
Recommender Systems

and the Net�ix prize

by

Simen Gan Schweder

THESIS

for the degree of

MASTER OF SCIENCE

Faculty of Mathematics and Natural Sciences

University of Oslo

November 2008

Det matematisk-naturvitenskapelige fakultet

Universitetet i Oslo

Contents CONTENTS

Contents

1 Preface 1

2 Introduction 2

3 Introduction to Recommender Systems 5

3.1 Content based systems . 6

3.1.1 Example: term frequency/inverse document frequency (TF-

IDF) . 6

3.2 Collaboration Filtering systems 7

3.3 The Wisdom of Crowds . 7

3.3.1 Example: Google's Pagerank algorithm 8

3.3.2 Example: K-Nearest Neighbours 8

3.4 Hybrids . 9

3.4.1 Example: Dirichlet estimation in eSmak 9

3.5 Blending di�erent approaches . 10

3.6 Model based approaches . 11

3.7 Heuristic approaches . 11

4 Implementations of Recomender Systems 13

4.1 Singular Value Decomposition . 14

4.1.1 Theorem . 14

4.1.2 Approximating matrices 14

4.1.3 Missing values . 14

4.1.4 EM approach . 15

4.1.5 Gradient descent approach 15

4.2 K-Nearest Neighbours . 17

4.3 Restricted Boltzmann Machine 19

5 Net�ix Prize 21

5.1 Presentation . 21

5.2 Wrong question? . 21

6 A look at the entries to the Net�ix Prize 24

6.1 Korbell . 25

6.1.1 The team . 25

6.1.2 Shrinking estimated parameters 25

6.1.3 Removal of global e�ects 25

6.1.4 Neighbourhood based estimation - standard 26

iii

CONTENTS Contents

6.1.5 Neighbourhood based estimation - Korbell 27

6.1.6 Neighbourhood aware retraining of SVD 27

6.2 Simon Funk - Try this at home 29

6.2.1 SVD-like implementation 29

6.2.2 Shrinkage . 30

6.3 Gravity R & D . 31

6.3.1 The team . 31

6.3.2 Matrix Factorization . 31

6.4 ML@UToronto . 32

7 My implementations 34

7.1 SVD: A Gradient descent implementation 36

7.1.1 Implementation . 36

7.1.2 Interpretation . 38

7.1.3 Java implementation . 42

7.2 Logarithmic model . 45

7.2.1 Notation . 45

7.2.2 Model . 45

7.2.3 Distance functions . 45

7.2.4 Box-Cox distance . 46

7.2.5 Free parameter distance 46

7.2.6 Regression form . 46

7.2.7 Is this a Generalized Linear Model? 47

7.2.8 Accounting for common support 47

7.2.9 Maximum Likelihood . 48

7.3 Metric Neighbourhood Predictor 50

7.3.1 Idea . 50

7.3.2 An implementation . 50

7.3.3 Algorithm . 52

7.3.4 Problems and Predictions 53

7.3.5 Metric Neighbourhood Predictor - Mixture 56

7.3.6 Results . 56

7.3.7 KNN in Metric Neighbourhood Predictor 60

7.3.8 Java implementation . 63

7.4 Quantile inference . 66

7.4.1 Implementation in Metric Neighbourhood Predictor . . . 67

7.5 Blending the results . 68

iv

Contents CONTENTS

8 The Pigeonhole Bootstrap 69

8.1 Notation . 69

8.2 Random E�ect Model . 69

8.3 Linear Statistics . 70

8.4 Bootstrap methods . 71

8.4.1 Naive bootstrap . 71

8.4.2 Pigeonhole bootstrap . 72

8.4.3 Net�ix example . 74

8.5 Practical Piegonhole Bootstrappping 74

8.5.1 The use of variance estimates 74

8.5.2 Metric Neighbourhood Predictor Bootstrapping 75

9 Concluding remarks 76

9.1 About this thesis . 76

9.2 The convergence of methods . 76

9.3 The future of recommender systems 77

A SVD, top and bottom movies of each feature. 83

B R-script for logaritmic Maximum Likelihood Estimation. 93

v

1 PREFACE

1 Preface

My interest in recommender systems started in 2000, when my good friend Øys-

tein M. Gutu suggested creating a movie recommender for �lms being displayed

at movie theathers in Oslo. We consulted a friend studying statistics at the

University of Oslo, Håvard Broberg, and created the Dirichlet estimation de-

scribed in section 3.4.1, this worked fairly well and substantial improvement

turned out to be di�cult. Later on another post doc student Pierpaolo De Blasi

suggested a neighbourhood model that never was realized. For about a year

Oslo Kinematografer, the owner of most theathers in Oslo, paid to have our

recommender engine on their site, but new managment failed to see the value

and cut our funding. Due to bad research at the time, we thought we were

the only living beings on the planet interrested in these matters. Then in 2006

the Net�ix competition, introduced in section 5, came along and shattered all

illusions of uniqueness.

My father, Tore Schweder, has some responsibility for making me interested

in statistics, as this is also his profession. But I was not particularly inclined to

study the subject until I took some mandatory courses in statistics taught by

Nils Lid Hjort. He made the subject look easy whithout hiding the details, and

showed the power of modern statistics in a convincing way. I am very thankful

that Nils later accepted to be my supervisor on this Master project. Many bad

cups of co�ee and good conversations have been very inspiring.

My girlfriend Venke Uglenes and daughter Ada has shown great forgiveness

for me turning half our living room into an o�ce and ranting on about movies

and ratings over the last year.

Thanks also to Alfaprint AS, my current employer who have made this pos-

sible.

November 11, 2008 1 Simen Gan Schweder

2 INTRODUCTION

2 Introduction

Since the introduction of the Internet, the amount of information available to

those connected has exploded. Prior to this, information was stored internally

(in our heads), written in books, on local harddisks or to be found in other peo-

ples internal storage. Di�erent methods of querying were used for the di�erent

medias.

Information stored in one's own internal storage was readily available and

retreived by largely unknown techniques.

Information stored in books was searched by �rst �nding the right book,

either by internal knowledge or browsing through bookshelves, and then exam-

ining the list of content or an index.

Information stored on one's harddisk could perhaps be searched by keywords,

but often this had to be browsed through manually.

Information stored in other people's internal storage was queried by vocal or

slow textual queries in an informal language, often leading to erroneous searches.

As of Februrary 2007, an informal estimate of the total number of webpages

available to all of us (the connected ones), is about 30 billion pages. A large

number, although a low proportion, of theese provide information from wast

databases. The total amount of available information is ba�ing.

A natural question is then how to order this amount of information?

The librarians have studied a version of this problem for ages. The Library

of Alexandria, built early in the third century BC, set on �re by Ceasar 48

BC, crippled by the cristian Emperor Theodosius I, and �nally destroyed by the

Muslim conquest 643 AD, had a collection of works estimated to be between

a few hundred thousand to a millon documents. This was the cradle of the

scienti�c method, scholars from "all over the world" took recidence here to

study the scrolls. The organization of the libraries was done by cataloging.

Second hand sources suggest that the lead librarian, Kallimachos created the

catalog Pinakes, wich consisted of no less than 120 books. Pinakes was titled

'Overview of the most prominent men in all branches of science and their written

work', and contained an alphabetic list of authors with information about place

of birth, teachers, parents etc. It also contained an index of di�erent versions

of each document. The documents themselves were organised by classes like

medicine, history, poetry, etc. [8]

Melvil Dewey published his Dewey Decimal Classi�cation as a system for

organizing books in library shelves in 1876. The system was originally based

on ten main classes which in turn are divided into ten sections that are further

divided in ten divisions. Hence the system consists of 10 classes, 100 sections and

November 11, 2008 2 Simen Gan Schweder

2 INTRODUCTION

1000 divisions. Each book is then assigned a tuple of numbers separated by the

decimal separator ".". The �rst number consists of one digit for the class, one

for the section and one for the division. This thesis could perhaps be classi�ed

as 006.31, where "006" consists of "General Texts/General/Programming", and

".31" is "Arti�cial Intelligence/Machine Learning".

Further on one can add numbers to identify geographic regions, time or cross

reference sections. If one should try to classify the pages found on the World

Wide Web in this system, one would end up with an average of 30 million pages

in each category, and still the underlying information available from many of

the pages would make them extremely di�cult to classify. On top of that, one

would have to be a librarian to be able to search the reservoir of information

available.

In the period between the birth of the Internet and the birth of the World

Wide Web the main thing to search for was �lenames. Personally my �rst

searches on the internet were done by a service named Archie, to perform a

search I sent a email containing my search terms, and a few minutes/hours later

the search results, �lenames matching the query, was returned by mail. Very

impressive at the time (1990?).

After the birth of the World Wide Web, in CERN, 1991, the search for

information changed. The introduction of HTML, a standard way of repre-

senting formated text/pages, along with the �rst web-browsers lowered the bar

for publishing and browsing the information available to the selected few that

were connected to the web. Now the �rst spiders started to crawl the web,

constructing indexes of keywords and mapping out the graph. Several major

search engines emerged. One of them, Excite (1993), was the �rst to use statis-

tical analysis of word relationships to automatically classify pages. Yahoo! was

founded in 1994, and quickly became a leading search engine, or rather a direc-

tory of webpages. Yahoo! both created human made compilations of webpages,

and organized the pages in a Dewey-like hierachy. Google emerged in 1998, and

their PageRank algorithm for ranking search results (discussed later) quikly put

them in the lead of the search marked.

With all this sophisticated search technology one would think it should be

easy to �nd what one is looking for. And it is! That is, if you know what you

are looking for and what you are looking for can be phrased easily. If you are

wondering what 'light' is, enter 'light' as your search term in Google, and it will

return more than 900 million pages, but do not dispair, they are sorted by the

magical pagerank algorithm, the �rst one is the Wikipedia entry on 'light'. If

you want to know the variance in the gamma distribution, you can �nd that

November 11, 2008 3 Simen Gan Schweder

2 INTRODUCTION

equally easy. It is a little more di�cult to �nd out how to do things, like how

to change the breakpads on a bike, if you enter something like 'how to change

breaks on bikes', the top search entries are a mixed bag, half of them are directly

relevant, the others not at all.

The real problem starts when you want to �nd something speci�c to you!

How about �nding a book you would want to read? Or a place you want to live?

What color to paint your living room? This is information that does not exist,

no one has published a webpage with the required information, and probably

no one will ever do just that. With some e�ort you could probably �nd a good

book by reading lots of reviews, or browsing top lists from others and comparing

their tastes in books to your own. This process is one of the topics researchers

attempt to automate with the use of Recommender Systems.

This thesis will introduce the reader to Recommender Systems in the next

section, including some examples from di�erent kinds of systems. In section 4

I introduce some standard implementations of Recommender Systems includ-

ing Matrix Factorization by Singular Value Decomposition and the K-nearest

neighbours method. The Net�ix Prize is introduced in section 5 along with a

short discussion of its strengths and shortcommings. Some of the entries to the

Net�ix Prize are reviewed in section 6, and my own three implementations are

covered in section 7, including the novell logarithmic model. We take a look at

the di�culties in sampling from such a interconnected set as the net�ix movie

dataset as presented by Art B. Owens in section 8. Finally some concluding

remarks and a preview of the road ahead is presented in section 9.

November 11, 2008 4 Simen Gan Schweder

3 INTRODUCTION TO RECOMMENDER SYSTEMS

3 Introduction to Recommender Systems

Recommender systems are a subclass of Information Filtering systems.

An Information �ltering system is a system that removes redun-

dant or unwanted information from an information stream using

(semi)automated or computerized methods prior to presentation to

a human user. Its main goal is the management of the information

overload and increment of the semantic signal-to-noise ratio. [18]

A recommender system tries to evaluate the interest/taste that a speci�c

user has to a set of items. E.g. the web search engine, Google, searches through

an enormous amount of web pages when you enter your search term, and then

attempts to rate those pages with respect to what is most interesting, and

presenting the search result sorted by your anticipated interest in the particular

page. The "Pagerank"-algorithm used by Google to perform this evaluation is

regarded as one of the most important pieces in building the company that has

grown to be among the the world's most successful.

There exists an enormous need for recommender systems to �lter the vast

amounts of information available on the Internet, or items available in for in-

stance online shops, and therefore this is a rapidly growing industry. It is used

widely in large online solutions, here are some examples:

• Google as mentioned above.

• Amazon uses it to recommend books when the customer is in the shop,

and to send personalized recommendations by email.

• iRead recommends books inside the popular Facebook framework.

• GroupLens on USENET Net news, a world wide internet discussion/news

system, recommends articles to users.

• Net�ix, a US based dvd-rental company, uses a recommender system to

let customers �nd movies they would like.

• Match.com, a matchmaking site, matches users by pro�les compiled by

questtionaires.

Formally a recommender system can be formulated as follows: Let C be the

set of all users, and I be the set of all items that can be recommended, R is a

totally ordered set(eg. reals in [0, 1]). Let u : C × I → R be the utility function

that measures the utility of item i ∈ I for user c ∈ C. So our problem then is

to �nd this utility function.

November 11, 2008 5 Simen Gan Schweder

3 INTRODUCTION TO RECOMMENDER SYSTEMS 3.1 Content based systems

Recommender systems come in two basic �avours, content based systems and

collaboration �ltering systems, these can be mixed and blended as will be shown

below. There are also two distrinct theoretical implementational appraches to

recommender systems, a model based approach and a heuristic approach. We

will introduce the di�erent �avours and approaches next.

3.1 Content based systems

In a content based recommender system the utility function generally recom-

mends items similar to what the user has preferred in the past. Generally this

is based on

• FI(i), a vector of the features of item i, e.g. author, title, number of pages,

publisher, genre of a book.

• FC(c), a vector of the features of user c, often a history of ratings from the

user, historical behaviour or a user pro�le compiled from a questionnaire

or simply a search term.

The utility function is then on the form u(c, i) = score(FC(c), FI(i)).

3.1.1 Example: term frequency/inverse document frequency (TF-

IDF)

This is a tool picked from the librarian's toolchest, it generates a pro�le for a

document consisting of a vector of weights based on keywords. The underlying

assumption is that the relative frequency of the selected keywords characterize

the documents.

Assume we have N documents and that keyword kj appears in nj of them,

and let fij be the number of times keyword kj appears in document di. We de�ne

the Term frequency (normalized frequency) TFij of keyword kj in document di

as:

TFij =
fij

maxz fiz

where maxz fiz is calculated over all keywords that appear in documend di.

Further we de�ne the Inverse document frequency for keyword kj as

IDFj = log
N

nj
.

Finally we compute the TF-IDF weight for keyword kj in document di as

wij = TFij × IDFj .

November 11, 2008 6 Simen Gan Schweder

3.2 Collaboration Filtering systems3 INTRODUCTION TO RECOMMENDER SYSTEMS

The content of a document is then, content(di) = (w1i, ..., wKi), where K is the

number of keywords.

After this ordeal we have placed each document in a K-dimensional space

and can use the cosine between the documents as a similarity measure. In a

search context one uses the cosine between the search text and the documents

as a measure of �t. A pro�le of a user can consist of selected keywords or a list

of previously viewed documents. See [13] for a textbook introduction.

3.2 Collaboration Filtering systems

Collaborative Filtering, the sharing of knowledge through recom-

mendations.

The Collaboration Filtering (CF) approach to recommender systems takes ad-

vantage of other user's input to the system. The general idea of CF is that

people that have agreed in the past tend to agree in the near future as well.

One can go further in this direction and try to decompose the opinions of users

on di�erent items to model how users evaluate items. CF techniques will be the

main focus of this thesis and ample examples will be given.

3.3 The Wisdom of Crowds

The idea of a Collaboration Filtering System can be traced back to Francis

Galton (1822-1911), a Brithish scientist who was also a half cousine of Charles

Darwin and a Fellow of the Royal Society, knighted in 1909. On one occasion our

Francis wisited the "West of England Fat Stock and Poultry Exhibition" as some

of his many interrests was the measurement of physical and mental qualities and

breeding. On the Exhibition cite, a weight-judging competition was arranged.

A large ox was on display, and for a six-pence one could by a ticket where the

competitors entered their name and guess to the slaugther weight of the ox.

The competitors consisted of a fair mix of "experts", farmers and butchers, and

"non-experts", clerks and others with no apparent expert knowledge. Galton,

who was an extreme elitist, had no faith in the guesses of the non experts, and

thus the mean outcome of the competition. The mix of experts and non-experts

led him to belive the average outcome would miss the mark by a mile. So after

the competition he borrowed the tickets and did a little study on them. The

slaughter weight of the ox turned out to be 1198 pounds, and the average of

the guesses, there were 787 of them, was 1197 pounds. Galton himself viewed

the average as the collective wisdom of the crowd, and the near perfect result

greatly increased his belief in democracy which he viewed as another aspect

November 11, 2008 7 Simen Gan Schweder

3 INTRODUCTION TO RECOMMENDER SYSTEMS 3.3 The Wisdom of Crowds

of The Wisdom of Crowds. Or in his own words: "The result seems more

creditable to the trustworthiness of a democratic judgement than might have

been expected". The quote is taken from the book "The Wisdom of Crowds"

[15], whitch describes several interesting experiments that seem to show that

the collective choices of individuals often are remarkably good. The general

idea here is that the individuals themself have small fractions of knowledge

about the problem at hand, and use their knowledge and understanding of the

domain to make predictions. When aggregated the errors cancel out and what is

left is a destilled result from all the fractions of knowledge. Several experiments

indicate that under the right conditions the average of a crowd's guesses to some

problem is normaly closer than 98% of the participants guesses, even if the crowd

is a mixed lot with varying knowledge of the problem. Of the most prominent

conditions for this to work is that the participants do not communicate while

making their decissions. The author actually claims that many decissions in

businesses fail because of over-communication in the board.

3.3.1 Example: Google's Pagerank algorithm

When searching for a term in google the results are returned sorted by their so-

called Pagerank. The Pagerank attempts to estimate how important or relevant

each page is to the search term provided. The method used in ranking the pages

is often coined as The Democracy Of The Web. This method ranks a page by

the number of other pages that link to it, and the pagerank of those other pages.

More formally the Pagerank is calculated as follows:

PR(A) = (1− d) + d

N∑
i=1

PR(Ti)/C(Ti),

where N is the number of pages, T1, ..., TN pointing to A, d ∈ [0, 1] is a damping

factor (usually set to 0.85), C(T) is the number of links going out from page

T. For further explanation see the article by Sergey Brin and Lawrence Page

introducing Google [5]. This algorithm is straightforward, and does not use any

user pro�les.

3.3.2 Example: K-Nearest Neighbours

The "standard" implementation is a k-nearest neighbours approach, so if we

want to make a recommendation for a speci�c user, we �rst �nd his neigh-

bours, those that have agreed with the user in the past, and then see what the

neighbours think of the item in question. The KNN approach will be discussed

further in section 4.2 and in section 6.1.5.

November 11, 2008 8 Simen Gan Schweder

3.4 Hybrids 3 INTRODUCTION TO RECOMMENDER SYSTEMS

3.4 Hybrids

Very often the �nal recommendation system actually used by companies are

hybrids of Content Based and Collaboration Filtering systems. One often tries

to implement item-item similarities by inspecting both the known facts of the

item (genre, language, actors etc. for �lms) and the users' recommendations of

the item, see section 6.3 for an example. User-user similarities are on the other

hand most often based solely on their recommendations.

3.4.1 Example: Dirichlet estimation in eSmak

A Norwegian movie portal, eSmak.no, was created by Øystein Michael Gutu

and the author. The users are here asked to give ratings to di�erent movies and

then a "guestimate" of their opinions on other movies are calculated.

We keep a lot of information about each movie, including title, original ti-

tle, actors, director, language, country of origin. We also classify each movie

in one or more genres, e.g. a movie can be classi�ed as action, drama or ac-

tion/drama. All information is automatically ripped from the homepages of

Oslo Kinomatografer. Sadly our cooperation with Oslo Kinomatografer has

come to an end, and our automatic ripper is now blocked from their site. While

the cooperation was still on, we classi�ed 949 movies, there where 2000 unique

users and 18900 ratings collected. We also automatically ripped the ratings of

critics in all major newspapers. One early idea was to match each user to news-

paper critics, and extrapolate the users ratings based on how well they matched

the di�erent critics. The advantage of this is that the critics have rated close

to all movies, giving a good basis for estimation. However this method is nicely

enveloped by the K-Neares Neighbours approach.

The algorithm we ended up using is a simple hybrid of a Collaboration �lter

and a Content based recommendation system that uses the genre of the movies

and user ratings as its only content. The pro�les of the users are the rating

distribution for di�erent genres. Ratings in this system is from 1 to 6, where 6

is best.

The idea is to see the choice of a rating as 6 rivaling events, corresponding to

each possible rating, described by a Dirichlet distribution. We approach this in a

Bayesian manner, letting the prior distribution be (X1, ..., X6) ∼ Dir(α1, ..., α6),

where Xi is the probability of giving the movie a rating i, and αi is the number

of ratings with the value i the movie has received. We update our distribu-

tion with information about how the user has rated movies in the genere in

the past. So the user has its own histogram, (γug
1 , ..., γug

6), where γug
i is the

number of ratings with the value i the user, u, has given in the genere g. To

November 11, 2008 9 Simen Gan Schweder

3 INTRODUCTION TO RECOMMENDER SYSTEMS 3.5 Blending di�erent approaches

balance the distributions, we also weight them to match importance down to

their variances, giving a posteriori distribution of (X∗
1 , ..., X∗

6) ∼ Dir(β), where

βi = wααi

σ2
α

∑
ru•+ wγγi

σ2
ug

∑
r•m, and

∑
ru• is the number of ratings given by the

user, and
∑

r•m is the number of ratings received by the movie. The wα and

wγ , are used to controle how much one relies on the users rating history vs. the

movies rating history. Currently they are both set to 1.

We predict the rating r̂um, for user, u, and movie, m, of genere g as the expec-

tation of X∗. The expectation of Xi when X ∼ Dir(β) is simply E(Xi) = βi∑
j βj

.

So our r̂um =
∑6

i=1 i βi∑6
j=1 βj

. In the �nal implementation this guestimates

turned out to be overly conservative. A recommender system that gives very

conservative recommendations feels irrelevant by the user. We sincerly be-

lieve that strong opinions, eaven when not to well founded, are more inter-

resting to the user than more well founded weak opinions, or plainly stated,

its better to have an opinion than not have anything to say. We �xed this

by streching our guestimates with a sigmoid function, putting more weight

in the ends of the scale. The guestimates presented to the user was actu-

ally r̂∗um = C0 + C1
1+e−C2(r̂um−3.5) , where the constants, C0, C1, C2 where chosen

by hand. This gives fairly radical guestimates, while still seperating between

movies we think the user will like or dislike.

3.5 Blending di�erent approaches

Finally the most e�cient systems often come from blending di�erent soulutions

to the problem. As an example, the long time leader of the Net�ix Prize com-

petition (introduced in section 6.1) blended a full 107 di�erent systems to reach

their annual progress prize winning score. What seems to be the mainstream

approach here is to use a linear regression on the predictions of the di�erent

soulutions using the target ratings as the response. They further emphesize

that diversity in the di�erent soulutions seems more important than re�ning a

single soulution.

Another approach not much used in this �eld is Bagging and Boosting.

Bagging would, in this context, work by creating an ensamble of predictors

by retraining our recommender system on resamples of the original dataset,

then a voting scheme is implemented where each of the trained predictors has

one vote each. Studies on Bagging [4] suggest that they can be usefull if the

learning algorithm is unstable, whitch is not the case for most of the algorithms

presented in this thesis. A problem with this method is the resampling, it is

shown in section 8 that resampling from datasets on the form used in this thesis

is not as easy as one would think.

November 11, 2008 10 Simen Gan Schweder

3.6 Model based approaches 3 INTRODUCTION TO RECOMMENDER SYSTEMS

Boosting consist of methods to create strong prediction rules based on a com-

bination of weak/inaccurate/rough prediction rules, or plainly phrased, combine

several rules of tumb to a strong prediction rule [14]. The best known algorithm

for Boosting is AdaBoost for classi�cation problems and AdaBoostR for regres-

sion problems. Further resources on Boosting can be found on

http://www.boosting.org/

3.6 Model based approaches

In a model based approach we attempt to �t a statistical model to the data and

use the model to predict recommendations. The clear advantage of this way of

doing things is that we get a lot of free theory from the �eld of statistics, like

variance analysis, con�dence intervals and hypothesis testing. Also, creating a

statistical model gives a rationale for the result, we can understand the model

and results with a statistical foundation. The example given in section 3.4.1 is

clearly model based, this can be extended using standard statistical theory to

predict the joint rating of two or more users on a given �lm simply by creating

a joint distribution from the individual users and using its expected value as

a prediction. Or, more elaborately, we can search for the �lm that has the

largest 5% quantile for the users, thereby "ensuring" that the experience will

be positive for all. Other typical implementations are logistic regression where

qualities of items are treated as categorical data and linear regression. We will

also take a look at a certain logarithmic model in section 7.2.

3.7 Heuristic approaches

In a Heuristic approach we do not create an explicit statistical model for the

data, but rather attempt to create a simpli�ed representation that to a largest

possible extent gives a predictive ability.

Typically this approach consists of de�ning

• some parameterized prediction function: PREDICT (User u, Item i; θ)

• an error function: ERROR(θ), witch is often de�ned as the sum of

the squared prediction error, ERROR(θ) =
∑

u

∑
i(PREDICT (u, i; θ)−

rui)2 where rui is known.

Then �nd some mimimization algorithm that can minimize the error function

and thereby �nding θ̂ = argminθ. The prediction will then yield a single number

for a given user and item with θ̂. This approach does not directly give us any

statistic on the prediction, we will need to use external techniques to �nd the

November 11, 2008 11 Simen Gan Schweder

3 INTRODUCTION TO RECOMMENDER SYSTEMS 3.7 Heuristic approaches

variance of the prediction. We will later introduce the Factorial Decomposition

(often a SVD) as an example on heuristical approaches (section 4.1.5). We will

also look into some bootstrapping techniques to aggregate statistics from the

results (section 8).

November 11, 2008 12 Simen Gan Schweder

4 IMPLEMENTATIONS OF RECOMENDER SYSTEMS

4 Implementations of Recomender Systems

In this section an overview of the standard implementations of recommender

systems is introduced. There is a supprisingly diverse �ora of implementations,

with very di�erent approaches. Some are based on traditional statistical mod-

els, others are very inventive in their assumptions. We will present the most

common implementations including Matrix Factorization by Singular Value De-

composition, K-Nearest Neighbours and Restricted Boltzman machine. Typical

implementations not presented here include Clustering, Neural Nets and more.

Another important part of the implementation is selecting the data to work

with. One normal way of organizing the data is to have a user-item matrix with

some sort of score in each cell, but the origin of this information can be diverse.

In the Net�ix dataset we typically use the rating of each movie as the cell-

value, Amazon.com on the other hand could use a value of 1 if the user bought

the book, and 0 otherwise. Google represent their data as a graph where the

individual internet pages are nodes and the hyperlinks are the edges connecting

those nodes.

The evaluation of the recommender system also deserves some attention.

We usually evaluate a recommender system by splitting the data in two parts,

a training set and a probe set. We then train our system on the training set,

and evaluate it on our probe set. In the Net�ix Prize competition, the measure

to use is de�ned in the rules as Root Mean Squared Error (rmse), where the

error is the di�erence between the predicted rating and the actual rating. iRead

has a di�erent measure of quality. Although their algorithms are not public,

they have reviled some details. Their measure of quality is based on wheter

a user "takes positive actions on recommendations", meaning that the user

clicks on a suggested book and thereby con�rming at least a super�cial interrest

in the recommended book. This decoupling introduces another challenge in

the learning algorithm, as the error function is not directly a function of the

parameters itself, but rather a secondary e�ect.

November 11, 2008 13 Simen Gan Schweder

4 IMPLEMENTATIONS OF RECOMENDER SYSTEMS4.1 Singular Value Decomposition

4.1 Singular Value Decomposition

We will look into how Singular Value Decomposition (SVD) can be used as

a heuristic implementation of a recommender system, often as a collaboration

�lter. We include the needed theorem from linear algebra and discuss how it

can be used in this context.

4.1.1 Theorem

For the real case the Singular Value Decomposition(SVD) Theorem [19] ensures

that we can decompose a real m ∗ n matrix A as follows:

A = UΣV t

Here

• U is a m×m orthonormal matrix

• Σ is diagonal m×n matrix with the singular values of A on the diagonal.

• V is a n× n orthonormal matrix

A singular value is de�ned as any real non-negative σ such that there exists

unitvectors ū ∈ <m and v̄ ∈ <n and Av̄ = σū and Atū = σv̄.

4.1.2 Approximating matrices

An interesting application of SVD is in approximating the matrix A by a matrix

Ã such that rank(Ã) = r < rank(A). We can de�ne such an approximation

by minimizing the Frobenius norm ||B||2F =
∑m

1

∑n
1 |bij | where B = A − Ã

restricted to rank(Ã) = r where r is given.

It turns out that the optimal solution for this problem is given by the SVD

of A as follows:

Ã = U Σ̃V t

where U and V is as before and Σ̃ is the same as Σ above except that only the

r largest σ's are retained, the rest is set to zero.

4.1.3 Missing values

The theory above breaks down when the matrix in question has missing values.

In our application of SVD we work with matrices where most of the entries

are missing, for example the unusually rich (in this context) Net�ix dataset has

about 99% missing values. So we need an algorithm to deal with such sparse, in

the meaning of incomplete, matrices. One standard way of dealing with missing

November 11, 2008 14 Simen Gan Schweder

4.1 Singular Value Decomposition4 IMPLEMENTATIONS OF RECOMENDER SYSTEMS

values is by imputation, e.g let the missing values be the row-means or column-

means and then apply the theory above. This can be useful when the number

of missing values is relatively small, but makes no sense with the sparsity we

are to work with.

Let us rephrase the problem as trying to estimate a matrix A with the

product of two matrices U∗, V ∗ such that A ≈ U∗V ∗ and rank(U∗V ∗) <

rank(A). Using the Frobenius norm as a measure we want to minimize ||A −
U∗V ∗||F restricted to rank(U∗V ∗) = r.

Note that we can use the theory above even when using only two matri-

ces to estimate A by writing U∗ = U
√

Σ and V ∗ =
√

ΣV t, giving U∗V ∗ =

(U
√

Σ)(
√

ΣV t) = UΣV t. Here U∗ is an r × m matrix and V ∗ is an n × r

matrix.

4.1.4 EM approach

Presented here is a sketch of an iterative algorithm for a Expectation Maxima-

tion (EM) approach to �nding the decomposition.

Start by �xing U∗ to some value Û , we then estimate V ∗ by the V̂ that

minimize ||A− Û V̂ || this can be found by setting

V̂ t = (Û tÛ)−1Û tA (1)

then estimate Û by minimizing with respect to Û , and viewing V̂ as �xed.

Û = AV̂ (V̂ tV̂)−1. (2)

Repeat (1) and (2) until convergence.

For a discussion of this algorithm see [11], or [2, (page 99)]. Althoug not

apparent, this method requiers imputations on the matrices to perform the

calculations above, speci�cally this is necessary in the matrix inversions. In the

method described by Roweis [11], maximum likelihood estimation is used for

imputations, but these imputations cause serious problems when the sparsity is

as high as in our problem domain.

4.1.5 Gradient descent approach

The idea behind gradient decent is to create an error function e(A,U, V) that

takes the matrices A, U , V as its parameters and returns the error A − UV

as its value. Then we attempt to minimize the square of the error function by

following the gradient of the error function with respect to U and V . We �nd

the partial derivates of e2 with respect to U and V and use the result to correct

November 11, 2008 15 Simen Gan Schweder

4 IMPLEMENTATIONS OF RECOMENDER SYSTEMS4.1 Singular Value Decomposition

our estimates of U and V . More precisely: Let the estimate (or prediction) be

P = UV , the error is then e = A− P , and the partial derivates

∂e2

∂U
= 2e

∂e

∂U
= −2e

∂P

∂U
, (3)

∂e2

∂V
= 2e

∂e

∂V
= −2e

∂P

∂V
. (4)

We then update our U and V by moving them down the slope given by the

partial derivates. Note that gradient decent is only guaranteed to work when the

error function is convex and su�ciantly smooth, we can see that each gradient

is linear, thereby staisfying this criterion.

A speci�c implementation of this method is presented in sections 6.2 and

7.1.

November 11, 2008 16 Simen Gan Schweder

4.2 K-Nearest Neighbours 4 IMPLEMENTATIONS OF RECOMENDER SYSTEMS

4.2 K-Nearest Neighbours

The most common implementation of a Recommender System is by a K-Nearest

Neighbours algorithm. In the early days the dominating method used user-user

similarities to estimate a users liking of an item. Given a similarity measure sij ,

denoting the similarities between user i and j, an estimate of user i's rating of

item v could be calculated as

r̂iv =

∑
j∈M(v) sijrjv∑

j∈M(v) sij
, (5)

where M(v) is the set of users to previously rate item v.

This looks very intuitive, but one piece of the puzzle is missing, namely the

similarity measure sij . How do we measure the similarities of two users by the

available information. If we are working with a movie recommender system, the

information we have on a user could be restricted to the previous ratings of this

user. So the similarities between two users is down to the similarities between

two vectors of ratings. This vectors probably have lots of missing values, that

is movies not yet rated by the users. The most common way of measuring

similarity between users is the Pearson correlation on the common support of

the users, that is the tendency for users to rate items similary, and is expressed

as

sij = ρ̂ij =
∑

v∈V rivrjv − nr̄ir̄j√
n
∑

v∈V r2
iv − (

∑
v∈V riv)2

√
n
∑

v∈V r2
jv − (

∑
v∈V rjv)2

,

where V is the set of items rated by both i and j, and n = |V |.
The algorithm name, K-Nearest Neighbours, suggest that we should not take

all other users into account, but only look at the K nearest ones as measured by

sij . We arrange this by introducing MK
i (v), the K-nearest neighbours to user i

with known ratings for v. And substituting M(v) with MK
i (v) in equation 5.

Later on item-item similarities became popular. In this version we estimate

the rating rik by looking at how user i rated items similar to item k. So the

similarity measure is between items instead of users. skl denotes the similarity

between items k and l and is computed in the same way as above except the

sums are over users that have rated both items. Item-item similarities play

a large role in online shopping, where the site whishes to recommend items

to users based on what they have already bought or placed in their shopping

basket. E.g. we would like to recommend a hammer to a customer who has

bought nails. If previous users who has bought nails also bought hammers the

similarity between nails and hammers would be high, and thereby giving us the

information needed to make the recommendation. And since the similarities

November 11, 2008 17 Simen Gan Schweder

4 IMPLEMENTATIONS OF RECOMENDER SYSTEMS 4.2 K-Nearest Neighbours

are symmetric, a recommendation to buy nails when buying a hammer is also

feasable.

There are some fundamental problem with using KNN as a predictor in the

domain of movie ratings. It is very hard to predict that a user would give a rating

of 1 to a speci�c movie. This is because the neighbours of the user probably

has not seen the movie, they know its bad, so the closest neighbours of the user

that have seen the movie is probably far away. And in an item-item settings,

the user has probably not seen any movies like the one in question. Another

problem stems from the fact that the KNN method is basicaly a weighted mean,

the prediction always ends up somewhere in the center of gravity between you

neighbours ratings, making the method conservative.

There are many ways to improve the accuracy of the K-Nearest Neighbours

method, including shrinking of similarities based on the size of the common

support, combining item-item similarities with user-user similarities and others.

Koren and Bell discusses a model approach to Neighbourhood predicting in [1],

this is presented closer in section 6.1.5.

November 11, 2008 18 Simen Gan Schweder

4.3 Restricted Boltzmann Machine4 IMPLEMENTATIONS OF RECOMENDER SYSTEMS

4.3 Restricted Boltzmann Machine

A Restricted Boltzmann Machine is a stochastic neural net consiting of two

layers, hidden nodes and visible nodes, see �gure 2. There are symmetric con-

nections between every pair of hidden and visible nodes, but not between hidden

and hidden or visible and visible nodes. The state of each node is stocastic and

depends on its weighted input, that is the sum of all connected nodes multiplied

by the connection weights.

The basic task of a RBM can be seen as learning the distribution of a set of

input patterns. This is done by a learning algorithm called Contrastive Diver-

gence Learning whitch is a variant of the gradient ascent method.

So, let our network consist of visible nodes V1, ..., Vn, and hidden nodes

H1, ...,Hm, these are connected by a symmetric matrix of weights W = {wij}
connecting visible node i to hidden node j. Our training set consist of a set

{tk}, binary vectors of length n.

The input, zi to a visible node Vi is calculated as the weighted sum of

the hidden nodes, zi = bi +
∑m

j=1 wijHj where bi is the bias of the node. The

activation si of a visible node Vi is stocastic with probability p(si = 1) = 1
1+e−zi

For the hidden nodes, the values are calculated in the same manner.

Reconstructing a pattern is done as follows:

1. Set the values of the input nodes to ti.

2. Calculate the values of each hidden node j.

3. Calculate the values of each visible node i.

4. Repeat steps 2 and 3 a number of times.

After these steps, the values of the output nodes are called a reconstruction.

To train a RBM, we do the following for each tk:

1. Set the values of the input nodes to ti.

2. Calculate the values of each hidden node j.

3. Let S1 consist of values s1
ij = sisj .

4. Do a reconstruction as outlined above.

5. Let Sn be calculated as in step 3, but with the reconstructed state.

6. Calculate the Contrastive Divergence (CD) as Sn−S1. This is an approx-

imation to the gradient.

November 11, 2008 19 Simen Gan Schweder

4 IMPLEMENTATIONS OF RECOMENDER SYSTEMS4.3 Restricted Boltzmann Machine

7. Update the weights, wnew
ij = wold

ij + αCDij , where α is the learning rate.

The presented RBM has only binary nodes. We will see how this can be

used to model ratings later on in section 6.4, but for now lets look at a simpler

task namely to model whitch movies are seen by each user. We could model

this using an RBM by letting each visible node represent a movie, and adding

a suitable number of hidden nodes, preferrably much lover than the number of

visible nodes. We then train the RBM as outlined above. To make predictions

as to whitch movies a new user would want to see, we set the values of the input

nodes for the movies we know the user has seen, and do a reconstrucion.

November 11, 2008 20 Simen Gan Schweder

5 NETFLIX PRIZE

5 Net�ix Prize

5.1 Presentation

The Net�ix Prize was launched in 2007 on "http://www.netflixprize.com/".

Its goal is to increase the prediction strength of its own movie recommendation

system Cinematch. They boast a one million $US award to the �rst team who

increases on the accuracy of their own system by 10%.

The Net�ix Prize seeks to substantially improve the accuracy of

predictions about how much someone is going to love a movie based

on their movie preferences.

Net�ix has released a free (requires registration) dataset consisting of 100

million dated ratings collected in their system over the past 3 years, and the

titles for all movies rated. And a qualifying set without ratings, an entry to the

contest is made up of predictions for this quali�ing set.

A rating in the dataset consists of:

• movie-id, identifying a single movie.

• rating, that is a number from 1 to 5 where 5 is best.

• user-id, identifying a single user.

• date, the date of the rating.

An item in the qualifying set consists of the same items except of course the

rating.

The competition has been a huge success, several teams are competing for

the prize. The teams consist of researchers, students, freelance phsycologists,

engineers in garages, and others. One of the reasons for the success is that Net�ix

mandates that every winning algorithm must be published in full, including a

paper that explains the reasoning behind the algorithm. This has lead to several

well written articles and web-pages, see especially [2], [17].

5.2 Wrong question?

Are Net�ix asking the wrong question? The Net�ix competition has released a

training set of 100M ratings, and asks the competitors to predict a quali�ng set

of about 10K users. The naive approach would be to build a model re�ecting

how well each user likes each movie, and using this to predict the quali�ing

set directly. But we would then miss one important implicit information bit,

November 11, 2008 21 Simen Gan Schweder

5 NETFLIX PRIZE 5.2 Wrong question?

Figure 1: Image from the Net�ix Prize

namely the ratings in the quali�ing set is actual ratings, meaning the persons

who rated them actually choose to watch that movie. On the other hand, the

competitors only work with ratings that are actually made, and the problem

thereby naturally recti�es itself in terms of the competition, but the goal of the

competition is slightly skewed.

The Net�ix competition proposes to ask the question: How well would person

A like movie B? But rather asks the question: How well would person A like

movie B provided that he choose to watch it.

The question of most interrest would be: How well would person A like movie

B? This is the information that would allow us to suggest movies, compile top-

lists of unseen movies and provide the most usefull information to the users.

But this information is not easyli available from data sets only containing

ratings on volunteerly seen movies, at least when no extra data on the movies

are available. A better suited dataset for this study could consist of test subjects

set to watch random movies and then rating them, this would of course be much

more resource dependant than merely asking for ratings on movies volunteerly

seen. Other proposed methods of modelling this question would be to add more

data on the movies, and for instance create a regression scheme on the covariance

matrix of these extra pieces of data. On could image adding data like genere,

actor, publishing year, director etc., and use methods from multivariate statistics

to model the preferences of users with respect to the covariates. This would of

course still be conditioned on the user having seen the movie volenteerily, but

November 11, 2008 22 Simen Gan Schweder

5.2 Wrong question? 5 NETFLIX PRIZE

one might think that the information provided by the model would still be

valid down to some intercept for involunteerly seen movies. The latest entries

to the Net�ix Prize (not covered furteher in this thesis) have started to use

implicit information in their modelling, the favourite simply beeing a boolean

user times movie matrix containing 1's where the user have rated the movie and

0's otherwhise, then modelling their data conditioned on this matrix.

November 11, 2008 23 Simen Gan Schweder

6 A LOOK AT THE ENTRIES TO THE NETFLIX PRIZE

6 A look at the entries to the Net�ix Prize

The Net�ix Prize continously maintains a leaderboard for the competition. Here

the names of the leading teams are presented as well as their best achivements

in terms of rmse. The leaderboard can be found on

http://www.net�ixprize.com//leaderboard. As mentioned, the main prize is

one million dollars to the team that �rst breaks the 10% improvement barrier

on Net�ix's own Cinematch recommender system. There are also an annual

progres prize, �fty thousand dollars are given to the team that has the best

score each year. So far two progress prizes have been awarded, the �st one

won by a team named KorBell, their e�ort will be introduced in section 6.1.

The second progress prize was awarded BellKor (the same participants as Kor-

Bell) in collaboration with BigChaos. The rules of the Net�ix Prize states that

each progress prize winner as well as the grand prize winner have to publish

their work, giving students, like myself, and researchers an exelent source of

information.

Several of the non-winning teams also publish their methods in more or less

formal ways. An early leader on the leader board, Simon Funk, described an

SVD approach outlined in section 6.2. The team Gravity has held a top-10

position for a year or so, their approach is also a SVD like approach, but they

add some static elements to their analysis. Some of their speci�cs are presented

in section 6.3.

November 11, 2008 24 Simen Gan Schweder

6.1 Korbell 6 A LOOK AT THE ENTRIES TO THE NETFLIX PRIZE

6.1 Korbell

6.1.1 The team

The Korbell/Bellkor team have three primary contributors, Yehuda Koren, Bob

Bell and Chris Volinsky, all from AT&T research. They have been active in

the competition from the very start and has an impressive suite of algorithms

at hand. They are also among the few that publish their work with serious

foundation in statistics. Currently they are at the very top of the leaderboard,

and have won the two only progress prizes awarded, the last in collaboration

with a team named BigChaos.

6.1.2 Shrinking estimated parameters

Shrinkage is viewed as a continous alternative to parameter selection in the

methods used by the Korbell team. They view shrinkage as a result from the

Bayesian point of view where estimated parameters are viewed as data. The

shrunk parameter is then calculated as the posterior mean, a linear combination

of the prior and the estimated parameter. E.g. if we are to estimate a column

mean (movie mean), m̄0, we could see that as drawn from a prior distribution

with mean equal to the global mean of all movies, m̄total. This would give a

shrunk estimate of the movie mean

m̄shrunk = m̄0 +
var(m̄0)

var(m̄0) + 1
nvar(m̄total)

(m̄total − m̄0).

Also in their models shrinkage is applied on estimated parameters, the gen-

eral method is to estimate a parameter through normal machine learning, shrink

it towards zero, remove the predicted e�ect, and then go on to train the next

parameter on the resulting residuals.

6.1.3 Removal of global e�ects

They always remove the most obvious global e�ects from the data before trying

more sophisticated modelling later on. The global e�ects are modeled as bim =

b0 + bi + bm, where b0 is the average rating over all movies, bi is the o�set of

movie i, and bu is the o�set of user u. The values for bi and bu are a bit harder to

come by than one would think. The naive estimation of e.g. bi = 1
Ni

∑
v riv−b0,

where Ni is the number of ratings for movie i and riv is the rating of movie i

by user v where it exist, does not distinguish between e�ects from users and

movies. So we need a way to simultauosly solve bi and bu One way of solving

November 11, 2008 25 Simen Gan Schweder

6 A LOOK AT THE ENTRIES TO THE NETFLIX PRIZE 6.1 Korbell

this would be to minimize the following:

∗
min

b

∑
(i,u)∈K

(riu − b0 − bi − bu)2,

but this leads to over�tting and needs regularization. The Korbell team solves

this by instead minimizing the following:

∗
min

b

∑
(i,u)∈K

(riu − b0 − bi − bu)2 + λ1(
∑

u

b2
u +

∑
i

b2
i),

where the added terms penalize the magnitude of the parameters.

Also a regression on the ratings vs. the time stamps, to remove the time-

dependant e�ect is sometimes applied.

6.1.4 Neighbourhood based estimation - standard

First a little notation: i,j denotes movies, u, v denotes users, the set N(i;u)

denotes the set of movies that is rated by user u, and M(u; i) denotes the users

that have rated movie i.

As seen in section 4.2 the standard way of applying knn is a user based

neighbourhood estimation where you basically look at your neighbours and see

what they like. A neighbour is someone who has similar taste as yourself. If we

are to predict the rating of user u on movie i, rui, we �rst build the set M(v; i)

consisting of all users, v, that have rated movie i. Then let the prediction be

r̂ui =

∑
v∈M(v;i) suvrvi∑

v∈M(v;i) suv
,

whitch is simply a weighted mean of the neighbour's ratings. Of course we

need to have some similarity measure for this method to work. Of the methods

mentioned in the article is the Pearson correlation coe�cient or the Cosine

similarity.

Another option is a movie based neighbourhood estimation, where you look

at the movies your previously have rated and their similarity to the movie in

question. So we generate the set N(i;u) consisting of all movies, i, you, u, have

seen, then predict your rating for movie i, rui in the following manner:

r̂ui =

∑
j∈N(i;u) sijrui∑

j∈N(i;u) sij
,

that is, the weighted average of the movies you have rated where the weights

are the similarities to the movie in question.

Two problems were noted:

November 11, 2008 26 Simen Gan Schweder

6.1 Korbell 6 A LOOK AT THE ENTRIES TO THE NETFLIX PRIZE

• There is no real justi�cation for the similarity functions, the choice to use

e.g. a Cosine similarity function does not have any real-world or model

based foundation.

• There are no considerations of item-item correlations. They use the ex-

ample of the Lord of the Rings trilogy, the three �lms are probably very

equal in most similarity functions, and thus will count three times in any

prediction, where they should probably be regarded as just one rating.

6.1.5 Neighbourhood based estimation - Korbell

Instead of using a generic similarity function to weight the neighbours the Ko-

rbell team suggests a more model-like approach. We switch notation from sim-

ilarities, sij , to weights, wij to emphesize this. Instead of a predetermined

similarity function we now search for the set of weights that gives the best pre-

dictions. The following notation is used in the expression below: i is the movie

to be rated, U(i) is the set of all users who have rated i, N(i;u, v) is the set of

movies rated by both user u and user v. We solve the least squares problem:

min
w

∑
v∈U(i)

(
rvi −

∑
j∈N(i;u,v) wijrvj∑

v∈N(i;m,n) wij

)2

.

A problem with the expression above is that it does not consider how many

�lms the user v has seen, neither does it consider if the ratings of v is similar

to the ratings of u. The authors claim to remedy this by weighting user v with

ci =
(∑

j∈N(i;u,v) wij

)α

, with α = 2 we get the complete expression:

min
w

∑
v∈U(i)

ci

(
rvi −

∑
j∈N(i;u,v) wijrvj∑

v∈N(i;m,n) wij

)2

/
∑

v∈U(i)

ci.

When the weights are constrained to be non-negative, the equations are no

longer linear, and needs more complicated methods to solve. The Korbell team

uses a version of gradient projection [9] to �nd their weights.

6.1.6 Neighbourhood aware retraining of SVD

An interesting idea by Bell, Koren and Volinsky [2, pages 101-102], is to re-train

the local user features of our SVD once we know which movie-user rating we

want to predict.

Let us say we want to predict the rating for user u and movie m, rum, and we

have user features U and movie feature M , normaly this would give prediction

r̂um = UuM t
m. We can however utilize our knowledge of what prediction we

November 11, 2008 27 Simen Gan Schweder

6 A LOOK AT THE ENTRIES TO THE NETFLIX PRIZE 6.1 Korbell

are to make by re-traing the userfeatures to emphasize the neighbourhood of

the movie m. Lets assume we have a similarity measument sij giving a value

for the similarity of movies i and j. We could then re-train our userfeatures by

minimizing
∑

smj(ruj − U∗
uM t

j)
2
where the sums are over all j where the rating

ruj is known.

The re-training is done quickly given that we have the relevant similarities,

smj , and the actual ratings, ruj , available. We use the following algorithm to

�nd our neighbourhood aware userfeatures:

NeighbourhoodUserFactor(Ratings: rij , user u, movie m, moviefactors M)

% Initialize residuals.

for each rating rui

res ← rui

for l=1,. . .,f

pi
u[l]←

∑
sijresjMjl∑

sijMjl

for each rating ruj

res← resj − pi
u[l]Mjl

Note that the ratings are double centered(movie means and user o�sets are re-

moved), so the residuals are simply initialized by the ratings.

In the above, we assume a similarity function on movies, s(i, j) → < such

that similar movies get a high score, and diverse movies score low. The dis-

tancefunction used seems to be the inverse average sqared distance between the

ratings of the two movies, sij = |M(i;w)∩M(j;w)|∑
v∈M(i;w)∩M(j;w)

√
(rvi−rvj)2

. This is according

to a forum response from Mr. Koren on

http://www.net�ixprize.com//community/viewtopic.php?id=920.

Inverse average squared distance between ratings on the two movies'

common support (similar to what BellKor describes as an alternative

to Pearson in section 4.1 of "Improved Neighborhood-Based Collab-

orative Filtering")

We have however experimented with a more directly spatial arrangment of

movies and users in our "Metric Neighbourhood Predictor" implementation. It

would be interesting to use s(i, j) as the Euclidian distance in this arrangement

instead, thereby decoupling the distance between movies and the re-training of

user features.

November 11, 2008 28 Simen Gan Schweder

6.2 Simon Funk - Try this at home6 A LOOK AT THE ENTRIES TO THE NETFLIX PRIZE

6.2 Simon Funk - Try this at home

6.2.1 SVD-like implementation

Simon Funk [17] was early on in the competition high up on the leaderboard,

and has been very forthcoming with describing his e�orts on a personal blog.

Here he explains how he uses gradient descent to arrive at the f-rank SVD-like

approximation to the real rating set. In the many attempts to improve the

prediction accuracy of his algorithm he removes himself from the underlying

theory of SVD, but as long as the only goal is to increase prediction accuracy

on this speci�c set of data it should not matter.

The implementation uses a gradient descent approach, that he amazingly is

trying to protect with a patent. See section 4.1.5 for an introduction to the

gradient decent approach.

We repeat the partial derivates of the error function from section 4.1 here:

∂e2

∂U
= 2e

∂e

∂U
= −2e

∂P

∂U
, (6)

∂e2

∂V
= 2e

∂e

∂V
= −2e

∂P

∂V
. (7)

A feature is here de�ned as the contribution of the k'th singular vector

to the approximation. To train the �rst feature, that is the the rank 1 SVD

approximation, we attempt to minimize ||R−U1V
t
1 || where U1 and V t

1 are rank 1

matrixes(row and collum vectors), and R is the true ratings. So we use gradient

descent as follows:

• Initialize the U1 and V1 matrixes, in theory the choosen values does not

matter since the problem does not have any local minima. This can be

seen from observing that the partial derivates are all linear.

• Calculate the prediction-error, E = R− U1V
t
1 .

• Update U1 by setting U1 = U1 + δEV t
1 where δ is the learning rate, set

to some value including the 2 from the equation 6 above. Note that we

add the error, since we want to travel down the slope. The slope has a

negative sign as can be seen in equation 6.

• Update V1 by setting V t
1 = V t

1 + δEU1.

Repeat until convergence witch is guaranteed by the fact that only a global

minima exists.

We then repeat the following process to train the f − 1 next features, thereby

building Uf and Vf matrixes to approximate R with rank f .

November 11, 2008 29 Simen Gan Schweder

6 A LOOK AT THE ENTRIES TO THE NETFLIX PRIZE6.2 Simon Funk - Try this at home

• Initialize a new row vector U∗ and append this to the matrix Uf−1 and a

row vector V ∗ appended to Vf−1.

• Calculate the prediction error E = R− UfV t
f .

• Update U∗ by setting U∗ = U∗ + δEV ∗t.

• Update V ∗ by setting V ∗t = V ∗t + δEU∗.

By the fact that convergence to the global minimum is guaranteed the algorithm

does indeed produce the true SVD approximation of rank f to R, and thereby

the optimal soulution constrained to the form(linear combinations), rank and

measured by the Frobenius norm witch ignores missing values.

See the peronal blog of Simon Funk[17], entries "Net�ix Update: Try This at

Home" and "Net�ix SVD Derivation", where this approach is described partially

in c-syntax.

Several steps are taken to improve the prediction accuracy, they are pre-

sented next.

6.2.2 Shrinkage

The idea behind shrinkage is to impose a penalty on those parameters with

little suport in the data. This can be justi�ed from a Bayesian view, we can

understand the column means (movie average) as drawn from some underlying

prior distribution with a mean equal to the global mean, and calculate the

posterior distribution regarding the column mean as data. This would give an

expectation proportinal to the ratios of variance between the column mean and

the global mean.

The naive column mean for column i looks like this ā(i) = 1
Ri

∑
j aij , where

Ri is the number of rows containing data in column i, and a missing aij is

assumed to be 0 in the summation.

The expectation of the posteriori distribution is a blend of the column mean

and the global mean,

ā∗(i) =
ā

σ2
(i)

σ2
a

+
∑

j aij

σ2
(i)

σ2
a

+ Ri

where ā is the global mean, σ2
(i) is the variance in column i, and σ2

a is the total

variance.

While tuning the algorithm, Simon Funk reports that it turned out to be

a good approximation to �x
σ2
(i)

σ2
a

to the value 25, and thereby avoiding the

calculations of variances alltogether.

November 11, 2008 30 Simen Gan Schweder

6.3 Gravity R & D 6 A LOOK AT THE ENTRIES TO THE NETFLIX PRIZE

6.3 Gravity R & D

6.3.1 The team

The Gravity team comes from a team of Budapest University Phd's. They

run a company that specializes in recommender systems. They have generously

published the main pieces of their implementation in the article [16].

6.3.2 Matrix Factorization

Also the Gravity team has a strong belief in the use of Matrix Factoriza-

tion(MF), they use the basicly same form as Simon Funk's SVD approach.

They do however have some modi�cations that derserve some comment.

They introduce constant values into their movie feature matrix indicating

the existence of certain keywords in the movie titles. Speci�cally they mention

appending a constant column in the movie feature matrix where a 1 indicates the

word "season", indicating that the movie is infact a series, and 0 indicating the

lack of "season". This column is of course not a�ected by the learning algorithm,

so updates of the movie features is only applied to the columns precieding the

constant values, the update of the user feature matrix however does include the

movie constants.

Gravity also emphasize the importance of building several as distinct as

possible matrix factorizations as possible, and use a blend of these as the �nal

result. They achieve diversity by parameterizing the MF process, with param-

eters including:

• The number of features.

• Learning rate and regularization factors.

• Distributions for initialization.

• O�set of the rating matrix.

• Nonlinear functions applied to the output.

They do not discuss the e�ects these parameters have on the result. Should

it be suprising if the initialization of the matrixes has an e�ect? Not really,

if the matrix we were trying to factorize was complete the result should be

the same every time, the gradient descent algorithm does indeed produce the

unique SVD of the matrix. However our rating matrix is not complete, meaning

that factorizations are not unique, thus the predictions created by di�erent

factorizations could vary.

November 11, 2008 31 Simen Gan Schweder

6 A LOOK AT THE ENTRIES TO THE NETFLIX PRIZE 6.4 ML@UToronto

6.4 ML@UToronto

This team from the university of Toronto have focused on the use of Restricted

Boltzmann Machines in their entry to the competition. The team introduces

the notion of a "softmax" unit to represent the di�erent values a rating can

have, that is a vector of length 5, where each value represents the probability

that the user gives a rating of that magnitude. The most interresting aspect of

the teams e�orts is the way they handle missing data. If all users had seen all

movies, we would have a RBM with one "softmax" unit for each movie, and then

treating each user as a training case. The hidden nodes would then learn the

dependencies between the di�erent ratings. However, we have lots of missing

data, and the solution is to create a RBM for each user, where the visible nodes

correspond to the movies actually seen by that user, see �gure 2. So how then

can this machine learn from other users? The trick is to share the weights

among all the users, so if two users have a couple of movies in common (they

have both seen them), the weights between the hidden nodes and the visible

nodes corresponding to these movies are the same for the two users. This also

means that each RBM only has a single training case, but the weights still have

many.

Figure 2: Restricted Boltzmann Machine

The "softmax" units each have a distribution conditioned on the hidden

nodes, the team uses a conditional multinomial distribution given as:

p(vk
i = 1|h) =

exp(bk
i +

∑F
j=1 hjw

k
ij)∑K

l=1 exp(bl
i +
∑F

j=1 hjwl
ij)

, (8)

where vk
i is i'th component in the softmax unit corresponding to movie k, bk

i is

its bias, hj is a hidden node, and wl
ij is the weight between then i'th component

November 11, 2008 32 Simen Gan Schweder

6.4 ML@UToronto 6 A LOOK AT THE ENTRIES TO THE NETFLIX PRIZE

in the k'th softmaxunit and the hidden node. And a conditional Bernoulli

distribution for the hidden nodes:

p(hj = 1|V) = σ(bj +
m∑

i=1

K∑
k=1

vk
i wk

ij), (9)

where hj is a hidden node, V is the vector of visible nodes, bj is the bias of the

hidden node and σ is the logistic (or sigmoid) function, σ(x) = 1
1+e−x .

In the paper presenting their work, [12], they also discuss strategies to max-

imizing the likelihood function, and argue that it can not be computed in less

than exponential time, making it untractable. They also raise the possibility

of using Markov Chain Monte Carlo thechniques for estimation, but concludes

that they are to slow and their results vary to much. The authors then fall back

on the known technique of Contrastive Divergence, using Gibbs samples from

equations 8 and 9. This then has the form:

∆W k
ij = ε(< vk

i hj >data − < vk
i hj >T), (10)

where < · >T represents the sampled distribution initialized at data, running

for T steps.

A very interesting thought is brought forward when discussing Conditional

RMB's, here they touch upon the theme of inferring information from missing

data, and thereby indirectly on the issue of Net�ix asking the wrong question

as brie�y discussed in section 5.2.

The idea here is to subtract an amount w from each of the weights connecting

hidden units to the softmax units and adding w to the bias. Since the softmax

model is overparameterized, all �ve possible outcomes are modeled, this does

not have an e�ect of a trained machine as long as there are atleast one of

the weights between the hidden units and one of the softmax units present.

However it does have an e�ect if none of the connections to the softmax units

are present, meaning the rating is missing. This would produce an e�ect of −w

on the input to the hidden unit, thereby including information on missing data

in the learning.

The team also �nd a nice way to "cheat" when it comes to predict the

qualifying dataset provided by net�ix. For users in the qualifying set with more

than one rating they actually use the information about which other movies the

user have seen. Even if the ratings are unknwon, the fact that they have seen

these other movies provide usefull.

Finally the team describes how to use matrix-factorisation on the param-

eter matrix of the RBM to reduce the dimensionality of their optimalization

problems. This, they claim, leads to much faster convergence.

November 11, 2008 33 Simen Gan Schweder

7 MY IMPLEMENTATIONS

7 My implementations

I have implemented a few of the methods mentioned above, and two novell al-

gorithms to predict ratings in a user-move scenario. My SVD-implementation

is presented in section 7.1, and is a basic implementation of the ideas by Si-

mon Funk and others. The two novell algorithms are a rather naive Metric

Neighbourhood Predictor, and a more sophisticated Logaritmic modell.

Training models on data sets as large as the Net�ix data set is challenging.

The original data set consists of 17703 �les, one for each of the 17700 movies

with their ratings, one with the movie names, a probe set consisting of about 1.4

million ratings that are also included in the movie �les, and �nally the qualifying

set consisting of about 10 thousand movie-user pairs that are to be predicted as

an entry to the competition.

Most of my implementation is done in Java. Traditionally Java is seen

as a slow language in terms of running speed, however new virtual engines

that compile the code to machine language on the �y results in Java programs

running only about 20% slower than hand-crafted C-code.

Several preprosessing steps have been taken.

• It is essential to remove the ratings of the probe set from the training set,

not doing so will lead to unfounded optimism as I soon discovered.

• Reassign all movie id's, so they are a sequence from 0 to the number of

movies. This allows us to build matrices using movie id's as an index.

• Reassign all user id's, so they are a sequence from 0 to the number of

users. This allows us to build matrices using user id's as an index.

• Calculate and store all movie and user means, this greatly speeds up the

runtime.

• Compress the data, this reduces the time to read the ratings in the training

set from 10 minutes to 2 minutes.

The library written to do the preprosession and modelling is available on

request. It has a few main parts worth outlining.

• A File handler, capable of reading the training and probe set. Also able

to create histograms and cdf's of ratings for users and movies.

• A Rating Set, representing a set of ratings, can be sorted on either user

id or movie id.

November 11, 2008 34 Simen Gan Schweder

7 MY IMPLEMENTATIONS

• SVD, a representation of a Singular Value Decomposition, capable of se-

rializing/deserializing to/from �le.

• Metric Neighbourhood Predictor, capable of learning from a rating set.

• A vizualisation of the Metric Neighbourhood Predictor.

• Lots of functions to extract data from di�erent models and rating sets.

November 11, 2008 35 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.1 SVD: A Gradient descent implementation

7.1 SVD: A Gradient descent implementation

7.1.1 Implementation

I have implemented the basic gradient descent approach to estimate the true

rank f = 10 svd approximation of the rating matrix given by the NetFlix Prize.

This showed that the method is very computationally intensive, however after

optimization the method runs in time linear in the number of components. Even

then it still takes a couple of hours just to run through 200 epochs (training

passes) for each of 10 features.

The predictions made by the factorization are conservative, they tend to be

closer to the global mean than they should.

The result as messured by rmse is comaprable to the Cinematch system

implemented by Net�ix eaven without regularization.

The algorithm works as follows:

#Features is the rank of the approximation

#Users is the number of users

#Movies is the number of movies

ratings is a collection of Ratings on the form [rating, user, movie]

convergence is a condition to stop training the current feature,

it is true if number of epochs > 300 or sum(error) < 500

learningrate is a fixed number, here set to 0.001

svd() {

real[][] userFeatures = new real[#Features][#Users];

real[][] movieFeatures = new real[#Features][#Movies];

Initialize userFeatures and movieFeatures to random matrixes.

for(f in 1 to #Features) {

while(not convergence) {

for(Rating r in ratings) {

error = r.rating - predict(r.user, r.rating, f)

userFeature[f][r.user] += learningrate*error*movieFeature[f][r.movie]

movieFeature[f][r.movie] += learningrate*error*userFeature[f][r.user]

}

}

}

}

Where the key components are calculating the error and subtracting its in�uence

on the di�erent features.

November 11, 2008 36 Simen Gan Schweder

7.1 SVD: A Gradient descent implementation 7 MY IMPLEMENTATIONS

The predict function predicts ratings using #features �rst features and is

implemented as follows:

predict(user, movie, #features) {

pred=0;

for(i in 1 to #features) {

pred = pred + userFeature[user][i]*movieFeature[movie][i];

}

return pred;

}

This is simply a row in the userfeatures multiplied by a column in the transposed

moviefeatures.

I obtained a rmse = 0.8716 on the probe-set (N=1408395), prediction

mean = 3.656, var = 0.759. This unfortunatly turned out to be before the

probe set was subtracted from the training set, when this was done the rmse

climbed to 0.955, or about the same as the Cinematch score.

If we examine how the predictions are on di�erent true ratings, we get the

following results: In �gure 3 I have plotted normal-distributions with the means

True rating freq prediction mean prediction var prediction rmse

1 73211 2.697 0.580 1.860

2 136082 3.005 0.370 1.174

3 352436 3.362 0.284 0.645

4 462093 3.756 0.250 0.555

5 384573 4.216 0.270 0.940

Table 1: Results per Rating

and variances from table 1. In �gure 4 I have plotted the relative frequencies

of predictions for each real rating. The strange nearly vertical lines to the right

are due to the cuto�, ratings are restricted to be in the legal rating span from

1 to 5. The data are taken from the probe-set.

A plot of the residuals(true rating - predicted rating in the probeset) is shown

in �gure 5 and shows that this resembles a slightly skewed normal distribution.

When plotting rmse vs. features, we see that when no shrinkage is applied,

the prediction strength of the svd increases only up to 10 features, and declines

afterwards. The plot can be found in �gure 6. When shrinkage is applied Simon

Funk among others have shown prediction strength to increase well above 50

features.

November 11, 2008 37 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.1 SVD: A Gradient descent implementation

Figure 3: Prediction probabilities

Possible improvements include:

• Centering the ratings by subtracting the pr.movie mean.

• Introducing a non-linear learning function.

• Combining ratings with a apriori estimation of the rating, e.g. the global

mean, to reduce the e�ect of ratings in sparse movies and/or users.

7.1.2 Interpretation

So what is realy going on in theese attempts to reconstruct the matrix A from U

and V ? When A is complete the question is down to simple linear algebra, but

when we have lots of missing values one can and should ask what R∗
ij = U(i)×V t

(j)

actually is. An intuitive way of looking at it is that U(i) somehow identi�es

the weight that user i emphasizes on di�erent qualities in a movie, and V t
(j)

somehow encodes the qualities of movie j. We can run a little experiment

to check our intuition. By not centering the data we would expect the most

prominent qualities of the movie to occupy the �rst features of it. With any

luck we would be able to identify the meaning of the di�erent features belonging

to each movie. A speculative guess to the �rst few features would be overall

quality, a�nity to genre (amount of violence, romance, comedy...), nationality

(language). So let's give it a go:

November 11, 2008 38 Simen Gan Schweder

7.1 SVD: A Gradient descent implementation 7 MY IMPLEMENTATIONS

Figure 4: Prediction frequencies for di�erent ratings

I have implemented the Gradient descent SVD, presented in section 7.1, and

extracted the experimental data from the results.

A plot of the �rst movie feature vs. the average rating for a few randomly

chosen movies is very convincing, see plot 7. The �rst feature obviously encodes

the average rating. The top and bottom movies ranked by this feature can be

found in the appendix, 83. Note that the sign is arbitrarily, so in this speci�c

run it ended with negative scores for the highest ranked movies.

A strategy for understanding the di�erent features could be to look at movies

with the highest and lowest scores in the feature to see what is being discrimated.

I have listed the 30 top and 30 bottom movies by each feature and try to

understand what they encode. The listings can be found in appendix A.

• The top ranked movies occupy the lower end of feature 1, see �gure

24. Somewhat suprisingly this is dominated by series, not feature �lms.

Among the lowest rated �lms, most are totally unknown to mee, except

for Dune witch I personally found suprising to be this badly regarded.

The Dune movie in question turned out to be a speci�c collectors edition,

only rated 13 times, thereby being a little under determined.

• Movies with highest and lowest scores in feature 2 can be found in �g-

ure A. Is there a pattern here? Serious and quality movies dominate

the top(except Napoleon Dynamite?), more action oriented, faster moving

November 11, 2008 39 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.1 SVD: A Gradient descent implementation

Figure 5: Residuals in a simple 20-feature SVD

Figure 6: Predictionstrength by number of features.

November 11, 2008 40 Simen Gan Schweder

7.1 SVD: A Gradient descent implementation 7 MY IMPLEMENTATIONS

Figure 7: Average rating vs. Feature 1

movies dominate the bottom. Keep in mind that this table is independant

of the average rating of a movie as this is accounted for in the orthogonal

�rst feature, assuming that the �rst feature actually ecodes average rating

and the decomposition is actually a true SVD.

• In feature 3, �gure 26, we see that "feelgood" series dominate the bottom,

and more unpleasant movies occupy the top of the scale.

• In feature 4, �gure 27, we see that gay and sexually oriented movies occupy

the top, while more hetrosexual (macho) movies dominate the bottom.

• In feature 5, �gure 28, it is di�cult to �nd a real pattern, but the di�erence

between the top and bottom is very clear.

• In feature 6, �gure 29, The Twilight Zone dominates the upper end to-

gether with Dragon Ball, a action anime of the Japanese manga type.

Mystery oriented modern movies dominate the lower end.

• In feature 7, �gure 30, modern feelgood �lms dominate the top, and crime

and drama from the seventies dominate the bottom.

• In feature 8, �gure 31, teenage stu� dominate the top, while sci-� series

dominate the bottom.

• In feature 9, �gure 32, Dragon Ball again dominates the top, this time more

modern than before, while slightly dark movies dominate the bottom.

• In feature 10, �gure 33, horror movies obviously occupy the lower end of

the scale.

November 11, 2008 41 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.1 SVD: A Gradient descent implementation

Although the a�nity to the traditional generes is sometimes di�cult to spot,

we do recognize a lot of the qualities that come into play when separating movies

in the di�erent features.

7.1.3 Java implementation

The Singular Value Decomposition is represented by a class, SVD. The fea-

tures themself are two dimensional �oatingpoint arrays, the movie features have

rank×N dimensions, where N is the number of movies, the user features have

rank×M dimensions, where M is the number of users. Prediction is �rst done

by the method predict, seen below.

public �oat predict(int movieIndex, int userIndex, int rank) {

�oat result = estimateBaseline(movieIndex, userIndex);

for(int i=0; i < rank; i++) {

result+= userFeatures[i][userIndex]*movieFeatures[i][movieIndex];

}

return result;

}

The esimateBaseline(movieIndex, userIndex) calculates the baseline of the

prediction, e.g. the sum of the movie mean and the user o�set. The resulting

value is then clipped to the legal value.

The actual training is done in a seperate class, the training itself is done in

the method train, as can be seen below. The method is optimized by caching

the last results and errors, this makes the training time linear in the number of

features rather than quadratic.

November 11, 2008 42 Simen Gan Schweder

7.1 SVD: A Gradient descent implementation 7 MY IMPLEMENTATIONS

private static void train(SVD svd) {

double lastError = 0;

�oat[][] userFeatures = svd.getUserFeatures();

�oat[][] movieFeatures = svd.getMovieFeatures();

int mid[] = ratings.getMovieIds();

int uid[] = ratings.getUserIds();

byte[] ratingArray = ratings.getRatings();

lastPrediction = new �oat[ratings.getNofRatings()];

int nofRatings = ratings.getNofRatings();

�oat estimate = 0;

�oat error = 0;

double errorInLastFeature = Double.MAX_VALUE;

//initialize lastPrediction to baseline

for(int r=0; r < nofRatings; r++) {

lastPrediction[r]=svd.estimateBaseline(mid[r],uid[r]);

}

for(int feature=0; feature < svd.getNofFeatures(); feature++) {

//Check for stopping condition.

if(...) {

break;

}

...continued on next page...

November 11, 2008 43 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.1 SVD: A Gradient descent implementation

...continued

int epochs = 0;

for(int i=0;i < svd.getMaxEpochs(); i++) {

double totalError =0d;

�oat learningRate = i==0?svd.getLearningRateFirst():svd.getLearningRate();

for(int r=0; r < nofRatings; r++) {

estimate=lastPrediction[r] + userFeatures[feature][uid[r]]*movieFeatures[feature][mid[r]];

error = ratingArray[r]-estimate;

totalError +=Math.abs(error);

error = error*learningRate;

userFeatures[feature][uid[r]] += error*movieFeatures[feature][mid[r]];

movieFeatures[feature][mid[r]] += error*userFeatures[feature][uid[r]];

}

lastError=totalError;

epochs = i;

if(i > svd.getMinEpochs() && improvement < svd.getImprovmentLimit()) break;

}

//Update lastPrediction with the current prediction.

for(int r=0; r < nofRatings; r++) {

lastPrediction[r]=lastPrediction[r]

+ userFeatures[feature][uid[r]]*movieFeatures[feature][mid[r]];

}

errorInLastFeature = lastError;

}

}

November 11, 2008 44 Simen Gan Schweder

7.2 Logarithmic model 7 MY IMPLEMENTATIONS

7.2 Logarithmic model

7.2.1 Notation

We introduce the following notation:

• Users are denoted i,j

• Movies are denoted k,l

• Ratings, z, are discrete, z ∈ Z, eg. Z = {1, 2, 3, 4, 5}

• Ratings of user i on movie k are denoted xik.

• The set of movies rated by user i is denoted by Mi

• The set of movies rated by both user i and user j is denoted Sij = Mi∩Mj .

• The distance between two ratings is denoted D(x, z).

• The distance between two users is denoted dij .

• β(θ) is a regression function.

7.2.2 Model

We assume the following as a model for the ratings of a user i on a movie k

given user j who has seen k and her ratings:

pk
i|j(x) = P (Xik = x|{(xil, xjl); l ∈ Sij}, xjk) =

exp(β(D(x, xjk), dij))∑
z∈Z exp(β(D(z, xjk), dij))

(11)

So, the probability of user i giving the rating x to movie k given information

on user j is proportional to an exponential function of the distance between x

and user j's rating of movie k and the similarity of the two users.

Overall this gives the following probability of user i giving the rating x to

movie k.

pk
i (x) = P (Xik = x|{{(xil, xjl); l ∈ Sij}, xjk; j 6= i}) =

1
n− 1

∑
j 6=i

pk
i|j(x) (12)

7.2.3 Distance functions

Several choices are available for the distances lets list a few with pros and cons.

November 11, 2008 45 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.2 Logarithmic model

7.2.4 Box-Cox distance

Let the distance between ratings be the standard Box-Cox distance:

DBC(x, y)
def
=
|x− y|α − 1

α
(13)

This has the advantage of making the transformed distances more symmertric,

thereby ful�lling the normal requirements of most regression forms better. It

also allows us to move the weight of the rating distances to �t out model. It

does not take into account that di�erent users have di�erent ways of applying

ratings.

The standard form does not �t well with our data since it gives a negative

distance when the ratings are equal, we remedy this by modifying its form, to:

DBC(x, y)
def
=
|x− y|α

α
(14)

We can de�ne the distance between users as average Box-Cox distances:

dBC
ij

def
=

1
||Sij ||

∑
l∈Sij

|xil − xjl|α

α
(15)

7.2.5 Free parameter distance

We can also let the distances between ratings be free parameters in the model,

eg let α0, ..., α4 be real numbers restricted to α0 < α1 < ... < α4 and let the

distance between two ratings x, y be D(x, y) = α|x−y|

The distance between users can still be the average rating distance between

them, dij = 1
||Sij ||

∑
k∈Sij

α|xik−xjk|.

7.2.6 Regression form

Finally we must come up with at suitable regression function, it should re�ect

the relationship between a hyphothetical rating, x, and someone elses rating

together with the distance to this other user. We want β to be large when x is

close to xjk and the distance to user j is small. Perhaps something like this:

β(D(x, y), dij ; θ) = β0 + βDD(x, y) + βddij + βDdD(x, y)dij

Where θ consists of β0, βD, βd, βDd, α0, ..., α4. We still have not accounted for

the relative support of each user j, the number of movies that both i and j has

seen.

November 11, 2008 46 Simen Gan Schweder

7.2 Logarithmic model 7 MY IMPLEMENTATIONS

7.2.7 Is this a Generalized Linear Model?

We start by comparing our current model with the Exponential family of dis-

tributions. This will place some restrictions our regressionform. A probability

distribution is a member of the Exponential family of distributions if it can be

written in the following form:

f(y, θ) = exp(a(y)b(θ) + c(θ) + d(y))

or

log f(y, θ) = a(y)b(θ) + c(θ) + d(y)

First we show that our conditional distribution (11) is of the Exponential

family.

log(pk
i|j(x)) = β(D(x, xjk), dij)− log

∑
z∈Z

exp(β(D(z, xjk), dij))

The second term is not a function of x, so this is part of our c(β) function. The

�rst term written out with our suggested regresionform comes to:

β(D(x, xjk), dij) = β0 + βDD(x, xjk) + βddij + βDdD(x, xjk)dij (16)

= D(x, xjk)(βD + βDddij) + β0 + βddij (17)

Again the bits after the �rst term are not dependent on x, so we include them

in our c(β). The �rst term is on the form a(x)b(β), where a(x) = D(x, xjk)

and b(β) = β0 + βDddij . We conclude that (11) is on the Exponential form.

However, to be a GLM, we also need it to be canonical, a(x) = x, this is not

compatible with a sencible distancefunction. We conclude that our conditianal

probabilities is on exponential form, but not a GLM.

To check wheter our unconditional probabilities are on exponential form we

look at the expression:

log(pk
i (x)) = − log(n− 1) + log

∑
j 6=i

pk
i|j(x)

This is unfortunatly not on exponential form, but the good news is that it is

still concave.

7.2.8 Accounting for common support

At this point we have a regression form that weights each movie seen by another

user proportional to some function of the distance to this user. We do not

consider the number of movies seen by both the user in question and the owner

of a certain rating. One would think that we should put more weight into users

November 11, 2008 47 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.2 Logarithmic model

that are looking similar and has a large support for that assumption, that is dij

is small and ||Sij || is large, perhaps something like

pk
i (x) = P (Xik = x|{{(xil, xjl); l ∈ Sij}, xjk; j 6= i}) =

1
n− 1

∑
j 6=i

wj|i pk
i|j(x)

where wj|i = c+||Sij ||∑
j c+||Sij || and c is either a constant eg. 1, or a free variable.

7.2.9 Maximum Likelihood

We would like to �nd the optimal values of θ for the regression function. This

can be accomplished by Maximum Lilekihood Estimation (MLE) as shown in

the following.

We de�ne the Likelihood function as:

L(θ) =
n∏

i=1

∏
k∈Mi

pk
i (xik)

Our task is then to �nd the θ̂ that maximizes this function,

θ̂ = argmax
θ

L(θ),

and since argmax is insensitive to monotone transformations we go a bit further

with

θ̂ = argmax
θ

log(L(θ)) = argmax
θ

l(θ) = argmax
θ

n∑
i=1

∑
k∈Mi

log(pk
i (xik))

Since our model is not a GLM, and not strictly on the exponential form we

have to do a bit of work to �nd the MLE. Luckily this is a concave function

as can be seen from observing that the second derivates with respect to β is

negative de�nite. Although concave, the function is not smooth enough to apply

gradient ascent to �nd its maximum. Instead we take advantage of the Non-

Linear Minimization (nlm) method in R whitch uses a Newton-type algorithm

to minimize the supplied function. Unfortunatly the capabilities of R does not

extend to handling millions of ratings, so we are limited to test the method

on a smaller dataset. The dataset used in the following comes from eSmak as

introduced in section 3.4.1, and contains all users with more than 15 ratings

and all movies seen by these users. The set contains 318 users and 723 movies,

with at total of 11473 ratings. Even this modest amount of data takes a long

time to handle in the normally fast R-language. The reason being the large

amount of interdependencies present in the model. As an example, we take

closer look at the unconditional probability of a user i giving a rating x to a

November 11, 2008 48 Simen Gan Schweder

7.2 Logarithmic model 7 MY IMPLEMENTATIONS

movie k, pk
i (x), given in equation 12. We see that this depends on all other

users, and their distance to i, and their distance to i is based on all movies

they have in common, and all possible ratings. The selection of subsets makes

matrix notation di�cult to use in the di�erent calculations and thereby slows

down the algorithm considerably. My present R-script uses more than 48 hours

to handle the dataset above, while the presented SVD-CF in section 7.1 takes

about 7 hours on a dataset that is almost 9000 times as large.

The R-script can be found in appendix B.

November 11, 2008 49 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.3 Metric Neighbourhood Predictor

7.3 Metric Neighbourhood Predictor

7.3.1 Idea

A while ago I read a short blog post titled "Evolution and Wisdom of Crowds"

[6], this more or less serious post suggested an implementation for the Net�ix-

Prize, this has been expanded upon and the result is presented in this section.

The basic idea is to place movies and users in a common highdimensional

space, and attempt to arrange them in such a way that users who like a speci�c

movie is located near that movie, and users who dislikes a certain movie is

positioned some distance away from that movie. We hope this arrangement will

also put the users who would like a yet unrated movie close to it. And as a

secondary result we hope that users end up in a neighbourhood of similar users,

and movies end up in a neighbourhood of similar movies.

7.3.2 An implementation

When trying to implement a Metric Neighbourhood Predictor, we attempt to

arrange each user and item into a metrical space in such a way that the opinion

the user has of an item is re�ected in the distance between them. So, if a user

likes a certain item, he/she/it should be positioned close to that item, if the

item is disliked by the user there should be some distance between them. In the

following we speci�cally look at users and movies with their associated ratings.

The idea is to create a suitable dimensional space and insert a point for each

movie and each user. We then view the known ratings as constraints, speci�cally

a rating-tripple (u, m, r) by user u on movie m giving the rating r is viewed as

constraining the distance between the user u and the movie m to f(r) where f

is some positive function.

In this example we use

• An N ∈ [1, 350] dimensional Euclidian space.

• f(r) = K − r, where K > max(r) meaning that �lms a person like should

be close to that person, and disliked �lms should be further away.

• We initialize the movie-positions and user-positions to some random loca-

tion, eg. users are in−5×[u1, u2, ..., uN] and movies are in 5×[u1, u2, ..., uN],

where the ui is uniform on [0, 1].

Now we seek to arrange the movies and users in such a way that
∑
|d(ui,mi)−

f(ri)| is minimized. Our strategy to accomplish this is simply to iterate over

the known ratings, and adjust the positions of the user and the movie to more

closely match the actual rating. This is repeated until convergence.

November 11, 2008 50 Simen Gan Schweder

7.3 Metric Neighbourhood Predictor 7 MY IMPLEMENTATIONS

In �gure 8 we see an example with only 6 users (red dots) and 10 movies

(blue dots) arranged in a two dimensional Euclidian space, the known ratings

are pictured as edges between the user and the movie. Green edges have length

similar to the actual ratings, red edges indicate that the user and movie is too

close and �nally blue edges indicate that the distance between the user and movie

is grater than f(r) where r is the known rating. The snap-shot is taken after 30

iterations. In �gure 9 an equilibrium has been reached and all constraints are

satis�ed, this took about 100 iterations in this example, but this number varies

greatly.

Figure 8: Metric Neighbourhood Predictor - Pre equilibrium

We use the constellation to predict unknown ratings by taking r̂ij = f−1(d(ui,mj)),

so with our choise of f, the closer the movie is to the user, the better the user is

predicted to like the movie. In �gure 9 user 1(red dot, bottom left) is predicted

to like movie 3 (blue dot middle) somewhat, but to dislike movie 5(blue dot,

top) strongly.

November 11, 2008 51 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.3 Metric Neighbourhood Predictor

Figure 9: Metric Neighbourhood Predictor - Equilibrium

7.3.3 Algorithm

The training algorithm is straight forward:

#l - is a learning rate, eg. 0.1

#g - is the inverse of f

#d - is the distance function

#u - is the userposition vector.

#r - is the rating.

#m - is the movieposition vector.

While not converged

For each rating-tripple (u,r,m)

factor <- l*[r-g(d(u,m))]

u <- u + (m-u)*factor

m <- m + (u-m)*factor

end for each

end while

November 11, 2008 52 Simen Gan Schweder

7.3 Metric Neighbourhood Predictor 7 MY IMPLEMENTATIONS

There are a number choices to be made about the algorithm.

• How to initialize the positions of users and movies.

• The learning rate.

• The distance function, eg. Euclidian or City Block distance.

• The update order, random or predetermined. Also we could do a simul-

tanous update, acumulating the movements for all ratings and then update

the positions for each movie and user.

• The dimensionality.

• The convergence criteria. This is mostly set to a time-span in practice,

typically we iterate for about 5-20 hours and stops there.

7.3.4 Problems and Predictions

For a given set of known ratings it is not always possible to satisfy all constraints

in a low-dimensional space, this can always be overcome by increasing the di-

mensionality (but not necessarily with the learning algorithm above). This is

assuming there are no inconsistent ratings (eg. a user rates the same movie

twice, with di�erent ratings). This can be shown easily by considering the

following scenario:

1. Let the number of dimensions equal the number of movies.

2. Put all the movies, m1,m2, ...,mM in origo.

3. For each user, u, let its i'th dimension have the value f(ru,mi
) where ru,mi

is r if there exist a ratingtuple (u, mi, r) and 0 otherwise.

Of course this would lead to a totally uninteresting arrangement. A famous

slogan from the machine learning environment is that "compression equals un-

derstanding". Following this slogan, we try to reduce the number of dimensions

drastically.

Although it is obvious that there exists a, possibly not unique, global mini-

mum, the algorithm does not always converge towards this. There are a lot of

local minimas to get stuck in, typically situations like in �gure 10 where both

user 1 and 2 should be closer to movie 0 (in origo) but is held back by their

constraints to movies 1 and 8. When the local minima are not too deep the

algorithm is able to escape, this is illustrated in the rmse-plot, see 11. Here you

can see that two distinct local-minimas has been avoided.

November 11, 2008 53 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.3 Metric Neighbourhood Predictor

Figure 10: Metric Neighbourhood Predictor - Local Minima

So how do we predict the preference of user u for movie m, that is not in the

ratingset? The general idea is to just take the inverse of the f-function above

with the observed distance, d(u, m), as its parameter. ˆru,m = f−1(d(u, m)).

Ideally we want situations like in �gure 9, where user 5 and 2 (the two red

dots almost on top of each other, to the far left) are very similar users, they

both have rated movies 5 and 0 equally. However user two also has rated movie

8, and in this equlibrium state the distance to this movie determines user 2's

rating of movie 8. So a good estimate og user 5's rating of movie 8 is intuitively

given by the users distance to movie 8. But again there are problems, look at

movie 6 in the same �gure, its positions is restricted by only one constraint, a

rating by user 0, and this constraint is satis�ed on the full circle centered on

user 0. So in this layout user 2 rather dislikes movie 6, but that is completly

arbitrarily, since movie 6 also could be very close to user 2 while still satisfying

its only constraint. In general, every point with fewer constraints than there

are dimensions in the space can be placed anywhere on a hypersphere in N -

#constraints + 1 dimensions centered on the sum of constraints, see �g 12. So

November 11, 2008 54 Simen Gan Schweder

7.3 Metric Neighbourhood Predictor 7 MY IMPLEMENTATIONS

Figure 11: Metric Neighbourhood Predictor - RMSE by iteration. Two local

minimas

a point determined by a number of constraints equal to the dimensionality of

the space could be located in two dinstinct points, eg. user 2 (red, bottom) in

�gure 12 could occupy the position it holds in the �gure, but would also satisfy

its constraints in the position of movie 1.

We call this phenomenon underdetermined positions.

Another problem occure when the number of constraints is much larger than

the dimensionality, they can in general not all be satis�ed, and the e�ect for a

particular item is not very predictable. A look at the mean root squared error

of predictions on a rating set distinct from the training set in a 300 dimensional

space graphed vs. user support, the number of movies each user has seen tells an

interesting tale. First presented is a plot restricted to ratings made by users with

less than 500 ratings, this is shown in �gure 13. This looks as we would hope,

the more movies the user has seen, the better we can predict ratings, and hence

the error falls with the support. But when we see the full picture, including

November 11, 2008 55 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.3 Metric Neighbourhood Predictor

Figure 12: Movie 3(blue) is underdetermined

users that have rated more than 500 movies the problem with overdetrmined

positions shows it face, look at �gure 15. Here we see that the prediction errors

varies greatly and apparently randomly. The quantities involved is part of the

equation, the groups with large support is generally smaller than the ones with

small support, therby their mean varies more. There are a few distinct outliers

in �gure 15, all supported by 4000 movies or more, without investigating the

matter further, my guess is that there are some users that have entered a lot

of more or less random data, and the number of users in each of these groups

is small enough to make them outliers. This is supportet somewhat that the

groups of users with less than 500 movies support are very well behaving. Finally

we note that the points to the far right are all single users.

For completeness a histogram of usersupport is presented in �gure 14, where

the 3719 users who have seen more than 2000 movies are capped to 2000.

7.3.5 Metric Neighbourhood Predictor - Mixture

A natural soulution to the problem of underdetermined positions is to train a lot

of nets and use some kind of mean on these to predict new user-movie ratings.

This would eliminate the arbritrariness of their position, and falls well under

the idea of "The Wisdom of Crowds".

7.3.6 Results

I �nd that the prediction quality increases with the number of dimensions,

at least upto 50, see �gure ??. After that, training time becomes an issue,

more epochs are needed, and each takes longer to compute when the number

November 11, 2008 56 Simen Gan Schweder

7.3 Metric Neighbourhood Predictor 7 MY IMPLEMENTATIONS

Figure 13: Error by user support, users with less than 500 ratings

Figure 14: Histogram of usersupport, capped to 2000

November 11, 2008 57 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.3 Metric Neighbourhood Predictor

Figure 15: Error by user support, unrestricted

of dimensions increase. In a net of 300 dimensions, whitch is pretty much the

limit for my machine resources, the convergence is quite fast as can be seen in

�gure 17. After about 20 iterations we are close to the achieved minimum. In

�gure 17 the full net�ix-dataset is used, and as can be seen there are no signs

of the local minima apparent in �gure 11, this is assumed to be caused by the

share number of local minimas, and by the fact that the local minimas is local

also in the sense of only a�ecting a neighbourhood of users and movies.

With a dimensionality of 300, witch is the one plotted in �gure 17, we obtain

a training set rmse of 0.8312, and a probe set rmse of 0.95377 whitch is slightly

worse than the Net�ix Cinematch rmse of 0.9474. Due to time restraints I have

only trained the net in 91 epochs (this took 9 hours, or 6 minutes pr. epoch),

and due to memory restraints I had to limit the dimensionality to 300(requiering

about 150 million �oating point numbers to position movies and users).

The rmse plotted in �gure 17 is not the true trainingset rmse, rather it is

calculated after adjusting the positions of users and movies after each rating,

therby looking a bit better than the true trainingset rmse.

It is interresting to see how movies position themself relative to one another.

In �gure 18 I have plotted the positions of some selected movies projected down

on two arbitrarily chosen dimensions. We can see that the romantic movies,

encircled in pink, are lumped together in the horizontal dimension, but are cov-

ering the full length of the vertical dimension. The three thrillers(A Clockwork

Orange, 12 Monkeys, 9 1/2 Weeks) are gathered at the top. The three epic

November 11, 2008 58 Simen Gan Schweder

7.3 Metric Neighbourhood Predictor 7 MY IMPLEMENTATIONS

Figure 16: Rmse by dimension in MNP

Figure 17: Training an onp: rmse by epoch(from epoch 2)

November 11, 2008 59 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.3 Metric Neighbourhood Predictor

Chinese movies(The Last Emperor, Hero, Crouching Tiger Hidden Dragon) are

somewhat entangled with the thrillers(12 Monkeys, A Clockwork Orange, 9 1/2

Weeks), but are grouped nicely together. The two brown ellipsis enclose four of

the Star Wars movies, the ones in the bottom ellipsis are the new generation,

while the top brown ellipsis enclose the old generation. Also in the viscinity of

the top brown ellipsis we �nd all the Lord Of The Rings movies.

When solely plotting the distance to each of the same movies from a selected

one, in �gure 19, I selected The Lord of the Rings: Fellowship of the Ring, one

sees the ability to position at least very similar movies close together.

7.3.7 KNN in Metric Neighbourhood Predictor

When a metric space is available, a natural method to apply is the K-Nearest

Neighbours. This is relativly easy to implement in the framework of a MNP as

the distance function is a natural part of our model. I implemented a weighted

KNN, where the weights are a logit like function of the distance. So to predict

a single rating r̂im, for user i and movie m the algorithm works as follows.

1. Create the set M(m) of all users who have seen movie m.

2. Calculate the distance from user i to each of the users in M(m).

3. Create the set MK
i (m), consisting of the K users in M(m) closest to i

4. The prediction is then

r̂i,m

∑
j∈MK

i (m) rjmwij∑
j∈MK

i (m) wij

The actual form of the weights used was wij = 1 − 1
1+exp(−d(i,j)/2) . As can

be seen, this method does not need any aditional training when an MNP is

available. The time to make a prediction is quite high, in absolute terms it takes

about half a second on my computer, meaning that a pass through the probeset

of 1.5 million ratings takes more than 10 days. The limited amount of testing

I have done on this gives reason think it is not a very successfull approach,

the rmse reported on the �rst few thousand ratings point to about rmse=1

whitch is very bad. When running the algorithm, it is very clear that it �ts

some movies/users better than others. So I tested to see what happened when

only predicting ratings where the user had a close neighbourhood. I calculated

an rmse on only the cases where the user had relevant neightbours, this was

implemented as
∑

K wij >
∑

K 1 − 1
1+exp(−0.95/2) , that is the average weight

should be less than w∗, the weight of a user 0.95 away from our subject. The

November 11, 2008 60 Simen Gan Schweder

7.3 Metric Neighbourhood Predictor 7 MY IMPLEMENTATIONS

Figure 18: Positions of selected movies in an MNP

November 11, 2008 61 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.3 Metric Neighbourhood Predictor

Figure 19: Distance from Lord Of The Rings in MNP

November 11, 2008 62 Simen Gan Schweder

7.3 Metric Neighbourhood Predictor 7 MY IMPLEMENTATIONS

number 0.95 is chosen from studying some histograms of user-user distances,

e.g. �gure 20 and 21. The prediction frequency was only about slightly above

1 in 10, but the rmse on this selected set was impressive:

Dim Freq #Pred rmse - selected rmse - all cases

50 0.23 1200 0.883 0.953

300 0.11 650 0.895 0.954

(the table collums are the dimensions of the model, what proportion satis�ces

the criteria for prediction, number of predictions made, rmse of predictions

made, the total probe set rmse.)

The hightened frequency of predictions even when keeping the same condi-

tions (mean distance < 0.95) is due to distances expanding with the logarithm

of the dimensions. It is not given that this selection of ratings are the same as

other MNP's, but this is likely. Other predictors might have performance inde-

pentent of this selection, thus making this a valuable contributor to an ensamble

of predictors.

Figure 20: Histogram of distances to other users for arbritrary user

7.3.8 Java implementation

The model is represented by a class OrganicNeighbourhoodPredictor, an early

name on the method. The positions of the movies is represented as a two dimen-

sional array of size M × dim, where M is the number of movies, and dim is the

number of dimensions in the model. The positions of the users are represented

November 11, 2008 63 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.3 Metric Neighbourhood Predictor

Figure 21: Distances to the 1000 closest users

in an analogous way. The class further contains a metric, capable of calculating

the distance between two arbritrary points, and the function f(d), enforcing the

topology of the net. The training is done in simple passes, adjusting each pair

of movies and users encountered in a rating according to closer match f(d). The

method is given below:

November 11, 2008 64 Simen Gan Schweder

7.3 Metric Neighbourhood Predictor 7 MY IMPLEMENTATIONS

public double train(int[] movieIndexes, byte[] rating,

int[] userIndexes, int[] order) {

�oat targetDist =0;

double distance = 0;

double se = 0;

int index=0;

double fraction = 0;

�oat minRatingDistance = getMinRatingDistance();

for(int r=0; r < rating.length; r++) {

index = order!=null?order[r]:r;

targetDist = Rating.MAX-rating[index]+minRatingDistance;

distance = metric.dist(

moviePositions[movieIndexes[index]],

userPositions[userIndexes[index]]);

fraction = Math.min(maxFraction,

Math.max(-maxFraction, delta*(targetDist-distance)));

move(userPositions[userIndexes[index]],

moviePositions[movieIndexes[index]], fraction);

if(movieIndexes[index] > 0) {

move(moviePositions[movieIndexes[index]],

userPositions[userIndexes[index]], fraction);

}

double temp = targetDist - distance;

se+=temp*temp;

}

return Math.sqrt(se/rating.length);

}

The condition

if(movieIndexes[index] > 0)

is to ensure the net stays anchored in origo. This is acomplished by never moving

the very �rst movie.

As can be understood by the model, there are no way of cashing the results

for parts of the calculations, so linear time in the number of dimensions is ex-

pected in training of each pass. Also the number of passes needed increases with

the number of dimensions. The KNN in Metric Neighbourhood Predictor im-

plementation is done by a seperate class, KNNByONP. The prediction method

uses an OrganicNeighbourhoodPredictor as its metric.

November 11, 2008 65 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.4 Quantile inference

7.4 Quantile inference

Some example histograms of user ratings can be seen in �gure 22. From looking

Figure 22: Rating histograms for random users

at lots of histograms of user ratings I belive di�erent users put very di�erent

meaning to the ratings. Some prototypes are:

• A BIASED user takes the �lm for what it is, but since he has chosen to

see it, he probably likes it. The body of the ratings will be around 4, with

a small tail towards the lower ratings (Histograms 2,3 and 5 in the �rst

row).

• An UNBIASED user sees a �lm as a sample from the movies he has

chosen to see, meaning that he should get something like a normal around

3 (Histograms 2 and 3 in the last row).

• An EDUCATOR user tries to educate the algorithm, gives only 1's, "dont

like", 3's, "indi�erent" and 5's, "like" (Histogram 1 in �rst row, and 4 in

fourth row).

November 11, 2008 66 Simen Gan Schweder

7.4 Quantile inference 7 MY IMPLEMENTATIONS

• A POSITIVE user only give 4's and 5's (Histogram 4 and 5 in the third

row, and 3,4,5 in the last row).

• A NEGATIVE user rearly gives more than 3 (No good examples here, but

they do exist).

An idea to cope with the di�erent users is to not regard the given ratings as

absolutes, but rather see them as quantiles in the empirical rating distribution

of the user. If we model over theese quantiles instead of actual ratings we would

then interpet a prediction as a quantile in our target users empirical rating

distribution, and can compute the actual rating from this.

A rating a of some user u is to be taken as the quantile of a in fu. And

back, when a prediction is made, lets say we for user v gets the prediction p,

then the rating of that prediction is f−1
v (p).

7.4.1 Implementation in Metric Neighbourhood Predictor

I have implemented this regime in the Metric Neighbourhood Predictor setting.

The distancefunction then becomes d(u, m) = C − q(u, m), where C ≥ 1 is a

constant, and q(u, m) is the quantile of the rating given by user u on movie m

in the user's rating distribution. The results however was less than impressive.

November 11, 2008 67 Simen Gan Schweder

7 MY IMPLEMENTATIONS 7.5 Blending the results

7.5 Blending the results

Di�erent methods are suggested for blending the results of di�erent predictors.

The most common is linear regression.

The setting is based on n models, Γ1, ...,Γn predicting the same training

set, producing a data set of Γ1(i, j), ...,Γn(i, j), rij , where rij are the known

ratings. The procedure is then to run a linear regression where the rij is treated

as the response and the Γk(i, j) are the covariats. A blended predictions is

then r̂ij = 1∑n
i=1 αi

∑n
i=1 αiΓi, where αi are the coe�cients from the linear

regression. Another use of the same coe�cients is a voting scheme where each

model predicts a weighted vote, the rating with the highest voting weight wins.

I have run a simple linear regression scheme on the results of a SVD model and

a MNP model. The result was a modest improvement over the SVD predictions

that was the best two.

I have also implemented a basic perceptron with one hidden layer based

on backpropagation, where the inputs are the predicted values of the di�erent

models, and the movie and user support of each prediction. Unfortunately

the learning algorithm did not work, and time ran out as I was bug hunting.

Incidently I had the idea of expanding on the SVD with non-linear inferences

made by the perceptron using the decomposition of each user and movie as

input, due to the same problem as above, this was not completed.

Bagging and Boosting needs to be evaluated in this context, but this has

not been done.

November 11, 2008 68 Simen Gan Schweder

8 THE PIGEONHOLE BOOTSTRAP

8 The Pigeonhole Bootstrap

Bootstrapping is the process of resampling data to estimate statis-

tics.

This section is a resume of Art B. Owens article The Pigeonhole Bootstrap

[10], with some expansions and comparisons.

8.1 Notation

The row entities are i = 1, ..., R and the columns are j = 1, ..., C. The variable

Zij ∈ {0, 1} takes the value 1 if we have data for the (i,j) combination and

0 otherwise. The value Xij ∈ <d holds the observed data when Zij is 1 and

otherwise is missing. We will only work with d=1.

ni• is the number of datapoints in row i. ni• =
∑C

j=1 Zij

n•j is the number of datapoints in column j. n•j =
∑R

i=1 Zij

n•• =
∑R

i=1

∑C
j=1 Zij is the total samplesize.

This arrangement of a C × R matrix can also be represented by a N × 3

matrix, S, with row η = (Iη, Jη, Xη) for η ∈ 1, ..., N with Xη is the same as

XIηJη
from the previous notation.

We de�ne the ratios νA = 1
N

∑R
i=1 n2

i• and νB = 1
N

∑C
j=1 n2

•j . The value

νA is the expectation of ni• when i is sampled with probability proportional to

ni•. If two, not necessarily distinct, observations with the same i are called row

neighbors, then νA is the average number of row neighbors for observations in

the dataset. Similarly νB is the average number of column neighbors.

We also de�ne µ•j ≡ 1
N

∑
i Zijni• and µi• ≡ 1

N

∑
j Zijn•j . Here µ•j is the

probability that a randomly chosen data point has a row neighbour in column

j, and analogous for µi•.

8.2 Random E�ect Model

We consider the data to have been generated by a model in wich the pattern of

observations has been �xed. Does this exclude the importance of what data actu-

ally exists in the matrix? E.g. ignore the importance of a datapoints existance,

E.g. ignore the importance of a user actually seeing a �lm?.

For (i,j) where Zij = 1 we assume

Xij = µ + ai + bj + εij

Where µ is an unknown �xed value and ai and bj and εij are random.

November 11, 2008 69 Simen Gan Schweder

8 THE PIGEONHOLE BOOTSTRAP 8.3 Linear Statistics

Does this mean that every column and row must have the same mean? Ar-

ent our models more like ai ∼ N(µA(i), σ
2
A(i)), this will however not a�ect the

variance estimates below I think.

In classical random e�ects model its supposed that ai ∼ N(0, σ2
A), bi ∼

N(0, σ2
B) and εij ∼ N(0, σ2

E), all independently. Here we relax the model and

assume only ai ∼ (0, σ2
A), bi ∼ (0, σ2

B) and εij ∼ (0, σ2
E), where ai, bi, εij are

mutually independant. And refer to this model as the homogenous random

e�ects model.

8.3 Linear Statistics

We focus on a simple mean

µ̂x =
1
N

∑
i

∑
j

ZijXij =
1
N

N∑
η=1

Xη

The variance of this mean is (when we allow column and row speci�c variances

σ2
A(i), σ

2
B(j), σ

2
E(i,j)):

VRE(µ̂x) = V ar(
1
N

∑
i

∑
j

ZijX̂ij) (18)

=
1

N2
V ar(

∑
i

∑
j

ZijX̂ij) (19)

=
1

N2
V ar

∑
i

∑
j

Zij(µ + ai + bj + εij)

 (20)

=
1

N2
V ar

∑
i

∑
j

Zijµ + Zijai + Zijbj + Zijεij)

 (21)

=
1

N2

V ar(
∑

i

∑
j

Zijµ) + V ar(
∑

i

∑
j

Zijai) + V ar(
∑

i

∑
j

Zijbj) + V ar(
∑

i

∑
j

Zijεij)

(22)

=
1

N2

0 +
∑

i

V ar(ni•ai) +
∑

j

var(n•jbj) +
∑

i

V ar(
∑

j

Zijεij)

(23)

=
1

N2

∑
i

n2
i•σ

2
A(i) +

∑
j

n2
•jσ

2
B(j) +

∑
i

∑
j

Zijσ
2
E(i,j)

 (24)

Under det homogenous random e�ects model above, with homogenous variances(σ2
A, σ2

B , σ2
E),

November 11, 2008 70 Simen Gan Schweder

8.4 Bootstrap methods 8 THE PIGEONHOLE BOOTSTRAP

starting from eq. 23 above:

VHRE(µ̂x) =
1

N2

0 +
∑

i

V ar(ni•ai) +
∑

j

var(n•jbj) +
∑

i

V ar(
∑

j

Zijεij)

(25)

=
1

N2

∑
i

n2
i•V ar(ai) +

∑
j

n2
•jV ar(bj) +

∑
i

∑
j

V ar(Zijεij)

(26)

= νA
σ2

A

N
+ νB

σ2
B

N
+

σ2
E

N
(27)

(Remember: νA = 1
N

∑R
i=1 n2

i•).

So what is a good estimate of the pooled variance σ2
A? From the inhomoge-

nous case, (eq.24), we see that the variances is weighted by n2
i•. So if there is

a systematic di�erence between the variance of the frequently occuring items

and the rare occuring items care must be taken when estimating σ2
A. Using

a pooled estimate of σ2
A that weights entities equally would lead to an under-

/overestimate of the viance of µ̂x.

8.4 Bootstrap methods

8.4.1 Naive bootstrap

The usual bootstrap procedure resamples the data i.i.d. from the empirical

distribution. So S∗ would consist of N rows (I∗η , J∗
η , X∗

η) drawn independently

and uniformly from the N rows of S. So

µ̂x =
1
N

N∑
η=1

X∗
η

.

We use the U-statistic to estimate the variance of the Naive Bootstrap esti-

mate of the mean. We look at all pairs of samples, (Xl, Xl′), and view a function

of these, h(Xl, Xl′) = X2
l −XlXl′ as an unbiased estimates of the variance. But

the U-statistic requires that the kernel, h, is symmetric in its arguments, and

thus we produce the symmetric version of h as h′(Xl, Xl′) = 1
2h(Xl, Xl′) +

h(Xl′ , Xl). We get U =
(
n
2

)−1∑
i<j h′(Xi, Xj) = sx = 1

n−1

∑N
i=1(Xi − X̄)2

We then get

VRE(µ̂x) =
1

2N3

N∑
l=1

N∑
l′=1

(Xl −Xl′)2 (28)

=
1

2N3

∑
i

∑
j

∑
i′

∑
j′

ZijZi′j′(ai − ai′ + bj − bj′ + εij − εi′j′)2 (29)

November 11, 2008 71 Simen Gan Schweder

8 THE PIGEONHOLE BOOTSTRAP 8.4 Bootstrap methods

The author then shows that the expectation in the Random E�ects model of

the variance of the Naive Bootstrap estimate of the mean is (using the U-statistic

above):

ERE(VNB(µ̂x)) =
1

N2

∑
i

σ2
A(i)ni•

(
1− ni•

N

)
+

1
N2

∑
j

σ2
B(j)n•j

(
1− n•j

N

)
+

1
N2

∑
i

∑
j

Zijσ
2
E(i,j)

(30)

And under the homogenous random e�ects model(from eq. 30):

EHRE(VNB(µ̂x)) =
1

N2

∑
i

σ2
Ani•

(
1− ni•

N

)
+

1
N2

∑
j

σ2
Bn•j

(
1− n•j

N

)
+

1
N2

∑
i

∑
j

Zijσ
2
E

(31)

=
σ2

A

N2

(∑
i

ni• −
∑ n2

i•
N

)
+

σ2
B

N2

∑
j

n•j −
∑

j

n2
•j

N

+
σ2

E

N

(32)

=
σ2

A

N

(
1− νA

N

)
+

σ2
B

N

(
1− νB

N

)
+

σ2
E

N
(33)

If we compare the results of (33) with (27) we see that for situations where

νA << N the variance contribution due to the rows are underestimated by a

factor of almost νA, or precicely
νA

1− νA
N

. This may be substantial.

8.4.2 Pigeonhole bootstrap

The naive bootstrap fails because it ignores similarities between elements of the

same row and/or column. In the Pigeonhole bootstrap we place out data in a

C×R matrix and resample a set of rows and a set of columns, then we take the

intersection as our bootstrapped data. The sampling is done with replacement.

Formaly we sample rows r∗i i.i.d. from U{1, ..., R} for i = 1, ..., R and

columns c∗j i.i.d. from U{1, ..., C} for j = 1, ..., C. Rows and columns are

sampled independently some number B times, where B is the number of times

we resample.

The resampled data set has Z∗
ij = Zr∗i c∗j

and where Z∗
ij = 1 we have X∗

ij =

Xr∗i c∗j

Example, let X =

X12

X24

X32

X41 X43 X44

X52 X55

November 11, 2008 72 Simen Gan Schweder

8.4 Bootstrap methods 8 THE PIGEONHOLE BOOTSTRAP

And let r∗ = {1, 5, 4, 1, 2} and c∗ = {5, 2, 4, 4, 1}, the resample then is

X∗ =

X∗
r∗1c∗1

X∗
r∗1c∗2

X∗
r∗1c∗3

X∗
r∗1c∗4

X∗
r∗1c∗5

X∗
r∗2c∗1

X∗
r∗2c∗2

X∗
r∗2c∗3

X∗
r∗2c∗4

X∗
r∗2c∗5

X∗
r∗3c∗1

X∗
r∗3c∗2

X∗
r∗3c∗3

X∗
r∗3c∗4

X∗
r∗3c∗5

X∗
r∗4c∗1

X∗
r∗4c∗2

X∗
r∗4c∗3

X∗
r∗4c∗4

X∗
r∗4c∗5

X∗
r∗5c∗1

X∗
r∗5c∗2

X∗
r∗5c∗3

X∗
r∗5c∗4

X∗
r∗5c∗5

=

X15 X12 X14 X14 X11

X55 X52 X54 X54 X51

X45 X42 X44 X44 X41

X15 X12 X14 X14 X11

X25 X22 X24 X24 X21

=

X12

X55 X52

X44 X44 X41

X12

X24 X24

The variance of the total (Tx =

∑
i

∑
j ZijXij) in pigeonhole bootstrapping

is proved to be:

VPB(T ∗
x) =

(
1

RC
− 1

R
− 1

C
T 2

x

)
+
(

1− 1
C

)∑
i

T 2
xi•+

(
1− 1

R

)∑
j

T 2
x•j+

∑
i

∑
j

ZijX
2
ij

(34)

Where Txi• =
∑

j ZijXij and Tx•j =
∑

i ZijXij .

TODO: do the math

Under the hetrogenous random e�ects model, the expectation of the variance

of the bootstrapped mean is:

ERE(VPB(µ̂x) ≈ 1
N2

∑
i

σ2
A(i)(n

2
i• + 2ni•) +

∑
j

σ2
B(j)(n

2
•j + 2n•j) + 3

∑
i

∑
j

Zijσ
2
E(i,j)

(35)

And �nally a simpli�cation to the Expected pigeonhole bootstrap mean under

the homogenous random e�ects model:

EHRE(VPB(µ̂x)) ≈ 1
N

(σ2
A(νA + 2) + σ2

B(νB + 2) + 3σ2
E) (36)

Further on Owen gives an argument for mean consistency under some loose

conditions. He de�nes εN = max
(

1
R , 1

C , νA

N , νB

N , 1
νA

, 1
νB

,maxi
ni•
N ,maxj

n•j

N

)
,

and shows that under the aforementioned loose conditions:

E(VPB(µ̂x))− VRE(µ̂x)
VRE(µ̂x)

= O(εN)

November 11, 2008 73 Simen Gan Schweder

8 THE PIGEONHOLE BOOTSTRAP 8.5 Practical Piegonhole Bootstrappping

8.4.3 Net�ix example

As an example problem, Owens looks at the day of the week e�ect in the Net�ix

dataset. When plotting the average movie ratinge for each day of the week, one

can see that the tuesdays have the lowest average, and sunday has the highest.

The question is wheter the observed di�erence is within the variance of the

data. The observed values are µ̂tue = 3.595808 and µ̂sun = 3.616449, giving

a di�erence of µ̂tue − µ̂sun = 0.0206 witch is a small number in the scale of

the ratings, but is it also small when compared to the variance. Owens uses

Pigeonhole Bootstrapping to estimate the variance of the averages, and �nds

that the observed di�erence is about 8 times the standard deviation, concluding

that the di�erence is real.

8.5 Practical Piegonhole Bootstrappping

In summary, a Pigeonhole Bootstrap is based on resampling rows (r∗1 , ..., r∗R)

and collums (c∗1, ..., c
∗
C) from our matrix M , and let our resampled matrix M∗

consist of values m∗
ij = mr∗i c∗j

where they exist.

In the Net�ix dataset we have 17770 rows and 480189 collums, it is not

doable to build the entire matrix in memory, this would require more than

10Gb of memory. So instead we only remember the actual values and their

coordinates. We have values ηn = (In, Jn, Xn), n ∈ 1, ..., N . We sample rows

r∗i ∼ U{1, ..., R}, and collums c∗j ∼ U{1, ..., C}. We note that the order of the

samples are not important when estimating a mean, so we sort our row and

collum samples. We also sort our data on row-column form, we can now search

sequentially through the data to build our sample. This can now be done in

time linear to the data and sample size.

The mean in the Net�ix data set is µ̂ = 3.603308. An experiment shows the

di�erence in variance estimates:

• A naive bootstrap with 100 resamples gives ˆvar(µNB) = 1.068177× 10−8

• A Pigeonhole bootstrap with 100 resamples gives ˆvar(µPB) = 9.720581×
10−5

8.5.1 The use of variance estimates

When shrinking parameters and values the scale is of the essence, and the scale

is measured by the variance of the value. If we could �nd the variance of the

global mean and movie and user o�sets we could then calculate a con�dence

intervall for the baseline predictions used in most prediction methods.

November 11, 2008 74 Simen Gan Schweder

8.5 Practical Piegonhole Bootstrappping 8 THE PIGEONHOLE BOOTSTRAP

In a SVD setting we have

X ≈ UM,

a prediction r̂ij is then the i'th row in U multiplied with the j'th collum in M ,

so if we know the variances of U and M , we would also be able to produce con�-

dence intervalls for our predictions. The Korbell team uses the term 'con�dence

score' for an estimate of these values.

8.5.2 Metric Neighbourhood Predictor Bootstrapping

The Metric Neighbourhood Predictor (MNP), is not a parametric model. To

estimate the variances of predictions made by MNP's I have trained a large

number of MNP's with di�erent dimensions, from 10-50. An estimate of the

prediction variance can then be made from simply predicting equal sets of ratings

in the di�erent MNP's, and then calculating the empirical variance of the results.

This showed that the prediction variance was remarkably low, σ̄x = 0.00891,

indicating the convergence to a stable solution.

November 11, 2008 75 Simen Gan Schweder

9 CONCLUDING REMARKS

9 Concluding remarks

9.1 About this thesis

I have run hundreds of model �ttings with various versions of the methods

presented in this thesis, and as is probably normal, I feel the results could

have been better and more interesting. But on the other hand I am happy

to have been able to produce well functioning models on such a huge dataset.

One regret is not putting more time into the implementations of the Logarithmic

model presented in section 7.2, the actual implementations was far more di�cult

than I had anticipated, and more time consuming in terms of running time than

the other methods. Still it is in many ways the most interesting model, with

clear input and a interpretable output. Also the practical use of Pigeonhole

Bootstrapping is regrettably on a minimum, I believe this would prove valuable

to most model-like implementations like the SVD implementation presented in

section 4.1.

One interesting �nding was the KNN by MNP on selected cases. It is very

interesting that a method is able to predict where it works well, and with the

help of variance estimates on other models it might be possible to build an

ensamble of predictors to cover an entire data set. Each predictor given main

responsibility over cases where it functions optimaly.

One important piece of workmanship lacking from the implemented models

is the removal of global e�ects and shrinkage of estimated parameters and data.

The reason I have not ventured into this is that it sort of breaks the theory

behind the models. In for example the SVD implementations you obviously

loose the orthogonality of the factors when shrinking the estimated parameters,

and while this helps remedy over�tting, it is not so easy to understand how the

result should be interpreted. Of course most of the competitors in the Net�ix

Prize do not care so much for the theory, they aim to produce the best possible

predictions on a very speci�c set. The Korbell team, who have deep theoretical

foundations, view shrinkage as a continous alternative to parameter selection,

and while this works well, it does make interpretation more di�cult.

9.2 The convergence of methods

An interesting point is that our best e�orts in creating recommender systems

are only slightly better than the most naive ways. The leader on the Net�ix

Prize are about 20% better, measured by rmse, than just predicting every rating

as the movie's average rating. This does not sound good, but the implications

of a 20% increase in prediction accuracy should not be understated. The quality

November 11, 2008 76 Simen Gan Schweder

9.3 The future of recommender systems 9 CONCLUDING REMARKS

of a top 100 list of movies, compiled to a speci�c user is hugely a�ected by this

increase. The Korbell team discusses this in their paper [3] where they estimate

the probabilities of a movie known to be well liked by the user to end up on

a top list. They show that even small increases in the rmse measure result in

largely increased probabilities for the known good movie to end up on a user's

top list. On the other hand, one could ask how far the increase in prediction

accuracy can go when all current methods seem to converge on about 15%

increase on the naive method. Mixture models take it a bit further, towards the

20% mark, but is this a limit? There are of course limits to how well a human

being can be predicted to behave, even the most deterministic among us realize

that we can not be modeled completly, but wheter we are close to the limit

remains an open question. Another perspective is that very di�erent models

seem to converge to the same accuracy, Restricted Boltzmann Machines, Matrix

Factorisation, Neighbourhood based methods, what do they have in common?

One common denominator in the Net�ix Price is of course the information

available to the models. Perhaps this is as far as we can go with the information

available. Some competitors have seen increases in their results when using

information derived from the title of the movies, others have merged in external

data with modest positive e�ects. But none of the contestants have reported

signi�cantly increased results even when pouring in data from the International

Movie Database (IMDB.com) or others. Another common denominator is the

domain, our rating of movies are a�ected by external noise, like how was life

at work the day you rated 'The O�ce', did the news report on the fate of

diamond smugglers the day you rated 'Blood Dimond', where you in love when

watching 'Notting Hill'. This information is not part of the rating set, and must

be considered as noise. It is entirely possible that the e�ects not accounted for

by the presented mehtods are down to noise, but it is also possible that some

quantum leap will increase the prediction accuracy by another 10%.

9.3 The future of recommender systems

The industry of recommender systems is growing rapidly, and the pace will pick

up even further in the years to come. While writing this thesis I have subscribed

to a number of di�erent services using recommender systems as their basic tool.

The results are somewhat impressive:

• Amazon gives conservative recommendations about books I should buy

two times a week. The recommendations are conservative in the way of

staying within the genre of books I have already bought. The quality is

high, meaning that I seriously consider a large number of the recommended

November 11, 2008 77 Simen Gan Schweder

9 CONCLUDING REMARKS 9.3 The future of recommender systems

books, and ended up bying among others "Programming Collective Intel-

ligence", just what I needed for this thesis...

• iRead (in Facebook) recommends literature based on what I have reported

to have read. Again the results are impressive, they select about 10 books

each week from a repository of more than 7 million books. When the

results actually is interesting to me, they must have done a good job.

• Match.com is an online dating service. I completed a long tedious ques-

tionare, including questions on how long my index �nger was relative to

my ring �nger, and other unexpected questions. Twice a week I receive

12 pro�les of girls they claim match my pro�le. Interestingly, all recom-

mended pro�les are girls who are younger than myself, can it be my long

ring �nger? I have regrettably not had the oppurtunity to investigate the

quality of these recommendations.

The domain of the recommender systems increases slowly, lots of work has

been done on the simple user-product model where the products need to be

reasonably similar to one another. Amazon does not recommend candy bars

or gardening equipment although they sell them in the same online store, the

recommended product must be in the same domain as the purchased product.

When eSmak was conceived the idea was not just to recommend movies, but

slowly expand to books, wine and other domains. We hoped to be able to use

the knowledge we had on a user's movie taste to recommend a good red wine

to go with the movie. This cross domain link is not unfeasible, some directions

in cognitive psychology suggest that there are underlying representational con-

structs in our brains that have in�uence on di�erent every day domains. These

constructs can be as basic as how do we understand color? Does this have

anything to do with how we interpret taste? Peter Gärdenfors presents what

he calls Conceptual Spaces in his book "Conceptual Spaces: The Geometry of

Thought" [7]. The basic idea is that thought can be represented as manipulation

of states in geometric spaces. The spaces in question is built up of domains, like

the aforementioned color domain. The color domain is a geometric space built

up of the traditional color disc where the hue is represented on the perimeter

and the saturation is proportional to the distance from the center, crossed with

a dimension representing luminescence, from absolute darkness to maximum

light, see �gure 23.

Gärdenfors claims this can explain concepts like skin-tone. In the previous

century, Europeans labeled American Indians as red skins, Europeans as white,

Asians as yellow etc. But when looking at the skin of a asian, it is far from yellow,

November 11, 2008 78 Simen Gan Schweder

9.3 The future of recommender systems 9 CONCLUDING REMARKS

Figure 23: HLS-Color space

so where does this label come from? Gärdenfors argues that if we map out the

total space of skin colours, it will have the same geometry as the entire colour

space, but be con�ned to a small subset of the available colours. We, as human

beings, lend the terminology of the color space and apply it to the subspace of

skin colours. So yellow when re�ering to skin tones means in the direction of

yellow when extrapolated to the full space. Also the dimensions of the color

space is correlated, one can not talk about something that is very red as well

as very dark, so darkness is sort of negatively correlated with saturation. Other

meanings of everyday language is also borrowed from the familiar colorspace,

like light and dark emotions/humor/literature, they are all analogies to the

luminecence of the colorspace.

One could speculate and view matrix factorization as a �rst attempt to

understand the human cognition in a geometric way, the ultimate goal being to

build a full conceptual model of each user by means of the available information.

We looked at how the di�erent factors in the SVD mapped to di�erent movies,

concluding that the factors seem to map onto everyday concepts, although not

easily termed.

So if we let ourself believe a little bit that a recommender system could

model parts of the conceptual con�guration of the users, how will the future of

recommender systems look?

Given Gärdenfors' Conceptual Spaces, the understanding of interdomain cor-

relations will help bring down the barriers, your preferences in books is relevant

to your preferences in movies, music and even wine and gardening equipment.

When the barriers come down, the amount of available information goes up,

November 11, 2008 79 Simen Gan Schweder

9 CONCLUDING REMARKS 9.3 The future of recommender systems

the grocery you have purchased using a discount card or coupon will contribute

information to what movie should be recommended to you. So when you return

from the grocery store, having bought popcorn and Coca Cola, the recommender

system on you pay-per-view tv channel will not recommend a documentary on

Holocost, but rather a family of children movie.

Understanding a problem domain also o�ers control of the domain. The

ones among us with inclination to conspiracy theories will have a feast. When

privatly/governmently owned media shows you just what you want to see or

hear or read, how will this a�ect your view of the world. Who decides your view

of the world? When searching on the future Google for terms like 'war', and

the company War.inc has bought the adword 'war', and on the returned page

they present their view of the world, matced to the political/etical views they

belive you have... ok, far fetched. The point is that increased understanding of

how people's preferences work also increases the control of your preferences for

those willing to pay.

Whether one pays any credit to Conceptual Spaces or not, the future of rec-

ommendation systems seems to be in breaking the interdomain barriers. Rec-

ommender systems will, no doubt, be ever more present in our interaction with

commerce and other aspects of life.

November 11, 2008 80 Simen Gan Schweder

References REFERENCES

References

[1] Robert M. Bell and Yehuda Koren. Scalable collaborative �ltering with

jointly derived neighborhood interpolation weights. 2007.

[2] Robert M. Bell, Yehuda Koren, and Chris Volinsky. Modeling relationships

at multiple scales to improve accuracy of large recommender systems. 2007.

[3] Robert M. Bell, Yehuda Koren, and Chris Volinsky. Factorization meets the

neighborhood: a multifaceted collaborative �ltering model. Net�ix, 2008.

[4] Leo Breiman. Bagging predictors. In Machine Learning, pages 123�140,

1996.

[5] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual

web search engine, 1998.

[6] Rob Brown. Evolution and wisdom of crowds, 2007. [Online; accessed

8-11-2008].

[7] Peter Gärdenfors. Conceptual Spaces: The Geometry of Thought. Bradford

Books MIT Press, 2000.

[8] Knut Hegna. Universell bibliogra�sk kontroll mål, midler, teknologi, 2002.

[In Norwegian].

[9] J. Nocedal and S. Wright. Numerical Optimization. Springer, 1999.

[10] Art B. Owen. The pigeonhole bootstrap. 2007.

[11] Sam Roweis. Em algorithms for pca and spca. Advances in Neural Infor-

mation Processing Systems 10.

[12] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines

for collaborative �ltering. Proceedings of the 24th International Conference

on Machine Learning (ICML'07), 2007.

[13] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.

[14] Robert E. Schapire. The boosting approach to machine learning. an

overview. MSRI Workshop on Nonlinear Estimation and Classi�cation,

2002, 2001.

[15] James Surowiecki. The Wisdom of Crowds. Abacus, 2004.

November 11, 2008 81 Simen Gan Schweder

REFERENCES References

[16] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos

Tikk. On the gravity recommendation system. 2007.

http://home.mit.bme.hu/ gtakacs/download/gravity.pdf.

[17] Brandyn Webb. Net�ix update: Try this at home, 2007. [Personal blog

at http://sifter.org/ simon/journal/20061211.html under the name Simon

Funk].

[18] Wikipedia. Information �ltering system�wikipedia, the free encyclopedia,

2008. [Online; accessed 7-August-2008].

[19] Wikipedia. Singular value decomposition � wikipedia, the free encyclope-

dia, 2008. [Online; accessed 22-January-2008].

November 11, 2008 82 Simen Gan Schweder

A SVD, TOP AND BOTTOM MOVIES OF EACH FEATURE.

A SVD, top and bottom movies of each feature.

Maximums Minimums

Mobsters and Mormons(2005) Six Feet Under(2003)

Hockey Mom(2004) Seinfeld(1992)

Larryboy and the Rumor Weed(1999) The Simpsons(1992)

The Land Before Time IV(1996) Fire�y(2002)

Love on Lay-Away(2004) The Sopranos(2001)

Dune(1984) Six Feet Under(2001)

The Land Before Time VI(1998) 24(2002)

Bram Stoker's: To Die For(1989) The Sopranos(2002)

My Wife's Murder(2005) The Sopranos(2000)

Curious(2005) Dead Like Me(2004)

Journey Into Amazing Caves(2001) The Simpsons(1993)

Predator Island(2005) The Simpsons(1994)

The Triangle(2005) Seinfeld(1991)

Avia Vampire Hunter(2005) House(2004)

Dark Harvest 2(2004) Six Feet Under(2004)

Ax 'Em(2002) The Shawshank Redemption(1994)

Hazaaron Khwaishein Aisi(2003) Anne of Green Gables(1987)

Zodiac Killer(2004) Band of Brothers(2001)

Absolution(2003) Ken Burns' Civil War(1990)

The Worst Horror Movie Ever Made(2005) The West Wing(1999)

Vampire Assassins(2005) The West Wing(2001)

Death Mask(1998) The Sopranos(2004)

Half-Caste(2004) The West Wing(2002)

Alone in a Haunted House(2004) Lord of the Rings(2002)

Expo(2005) Veronica Mars(2004)

Drive In(2001) Lord of the Rings(2003)

The Horror Within(2005) The Lord of the Rings(2001)

Figure 24: Feature 1, higest and lowest movies.

November 11, 2008 83 Simen Gan Schweder

A SVD, TOP AND BOTTOM MOVIES OF EACH FEATURE.

Maximums Minimums

Lost in Translation(2003) Runaway Bride(1999)

The Royal Tenenbaums(2001) Dungeons and Dragons(2000)

Eternal Sunshine of the Spotless Mind(2004) Crocodile Dundee in Los Angeles(2001)

Dogville(2004) Exit Wounds(2001)

Punch-Drunk Love(2002) Jack Frost(1998)

The Life Aquatic with Steve Zissou(2004) Big Momma's House(2000)

Before Sunset(2004) What Women Want(2000)

Napoleon Dynamite(2004) Congo(1995)

Adaptation(2002) Weekend at Bernie's 2(1993)

Sideways(2004) Cop and a Half(1993)

Primer(2004) Rocky V(1990)

Fahrenheit 9/11(2004) Home Alone 3(1997)

Sin City(2005) S.W.A.T.(2003)

Memento(2000) Van Helsing(2004)

Being John Malkovich(1999) Batman and Robin(1997)

I Heart Huckabees(2004) Fire Down Below(1997)

Pulp Fiction(1994) Collateral Damage(2002)

American Beauty(1999) The Glimmer Man(1996)

The Mother(2003) Gone in 60 Seconds(2000)

Garden State(2004) Speed 2(1997)

Kill Bill(2003) Eddie(1996)

Oldboy(2003) Miss Congeniality(2000)

A Clockwork Orange(1971) Look Who's Talking Now(1993)

Closer(2004) The Fast and the Furious(2001)

Brothers(2005) Maid in Manhattan(2002)

Shaun of the Dead(2004) Armageddon(1998)

Intermission(2004) On Deadly Ground(1994)

Annie Hall(1977) The Wedding Planner(2001)

Intimate Strangers(2004) Coyote Ugly(2000)

Secretary(2002) Pearl Harbor(2001)

Figure 25: Feature 2, highest and lowest scoring movies

November 11, 2008 84 Simen Gan Schweder

A SVD, TOP AND BOTTOM MOVIES OF EACH FEATURE.

Maximums Minimums

House of 1(2003) One Tree Hill(2003)

Fear and Loathing in Las Vegas(1998) Will and Grace(2000)

Freddy Got Fingered(2001) Star Trek(2000)

Orgazmo(1998) Star Trek(1996)

Super Troopers(2002) Star Trek(1998)

Jay and Silent Bob Strike Back(2001) Star Trek(1997)

Wake Up(2004) Dawson's Creek(1998)

The Texas Chainsaw Massacre 2(1983) Dawson's Creek(2001)

Club Dread(2004) Felicity(1999)

Wet Hot American Summer(2001) Dawson's Creek(1998)

Friday the 13th(1988) Dawson's Creek(2003)

Jackass(2002) The Best of Friends(1994)

Half Baked(1998) The Best of Friends(1994)

Natural Born Killers(1994) Friends(2002)

Friday the 13th(1989) Friends(1996)

BASEketball(1998) The Best of Friends(1994)

Child's Play 2(1990) Friends(1994)

Friday the 13th(1984) Dawson's Creek(2000)

Little Nicky(2000) Dawson's Creek(1999)

The Rules of Attraction(2002) Friends(1999)

Beavis and Butt-head Do America(1996) Friends(2004)

Friday the 13th(1982) The Best of Friends(1994)

Jason Goes to Hell(1993) The Best of Friends(1994)

Freddy vs. Jason(2003) Friends(2001)

May(2003) Friends(1999)

Evil Dead 2(1987) The Best of Friends(1994)

Scary Movie 2(2001) The Best of Friends(1997)

Killer Klowns from Outer Space(1988) The Best of Friends(1996)

Four Rooms(1995) Friends(1997)

Friday the 13th(1981) Friends(1998)

Figure 26: Feature 3, highest and lowest scoring movies

November 11, 2008 85 Simen Gan Schweder

A SVD, TOP AND BOTTOM MOVIES OF EACH FEATURE.

Maximums Minimums

Luster(2002) Jaws(1975)

Battle Athletes Victory(1999) The Matrix(1999)

Cardcaptor Sakura(1999) Ferris Bueller's Day O�(1986)

The Last Year(2002) A Few Good Men(1992)

Boys Briefs(2000) Beverly Hills Cop(1984)

Best of Boys in Love(2000) Indiana Jones and the Last Crusade(1989)

Mariah Carey(1999) Good Will Hunting(1997)

No Ordinary Love(1994) Dances With Wolves(1990)

Very Natural Thing(1973) Pulp Fiction(1994)

Glitter(2001) Star Wars(1983)

Gone But Not Forgotten(2003) Jurassic Park(1993)

Denied(2004) National Lampoon's Vacation(1983)

Battle Athletes Victory(1998) Raiders of the Lost Ark(1981)

A Real Young Girl(2001) Saving Private Ryan(1998)

Amazing Nurse Nanako(2000) Terminator 2(1991)

Drift(2001) Patriot Games(1992)

The Company(2003) The Patriot(2000)

Angel Sanctuary(2000) National Lampoon's Animal House(1978)

In the Flesh(1997) Gladiator(2000)

'N Sync(1999) The Hunt for Red October(1990)

Under the Cherry Moon(1986) The Terminator(1984)

Trois(2000) Top Gun(1986)

Spice World(1998) Caddyshack(1980)

Battle Athletes Victory(1999) Lethal Weapon(1987)

Slayers Try DVD Collection(1997) Michael Moore Hates America(2004)

Battle Athletes Victory(1998) Die Hard(1988)

Pokemon(1999) Rocky(1976)

BoyFriends(2000) Gladiator(2000)

Boys Life 4(2003) Forrest Gump(1994)

Gang of Roses(2003) Braveheart(1995)

Figure 27: Feature 4, highest and lowest scoring movies

November 11, 2008 86 Simen Gan Schweder

A SVD, TOP AND BOTTOM MOVIES OF EACH FEATURE.

Maximums Minimums

Queer as Folk(2002) WWE(2004)

Angels in America(2003) The Three Stooges(1937)

Queer as Folk(2001) The Matrix(1999)

Camp(2003) NFL(2005)

A Home at the End of the World(2004) Rush(1991)

Queer as Folk(2003) L'Eclisse(1962)

The Hours(2002) Kill!(1969)

Sordid Lives(2001) Godsmack(2002)

The Piano(1993) NFL(2004)

If These Walls Could Talk 2(2000) WWE(2005)

The Broken Hearts Club(2000) The Three Stooges(1943)

Sophie's Choice(1982) Johnny Cash(2003)

The Adventures of Priscilla(1994) SpongeBob SquarePants(2002)

If These Walls Could Talk(1996) Sarfarosh(1999)

Far from Heaven(2002) The Beverly Hillbillies(1962)

Bad Education(2004) The Man Show Boy / Household Hints from Adult Film Stars(2005)

The Laramie Project(2002) Fox and His Friends(1975)

I'm the One That I Want(2000) Masters of Poker(2005)

Muriel's Wedding(1994) ECW(2001)

Being Julia(2004) The Adventures of Ford Fairlane(1990)

Funny Girl(1968) Godannar(2005)

Vera Drake(2004) The Three Stooges Double Feature(1947)

Annie Hall(1977) The Matrix(2003)

The Crying Game(1992) PRIDE Fighting Championships(2002)

De-Lovely(2004) Red Dwarf(1988)

Iris(2001) FahrenHYPE 9/11(2004)

Bowling for Columbine(2002) Benny Hill(1969)

Tea with Mussolini(1999) Sports Illustrated Swimsuit Edition(2002)

Before Night Falls(2000) Michael Moore Hates America(2004)

Hannah and Her Sisters(1986) Celsius 41.11(2004)

Figure 28: Feature 5, highest and lowest scoring movies

November 11, 2008 87 Simen Gan Schweder

A SVD, TOP AND BOTTOM MOVIES OF EACH FEATURE.

Maximums Minimums

The Twilight Zone(1964) House of Sand and Fog(2003)

The Twilight Zone(1963) Secret Window(2004)

The Twilight Zone(1963) All I Want(2002)

The Twilight Zone(1961) The Upside of Anger(2005)

The Three Stooges(1947) Alexander(2004)

The Twilight Zone(1964) The Clearing(2004)

Dragon Ball Z(1998) Tiptoes(2003)

Dragon Ball Z(2000) The Ladykillers(2004)

The Twilight Zone(1960) Eye of the Beholder(2000)

The Twilight Zone(1960) Monster's Ball(2001)

Dragon Ball Z(1989) Open Water(2004)

The Twilight Zone(1963) Closer(2004)

The Twilight Zone(1961) Stateside(2004)

The Twilight Zone(1964) City of Ghosts(2003)

The Twilight Zone(1963) Wicker Park(2004)

The Twilight Zone(1968) Gangs of New York(2002)

The Three Stooges(1938) People I Know(2003)

The Twilight Zone(1964) Birth(2004)

The Twilight Zone(1962) Secret Things(2002)

The Three Stooges(1943) Alexander(2004)

The Twilight Zone(1967) The Final Cut(2004)

The Three Stooges(1940) A.I. Arti�cial Intelligence(2001)

The Twilight Zone(1963) Suspect Zero(2004)

The Twilight Zone(1964) The Village(2004)

Dragon Ball Z(1992) The Door in the Floor(2004)

The Twilight Zone(1963) The Human Stain(2003)

Doctor Who(1976) The Jacket(2005)

Scooby-Doo's Creepiest Capers(2000) Chrystal(2004)

The Twilight Zone(1960) Vanilla Sky(2001)

The Twilight Zone(1962) In the Cut(2003)

Figure 29: Feature 6, highest and lowest scoring movies

November 11, 2008 88 Simen Gan Schweder

A SVD, TOP AND BOTTOM MOVIES OF EACH FEATURE.

Maximums Minimums

Pirates of the Caribbean(2003) Citizen Kane(1941)

Moulin Rouge(2001) The Thin Red Line(1998)

Moulin Rouge(2001) Body Heat(1981)

Love Actually(2003) Glengarry Glen Ross(1992)

Elf(2003) Raging Bull(1980)

The Hitchhiker's Guide to the Galaxy(2005) Damn the De�ant(1962)

Dodgeball(2004) Who'll Stop The Rain(1978)

Friends(1995) Rambo(1982)

Pirates of the Caribbean(2003) The Postman Always Rings Twice(1981)

Saved!(2004) Gummo(1997)

Harry Potter and the Sorcerer's Stone(2001) Shane(1953)

50 First Dates(2004) Chinatown(1974)

Bride and Prejudice(2004) The French Connection II(1975)

The Incredibles(2004) Quest for Fire(1982)

Garden State(2004) Rosemary's Baby(1968)

Sex and the City(2000) Above the Law(1988)

Coupling(2000) Easy Rider(1969)

Mean Girls(2004) A Clockwork Orange(1971)

Sex and the City(1999) Dirty Harry(1972)

Sex and the City(2001) Death Wish(1974)

Down With Love(2003) The Birth of a Nation(1915)

Sex and the City(1998) Last Tango in Paris(1972)

Bu�y the Vampire Slayer(1997) Midnight Cowboy(1969)

Bridget Jones(2004) The French Connection(1971)

Finding Neverland(2004) Taxi Driver(1976)

Straight-Jacket(2004) Apocalypse Now(1979)

Anchorman(2004) Death Wish 5(1994)

Napoleon Dynamite(2004) 2001(1968)

13 Going on 30(2004) The Deer Hunter(1978)

Harry Potter and the Prisoner of Azkaban(2004) Deliverance(1972)

Figure 30: Feature 7, highest and lowest scoring movies

November 11, 2008 89 Simen Gan Schweder

A SVD, TOP AND BOTTOM MOVIES OF EACH FEATURE.

Maximums Minimums

The Simple Life(2003) Star Trek VI(1991)

Urban Cowboy(1980) Star Trek V(1989)

Cocktail(1988) Stargate SG-1(1998)

Meet the Parents(2000) Star Trek(1991)

Love Story(1981) Babylon 5(1994)

Tommy Boy(1995) Stargate SG-1(2000)

Madonna(1991) Brazil(1985)

American Pie(1999) Star Trek(1995)

Less Than Zero(1987) Star Trek(1993)

There's Something About Mary(1998) The 13th Warrior(1999)

Indecent Proposal(1993) Star Trek(1997)

St. Elmo's Fire(1985) Henry V(1989)

Dirty Dancing(1987) Luther(2003)

National Lampoon's Christmas Vacation(1989) Seven Samurai(1954)

Mommie Dearest(1981) THX 1138(1971)

Big Daddy(1999) Ran(1985)

The Blue Lagoon(1980) Russian Ark(2002)

Dragon Ball Z(2003) Star Trek III(1984)

Boomerang(1992) Star Trek(1994)

Dragon Ball(1995) Star Trek(2002)

There's Something About Mary(1998) Stargate SG-1(1999)

Curb Your Enthusiasm(2000) Yojimbo(1961)

National Lampoon's Vacation(1983) The Chronicles of Riddick(2004)

Cops(2004) Star Trek(1987)

The Toy(1982) Star Trek(1998)

Jerry Maguire(1996) The Hitchhiker's Guide to the Galaxy(1981)

Dragon Ball(2003) Star Trek(1989)

About Last Night...(1986) Stargate SG-1(1997)

Very Bad Things(1998) Star Trek(1996)

Grease(1978) Star Trek(1967)

Figure 31: Feature 8, highest and lowest scoring movies

November 11, 2008 90 Simen Gan Schweder

A SVD, TOP AND BOTTOM MOVIES OF EACH FEATURE.

Maximums Minimums

Dragon Ball Z(2003) The Rocky Horror Picture Show(1975)

Dragon Ball Z(2003) Kung Pow(2002)

One Tree Hill(2003) Throw Momma From the Train(1987)

Curb Your Enthusiasm(2000) Elvira(1988)

Dragon Ball GT(2003) Super Mario Bros.(1993)

Dragon Ball Z(1993) Drop Dead Fred(1991)

Dragon Ball Z(2000) Making Mr. Right(1987)

Dragon Ball Z(1992) 2002 Olympic Figure Skating Exhibition(2002)

Viva La Bam(2003) Hudson Hawk(1991)

UFC 47(2004) Coneheads(1993)

Dragon Ball Z(1989) Mars Attacks!(1996)

Dragon Ball Z(2003) Beetlejuice(1988)

I Can Do Bad All By Myself(2002) Haunted Honeymoon(1986)

Dragon Ball Z(2002) The Rocky Horror Picture Show(1975)

Dragon Ball Z(2003) Ivan Vasilievich(1973)

UFC 49(2004) The Secret Garden(1975)

Dragon Ball Z(2001) Addams Family Values(1993)

Dragon Ball Z(2003) Soapdish(1991)

Dragon Ball Z(2000) Mixed Nuts(1994)

One Tree Hill(2004) A.I. Arti�cial Intelligence(2001)

The Shield(2004) The Butcher's Wife(1991)

Viva La Bam(2004) The Addams Family(1991)

Dragon Ball Z(2000) Death Becomes Her(1992)

Dragon Ball(2002) Little Shop of Horrors(1986)

Dragon Ball Z(2003) Moulin Rouge(2001)

Madea's Class Reunion(2003) My Stepmother is an Alien(1988)

Newlyweds(2003) Tank Girl(1995)

Friends(1998) Toys(1992)

Meet the Browns(2004) Earth Girls Are Easy(1989)

The Best of Friends(1997) Joe Versus the Volcano(1990)

Figure 32: Feature 9, highest and lowest scoring movies

November 11, 2008 91 Simen Gan Schweder

A SVD, TOP AND BOTTOM MOVIES OF EACH FEATURE.

Maximums Minimums

Dave Matthews Band(1999) The Exorcist(1973)

Grateful Dawg(2000) Bu�y the Vampire Slayer(1999)

Michael Moore Hates America(2004) Cabin Fever(2003)

The Work and the Glory(2004) Bu�y the Vampire Slayer(1997)

With Honors(1994) Final Destination(2000)

Run Ronnie Run(2002) The Ring(2002)

Where the Bu�alo Roam(1980) Scream 3(2000)

Fierce Creatures(1997) Final Destination 2(2003)

Coupling(2000) Alien(1979)

Voices of Iraq(2004) I Know What You Did Last Summer(1997)

Hudson Hawk(1991) Monster(2003)

Mating Habits of the Earthbound Human(1999) Kill Bill(2003)

Sgt. Bilko(1996) Xena(2001)

Fletch(1985) Friday the 13th(1980)

Love A�air(1994) Bu�y the Vampire Slayer(2001)

Forget Paris(1995) Scream 2(1997)

Greedy(1994) Halloween(1978)

The Man Who Knew Too Little(1997) The Lost World(1997)

Power of One(1993) Jaws(1975)

On Any Sunday(1971) Jurassic Park III(2001)

Blue in the Face(1995) The Exorcist(1973)

My Fellow Americans(1996) The Blair Witch Project(1999)

Fletch Lives(1989) Carrie(1976)

Faster(2003) Jeepers Creepers 2(2003)

Human Tra�c(2000) Scream(1996)

Oscar(1991) Open Water(2004)

Hopscotch(1980) Titanic(1997)

Spies Like Us(1985) Jeepers Creepers(2001)

Snatch(2000) The Grudge(2004)

Beautiful Girls(1996) A Nightmare on Elm Street(1984)

Figure 33: Feature 10, highest and lowest scoring movies

November 11, 2008 92 Simen Gan Schweder

B R-SCRIPT FOR LOGARITMIC MAXIMUM LIKELIHOOD ESTIMATION.

B R-script for logaritmic Maximum Likelihood

Estimation.

Not quite upto date...

dat <- read.csv("<FILENAME>", header=TRUE, dec=".", sep=";");

ratings <- dat$rating;

users <- as.numeric(levels(factor(dat$userId))) #1901 users

movies <- as.numeric(levels(factor(dat$movieId))) #848 movies

ratingsArr <- matrix(nrow=length(users), ncol=length(movies));

N <- length(dat$rating);

for(i in 1:N) {

ratingsArr[dat$userId[i],dat$movieId[i]] <- dat$rating[i];

}

moviesByUser <- split(dat$movieId, factor(dat$userId)) #Get movies by using moviesByUse[toString(userid)]

usersByMovie <- split(dat$userId, factor(dat$movieId))

RATING_MAX <- 6;

all_ratings <- 1:RATING_MAX;

length(users);

length(movies);

ratingDist <- function(x1,x2, theta) {

(abs(x1-x2)^theta$alpha)/theta$alpha

}

userDist <- function(i,j, theta) {

ratingDists <- ratingDist(ratingsArr[i,],ratingsArr[j,], theta);

(1/length(s))*sum(ratingDists[ratingDists > 0], na.rm=TRUE);

}

beta <- function(Dxy, dij, theta) {

theta$b0 + Dxy*theta$bD+dij*theta$bd+Dxy*dij*theta$bDd;

}

probX_ki_j <- function(j,x,k,i, theta) {

xjk <- ratingsArr[j,k];

userDistValue <- userDist(i,j,theta);

exp(beta(ratingDist(x,xjk,theta), userDistValue ,theta))/sum(exp(beta(ratingDist(all_ratings,xjk, theta), userDistValue , theta)))

November 11, 2008 93 Simen Gan Schweder

B R-SCRIPT FOR LOGARITMIC MAXIMUM LIKELIHOOD ESTIMATION.

}

probX_ki <- function(x, k, i, theta) {

users_bm <- usersByMovie[[toString(k)]];

users_bm <- users_bm[users_bm != i]

dim(users_bm) <- c(length(users_bm),1);

(1/length(users_bm))*sum(apply(users_bm, 1, probX_ki_j, x,k,i,theta),na.rm=TRUE);

}

ll_i <- function(userId, theta) {

moviesFU <- moviesByUser[[toString(userId)]];

probs <- rep(NA, length(moviesFU));

for(k in 1:length(moviesFU)) {

probs[k] <- probX_ki(ratingsArr[userId,moviesFU[k]], moviesFU[k], userId, theta);

}

sum(log(probs[is.na(probs)==0]))

}

ll <- function(rho) {

theta <- list(alpha=rho[1], gamma=rho[2], b0=rho[3], bD=rho[4], bd=rho[5], bDd=rho[6]);

print(theta);

probsByUser <- rep(0, length(users));

for(i in 1:length(probsByUser)) {

probsByUser[i] <- ll_i(i, theta);

print(paste(i, ':',probsByUser[i]));

}

-sum(probsByUser);

}

res_nlm <- nlm(ll, c(2,1,1,0.1,0.1,0.1), print.level=1, hessian=FALSE);

summary(res_nlm)

##Weights

wij <- function(i,j,theta) {

theta$wij[max(i,j), min(i,j)];

}

November 11, 2008 94 Simen Gan Schweder

B R-SCRIPT FOR LOGARITMIC MAXIMUM LIKELIHOOD ESTIMATION.

##Create the weights. Run every time theta chages.

createwij <- function(theta) {

sumW <- length(users)*theta$gamma+length(ratings);

wijArr <- matrix(ncol=length(users), nrow=length(users));

for(i in 1:length(users)) {

for(j in 1:i) {

moviesI <- moviesByUser[[toString(i)]];

moviesJ <- moviesByUser[[toString(j)]];

wijArr[i,j] <- (theta$gamma+length(intersect(moviesI,moviesJ)))/sumW;

}

}

theta$wij <- wijArr;

}

November 11, 2008 95 Simen Gan Schweder

