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Abstract

The number of fully electric or hybrid ships relying on battery power for

propulsion and maneuvering is growing. In order to ensure the safety of

these ships, it is important to monitor the capacity that can be stored in the

batteries, and classification societies typically require that this can be verified

by independent tests—annual capacity tests. However, this paper discusses

data-driven alternatives based on operational sensor data collected from the

batteries. There are different strategies for such data-driven state of health

(SOH) estimation. Some approaches require full operational history of the

batteries in order to predict SOH, and this may be impractical due to several

reasons. Thus, methods that are able to give reliable estimation of SOH

based on only snapshots of the data streams are more attractive from a prac-

tical point of view. In this paper, data-driven snapshot methods are explored

and applied to degradation data from battery cells cycled in different labora-

tory tests. Hence, data from different sources are fused together with the

aim of achieving better predictions. The paper presents the battery data

show how relevant features can be extracted from snapshots of the data and

presents data-driven models for SOH estimation. It is discussed how such

methods could be utilized in a data-driven classification regime for maritime

battery systems. Results are encouraging, and yields reasonable degradation

estimates for nearly 40% of the tested cells, although the fusion of data from

different laboratory tests did not improve results significantly. Results are

greatly improved if data from the actual cell is included in the training data,

and indicates that better results can be achieved if more representative train-

ing data is available.
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1 | INTRODUCTION

Electric or hybrid ships using batteries have been an
increasingly attractive alternative for many shipping seg-
ments, most notably ferries and offshore supply vessels,
with significant environmental benefits and large poten-
tial for fuel, cost, and emission savings. Moreover, electri-
fication of the ship fleet is completely aligned with
societal and regulatory ambitions for emission reduction
and a change to more environmentally friendly technolo-
gies for maritime transport.

The maritime industry has always been concerned
with safety at sea, and the safety of battery-powered ships
is no exception. The risk of fire and explosion are obvious
for battery-powered ships, and these are controlled by
risk mitigation measures and safety regulations. Another
central aspect of the safety of electric ships is to ensure
that the available energy stored in the batteries is suffi-
cient to cover the demand for safely operating the vessel.
Loss of propulsion power in a critical situation can lead
to collision or grounding accidents with potentially
severe consequences. Therefore, a reliable estimation and
prediction of the actual available energy of a maritime
battery system are crucial.

Battery systems are ageing, meaning that the energy
storage capacity degrades by calendar time and by
charge/discharge cycles. This degradation affects both the
amount of charge that can be stored in the battery as well
as the power that can be delivered. Battery degradation
also affects fire safety and thermal runaway properties,1,2

but this paper focuses on data-driven methods for state of
health (SOH) estimation. Thus, the monitoring of the
degradation of capacity for maritime battery systems
based on sensor data will be addressed in this paper.

Classification societies typically require annual capac-
ity testing for ships utilizing batteries for propulsion or
maneuvering in order to ensure that the estimated SOH
estimated by the battery management system (BMS) is
accurate and reliable.3-5 There are some challenges with
this approach, however, and data-driven methods to pre-
dict SOH is believed to be an attractive alternative if they
can be demonstrated to work satisfactorily. From a prac-
tical point of view, the annual capacity test is time con-
suming and typically requires that the ship is taken out
of normal operation for the duration of the test. More-
over, the accuracy of the test is questionable due to sev-
eral factors influencing the results, such as variability in
loads, temperatures, and depth of discharge (DOD). Mari-
time battery systems are typically designed for a 10-year
lifetime while ships are normally designed for 25–
30 years. Hence, the ship will typically outlive the
onboard battery system, which may need to be replaced.
When battery systems are approaching their end of useful

life reliable estimation of SOH will become increasingly
important, both from a safety point of view, but also from
pure economical considerations.

A recent literature survey on data-driven models for
SOH estimation presented an overview of various
approaches and grouped them into a few generic catego-
ries.6 One important distinction that was made is
between cumulative methods and snapshot methods.
Other approaches to capacity monitoring include direct
measurement techniques and state-space models with
observers.

Cumulative methods refer to methods that rely on the
full loading history of the batteries in order to predict
current SOH. Such methods can relate information such
as number of equivalent full cycles (EFC) or the total
energy throughput the battery has experienced, com-
bined with other stress factors such as temperature, C-
rate, and variations in state of charge (SOC) to maximum
available capacity. In essence, such methods can model
the accumulated degradation by establishing a relation-
ship between the individual cycles and the change in
SOH, that is, ΔSOH. The actual SOH after n cycles can
then be estimated as the cumulative sum of such differ-
ences, that is, SOHn ¼ SOH0þ

Pn
i¼1ΔSOHi, where SOH0

is a known initial capacity; typically 100%. Although this
is an attractive approach, with potentially accurate and
reliable results, it has some challenges. For example, the
full operating history of the batteries is needed, and it
will be challenging to handle large data gaps. For mari-
time battery systems onboard ocean-going ships, it
may be difficult to guarantee uninterrupted data streams
throughout the lifetime of the battery system. Moreover,
for very large battery systems, the amount of data
can easily be enormous, putting strict requirements on
ship-to-shore connectivity, storage, and computational
capacity for the data-driven models. One example of a
cumulative data-driven method for SOH prediction is the
battery.ai tool7; for other examples, see Ref. [8-12].

Snapshot methods, on the other hand, refer to
methods that can make SOH predictions from just brief
snapshots of the data without requiring the full cycling
history. Such methods can utilize regression models
where for example features extracted from partial charg-
ing or discharging curves or incremental capacity curves
are used as covariates. Some examples of methods that
exploit such features can be found in, for example, Ref.
[13-16]. It is noted that there are several challenges with
this approach as well, and it may not be straightforward
to account for the effects of varying conditions on the
charge/discharge curves, for example, varying tempera-
tures and current rates. Notwithstanding, with such
models, it would be sufficient to receive batches of the
data at regular intervals, which would be much more
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practical from a third-party verification point of view.
Hence, if it can be demonstrated that such methods per-
form well enough, they may be the preferred approach
for independent verification and validation of onboard
SOH prediction routines. Such models include various
regression-type models that would need to learn the rela-
tionship between the extracted features and SOH from a
training dataset. The simple method proposed in Ref.
[17] which is a linear regression model based on Cou-
lomb counting and accounting for measurement uncer-
tainties, do not need training data, however, but it is
heavily dependent on accurate SOC estimation. In this
paper, snapshot methods based on the raw data of mea-
sured currents, voltages, and temperatures rather than
derived quantities such as SOC will be explored and
applied to a novel dataset from laboratory battery cycling
tests. This paper extends the approach presented in Ref.
[18] which considered only one dataset from one set of
experiments, by fusing data from different laboratory
tests together in order to enlarge the training data set.
Hence, all the results in this paper are new, and the
fusion of data from different lab experiments is new com-
pared to what was presented in Ref. [18].

The specific objectives of this paper are to establish
data-driven snapshot methods for SOH estimation of
maritime battery system and to investigate how they per-
form on cycling data for particular cell types. This is done
by extracting relevant snapshot features from the data
and exploring various regression models, from simple lin-
ear models to somewhat more complicated statistical
models. The overall objective is to identify methods that
are reliable enough to replace annual capacity tests for
third-party verification of battery SOH within the context
of ship classification.

2 | LABORATORY BATTERY
CYCLING TESTS

Two different types of battery cells have been subject to
cycling tests at both Fraunhofer's and Corvus’ laborato-
ries in order to generate degradation data. Two types of
cylindrical 18 650 cells, that is, energy cells (henceforth
denoted DDE or E) and power cells (henceforth denoted
DDP or P), have been cycled according to specified test
matrices, that is, within specified lower and upper voltage
limits, with specified charge and discharge current rates,
and at specified controlled temperatures. Varying these
parameters for different cells yields different degradation
rates.

In the experiments, the battery cells are cycled contin-
uously according to these specifications, interrupted at
regular intervals to perform check-ups and capacity

measurements. These check-ups include pulse tests and
charge and discharge capacity measurements by way of
Coulomb counting over a deep cycle at low current rates.
Hence, there will be observations of capacities at certain
points in time for all cells. This is illustrated in Figure 1,
which shows the measured capacities from these test pro-
cedures as a function of the number of EFC for the two
types of cells and from the two laboratories. As can easily
be observed, the degradation of the cells varies consider-
ably according to how they have been cycled. It is noted
that the cells in this experiment have been charged
according to a constant-current-constant voltage (CCCV)
scheme: the cells are charged with constant current until
the cut-off voltage, where the cells continue to charge at
constant voltage with a current that gradually decreases
toward zero. However, the discharge procedures have
been different in the two laboratories. At Fraunhofer's
lab the discharge has also been with CCCV, whereas the
discharge at Corvus’ lab has been performed with con-
stant power rather than constant current. Hence, the bat-
tery cells have been discharged somewhat differently,
and therefore, only features from the charging curves
have been extracted for use in this study. This is different
from the study presented in Ref. [18] where also dis-
charge features were included, but where data from only
one lab experiment were used.

3 | DATA DESCRIPTION

Values of current, voltage, and temperature are sampled
continuously, resulting in high-resolution time-series of
these variables throughout the experiments. From these
raw measurements, different derived variables can be cal-
culated as well, such as cumulative throughputs, cycle
counts, and EFC. Examples of time series of the raw mea-
surements of current, voltage, and temperature are
shown in Figures 2 and 3 for arbitrary cells from the two
laboratory tests. According to the test-matrix, the cell
from Frunhofer should be cycled between SOC = 50%
and 10%, corresponding to voltage limits of approxi-
mately 3.70 and 3.23 V, respectively, with discharge and
charge C-rates of 0.75 and 0.2, respectively, and at a tem-
perature of 22�C. The regular cycling and the check-ups
are easily discerned in the figure. It can also be observed
that the cycling has been interrupted at certain times dur-
ing the experiment. The cell from Corvus should be
cycled between 3.6 and 4 V with a C-rate of 1.5 and at a
temperature around 25�. Again, the regular cycling and
capacity measurements are easily identified in the fig-
ures, and it can also be observed that for this particular
cell, there seems to be some issues with the temperature
measurements.
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Similar measurements are collected from a total of
65 individual cells from the Fraunhofer experiments;
35 DDE cells and 30 DDP cells and 75 cells from the Cor-
vus experiments; 29 energy cells and 46 power cells. This
constitutes the two datasets that have been fused in this
study for establishing data-driven models for state-of-
health and capacity estimation. It is noted that data for
some cells were discarded due to, for example, data qual-
ity issues or too short time-series, rendering data from
102 cells in the final dataset.

4 | FEATURES EXTRACTION
FROM SNAPSHOTS OF DATA

4.1 | Extracting charge and discharge
curves

In order to establish data-driven snapshot methods for
the prediction of SOH, the data need to be preprocessed,
so that selected features can be extracted from the raw
time series. First, different filters are applied in order to

FIGURE 1 Measured capacity as a function of EFC from different tests; from Fraunhofer's (top) and Corvus’ (bottom) laboratories;

energy (left) and power (right) cells.
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extract the charge and discharge curves from the regular
cycling part of the data. This is done by first identifying
where in the time-series regular cycling starts and ends,
and then filtering out individual charge and discharge
half-cycles by examining the currents and when the cur-
rent changes sign. Additional checks and filters are
applied in order to remove spikes and correct for errone-
ously categorized data. The individual charge and

discharge cycles within each regular cycling period are
then numbered, starting at 1 for the first cycles following
a capacity measurement. In this study, features have then
been extracted from the second charge curves after such
a check-up. This choice is made based on two consider-
ations: one wants features that are as close to known
capacities as possible (i.e., close in time and EFC to the
capacity measurements) and features far enough away

FIGURE 2 Example of measured time series from the cell cycling at Fraunhofer; currents (top), voltages (middle), and temperature

(bottom); full time series (left) and zooming in on one of the periods with regular cycling (right).

FIGURE 3 Example of measured time series from the cell cycling at Corvus; currents (top), voltages (middle), and temperature

(bottom); full time series (left) and zooming in on one of the periods with regular cycling (right).
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from the check-ups so that the transient effects of the
pulse-testing on the battery cells have diminished. Con-
sidering the second set of cycles after a test is a trade-off
between these two considerations. Examples of extracted
charge and discharge curves for an arbitrary cell are
shown in Figure 4. The different colors correspond to dif-
ferent regular cycling periods. The measured capacity
preceding each period of regular cycling is also indicated
in the figures.

Some interesting observations can be made from
these plots. First, it is clearly seen that the charge and dis-
charge curves change as the battery degrades. From the
figure to the left, where only the second cycle after each

test is shown, it can be seen that the curves change nota-
bly. From the middle figure, it is observed that also
within a regular cycling interval, the charge and dis-
charge curves change gradually. It is also observed that
some of the charging curves behave slightly differently
and do not start at the same voltage level. This happens
to be from the first charge cycles, immediately following
a check-up, and this supports the choice of using the sec-
ond cycles.

When the individual charge and discharge half-cycles
have been extracted from the time series, they need to be
matched with results from the corresponding capacity
tests. Results of this matching are illustrated in Figure 5,

FIGURE 4 Extracted charge and discharge curves from the raw time series for arbitrary cells. Only the second curves after each test

(left) and all curves (middle) from Fraunhofer tests and second curves from a cell tested at Corvus (right).

FIGURE 5 The extracted charge and discharge cycles in the raw time series have been matched with results from capacity

measurements. In terms of EFC (left) and in terms of time (right).
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where the matching is illustrated in terms of both EFC
and time for two arbitrarily selected cells. Vertical red
lines indicate the EFC/time of the capacity measurement
and blue vertical lines represent the EFC/time of the sec-
ond charge cycle. It can be observed that the cycles and
the capacity measurements are close in both EFC and
time in most cases. In some cases, where the cycling has
been interrupted for some reason, there might be some
time between the test and the cycle, but they will still be
close in EFC. At any rate, for the purpose of this study, it
will be assumed that the capacity from the preceding
capacity test is approximately the same as the actual
capacity during the second charge/discharge cycle.

4.2 | Extracting Features from the
charge and discharge curves

The next step is to extract particular features from these
curves. Several alternative features can be used, and in
this paper, features related to the current rate, tempera-
ture, and energy throughput between selected voltage
ranges will be utilized. That is, for each selected cycle,
the mean, minimum, and maximum temperature as well
as the mean current are used as covariates. Moreover, the
total energy throughputs between voltage ranges in steps
of 0.1 V, as illustrated for an arbitrary cell in Figure 6, are
used as additional explanatory variables (a similar idea
was explored in19). Simple linear interpolation has been
used to estimate the cumulative throughput at the volt-
age limits (in terms of Ampere-hours [Ah]). It is noted
that even though the constant-voltage phase of the charg-
ing cycles might contain information that can be related
to the degradation state of the cells, features have only
been extracted from the constant-current phase in this
study. One reason for this is that these are the features
deemed most likely to be found in data from battery sys-
tems in actual operation onboard ships. This is illustrated
in Figure 6, where the black line represents the complete
charge and the red points correspond to measurements

during the constant current part, from which the voltage-
based features are calculated. Other features suggested in
the literature, include features from derivative curves and
from probability density functions from time spent in dif-
ferent voltage ranges, see, for example, Ref. [13-16] and
feature extraction is also discussed in Ref. [20-22].

In this way, a set of snapshot-based features are
extracted from the time-series data and simple prediction
models will be trained on these to estimate the capacity
and subsequently the SOH of the battery cells. In total up
to 19 features are collected from the charging curves and
the overall dataset of extracted features contains 330 sam-
ples for the energy cells and 401 samples for the power
cells. However, it should be noted that not all cells have
information for all covariates. The various cells have been
cycled between different voltage limits, and therefore
have different subsets of the voltage-based features.
Hence, the feature matrix is sparse, and this represents
an additional challenge. It means that the effective num-
ber of samples available for training is reduced, and at
different degrees for the different cells. For most of the
models presented in the following, only complete cases
are used for training. This means that values are needed
in the training data for all covariates that are relevant for
the cell to be predicted. This will be further elaborated in
the analysis and results section of this paper.

5 | DATA-DRIVEN MODELS

A number of rather simple statistical models are
employed in this study to predict the capacity of the bat-
tery cells based on snapshot features. The amount of
training data is not sufficient to train more complicated
machine learning models such as neural networks and
deep learning. Moreover, simple prediction models have
the advantage that they are more easily interpretable,
and that they are less prone to overfitting. At any rate,
the following data-driven models are explored in this
study:

FIGURE 6 Energy throughput (Ah) across selected voltage ranges are calculated and used as explanatory variables (left), together with

mean temperature (middle) and current (right).

VANEM ET AL. 7 of 16

 25784862, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/est2.476 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [03/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



• Linear regression (Linear)
• Linear regression with missing covariates (Miss)
• Generalized additive models (GAM)
• Ridge regression (Ridge)
• Least absolute shrinkage and selection operator regres-

sion (Lasso)
• Multivariable fractional polynomial regression (MFP)
• Regression tree (RT)
• Random forest (RF)
• Support vector regression (SVM)

Reference is made to standard textbooks for full
mathematical descriptions of the various models, and in
the following, a crude qualitative description will be
given.

Linear regression models assume a linear relationship
between the response variable y (capacity in this case)
and the individual covariates x¼ x1,x2,…,xp

� �T
, that is,

y¼ f xð Þþ ε¼ β0þ
Xp

i¼1

βixiþ ε, ð1Þ

where the β's are regression coefficients estimated from
data and ε is an error term, typically assumed zero-mean
Gaussian. Standard linear regression requires data for all
relevant covariates. However, the linear regression with
missing covariates model tries to account for missing
covariate values by imputation: values of missing covari-
ates can be predicted based on the available data and
these predictions can be used in the regression model.

Generalized additive models are predictive models
based on fitting nonlinear functions to each individual
covariate, typically using splines. Hence, more flexible
relationships between the response variable and the cov-
ariates can be found. That is, the linear terms βixi in
equation (1) is replaced by terms of the form f i xið Þ, where
f i can be nonlinear functions.

Ridge regression and lasso are linear regression
models, where additional regularization constrains are
applied in order to shrink the regression coefficients and
avoid overfitting. The difference between ridge and lasso
is how the penalty term is defined: in ridge regression,
the penalty term is proportional to the square of the mag-
nitude of the coefficients whereas for lasso the penalty is
proportional to the absolute sum of the coefficients. Mul-
tivariable fractional polynomial regression is again simi-
lar to linear regression, but searches for an optimal
polynomial transformation of the individual covariates.
Such methods have previously been applied to battery
data in Ref. [23].

Regression trees represent a different way of obtain-
ing a prediction rule for the response variable. The input
covariate space is subdivided into several nodes by

making splits for selected covariates. Simple prediction
models are then applied within each terminal node, typi-
cally the nodal mean. Such models are very flexible, but
may be prone to overfitting. A random forest is a model
that combines several regression trees, trained on differ-
ent subsets of the data, and combines them into a ran-
dom forest that makes predictions based on the ensemble
of trees. This is normally found to reduce the risk of over-
fitting from individual trees.

Finally, support vector regression is based on finding
a hyperplane in a higher dimensional space that can be
used to make predictions. So-called support vectors are
used to find this and are the data points closest to the
hyperplane. For further details on these regression
models, reference is made to, for example, Ref. [24].

In addition to these regression models, two types of
ensemble predictions will be calculated. The first is sim-
ply the ensemble mean, that is, the mean prediction from
all the individual models, and the second is a weighted
ensemble prediction, where the weighted average of the
individual predictions is calculated and the weights are
calculated based on the relative root mean square error
(RMSE) of the individual predictors. That is, the models
that obtain a lower RMSE on the test data will obtain a
higher weight.

It is also noted that for some of the cells, the amount
of training data was insufficient to train some of the more
complicated models such as the GAM and MFP models.
In these cases, the models that cannot be estimated are
replaced by the linear model (which is a special case of
both the GAM and the MFP model).

6 | ANALYSIS AND RESULTS

The various regression models described above, as well
as the ensemble models, are applied to predict the actual
capacity of all the 102 energy and power cells for which
cycling data are available. For each cell, two sets of pre-
dictions are made. First, all the data from similar cells
(energy or power) are used as training data to fit the
models, and these are then used to predict the capacity
for the cells. Note that even though data from all similar
cells are used for training, the training data will not be
identical for each cell, since they have different sets of
explanatory variables. Only the voltage ranges that are
relevant for the cell in question are included in the
training data. In the second set of predictions, data
from the cell that is to be predicted is removed from the
training data. This gives out-of-sample predictions
that are more comparable to predictions on real
operational data.

When applying the various regression models on data
from all the cells it turns out that results are quite good
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for most of the cells. However, when data from the cell
itself is removed from the training data, results are more
varying. Predictions might be reasonably good for some
cells but not so for many others. For some cells, some of
the models perform well, whereas others might give poor
predictions for the same cells. This is the case for both
DDE and DDP cells, and there are no clear trend as to
what models perform best (this will be further elaborated
below). Some examples of predictions that were good for
most of the models are shown in Figure 7. For each of
the cells, predictions are compared with observed capaci-
ties for both the case where data from the cell itself were
part of the training data and the case where the models
were trained on data from other cells only. In both cases,
error metrics in terms of RMSE and mean error (ME) are
included in the plots. As can be observed, whether data
from the actual cell are part of the training data or not

has a significant impact on the prediction accuracy.
Figure 8 shows some examples where some models yield
reasonable results but where other models give poor pre-
dictions, and Figure 9 shows some examples where pre-
dictions were generally poor across models.

Similar results are obtained using the same predictive
models but with only a subset of all the features
described above. For example, analyses have been made
where only the mean temperature is included, disregard-
ing the temperature variation described by the minimum
and maximum temperatures experienced during the
charging and discharging. Another reduction in features
that has been explored is to remove some voltage ranges,
for example, the first and last voltage ranges in the charge
and discharge curves. Although the numerical predic-
tions vary from case to case, the overall observations
remain the same, that is, the simple snapshot models are

FIGURE 7 Data-driven predictions based on snapshot features with reasonable accuracy for most models.

FIGURE 8 Data-driven predictions based on snapshot features with reasonable accuracy for some models and poor for others.
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able to predict well the degradation for some cells, but
not for all.

6.1 | Performance evaluation

The results above illustrate that the simple predictive
models based on snapshot features may and may not per-
form satisfactorily for an arbitrary cell. In order to evalu-
ate the model performance, there is a need to decide
what level of accuracy is acceptable from a practical point
of view. In current classification rules for electric ships,25

it is stated that the annual tests should be within ±5% of
the value presented by the BMS. Hence, it may be
assumed that an error around 5% from data-driven
models would be acceptable. Thus, for an energy cell
with nominal capacity around 3.5 Ah, an RMSE below
0.175 Ah could be regarded as acceptable. Similarly, for a
power cell with a nominal capacity around 2.5 Ah, an
RMSE value below 0.125 Ah could be deemed acceptable.

6.1.1 | Performance across cells

One may want to evaluate the performance of the data-
driven snapshot methods across the different cells, for
example by calculating the average RMSE from the dif-
ferent predictive models. Then one could compare the
average performance for each cell with the test
parameters—voltage ranges, C-rates, and temperatures—
of the cells to see which influence the results most. This
is illustrated in Figure 10, for both the energy and power
cells. The orange markers present the average RMSE for
each cell when the data from that cell is included in the
training data and the red markers present the results

when data from that cell have been excluded from the
training. The vertical bars correspond to the voltage
range the cells have been cycled between (right axis), and
the two colors of each vertical bar correspond to the C-
rate (leftmost color) and temperature (rightmost color) of
the different cells, respectively, as indicated by the color
legends in the plots.

Results from the models presented in this study indi-
cate that 22 of the 49 energy cells (45%) have
RMSE < 0.175 and that 16 of the 53 DDP cells (30%) have
RMSE < 0.125. However, if the cell to be predicted has
been included in the training data, then these ratios
increase to 49/49 (100%) for the energy cells and 46/53
(87%) for the power cells. Although it is obviously not
good enough that predictions are reasonably accurate
only for some of the cells, it is encouraging to observe
that the rather simple predictive models based on a few
snapshot features perform acceptable on nearly half of
the cells. Moreover, if the training data include data from
the actual cells to be tested, the simple snapshot methods
perform acceptable for more than 93% of the cells, and in
fact for all of the energy cells. This indicates that the sim-
ple models are indeed able to model the dependencies
between these covariates and the capacity of the cells,
provided sufficient representative training data are
available.

6.1.2 | Performance across models

One may also try to evaluate the performance across pre-
dictive models by comparing the average RMSE for all
cells, as well as counting the number of times a particular
model performs best and when it performs worst. This is
summarized in Table 1. It is observed that there is no

FIGURE 9 Data-driven predictions based on snapshot features with poor accuracy for most models.
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clear winner. Looking at the mean RMSE for the results
obtained when the predicted cell is included in the train-
ing data, it is observed that most models perform quite

well. However, when these data are excluded from the
training, all models do considerably worse, and the best
candidate models (ignoring the ensemble predictions)

FIGURE 10 Average RMSE and test parameters for each cell.

TABLE 1 Performance across models; average RMSE for all cells; number of times a model performs best and worst.

Linear Missing X RT RF GAM Ridge Lasso MFP SVM Ensemble w Ens

Average RMSE for all cells

With cell 0.0937 0.131 0.135 0.0487 0.0325 0.114 0.0981 0.0558 0.0281 0.0634 0.0331

Without cell 0.262 0.230 0.224 0.214 2.45 0.233 0.227 41.5 0.294 4.99 0.119

Number of times individual models perform best

With cell 2 0 0 8 46 0 1 4 36 0 5

Without cell 9 4 12 5 10 6 6 9 12 4 25

Number of times individual models perform worst

With cell 2 32 42 0 1 16 6 3 0 0 0

Without cell 7 17 22 2 20 3 1 14 16 0 0

VANEM ET AL. 11 of 16
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would be regression tree, random forest, ridge regression,
and lasso. Considering results not trained on the pre-
dicted cell only, it appears that the regression tree is the
model which most often performs best. However, this
also turns out to be one of the models that most often
performs worst. On the other hand, ridge regression and
lasso never perform worst, but also rather seldom per-
form best. Overall, it is difficult to select one model that
performs best overall, and results vary considerably
between cells. Possibly, an ensemble method could be
regarded as the best approach, but this is also very sensi-
tive to very wrong predictions from individual models.
Indeed, the very high average RMSE for the MFP model
is from a very few predictions that are completely wrong,
probably as a result of extrapolating a polynomial fit.

7 | DISCUSSION

7.1 | Importance of representative
training data

One explanation for the varying results from the snap-
shot methods applied in this study could be the limited
training data that have been available. Since the various
cells have been cycled differently, the data for the differ-
ent cells do not contain the same covariates, and only the
ones relevant for the cell to be predicted could be
included in the models. This leads to varying amount of
training data for the different cells, and may in particular
lead to lack of representative training data for some cells.
For example, some cells have been cycled between 2.5
and 4.2 V and contain all voltage ranges, corresponding
to 17 charge-based features. For these cells, only data
from other cells that include all voltage ranges can be
included in the training set, and this significantly reduces
the amount of training data. In one example, this means
a reduction in training samples from 261 to 44 complete
cases. For cells cycled over a narrower voltage range, the
number of features is reduced, and the amount of train-
ing data is effectively higher. For example, one cell cycled
between 3.85 and 4.12 V contains 6 covariates with an
effective training set of 96 complete cases; another cell
cycled between 3.22 and 3.72 V contains 8 covariates with
a training dataset of 86 samples. In all cases, the limited
amount of representative training data is a possible expla-
nation for varying results, and one possible remedy could
be to enlarge the dataset by doing more laboratory tests.

The sparsity of covariates in the training data is the
main motivation to try out the missing covariate model.
With such a model, rather than disregarding all samples
without the full set of covariates the idea is to also use
this additional information by imputing values for the

missing covariates based on the existing ones. However,
as it turns out, this is not successful for all cells, and this
model often turns out to perform worst. This is presum-
ably due to the number of missing covariates in many
cases. If only one or a few covariates are missing in a
sample, it may be possible to accurately impute the miss-
ing value. However, in many cases in this dataset, a large
portion of the covariates are missing in many samples,
and it is unrealistic to believe that one should be able to
impute them all accurately. In some examples, the num-
ber of missing covariates is similar to the number of
existing ones.

The importance of representative training data is also
clearly seen by looking at the few duplicate cells. In the
experiment, a few pairs of cells have been cycled accord-
ing to the same test parameters. Hence, even though the
data from the cell that are to be predicted are removed
from the training set, data from another cell that have
experienced a similar load pattern are available. In this
study, duplicate cells are DDE057/DDE061, DDE068/
DDE072, DDP030/DDP031 and DDP038/040, and for all
of these cells all the individual models perform very well
even when the cell itself is not included in the training.
This can also be seen by studying Figure 10. Again, this
highlights the importance of representative training data
to obtain good predictions.

7.2 | Possibilities for improvements

Although it is overall encouraging that the data-driven
snapshot methods perform well for many of the battery
cells, it is obviously not satisfactory that they fail to pre-
dict accurately for all cells. In the following, some ideas
of how to improve the results are discussed.

7.2.1 | Extending the training data

The obvious solution for improving the data-driven
methods is to extend the training data. As presented
above, if a cell that has experienced similar loading his-
tory is included in the training data, as is the case with
the duplicate tests, the models perform very well. Hence,
this paper has fused data from different laboratory tests
together in order to extend the training data. Neverthe-
less, even with a combined dataset from two laboratory
tests, results could possibly be improved by adding even
more training data from other tests, if available.

Another approach could be to, rather than expanding
the cycling tests, to focus testing more on the data needed
for training snapshot methods and to design the experi-
ments somewhat differently. Typically, tests are

12 of 16 VANEM ET AL.
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performed according to a static test matrix, where one
wants to investigate how different stress factors such as
varying temperature, C-rate, and DOD influence the deg-
radation. This will typically be features in cumulative
damage models and such tests are useful for training
such models. However, for snapshot methods, the fea-
tures will typically not be these stress factors but will be
extracted from the charge and discharge curves. In this
case, it may not be necessary that the cells are cycled
according to static test parameters, and it will be more
important to ensure that all cells have a full set of covari-
ates, for example that they are experiencing the same
voltage ranges. One could assess which voltage ranges
the battery system is expected to experience most fre-
quently during normal operation, and focus on these
voltage ranges, for varying temperatures and current
rates, in the experiments. If all charge and discharge
cycles contain these selected voltage intervals, the train-
ing data will be richer and could possibly lead to better
predictions from snapshot methods even without extend-
ing the number of tests. One could also apply more
dynamical loading in order to better explore the variation
in the other covariates with a limited number of tests.
Looking at the voltage ranges for the various cells indi-
cated in Figure 10, it is obvious that it is not possible to
find a subset of the voltage ranges that is included in all
the cells for the available dataset. Thus, a lot of data are
disregarded for each cell, and this way of testing is waste-
ful if the data are to be used for snapshot methods.

7.2.2 | Additional features

The models established in this study are based on a small
set of covariates extracted from the measured time series
of current, temperature, and voltage. In addition to mean
current and mean, minimum and maximum tempera-
tures, covariates related to the energy throughput at
selected voltage intervals are the main explanatory vari-
ables. These have been extracted directly from the charge
and discharge curves. It is possible that improved predic-
tions can be achieved by using different or additional fea-
tures. One example could be to try to extract features
from derivative curves, such as dQdV or dVdQ curves.
Such derivative curves are known to exhibit peaks at cer-
tain voltage levels, which may change in both location
and amplitude as the battery cell degrades, and could be
possible features in data-driven models. Examples of
such derivative curves are shown in Figure 11, and it is
clearly observed that the curves change character as the
cell degrades. However, there is a lot of uncertainty asso-
ciated with obtaining such curves, for example, related to
the differentiation of noisy, discrete measurements as
discussed in Ref. [26] and even though there are several
approaches to estimate such curves,27-30 it is far from
straightforward to obtain smooth curves with well-
defined properties. Moreover, the information extracted
from the charge and discharge curves would undeniably
contain the same information as the derivative cures,
and it is not obvious that predictions would be improved

FIGURE 11 Example of derivative curves, dQdV.
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by including additional features from the derivative
curves.

Another way of extracting features from the charge
and discharge curves is to fit parametric functions to
the curves, and use the parameters as features. Two
examples are polynomial or piecewise linear curves.
However, it is not straightforward to obtain good fit, and
for example with polynomial functions, one would typi-
cally require rather high-order polynomials to fit the
curves well.

7.2.3 | Additional data preprocessing, fine-
tuning, and different predictive models

Careful preprocessing of the data has been performed in
order to extract the charge curves from the raw time-
series data and subsequently to extract the features from
these curves. A number of filters have been applied to
remove spikes in the data and to obtain error-free train-
ing data. However, more careful preprocessing could pos-
sibly improve the data quality and remove residual errors
in the data. Examples of such errors are that only parts of
the charge cycles are included in the data or that charge
curves could be associated with wrong capacity measure-
ment. It is always possible that such noise can be
removed by additional preprocessing and yield improved
results.

It is also possible to more carefully fine-tune the pre-
dictive models. Some of the models include several
hyperparameters that needs to be specified. For many of
the methods applied in this paper, hyperparameters are
selected by cross-validation and grid-searches, but even
more optimal values can possibly be found. Yet another
option to explore is to use different predictive models. In
this study, several simple data-driven models are
employed, and more complicated machine learning
models such as neural networks and deep learning
models have not been tried out. However, it is believed
that with the limited amount of training data available, it
will be difficult to fit more complicated models, and even
the more complicated models used in this study, most
notably the GAM and the MFP models, are found to
sometimes have difficulties.

Hence, notwithstanding several possibilities for
improving the predictions by adding more features, more
preprocessing, fine-tuning, and exploring different
models, it is believed that the most important potential
for improvement in this study is related to the available
training data. Hence, further efforts will be directed
toward integrating results from other tests in order to
extend the training data.

7.3 | Snapshot methods for data-driven
diagnostics of ships in operation

The objective of this study is to explore and establish
data-driven models for diagnostics and SOH prediction of
the maritime battery systems. If such methods can be
demonstrated to yield reliable results, they may be used
to replace annual capacity tests as a class requirement for
electric and hybrid ships. In this context, snapshot
methods are believed to be a much more attractive solu-
tion compared to cumulative damage models, which
would require data from the whole operational history of
the ship. This is difficult to guarantee for ships at sea,
with possible intermittent and limited ship-to-shore con-
nectivity and data storage capabilities. Moreover, for
cumulative methods, it might be difficult to account for
maintenance and possible replacement of individual
modules in the battery systems. Snapshot methods, on
the other hand, would only require mere snapshots of the
data streams at regular intervals.

In addition to requirements on prediction accuracy
and reliability, for snapshot methods to be accepted by
classification societies as an alternative to annual capac-
ity testing, a natural class requirement would be that suf-
ficient and relevant training data are available. Hence,
laboratory testing might be required prior to installation
for the particular cell type. This is associated with a
notable cost, but it is believed that test results could be
re-used for different installations of the same or similar
battery systems. Moreover, as elaborated above, it is
believed that if experiments are carefully designed with
snapshot methods in mind, it should be possible to obtain
richer training data without prohibitively extensive and
expensive laboratory testing. As has been demonstrated
by this study, the quality and representativeness of the
training data are crucial, and further research is needed
in order to specify such data requirements within a data-
driven classification regime.

8 | SUMMARY AND CONCLUSION

This paper has presented results from a study on snap-
shot methods for data-driven SOH modeling and moni-
toring of battery systems onboard ships in operation. If
such models can be demonstrated to work well, they will
represent a huge benefit to the maritime industry com-
pared to annual capacity testing or data-driven modeling
using cumulative damage methods. The paper has illus-
trated how charge curves extracted from raw measure-
ments of currents and voltages are influenced by battery
degradation and how relevant features can be identified
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from these. Moreover, a set of simple statistical models
are explored for predicting the actual capacity of the bat-
teries. These have been applied to a dataset resulting
from fusing data from different laboratory tests together.

The overall results are encouraging, and demonstrate
that simple statistical models based on a limited set of
features easily obtained from sensor data are able to pre-
dict the degradation in battery capacity. With representa-
tive training data, illustrated in this study by including
data from the cell to be predicted in the training data, the
models yield reasonable results in more than 93% of the
cases. If data from the cell are excluded from the training
set, results are still reasonable for 37% of the cells. This is
encouraging, but needs to be improved before such
methods can be recommended as an alternative to cur-
rent class requirements of annual capacity tests.

The results clearly illustrate the sensitivity of data-
driven models in general, and snapshot methods in par-
ticular, to available training data. It is believed that lack
of sufficient representative training data is the main
explanation for the varying results, and further efforts
will be directed toward extending the data set and more
carefully designing experiments with snapshot methods
in mind. In summary, the main findings from this study
are that it is possible to extract a set of features for data-
driven SOH estimation from snapshots of the data, and
that it is possible to obtain reasonable results from rather
simple statistical models. However, it remains challeng-
ing to get sufficiently accurate and reliable predictions
for all cells, and this is believed to be mostly related to
the quality and amount of relevant training data.
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