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Abstract 
This thesis describes, analyzes and applies the Solvency II on life and pension insurance by 

using the standard formulas in the Quantitative Impact Study 5 (QIS5) to calculate the 

Solvency Capital Requirement (SCR). We specifically examine the consequences for the 

Norwegian occupational defined benefit schemes, primarily for the private sector. The 

standard formulas in QIS5 to some extent specify stress scenarios without giving explicit 

formulas as they should be exact for the application. We therefore outline exact formulas for 

the Norwegian occupational defined benefit schemes. We do this both for the net expected 

cash flows and for the stressed cash flow. The latter we do by giving a method for calculating 

the stressed survival and hazard rate functions. We also price the embedded interest rate 

guarantee using market consistent prices from the Norwegian swaption market. We discuss 

bonds specifically and redistribution of cash flows generally to improve the precision. Using 

the contract boundary principle in Solvency II we base our calculations on that all policies are 

converted to paid up policies. This may primarily be relevant for pension schemes in the 

private sector. However, formulas for active policies are also given. Additionally one would 

only need the future risk premiums for market risk. At the end we perform a full QIS5 

consequence study for a Norwegian pension fund, using the outlined formulas and discussing 

all relevant steps. To support this part we have developed algorithms in Mathematica to 

perform the necessary calculations. 
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1  Introduction 
 

1.1 Solvency II and QIS5 

The Solvency Capital Requirement (SCR) is the regulatory amount of capital which insurance 

companies are required to hold in order to withstand unforeseen events. Under the current 

regulation, Solvency I, this is known as the solvency margin. Solvency I was adopted by the 

European Parliament and the Council in 2002 and was a limited reform of the earlier EU 

Solvency directives. During the Solvency I process it was acknowledged that a more profound 

reform was required to incorporate all aspects of an undertaking. A project now known as 

Solvency II was started to advance the shortcomings. 

In December 2005 the first consequence study of the proposed solvency regulation was 

completed, known as the Quantitative Impact Study 1 (QIS1). This was followed up by QIS2 

in June 2006, QIS3 in October 2007, QIS4 in July 2008, and finally QIS5 in November 2010, 

along with the developing progress of the Solvency II proposal. Implementation of Solvency 

II follows the Lamfalussy process where a level 1 framework directive sets out the general 

principles. The Solvency II framework directive, 2009/138/EU, was approved by the EU-

Parliament and Council on April 22nd 2009 (The European Parliament and of the Council, 

2009). 

Detailed implementing measures are introduced at level 2 in the Lamfalussy process, with 

EIOPA1 giving advice to the commission on implementing measures (e.g. EIOPA has 

developed a draft of the QIS5 technical documentation). QIS5 should according to the 

schedule be the last quantitative impact study before Solvency II is implemented on January 

1st 2013. However, the technical specifications in QIS5 are not necessarily the final proposal 

for the level 2 implementing measures in Solvency II. Amendments will be likely adopted 

based on the results from QIS5 reporting. 

Solvency II has three pillars similar to the Basel II banking regulation. Pillar 1 covers the 

quantitative requirements for calculating the technical provisions and solvency capital 

                                                 
1 European Insurance and Occupational Pensions Authority (transformed from CEIOPS January 1st 2011) 
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requirements. Pillar 2 covers the internal risk management subject to supervisory review. 

Pillar 3 entails market discipline setting disclosure requirements. 

1.2 General principles (QIS5) 

The technical provisions and solvency capital requirements are based on the net expected cash 

flows of undertakings covering all assets, liabilities and financial instruments. This is a broad 

term covering both cash-in and cash-out. The technical provisions discount all cash flows on a 

market consistent basis. Additionally a risk margin is included to cover the cost of holding 

solvency capital. This follows the principle of that the technical provision should cover the 

price an undertaking would have to pay another undertaking for assuming the liabilities. 

The Solvency Capital Requirement (SCR) is calculated as the value-at-risk using a one year 

time horizon and a 99.5 percent confidence level. An undertaking will then need to hold 

assets covering the sum of the technical provisions and the SCR. There is also the Minimum 

Capital Requirement (MCR) and the Absolute Minimum Capital Requirement (AMCR) 

setting a floor on the MCR. 

The SCR may calculated in several ways, using (European Commission, 2010a); a) full 

internal model, b) standard formula and partial internal model, c) standard formula with 

undertaking-specific parameters, d) standard formula, and e) simplification. The QIS5 

technical documentation details the standard formula and simplifications where allowed for. 

However, the standard formula is the principle rule. The standard formula uses a modular 

approach, specifying the details of a stress scenario for each risk. A standard formula may or 

may not include an explicit formula. 

Simplifications may sometimes be used if the simplified formula is proportionate to the 

underlying risk, and it is an undue burden for the undertaking to perform the complete 

calculations. The steps for assessing the proportionality assumption are outlined. Internal 

models may be used if they are approved by the national regulatory authorities. 

1.3 Outline of the thesis 

The project assignment is to describe how the stress scenarios are designed in QIS5 for life 

and pension insurance, and analyze how these are used for calculation of the solvency capital 
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requirement. This includes; a) a verbal description, b) a mathematical description, and c) a 

consequence study of a pension fund. 

The plethora of life insurance products is immense and we will therefore confine the 

discussion to the Norwegian occupational defined benefits schemes. This is relevant for the 

consequence study of the pension fund. We will only focus on the private sector schemes. 

With some alterations the discussion and formulas will also apply to the public sector 

schemes. Furthermore, some of the discussion may be relevant for other life insurance 

products, and may be computed if the net expected cash flows can be accounted for. We have 

however specifically left out unit linked and defined contribution schemes from the formulas. 

These products diverge since the investment risk is born by the policyholders. Assets under 

management in Norway for these products are also low compared to the defined benefit 

schemes. Lastly we will only consider the standard formula, except from one simplification. 

In chapter 2 we start out with giving the formulas for calculating the net expected cash flows 

for the Norwegian defined benefit schemes based on the survival models. We will also need 

the stressed cash flows, and these may be computed by using the stressed survival functions 

outlined in appendix A. In chapter 3 we introduce the necessary concepts for calculating cash 

flows for bonds, redistributing of cash flows, discounting of cash flows, and handling the 

interest rate guarantee on a market consistent basis. Chapter 4 describes the QIS5 formulas for 

credit risk, interpreted broadly. In chapter 5 we address the Norwegian legislation covering 

relevant aspects of the Norwegian defined benefit schemes. These chapters outline the 

necessary actuarial and financial theory for calculating the SCR. We proceed by describing 

the structure of QIS5 in chapter 6. We will need to calculate the technical provisions, since 

the assets in the insurance funds may not cover the technical provisions, and reduce the 

available amount of own funds for covering the SCR. However, this difference is technically 

not part of the SCR. We continue by describing both the modular and equivalent scenario 

approach. In chapter 7 we describe the financial stress scenarios and use the financial theory 

from previous chapters to calculate the capital charges. Analogously in chapter 8, we describe 

the life underwriting shocks and use the actuarial formulas (and discounting formula) for 

calculating the capital charges. Having explained and defined the necessary tools, we proceed 

with the practical assignment in chapter 9. We explain the algorithms, and discuss relevant 

issues and results in relation to the consequence study. At last in chapter 10, we conclude by 

giving some reflections of the project. 
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2 Life Insurance 
 

Life insurance has existed for centuries and can be traced back to Roman times in the form of 

annuities when marine insurance was available. A contract called an annua consisted of a 

stream of payment either for a fixed term or for life and was offered by those who sold marine 

insurance. The earliest known guide to pricing of such contracts is dated back to 220 AD 

(Cannon & Tonks, 2008). 

More recently in relative terms, the seventeenth and eighteenth centuries proved to be an 

influential period for the advancement of life insurance schemes. The Scottish Ministers’ 

Widows’ Fund2, which effectively started March 25th 17443, is often cited as the first 

successful life insurance fund. The Church of Scotland had earlier also made attempts to 

organize financial provision for the widows and orphans of its ministers in various schemes, 

but had failed due to inadequate support or poor organization (Dow, 1971-1973). 

The Scottish Ministers’ Widows’ Fund scheme let the ministers choose premiums from four 

different levels. The premiums were initially invested in loans to member ministers at a fixed 

4 percent interest rate level4. This simplified return calculations and enabled the fund to pay 

annuities to new widows in the amount £10-25 and the orphans were able to receive stock 

capital. The actuarial calculations were based on the world’s first life table constructed by Sir 

Edmund Halley’s in 1693 (Gerber, 1997), using the Breslau statistics. Interestingly these 

contracts are typically still in place with some modifications in the pension benefits scheme 

discussed in this thesis. 

The first section in this chapter introduces the general basic survival time model followed by 

a description of the Gompertz-Makeham model which presumably is the most widely used 

model among actuaries. The second section puts the model in the context of life insurance 

contracts by defining the net single premiums (and equivalently the reserves) for each type of 

insurance contract considered in this thesis. As described in the onset of the thesis the primary 

focus will be on the Norwegian private occupational defined benefit schemes. The third 

section introduces tables of expected cash flows for the remaining lifetime of a given life. 
                                                 
2 Church of Scotland Ministers’ and Scottish University Professors’ Widows’ Fund 
3 Approved by the Assembly in May 1743 
4 Compulsory loans to members was ended in 1778, having proved to be “hurtful” to members and the Fund 



5 
 

This is an alternative approximation to the continuously discounted cash flows. However, we 

defer elaborating on the mapping and discounting mechanism for this approach until chapter 

3. Finally in section four we will comment on underwriting risk and briefly discuss recent 

research that model biometric risk explicitly to allow for an actual Value-at-Risk model in 

contrast to the scenario based approach in standard formula in QIS5.  

2.1 Survival times 

In life insurance the underwriter agrees to make a single payment, or a stream of payments, 

contingent on predetermined “life” events unfolding (or not) in relation to the insured person. 

Survival time models are used to model probabilities of these events occurring over time and 

therefore have a natural representation as a stochastic process, see e.g. (Aalen, Borgan, & 

Gjessing, 2010). We will mostly refrain from this approach although section four makes some 

reference to this approach. In this section “survival” is used as a generic term which can have 

two meanings, a) that a life has not deceased, or b) that a life is not disabled. 

2.1.1 The basic model 

We look at a life of age x (years) as a starting point from a subpopulation (i.e. the population 

is subdivided into male and female). Let T represent the future lifetime of the individual, so 

that x + T represents the time of death (or disability). T is unknown in advance and we 

assume that it is a stochastic variable with a cumulative density function (2.1) which gives the 

probability of not surviving until time t  0. The actuarial notation for this is (2.2), while the 

probability of surviving past time t  0 is denoted by (2.3). The latter is known as the survival 

function. 

        0,  ttTPtG         (2.1) 

       tGqxt            (2.2) 

 tGpxt 1           (2.3) 

In the case of mortality rates, the survival function will tend to go to zero as t approaches 

infinity (or approximately zero for values greater than  below). In contrast, a survival 
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function for another type of event may converge to a value within the unit interval as the full 

population may not experience the event under consideration (e.g. becoming disabled). 

Implicitly G(t) is conditional on the individual having survived past age x since G(0)  0 by 

construction. The one year death and survival probability, 1qx and 1px, are often denoted by qx 

and px respectively. A life table, which is also called a mortality table, is a sequence of one-

year death probabilities q0, q1,…, q, where  is an old age that is almost unattainable, e.g. 

120 years not being futuristic about advances in medicine. 

The complete distribution of tpx and tqx for t{1,2,3…} can be calculated recursively by the 

formulas below using an arbitrary life table as a basis: 

 ,2,1             , 121   tppppp txxxxt  

 








 




 ,3,2 if           

1 if                          
1

1
1x

x

tqpq

tq
q t

s
sxsx

xt  

Identities (2.4) – (2.6) will also be useful, see (Gerber, 1997) for details: 

      
  xs

xts
sxt p

p

sG
tsG

sTtsTPp 
 




1
1

|      (2.4) 

        
  xs

xsxts
sxt p

qq

sG
sGtsG

sTtsTPq





 
 1

|     (2.5) 

           
  sxtxsxts qp
sG

sGtsG
sGtsTsPq 





1

1|     (2.6) 

2.1.2 The hazard rate 

The survival function gives the unconditional probabilities for the event occurring after time t 

 0. A related function is the hazard rate5 implicitly assuming that T has a probability density 

function (i.e. G’(t)  0 exists for all x  0 and t  0). In contrast to the survival function, the 

hazard rate is conditional on the event not happening before time t  0. The product of hazard 

                                                 
5 (Aalen, Borgan, & Gjessing, 2010) use the term the hazard rate for (2.4) and cumulative hazard rate for the 
integral expression in (2.6). 
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rate and an infinitesimal time interval, yields the instantaneous probability of an event 

happening over the next infinitesimal period. The hazard rate is formally defined in (2.4). 

  
       

 
 
 tG
tG

tGt
ttGtG

tTttTtP
t tt

tx 









 1

'
1

111
lim|

1
lim

00
    (2.4) 

The relationship between the two functions becomes more apparent after rewriting the right 

hand expression of (2.4) as the derivative of the integrated expression, which is shown below.  

    

 
     xttx p

dt
d

tG
dt
d

tG
tG

ln1ln
1

'



     (2.5) 

Finally solving for the survival function in (2.5) yields (2.6) which establish the well-known 

relationship between the survival and the hazard rate. 

     








  

t

sxxt dsp
0

exp       (2.6) 

At first glance it may seem only complicating introducing the hazard rate, but in survival 

analysis it is more common to estimate the hazard rate (or more often the cumulative hazard 

rate) rather the survival function directly from empirical data. A comprehensive description of 

models and statistical methods can be found in (Aalen, Borgan, & Gjessing, 2010). We will 

briefly consider the Gompertz-Makeham hazard rate function which will be used later in the 

quantitative part. 

2.1.3 The Gompertz-Makeham hazard rate model 

The model was in part developed by Gompertz who postulated that the hazard rate would 

grow exponentially as a function of age, illustrated by the second part of the right hand side in 

(2.7). In a mortality model this has the intuitive interpretation of an average ageing factor. 

Makeham later generalized the model by adding a constant to the hazard rate which is the first 

part of the right hand in (2.7). The constant tries to capture factors independent of age, e.g. 

like accidents. Put together this yields the Gompertz-Makeham hazard rate model. 

      tx
tx c 

          (2.7) 

The cumulative hazard rate of Gompertz-Makeham can easily be calculated as below. 
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      ccctdtcdt tx
t

tx
t

tx ln/1
00

  
   

Finally, the survival function can be found by inserting the cumulative hazard rate into (2.6). 

         ccctp tx
xt ln/1exp         (2.8) 

The Gompertz-Makeham model usually gives a reasonable approximation to mortality rates, 

which presumably is why it is quite popular considering its simplicity. However, it normally 

gives an inadequate description of mortality rates for older ages, yielding too high morality 

rates (Bølviken & Moe, 2008). In spite of this, the net calculation basis for the Norwegian 

collective defined benefit scheme (K2005), is based on this model amongst others. 

2.2 Benefits and net single premiums 

A net premium for an insurance policy is calculated in such a way that the difference between 

expected present value of the benefits and the expected present value of the net premiums are 

zero. This is known as the equivalence principle. Generally, the premiums paid by the policy 

holders have loadings compensating for underwriting risk, operating expenses and profits, 

which to some degree are discretionary factors to individual insurance companies. The net 

premium is a pure notion and excludes all loadings and should therefore be relevant for all 

undertakings on a net basis. 

A policyholder typically agrees to pay premiums on a periodic basis set forward in the 

insurance policy terms, commonly on an annually, quarterly or monthly basis. If the terms on 

the other hand set forward a single premium, the premium is fully paid up front. Thus, when 

entering the insurance policy, the net single premium and the present value of the net single 

premium is equal and furthermore also equal to the expected value of the benefits. This 

relation is useful, and we will use the net single premium approach to value the contractual 

obligations of an undertaking. In a fully funded pension scheme the technical reserves needs 

as a minimum to cover the net single premiums for the earned benefits at all times. 

In this section we aim to describe basic elements of the workers benefits and lay out the 

formulas for calculating the net single premiums in the current Norwegian system for 

occupational collective defined benefit scheme primarily for the private sector. However, we 



9 
 

note that the system will undergo significant changes over the next couple of years in 

response to the Norwegian state pension reform which was implemented on the 1st of January 

2011. The state pension reform is in principle an adaption to a defined contribution scheme 

where 18.1 percent of a taxpayer’s salary up to a limit is accumulated into a taxpayer’s 

“premium reserve” each year. The retirement age is flexible within a preset range and it is 

also possible to retire/work part time. The biggest change is, however, the adjustment factor 

for life expectancy which transfers a large part of the longevity risks from the taxpayers onto 

the beneficiaries. 

The Government had earlier noticed that a significant part of the workers in the private sector 

was only covered by the state pension scheme, and therefore enacted a law which came into 

force in 2006 requiring all employers to run a pension scheme (OTP6) as part of the 

employee’s compensation. The minimum required level is quite modest requiring only a 2% 

contribution of the salary into a defined contribution scheme. Although there is a tendency of 

employers shifting towards defined contribution schemes, the collective defined benefit 

schemes are still the most widespread pension scheme in Norway. The majority of the 

employers with pension schemes established before OTP, have a defined benefit scheme and 

all workers in the public sector are in principle covered by a defined benefit scheme. 

There are basically four different components in the Norwegian collective defined benefit 

model: retirement pension after turning 67 years until death, disability pension until 

retirement, widows’ pension and orphan’s pension until the age of 18 and/or 21 years which 

are all life annuities paying a certain fixed amount on a regular basis (labeled net benefit in 

the next paragraph). As an additional component, Widow’s pension may also extend to 

registered partners. It is also quite common to include a whole life insurance policy. We 

disregard this also since only life insurance companies can be licensed to offer these 

contracts. 

Gross benefits in a pension scheme are defined as a percentage of the salary and are equal for 

all members within a pension scheme. The gross benefits include expected social security 

benefits under the prevailing social security system. This is, however, uncertain due to the 

risk of possible legislative reforms or possible variations of an assumed income path. The net 

benefits are simply the difference between these terms and constitute the actual obligations of 

                                                 
6 Obligatorisk tjenestepensjon 
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an undertaking for the private sector since it is illegal to guarantee gross benefits7. We will 

not discuss the formulas defining the social security benefits. These are somewhat tedious and 

don’t involve actuarial calculations. Secondly the gross and net benefits have not been fully 

compatible after the state pension reform came into effect, and in practice awaiting legislative 

changes for the private collective pension schemes. Thirdly as already discussed insurance 

policies for the private sector only cover net benefits. 

In the continuation we assume that the net benefits readily available and that these are paid 

out as a fixed continuous payment stream. Consequently, we simply need to consider the case 

of paying one unit continuously per year and scale these appropriately since the net single 

premiums will be proportional to the net benefits. We also informally introduce the 

discounting function sdn which we define as the forward price of a zero coupon bond from 

time n and maturing at time (n + s). We will discuss this concept more in chapter 3.  In the 

meantime we assume a flat interest rate term structure representing the the technical reserve 

rate, i. and the usual discounting function sdn = (1 + i)-s. 

Below we follow the notation used in (Lillevold & Partners AS, 2010) with some slight 

modifications in addition to introducing the discounting function above. Ey is the net single 

premium for the relevant benefit with a continuous payment stream of one unit. We define n 

as the number of years until retirement and let it equal zero for the retired members.  is 

introduced in section (2.1.1), spy is the mortality survival function and y represents the age of 

the insured individual. Now, using the equivalence principle and inserting the discounting 

function which leads to (2.9), the net single premium for a retirement benefit can be 

calculated straightforward by and multiplying the net retirement benefits by (2.9) (the latter is 

not shown). The mortality function is implicitly also dependent on the gender of the insured. 

   






 
y

ynsns

y

ynsnsynny dspddspdpdE


0

0

0

0      (2.9) 

We now shift attention to the widows’ pension rights which is paid out in the event of the 

insured passing away for the remaindering of the widow’s life time. The net single premium 

for this benefit is shown in (2.10) and may not be fully intuitive. The first expression is fairly 

straightforward noting that spy  y+s is the marginal probability for the insured passing away 

                                                 
7 In contrast to this the public sector pension scheme is based on gross benefits. 
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in s years8, and simultaneously defining s
yK  as the forward present value of widow’s benefits 

in s years conditional on the insured passing away exactly in s years. 
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    (2.10) 

The second expression in (2.10) however requires some more explanation. The Norwegian 

archetype for the collective defined benefit scheme for widows’ pension is based on 

population demographics. Orphan’s pension is treated similarly below. No information about 

marital status is actually required. The function g(y + s) is simply the probability that an 

individual of age y + s is married, and is conditional on the gender. Furthermore, f(y + s) 

represents the average age difference for a married couple where the insured is y + s years 

old, also conditional on the gender. Consequently, the age of the insured’s spouse is on 

average y + s – f(y + s) years old. Finally, we need the spouse’s survival function. This is 

simply the survival function for the insured’s opposite sex conditional on the spouse being 

alive when the insured passes away. The last part follows since g(y + s) already accounts for 

the possibility that the spouse may have passed away earlier. If the benefits extend to a 

partner this is treated similarly replacing g(y +s) in (2.10) with an appropriate analogous 

function. We omit further details to avoid repetition. 

Calculating the net single premium for orphan’s pension rights should be straightforward 

having worked through (2.10). The first expression in (2.11) below is perfectly identical 

although the function K is actually redefined. Now, shifting to the second expression, k(y + 

s), which is the average number of children, while z(y + s) is the children’s average age when 

the insured is (y + s) years. The payment stream ends when the orphans turn SBP years, 

usually 18 or 21 years or some combination. This is early in life and the survival function is 

therefore approximated by the constant 1. 

                                                 
8 Which is easily obtained by multiplying (2.3) by (2.4) 
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In (2.10) and (2.11) we have defined the net single premiums for the widows and orphans 

pension rights. This is dependent on the insured passing away. We also need to consider the 

situation where the insured in fact has passed away and the widow and orphans are receiving 

benefits. This is represented by expression (2.12) and (2.13) respectively where the payment 

stream no longer is dependent on originally insured individual having passed away. We now 

regard the insured person having shifted focus from the originally insured to the widow or the 

orphan represented by (2.12) and (2.13). 

    



y
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
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     
BPs

sy dsdE
0

0       (2.13) 

Finally we need to consider disability pension benefits. So far we have only considered the 

insured having been able to enter two states, either being alive or having deceased. In order to 

calculate the disability benefits we need to introduce a third state, which is being alive but in a 

disabled condition. As a simplification we don’t allow an individual to recover from this, i.e. 

being disabled until death. We assume that mortality survival function is independent of the 

disability state, which leave expressions (2.9) – (2.13) unchanged. Likewise, using the 

assumption of independence between mortality and disability, the probability of receiving 

disability pension at a certain time is simply the product of the mortality survival function and 

the probability of being disabled, the latter being )1( dis
ys p . A disabled individual will receive 

benefits until retirement in n years. This leads to expression (2.14). 

    
  

n
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ysyssy dsppdE
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When an individual is in a disabled state, the probability of being disabled is always one using 

the assumption that the recovery rate from the disability state is zero. Now, replacing 

)1( dis
ys p  (2.14) by 1 immediately gives (2.15). 

     
n

yssy dspdE
0

0       (2.15) 

Expressions (2.9) – (2.15) are in principle the necessary formulas to calculate the technical 

reserves and solvency margin capital in subsequent chapters. It may however be more 

convenient to consider the net expected cash flows which we introduce below. 

2.3 Net expected cash flows 

A cash flow is a nominal received or paid quantity at a certain time or period of time. The 

QIS5 discounting helper tab uses the calendar year as a basis. We will take this as a starting 

point and define tEy as the expected cash flow in year t = 1,…, for each benefit under 

consideration, when the insured is of age y old. We continue suppressing the implicit 

conditionality on sex. We will also use an indicator function I(logical expression) which is 

equal to one if a logical expression is true and zero otherwise. 

The expected cash flows in a given year, t, can then easily be found by inserting an indicator 

function with an appropriate logical condition into (2.9) – (2.15) and removing the 

discounting function everywhere. This is shown in (2.16) – (2.22), respectively. Note that 

expression (2.16), (2.17) and (2.18) may involve forward starting benefits, consequently t is 

shifted appropriately.  

Retirement benefits:  

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Widow’s benefits:
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Orphan’s benefits:  
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Widows receiving benefits:  



y

ysyt dststIpE


0

1     (2.19) 

Orphans receiving benefits:   
BPs

yt dststIE
0

1      (2.20) 

Disability benefits:      
n

dis
xsxsyt dststIppE

0

11      (2.21) 

Disabled receiving benefits:   
n

ysyt dststIpE
0

1     (2.22) 

The indicator functions are computationally inefficient. It is, however, straightforward to 

factor them out by implementing them as in the listed Mathematic code in appendix C. 

2.4 Biometric risk 

Survival time analysis aims to identify important covariates that may affect survival times. An 

example is demographical factors for mortality models like age, sex, marital status, smoking 

habits, critical diseases that run in families, occupation, exercising habits. This is, however, 

beyond the scope of the thesis.  

We saw in the latter section that the marital status, number of children, and age were treated 

as biometric averages conditionally on the insured’s age and sex. It’s quite likely this 

approach wouldn’t work in a voluntary insurance scheme at the individual level since 

pronounced selection effects could evolve over time. In the long run this could ruin an 

insurance scheme. 
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3 Interest Rates 
 

Albert Einstein is sometimes quoted having said that “the most powerful force in the universe 

is compound interest” 9. If so, this can work two ways depending on being a creditor or a 

borrower. Life insurance companies and pension funds assume both roles, so it is obviously 

important to have a good understanding of the interest rate risks in order to make necessary 

adjustments to changing interest rate regimes. Attention to this has increased dramatically the 

last decade along with interest rates falling to very low levels compared to the recent 

historical standard. We will only cover the basic parts and briefly discuss yield curves, bonds 

and forward prices, modified duration and mapping of cash flows into interest rate vertices. 

3.1 Yield curves 

A yield curve, or interest rate term structure, is essentially a set of quotations for bonds or 

interest rate swaps of similar credit quality in the same currency, but sorted by increasing 

maturities. The prices may be quoted as yields. Otherwise a price may be converted to a yield 

by calculating the internal rate of return over the term to maturity. Zero-coupon bond prices 

are of particular interest since the discounted value of a cash flow can be calculated by simply 

taking the product of the cash flow and the zero coupon bond price having the same term to 

maturity. 

The zero-coupon bond should be of similar credit quality as the cash flow when the 

discounted value is used for valuation purposes. On the other hand, if the purpose is to 

quantify the general interest rate risk it may be meaningful to use a benchmark zero-coupon 

yield curve, shock the yield curve appropriately and calculate the price change of the zero-

coupon bond with relevant time to maturity. The change in value resulting from general 

interest rate risk may then be calculated as the product of the latter and the cash flow. 

However, this assumes that the relevant credit spreads are unchanged. 

Yield curves are a theoretical concept since these cannot actually be observed directly in the 

market without making some assumptions. This is even the case when drawing a curve trough 

                                                 
9 See e.g. http://seekingalpha.com/article/263090-compound-interest-the-most-powerful-force-in-the-
universe?source=feed 
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a set of points representing yields for bonds across different maturities. Fortunately, term 

structure models have been developed and researched extensively and different models may 

have distinctive virtues that are suited for specific purposes. 

An important objective in the Solvency II directive is to calculate the market value of assets 

and liabilities in undertakings simultaneously. Life insurance involves cash flows with very 

long terms to maturity which may well extend beyond the longest maturities quoted in the 

market. This introduces some issues. Firstly, more assumptions are needed to construct and 

extrapolate the yield curves. Secondly, there won’t be a market where the interest rate risk can 

be immunized perfectly. In Solvency II extrapolation of yield curves is done by assuming that 

there exists a long term real rate and a long term inflation rate for each currency. This yields 

the long term nominal rate. The portions of the yield curves that extend beyond the maturities 

in the markets are then assumed to (mean) revert to the long term nominal rates. These are 

pre-calculated yield curves and will be taken as given going forward. 

3.2 Zero-coupon bonds and forward prices 

We informally introduced the discounting function sdn in section (2.2) where we defined it as 

the forward price of a zero coupon bond from time n with maturity at time (n + s). We should 

also add that the principal of the zero-coupon bond is implicitly assumed to be 1 currency unit 

which is received by the bond bearer at maturity. Thus, letting n equal zero we can find the 

spot value or present value of a cash flow of one currency unit received at maturity. When n is 

positive, sdn is a forward price. Letting rs be a zero-coupon yield curve described above, we 

can calculate sdn as (3.1). 
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This follows from the definition of the zero-coupon yield curve, i.e. the internal rate of return 

of a zero-coupon bond as calculated in (3.2), and the usual arbitrage arguments. If the forward 

price differs from (3.1) there exists an arbitrage opportunity in the market which is exploited 

by buying the inexpensive bond and selling the expensive bond. 
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When the yield curve is flat, i.e. a constant, the spot price equals the forward prices and is 

independent of n as already assumed in section (2.2). This can be derived by replacing rn and 

rn+s by the constant, i, in (3.1). 

Now, having described the discounting function properly we can calculate the net single 

premiums to market value in section (2.2) by inserting (3.1) into (2.9) – (2.15). We also 

introduced the expected cash flows, tEy, in section (2.3) and may calculate the net single 

premiums to market value by using (3.3). 
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This is however an approximation that will slightly undervalue the benefits persistently 

(assuming that all forward interest rates are positive). The reason for this is that the stream of 

expected payments during a period is allocated to end of a period. It is, however, 

straightforward to improve this approximation which we will discuss in (3.4). 

3.3 Interest rate sensitivity 

In the financial literature, modified duration is the standard tool for managing interest rate 

risk. We shall in addition use this quantity to approximate the cash flow of a bond if we only 

have information about the market value and the duration. This will be covered below. We 

will again restrict the discussion to zero-coupon bonds since a coupon or interest paying bond 

computationally can be broken down into a series of zero-coupon bonds (which actually does 

trade in some markets, and are in the US known as STRIPS10). 

The modified duration of a bond is derived by differentiating the (spot) bond price with 

respect to the yield and subsequently dividing by the (spot) bond price as shown in (3.4). In 

the derivation we have assumed a yearly compounding as set out in the QIS5 discounting cash 

flow helper tab. Thus, the bond price sensitivity to the interest rate can be calculated as a 

product of its modified duration and market value.  
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10 Separate Trading of Registered Interest and Principal Securities 
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3.4 Redistribution of cash flows 

JPMorgan introduced the RiskMetrics11 methodology in 1994 which was a Value-at-Risk 

methodology for measuring market risk (J.P. Morgan, 1996) and included a dataset covering 

fixed income instruments, equities, foreign exchange and commodities. The interesting part in 

section is the simplification technique used for handling fixed income instruments. The 

RiskMetrics methodology mapped cash flows from fixed income instruments onto fourteen 

different vertices each representing a certain maturity on a yield curve ranging from 1 month 

to 30 year term to maturity. 

The principles used for redistribution cash flows were that; a) market value should be 

preserved, but ignoring credit spreads, (b) market risk should be preserved and (c) cash flow 

sign should be unchanged. In relation to (3.3) only criteria (c) is satisfied. We will therefore 

suggest a mapping which approximately satisfies a) and b). The idea is simply to split the 

cash flow between the two nearest vertices. 

Once again we confine the discussion to a zero-coupon bond maturing in t > 1 years. The 

nearest vertices are  t  and  t  assuming there are vertices for every year. In order to satisfy 

a) and b) simultaneously we actually need to use three vertices in the mapping algorithm. To 

keep things simple we are, however, satisfied if both conditions are approximately true. 

Equation (3.5) uses principle a), while equation (3.6) uses principle b) and yields identical 

approximate mapping rules. 
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11 RiskMetrics is today commercialized and merged with MSCI in 2010. 
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In (3.6) we have assumed that     ttt rrr  . This should be a fairly close approximation 

except potentially in the shorter end of the yield curve in periods where high or low policy 

rates lead to inverted or steep yield curves, respectively. In (3.5) we make use of two 

approximations. Firstly, 1)1()1(   rr   for [0,1], secondly rr    1)1( 1  

which is a first order Maclaurin series. Thus, we have established the following simple 

mapping rules: 
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      (3.7) 

Conveniently, t is the duration of the zero-coupon bond. We may approximate a bond’s cash 

flow (not necessarily a zero-coupon bond) for risk measuring purposes by using only the 

information about duration, t years, and the market value by formula (3.8). The cash flow may 

then be redistributed to vertices by using the mapping rules in (3.7). 
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         (3.8) 

We discussed life annuity products in chapter 2 assuming a continuous payment stream. In 

section (2.3) we defined the expected cash flow of these products and formula (3.3) gives the 

net single premium market value. We can improve the approximation (3.3) by applying (3.7). 

For simplicity, we assume that the survival function is constant between each vertex and that 

initiation or termination of a life annuity only happens at a vertex. We can then simply split 

the cash flow equally between the two nearest vertices as defined by mapping algorithm (3.9). 

This follows from (3.7) since the duration is equal to the midpoint between two neighboring 

vertices. The approximation is less exact for the higher ages. But the midpoint approximation 

may anyway be a significant improvement since the duration for higher age are shortened 

relative to the midpoint. 
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We round off the discussion about cash flows by referring to the technical documentation of 

RiskMetrics (J.P. Morgan, 1996). This document contains methods to represent many 

common financial instruments as synthetical cash flows which can be useful for representing 

interest rate exposure as cash flows. 

3.5 Swaptions 

We will briefly describe swaptions as they are useful for pricing embedded interest rate 

guarantees in insurance policies. We will specifically address the option premium of a 

receiver swaption. The owner has the right to enter an interest rate swap, receiving the fixed 

leg and paying the floating leg. The interest rate on the fixed leg is determined by the strike of 

the swaption, while the interest rate on floating leg will be determined by the spot interest rate 

as the swaption expires. Thus a policyholder having a yearly interest guaranty may be thought 

of as owning a series of receiver swaptions with one year tenors ensuring that the investment 

returns each year are not less than the strike when the portfolio (premium reserves) is invested 

similarly to the floating leg. 
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     (3.10) 

The upper formula in (3.10) gives the premium of a receiver swaption, having; strike level i 

(the technical rate), one year tenor, principal L, expiring in t years, the risk free interest rate r, 

the forward one year interest rate Ft, volatility , and N is the standard cumulative normal 

distribution. This is the Black model applied to swaptions (Hull, 1993). If we assume that r 

equals Ft, all parameters expect the volatility are known. If the price of a swaption is quoted in 

the market we may calculate the implied volatility yielding by finding the volatility that yields 

a theoretical premium equal to the quoted premium. Furthermore, if we do this for all expiries 

and strikes (holding the one year tenor constant), we will end up with a volatility surface (e.g. 
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see figure 9.5). Essentially, the volatility surface expresses the quoted prices as volatilities, 

using the Black formula as a translation rule. 

We are then able to calculate the price of the embedded interest rate guarantee, using the 

relevant one year forward interest rates and volatility surface from the market. The premiums 

are calculated for each year using the Black formula. Hence, the theoretical swaption 

premiums are market consistent since these equal the quoted prices. 

Using this approach we don’t need to assume that the Black models is correct since it is only 

used to translate the quotations into implied volatilites. In fact, the market prices are often 

quoted in this way. We therefore refrain from discussing the underlying assumptions or 

deriving the Black model which may be found in most standard finance text books, see for 

instance (Hull, 1993). However, we will need to make some assumptions when using the 

Black model in chapter 9, in the stress scenarios. The implied volatility surface is readily 

available for the present yield curve. This is not the case for the stressed yield curves. We will 

therefore assume that the volatility surface is unchanged. Other possibilities exist, e.g. we 

may scale the volatilities to preserve the absolute volatilites (relative to interest rate level). 

This has also it weaknesses. Presumably there are more realistic models than the Black model 

which may improve this issue. Internal value-at-risk model may also be more appropriate 

enabling stochastic volatility models. 
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4 Counterparty risk 
 

For simplicity, we interpret counterparty risk generally for the purpose exposition in this 

chapter. In QIS5 the term is limited to the counterparty risk module. The reason for the 

general interpretation is that both the market risk module and the counterparty default module 

include some elements of credit risk. This chapter seeks to give an intuitive background 

covering the risk calculations which are based explicitly or implicitly on ratings. We therefore 

compile the spread risk sub module, the concentration risk sub module, and the counterparty 

(default) risk module in this chapter. 

The two previous chapters have discussed applicable theory and methodology, although not 

directly contained in the QIS5 technical documentation. This chapter differs in this respect, 

since all formulas are explicitly stated in the technical documentation, and therefore the 

standard formulas in these cases are explicit formulas. This is not the case for all (sub) 

modules. Ratings for each security or counterparty may be found by using one of three 

methods; a) official credit ratings from rating agencies, b) implicitly by solvency capital ratios 

using a QIS5 translation table, and c) unrated, which results in the lowest credit rating.  

4.1 Spread risk 

We confine the discussion to fixed income securities. This includes amongst others corporate 

bonds, subordinated debt, hybrid debt, mortgage backed securities, municipal bonds, and 

government bonds. In QIS5 the spread risk only captures the widening of the spreads. The 

spreads are calculated relative to their respective risk free yield curves. The standard formula 

(4.1) uses the relationship in expression (3.4) and a specified increase in the spreads for each 

rating class in QIS5. 

     
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Spreads may also narrow. This is not accounted for in (4.1). Furthermore, rating migration is 

non-existent. This would typically be accounted for in a credit risk model which is not solely 

confined to spreads, e.g. see CreditMetrics (J.P. Morgan, 1997). 
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4.2 Concentration risk 

Concentration risk may take several forms. On the aggregate level it could for instance apply 

to country and sector exposure. Another possibility is correlated investment themes. For 

instance, exposure to energy, materials, industrials, agriculture and emerging markets, which 

have been driven by the same economic super-cycle the last decade. However, the 

concentration risk in QIS5 is defined as the concentration of exposure against the same 

counterparty.  
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The proportion above a threshold level depending on each counterpart’s rating is scaled by a 

concentration factor also depending on the rating. This is squared to yield a variance-like 

property. Using an assumption of being non-correlated, the formula aggregates all terms and 

takes the square root. The concentration risk is then found by multiplying previous result by 

the assets applicable to the concentration risk sub module. Thus, exposure to several 

counterparties above the threshold levels will still gain diversification. 

4.3 Counterparty default risk 

There are two models used in the QIS5 counterparty default risk module, based on Type 1 or 

Type 2 exposure. Type 1 is mainly credit default risk from risk mitigating contracts, either 

from reinsurance or finance. The exposure is often undiversified but the counterparties are 

usually rated. Type 2 is the remaining exposure captured by the counterparty risk module (e.g. 

mortgage loans and deposits if sufficiently diversified). Type 2 is simple to calculate using 

formula (4.3), taking a 15 per cent charge of the exposure that haven’t been due for more than 

three months, and 90 per cent of the exposure which have been due for more than three 

months. 

        duepostEE  %90%15        (4.3) 

The counterparty default risk of Type 1 is associated with more standard credit risk models, 

for instance CreditMetrics (J.P. Morgan, 1997). However, it relies on more complicated 
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assumptions. We will therefore not discuss these in detail and will only give the necessary 

background for calculating the risk. For an explanation we refer to the consulted advice for 

the counterparty risk module (EIOPA, 2009). 

Formula (4.4) calculates the variance of the losses. The variance formula may at first look 

similar to a normal variance formula. However, the last term is non-standard. The j and k 

indexes are used for indexing rating categories, while the i index is used for accumulating 

exposures within a rating category. Formula (4.5) is calculated by setting  equal to 0.25. The 

probability of default for rating category j is pj. 
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Formulas (4.6) accumulate the loss given default (LGD) within each rating category and the 

squared LGDs. 
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Formula (4.7) calculates the loss given default for each counterpart. The loss given default is 

calculated as a share, x, of the best estimate and the risk mitigation that is not covered by 

collateral. The risk mitigation of a contract is calculated according to the contracts risk 

mitigation effect in the QIS5 stress scenarios. The share x is either 50 percent or 90 percent. 

         0,CollateralesRecoverabl iiii RMxMaxLGD       (4.7) 

To compute the capital charge for Type 1 risk in section (7.8), the standard deviation is scaled 

to roughly a 99.5 percent confidence level with some additional safety adjustments, 

depending on the relative size of the standard deviation to the accumulated LGD as shown in 

formula (4.8). 
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5 The Norwegian legislation 
 

In this chapter we will give a short overview of the most relevant parts of Norwegian 

legislation for Solvency II. The discussion will be limited to occupational defined benefit 

schemes managed by life insurance companies or pension funds. In the exposition we will 

assume that the current Norwegian legislation will continue in the present form. However, 

Finanstilsynet12 has proposed to modify existing buffer funds into a single buffer fund with 

increased flexibility in light of Solvency II (Finanstilsynet, 2011a), which may impose severe 

constraints for the undertakings under the current framework. We base the discussion on 

(Banklovkommisjonen, 2010). 

The Norwegian system is in general characterized by; 1) fully funded schemes, 2) linearly 

earned benefits by employees, 3) the right to transfer paid up policies13 4) well defined profit 

sharing principles, 5) yearly capitalization guarantee, and 6) pricing of risk. We will discuss 

this in more detail below. 

5.1 Assets and liabilities 

The premium reserves are provisions covering the actuarial value of the benefits capitalized at 

a fixed rate, which is called the technical rate. The authorities define the maximum technical 

rate, which normally has a significant margin of safety, to the actual bond yields for longer 

times to maturities. The technical rate may not be a single rate at any given point in time, 

since lower rates sometimes are phased in gradually for existing contracts. An undertaking 

may however choose to use a lower technical rate than the maximum rate and can even 

operate with several technical rates. The additional reserve is a buffer fund which can be used 

to cover part or all of the yearly required accrual of the premium reserves by the 

undertaking’s chosen technical rate(s). For this reason the technical rate is also known as an 

interest rate guarantee and is issued by the insurance company or pension fund to the insured. 

Both of these funds are broken down to the individual level of each insured and may be 

transferred to another undertaking if a policy has been converted to a paid up policy. 

                                                 
12 The Norwegian regulatory authority for banking and insurance 
13 Fripoliser 
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The premium fund can be used for provisions into the premium reserves. A sponsor may use 

the fund to cover premiums during a year (e.g. the linearly earned benefits or due to wage 

increases). Another possible option is to revalue the premium reserves by a change of tariff, 

e.g. reducing the technical rate or increasing life expectancy or account for possible increasing 

trends in disablement. In this respect the fund belongs to the insured, but the sponsor decides 

how the provisions are used. The retirees’ surplus fund on the other hand belongs to the 

pensioners and is used to regulate benefits which otherwise will stay unchanged. The interest 

rate guarantee is applicable to all four funds discussed in this section hitherto. 

The price adjustment fund is a buffer fund which constitutes the unrealized profits for some 

parts of the liquid assets (usually, listed equities, and bonds that are not classified as hold-to- 

maturity). It is simply the difference between the market value and the book value of these 

assets, and one may tap from the fund just by realizing the profits. Thus, the price adjustment 

fund may be used to cover negative returns, yearly lawful accrual and returns above the 

technical rate. Another frequently used fund is the risk adjustment fund which works similarly 

to a buffer fund, but is classified as equity. It may be used to cover losses in the actuarial 

profits in the technical account.  

Turning to the assets side, regulation requires that the assets are split into a collective 

portfolio(s) and a company portfolio. The collective portfolio(s) constitute eligible assets that 

must amount to the sum of premium reserves, additional reserves, premium fund, retirees’ 

surplus fund and the price adjustment fund (not necessarily a complete list). The book return 

on the collective portfolio(s) constitutes the financial profit(s). The difference between actual 

return based on market values, except for bonds classified as “hold to maturity”, and the book 

return equals the change in the price adjustment fund. Bonds classified as “hold to maturity” 

are amortized at book value over the time to maturity. The accounting effect is similar to a 

buffer if interest rates rises, but is then in reality a negative reserve in contrast to the other 

buffer funds which act as “true” risk mitigation. The sponsor(s) decide on the strategic asset 

allocation, directly or indirectly, and accordingly pays a return guarantee premium which we 

will touch on in section (5.3). 

In contrast to the collective portfolio(s), the undertaking has full control of the strategic asset 

allocation in the company portfolio and the investment returns are directly linked to the 

undertaking’s equity. For pension funds this division may be less clear as the sponsor(s) may 
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define the investment guidelines for both portfolios although not necessarily being equal, also 

representing the owner. 

5.2 Profit sharing 

Until 2008 the interest rate guarantee was paid for implicitly by the paid premiums and a 

profit sharing model yielding 35 percent to the undertaking and 65 percent to the client. From 

2008 this was changed by new legislation to make risk pricing more transparent. Risk is now 

priced explicitly based on three types of profit centers; 1) financial profit, 2) actuarial profit, 

and 3) management profit. Any negative profits in a given year are covered fully by the 

undertaking’s own funds, while any profits are credited in full to the clients (normally the 

premium fund, retirees’ surplus fund14). Thus, the clients receive any profits while the 

undertaking bears any losses. This risk is priced individually and charged each client. 

The book return on a given collective portfolio constitutes the financial earnings, while 

financial expenses amount to the yearly accrual by the technical rate for the applicable funds. 

The actuarial result is the difference between the expectations and the actual outcome in a 

given year with respect to the defining biometric risk categories, e.g. mortality, disability or 

longevity for the defined benefit scheme considered here. Over time premium loadings (safety 

margins) will materialize as actuarial profits if the actuarial expectations come true. Lastly, 

the management profit is the difference between charged management expenses for the 

insurance scheme subtracted by actual management cost. 

The discussion above assumes that the policies are not paid up policies, and therefore have a 

sponsor backing the scheme to which the undertaking can charge insurance and risk 

premiums. This is obviously not an option for paid up policies since there is no sponsor 

backing the scheme. Paid up policies are therefore on a modified profit sharing model. For 

these contracts 80 percent of the combined profit is credited the clients while the undertaking 

receives the remaining 20 percent of the combined profit to compensate for the undertaken 

risks. 

 

 

                                                 
14 Provisions for the additional reserve are charged as an expense in the financial profit center. 
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5.3 Risk pricing 

Since 2008 undertakings have been obliged to price and charge the risk associated with the 

clients as discussed in the previous section, assuming that a policy is not a paid up policy. The 

risk premiums are priced at the beginning of each year, while on the other hand any 

compensation for undertaking risk on paid up policy, potentially only will materialize after 

the accounts for the year are settled. 

This seemingly difference in regimes is however not the full story. Sponsors in the private 

sector may terminate the defined benefit scheme15. In this case the insurance policies will be 

converted to paid up policies and the modified profit sharing model will apply to these 

contracts as well. Thus, if the pension schemes become too expensive for sponsors (or for 

other reasons) this may be a probable outcome leaving the undertaking bearing the risk. We 

will follow this line of reasoning in chapter 6. 

Generally, the price of risk depends on the available buffers which can act as risk mitigation, 

in particular dampening the effect of short to medium term fluctuations in market values. In 

the long run trends in interest rates, equity returns, mortality rates and disability rates may in 

any case have a significant effect on the undertaking’s solvency position, if risk is not priced 

accordingly or additional provisions are set aside to cover the changing environment. 

This becomes especially critical if insurance schemes are terminated, in these events. The 

price of risk should reflect an undertaking’s risk of covering losses from its own funds. This is 

a complex matter and will depend on future actions. For instance if the additional reserve is 

emptied in a single year, this will not be available the following year presumably increasing 

the risk of needing to cover subsequent losses with own funds. Even worse, if the yield curve 

falls below the technical rate the interest rate guarantee can only be met by taking market risk, 

realizing unrealized profits from the price adjustment fund, or using own funds. In the latter 

scenario an undertaking may be inclined to increase the bond duration in the company 

portfolio to hedge against lower interest rates. 

 

  

                                                 
15 And at a minimum establish a defined benefit scheme in accordance with OTP discussed in chapter 2. 
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6 Solvency II: The structure of QIS5 
 

Hitherto we have been concerned with explaining the analytical tools from life insurance 

mathematics and financial theory that are necessary assist the calculations of SCR and MCR. 

In the next three chapters we will describe the formal computations using the standard 

formulas in the QIS5 technical documentation (European Commission, 2010a) and the 

annexes (European Commission, 2010b). The documentation covers both life and non-life 

insurance. Here we will only discuss the relevant parts for Norwegian life and pensions 

insurance, focusing on the Norwegian occupational defined benefit schemes. It may also be 

helpful to consult the manual for completion of the spreadsheets for solo undertakings 

(EIOPA, 2010a) and the QIS5 questions and answers (EIOPA, 2010b). The two latter 

documents are, however, not part of the formal documentation and are published by EIOPA. 

The interpretation of the QIS5 specification is not unique, in the sense that additional 

assumptions will be necessary which we will take in due course. Consequently, the standard 

formula does not yield a unique solvency capital requirement for a given undertaking. 

This chapter outlines the calculations at the aggregate level, while the two next chapters 

describe the calculations for each risk category using the standard formula. Each risk category 

may be interpreted as a partial solvency capital requirement, which subsequently is 

aggregated to a total solvency requirement. This is generally lower due to diversification 

effects (in the modular approach). 

6.1 Introduction 

Figure 6.1 illustrates the general approach in Solvency II requirements, which is borrowed 

from (Finanstilsynet, 2010). The left side represents an undertaking’s total assets at market 

value excluding intangibles, unless intangibles have a documented transaction value. The 

right hand side shows the technical provisions for the insurance liabilities, which is based on 

the following Solvency II principle (European Commission, 2010a): 

“Solvency 2 requires undertakings to set up technical provisions which correspond to the 

current amount undertakings would have to pay if they were to transfer their (re)insurance 

obligations immediately to another undertaking”. 
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The technical provisions consist of the Best Estimate and the Risk Margin. In addition the 

undertaking needs assets to cover the Solvency Capital Requirement (SCR). The Minimum 

Capital Requirement (MCR) is the absolute minimal level of solvency capital for avoiding 

pervasive regulatory actions. 

 

Figure 6.1: Solvency and minimum capital requirement 

The Solvency II balance sheet above doesn’t take account of which liabilities the assets 

belong to. The assets may not float as freely on the undertaking’s actual balance sheet and 

Solvency II therefore requires that SCR and MCR must be covered by eligible own funds. 

This is briefly described in section (6.6). 

The stress scenarios for the standard SCR formulas are explicitly given, but in theory they 

should correspond to a 99.5 percent confidence level over a year. In accordance with 

Solvency II principles they may follow a counter cyclical approach dampening the effect of 

the business cycle which often results in large fluctuations in asset values. Correspondingly, 

QIS5 is somewhat adapted to the state of business cycle at the end of 2009 with asset values 

having recovered only partially after the downturn in 2008. Undertakings may choose to use 

internal models, fully or partially, based on a Value-at-Risk approach with a 99.5 percent 

confidence level over a one year horizon. However, the internal model(s) must be approved 

by the national authorities. We note that an undertaking relying on dynamic risk management 
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may only account for this in internal models, which may encourage some undertakings to 

develop such models. 

6.2 The Best Estimate 

The contract boundary is a concept determining the extent of the liabilities that may be 

incurred from existing contracts. The contract boundary, fully or partly, is defined as the line 

where the undertaking unilaterally can terminate the contract or regulate premiums without 

limitations. In relation to the Norwegian defined benefit schemes, one must consider to which 

extent it is possible to change the tariffs or terminate the contracts with sponsors, which in 

this event will result in paid up policies. This should define the line of the contract boundary. 

The best estimate concept corresponds to the discounted value of future expected cash flows 

until the contract boundary. Obviously one needs to take into account expected cash flows 

from the insurance liabilities, but the best estimate also includes future servicing expenses, 

management expenses, and taxes. On the other hand the undertaking has the benefit of 

including the expected future premiums and certain receivables, but the policyholder’s 

behavior needs to be accounted for. 

The expected cash flows should be calculated on a net expected basis excluding any safety 

loadings. The risk margin covers this part and standardizes the safety loadings so they are 

comparable. In addition the cash flows should be calculated gross of reinsurance and SPV’s in 

order to calculate the solvency capital requirement for default risk, which is also assumed to 

carry over to the reference undertaking when considering the risk margin. The cash flow 

calculations should also be computed at the policyholder level and should cover the full 

lifetime. Furthermore, undertakings should take into account inflation appropriately, but not 

investment returns. 

Simplifications are allowed for, but the technical document stresses the proportionality 

assumptions repeatedly. To ensure homogeneity and realistic simplifications, the best estimate 

should be calculated by each line of business. For life insurance there are sixteen lines of 

businesses resulting from two levels of segmentation; life insurance with profit participation, 

index-linked and unit-linked life insurance, other life insurance, and accepted reinsurance. 

The second level of segmentation divides this further into primary risk drivers; death, 

survival, disability and morbidity, and savings contracts (the risk is born by the policyholder). 
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The defined benefit schemes discussed in this thesis relates only to life insurance contracts 

with profit participation having longevity risk as the main risk driver. Unbundling of policies 

between sub segments is not necessary. 

Using the above guidelines life and pension undertakings need to assess at least seven cash 

flow elements. I.e. cash flows resulting from; a) insurance liabilities, b) reinsurance contracts, 

c) premiums, d) servicing expenses, e) interest rate guarantees, f) future discretionary 

benefits, and g) taxes. In discussion we will assume that policies are paid up so we can 

disregard future premiums. Neither will we consider reinsurance and taxes, as our main focus 

is the Norwegian occupational defined benefit schemes. 

We will therefore in this section calculate the best estimate as the sum of the discounted 

values of insurance liabilities (guaranteed benefits), the yearly interest rate guarantee, future 

discretionary benefits and servicing expenses. We discuss each element below.  

6.2.1 Insurance liabilities 

We defined the net single premiums and the net expected cash flows in chapter 2. Thus, for 

benefits related to the Norwegian occupational defined benefit schemes we may compute the 

discounted value of the expected cash flows straightforward. We do this by extending formula 

(3.3). The standardized cash flows are scaled by the policyholder’s yearly benefits for each 

liability, i, from the set of available liabilities, P. Let S be the stock of policyholders, then 

(6.1) is the discounted value of the guaranteed benefits. 
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The formula obviously applies to other life and pension insurance contracts also, but the 

expected cash flows need to be estimated using methods satisfying the guidelines discussed 

above. The function V depends on several factors, specifically the yield curve (yc) and the 

survival functions (p) used to calculate the expected cash flows. We condition on these two 

explicitly since they capture the stress scenarios related to the liabilities. 

We may also add the premium fund to the liabilities following a presentation by 

Finanstilsynet (Finanstilsynet, 2010). However, the premium fund may also be used to change 

the schemes’ tariffs, which may increase the premium reserve fund without regulating the 
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benefits. We therefore choose to consider the premium fund as something between premium 

reserves and the additional reserve fund. 

The QIS5 package includes the necessary yield curves, which should be used to discount the 

cash flows. There are several yield curves for each currency taking different levels of 

illiquidity premium into account. The Norwegian yield curve including the 75 percent 

liquidity premiums is presumably the most relevant yield curve for most life insurance 

contracts with profit sharing in Norway. The criteria for using a 100 percent illiquidity 

premium is; a) underwriting risk is only longevity and expense risk, b) no risk of surrender, 

and c) is a paid up policy. Criteria c) may qualify, but b) conflicts with the right to transfer the 

liabilities, and c) conflicts that with the occupational defined benefit schemes typically 

include disability insurance and insurance related to death. 

6.2.2 The interest rate guarantee 

There are potentially a wide range of different policyholder options that should be assessed 

when calculating the best estimate. However, we will only consider the so-called interest rate 

guarantee discussed in chapter 5. The guarantee relates to the book return to the policyholders 

each year. We will only consider the financial risk in this case. Net income from actuarial and 

management accounts will also affect the book return. Therefore, we will assume that they are 

independent from financial returns. 

Undertakings may value the options using three methods; a) stochastic approach, either closed 

form or by simulation, b) scenario based with assigned probabilities, and c) a deterministic 

valuation based on the expected cash flows if it is market consistent. We will use method c), 

although it may also be interpreted as method a). 

We will price the risk inherently from the yield curve. Deviating asset allocations strategies 

may be priced separately or viewed as the owner’s risk. In some sense, this is parallel to the 

methodology used for calculating the risk margin (where undertakings only should include 

unavoidable market risk). 

Assuming the book returns equal the one year forward yield curve for each year, one may 

price the interest guarantee as a receiver swaptions as discussed in chapter 3. These are quoted 

as over-the-counter contracts, but prices are available for maturities up to 30 years. Prices 
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may be quoted as implicit volatilities, e.g. by using the Black formula, yielding a volatility 

surface across strikes and expiries for one year tenors. We may therefore find the relevant 

volatility (i.e. price) for a certain combination of expiries and strikes. This method is market 

consistent and corresponds to method c). However, it may also be viewed as a stochastic 

model. 

Having obtained the prices in chapter 3, we only need to calculate the principals. We do this 

by using formula (6.1) and a flat discount rate equal to the technical rate, i. We also scale the 

expected cash flows accordingly to the safety loading used for calculating the premium 

reserves. We assume that all benefits are covered by the interest rate guarantee. 
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Now, using formula (3.10) we can calculate the value of the interest rate guarantee as in (6.3), 

where d1, d2,r, Ft are given as in (3.10). 
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We also use the conditional denotation for IRG as the forward yield curve is implied from the 

yield curve and the cash flows depend on the survival functions for the stress scenarios. 

Formula (6.3) takes into account of the shape of the yield curve which is relevant for 

undertakings considering matching assets with liabilities. One should also note that 

realistically there are no market consistent prices for long maturities. But, in reality this is also 

the case for the extrapolated yield curves. As long as the technical rate is sufficiently low 

compared to the long term macroeconomic assumptions used in the extrapolation, this should 

be a minor issue. 

We also note that in the case of active policies (which we have assumed do not exist) the 

sponsors are charged yearly risk premiums. The risk represented by (6.3) should be reflected 

in risk pricing charged the sponsors. However, as discussed earlier, the undertaking may end 

up bearing the whole risk if the risk premiums become expensive. Eventually, risking that all 

policies may be converted to paid up policies. In this context, our assumption that all policies 

are paid up, may not be completely unrealistic in a stress scenario. 
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In the next sub section we discuss future discretionary benefits (FDB). The value of the 

interest rate guarantee for the policyholders will depend on these, as the management may 

draw from buffer funds when needed to yield the guaranteed interest rate. In this respect the 

specification chosen above for modeling the interest rate guarantee is consistent with the 

principle that the future discretionary benefits should be calculated separately. For instance if 

we price the option using simulation and take into account future management actions of 

drawing from buffer funds, this would be inconsistent with adjusting for FBD separately. In 

this case it would also be necessary perform simulations holding FDB unchanged, which we 

intuitively believe should yield similar results to (6.3). 

6.2.3 Future discretionary benefits 

Future discretionary benefits are potential benefits belonging to the policyholders, and depend 

on being realized. This may happen by management action, e.g. by realizing profits, or 

indirectly through changes in the interest rate level. We will assume that the FDB is always 

positive in the discussion. This is not the case for under-funded pension schemes relative to 

the market rates. For the Norwegian occupational defined benefit scheme, the FDB is given 

by expression (6.4). There are, however, other possible buffers which we haven’t taken 

account. Expression (6.4) may then be appropriately modified16.  

  ARFbrpycIRGARFPAFMaxpycVPRbrFDB  )1(]0),,(|[),(|    (6.4) 

The first part is the difference between the premium reserves and the discounted value of the 

guaranteed benefits. This is the excess value from the bond market when yields are higher 

than the technical rate, and the value of safety loadings. Over time this should accumulate as 

profits if the net expected cash flows are reasonably correct. The second part is the unrealized 

profits on the collective portfolio, and the additional reserves which may be used to cover the 

yearly accumulation by the technical rate. We subtract IRG, since the buffers may be used to 

cover the technical rate in periods where interest rates are too low. However, if the buffers are 

too low, this mitigation is not possible. The final term makes sure that the policyholder 

receives the whole additional reserve fund. 

 

                                                 
16 PR = premium reserves, PAF = price adjustment fund, ARF = additional reserve fund, and br = bonus rate. 
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6.2.4 Expenses 

We won’t discuss expenses, but give a simplified formula for calculating the discounted value 

based on the simplification for expense risk in (8.5). In this formula, following the notation in 

the technical documentation, i is the expected inflation rate, n is the average number of years 

the risk runs off weighted by renewal expenses, and E is a representative expense figure. 
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This ends our discussion of the calculation of the best estimate for life and pension insurance. 

The risk premium will later be discussed briefly in order to calculate the full technical 

provisions. However, for this we will need the solvency capital requirements. 

6.3 The Solvency Capital Requirement 

This is the main objective of the thesis. In this part we describe the aggregate level, and the 

overlaying structure. This is necessary to aggregate the capital charges from each sub module 

using the standard formula. We will also only consider the standard formula. Simplifications 

may be possible conditional on qualifying assumptions. 

The standard formula is based on a modular stress scenario approach. This is illustrated in 

figure 6.2 borrowed from the QIS5 technical documentation (European Commission, 2010a). 

The approach taken is to calculate the change in the undertaking’s net asset value for each sub 

module resulting from the stress scenario. The net asset value is the difference between the 

assets and liabilities, which is denoted by SCRi for (sub) module i17. These calculations will 

be addressed thoroughly in chapter 7 and chapter 8, covering respectively financial risk and 

life underwriting risk. For all SCRi calculations (and nSCRi calculations below) the risk 

margin in the technical provision are left out to avoid circularity since the SCR is used to 

calculate the risk margin. In addition the future discretionary benefits are kept unchanged 

when calculating each SCRi, i.e. the loss absorbing capacity of the technical provisions is not 

accounted for. Furthermore, a positive change in net asset value is defined as a loss of net 

asset value. 

                                                 
17 The technical documentation uses different notation for capital requirements at the sub module level. In this 
chapter we simplify for improving the clarity in the exposition. 
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Figure 6.2: Risk modules in the standard formula 

Assuming that each individual SCRi is calculated, one may then aggregate these to the 

module level. The module level is depicted by level three in figure 6.2. The aggregation uses 

the QIS5 correlation matrices and the formula for calculating a portfolio’s standard deviation 

with all weights equal to one, as shown in (6.6). The aggregation is performed for each 

module resulting in a SCRi for each module i. For life and pension insurance, primarily 

market, default and life risk modules will be relevant. In addition, the disability and morbidity 

(SLT) sub module of the Health module may be necessary, if contracts having this risk as the 

primary risk driver, are unbundled. 

     
i j

ijji CorrSCRSCR       (6.6) 

The Basic Solvency Capital Requirement (BSCR) is similarly computed by aggregating from 

module to the top level. For illustrative purposes we have included the top level correlation 

matrix in figure 6.3. We note that there are two interest rates scenarios (higher and lower 

interest rates). The correlation matrix associated with the market risk module depends on 

which scenario is chosen, i.e. the scenario resulting in the largest loss. 
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Figure 6.3: Top level correlation matrix 

Formula (6.7) defines the SCR. We have so far calculated the BSCR, and need in addition the 

adjustment term and the capital charge for operational risk. 

    OpSCRAdjBSCRSCR        (6.7) 

SCROp is the solvency capital requirement for operational risk. We only consider defined 

benefit schemes and state the formula for these below: 
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    (6.8) 

The Adj(ustment) term is the loss absorbency of the technical provision and deferred taxes. 

These should always be negative. We will assume that taxes have a minimal loss absorbing 

effect on the discussed insurance schemes and disregard deferred taxes in the exposition. 

The calculation of the adjustment term for loss absorbency of the technical provisions must 

follow two methods in QIS5. These are explained in sub section (6.3.1) and (6.3.2). The 

reason for using two methods is that the political level has not yet decided which method will 

be adopted in Solvency II. However, the equivalent scenario approach should be used for 

calculations which depend on the SCR (e.g. possibly when calculating the risk margin). 

Continuing below we will (or may) need the nSCRi for each sub module. This is the net SCRi 

taking account of the loss absorbing of the technical provisions in the stress scenario. The 

difference between SCRi and nSCRi at the sub module level is simply the reduced value of 

future discretionary benefits resulting from the stress scenario (if both terms are strictly 

positive). Undertakings must in each scenario calculate the loss absorbing effect cautiously to 

ensure that the loss absorbing capacity is not used in other scenarios. This is to avoid potential 

double counting. 
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6.3.1 The equivalent scenario approach 

This approach requires the undertakings to compute a single stress scenario where all risks are 

accounted for simultaneously. This scenario is called the equivalent scenario and the 

reduction in net asset value for this scenario is denoted by nBSCR (although this also being 

the case for the modular approach). In the calculation of the change of technical provisions 

one should take account of the relevant management actions that would be applied. Having 

calculated BSCR above, the adjustment term for technical provisions is calculated by the 

formula (6.9). FDB is the total value of future discretionary benefits from the best estimate. 

The formula ensures that the assumed loss absorbing in the scenario is not larger than the 

maximum possible loss absorbing, which is equal to FDB. 

    ),min( FDBnBSCRBSCRAdjTP       (6.9) 

The method for calculating the equivalent scenario is based on the Component VaR partition 

which indicates the change in VaR if a component is taken away (i.e. the risk is immunized). 

We shall therefore label this the Component BSCR where component i, denoted by ΔSCRi, 

approximate the change in the BSCR if the risk resulting from sub module i is immunized. 

The principle rule is to use the SCRis in the calculations, but there is an option to use the 

nSCRis if they are more appropriate for the business and don’t yield significantly different 

results. The Component BSCR partition can be computed directly by taking the scalar product 

between the vector of the SCRis and the gradient of the BSCR. The ith partition of the 

Component BSCR is calculated in (6.10). The featuring property of the Component BSCR 

partition is that the sum of the partitions equals the BSCR as shown in (6.11). 
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Thus, one may calculate the SCRi’s net of portfolio diversification ratio by dividing ΔSCRi by 

BSCR (but will only be true for marginal changes and using a linear model). The equivalent 

scenario approach uses these ratios to scale the original stress scenarios in QIS5 as shown in 

expression (6.12). 



40 
 

  i
i

i scenariostress
BSCR
SCR

scenarioEquivalent 


       (6.12) 

For instance if sub module i’s ratio is 0.8, the equivalent scenario reduces the risk for sub 

module i to 80% of the original stress scenario. The Component BSCR assumes a linear 

relationship which is only true for some of the sub modules. However, we may view this as a 

first order approximation for the non-linear cases. Chapter 9 gives a numerical example using 

the case study. 

The advantage of the equivalent scenario is that the shocks are calculated simultaneously. 

Thus, it is more straightforward to compute the loss absorbing effect of the technical 

provision (and deferred taxes) and appropriate management actions, while avoiding double 

counting the loss absorbing capacity. The disadvantage is, however, that the equivalent 

scenario is specific for an undertaking and depends on the partial solvency capital 

requirements resulting from each sub module. An undertaking may therefore “optimize” the 

equivalent scenario by juggling the risk on the balance sheet, and ultimately also “optimize” 

the employed method in each sub module since there are openings for using simplifications. 

6.3.2 The modular approach 

The modular approach also equates the adjustment term by using formula (6.9). However, for 

this approach the nBSCR is calculated by aggregating up the nSCRis from the sub module 

level by using the correlation matrices in the same way as when calculating the BSCR, as 

explained above. If an undertaking whishes to simplify the calculations it may choose to 

substitute one or several nSCRis by the respective SCRis which may result in a higher SCR. 

The advantage of the modular approach is that it uses the original stress scenarios without 

modification. The disadvantage is however that it may be complicated to calculate the loss 

absorbing capacity of the technical provisions (and the deferred taxes) since the shocks are 

calculated one-by-one and not simultaneously. If this is not carefully calculated, this could 

lead to double counting of loss absorbing capacity of the technical provisions. This is not 

allowed for since the standard formula, using the modular approach, is essentially a capital 

charge for each stress scenario, while accounting for some risk reduction due to 

diversification. To a lesser extent it may be possible to “optimize” the solvency capital 

requirement by being selective where the future discretionary benefits are used. 
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6.4 The Minimum Capital Requirement 

The Minimum Capital Requirement (MCR) for life insurance undertakings is calculated as a 

combination of a linear formula depending on components of the technical provisions and a 

minimum floor of the guaranteed benefits. Possibly overruling the linear formula, MCR must 

be at a minimum 25 percent of the SCR but not more than 45 percent of SCR, if the Absolute 

Minimum Capital Requirement (AMCR) is satisfied. The AMCR is expressed as an absolute 

amount in Euros. For life insurance undertakings the AMCR is EUR 3 200 000. The linear 

MCR formula for life insurance undertakings is given in (6.13). However, we have excluded 

contracts where the policyholders bear the investment risk and contracts without profit 

participation. 
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    (6.13) 

6.5 The Risk Margin 

The risk margin is part of the technical provision to ensure that the technical provisions are 

equivalent to the amount that another undertaking would require to assume the liabilities. If 

the undertaking only receives the best estimate, it can only expect to earn the risk free rate on 

the risk capital and should therefore not be able to attract risk capital, being unable to meet the 

solvency capital requirements. Since risk capital is expensive, corporations have a natural 

incentive to optimize the use of risk capital. The required risk capital for an insurance 

undertaking is the SCR. The technical provisions should therefore include a loading for 

servicing the appropriate level of SCR when undertaking the liabilities. This is the risk 

margin. In QIS5 the Cost-of-Capital is 6% above the risk free rate18. 

We will only outline the principles for calculating the risk margin briefly. Firstly, it is 

assumed the undertaking at all times only holds the required solvency capital as the risk runs 

off the balance sheet. Secondly, the risk margin only accounts for the necessary SCR to 

assume the liabilities. Thus, the risk margin only covers the unavoidable market risk, life 

underwriting risk, the default risk due to reinsurance contracts or SPV’s and operational risk. 

Thirdly, the future discretionary benefits carry over to the new undertaking. Finally, the SCRs 

                                                 
18 Undertakings replicating the liabilities should only be charged for operational risk. 
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should be discounted with the risk free rate, and not include any illiquidity premiums. The 

risk margin is 6% of the discounted SCRs (in QIS5). 

As discussed in section (6.3) the risk margin should be based on the equivalent scenario. This 

is convenient since one may simply add the capital charges resulting from the relevant 

stresses. However, one must account for unavoidable market risk which is usually not part of 

the calculation, unless an undertaking seeks to minimize risk. Unavoidable market risk is 

assumed to come from the cash flows where the maturities are longer than the available 

maturities from the risk-free financial instruments. 

In order to calculate the risk margin we need to calculate the appropriate SCR for every year 

as the risk runs off. This may be cumbersome for some sub modules. For instance if the stress 

scenario the first year is different from the subsequent years, undertakings will need to run the 

SCR calculations for all relevant future years (e.g. the disability shock). To facilitate this, 

there are several possible simplifications. The simplest formula for life undertakings is the 

level four of the hierarchy, where one roughly takes the product of the appropriate current 

SCR, the modified duration of the obligations, and the Cost-of-Capital discounted one year. In 

order to use this simplification the undertaking also needs to estimate the unavoidable market 

risk. There is also a simplified formula for this. It is the product of the following terms; the 

part of modified duration of obligations extending beyond the market, the interest rate shock 

for the maturity of the longest financial instrument, the average number of years the 

unavoidable market risk exists, and the best estimate. 

6.6 Own funds 

Solvency II defines the own funds which may be used to cover the solvency capital 

requirements. Own funds are divided into three categories depending on the characteristics of 

the capital. The characteristics are described along three dimensions; availability, durability, 

and the ability to absorb losses during normal business activity. We will only give a 

simplified description. Tier 1 capital comprises of equity with full loss absorbing capability 

and certain hybrid capital within a maximum limit. The equity is in the context of Solvency II 

roughly defined as the difference between the assets and liabilities. Tier 2 capital consists of 

sub ordinate debt of a certain quality and equity with limited ability to absorb losses. Tier 3 

capital includes essentially capital elements not qualifying for Tier 2 capital. 
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The SCR must be covered by minimum 50 percent Tier 1 capital and maximum 15 percent 

Tier 3 capital. The MCR normally being less than SCR, has stronger requirements. At least 80 

percent must be covered by Tier 1 capital, and the remaining may only be covered by Tier 2 

capital. 
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7 Financial Risk 
 

Life and pension undertakings are generally exposed to financial risk in two ways. Either 

through investments and counterparties, or indirectly through the time value of money used 

for discounting the expected cash flows of the insurance liabilities. The investment and 

counterparty risk results in actual losses on the financial accounts when being realized. Losses 

from the latter often play out over time being realized through lower income on the financial 

accounts. But, when income doesn’t cover the charge by the technical rate, undertakings will 

need to use own funds to cover the difference. 

In more extreme cases undertakings may also need to use own funds to cover increases in the 

premium reserves. This especially applies when there are no sponsors backing the scheme. If 

long term interest rates are close to or below the technical rate, the maximum allowed 

technical rate may be lowered by the authorities. This will increase the premium reserves by 

the discounting mechanism. Similarly for financial risk, if the market value of the assets falls 

below the technical reserves, undertakings will need to use own funds to cover the difference. 

This chapter covers the market risk module and default risk module, which we discuss at the 

end. We describe each sub module which may be aggregated to BSCR level using the relevant 

correlation matrices and formula (6.6). We note that the default module is not a sub module 

and therefore should be used directly as input at the top level. Furthermore, there are two 

methods to aggregate to the nBSCR level. Both are discussed in chapter 6. 

Before discussing each risk we will introduce the necessary formulas for calculating the gross 

and net solvency capital charges resulting from the stresses. We denote the total market value 

of the collective portfolio and company portfolios respectively as AK and AS. We may then 

compute and undertakings loss or profit from a change in market values using expression 

(7.1). The bonus rates (br) in the profit sharing models discussed in chapter 5, are either 80 

percent or 100 percent of the profits received by the clients on the collective portfolio, while 

any losses are covered by the undertaking. The company portfolio is the undertaking’s 

portfolio and consequently receives all profits and bears all losses. 

     ASAKMinAKMaxbrA  ]0,[]0,[)1(      (7.1) 
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Equation (7.2) and (7.3) will only be affected by interest rates in this chapter. Hence, we may 

define them equal to zero when the yield curve is not stressed. This is done in order to 

generalize expression (7.4) – (7.7) below to all (sub) modules. Expression (7.2) gives the 

change in the discounted value of the guaranteed benefits by using (6.1) for both the stressed 

and the normal yield curve. Similarly, (7.3) yields the change in market value of the 

embedded interest rate guarantee using (6.3). 

       ),(|),(| pycVpycVL stress            (7.2) 

   ),(|),(| pycIRGpycIRGIRG stress        (7.3) 

The gross capital charge may then be computed by formula (7.4). When assets and liabilities 

are matched, the expression inside the brackets should yield values close to zero19. Capital 

charges may not be negative, so we ensure that it is positive by using the Max operator. 

       ]0,[ AIRGLMaxMkti           (7.4) 

We calculate the loss absorbing of the technical provisions in (7.5) and (7.6). The first 

expression shows the loss absorbing of the premium reserves. This cannot be larger than the 

capacity, which is the difference the premium reserves and the discounted value of the 

obligations before the stress scenarios has occurred20. The expression otherwise follows the 

same reasoning as in sub section (6.2.3). 

   )],(|,[1 pycVPRLMinbrFDB         (7.5) 

Expression (7.6) is slightly more complicated. An undertaking may draw from the price 

adjustment fund (PAF) and/or if qualified from the additional reserve fund (ARF) to cover 

losses in the collective portfolio and/or an increase in value of the embedded interest 

guarantee. The last part of the equation takes into account that the additional reserve fund 

absorbs the covered loss completely independent of the bonus rate. 

  ],[)1(],[2 AKIRGARFMinbrAKIRGARFPAFMinbrFDB iii  (7.6) 

                                                 
19 In this case we assume that the company portfolio is also used to match liabilities. 
20 The illiquidity scenario turns out be insignificant for Norwegian yield curves (see chapter 9), so we have 
simplified the equation by assuming that we in practice only need to bound the loss absorbing in the interest rate 
stress scenarios.  
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We can finally calculate the net capital charge after accounting for the loss absorbing of the 

technical provisions by using (7.7). The net capital charge should not be larger than the gross 

charge since the gross charge is bounded by zero, i.e. negative capital charges are not allowed 

for in profitable scenarios. We therefore ensure that the net figure is equal or less than the 

gross figure. 

   ],[
21 iii MktFDBFDBMktMinnMkt       (7.7) 

Undertakings must also ensure that the accumulated use of future discretionary benefits in 

each scenario is less than the capacity in the modular approach. We therefore impose 

restrictions (7.8) and (7.9) to guarantee this. 

     
i

i PAFPAF         (7.8) 

     
i

i ARFARF         (7.9) 

Having outlined the necessary equations we now describe each (sub) module. We have 

explicitly addressed the change in values of guaranteed benefits and the embedded interest 

rate guarantee in expression by using formulas in (7.2) and (7.3). However, we have not 

addressed the formulas for calculating the change in asset values. This will depend on each 

(sub) module, and we will address this in each sub section below. 

7.1 Interest rate risk 

Purpose: To account for interest rate risk from all assets and liabilities sensitive to yield 

curves and/or interest rate volatilities. Both nominal and real yield curves should be accounted 

for. The sub module does not extend to assets indirectly sensitive to interest rates (e.g. equity 

and property). 

Definition: There are two (instantaneous) scenarios that should be evaluated; a) higher 

interest rates, and b) lower interest rates. Undertakings exposed to yield curves in several 

currencies should calculate the capital charge resulting from all yield curves in a combined 

scenario. The shocked yield curves are constructed by scaling the appropriate yield curves by 

factors depending on the time to maturity.  In scenario a), the factor ranges from 1.70 in the 
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short end to 1.25 for 30 years and longer maturities. In scenario b), the factors range from 

0.25 to 0.70. The absolute change in interest rates should at a minimum be one percentage 

point. Nominal interest rates are however bounded below by zero (this does not apply to real 

interest rates). We refer to the QIS5 technical documentation of a complete specification of 

the yield curve shift (European Commission, 2010a). 

Calculation: The expected cash flows from the insurance obligations are already accounted 

for by using (7.2) and (7.3). We therefore only need to estimate the cash flows from the 

interest rate sensitive assets. We will only consider bonds and refer to chapter 3 for a 

discussion. If the cash flows are readily available, one may use the mapping algorithm (3.7) to 

redistribute the cash flows to the nearest interest rate vertices. Otherwise one may use (3.8) to 

approximate cash flows and proceed with (3.7) thereafter. Continuing one may use (3.3) to 

calculate (7.1), and the loss absorbing of the technical provisions is found by using (7.5) and 

(7.6). Finally, the gross and net capital charge may be estimated using (7.4) and (7.7). We 

have not explicitly addressed the multi-currency case. This may simply be performed by 

iterating the steps above for one currency at a time, while accumulating. The liability 

equations however only reflect the Norwegian pension system covering only liabilities in 

local currency, so (7.2) and (7.3) should be zero for all other currencies.  

The steps above need to be calculated for both interest rates scenarios. The interest rate 

scenario that yields the highest net capital charge is chosen for calculating the solvency 

capital requirement. This will also define which correlation should for the market risk 

module. 

7.2 Equity risk 

Purpose: To account for equity risk resulting from the price level or price volatility in the 

equity markets. The sub module extends to all assets and liabilities which are exposed to 

equity risk. 

Definition: Equities are categorized into two groups; a) “global”, and b) “other”. The QIS5 

stress scenarios are an immediate fall of 30 percent in the “global” category, and 40 percent in 

the “other” category. All listed equities on stock exchanges in EEA and/or OECD member 

countries belong to the “global” category. So for the purpose of calculating the capital charge, 

Norwegian listed equities are “global”. 
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However, there are some exceptions. Equity participations in financial and credit institutions 

get a capital charge of zero, while the same rate for other strategic participations is 22 percent. 

The latter is not confined to EEA and/or OECD countries. 

Calculation: For each category we take the product of the price fall and the market value or 

the equity exposure. We may then proceed by using formula (7.1) and (7.4) to calculate the 

gross capital charge, and continuing with (7.5) and (7.7) to find the net capital charge. The 

equity categories may then be aggregated using the equity correlation matrix and formula 

(6.6). We have implicitly assumed that there is no equity exposure in the liabilities. 

Furthermore, we have also assumed that the price sensitivity of the equity instruments is 

constant. This may easily be refined using appropriate pricing models, which we will not 

cover in the thesis. Finally, we note that undertakings may not take into account dynamic 

hedging strategies when using the standard formula in QIS5, i.e. undertakings can only take 

into account positions that are in place at the valuation date. 

7.3 Property risk 

Purpose: To account for property risk resulting from the price level or the price volatility in 

the property markets. The sub module extends to all assets and liabilities which are exposed to 

property risk. 

Definition: The change in the net asset values from an instantaneous fall of 25 percent in the 

property prices. 

Calculation:  We may calculate the net and gross capital charge using the same steps as 

above. In addition, listed real estate companies are covered by the equity risk sub module and 

should not be included. Furthermore, property funds are typically leveraged. Undertakings 

will in these cases need to calculate the property exposure instead of using the market value of 

the property funds. 

7.4 Spread risk 

Purpose: To capture the risk from widening spreads or volatility of the spreads relative to the 

risk free yield curves in both assets and liabilities. This risk is for instance applicable to 
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government bonds issued by non-EEA members, corporate bonds, covered bonds, 

subordinated debt, hybrid capital, and credit derivatives. 

Definition: The change in net asset value using formula (4.1) for bonds and the QIS5 defined 

spread risk factor for each category. An additional matrix of spread risk factors is provided for 

non-EEA government bonds. There are also specific duration floors and caps which should 

accounted for in the formula. Formulas for structured products and credit derivatives 

depending on spread risk are given in the QIS5 technical documentation. 

Calculation:  We may calculate (7.1) by using (4.1). We have assumed that (7.2) and (7.3) do 

not depend on spread risk. So, we may carry on by using (7.4), (7.6) and (7.7) to calculate the 

net and gross capital charge. 

7.5 Currency risk 

Purpose: To account for foreign exchange risk from all sources within an undertaking 

resulting from the changes in price levels or the volatility of the prices. Both assets and 

liabilities are included in the sub module. 

Definition: The change in net asset value, resulting from two instantaneous scenarios using 

the undertakings local currency as basis21; a) a 25 percent appreciation of each currency, and 

b) a 25 percent depreciation of each currency. 

Calculation: We may then calculate the net and gross charge similarly to the calculations for 

the equity risk, for each currency risk scenario separately. The scenario with the highest net 

capital charge is used for calculating the solvency capital requirement. We don’t address 

foreign exchange risk on the insurance liabilities for the same reasons as in section (7.1). 

7.6 Concentration risk 

Purpose: To capture concentration risk arising from having exposure to the same 

counterparty. The sub module only accounts for exposure considered in the equity, property 

and spread risk sub modules. In particular, the exposure accounted for in the credit default 

module should not be included.  

                                                 
21 The local currency is defined at the currency the undertaking prepares its financial statement in. 
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Definition: Formula (4.2) defines the concentration risk.  Thresholds levels and concentration 

factors depending the rating is specified in the QIS5 technical documentation. 

Calculation:  We may calculate (7.1) using (4.2). Otherwise the calculation is identical as for 

the spread risk in section (7.4). 

7.7 Illiquidity risk 

Purpose: The illiquidity premium is incorporated in the QIS5 yield curves and results in 

lower technical provision. When the illiquidity premium falls the technical provisions will 

rise. This sub module therefore accounts for a fall in the illiquidity premium, but not a rise. 

The technical documentation (European Commission, 2010a) states that:”The effect of an 

increase of the illiquidity premium is captured in the calibration of the spread risk module22”. 

Definition: The change in the net asset values resulting from an instantaneous 65 percent fall 

in the illiquidity premium. 

Calculation: The capital charge may be calculated by following the steps for calculating the 

interest rate risk, while using the stressed yield curves from the illiquidity premium shock. 

The multi-currency may also be relevant. 

7.8 Counterparty risk (module) 

Purpose: This module captures counterparty default risk not accounted for in the spread risk 

sub module. Risk mitigating contracts, such as derivatives and reinsurance arrangements, 

deposits, receivables and loans belong to this module. The counterparty default risk is defined 

as possible losses due to unexpected default or deteriorating credit standings. 

Definition: There are two types of counterparty risk exposures, Type 1 and Type 2. These are 

discussed in section (4.3).  

Calculation: Formula (4.3) defines the capital charge for Type 2 risk. The capital charge for 

Type 1 risk may be calculated using formula (4.8) and the specified default probabilities in 

the QIS5 technical documentation. The capital charge for the counterparty default module 

                                                 
22 We are however not convinced about this argument since the spread risk module is primarily related to bonds, 
subordinated debt and credit derivatives. Insurance obligations are usually unaffected by higher spreads in QIS5. 
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may then be calculated by using formula (6.6) on both Type 1 and Type 2 risk, using a 

correlation coefficient of 0.75. We can then proceed by calculating (7.1). The steps thereafter 

are identical to the spread risk in section (7.4). 
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8 Life Underwriting Risk 
 

In this chapter we will describe the standard formula for the life underwriting module. All sub 

modules are relevant for life and pension insurance underwriting risk. We end this chapter by 

briefly referring to the disability and morbidity sub module in the SLT23 Health Module for 

the purpose of completeness. This may be relevant for life insurance, but not for pension 

funds in Norway which only cover disability benefits as part of an occupational defined 

benefit scheme. Unbundling is in this case unnecessary and the risk is represented by the 

disability and morbidity sub module of the life underwriting module. Finally, we note that the 

sub modules in this chapter may be relevant for non-life insurance contracts which can give 

rise to life annuities. 

Unbundling of insurance policies involves splitting contracts into its basic parts or groups of 

basic parts. Let P denote the set of available insurance products. A policy is a subset Uy  P 

with coverages Yy
(i) > 0 for iUy. This is a slight abuse of notation since we use y to represent 

both the age and the life itself. We assume that an insurance policy only contains one 

principally insured. Otherwise, each insurance policy needs to be split into contracts of single 

principal lives. 

We may unbundle the insurance products sharing one or several common characteristic, e.g. a 

primary risk driver, by forming the subset U  P of insurance products sharing the common 

characteristic(s) and taking the disjunction UyU. The discounted expected value of the 

unbundled part of a life insurance policy can then be computed by formula (8.1). 
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Furthermore, let S represent the stock of insurance policies. We may then calculate the change 

in the discounted expected value of the liabilities resulting from a stress scenario by using 

(8.2). pΔ indicates that the shocked survival function(s) should be used for calculating the 

stressed cash flows, while p indicates using the expected survival function(s) as before. 

                                                 
23 Similar to Life Techniques 
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Note that (8.2) aggregates on a policy-by-policy level. This allows for no diversification 

between different principally insured lives since only increases in liabilities are accounted for. 

On the other hand, if |U| > 1, (8.2) allows for diversification effects for risk depending on the 

same life. This representation follows the principles set forward by the QIS5 technical 

documentation. 

Let U be the relevant level of unbundling for Life sub module i. (8.3) is then the gross 

solvency capital requirement for this risk without accounting for loss absorbency of the 

technical provisions. If the profit sharing is on the actuarial accounts level, then this is also the 

net requirement (8.4). This is the case for active policies in the Norwegian defined benefit 

schemes as discussed in chapter 5. 

    ),,(|)(  ppycULLifei        (8.3) 

    ),,(|)(  ppycULnLifei        (8.4) 

In the Norwegian system paid up policies have profit sharing on the combined profit center as 

also discussed in chapter 5. Assuming that the combined profit is non-positive, an undertaking 

may draw on the price adjustment fund (PAFi) to cover the loss fully or partially, depending 

on the bonus rate. This equates to the net solvency charge in (8.5), and may be viewed as a 

management action in line with the following formulation in the QIS5 technical document 

(European Commission, 2010a): 

 “Additionally, the result of the scenario should be determined under the condition that the 

value of future discretionary benefits can change and the undertaking is able to vary its 

assumptions in future bonus rates in response to the shock being tested”. 

Below the bonus rate is not allowed to change, but the undertaking may realize unrealized 

profits from the price adjustment fund appropriately. 

 ]0,),,(|)([),,(|)()1( ii PAFppycULMaxbrppycULbrnLife     (8.5) 

Additionally the undertaking needs to check that the sum of the draws for all sub modules, not 

limited to the sub modules considered in this chapter, is less than the capacity resulting in the 
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restriction represented by (8.6). An undertaking may also consider using the additional 

reserve fund (ADR), but the fund is significantly more restricted as discussed in chapter 5. 

     
i

i PAFPAF         (8.6) 

We now turn to discuss each relevant sub module, having discussed some principles and 

defined the necessary formulas for the three first considered sub modules. We describe each 

sub module based on purpose, definition of the standard formula, unbundling, if 

simplification is allowed and discuss the Norwegian occupational defined benefit scheme 

(NODBS) outlined in chapter 2 in the context of each sub module. The definitions are 

enclosed in quotation marks being taken directly from the QIS5 technical documentation 

(European Commission, 2010a). The capital requirement for each sub module is the change in 

net asset value resulting from the applied method. 

8.1 Mortality risk 

Purpose: To account for mortality risk associated with (re)insurance obligations resulting 

from death of a policyholder. 

Definition: “A permanent 15 percent increase in mortality rates for each age and each policy 

where the benefits are contingent on mortality risk.” 

Unbundling: Insurance policies covering benefits in the events of both death and survival of 

the same life don’t need not to be unbundled. The natural diversification of mortality and 

longevity risk associated with the same person is allowed for. 

 Simplification: Is possible at the aggregate level if the standard method is an undue burden 

for the undertaking and the proportionality criteria is qualified. 

NODBS: Mortality risk does apply since widow’s and orphan’s benefits depend on death of 

the policyholder. There is however no need for unbundling the contracts since all terms, 

represented by (2.9) – (2.15), depend on the life status of the policyholder, i.e. U = P. 

Furthermore, widow’s benefits and orphan’s benefits are typically sufficiently low compared 

to the policyholder benefits to mitigate the mortality shock completely for paid up polices. 

However, this may not be the case for active policies. Expression (8.3) and (8.4) or (8.5) may 
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be used to calculate the capital charge for mortality risk according to the standard formula. 

The stressed mortality survival function(s), pΔ, may be computed by using the method in 

appendix A and setting F = +15 percent. 

8.2 Longevity risk 

Purpose: To account for longevity (or survival) risk associated with (re)insurance obligations 

resulting from a decrease in mortality rates, typically stemming from life annuities or term 

insurance. 

Definition: “A 20 percent (permanent) decrease in mortality rates for each age and each 

policy where the benefits are contingent on longevity risk.” 

Unbundling: Same issues as for mortality risk. 

 Simplification: Is possible at the aggregate level if the standard method is an undue burden 

for the undertaking and the proportionality criteria is qualified. 

NODBS: Longevity risk is the primary risk driver and does apply since the benefits to the 

policyholder depends on survival. No need for unbundling equivalently to the case for 

mortality risk, i.e. U = P. We use (8.3) and (8.4) or (8.5) to calculate the gross and net capital 

charge longevity risk by the standard formula. We compute the stressed mortality survival 

function(s), pΔ, by using the method in appendix A and setting F = -20 percent. 

8.3 Disability and Morbidity risk 

Purpose:  To account for the disability or morbidity risk resulting from (re)insurance 

obligations contingent on a definition of disability. The risk is characterized by changes in 

level, trend or volatility of disability rates. 

Definition: “An increase of 35 percent in disability rates for the next year, together with a 

(permanent) 25 percent increase in disability rates at each age in following years. Plus, 

where applicable, a permanent decrease of 20 percent in morbidity/disability recovery rates”. 
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Unbundling: This sub module is only applicable where it is not appropriate to unbundle 

contracts. Otherwise the risk should be handled in the Health SLT disability and morbidity 

sub module. 

 Simplification: Is possible at the aggregate level, if the standard method is an undue burden 

for the undertaking and the proportionality criteria is qualified. 

NODBS: The sub module is applicable when NODBS includes disability pension with earned 

rights. Otherwise the risk, if existent, should be handled by the Health SLT underwriting 

module. In the calculation we set U = {disability insurance24} since this is the only part 

depending on disability rates. However, in a model where mortality rates depend on disability 

rates there would likely be some diversification and we would use U = P. Now, continuing as 

above, we use (8.3) and (8.4) or (8.5) to calculate the gross and net capital charge for 

disability and morbidity risk by using the standard formula. We compute the disability 

survival function(s), pΔ, by using the method in appendix A and setting F1 = 35 percent and 

F2 = 25 percent. We implicitly use a recovery rate of 0 percent, so a permanent decrease of 20 

percent in recovery rates is not feasible and therefore not applicable. 

8.4 Lapse risk 

Purpose: Account for lapse risk which is defined as: “the risk of loss or change in liabilities 

due to a change in the expected exercise rates of policyholder options”. The assessed 

policyholder options are the legal and/or contractual policyholder options such as, 

terminations, renewals, extensions, that would significantly alter the future cash flows. 

Definition: The definition is comprehensive. In broad terms, it is basically the maximum 

change in net asset value resulting from one of three possible scenarios; 1) exercise rates 

increase by 50 percent, but not to a higher absolute level than 100 percent, 2) exercise rates 

decrease by 50 percent, but not by more than 20 percentage points reduction in absolute level, 

and 3) a mass lapse of 30 percent of policies with (positive) surrender strain for retail business 

and 70 percent for non-retail business. 

Unbundling: Necessary, following the policyholders’ legal and contractual options. 

                                                 
24 Disability insurance is understood as not receiving (fully) disability pension at the valuation date. 
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 Simplification: Is possible, must be but calculated at an appropriate granularity, and only if 

the standard method is an undue burden for the undertaking and the proportionality criteria is 

qualified. 

NODBS: This can be applicable, but we have no empirical data covering this issue. If an 

employee leaves a company the employee has an option to continue in NODBS by paying 

premiums privately. In this case married employees with children may have bigger incentive 

to extend since NODBS discussed in chapter 2 is based on population means. Likewise could 

there potentially be a selection effect occurring from individuals having personal health 

information. We will however neglect this risk since the tax incentives is on the employers’ 

hands which should moderate the incentive. This is not relevant in regards to pension funds, 

since this type of insurance must be contracted through a life insurance company. 

8.5 Expense risk 

Purpose: To account for the risk of increases in servicing expenses for (re)insurance contracts 

in the future. Expense payments that are fixed at the valuation date should be excluded from 

the analysis, and one should also take into consideration realistic management actions for 

policies with adjustable expense loadings. 

Definition: “Increase of 10 percent in future expenses compared to best estimate 

anticipations, and increase by 1 percent per annum of the expense inflation rate compared to 

anticipations.” 

Unbundling: Conditional on expense loading structure. 

 Simplification: Possible conditional that the standard method is an undue burden for the 

undertaking and the proportionality criteria qualifies. We will use the proposed simplification 

in chapter 9 and state the formula in (8.7). The input variables are; 1) E = servicing expenses 

during the last year for life insurance contracts, 2) n = average number of years the risk runs 

off weighted by renewal expenses, and 3) i = the expected inflation rate. The expected 

inflation rate used in the extrapolation of the Norwegian risk free yield curve is 2 percent. 
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NODBS: Applicable. The formula above yields a gross capital charge. We may arrive at a net 

figure by using (8.4) or (8.5), where the gross change in liabilities is defined as in this section 

rather than (8.3). 

8.6 Revisions risk 

Purpose: To account for the revision risk associated with the state of health of a policyholder 

or possible changes in legal environment affecting an annuity. 

Definition: “Increase of 3 percent in the annual amount payable for annuities exposed to 

revision risk. The impact should be assessed considering the remaining run-off period of the 

annuities.” 

Unbundling: Yes, the sub module should only be applied to annuities where the payable 

benefits may increase as a result of revision risk. 

 Simplification: Not possible. 

NODBS: Applicable for earned disability pension benefits not called for. Thus we take U = 

{disability insurance}. In addition we need to modify (8.1). Instead of using the expected cash 

flows relevant for this benefit, we will calculate the discounted value as if the policyholders 

are disabled. This is done by shifting the expected cash flow index to {receiving disability 

pension} in (8.1). The capital charge is 3 percent of the total discounted value in (8.1). Note 

that the technical documentation doesn’t state a net figure, so for calculation purposes in the 

continuation we will use net capital requirement = gross capital requirement. 

8.7 Catastrophe risk (CAT) 

Purpose: To account for the risk of major irregular events resulting in the death of 

policyholders, e.g. pandemic events, nuclear explosions and earth quakes. 

Definition: “Absolute increase in the rate of policyholders dying over the following year of 

0.15 percentage points (only applicable to policies which are contingent on mortality).” 

Unbundling: Yes, the sub module is restricted to (re)insurance obligations contingent of 

mortality. The technical documentation doesn’t explicitly allow for the natural diversification 
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from benefits depending on both death and longevity of the policyholder in the description of 

the sub module. We will therefore assume that this diversification is not allowed for. 

 Simplification: Is possible at the aggregate level if the standard method is an undue burden 

for the undertaking and the proportionality criteria is qualified. 

NODBS: Applicable for earned widow’s and orphan’s benefits. Thus we take U = {widow’s 

insurance, orphan’s insurance}25. Additionally we also need to modify (8.1) analogously to 

the modification in section (8.6), but this time for widow’s and orphan’s benefits. The gross 

capital charge is 0.15 percent of the total discounted value. We may arrive at a net figure by 

using (8.4) or (8.5), where the gross change in liabilities is defined as in section rather than 

(8.3). We note we may also calculate this figure by using (8.3) and shocking the mortality 

survival function appropriately. However, we have not designed the algorithm in appendix A 

with respect to absolute changes in mortality rates, so we refrain from this since it essentially 

will yield the same result. 

8.8 SLT Health Risk: Disability and morbidity 

Purpose:  To cover risk of disability or morbidity risk from (re)insurance liabilities resulting 

from shifts and variability in claim frequencies or claim amounts from disability, sickness and 

morbidity rates, and medical inflation. This is notably more comprehensive than the disability 

and morbidity sub module of the life underwriting module in section (8.3). The sub module 

distinguishes between medical expense insurance and income protection insurance 

obligations. 

Definition: We will skip a general definition and refer to the QIS5 technical documentation 

for more information. The purpose of this section is only to bring attention to this sub module. 

We also note that the income protection insurance obligations are defined similarly to the 

disability and morbidity sub module in section (8.3). 

NODBS: Not applicable if NODBS is of the form discussed in chapter 2. However, it should 

anyway not yield significantly different results if the medical expense insurance component 

mentioned above is not covered. On the other hand, there may be small diversification 

                                                 
25 Widow’s and orphan’s insurance are understood as not receiving widow’s and orphan’s benefits at the 
valuation date. 
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differences since the SLT Health module uses a slightly different correlation matrix. 

Furthermore, undertakings would also lose the diversification in combination with the Life 

underwriting module. 
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9 Case study: QIS5 for a pension fund 
 

We have so far described and outlined relevant theory, methods, principles, regulation and 

legislation in relation to the forthcoming Solvency II directive and QIS5. Ultimately, the 

objective of the assignment is to calculate the solvency capital requirement for a real life 

insurance or pension undertaking. This is the subject in this chapter where we will use the 

methods discussed in the previous chapters. Pål Lillevold has provided data for a Norwegian 

pension fund. We will refer to this pension funds as PF in this chapter. 

9.1 Overview 

We will base our calculations on the pension funds status at the end of 2010. We note that the 

formal QIS5 reporting assumed undertakings filing the status at the end of 2009. In this 

respect the calculations may not be completely representative in a formal Solvency II filing, 

since Solvency II uses a counter cyclical approach. However, the potential tightening for a 

supposed 2010 Solvency II requirement is rather uncertain since the economic recovery after 

2008 has been slow for the developed countries. The distressed situation among some 

indebted countries in Europe presumably may delay or dampen the counter cyclical 

tightening. Furthermore, government bonds issued by distressed EU countries are rated as 

prime quality in QIS5 even if yields on some of these bonds trade above 10 percent. The 

details of QIS5 were finalized as the distressed situation was emerging. One may assume that 

regulators wish to avoid escalating these issues further as some financial institutions are 

heavily exposed and may need government aid if reconsidered. 

 The QIS5 filing forms are comprehensive Excel spreadsheets, but with simplifications for 

solo undertakings. Nevertheless, they are unsuitable for the exposition in this thesis. We have 

therefore prepared our own spreadsheets performing the necessary calculations from a sub 

module level similar to the formal spread sheets. Computations comprising or depending on 

(expected) cash flows for the pensions fund are calculated in Mathematica. The code is listed 

in appendix C. We will briefly sketch the logic behind the algorithms in sub section (9.3.1), 

but will refer to the previous chapters for a theoretical and principle discussion. 
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The Norwegian legislation for life and pension insurance protects the policyholder holder 

from fluctuations in the discounted value of the guarantee benefits. This may motivate 

undertakings to choose cautious strategic asset allocation strategies trying to preserve the 

shareholders equity in the short run. Solvency II may amplify this effect since it explicitly 

reveals the inherent risk of the yearly interest rate guarantee. 

Contrary to this, PF is a well-managed and well positioned pension fund with very 

comfortable buffer and own funds. This enables the pension fund to run a long term focused 

investment strategy which is more comparable to international counterparts operating without 

short term return guarantees. As we will see, PF is sufficiently capitalized to pursue its long 

term investment strategy, even under Solvency II using the standard formulas in QIS5. 

Table (9.1) depicts PF balance sheet. It holds 1.85 billion (NOK) in own funds and 2.41 

billion (NOK) in buffer funds. This amounts to 4.27 billion (NOK) in risk mitigating capital, 

and compares to 6.97 billion (NOK) in funds that are covered by the embedded interest rate 

guarantee. PF uses a comfortably low technical rate of 2.6 percent for all policyholders. 

 

Table 9.1: Assets and liabilities 

The financial information we have used throughout the chapter is the annual report and 

accounts for 2010. The statement contains the most important data for completing QIS5. 

However, some details are not disclosed and we will therefore make appropriate assumptions 

when necessary. We believe the undisclosed details won’t have a major impact on the 

conclusions since the main risk stems from equity risk and interest risk from guaranteed 

benefits (while not accounting for changes in future discretionary benefits). To assess the 
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liabilities we are provided with a complete dataset covering benefits and premium reserves for 

each individual policyholder. Technically, the additional reserve fund is also allocated to each 

policyholder, but we will treat it at an aggregate level since this information is not disclosed. 

The pension fund covers defined benefits for retirement and disability, widow or partner, and 

orphans. Retirement benefits principally start when the policyholder turns 67 years and lasts 

for the remaining lifetime. We will assume that all policyholder receive retirement benefits 

when turning 67 years, although there are some cases where the policyholder must wait until 

turning 68 years. Disability insurance lasts until retirement in the event of disablement, while 

widow’s and partner’s benefits lasts for the whole lifetime in the event of policyholder’s 

death. In the latter case any orphans will receive benefits until turning 18 and/or 21 years. 

Quite commonly the orphan’s benefits double in size after turning 18 years, while lasting until 

turning 21 years. These are essentially the benefits discussed in detail in chapter 2. 

9.2 Technical provisions 

As discussed previously the technical provisions in the Solvency II for insurance liabilities 

should be equal to the (market) value counterparts are willing to undertake the insurance 

liabilities. The valuation is split into two parts; a) calculating the expected value of the 

liabilities using no safety loadings, and b) calculating the risk premium to cover the cost of 

capital for the necessary solvency capital requirements. We will pursue part a) in this section. 

We will use the K2005 parameters for calculating the expected cash flow. K2005 gives 

Gompertz-Makeham parameters for survival functions and additional functions describing 

population means and age differences necessary to calculate net expected cash flows for all 

benefits covered by PF, except for disability benefits. Lillevold & Partners AS has 

additionally provided relevant disability Gompertz-Makeham parameters. Parameters for 

calculating net expected cash flows are therefore readily available.  However, it is important 

to be critical since these are based on population mean and the insurance liabilities of the 

undertaking may not be representative for the entire population. We shall, however, assume 

that this is satisfactory. PF has more than 15.500 members which are geographically dispersed 

over various parts of Norway. 

The contract boundary is central for determining a pension fund’s liabilities as discussed in 

chapter 6. About 35 percent of the policyholders are employed and acquire benefits linearly 



64 
 

by seniority. The remaining stock are paid up policies and/or receiving benefits. The sponsors, 

also representing the owners’ stake in this case, may decide to change the pension scheme or 

entirely close it. In this case all policies will be converted to paid up policies. This is 

ultimately the contract boundary for PF, and we will use this as a basis for calculating the 

solvency capital requirement. 

With this assumption we can treat all contracts equally and part of the same modified profit 

sharing model discussed in chapter 5. We will include earned benefits over the next year for 

increased seniority, but not potential wage increases. We will assume that the premium for the 

earned benefits is charged to the premium fund and credited the premium reserve fund. The 

one year timeframe is chosen accordingly to the VaR specification of the solvency capital 

requirement (i.e. one year time horizon with 99.5 percent probability). 

To discount the expected benefits we use the Norwegian yield curve from the QIS5 

discounting helper tab, including the 75 percent illiquidity premium which is relevant for 

these contracts. In addition we will use the implied volatility surface calculated from 

Norwegian swaptions market (as of 31st of December 2009) which is illustrated in figure 9.5. 

We discuss both in more detail below. Using these assumptions we are able to compute the 

technical provisions excluding the risk margin as shown in table 9.2. 

 

Table 9.2: Technical provisions ex. risk margin 

The value of the guaranteed benefits, interest rate guarantee and expenses in table 9.2 is 

calculated using the Mathematica algorithms listed in appendix C. The value of the embedded 

interest rate guarantee reflects only time value since the intrinsic value is zero. The expenses 

are calculated using formula (6.5) based on servicing costs (total management expenses was 

22.77 million NOK last year), the expected inflation rate (2%) and the duration of the 

expected cash flows.  The “other insurance funds” may be obtained from table 9.1 while 
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deducting the estimated gross premium for the earned benefits for next year (about 120 

million NOK). The premium reserves are credited with the same amount. The future 

discretionary benefits in the table are then straightforward to calculate. 

Before proceeding to the solvency capital requirement, we will briefly look at the Norwegian 

yield curves and volatility surface used in the calculations. The zero-coupon yield curves are 

displayed in figure 9.3 up to maturities of 40 years, while figure 9.4 shows the implied 

forward (one) year yield curves. 

 

Figure 9.3: Zero-coupon yield curves (NOK) 

 

 Figure 9.4: Forward one year yield curves (NOK) 

The smoother curve in each graph depicts the risk free rates, while the other curve in each 

graph includes the relevant illiquidity premium (75 percent of 20 basis points). As can be seen 

from figure 9.4, the effect of the illiquidity premium runs completely off from 10 to 15 year 

maturities having a negative spread to the risk free yield curve. This is somewhat irregular 

and effectively means that (expected) cash flows with long maturities are not exposed to and 
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neither are discounted by the illiquidity premium obtainable in the shorter end of the curve. 

Consequently, the illiquidity premium is irrelevant for maturities longer than 15 years. When 

the illiquidity premium narrows in the stress scenario, forward interest rates will rise for 

maturities between 10 and 15 years, and fall for maturities less than 10 years. Thus, the effect 

of the illiquidity premium is not obvious for an undertaking. 

Figure 9.5 depicts the Norwegian volatility surface for swaptions with one year tenors based 

on implied volatilities using the Black model and market prices as of 31st of December 2009. 

The time scale follows from right to left to improve visualization.  The strikes in the graph 

vary from -200 to +200 basis points on top of the relevant implied forward curve which 

should be approximately similar to the forward curves in figure 9.4. Prices are only available 

for expiries up to 30 years. We have therefore extrapolated the volatility surface using 30 year 

volatilities also for longer maturities. The volatility surface converges to about 11 - 12 percent 

volatility for strikes above the forward yield curve. This is however fairly low compared to 

the interest rate level. At the end of last year, the same part of the surface was 2 - 3 percentage 

points higher than this. To be consistent with dates we shall, however, use the volatility 

surface below as input. The shape of the volatility surface will actually result in larger 

absolute price changes of the embedded options in the interest rates down scenario. 

 

Figure 9.5: Volatility surface for Norwegian swaptions with one year tenor 
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9.3 Solvency capital requirement 

Calculating the solvency capital requirement is the main objective in this thesis. We start first 

by briefly outlining the algorithms in appendix C below. The algorithms compute the life 

underwriting risks in the first sub section, and the interest rate risk and the illiquidity risk in 

the second sub section. The remaining part of the market risk and the default risk is also 

covered in the second sub section. We keep the future discretionary benefits unchanged, so 

we can calculate the basic solvency capital requirement in (9.3.3). Changes in the future 

discretionary benefits are accounted for in the two next sub sections. Finally sub section 

(9.3.6) calculates the operational charge and the adjustment factor obtained from the two 

previous sub sections. This yields the Solvency Capital Requirement (SCR). 

9.3.1 Life underwriting risk 

The algorithms consist of three parts. The first part calculates vectors of net expected cash 

flows for standardized benefits (100 NOK per year) for each standardized age between 0 and 

120 years and each gender, looking 120 years into the future. The algorithms produce both the 

net expected cash flows and the stressed cash flows taking the relevant stress parameters as 

input. For ages where certain benefits are not applicable, the net expected cash flow is simply 

zero. For instance we assume that employees may enter the defined benefit scheme at age 20. 

Thus, the net expected cash flows are zero for employees under 20 years old. On the other 

hand, orphans receiving benefits lose these when turning 18 or 21, and so the net expected 

cash flows for orphans receiving benefits are zero for ages above 18 or 21 respectively. The 

net expected cash flows for each gender and benefit are saved into tables ranging from 0 to 

120 years, and likewise for the stressed cash flows. Widow’s and partner’s benefits depend on 

two lives, and we “stress” both lives simultaneously to be consistent26. 

The second part computes the expected cash flows and the stressed cash flows for each policy 

using the tables from part one. For non-integer lives we use linear interpolation to 

approximate the relevant cash flows. This is a fair approximation speeding up the algorithm 

considerably. This is done for each covered benefit and scaled appropriately according to the 

terms in each policy. All expected and stressed cash flows for each policyholder are 

                                                 
26 And effectively reduces the diversification when considered in combination with benefits having longevity as 
the primary risk driver. 
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accumulated27. Additionally expected and stressed cash flows relating to disability benefits 

(but not currently receiving disability benefits) are also accumulated. Similarly, expected cash 

flows assuming that all policyholders have deceased, are accumulated for the purpose of 

calculating CAT risk as outlined in section 8.7. This yields all the necessary cash flows from 

the liabilities. But, we will need to rerun these algorithms when computing the stresses in the 

equivalent scenario. 

Part three computes the risk sub modules. We don’t give any risk figures here as they are 

displayed in table 9.10 and discussed in sub section (9.3.3). The relevant yield curves are 

loaded. We also apply the redistribution algorithm to the cash flows as discussed in chapter 3. 

Mortality risk is considered equal to zero as discussed in section (8.1). Longevity risk is 

computed by calculating the discounted value of the difference between the stressed and net 

expected cash flows. Similarly, the disability risk is calculated as the discounted value of the 

difference between the stressed and net expected cash flows. These were accumulated 

additionally. We assume that lapse risk is zero according to the discussion in section (8.4). 

Expense risk is computed by formula (8.7) needing three inputs. The last year’s servicing 

expenses, the inflation rate and the average number of years the risk runs off weighted by the 

renewal expenses. Here we have used the duration of the expected cash flows. Revision risk is 

3 percent of the discounted value of the disability benefits (not including those that are 

currently receiving disability benefits). Finally, CAT risk is 0.15 percent of the discounted 

value of the CAT cash flows. 

9.3.2 Financial risk 

In the discussion we follow the same order as in chapter 7, starting with interest rate sub 

module. We continue using the Mathematica algorithms from the previous section, and 

additionally load the appropriate stressed yield curves, usually denoted by up and down, and 

the volatility surface. We will assume that latter also applies in stressed situations. 

Realistically however it is likely that the implied volatilities will rise somewhat in the event of 

lower interest rates. We also compute the cash flows for the fixed income portfolios, and keep 

the collective and company portfolio separately. 

                                                 
27 This is a slight simplification since we should separate cash flows by longevity or mortality as the primary risk 
driver. However, we assume that longevity risk is the primary risk driver for all policy holders since this is the 
natural risk driver for this defined benefit scheme. This is even more appropriate when all policies are considered 
paid up as here.  
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Part three of the algorithms yields the changes in values resulting from stressing the yield 

curve, upwards or downwards. We calculate the change in values individually for the 

guaranteed benefits, the embedded interest rate guarantee (with strike equal to the technical 

rate of 2.6 percent), price change of the collective portfolio and the company portfolio. 

The financial statement contains information about the market values and durations across 

risk categories for the bond portfolios. We use formula (3.8) to estimate cash flows and 

mapping algorithm (3.7) to distribute cash flows to the appropriate vertices. The average 

duration in both portfolios is fairly short (2.05 in total). Higher interest rates will therefore 

only have a moderate impact on the market values of the bond portfolios. The discounted 

value of the guaranteed benefits and the embedded interest rate guarantee will fall. Thus, it is 

highly likely that the scenario with lower interest rates will be relevant for PF (which is 

verified by the calculations in appendix C). We will assume that all bonds are issued in NOK, 

having no information that contradicts this. 

We also estimate the interest income for the next 12 months in table 9.6. The effective yield is 

6.7 percent according to the financial statement. This is rather high compared to short term 

Norwegian government bonds, so we suspect there are some floating rate notes in the 

portfolio. We have subtracted 0.5 percentage points to take account of the moderate yield 

curve steepness. In table 9.6 we have charged the interest income account for the collective 

portfolio for the yearly interest rate guarantee by the technical rate. Thus, the interest income 

should cover the interest rate guarantee. However, no financial returns should be included, 

and we therefore assume that the net income is zero. There are no bonds classified as hold-to-

maturity. 

  

Table 9.6: Interest payment account 
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The financial statement gives all equity holdings. 87.4 percent are listed on the Oslo Stock 

Exchange, 1.3 percent on Oslo Axess, 2.8 percent on foreign stock exchanges, while 8.5 

percent are unlisted equities. Having looked through the holdings, we find that most of the 

unlisted equities are in the company portfolio. For simplicity we will assume that the 

collective portfolio holds only listed equities. All stock exchanges are in EEA and/or OECD 

countries. All listed equities therefore qualify for the “global” category. Using the market 

values we categorize the equities as in the upper part of table 9.7. The “other equities” are the 

unlisted part which is 8.5 percent of the total market value. We have also added 7.9 million 

NOK of call options to the company portfolio. When doing this we need to assume that the 

option is very deep in-the-money so that the option essentially behaves as a stock (i.e. delta 

equal to one). The lower part of the table shows the stress scenario. 

 

Table 9.7: Equity exposure and risk 

We may skip the property sub module since PF holds no property. When considering foreign 

exchange risk, the financial statement states that PF seek to reduce foreign exchange risk, i.e. 

there are no active bets but there may be passive bets. The market value of the currency hedge 

in the collective portfolio is 2 million NOK, while zero for the company portfolio. The latter 

may indicate that the company portfolio is unhedged. Having assumed that all bonds are 

issued in NOK, FX risk can only stem from equities. Table 9.8 shows the equity exposure for 

each currency using the holdings in the financial statement. We will assume that none of these 

currencies are hedged since the company portfolio holds the larger risk and presumably is 

unhedged. We therefore use a 25 percent capital charge on the exposure for all currencies. 

 

Table 9.8: FX exposure from the equities and FX risk 
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The capital charge from the spread risk module is difficult to calculate without more 

information about the fixed income portfolios. We will therefore use the following 

assumptions; a) financial institutions are rated A, b) securities with the highest collateral level 

are rated A, c) mortgage backed securities are rated AAA, and d) the rest is unrated. Table 9.9 

shows the capital charge, which is copied from the QIS5 spread risk helper tab. 

 

Table 9.9: Helper tab spreadsheet for spread risk 

In order to calculate concentration risk we will need to assume that the bond portfolios are 

well diversified and do not hold issuers from the four largest equity stakes. From the listed 

equity holdings we have identified the four largest equity holdings as of 5.82, 2.92, 2.16 and 

1.66 percent of the total assets. These are unrated and therefore have a concentration risk 

threshold of only 1.5 percent. We may compute the concentration risk by using the QIS5 

concentration risk helper tab. Another option is simply to multiply the portion exceeding the 

threshold by the relevant concentration risk factor (which is 0.73), squaring and adding all 

terms, taking the square root of the sum, and finally multiply by the total asset values 

excluding the loan portfolio considered below (about 11 billion NOK). 

The Mathematica code in appendix C calculates the illiquidity risk using the same method as 

for the interest rate down scenario, but using the relevant stressed illiquidity premium yield 

curve. We have obtained this from the QIS5 discounting helper tab. 

Finally, we will consider the counterparty default risk. There are three potential sources we 

need to assess. The counterparty risk related to derivates. We will disregard this since we 

have assumed that all equities are unhedged. The same applies to the reinsurance contract 

(which is related to catastrophe insurance) since we implicitly have assumed yields no risk 
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mitigating effects in the stress scenarios. Furthermore, PF has a portfolio of loans 

collateralized by property (of about 96 million NOK). The loans are primarily mortgage loans 

to policyholders. We therefore categorize these as Type 2 exposure. According to the 

financial statement none of these are at risk, so we will assume that none of the down-

payments are overdue. The capital charge is therefore simply 15 percent of the loans. 

9.3.3 The Basic Solvency Capital Requirement (BSCR) 

Having worked through all relevant parts of the risk sub modules, we can calculate the basic 

solvency requirement. Table 9.10 shows the relevant information from the risk sub modules 

(and sub-sub module in the case of equities) holding the value of future discretionary benefits 

unchanged. We use the following column headings; ΔL = change in market value of 

guaranteed benefits, ΔIRG = change in market value of embedded options, ΔAK = change in 

asset values on the collective portfolio, and ΔAS = change in asset value on the company 

portfolio. 

 

Table 9.10: BSCR calculation table 

The row in the SCRi column may now be calculated by simply adding the ΔL and ΔIRG 

columns, subtracting the ΔAS column, and subtracting 20 percent of the ΔAK column if 
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positive and 100 percent if negative. The latter follows from the modified profit sharing 

model which shares the profits (20/80) but not the losses (100/0). 

The losses may then be aggregated to a higher level using formula (6.6) and the relevant 

correlation matrices (e.g. using the correlation matrices for the scenario where interest rates 

fall). We have listed the correlation matrices in appendix B. They may also be found in the 

QIS5 technical documentation. This adds up to a BSCR of 2.83 billion NOK. To arrive at an 

SCR we need to calculate the adjustment factors and operational risk capital charge. We 

calculate the adjustment according to the two prescribed methods in the next two sub sections. 

We shall assume that loss absorbing of deferred taxes is insignificant. 

As a note, in the discussion above we have implicitly assumed that the net income from the 

actuarial and management accounts is nil before the stress scenarios appear. 

9.3.4 nBSCR: The modular approach 

In this approach we calculate a net Basic Solvency Capital Requirement (nBSCR) by 

accounting for the loss absorbing of technical provisions for each scenario separately. There 

are three possible sources as shown in table 9.11 under the “source” heading; the change in 

the difference between the premium reserves and the value of the guaranteed benefits, 

potential use of the adjustment reserve fund, and the (possibly potential) use of the price 

adjustment fund. Potential in this context means (possibly future) management actions. 

The net change in FDB takes account of the profit sharing, while the change in gross FDB 

simply adds the three columns under the “source” heading. For each sub module we calculate 

the net capital charge under the column headed “nSCRi”, found by adding the sub modules 

amount from the “SCRi” column with the change in net FDB. The “SCRi” column follows 

from the previous section. 

Although the modular approach calculates each scenario individually, we should be careful 

not to double count the loss absorbing capacity. We have therefore tracked the utilization in 

the last row of table 9.11. As can be seen both the price adjustment fund and additional 

reserve fund are depleted. The difference between the premium reserves and the value of the 

benefits is still large, but utilization will mostly depend on the interest rate level. We have 

chosen to use the adjustment reserve fund in the equity stress scenario since this yields the 
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highest effect being the most important risk driver (the additional reserve fund can only be 

used to cover the yearly capitalization by the technical rate). We have also assumed that the 

management appropriately draws from the price adjustment fund in each case of the life stress 

scenarios. This is possible since we have assumed that all policies are converted to paid up 

policies, enabling profit sharing on the combined net income of the financial, actuarial and 

management account. 

 

Table 9.11: nBSCR calculation modular approach 

Finally, the nBSCR calculated by the modular approach may be found by using formula (6.6) 

appropriately in combination with the same correlation matrices used above. As the table 

shows, this yields an nBSCR of 892.0 million NOK. The adjustment term may then be 

computed as BSCR – nBSCR = -1935.6 million NOK, since the sources are not depleted 

using formula (6.9). We will make use this nBSCR in sub section 9.3.6 and will now turn to 

calculating the adjustment term using the equivalent approach. 
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9.3.5 nBSCR: The equivalent scenario 

The equivalent scenario is specific for each undertaking as discussed in chapter 6. We 

therefore need to calculate this first, by using the method described in chapter 6. Table 9.12 

outlines the calculations. We note that this is done at three levels28 starting at the bottom level 

and working upwards to the top level. The principle rule is to use the SCRi’s and not the 

nSCRi’s. The “SCRi” column can be recognized from the standard scenarios in sub section 

9.3.3. The multiplication of SCRi by Y and division by Capital corresponds to formula (6.10). 

We have chosen this setup following the example in Annex J in (European Commission, 

2010b). We note that formula (6.10) assumes only one level, so BSCR in the formula (6.10) 

corresponds with Capital in the table, while pSCRi is the “SCRi” at the sub-sub or sub 

module level. Y represents the remaining part of formula (6.10). 

 

Table 9.12: Calculating the equivalent stress scenario 

The diversification factor ratio in the “% Top” column yields the undertaking specific 

equivalent scenario. Each scenario is quoted as a percentage of the original stress. For 

instance the global equity shock is only 91 percent of the original scenario where market 

values fall 30 percent. Thus, equities fall 27.3 percent in the equivalent scenario. All gross 

                                                 
28 Effectively this means that correlations between sub modules from different modules can change since the 
correlations at the module level are constant, depending on each specific undertaking’s positions. 
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charges are in fact calculated by table 9.12 if the risk sub modules are linear. This is not the 

case for the interest rate, illiquidity premium, longevity, disability and expense risk sub 

modules. We therefore need to recalculate these sub modules using the new parameters and 

the modified yield curves. To do this, we reuse part three of the Mathematica code, adjusting 

parameters and importing appropriately scaled stressed yield curves for the interest rate down 

scenario and the illiquidity premium scenario. The yield curves may be appropriately scaled 

using the QIS5 discounting helper tab. The other parameters follow the same line of reasoning 

as described for equities. For instance the longevity shock may be found by multiplying the 

original stress (-20 percent) by the diversification factor ratio for the longevity sub module 

from the top level (29 percent), which yield a reduced stress scenario of -5.8 percent. We 

proceed in a similar way for the other risk sub modules. 

Having done this, table 9.13 shows the equivalent scenario using a setup similar to table 9.10 

for the modular approach. However, in this case we don’t use correlation matrices to 

aggregate the individual capital charges to the top level. The equivalent scenario is a single 

scenario where all stresses happen simultaneously, so we simply add the scenarios. The gross 

charge is 2.65 billion NOK, assuming future discretionary benefits are unchanged. 

 

Table 9.13: The gross change in net asset value under the equivalent scenario 
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One may compare the non-linear sub modules in 9.13 with the linear approximation in table 

9.12 resulting from the Component BSCR partition. We see that interest rate risk is about 20 

percent off the exact calculations, while longevity risk is about 13 percent lower. Disability 

risk is on the other hand roughly 6 percent higher. 

We can now calculate the changes in future discretionary benefits. This is illustrated in table 

9.14 which is similarly structured as table 9.11. However, we now categorize the rows by 

liabilities, collective portfolio and company portfolio which are the relevant levels for profit 

sharing when considering a combined simultaneous stress scenario. We use the same 

assumptions as in the modular case regarding possible future management actions. 

 

Table 9.14: nBSCR under the equivalent scenario 

This results in an nBSCR of 849.1 million NOK. The adjustment term is again found by 

formula (6.9) which yields -1978.6 million NOK. We note that this is different from the 

change in net FDB in table 9.14 which is only -1797.2 million NOK. We have calculated the 

latter to keep track of the sources. When using formula (6.9) we must ensure that the loss 

absorbing is not greater than the capacity. The loss absorbing capacity is 3.86 billion NOK, 

and 1.98 billion is therefore well within the limits. 
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9.3.6 The solvency capital requirement 

Having worked through the BSCR and nBSCR calculations, we are almost able to calculate 

the solvency requirement. We will also need the capital charge for operational risk. This is 

straightforward using the expression (6.8). We note that (6.8) is incomplete since it disregards 

some aspects, but, it is exact for PF. The necessary input is either previously calculated or can 

be found in the financial statement. Table 9.15 shows the calculation. It is simply the 

maximum of the charge for either premiums or technical provisions, but bounded at above by 

30 percent of the BSCR. We see that the 0.45 percent charge for the technical provisions is 

binding. Technical provisions in this case don’t include the risk margin to avoid circularity. 

 

Table 9.15: Solvency capital charge for operational risk 

We are finally able to compute the solvency capital requirement which is shown in table 9.16. 

We see that the equivalent scenario approach requires approximately 5 percent lower SCR 

than the modular approach. In addition the equivalent scenario approach has significantly 

more loss absorbing capacity left in the technical provisions. The difference is about 764 

million NOK when comparing the BSCR – nBSCR for each approach. 

 

Table 9.16: Solvency capital requirement 

The pension fund is well capitalized and has sufficient funds to cover the required solvency 

requirement using both methods. For completeness we will additionally compute the 

minimum capital requirement in table 9.17, using formula (6.13). 
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Table 9.17: Minimum capital requirement 

The solvency capital requirement under the current regulation is 283 million NOK according 

to the financial statement. The MCR is just 18 and 22 percent lower, while the SCR is 229 

and 214 percent higher than under the current regime, under the modular and equivalent 

scenario approach respectively. This may involve a significant tightening which it may be 

difficult to operate under for undertakings with weaker balance sheets. One should also take 

into consideration that Solvency II uses a counter cyclical approach. This may result in even 

more demanding solvency capital requirements when the developed economies have 

recovered sufficiently. For instance, the base level equity stresses are 39 percent and 49 

percent for the “global” and the “other” category, compared to 30 percent and 40 percent in 

QIS5 respectively. 

9.4 The pension fund’s solvency II balance sheet 

We have worked through an extensive number of calculations, and round up by showing the 

pensions’ fund liability side of the Solvency II balance sheet. In order to do so we also need to 

calculate the risk margin. This is shown in table 9.18. We have used the crudest 

approximation that is allowed for (i.e. level 4). This may lead to an unnecessary high risk 

margin. However, the loss absorbing capacity of PF is abundant and we may not gain too 

much using a more refined method. In addition, the life stress scenarios where drastically 

reduced in the equivalent scenario which benefits the calculation of the risk margin. This 

follows since we only need to use the capital charges from the life module, the operational 

risk and a capital charge for unavoidable market risk from the equivalent scenario approach. 

The gross capital charge for the unavoidable market risk is, however, large as can be seen 

from table 9.18. We can probably improve this significantly if needed, e.g. if the pension fund 
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experiences a large loss of absorbing capacity. But, in that case the unavoidable market risk 

may also decrease some since the future discretionary benefits are included in the best 

estimate. 

 

Table 9.18: Calculation of risk margin 

Finally, in table 9.19 we see that the technical provisions (8.83 billion NOK) are 4.3 percent 

lower than the insurance liabilities (9.23 billion NOK) from table 9.1. The technical 

provisions are therefore fully covered by the insurance liabilities. 

 

Table 9.19: Solvency II balance sheet 
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We have assumed that the pension fund’s own funds are Tier 1 so that all excess assets over 

liabilities have Tier 1 characteristics. The solvency capital is significantly higher than under 

the current regime. This is partly due to the liabilities having a lower value, and that the 

equity is also including the unrealized earnings. This counteracts a significant part of the 

higher solvency capital requirement. The solvency ratio only falls from 324 percent under the 

current regulation to 251 percent or 239 percent in QIS5 depending on which approach is 

adopted when Solvency II is finalized. 

The Norwegian regulatory authority has published the results from the Norwegian QIS5 

reporting (Finanstilsynet, 2011b). The presentation does not cover pension funds, but we may 

compare with the ten life companies that have reported. The average best estimate and risk 

margin is about 1.6 percent lower than the gross reserve funds. This compares with 4.3 

percent lower for PF. Only three have solvency ratios above 150 percent, while four are 

below 100 percent. PF is considerably better capitalized than the average, while probably also 

running a much higher investment risk. 

We may also compare the risk decomposition. The life module represents on average about 

40 percent of the BSCR, while 75.6 percent of the BSCR comes from the market risk module. 

The risk figures are stated in undiversified terms in the report, and therefore accumulate to 

more than 100 percent. PF is significantly more skewed towards investment risk with only 9 

percent of the BSCR coming from the life module, and 97 percent from the market risk 

module. We end this chapter by concluding that the pension fund is extremely well 

capitalized and is well prepared to handle the forthcoming solvency requirements. 



82 
 

10 Conclusions 
 

The Solvency II directive is a fundamental review of the capital adequacy requirements for 

the European insurance industry scheduled to be implemented January 1st 2013. It will have a 

major impact on life and pension insurance undertakings. This is in particular trough for the 

Norwegian industry illustrated by the results from the Norwegian QIS5 reporting 

(Finanstilsynet, 2011b) and in the previous chapter. The Norwegian QIS5 reporting indicates 

that the situation is challenging. The average solvency capital requirement is 240 percent of 

the solvency margin under the current regime, while own funds are increased by only 5 

percent. The pension fund, analyzed in chapter 9, is on the other hand well capitalized. QIS5 

is no real concern for this pension fund. The solvency capital requirement is increased 

dramatically, however, being offset to a large degree by the increase in own funds. We will in 

this chapter summarize some of our findings and reflections throughout the project.  

The calculations and assumptions behind QIS5 are non-trivial. It assumes thorough insight 

into an undertaking’s insurance business as well as financial positions. This sets a high 

standard for all participants needing qualified expertise combining actuarial science and 

finance. This applies both to undertakings and regulatory authorities. Furthermore, the 

technical documentation outlines the calculations for the solvency capital requirements based 

on the so-called standard formula. The standard formula is however in several cases only a 

description of a stress scenario and does not necessarily state an explicit formula. In some of 

these cases simplifications are given, but stresses repeatedly that the proportionality 

assumption must be reasonable and that a full calculation must be an undue burden. 

Furthermore, when undertakings opt to use internal models, an even higher degree of 

complexity is introduced. 

The complexity of QIS5 is also illustrated by the fact the participants in the QIS5 reporting 

have used varying assumptions leading to that the result may not be completely comparable. 

This reveals that the QIS5 methodology probably needs additional tuning before implemented 

in Solvency II. The issue of the contract boundary is non-trivial for Norwegian life and 

pension insurance. We have used the assumption that all policies are converted to paid up 

policies. This is a real possibility for defined benefits schemes in the private sector, but may 
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not be relevant for the public sector. Under the current stress test for life insurance 

undertakings, Finanstilsynet balances this outcome for the private sector, but not for the 

public sector (Finanstilsynet, 2009). Furthermore, it is unclear if one rather should use the 

lapse sub module to account for the possibility of mass conversion to paid up policies. This 

may be relevant for the life insurance undertakings that have many sponsors backing the 

defined benefit schemes. Pension funds usually have only one or a few sponsors, and differ 

from life insurance companies since the sponsors also typically represent the owners. 

Continuing this reasoning one may also question how large risk premiums the sponsors are 

willing to pay for the interest rate guarantee, if long term interest rates falls significantly 

below the technical rate. We note that it’s only favourable for undertakings to assume 

business as usual in the QIS5 reporting, if the assumed risk premiums paid by the sponsors 

covers this mismatch sufficiently in the subsequent years after the stress scenario occurs. A 

reasonable assumption may however be that lower interest rates may amplify the trend 

towards replacing defined benefit schemes with defined contribution schemes, already being 

under pressure from the ongoing “pension reform”. Thus, undertakings may in the end bear 

the risk of lower interest rates anyway. 

Classical value investing strategies essentially boils down to buying cheap cash flows and 

selling expensive cash flows having a long term view, while avoiding momentum strategies. 

Solvency II combined with the Norwegian interest rate guarantee may motivate the reverse. If 

the buffer between the premium reserves and the discounted value of guaranteed benefits 

becomes low, undertakings will be threatened by the risk of bearing the cost of lower interest 

rates, and may buy bonds with long durations to hedge this risk. Short term this may lead to a 

self-reinforcing effect of even lower interest rates due to the increased demand for bonds with 

long durations. Momentum strategies are already strongly motivated by the yearly interest 

rate guarantee29. Solvency II may amplify this additionally and can result in lower investment 

returns to the clients. However, we note that Solvency II otherwise to some degree have 

adopted a counter-cyclical approach in the calibration of the stress tests. 

We also observed that the exploited capacity of the buffer funds were significantly lower in 

the equivalent scenario approach compared to the modular approach, although the respective 

solvency capital requirements were similar. Which method that finally will be adopted in 

                                                 
29 Dynamic risk management and constant proportion portfolio insurance (CPPI) are frequently used techniques 
in financial markets. 
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Solvency II, may be a concern for the Norwegian undertakings. The buffer funds are 

necessary for enduring market fluctuations when operating under the yearly interest rate 

guarantee. Furthermore, more flexible buffer funds may ease the burden somewhat. In the 

equivalent scenario where all stresses occurs simultaneously the additional reserve fund can 

only cover capitalization by the technical rate. Thus, additional reserve funds beyond this will 

stay unused in this approach. We note that Finanstilsynet has suggested amendments to 

Norwegian legislation in relation to Solvency II, amongst others proposing a single more 

flexible buffer fund (Finanstilsynet, 2011a). 

The results from the Norwegian QIS5, and in particular for the pension fund analyzed in 

chapter 9, show that market risk constitutes the larger part of the solvency capital 

requirement. This will presumably bring attention to developing internal market risk models 

in order to reduce the solvency requirement. Furthermore, it is only possible to take account 

of dynamic hedging programs in internal models, displaying the behavior of an undertaking in 

turbulent markets. The standard formula can only include existing positions (except for 

rolling hedging programs, which will only account for the rolling of existing contracts into 

new contracts as they expire). 

The illiquidity premium used for Norwegian QIS5 yield curves is small (maximum 20 basis 

points). However, we observed irregular effects on the yield curve as the illiquidity premium 

is phased out between 10 and 15 year maturities in the Norwegian QIS5 yield curves. This 

may be improved in the calibration (by EIOPA) using the forward yield curves instead of the 

zero-coupon yield curves.  

As a final point, we may also question the so-called macroeconomic method for extrapolating 

yield curves beyond the longest bond maturities in the market30. The argument is based on 

some of the same principles of the inflation targeting adopted by many central banks, which 

became a central banking paradigm in the 1990’ies. The globalization in the following years 

put strong downwards pressure on consumer goods resulting in low imported inflation in 

developed economies. The aftermath of the Great Recession in 2008 may change the inflation 

targeting paradigm, as the dysfunctional global trade model has been uncovered. It is 

therefore reassuring to observe that Finanstilsynet is uncomfortable with increasing the 

incentives to hold long bond durations at low interest rate levels. 

                                                 
30 Although, probably not very different from the prevailing ultra long bond yields for the time being. 
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Appendix A – Stressing survival functions 
 

In this appendix we describe how we compute the stressed survival functions. We assume a 

Gompertz-Makeham hazard rate function defined in sub section (2.1.3), although not needed 

before (B.8). The shocks in (European Commission, 2010a) are defined with respect to non-

survival rates (i.e. mortality or disability rates) for each age. They are typically formulated as; 

a) a permanent F percent increase/decrease for each age, b) F1 percent increase/decrease next 

year, and c) a F2 percent increase/decrease permanently in the following years after the first 

year. 

In each case we respectively define; a) Ft = F, b) F1 = F1 and Ft = 0 for t > 1, and c) F1 =0 and 

Ft = F2 for t > 1. We may combine b) and c) to obtain an individual shock rate for the first 

year and equal shock rates in the subsequent years (but leaving out the zero assignments in b) 

and c)). Each shock may then be expressed by (B.1) for a given age x. 
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By using relation (2.3) we find the shocked survival function in (B.2). 

      xtpFqFp txttxt
shock

tx   ,,1,0),1()1(1)1(1 11      (B.2) 

The idea is now to find coefficients c1,…ct which satisfies expression (B.3) so that we can 

describe the shocked survival function as a product the ordinary survival function and the 

exponential of the accumulated ct’s. Note that the coefficients depend on x when specified 

this way. This allows for a general shock specification of Ft. 
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We continue by finding an analytical solution for ct by inserting the shocked survival function 

into (2.4) and letting s = t - 1 and t = 1. This results in (B.4) which is solved for ct in (B.5). 
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In order to use the formulas in chapter 2 we need an appropriate continuous shocked survival 

function. We therefore define a continuous function fx+t in (B.6). The shocked survival 

function (B.7) satisfies (B.1) exactly for  xt  ,,1 . 
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The derivative of fx+t is stepwise continuous. If the coefficients are sufficiently bounded the 

integral of (B.7) does exist. Numerically, we may need to be cautious when choosing  to 

ensure that the coefficients, ct, don’t change too rapidly as the survival function approaches 

zero. For instance, a mortality shock is more challenging since it is difficult to decrease the 

survival function further when the survival function is close to zero. Conversely, a longevity 

shock results in a survival probability of approximately Ft for the next year, assuming the 

ordinary survival function is close to zero. Thus, the shocked survival function runs off 

similar to a geometric series which is numerically stable. 

Finally, combining (2.6) – (2.7) and (B.7) yields the shocked hazard rate function in (B.8). 

      t
tx

tx cc  
         (B.8) 
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Appendix B – QIS5 correlation matrices 
 

We have included the relevant correlation matrices from the QIS5 Technical Specification for 

completeness. These are part of the formal QIS5 documentation issued by the European 

Commission (European Commission, 2010a). 

 

Figure B.1: Top level correlation matrix  

 

 

Figure B.2: MarketDown correlation matrix (lower interest rates scenario) 

 

 

Figure B.3: MarketUp correlation matrix (higher interest rates scenario)  
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Figure B.4: Equity sub module correlation matrix 

 

 

Figure B.5: Life module correlation matrix 
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Appendix C – Mathematica code 

Part I - See sub section 9.3.1: 

 



90 
 

 

 



91 
 

 



92 
 

 



93 
 

 

  



94 
 

 

  



95 
 

Part II – See sub section 9.3.1: 
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Part III – see sub section 9.3.1 and 9.3.2: 

The Calculations at the end is based on the standard formulas. The results from the equivalent 

scenario is not shown. 
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