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1 Introduction
For years, biologists at CEES, Centre for Ecological and Evolutionary Synthesis,
have analyzed sylvatic plague (Yersina Pestis) in an attempt to increase the
knowledge of the biological process. One of the datasets analyzed was collected
in Kazakhstan for surveillance purposes. This dataset gives unique opportunities
for exploring the biological dynamics of sylvatic plague.

The dataset collected in the desert Saryyesik-Atyrau, southeast of lake Balkhash.
A large field was divided into squares. Every year, from 1949 to 1995, some
squares were tested for plague among great gerbils (Rhombomys opimus), which
is the main host for plague at this site. The main vector, fleas (Xenopsylla),
was also tested for plague infection and counted.

The latest analysis on this was done by Lise Heier et al1. She made a very
specific analysis of the structure. In further analyses, she found no effects from
climatic variables.

Others analyzing the Kazakh dataset includes Nils Chr. Stenseth et al2 and
Noelle I. Samia et al3. Both Stenseth and Samia used a threshold model.

The Methods used by Stenseth et al. (2006) reduced the above threshold
sample size to 120 excluding flea data and 54 when fleas were included. They
found climatic influence on plague, but he had no spatial structure as Lise found
to be strongly indicated four years later.

The factors assumed by biologists to be the most important for explaining
the biological process of sylvatic plague are climate and the amount of rodents
present. I therefor investigate these relations. With the analysis of Lise Heier
in mind, a spatial structure is included, but is not tested or even visualized in
the results. My model is not directly comparable to the model used by Lise
Heier. Her focus was on the movement of the plague, and mine is on the factors
explaining the process. Also, our methods are quite different.

Through a Bayesian hierarchical approach, I will be able to use more of the
information in the dataset than others have been able to through frequentistic
methods. Using such a method, I will also take into account the uncertainty in
relation to the missing data and observation errors, which often is ignored.

1Heier et al. (2011) in References
2Stenseth et al. (2006) in References
3Samia et al. (2007) in References
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2 Data

General description of the data
The Kazakh data which this article focuses on, were collected for surveillance
purposes from 1949 to 1995. The area were divided into (10 by 10 km2) squares.
Every year squares were investigated both in the spring and in the autumn.
When I first started to do analyzes, I only used autumn which I was told might
give the best data. I intended to include the spring data when calculations were
stable, but my analyzes were too computational demanding on the computer to
include the spring data. Every comment on data is on the data collected in the
autumn.

Every year t, sites {i, i ∈ Dpt } were chosen to test great gerbils for plague.
At these sites ni,t rodents were collected by traps along a line. The rodents were
tested for plague with bacteriological tests, yi,t rodents tested positive. There
were also done serological tests, but I choose not to focus on these.

As mentioned in the introduction, the amount of rodents is assumed to
be one of the most important factors for the process of plague. It has been
discussed whether one should use the density or the occupancy which is the
relative amount of burrows occupied by rodents. The density of the burrows
is very closely related to the distance of interactions between rodents. These
interactions are what the biologists assume to be important for the spread of
the bacteria. By this argument, the discussion concluded that the occupancy is
a natural measure to use.

Occupancy were also closely monitored. Every year t at random sites {j, j ∈
Dφt }, mj,t burrows were checked for signs of resent activity. The relative amount
of burrows occupied was recorded as estimates of the occupancy. This was done
for primary squares (10 × 10km2) for parts of the spatiotemporal field and
elsewhere for secondary squares (20 × 20km2) which consists of 2 × 2 primary
squares. The sites in which occupancy is monitored are not necessarily the same
as those of plague.

There is some uncertainty for the occupancy data. One are not sure of the
routines used to collect these data. It is indicated that mj,t = 30, but looking
at the data, it seems this is not always correct. Also, one are not sure if the mj,t

tested burrows are uncorrelated. There might be some clustering of the rodents
which may give correlated samples of inhabited burrows.

Some flea data are available as well, which also have missing data. Biologists
are interested in testing the effects of the amount of fleas relative to rodents.
However, I will not include this in this model. One problem is that the sampling
process is complicated and not simple to model. It is an even bigger problem
that including flea data would need much more complicated computations, since
the model I use is very computational demanding even without including the
flea data.

Pre-processing of the data
Below there is a map showing the amount of data collected for each primary
square over time (Figure 1). The figure reveals that there has been few ob-
servations in parts of the investigated field, especially in the outer parts, e.g.
in the northwest. Since the occupancy data are on two scales, both primary

5



and secondary squares, for different areas at different times, a similar map for
occupancy would either be two maps, one for primary and one for secondary
squares, or a combination of these.
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Figure 1: This map shows the amount of collected plague data over time for each
primary square. There are several primary squares with only one observation.

I chose to do my analyzes on the secondary squares for two reasons. The
first reason is that it is a simple way of using occupancy data both for pri-
mary and secondary squares. The second reason is that I reduce the problem
with missing plague data by combining four primary squares. The new plague
data, (yi,t, ni,t, i ∈ {1, 2, . . . , N}, N = the number of secondary squares), for
secondary squares is defined as the sums of data for primary squares in each
secondary square. The occupancy data is either data collected for secondary
squares or the mean of observed data for primary squares in the given secondary
square.

To minimize the problems with missing data even more, I used only parts
of the dataset. To include a secondary square, I demanded a certain amount of
plague data. Every secondary square included should have data for at least 20
% of the time points. Included secondary squares should also have at least two
included neighboring squares.

Also, looking at the amount of occupancy data over time (Figure 2), I found
the first nine years to have too little occupancy data. I decided to exclude these
years (1949-1957).
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Figure 2: The figure shows how many of the 66 secondary squares that has
occupancy data for each time point.

Selecting the data in such a way, ensures a data quality that gives better
inference. Every square included in the analysis now gives more information,
both through structure and data for every spatiotemporal area, and less noise.

The final data used, consists of 66 secondary squares and 38 years (1958-
1995). Figure 3 shows the amount of data used for each square over time. It is
easily seen that there is much data for occupancy. Also, comparing this figure
with figure 1, we see great improvement of the plague data.

I transformed the occupancy data from the relative amount of burrows in-
habited in (0, 1) to the approximated number of occupied burrows. This is done
to make a reasonable observation model. As mentioned, this approximation,
which assumes mj,t = 30, seem to not always be correct. I wil comment more
on this in the model description.
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Figure 3: This figure shows the amount of data used for each secondary square.
For plague, there is data recorded for at least nine years, which is 23.6% of the
time period. For occupancy, there is only two secondary squares with data from
less than 15 years.

Climate data
There have been several indications on climatic influences on plague. Average
monthly temperature and average humidity data are collected from a weather
station not far from the area in which the occupancy and plague data are col-
lected. I will use these data to search for such relations. The data are standard-
ized for computational reasons.

Missing data
As mentioned and shown on graphics, there are missing data. In general, this is
not a big problem since I use a Bayesian hierarchical model (See section 3). The
sites to be tested for plague at a given time were chosen randomly in general,
but if there were made reports of sick rodents in a given site, this site would be
investigated. I do not know when or how many times such reports were made.
This unknown bias in which sites were tested, could change the interpretation
of this analysis. This problem has been ignored by most. It has been indicated
that there has been few such report. If this is the case, it will not be a very big
problem. However, this should be mentioned.
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3 Method

Bayesian hierarchical model
To separate the biological process from the observation process, I use a hierar-
chical model. I also use a fully Bayesian model, which gives good computational
routines even with missing data. The model is now divided in an observation
model and an underlying process. In such a way the model handles observation
errors which is often ignored, especially for occupancy. The underlying process
explains the biology and is what I want to analyze. By using a good structure
on this process, one does not need data at every spatiotemporal site. Figure 4
shows that the model is a full Bayesian hierarchical model.

Model
The plague data is, as mentioned in the data description, given as (yi,t, ni,t)
which might indicate a binomial model for observations. There are three reasons
for not doing this. The first reason is that I want to link the analysis to the earlier
analysis done by Lise Heier and others. Since she used a binary model, I also
did this. Second, there is much uncertainty on how these data are collected.
So much so that it would be difficult to model the (yi,t, ni,t) data. Thirdly,
the computations in WinBUGS, which is where the analysis was done, did not
handle the binomial model. For these three reasons, I only use zi,t equal an
indicator for finding plague as plague data. The observation model is defined
as:

zi,t =


1, if plague is observed for site i at time t. (yi,t > 0)

0, if plague is not observed for site i at time t. (yi,t = 0, ni,t > 0)

undefined if no plague data are available for site i at time t. (ni,t = 0)

It is now natural to use a Bernoulli distribution:

zi,t ∼ Bernoulli(pi,t)

where pi,t is the probability for finding plague for site i at time t if one would
try.

The occupancy data also has observation errors that should be taken into
account. To handle this, I have made an observation model for occupancy as
well. The data is now given as

φobserved
i,t =

{
{0, 1, . . . , 30}, if estimate for occupancy are made for site i at time t.
undefined if no occupancy data are available for site i at time t.

As mentioned in the data description, the assumption that the number of bur-
rows tested for site j at time t, mj,t, equals 30, seem to be incorrect in some
cases. In addition I have some times taken the mean of two, three or even four
estimates for primary squares. In other words, mj,t is likely to be more than
30. My observation model is meant to give a likely variance to the observation
given the true occupancy. Having more samples, would decrease this variance.
However, I also mentioned that there might be clustering of inhabited burrows
which would quite possibly give a positive correlation between the mj,t samples.
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This would increase the uncertainty of the data. For my observation model, I
choose to assume that I have mj,t = 30 uncorrelated samples, and my model is
given as

φobserved
j,t ∼ Bin(30, φj,t)

where φj,t is the occupancy equal to the proportion of occupied burrows for site
j at time t. As mentioned this might have bigger or lower observation error
than the reality, but it gives an approximate observation error.

The biological processes for pi,t and φi,t are modeled on logit scale as AR(1)
processes over time, with noise terms modeled as Gaussian conditional autoregressive
(GCAR) models, describing the spatial structure:

pi,t = logit−1(p∗i,t)⇐⇒ p∗i,t = logit(pi,t)

p∗i,t = µpi,t + γp ∗ (p∗i,t−1 − µ
p
i,t−1) + Ei,t t ≥ 2

Et
i.i.d∼ GCAR(σE , ρE)

σE is the standard deviation
ρE is the correlation parameter

with Et = (E1,t, . . . , EN,t)
′

φi,t = logit−1(φ∗i.t)⇐⇒ φ∗i,t = logit(φi,t)

φ∗i,t = µφt + γφ(φ∗i,t−1 − µ
φ
t−1) + Ui,t t ≥ 2

Ut
i.i.d∼ GCAR(σU , ρU )

σU is the standard deviation
ρU is the correlation parameter

with Ut = (U1,t, . . . , UN,t)
′

For the simplest model, pi,t and φi,t are independent with expectations:
µpt

iid∼ Normal(0, σ2
µp), µpi,t = µpt

µφt
iid∼ Normal(0, σ2

µφ)

but for the other models, µpi,t is defined as:
µpi,t = β′X,

using different covariates X for each model including climatic factors depending
on time only and occupancy. These models are illustrated in figure 4.

I have attempted to use an AR(2) process to describe the process of plague,
but this was too computational demanding for my computer. The AR(2) pro-
cess is of interest for ecologists, since an AR(2) process often may imply that
important interacting species have been ignored.

Adjustments were made for t = 1 to achieve stationarity. I have shown how
to do this for pi,t in the appendix. Similar adjustments were done for φi,t
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Figure 4: This figure is a sketch of the model. It shows priors, parameters,
latent processes and observations to illustrate the Bayseian hierarchical model.
τE and τU are precisions 1
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Definition: GCAR(σ, ρ)
Define GCAR(σ) to be the Gaussian Markov random field (Gaussian MRF),
defined by

X ∼ MVN(0, σ2Q−1(ρ)), MVN = multivariate normal distribution

with

Q(ρ) = ρP + (1− ρ)I

Pi,j =


mi, if i = j

1, if i ∼ j
0, otherwise.
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Inference
By using the Bayesian paradigm, I am interested in the posterior densities for
each parameter of interest. These posterior densities will be estimated through
simulations since the structure is complex. I will also use a information criterion
which could help evaluate models and possibly to do model selection. These two
combined will give a basis for my inference.

MCMC

Markov chain Monte Carlo (MCMC) is a general method for sequentially sam-
pling random quantities from an approximate distribution. These quantities
are updated sequentially conditioned on each other, and thus corrected for each
draws. In this way the approximate distribution converges to the target distri-
bution, which is what one wants to sample from. When one assumes to have
reached convergance, samples can be assumed to come from the target distri-
bution.

To reach the target distribution, one uses a burn-in. This is a sample size
that is drawn before one starts collecting samples as an approximation of the
target distribution.

Let θ bet the collection of all random quantities, and let θi represent one or
some. Let the burn-in be B and the sample size be M − B, then the MCMC
method can be expressed as follows:

i) initial values are set in θ(0).
ii) Letting the samples converge

for(m in 1:B)
for( j in 1:J )

draw θ
(m)
j given θ

(m)
1:(j−1), θ

(m−1)
(j+1):J and the data

iii) Collecting/Saving samples
for(m in (B+1):M)

for( j in 1:J )
draw θ

(m)
j given θ

(m)
1:(j−1), θ

(m−1)
(j+1):J and the data

Also there is sometimes used a thinning. This means to skip a certain number
of samples to avoid problems with storing, but also to decrease correlations
between samples.

A particular MCMC algorithm is the Gibbs sampler. This algotithm uses
the conditional distribution for updating the θ’s.

I have used a burn-in of 1 000 and my sample size is 9 000. It took days
to run these 10 000 iterations. I have shown convergence and stability of the
parameters of interest in the appendix.

For more details on MCMC, see e.g. Robert and Casella (2004).

Model evaluation by DIC

I would like to do model selections to decide which factors I should report as
important or significant. In other settings with simpler models and no miss-
ing data, AIC is often used. However, in complicated situations, such as this
analysis, AIC cannot be used.
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The usual model criterion used in many frequentistic analyzes, AIC, is de-
fined as

AIC = −2loglikelihood(θ) + 2p, p = |θ|

and is minimized wrt models. AIC and other information criteria usually de-
pends on calculating the log likelihood for a given model. However, in my
analysis the log likelihoods depend on random parameters and are complicated
to compute. For such situations, there is another information criterion, DIC,
calculated by BUGS without much difficulty. DIC is defined very similarly to
the AIC, but is designed for Bayesian hierarchical models:

DIC = −2loglikelihood(θ̂) + 2pD,
pD = effective number of parameters

θ̂ = mean of the parameters θ.

The calculations of DIC is done by first calculating

D̄ = −2log likelihood(θ)

D̂ = −2log likelihood(θ)

Then one calculates

pD = ’the effective number of parameters’ = D̄ − D̂
DIC = D̄ + pD = D̂ + 2pD

DIC is intended to be a generalization of AIC. The definitions of AIC and
DIC are very similar, but instead of using the punishment 2p, DIC use 2pD. If
DIC was to be used on a non-hierarchical model, it would give similar results as
AIC. However, with hierarchical models as I use, the information criteria will
be different from each other.

Unfortunately, one cannot simply trust DIC statistics to choose a winner
model. I found that for different seeds the DIC varied more than I find pleasant.
To give stable results, the DIC need more iterations than the time available
permitted.

One should notice that DIC is sensitive to how you write your model. To
illustrate the WinBUGS manual gives the following example:

tau ~ dgamma(0.001, 0.001)

and

log.tau ~ dunif(-10, 10); log(tau) <- log.tau

The two definition of τ (tau) is theoretically equivalent, but in BUGS they will
appear different. Calculating D̂ will give different result. In the first example τ
will be used, but in the second example log τ will be used.

As expected, DIC is also sensitive to priors used. This is visualized in the
appendix for model 0a.

Considering these weaknesses, I would prefer to use another information
criteria. E.g. I could have used the number of correct estimates ẑ = I(pi,t > 0.5)
of z for cross validation. The model returning the highest count, would be the
preferred model.
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4 BUGS
Bayesian inference Using Gibbs Sampling (BUGS) is a simulation tool that does
MCMC with a simple interface. If it finds conditional distributions, it does
Gibbs sampling. The model used is easy to control, in the sense that it is easy
to read the model code used by BUGS. BUGS also allows the user to change the
model quick and easy by simply changing priors, conditional distributions or a
parameter value. However, it is not computationally fast, and error messages
are often difficult to understand. When I began this project, the choice between
BUGS and other programming languages, such as R or C++, was a choice of
using much time on the programming or using much time on the simulations.
As we were uncertain of how many models we would choose, the choice was to
use BUGS for simplicity.

There are two versions of BUGS, namely WinBUGS4 and OpenBUGS5.
These are often considered to be equal, and there are not very many differences.
However, there are some. The development are now mainly focused on Open-
BUGS. Since it often is claimed that these two versions of BUGS are essentially
equal, one might think they behave equally. This was not true for my models.
On the OpenBUGS home page, one finds a list of differences. The first thing
listed is the updating routines.

Figure 5 shows that the OpenBUGS simulations gave few updates and no
convergence for both β and γp, and the standard deviation σE increased ex-
ponentially. The WinBUGS simulations seemed to converge and gave many
updates for both β and γp, and σE stayed in the region [2, 3].

Looking at these results, the choice of which BUGS version to use were not
difficult. WinBUGS were the natural choice since convergence and stability
was much better than that of OpenBUGS - at least in my case. It should be
mentioned that there are added possibilities for changing the updating routines
in OpenBUGS. I used the default settings, but it might be possible to get good
results for OpenBUGS if one changes the updating routines. A easy way out
was to use the default setting of WinBUGS instead of each time changing the
settings for updating routines in OpenBUGS.

For an introduction to BUGS, see the WinBUGS manual, the OpenBUGS
manual or Doing Bayesian Data Analysis: A tutorial with R and BUGS, John
K. Kruschke, 2011.Kruschke and John (2010)

The BRugs package for calling BUGS from R, used throughout the book
by Kruschke, have been removed from the CRAN repository. One could get
old versions of BRugs from the cran archives, but there is another package,
R2WinBUGS, that seem to work even better.

4Lunn et al. (2007)
5Lunn et al. (2011)
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Results for OpenBUGS Results for WinBUGS
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Figure 5: This figure shows the first 500 iterations for model 0b in both Open-
BUGS and WinBUGS. The model is the model with only intercept defining the
expectation for p∗i,t, µ

p
t = β
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GeoBUGS

GeoBUGS is a package in BUGS, which is especially designed for spatial models
and visualizations on maps. It grants the opportunity for simulating spatial
models such as various multinormal models and a double exponential model.

I have used the function car.normal() to simulate the GCAR noise, which
is defined in the method section. It demands the precision, τ = 1/σ2, and
the three vectors defining the spatial structure, (i) number of neighbors for
every site, (ii) adjacent areas to every site and (iii) unnormalized weights. All
weights equals 1 in my case. The car.normal() function simulates GCAR(ρ, τ)
processes with τ specified by the user. However, ρ is not shown to the user.

Trap
For flat priors I got an error with a TRAP message and it was not possible to
proceed the simulations. The WinBUGS user manual gives several advices to
handle this. The only reasonable solution of these in my case seemed to be more
informative priors. I used strict priors on τE = 1

σ2 and β. The priors for β is
unbiased, except for the intercept, β1, in a few cases.
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Figure 6: The figure shows an example of a simulation that ended in a TRAP
message

Figure 6 shows an example of a simulation that ended with a TRAP mes-
sage. This example is the model that needed even stricter priors than the other
models, but with the prior used by other models. The figure shows somewhat
stable simulations for both β1 and σE before they diverged at the end. To get
simulations to proceed until 10 000 iterations, I used a stricter prior for β1 cen-
tered on -5 with a variance of 2. This prior seemed reasonable, when looking at
results from other simulations.
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Achieving DIC
The accessibility is the main reason for me to report DIC values. It is obtained
as follows:

1. Run a Burn-in

2. Press set in the DIC Tool window

3. Run the sample size you want to use

4. Press DIC in the DIC Tool Window. This opens the DIC window.

The DIC window gives a table with the statistics D̄, D̂, pD and DIC, defined
in Model evaluation by DIC, for every separately defined variable (in my case
z (referring to plague) and occ.obs (referring to occupancy). The statistics is
also given for the total which is sums of the statistics above.
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5 Results
The models

The occupancy model is combined with several models for plague. The dif-
ferences between these plague models is the definition of covariates, X. As
mentioned occupancy (φi,t) and climatic covariates is expected by biologists to
be the most important factors to explain presence and prevalence of plague.
Kyrre Linné Kausrud et al6 suggest April to be the most important for climatic
influence on the great gerbils. I therefore test both average temperature and
average humidity in April. I also test the average temperature for the coldest
and the warmest month, January and July respectively.

Covariates
φ∗i,t: logit of the occupancy at site i and year t.
T1,t: (standardized) average temperature for January, in year t.
T4,t: (standardized) average temperature for April, in year t.
T7,t: (standardized) average temperature for July, in year t.
H4,t: (standardized) average humidity for April, in year t.

Model Occupancy Temperature Humidity
φ∗i,t T1,t T4,t T7,t T4,t

0a
0b
1 F
2 F F
3 F F F
4 F F F F
5 F F F F

Table 1: This table shows which covariates I used for the models. If a covariate
is included in a model, this is shown with the symbol F.

0a: independent expectations for every year
µpi,t = µpt

0b: equal expectation for every year
µpi,t = µp

Reporting results
The box plots for µpt and µφt are made in R7 with the boxplot function. The
estimated densities for parameters are made in R with the function density.

In the appendix section "Trace plots" I give trace plots that shows conver-
gence. All parameters shown seem to have converged, but I would have liked
more samples of the intercept, β1.

6Linné Kausrud et al. (2007)
7R Development Core Team (2010)
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Occupancy
The results for the occupancy processes were approximately the same for each
model. As shown in table 2, DIC varied very little between models. On the
graphical representation of the results, there were very difficult to spot any
differences. To illustrate the occupancy results I have chosen the Model 0b, in
which occupancy and plague is modeled independently.
We see from figure 7 distinct differences of µφt . This might imply that the
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−
2

0
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µφ

time
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0.55 0.60 0.65 0.70
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0.75 0.80 0.85 0.90 0.95

σU

Figure 7: Results for occupancy.

simulated occupancy would give good estimations for the missing data. And in
turn that β2 in the plague model might be well estimated.
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DIC
Table 2 shows the DIC values obtained for all models. Unfortunately, the DIC
values were too unstable to only rely on them. Model 3 was ran a second
time with a different seed. This returned a total DIC of 8713.690, which is
unpleasantly different from the DIC in the first attempt which is shown in
table 2. Keeping this in mind, we see that DIC does not choose a model very
strongly. This illustrates that DIC in some cases should not be trusted. It may
be improved by increasing the sample size. I was not able to do this in this
analysis due to limitations of the computational force. To run one model, I
used more than 2 days. To increase the number of iterations to say 100 000,
would probably take more than 20 days for each simulation. This would not be
possible.

Model Plague Occupancy Total
pD DIC pD DIC pD DIC

0a1 142.747 516.054 962.308 8096.390 1105.050 8612.450
0b1 138.623 624.355 958.379 8092.350 1097.000 8716.710
1 133.485 650.483 956.678 8096.430 1090.160 8746.910
2 142.604 614.731 955.993 8095.200 1098.600 8709.930
3 140.323 625.759 957.140 8096.310 1097.460 8722.060
4 170.289 591.948 956.771 8094.660 1127.060 8686.610
51 165.174 593.427 957.709 8095.960 1122.880 8689.390

1Model 0a, 0b and model 5 are not comparable to the other models. These models were not possible

to run under the restrictions used for models 1, 2, 3 and 4. This has to do with the model restrictions

and priors used.

Table 2: This table shows DIC results.

Though DIC does give a clear winner model, model 4 seem to be chosen.
However, the uncertainty of DIC results demands a closer investigation of which
model should be used.

When I ran model 5 with the same limitations and priors as the other models
1,2,3 and 4, simulations ended in a TRAP message before enough iterations were
ran. To avoid this, I had to use a stricter prior for the intercept, β1, but this
might mean that the DIC are not comparable with the other models. Model 5
is therefor investigated further and compared with the model with the best DIC
scores, model 4.

Model 0a and model 0b are models of little interest as a final model. They
do not give information to the biologists on the process of sylvatic plague. Also,
I had to use less restrictions on these models. These models ended in trap mes-
sages when I demanded stationarity. However, simulations showed stationarity
to be very likely.
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Model 0a and Model 0b
The interest of model 0a and model 0b lies in (1) the estimated level of plague
risk for each year and (2) the fit D̂, defined in "Model evaluation by DIC", in
the sense of how much could possibly be explained by yearly factors. In this
way, these models are in some sense reference models.

• Model 0a has independent µpt and will give a best possible fit excluding
occupancy.

• Model 0b is the opposite. This will be the least explained model, but
provides information on how much is explained simply by the intercept.

Combined these two models gives some information on the power. If the fit
(D̂), is very different for the two models, there might be much that could be
explained. If they are practically equal, there is nothing to explain by covariates
on µpt . These models are independent from occupancy, and the interesting fit is
the plague fit given in table 3.

For model 0a, the DIC results varied much for all reasonable priors8. The
result given for model 0a in table 3 is the best fit of all priors tested.

Model D̂
0a 230.560
0b 347.110

Table 3: This table shows D̂ for plague.

The figure 8 and the figure 9 shows results for model 0a and for model
0b, respectively. One can see that both models gives high values for γp. The
standard deviation, σE , is estimated to quite similar the regions. Also, one sees
the expectation of p∗i,t to be estimated below zero. p∗i,t below zero is equivalent
with pi,t below 0.5.

Figure 8 shows some structure of µpi,t for model 0a. Since the measure of fit,
D̂, for model 0a is quite small compared to that of model 0b, one could possibly
be able to explain some of this. One might say that the power is high enough.

8See details in the Appendix section "Model 0a"
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Figure 8: Results for model 0a
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Figure 9: Results for model 0b
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Model 5
For model 5 the expectation for p∗i,t is defined as

µpi,t = β1 + β2φ
∗
i,t + β3T1,t + β4T4,t + β5H4,t

To evaluate model 5, I compare the model with the model returning the best
DIC values in table 2, model 4. Table 4 shows that model 4 gives better (smaller)
DIC values than model 5 with equal priors as well.

Figure 10 shows the estimated posterior density for β5 for model 5. This is
the parameter that gives the effect of humidity. It is centered close to zero with
many samples drawn from both the positive region and the negative region.
This gives a valid reason to reject the model or at least to remain skeptic to
including humidity.

Model Plague Occupancy Total
pD DIC pD DIC pD DIC

4 165.033 586.073 959.858 8096.680 1124.890 8682.750
5 165.174 593.427 957.709 8095.960 1122.880 8689.390

Table 4: This figure shows DIC values for model 5 and model 2 with equal strict
priors.

−1.0 −0.5 0.0 0.5

β5

Figure 10: We see from this that it is not unreasonable with β5 = 0.
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Model 4 - the best model according to the DIC
Model 4 is an expansion of model 1, model 2 and model 3. The expectation for
p∗i,t is defined as

µpi,t = β1 + β2φ
∗
i,t + β3T1,t + β4T4,t + β5T7,t

As mentioned, DIC results behaved somewhat unstable for my 9 000 iterations.
Since estimated marginal posterior densities for the parameters are more sta-
ble, one should look at these when considering which model is the best. The
estimated marginal posterior densities gave similar results for all explanatory
variables for all models.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

β3(January)
β4(April)
β5(July)

Figure 11: Temperature

The difference between model 3, model 4 and model 5 is only related to β5.
For model 3, β5 is excluded. For model 4 and model 5, β5 is related to average
temperature in July and average humidity in April, respectively. In "Model 5",
figure 10 illustrated that the average humidity in April had little or no influence
on plague. As for the average temperature of July, figure 11 shows that β5 has
the mode very close to zero. These estimated densities strongly implies model
3 to be better than both of the models 4 and 5.

For β3, approximately 15 % of the simulated samples are less than zero. This
indicatesthat the effects of average temperature in January is quite uncertain
as well. The effects of average temperature in April is much more significant
with less than 2.5 % of simulated β4 above zero, which means that the 95 %
credibility interval not includes zero. Now model 2, which only includes average
temperature of April as climatic influence, seem to be the best model.
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Figure 12: Occupancy

0.4 0.5 0.6 0.7 0.8 0.9

γp

Figure 13: The AR parameter γp which gives the temporal structure.

Even more evident than the effect of average temperature of April, is that of
occupancy illustrated by figure 12. If there is a high occupancy, there is more
likely to be plague present among the tested rodents. This indicates that the
process of plague is closely related to the occupancy process.

Figure 13 shows that the AR(1) parameter γp is quite big. This may indicate
that if there is a higher prevalence of plague than expected at site i a given year,
there is more likely to be found plague the next year as well.
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Figure 14: These graphics shows results for the intercept and the standard
deviation for p∗i,t.

β1 and σE

Figure 14 shows results for β1, the intercept for the process of p∗i,t, and σE , the
standard deviation for GCAR in plague process. It seems β1 and σE is strongly
correlated. This may be why these may appear less smooth in their estimated
posterior densities.
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6 Summary / Discussion
In the desert Saryyesik-Atyrau, Kazakhstan, sylvatic plague has been closely
monitored for many years to minimize the risk of infections among humans.
A huge field was divided into squares. Every year some squares were tested.
Usually, these squares were chosen randomly, but if there was a report of sick
animals in a certain square, this square was tested. This resulted in missing
data not being missing at random. Ignoring this, may give bigger estimates for
plague risk than the reality. I do not know which or even how many squares
were randomly chosen, but luckily it is indicated that there was few instances
of such reports, and it is usually ignored. Based on the indications that there
was not many cases of such reports, I have also chosen to ignore this.

Through a Bayesian hierarchical model, I have analyzed the process of syl-
vatic plague with respect to occupancy and climate. I have also included a
spatiotemporal structure. By using such a model, I handled the general un-
certainty introduced by missing data quite well. This uncertainty is also often
ignored.

The DIC results, which were quite unstable, prefers the model with average
temperature from all three months tested, January, April and July, but inves-
tigating the estimated marginal posterior densities, I found both January and
July to be insignificant. The fact that the mean temperature for April seems to
be more important than both January and July, may have several reasons. Two
of which is that (i) April, or possibly the spring in general, may be the most
important period for biological reasons and that (ii) it may be more important
to have a long period of summer-like conditions. Stenseth et al. (2006) argue
that (ii) may be important for flea activity and thus important for the risk of
plague infection on great gerbils. By the arguments in Stenseth et al. (2006),
one should expect a positive estimate for this β-parameter. However, for my
model the average temperature of April is estimated to have a negative corre-
lation with plague. To test (ii) one could have used the number of days with
temperature above a certain threshold as an explanatory variable as well.

As for humidity, both DIC and the estimated posterior marginal posterior
densities indicates that average humidity of April has no significant influence
on plague.

The analysis clearly indicates that occupancy has influence on the process of
sylvatic plague. If there is a high occupancy, it seems the probability for finding
plague among the trapped rodents is increased.

Also, an infected area is more likely than an uninfected area to be infected
the next year.

MCMC computations have been done in WinBUGS. Unfortunately, Win-
BUGS had several limitations on the computations. Most of these could proba-
bly be improved by doing the computations in R or C++. Some limitations was
related to the updating routines. E.g.: I attempted to expand the process of
sylvatic plague from an AR(1) model to an AR(2) model. BUGS did not handle
this expansion. Other limitations were of visualization. I could not investigate
spatial correlation.

Another expansion that would be interesting is the expansion of including
flea data. This is assumed by biologists to be of great importance, but the
uncertainty of how such data were collected and the computationally demanding
process prevented me from including this in my analysis.
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Appendix
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A BUGS models
This section gives models 1, 2, 3, 4 and 5, as defined in WinBUGS.

The models are easy to read as it is written straight forward.

Priors are given by e.g.
τE ∼Gamma(2, 0.2):

tau.E ~ dgamma(2,0.2)
or
βi ∼N(0, 10), i = 1, . . . , 5:

for(j in 1:2) {
beta.p[j] ~ dnorm(0, 0.1)

}

The observation model for plague is given by
zi,t ∼Bernoulli(pi,t), i ∈ Dpt :

for(t in 1:T) {
for(i in 1:N.z[t]) {

z[ind.z[i,t],t] ~ dbern(p[ind.z[i,t],t])
}

}

ii



A.1 Model 1
model{
for(t in 1:T) {

for(i in 1:N.z[t]) {
z[ind.z[i,t],t] ~ dbern(p[ind.z[i,t],t])

}
}

for (i in 1:N) {
logit(p[i,1]) <- x.p[i,1]
x.p[i,1] <- mu.p[i,1] + c.p*E[ i ]
mu.p[i,1] <- beta.p[1] + beta.p[2]*x.occ[i,1]

}
mean.mu.p[1] <- mean(mu.p[1:N,1])
for(t in 2:T) {

for (i in 1:N) {
logit(p[i,t]) <- x.p[i,t]
x.p[i,t] <- mu.p[i,t] + gamma.p*(x.p[i,t-1] - mu.p[i,t-1])+ E[i + N*(t-1)]
mu.p[i,t] <- beta.p[1] + beta.p[2]*x.occ[i,t]

}
mean.mu.p[t] <- mean(mu.p[1:N,t])

}

for(j in 1:2) {
beta.p[j] ~ dnorm(0, 0.1)

}

gamma.p ~ dunif(-1,1)
c.p <- 1/sqrt(1 - pow(gamma.p , 2))

for(t in 1:T) {
E[(1 + (t-1)*N) : (N + (t-1)*N)] ~car.normal(adj[], weights[], num[], tau.E)

}
tau.E ~ dgamma(2,0.2)
sigma.E <- sqrt(1/tau.E)

for(t in 1:T) {
for(i in 1:N.occ[t]) {

occ.obs[ind.occ[i,t],t] ~ dbin(occ[ind.occ[i,t],t], 30)
}

}

for (i in 1:N) {
logit(occ[i,1]) <- x.occ[i,1]
x.occ[i,1] <- mu.occ[1] + c.occ*U[i ]

}
for(t in 2:T) {

for (i in 1:N) {
logit(occ[i,t]) <- x.occ[i,t]
x.occ[i,t] <- mu.occ[t] + gamma.occ*(x.occ[i,t-1] -mu.occ[t-1]) + U[i + N*(t-1)]

}
}

for(t in 1:T) {
mu.occ[t] ~ dnorm(0,tau.mu.occ)

}
tau.mu.occ ~ dgamma(0.1,0.02)

gamma.occ ~ dunif(-1,1)
c.occ <- 1/sqrt(1 - pow(gamma.occ , 2))

for(t in 1:T) {
U[(1 + (t-1)*N) : (N + (t-1)*N)] ~car.normal(adj[], weights[], num[], tau.U)

}
tau.U ~ dgamma(2,0.2)
sigma.U <- sqrt(1/tau.U)
}
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A.2 Model 2
model{
for(t in 1:T) {

for(i in 1:N.z[t]) {
z[ind.z[i,t],t] ~ dbern(p[ind.z[i,t],t])

}
}

for (i in 1:N) {
logit(p[i,1]) <- x.p[i,1]
x.p[i,1] <- mu.p[i,1] + p.start*E[ i ]
mu.p[i,1] <- beta.p[1] + beta.p[2]*x.occ[i,1] + beta.p[3]*temp4[1]

}
mean.mu.p[1] <- mean(mu.p[1:N,1])
for(t in 2:T) {

for (i in 1:N) {
logit(p[i,t]) <- x.p[i,t]
x.p[i,t] <- mu.p[i,t] + gamma.p*(x.p[i,t-1] - mu.p[i,t-1])+ E[i + N*(t-1)]
mu.p[i,t] <- beta.p[1] + beta.p[2]*x.occ[i,t] + beta.p[3]*temp4[t]

}
mean.mu.p[t] <- mean(mu.p[1:N,t])

}

for(j in 1:3) {
beta.p[j] ~ dnorm(0, 0.1)

}

gamma.p ~ dunif(-1,1)
p.start <- 1/sqrt(1 - pow(gamma.p , 2))

for(t in 1:T) {
E[(1 + (t-1)*N) : (N + (t-1)*N)] ~car.normal(adj[], weights[], num[], tau.E)

}
tau.E ~ dgamma(2,0.2)
sigma.E <- sqrt(1/tau.E)

for(t in 1:T) {
for(i in 1:N.occ[t]) {

occ.obs[ind.occ[i,t],t] ~ dbin(occ[ind.occ[i,t],t], 30)
}

}

for (i in 1:N) {
logit(occ[i,1]) <- x.occ[i,1]
x.occ[i,1] <- mu.occ[1] + occ.start*U[i ]

}
for(t in 2:T) {

for (i in 1:N) {
logit(occ[i,t]) <- x.occ[i,t]
x.occ[i,t] <- mu.occ[t] + gamma.occ*(x.occ[i,t-1] -mu.occ[t-1]) + U[i + N*(t-1)]

}
}

for(t in 1:T) {
mu.occ[t] ~ dnorm(0,tau.mu.occ)

}
tau.mu.occ ~ dgamma(0.1,0.02)

gamma.occ ~ dunif(-1,1)
occ.start <- 1/sqrt(1 - pow(gamma.occ , 2))

for(t in 1:T) {
U[(1 + (t-1)*N) : (N + (t-1)*N)] ~car.normal(adj[], weights[], num[], tau.U)

}
tau.U ~ dgamma(2,0.2)
sigma.U <- sqrt(1/tau.U)
}
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A.3 Model 3
model{
for(t in 1:T) {

for(i in 1:N.z[t]) {
z[ind.z[i,t],t] ~ dbern(p[ind.z[i,t],t])

}
}

for (i in 1:N) {
logit(p[i,1]) <- x.p[i,1]
x.p[i,1] <- mu.p[i,1] + c.p*E[ i ]
mu.p[i,1] <- beta.p[1] + beta.p[2]*x.occ[i,1] + beta.p[3]*temp1[1] + beta.p[4]*temp4[1]

}
mean.mu.p[1] <- mean(mu.p[1:N,1])
for(t in 2:T) {

for (i in 1:N) {
logit(p[i,t]) <- x.p[i,t]
x.p[i,t] <- mu.p[i,t] + gamma.p*(x.p[i,t-1] - mu.p[i,t-1])+ E[i + N*(t-1)]
mu.p[i,t] <- beta.p[1] + beta.p[2]*x.occ[i,t] + beta.p[3]*temp1[t] + beta.p[4]*temp4[t]

}
mean.mu.p[t] <- mean(mu.p[1:N,t])

}

for(j in 1:4) {
beta.p[j] ~ dnorm(0, 0.1)

}

gamma.p ~ dunif(-1,1)
c.p <- 1/sqrt(1 - pow(gamma.p , 2))

for(t in 1:T) {
E[(1 + (t-1)*N) : (N + (t-1)*N)] ~car.normal(adj[], weights[], num[], tau.E)

}
tau.E ~ dgamma(2,0.2)
sigma.E <- sqrt(1/tau.E)

for(t in 1:T) {
for(i in 1:N.occ[t]) {

occ.obs[ind.occ[i,t],t] ~ dbin(occ[ind.occ[i,t],t], 30)
}

}

for (i in 1:N) {
logit(occ[i,1]) <- x.occ[i,1]
x.occ[i,1] <- mu.occ[1] + c.occ*U[i ]

}
for(t in 2:T) {

for (i in 1:N) {
logit(occ[i,t]) <- x.occ[i,t]
x.occ[i,t] <- mu.occ[t] + gamma.occ*(x.occ[i,t-1] -mu.occ[t-1]) + U[i + N*(t-1)]

}
}

for(t in 1:T) {
mu.occ[t] ~ dnorm(0,tau.mu.occ)

}
tau.mu.occ ~ dgamma(0.1,0.02)

gamma.occ ~ dunif(-1,1)
c.occ <- 1/sqrt(1 - pow(gamma.occ , 2))

for(t in 1:T) {
U[(1 + (t-1)*N) : (N + (t-1)*N)] ~car.normal(adj[], weights[], num[], tau.U)

}
tau.U ~ dgamma(2,0.2)
sigma.U <- sqrt(1/tau.U)

}
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A.4 Model 4
model{
for(t in 1:T) {

for(i in 1:N.z[t]) {
z[ind.z[i,t],t] ~ dbern(p[ind.z[i,t],t])

}
}

for (i in 1:N) {
logit(p[i,1]) <- x.p[i,1]
x.p[i,1] <- mu.p[i,1] + c.p*E[ i ]
mu.p[i,1] <- beta.p[1] + beta.p[2]*x.occ[i,1] + beta.p[3]*temp1[1] + beta.p[4]*temp4[1] + beta.p[5]*temp7[1]

}
mean.mu.p[1] <- mean(mu.p[1:N,1])
for(t in 2:T) {

for (i in 1:N) {
logit(p[i,t]) <- x.p[i,t]
x.p[i,t] <- mu.p[i,t] + gamma.p*(x.p[i,t-1] - mu.p[i,t-1])+ E[i + N*(t-1)]
mu.p[i,t] <- beta.p[1] + beta.p[2]*x.occ[i,t] + beta.p[3]*temp1[t] + beta.p[4]*temp4[t] + beta.p[5]*temp7[t]

}
mean.mu.p[t] <- mean(mu.p[1:N,t])

}

for(j in 1:5) {
beta.p[j] ~ dnorm(0, 0.1)

}

gamma.p ~ dunif(-1,1)
c.p <- 1/sqrt(1 - pow(gamma.p , 2))

for(t in 1:T) {
E[(1 + (t-1)*N) : (N + (t-1)*N)] ~car.normal(adj[], weights[], num[], tau.E)

}
tau.E ~ dgamma(2,0.2)
sigma.E <- sqrt(1/tau.E)

for(t in 1:T) {
for(i in 1:N.occ[t]) {

occ.obs[ind.occ[i,t],t] ~ dbin(occ[ind.occ[i,t],t], 30)
}

}

for (i in 1:N) {
logit(occ[i,1]) <- x.occ[i,1]
x.occ[i,1] <- mu.occ[1] + c.occ*U[i ]

}
for(t in 2:T) {

for (i in 1:N) {
logit(occ[i,t]) <- x.occ[i,t]
x.occ[i,t] <- mu.occ[t] + gamma.occ*(x.occ[i,t-1] -mu.occ[t-1]) + U[i + N*(t-1)]

}
}

for(t in 1:T) {
mu.occ[t] ~ dnorm(0,tau.mu.occ)

}
tau.mu.occ ~ dgamma(0.1,0.02)

gamma.occ ~ dunif(-1,1)
c.occ <- 1/sqrt(1 - pow(gamma.occ , 2))

for(t in 1:T) {
U[(1 + (t-1)*N) : (N + (t-1)*N)] ~car.normal(adj[], weights[], num[], tau.U)

}
tau.U ~ dgamma(2,0.2)
sigma.U <- sqrt(1/tau.U)
}
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A.5 Model 5
model{
for(t in 1:T) {

for(i in 1:N.z[t]) {
z[ind.z[i,t],t] ~ dbern(p[ind.z[i,t],t])

}
}

for (i in 1:N) {
logit(p[i,1]) <- x.p[i,1]
x.p[i,1] <- mu.p[i,1] + c.p*E[ i ]
mu.p[i,1] <- beta.p[1] + beta.p[2]*x.occ[i,1] + beta.p[3]*temp1[1] + beta.p[4]*temp4[1] + beta.p[5]*humid[1]

}
mean.mu.p[1] <- mean(mu.p[1:N,1])
for(t in 2:T) {

for (i in 1:N) {
logit(p[i,t]) <- x.p[i,t]
x.p[i,t] <- mu.p[i,t] + gamma.p*(x.p[i,t-1] - mu.p[i,t-1])+ E[i + N*(t-1)]
mu.p[i,t] <- beta.p[1] + beta.p[2]*x.occ[i,t] + beta.p[3]*temp1[t] + beta.p[4]*temp4[t] + beta.p[5]*humid[t]

}
mean.mu.p[t] <- mean(mu.p[1:N,t])

}

beta.p[1] ~ dnorm(-5,0.5)
for(j in 2:5) {

beta.p[j] ~ dnorm(0, 0.1)
}

gamma.p ~ dunif(-1,1)
c.p <- 1/sqrt(1 - pow(gamma.p , 2))

for(t in 1:T) {
E[(1 + (t-1)*N) : (N + (t-1)*N)] ~car.normal(adj[], weights[], num[], tau.E)

}
tau.E ~ dgamma(2,0.2)
sigma.E <- sqrt(1/tau.E)

for(t in 1:T) {
for(i in 1:N.occ[t]) {

occ.obs[ind.occ[i,t],t] ~ dbin(occ[ind.occ[i,t],t], 30)
}

}

for (i in 1:N) {
logit(occ[i,1]) <- x.occ[i,1]
x.occ[i,1] <- mu.occ[1] + c.occ*U[i ]

}
for(t in 2:T) {

for (i in 1:N) {
logit(occ[i,t]) <- x.occ[i,t]
x.occ[i,t] <- mu.occ[t] + gamma.occ*(x.occ[i,t-1] -mu.occ[t-1]) + U[i + N*(t-1)]

}
}

for(t in 1:T) {
mu.occ[t] ~ dnorm(0,tau.mu.occ)

}
tau.mu.occ ~ dgamma(0.1,0.02)

gamma.occ ~ dunif(-1,1)
c.occ <- 1/sqrt(1 - pow(gamma.occ , 2))

for(t in 1:T) {
U[(1 + (t-1)*N) : (N + (t-1)*N)] ~car.normal(adj[], weights[], num[], tau.U)

}
tau.U ~ dgamma(2,0.2)
sigma.U <- sqrt(1/tau.U)
}
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B Trace plots
To show that I have a somewhat good sample of the target distribution, I show
trace plots for model 4. Results from the other models were similar.

B.1 Convergence
Figure 15 shows trace plot for the first iterations for γp, γφ and σU which shows
convergence. Similar plots were made for other parameters, but they seemed
to have good starting values and convergence was not possible to spot. The
marginal distributions seem to reach values much earlier than 1 000 iterations,
which is my burn-in.
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Figure 15: This figure shows trace plots of the first iterations for γp, γφ and σU .
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B.2 Stability
The trace plots shows that bigger samples for β1 and σE would be preferable,
but for parameters of which I focus my analysis β2, β3, β4, β5 and γp the
simulations seem stable.
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Figure 16: Trace plots of all parameters of interest in model 4.
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C Model 0a
For model 0a, I tested several priors. For these priors, the DIC results were very
different. For this model the expectation for p∗i,t is defined as

µpi,t = µpt ∼ N(0, τµp)

The differences on the tested model 0a’s are the priors used for τµp :

Model Definition of τµp
i τµp ∼ dgamma(0.1, 0.02)
ii τµp = 0.1
iii τµp = 0.05
iv τµp = 0.01

Model D̄ D̂ pD DIC
i 373.307 230.560 142.747 516.054
ii 586.587 435.585 151.002 737.590
iii 491.386 356.430 134.956 626.342
iv 432.985 287.010 145.974 578.959

As shown in figure 17, the differences on simulated µpt are visible.
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Figure 17: This figure shows box plots for µpt for the models 0a i, ii, iii and iv.
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D Adjustment for t=1 in AR(1) processes
To make the process stationary, I made the following adjustment for the first
time point, t = 1.
p∗i,1 = µpi,1 + cpEi,1, cp = 1√

1−γ2
p

For t ≥ 2:
p∗i,t = µpi,t + γp ∗ (p∗i,t−1 − µ

p
i,t−1) + Ei,t−1

These calculations show equal variance for all t.

Var[Et] = Σ

Var[p∗1] = c2p Var[E1]

=
1

1− γ2p
Σ

Var[p∗2] = γ2pVar[p
∗
1] + Var[E2]

= γ2p
1

1− γ2p
Σ +

1− γ2p
1− γ2p

Σ

=
γ2pΣ + (1− γ2p)Σ

1− γ2p

=
1

1− γ2p
Σ

For t ≥ 2 in general:

Var[p∗t ] = γ2pVar[p
∗
t−1] + Var[Et]

= γ2p
1

1− γ2p
Σ +

1− γ2p
1− γ2p

Σ

=
γ2pΣ + (1− γ2p)Σ

1− γ2p

=
1

1− γ2p
Σ

The restriction of cp = 1√
1−γ2

p

was not possible to use for model 0a and 0b,

However, simulated cp was not very different from this.
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