γy2π]ν(dz) = 0,
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and since Aθ,π is linear in π we get

π̂ =


∞, if positive coe�cient
−∞, if negative coe�cient

remiss, if the coe�cient is 0

To �nd h(s) we use as before

0 = Aθ̂,π̂ϕ(y) = h′(s)y1y2 +
1

2
θ2

0y1

+

∫
R0

{
θ1y1 + y1 log(1− θ1)− θ1y1 log(1− θ1)

}
ν(dz)

So

h′(s) =
−1

y2

[1

2
θ2

0 +

∫
R0

{
θ1 + log(1− θ1)− θ1 log(1− θ1)

}
ν(dz)

]
.

Similar problem as before comes to light here, as h(s) is a deterministic function
of s.
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7 Convex risk measures and g-expectation

In this section we will look at another representation of convex risk measures.
This will be in terms of g-expectaion and backward stochastic di�erential
equations (BSDEs). Let F ∈ X and g : R3 → R be a convex function. Also, let
X(t), Y (t) and K(t, z) be square-integrable, Ft-predictable processes, such that
the BSDE

{
dX(t) = −g(X(t), Y (t), K(t, ·))dt+ dM(t)
X(T ) = F

(7.1)

where

dM(t) = Y (t)dB(t) +

∫
R0

K(t, z)Ñ(dt, dz)

has a unique solution. By [1], M(t) is a martingale, and hence

X(t) +

∫ t

0

g(X(s), Y (s), K(s, ·))ds = E
[
X(0) +

∫ T

0

Y (s)dB(s)

+

∫ T

0

∫
R0

K(s, z)Ñ(ds, dz)
∣∣∣Ft]

= E

[
X(T ) +

∫ T

0

g(X(s), Y (s), K(s, ·))ds
∣∣∣Ft] .

Since
∫ t

0
g(X(s), Y (s), K(s, ·))ds is Ft-measurable we can rearrange the terms and

get

X(t) = E

[
F +

∫ T

t

g(X(s), Y (s), K(s, ·))ds
∣∣∣Ft] , 0 ≤ t ≤ T. (7.2)

From this last argument we deduce that M(t) can be written on the form

M(t) = E

[
F +

∫ T

0

g(X(s), Y (s), K(s, ·))ds
∣∣∣Ft] , 0 ≤ t ≤ T.
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In some arguments in this chapter we will use that

X(t) = E

[
F +

∫ T

t

g(X(s), Y (s), K(s, ·))ds
∣∣∣Ft]

= F +

∫ T

t

g(X(s), Y (s), K(s, ·))ds+M(t)

− F −
∫ T

0

g(X(s), Y (s), K(s, ·))ds

= F +

∫ T

t

g(X(s), Y (s), K(s, ·))ds+M(t)−M(T ). (7.3)

So (7.1), (7.2) and (7.3) are all representations of the same BSDE.

7.1 A static convex risk measure induced by g-expectation

De�nition 7.1, [21] The risk ρg(F ) (associated to the convex function g) of a
�nancial position F ∈ X is de�ned by

ρg(F ) := Eg[−F ] := X−Fg (0) ∈ R,

where X−Fg (0) is the value at t = 0 of the solution X(t) of the BSDE (7.1) with
terminal value −F .

Inspired by Theorem 2.3 in [16], we now state the following fundamental propo-
sition for this chapter.

Proposition 7.1 Let

dXi(t) = −gi(Xi(t), Yi(t), Ki(t, ·))dt+ Yi(t)dB(t) +

∫
R0

Ki(t, z)Ñ(dt, dz), i = 1, 2.

and {
X1(T ) = F
X2(T ) = G

where Xi(t), Yi(t) and Ki(t, z) is as in (6.1). If F ≥ G, g1 ≥ g2 P -a.s., then

X1(t) ≥ X2(t) P -a.s. for all t ∈ [0, T ].
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Proof. Since

X1(t)−X2(t) = F −G+

∫ T

t

g1(X1(s), Y1(s), K1(s, ·))− g2(X2(s), Y2(s), K2(s, ·))ds

+ (M1(t)−M2(t))− (M1(T )−M2(T ))

= E
[
F −G+

∫ T

t

g1(X1(s), Y1(s), K1(s, ·))

− g2(X2(s), Y2(s), K2(s, ·))ds
∣∣∣Ft]

≥ 0,

the result follows.

Note that g1 ≤ g2 imply ρg1(F ) ≤ ρg2(F ) by Proposition 7.1. So a plausible inter-
pertation of g is that it represents some measure of risk aversion. From the form
(7.2), the solution X(t) of (7.1) has the intuitive interpretation of being the con-
ditional expectation of the payo�, added to a measure g of risk aversion. Another
interpretation is that for ρ(F ) ≤ 0, −ρ(F ) represents the 'certainty equivalent',
i.e. the price that makes an agent indi�erent in regards to keeping or selling the
risky asset F . In the remainder, g will be assumed to be independent of X(t)6.
This assumption is in compliance with the interpretation of g being a measure of
risk aversion, since it is only a�ected by the scaling of the Brownian Motion and
the scaling of the Poisson Random Measure, and not by the state of X(t).

Proposition 7.2 (i) ρg is a convex risk measure as in De�nition 2.2a. (ii)
If g(y, k) is sublinear in (y, k), then ρg is a coherent risk measure.

Proof. (i) The monotonicity property is a direct consequense of Proposition 7.1.
To show translation invariance we use that g is independent of X(t), and de�ne
X ′(t) = X(t) + a, for some a ∈ R. Then we have

ρg(F + a) = Eg [−(F + a)]

= E

[
−(F + a) +

∫ T

0

g(Y (s), K(s, ·))ds
]

= E

[
−F +

∫ T

0

g(Y (s), K(s, ·))ds
]
− a

= Eg [−F ]− a
= ρg(F )− a.

6As assumed in e.g. [14].
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To show convexity, let

dXi(t) = −g(Yi(t), Ki(t, ·))dt+ Yi(t)dB(t) +

∫
R0

Ki(t, z)Ñ(dt, dz), i = 1, 2, 3.


X1(T ) = −F
X2(T ) = −G
X3(T ) = − (λF + (1− λ)G)

where Xi(t), Yi(t) and Ki(t, z) satisfy the same assumptions as X(t), Y (t) and
K(t, z) in (7.1) respectively. Then de�ne

dW (t) = d
(
λX1(t) + (1− λ)X2(t)

)
= −

(
λg(Y1(t), K1(t, ·)) + (1− λ)g(Y2(t), K2(t, ·))

)
dt

+
(
λY1(t) + (1− λ)Y2(t)

)
dB(t)

+

∫
R

(
λK1(t, z) + (1− λ)K2(t, z)

)
Ñ(dt, dz).

Now let Y3(t) = λY1(t) + (1− λ)Y2(t), and K3(t, z) = λK1(t, z) + (1− λ)K2(t, z).
Since g is convex in (y, k) we have

g
(
Y3(t), K3(t, z)

)
≤ λg

(
Y1(t), K1(t, z)

)
+ (1− λ)g

(
Y2(t), K2(t, z)

)
.

Then, again by Proposition 7.1, X3(t) ≤ W (t) P -a.s. for all t ∈ [0, T ]. For t = 0
we get

ρg(λF + (1− λ)G) = X3(0) ≤ W (0) = λρ(F ) + (1− λ)ρg(G) P -a.s.

(ii) Now let g be sublinear, and X1(t) and X2(t) be as in (i). Also let

{
dX3(t) = −g

(
Y3(t), K3(t, ·)

)
dt+ Y3(t)dB(t) +

∫
R0
K3(t, z)Ñ(dt, dz)

X3(T ) = −(F +G)

with Y3(t) = Y1(t) + Y2(t) and K3(t, z) = K1(t, z) + K2(t, z). De�ne W ′(t) =
X1(t) +X2(t). Then
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dW ′(t) = −
(
g
(
Y1(t), K1(t, ·)

)
+ g
(
Y2(t), K2(t, ·)

))
dt+

(
Y1(t) + Y2(t)

)
dB(t)

+

∫
R0

(
K1(t, z) +K2(t, z)

)
Ñ(dt, dz).

Since g is sublinear we have that

g(Y3(t), K3(t, z)) ≤ g(Y1(t), K1(t, z)) + g(Y2(t), K2(t, z)).

By Proposition 7.1 we then have that X3(t) ≤ W ′(t) P -a.s. for all t ∈ [0, T ]. For
t = 0 we get

ρg(F +G) = X3(0) ≤ W ′(0) = ρg(F ) + ρg(G) P -a.s.

To show positive homogenity we let λ ≥ 0, and then by the positive homogenity
of g

ρg(λF ) = E

[
−λF +

∫ T

0

g(λY (s), λK(s, ·))ds
]

= λE

[
−F +

∫ T

0

g(Y (s), K(s, ·))ds
]

= λρg(F ).

Monotonicity is established in the same way as in (i). Since g is sublinear it is
also convex, and by (i) ρg is translation invariant. Hence ρg is a coherent risk
measure.

From Proposition 4.3, we know that since ρg is a convex risk measure, there exists
a family P of measures absolutely continuous with respect to P , and a convex
penalty function ζ : P → R ∪ {+∞} such that

ρg(F ) = sup
Q∈P

(
EQ [−F ]− ζ(Q)

)
.

To �nd P and ζ in this case, we recall from the beginning of this chapter that

ρg(F ) = E
[
−F +

∫ T

0

g(Y (t), K(t, ·))ds
]

= E[−F ]−E
[ ∫ T

0

−g(Y (t), K(t, ·))dt
]
.
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So the convex risk measure induced by g-expectation is represented by P = {P},
and

ζ(Q) = EQ

[ ∫ T

0

−g(Y (t), K(t, ·))dt
]
,

where ζ trivially becomes a constant function on P .

In the case without jumps, it is assumed that g-expectations ful�ll the strict
monotonicity property7, which is explained in more detail below. We will gen-
eralize this result to include the case with jumps. The following result will be
instrumental in this regard.

Proposition 7.3 Let

dXi(t) = −gi(Yi(t), Ki(t, ·))dt+ Yi(t)dB(t) +

∫
R0

Ki(t, z)Ñ(dt, dz), i = 1, 2.

and {
X1(T ) = F
X2(T ) = G

where Xi(t), Yi(t) and Ki(t, z) is as in (7.1). If F ≥ G, g1 ≥ g2 P -a.s. and
X1(0) = X2(0), then

X1(t) = X2(t) P -a.s. for all t ∈ [0, T ].

Proof. Let

X̂(t) = E

[
F̂ +

∫ T

t

ĝ(Ŷ (s), K̂(s, ·)ds
∣∣∣Ft]

where F̂ ≥ 0 and ĝ(y, k) ≥ 0. If X̂(0) = 0, then F̂ +
∫ T

0
ĝ(Ŷ (s), K̂(s, ·)ds = 0

P -a.s. Since F̂ ≥ 0 and ĝ ≥ 0, we have by Corallary 4.10 in [5] that F̂ = 0 P -a.s.
and ĝ = 0 dt× P -a.s. This gives that X̂(t) = 0, t ∈ [0, T ]. De�ne

W (t) = X1(t)−X2(t)

where F −G ≥ 0, and g1 − g2 ≥ 0. Now let W (0) = 0, then

W (t) = X1(t)−X2(t) = 0 for t ∈ [0, T ].

7See e.g. [11] for an explanation in the continuous setting.
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Proposition 7.4 ρg has the strict monotonicity property, i.e.

(I) If F ≥ G P -a.s. then ρg(F ) ≤ ρg(G)

(II) If F ≥ G P -a.s. then ρg(F ) = ρg(G) ⇐⇒ F = G P -a.s.

Proof. (I) This is a special case of Proposition 7.1.
(II) Su�ciency: This is a special case of Proposition 7.3. Necessity: Since F = G
P -a.s., F ≤ G and F ≥ G. By (I) ρg(F ) = ρg(G)

The following uniqueness result is an example of results deriving from strict mono-
tonicity.

Proposition 7.5, [11]8 Let F,G ∈ X . If ρg(FχA) = ρg(GχA) for all A ∈ FT ,
then F = G.

Proof. Let A =
{
F ≤ G

}
∈ FT . Then FχA ≤ GχA. Since ρg(FχA) = ρg(GχA),

we have by strict monotonicity FχA = GχA. Similarly, let B =
{
G ≤ F

}
∈ FT .

Then GχB ≤ FχB. Again, since ρg(FχB) = ρg(GχB), and by strict monotonicity,
FχB = GχB. Hence F = G.

In the case without jumps, there are made some assumptions on g (see e.g. [13]).
A generalization to the setting with jumps will be

(A) ∃a, b > 0 such that ∀ y1, y2, k1, k2 ∈ R

|g(y1, k1)− g(y2, k2)| ≤ a|y1 − y2|+ b|k1 − k2|

(B) g(y, k) ∈ L2(Ω,FT , P ) ∀ y, z ∈ R

(C) g(0, ·) ≡ 0

Proposition 7.6, [7]9 Let g be a given function which ful�lls (A), (B) and
(C). Then for every F ∈ X and ε ∈ (0, 1], there exist a constant Cε such that

|ρg(F )| ≤ Cε‖F‖1+ε

where

‖F‖p=
(∫

Ω

|F |pdP (ω)

) 1
p

for p ≥ 1.

8In [11], strict monotonicity is assumed in the continuous setting.
9In [7], a shorter proof is given in the continuous setting.
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Proof. Let{
dX(t) = −g(Y (t), K(t, ·))dt+ Y (t)dB(t) +

∫
R0
K(t, z)Ñ(dt, dz)

X(T ) = −F

and

{
u(s) = −g(Y (s),K(s,·))

Y (s)
(where we use the convention 0

0
= 0)

θ(s, z) = 0

Then de�ne the measure Q on FT by

dQ(ω) = Z(T )dP (ω)

where

Z(t) = exp

{
−
∫ t

0

u(s)dB(s)− 1

2

∫ t

0

u2(s)ds

}
.

Since

−
∫ t

0

u(s)dB(s)− 1

2

∫ t

0

u2(s)ds ∼ N
(
− 1

2

∫ t

0

u2(s)ds,

∫ t

0

u2(s)ds
)

and

x ∼ N(µ, σ2) implies E[ex] = eµ+σ2

2

we see that

E[Z(T )] = 1.

By the Girsanov Theorem III in [15] we get that

dBQ(t) = u(t)dt+ dB(t)

is a Brownian Motion with respect to Q , and

ÑQ(dt, dz) = θ(t, z)ν(dz)dt+ Ñ(dt, dz) = Ñ(dt, dz)

is the Q-compensated Poisson random measure of N(dt, dz). Consequently
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X(t) = X(0)−
∫ t

0

g(Y (s), K(s, ·))dt+

∫ t

0

Y (s)dB(s) +

∫ t

0

∫
R0

K(s, z)Ñ(ds, dz)

= X(0) +

∫ t

0

Y (s)dBQ(s) +

∫ t

0

∫
R0

K(s, z)ÑQ(ds, dz)

= EQ

[
X(0) +

∫ T

0

Y (s)dBQ(s) +

∫ T

0

∫
R0

K(s, z)ÑQ(ds, dz)|Ft
]

= EQ [−F |Ft] .

Since g is Lipschitz in (y, k) we have that Z(T ) ∈ Lp(Ω,FT , P ) for all p ∈ [1,∞).
So, by Hölder

|ρg(F )| = |EQ [−F ] |
= |E [Z(T )(−F )] |
≤ E [|Z(T )(−F )|]
≤ ‖Z(T )‖ 1+ε

ε
‖−F‖1+ε

= ‖Z(T )‖ 1+ε
ε
‖F‖1+ε

7.2 A dynamic convex risk measure induced by conditional

g-expectation

In De�nition 7.1 ρg is an example of a static risk measure, i.e. not dependent
on t. A natural question in this setting would be how to view the risk of a FT -
measurable random variable at a general time t ∈ [0, T ]. This introduces the
notion of dynamic risk measures, de�ned in the continuous case in [14] as the
following. For t ∈ [0, T ], ρtg is a dynamic risk measure if

• ρtg : X → L2(Ω,Ft, P ), ∀t ∈ [0, T ].

• ρ0
g is a static risk measure.

• ρTg (F ) = −F P -a.s. ∀ F ∈ X .

We see that this de�nition is in compliance with our de�nition of a risk measure,
induced by g-expectation in the jump di�usion setting.
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De�nition 7.2 The dynamic risk ρtg(F ) (associated to the convex function
g) of a �nancial position F ∈ X is de�ned by

ρtg(F ) := Eg[−F | Ft] := X−Fg (t) ∈ L2(Ω,Ft, P ) (7.4)

where X−Fg (t) is the value at time t ∈ [0, T ] of the solution X(t) of the BSDE
(7.1) with terminal value −F .

Proposition 7.7 (i) ρtg is a convex risk measure as in De�nition 2.2a. (ii)
If g(y, k) is sublinear in (y, k), then ρtg is a coherent risk measure.

The proof of Proposition 7.7 is similar to, and to a large degree contained in,
the proof of Proposition 7.2.

7.3 Further generalizations to the Itô-Lévy setting

In the continuous setting, conditional g-exptectations are known to have some of
the same properties as conditional expectations. This chapter will generalize some
of these properties to the setting with jumps. In [12], conditional g-expectation
of F is de�ned as the unique (P -a.s.) random variable η ∈ L2(Ω,Ft, P ) that
ful�lls

Eg[χAF ] = Eg[χAη] for all A ∈ Ft (7.5)

and η is denoted by Eg[F |Ft]. The uniqueness is shown by letting η1, η2 ∈
L2(Ω,Ft, P ) ful�ll (7.5). Then

Eg[χAη1] = Eg[χAF ] = Eg[χAη2] for all A ∈ Ft.

In particular

Eg[χ{η1≤η2}η1] = Eg[χ{η1≤η2}η2].

Since

χ{η1≤η2}η1 ≤ χ{η1≤η2}η2,

we have by strict monotonicity that χ{η1≤η2}η1 = χ{η1≤η2}η2. Similarly we obtain
χ{η1≥η2}η1 = χ{η1≥η2}η2, hence

η1 = η2 a.s.
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Existence comes from the fact that XF
g (t) ∈ L2(Ω,Ft, P ), i.e. Ft-measurable,

and that

Eg[χAXF
g (t)] = Eg[χAF ].

So far we see that the same holds true in the non-continuous case. It is further
shown that

(i) If F is Ft-measurable, then Eg[F |Ft] = F .

(ii) For each t and r, Eg[Eg[F |Ft]|Fr] = Eg[F |Ft∨r].

(iii) If F ≤ G, then Eg[F |Ft] ≤ Eg[G|Ft].

(iv) For each A ∈ Ft, Eg[χAF |Ft] = χAEg[F |Ft].

Statement (i) follows immediately from (7.5).

Statement (ii) is a consequence of (i) when r > t. When r ≤ t, let A ∈ Fr ⊆ Ft,
hence

Eg[χAEg[Eg[F |Ft]|Fr]] = Eg[χAF ] = Eg[χAEg[F |Fr]].

Consequently, by uniqueness

Eg[Eg[F |Ft]|Fr] = Eg[F |Fr].

Statement (iii) is shown by letting η1 = Eg[F |Ft], η2 = Eg[G|Ft]. Since, by
Proposition 7.1, for each A ∈ Ft, Eg[χAF ] ≤ Eg[χAG] it follows from (7.5) that
Eg[χAη1] ≤ Eg[χAη2]. In particular

Eg[χ{η1≥η2}η1] ≤ Eg[χ{η1≥η2}η2],

yet clearly

χ{η1≥η2}η1 ≥ χ{η1≥η2}η2.

By the strict monotonicity of Eg[·] we deduce that

Eg[χ{η1≥η2}η1] = Eg[χ{η1≥η2}η2],
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and

χ{η1≥η2}η1 = χ{η1≥η2}η2,

so η1 ≤ η2.

Statement (iv) will follow from letting A,B ∈ Ft. Then

Eg[χAEg[χBF |Ft]] = Eg[χAχBF ] = Eg[χA{χBEg[F |Ft]}],

so by uniqueness

Eg[χBF |Ft] = χBEg[F |Ft].

So thanks to Proposition 7.1 and the strict monotonicity property (Proposition
7.4) in the non-continuous case, statements (i)-(iv) holds in our Itô-Lévy setting.
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8 Closing comments

The primary target of this thesis has been to give a synopsis of risk measures.
This has been done by introducing the axiomatic properties of risk measures, and
describing the di�erent representations of (in particular) convex risk measures.
This has been done through chapters 2, 4 and 7. In these chapters, the most
interesting result is in my opinion Proposition 7.2 and the comments given in
context to this. To my knowledge, an explicit proof of Proposition 7.2 has not
been given previously.

The secondary target of this thesis has been to describe and �nd solutions of
stochastic games regarding risk minimization. After having described these prob-
lems in chapters 5 and 6, we found that solutions are not easy to �nd, given that
we do not reproduce examples of others. A solution was only found in a case with
constant coe�cients and no Brownian Motion. However, the reason why these
solutions are hard to �nd has been thoroughly shown by examples.

The tertiary target of this thesis has been to generalize statements given in the
continuous setting, to the non-continuous setting. In this regard, Chapter 7 is of
most interest.

When we discuss risk indi�erence pricing, it is my opinion that the case where our
�nancial position is some common option, e.g. a put or call, is the most interest-
ing since it is a major improvement from the Black & Scholes way of pricing. It is
to my knowledge no solution to be found in this case, even when some conditions
for Proposition 5.1 are relaxed. If such a solution were to present itself, I would
be very happy to learn about it, since the search of such a solution has taken a
lot of my time during the work with this thesis.

Throughout this thesis I have tried to mention the intuitional thinking behind the
theory presented. The intention behind this was to make it easier to follow the
red thread between the capters. My priority in this regard has been comments
and examples. On this thought, I �nish my thesis with a simulation of a simple
Itô-Lévy process.

To build on this thesis, one might continue to generalize results given for g-
extectations to the non-continuous setting. Another way to build further is to
continue the search for a solution to the problems in chapters 5 and 6. The max-
imum principle has not been applied here, so a deployment of this would be my
�rst priority. Nevertheless, this thesis has been a contribution to the actualiza-
tion of convex risk measures, and a further mapping of how the Itô-Lévy setting
translates to risk minimization problems.
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9 Appendix

As stated in the �rst chapter, we will look at a graphic example of how the pro-
cesses in this thesis behave. This is given as an intuitional supplementary to
the �rst chapter. In short terms, we will look at the case where the drift and
volatility are constants, and the jumpsizes are normally distributed.

If we use the same notation as in the MatLab code below, the process without
jumps, called X(t), is on the form

X(t) = at+ sB(t).

Here, a (drift) and s (volatility) are constants, in this case 0.03 and 1 respectively,
and B(t) is a Brownian Motion. Next we de�ne a pure jump process Z(t), given
by

Z(t) =

N(t)∑
i=1

Ji

where N(t) ∼ Poisson(λt) for some λ ≥ 0, and Ji ∼ N(0, σ) for i = 1, ..., N(t).
Lastly, we make a process with jumps, called Y (t), which is given the form

Y (t) = X(t) + Z(t).

9.1 Simulation

In the �rst graph we have simulated a process without jumps and made a plot of
this process, then added jumps and included the 'new' process with jumps to the
plot. In this plot the blue and red line represents X(t) and Y (t), respectively.

51



Risk measures in jump di�usion markets

In the next graph we include the pure jump process Z(t), represented by the
green line.

The code used to obtain this graph is partially a result of the theory expained in
[2], and mainly a result of general knowledge of such processes.
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9.2 MatLab code

%------------ Our setting ------------

% $$$$$$ Ito and Ito-Levy process, starting values.

T = 1; % Maturization.

n = 1000; % Number of timesteps.

t = linspace(0,T,n); % Discretization of [0,T] in n pieces.

E = 7; % Expected number of jumps between 0 and T.

si = 0.02; % Standard deviation of the jump sizes.

% $$$$$$ Coefficients.

a = 0.03; % Drift.

s = 1; % Volatility.

%------------ Continuous process ----------------

% $$$$$$ Draw n normally distributed variables, representing BM.

F = normrnd(0,s,1,n)*(T/n);

% $$$$$$ Cummulative sum of F.

FC = cumsum(F);

X = a*t + FC; % The process without jumps.

%------------ Non-continuous process ------------

% $$$$$$ Draw a Piosson random variable representing number of jumps.

N = poissrnd(E,1);

% $$$$$$ Draw N waiting times.

U = unifrnd(0,1,1,N);

% $$$$$$ Sort the uniform variables, representing waiting times.

US = sort(U);

% $$$$$$ Draw N jumpsizes.

J = normrnd(0,si,1,N);

% $$$$$$ Implementing jumps.

c = 0*linspace(1,n,n); % Jump vector starting at (0,...,0).

j = 1; % Count.
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for i = 1:n

while N > j

if US(j) < (i/n)

c(i) = c(i) + J(j);

end

j = j + 1;

end

j = 1;

end

Y = X + c; % The process with jumps.

Z = c; % Only the jumps.

%----------- Plot -----------

plot(X,'b')

hold on

plot(Y,'r')

plot(Z,'g')

hold off
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