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ABSTRACT
The present paper investigates Cox-Ingersoll-Ross (CIR) processes of
dimension less than 1, with a focus on obtaining an equation of a
new type including local times for the square root of the CIR pro-
cess. To derive this equation, we utilize the fact that non-negative
diffusion processes can be obtained by the transformation of time
and scale of a certain reflected Brownianmotion. The equationmen-
tioned above turns out to contain a term characterized by the local
time of the corresponding reflected Brownian motion. Additionally,
we establish a new connection between low-dimensional CIR pro-
cesses and reflected Ornstein-Uhlenbeck (ROU) processes, providing
a new representation of Skorokhod reflection functions.
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1. Introduction

1.1. Background andmotivation

The squared Bessel process

X(t) = x0 + at + 2
∫ t

0

√
X(s) dW(s) (1)

as well as its generalization Cox-Ingersoll-Ross (CIR) process

X(t) = x0 +
∫ t

0
(a − bX(s)) ds + σ

∫ t

0

√
X(s) dW(s) (2)

where x0 ≥ 0, a, σ > 0, b ∈ R, and their respective square roots are widely used in various
fields, in particular physics (see e.g. [8,20] and the overview in [17, Section I]) and finance
[11–13,19]. One of the reasons for the popularity of these processes lies in the well-known
fact (see e.g. [21, Chapter IV, Example 8.2]) that a>0 in (2) implies that X(t) ≥ 0 for all
t ≥ 0 with probability 1, which is a natural property for multiple real-life phenomena. Fur-
thermore, if the Feller condition 2a ≥ σ 2 is satisfied, the paths ofX in (2) are strictly positive
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a.s., which turns out to be very useful in multiple cases. For example, the well-known Hes-
ton model [19] utilizes Y := √

X as stochastic volatility and, under the Feller condition, Y
has the dynamics of the form

Y(t) = √
x0 + 1

2

∫ t

0

(
a − σ 2

4
Y(s)

− bY(s)

)
ds + σ

2
W(t), t ≥ 0, (3)

since it is evident that ∫ t

0

1
Y(s)

ds < ∞ (4)

with probability 1 for all t ≥ 0. This equation can be used for e.g. simulation purposes
(see, for example, [1,15,28]); moreover, the measure change procedure associated with the
Heston model naturally involves the inverse volatility 1/Y which has far more transparent
properties when X>0 a.s.

At the same time, empirical considerations indicate that the Feller condition 2a ≥ σ 2

can sometimes be too restrictive and models perform better when it is not satisfied. For
instance, [23, Section 3.4] reports that the joint SPX-VIX fit of the Heston model turns
out to be substantially better when the Feller condition is not demanded from the model
parameters. Additionally, [2, Example 10.2.6] indicates that the Heston model with vio-
lated Feller condition can reproduce the upward VIX ‘smirk’. In other words, there are
cases when the process Y = √

X under relatively small values of a turns out to be more
relevant for reflecting real-life phenomena despite the associated analytical challenges.
Nevertheless, the majority of sources in the literature pay more attention to the case
when the Feller condition is satisfied. Among notable exceptions, we mention [4,7,9,10]
which discussed the SDEs of the type (3) when σ 2

4 < a < σ 2

2 . It is worth to note more
recent papers [18,27] which establish a connection between Y = √

X and a reflected
Ornstein-Uhlenbeck (ROU) process

Y0(t) = √
x0 − b

2

∫ t

0
Y0(s) ds + σ

2
W(t) + L0(t),

where L0 is the corresponding Skorokhod reflection function, i.e. a continuous non-
decreasing process that has points of growth exclusively when Y0(t) = 0 and such that
Y0(t) ≥ 0. In particular, it is established that Y0 = √

X when a = σ 2

4 in (2). Additionally,
[27, Theorem 2.4] provides a new representation of L0 in terms of a limit of the CIR pro-
cesses: with probability 1, for any positive sequence {εn, n ≥ 1} such that εn ↓ 0, n → ∞,
and for all T>0

sup
t∈[0,T]

∣∣∣∣∣L0(t) − 1
2

∫ t

0

εn√
Xεn(s)

ds

∣∣∣∣∣ → 0, n → ∞, (5)

where

Xεn(t) = x0 +
∫ t

0

(
σ 2

4
+ εn − bXεn(s)

)
ds + σ

∫ t

0

√
Xεn(s) dW(s).
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The representation of L0 from [27] described above essentially concerns convergence of the
CIR square roots as a → σ 2

4 + and does not cover what happens when a → σ 2

4 −. The rea-
son is that analytic challenges associated to the process Y = √

X are especially acute when
0 < a < σ 2

4 , i.e. when the dimension (see e.g. [24]) k := 4a
σ 2 of the process (2) is less than 1.

Indeed, the integral in (4) is infinite after the first moment of hitting zero, the representa-
tion (3) does not hold and, furthermore, the process Y = √

X is not a semimartingale (see
e.g. Example 1.2 and Appendix 1 in [25] or [16, p. 100]). In this regard, one must mention
important contributions [5,6] which shed light on the behaviour of Y = √

X whenX is the
squared Bessel process (1) of dimension k = a ∈ (0, 1). There, it is shown that Y satisfies
the equation of the form

Y(t) = √
x0 + W(t) + L(t), (6)

where

L(t) := a − 1
2

∫ ∞

0
ya−2(�(t, y) − �(t, 0)) dy (7)

with � being a jointly continuous in (t, y) normalized local time such that for any bounded
measurable function f ∫ t

0
f (Y(s)) ds =

∫ ∞

0
f (y)ya−1�(t, y) dy. (8)

1.2. Main results

In our paper, we consider a more general case of the CIR process (2) with b ∈ R and 0 <

a < σ 2

4 (we call such a process a low-dimensional CIR) and study the properties of Y =√
X. More precisely, we represent Y as a transformation of a reflected Brownian motion W̃

and use the properties of the local time LW̃ of the latter to study the local time LY of Y .
Afterwards, we use the connection between LW̃ and LY to get a representation in the spirit
of (6): namely, we prove that Y is a strong solution of the equation

Y(t) = √
x0 − b

2

∫ t

0
Y(s) ds + σ

2
W(t) + L(t), (9)

where

L(t) = −1
2

(
σ 2

4
− a

)∫ ∞

0
y

4a
σ2

−2 (
�(t, y) − �(t, 0)

)
dy (10)

with � being an explicitly given normalized transformation of a local time LY of the
process Y :

�(t, y) := y1−
4a
σ2 LY(t, y),

where �(t, 0) := limy→0+ �(t, y) is defined by continuity.
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Finally, we close the gap of [27] mentioned above and obtain a representation of the
Skorokhod reflection function for the ROUprocess in terms of CIR processes of dimension
k = 4a

σ 2 < 1.
It is worth noting that our approach is simpler than the one in [5,6] and is based on

the following machinery: we notice that Itô’s formula applied to
√
X(t) + ε followed by

moving ε ↓ 0 implies thatY = √
X satisfies the equation of the form (9) with L represented

as an a.s.-limit

L(t) := lim
n→∞

1
2

∫ t

0

(
a√

X(s) + εn
− σ 2

4
X(s)

(X(s) + εn)
3
2

)
ds (11)

and {εn, n ≥ 0} being some sequence converging to zero. After that, we utilize the fact that
the CIR process X is a regular diffusion and hence can be obtained from a reflected Brow-
nian motion W̃ by a transformation of time and scale (see e.g. [30, Chapter V, Section 7]).
We find the explicit shape of this transformation, use it to establish the connection between
the local times of W̃ and Y . Finally, we exploit this link to show that the limit (11)
is equal to (10). The technique described above seems to be more transparent than the
one employed in [5,6] and additionally allows to get a clear intuition behind the process
� in (8).

1.3. Structure of the paper

The paper is organized as follows. In Section 2, we present some preliminary calculations
and discuss the representation (9)–(11). Section 3 is devoted to the case 0 < a < σ 2

4 and
contains Theorem 3.1 that can be regarded as the main result of the paper. In Section 4,
we discuss the results and compare them with the behaviour of the limit in (11) when
a ≥ σ 2

4 . In Section 5, we establish a new connection between CIR processes of dimension
k = 4a

σ 2 < 1 and ROU processes and obtain a new representation of Skorokhod reflection
function.

2. Preliminary calculations

Let a, σ > 0, b ≥ 0, W = {W(t), t ≥ 0} be a Brownian motion, and let us consider the
continuous modification of a standard CIR process (2) driven by W. Note that, by [22,
Chapter IV, Example 8.2], the paths of X are non-negative with probability 1 provided that
a>0 and hence one can define the square-root process Y = {Y(t), t ≥ 0} := {√X(t), t ≥
0}. In order to analyze the dynamics of Y , take ε > 0 and observe that, by Itô’s formula,

√
X(t) + ε = √

x0 + ε + 1
2

∫ t

0

(
a√

X(s) + ε
− σ 2

4
X(s)

(X(s) + ε)
3
2

)
ds

− 1
2

∫ t

0

bX(s)√
X(s) + ε

ds + σ

2

∫ t

0

√
X(s)√

X(s) + ε
dW(s). (12)
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Fix an arbitrary T>0 and note that the left-hand side of (12) converges to Y(t) uniformly
on [0,T] with probability 1 as ε ↓ 0. It is also evident that

sup
t∈[0,T]

∣∣∣∣∫ t

0

X(s)√
X(s) + ε

ds −
∫ t

0
Y(s) ds

∣∣∣∣ → 0 a.s., ε ↓ 0. (13)

Next, by [29, Chapter XI], the expectation E
∫∞
0 1{X(s)=0} ds = 0 and hence, by the

Burkholder-Davis-Gundy inequality, for any T>0

E

(
sup

t∈[0,T]

∣∣∣∣∫ t

0

√
X(s)√

X(s) + ε
dW(s) − W(t)

∣∣∣∣
)2

≤ 4E
∫ T

0

( √
X(s)√

X(s) + ε
− 1

)2

ds

= 4E
∫ T

0

( √
X(s)√

X(s) + ε
− 1

)2

1{X(s)>0} ds + 4E
∫ T

0
1{X(s)=0} ds

= 4E
∫ T

0

( √
X(s)√

X(s) + ε
− 1

)2

1{X(s)>0} ds → 0, ε ↓ 0.

This implies that for each T>0

sup
t∈[0,T]

∣∣∣∣∫ t

0

√
X(s)√

X(s) + εn
dW(s) − W(t)

∣∣∣∣ P−→ 0, ε ↓ 0, (14)

where P−→ denotes convergence in probability. In particular, (12) as well as convergences
(13) and (14) imply that the left-hand side of

√
X(t) + ε − √

x0 + ε + 1
2

∫ t

0

bX(s)√
X(s) + ε

ds − σ

2

∫ t

0

√
X(s)√

X(s) + ε
dW(s)

= 1
2

∫ t

0

(
a√

X(s) + ε
− σ 2

4
X(s)

(X(s) + ε)
3
2

)
ds

converges uniformly on compacts in probability as ε ↓ 0. Therefore, there exists a ucp-limit

L(t) := lim
ε↓0

1
2

∫ t

0

(
a√

X(s) + ε
− σ 2

4
X(s)

(X(s) + ε)
3
2

)
ds (15)

and the process Y = √
X satisfies the SDE of the form

Y(t) = Y(0) − b
2

∫ t

0
Y(s) ds + σ

2
W(t) + L(t),

where Y(0) = √
x0.



6 Y. MISHURA ET AL.

Remark 2.1: Ucp convergence in (15) implies that for an arbitrary T>0 there exists a
sequence {εn, n ≥ 1} (depending on T) such that, for any t ∈ [0,T],∣∣∣∣∣L(t) − 1

2

∫ t

0

(
a√

X(s) + εn
− σ 2

4
X(s)

(X(s) + εn)
3
2

)
ds

∣∣∣∣∣ → 0 (16)

with probability 1 as n → ∞. Later on, we will see that the a.s. convergence (16) holds for
an arbitrary sequence {εn, n ≥ 1} such that εn ↓ 0 as n → ∞. Moreover, it will be shown
that the set of full probability where (16) holds can be chosen independently of a particular
sequence {εn, n ≥ 1}.

Remark 2.2: Note that the process L defined by (15) is continuous a.s. since

L(t) = Y(t) − Y(0) + b
2

∫ t

0
Y(s) ds − σ

2
W(t).

3. Stochastic representation of Lwhen 0 < a < σ2

4

Our strategy for the analysis of Lwill be as follows. Since the CIR process X in (2) is a non-
negative regular diffusion, it can be represented (see e.g. [30, Chapter V, Section 7]) in the
form

X(t) = S−1 (W̃(τt)
)

for certain change of time τ and change of scale S of a reflected Brownian motion W̃ =
{W̃(t), t ≥ 0}. Then, we re-write the integral in the limit (15) in terms of the local time
LW̃ = LW̃(t, x), t ≥ 0, x ≥ 0, of W̃ and exploit Hölder continuity of the latter to find an
explicit representation of L in terms of LW̃ .

3.1. CIR process as the transformation of a reflected Brownianmotion

In order to implement our approach, we first need to represent the CIR process as a trans-
formation of a reflected Brownian motion. For a given set of parameters a, b, σ of the
SDE (2), define a scale function S: [0,∞) → [0,∞) by

S(x) :=
∫ x

0
y− 2a

σ2 e
2by
σ2 dy (17)

and observe that, since S is strictly increasing and S(∞) = ∞, there exists its inverse S−1.
Define also a speed measure

m (dx) = ρ(x) dx,

where

ρ(x) := 1
σ 2 x

4a
σ2

−1e−
4b
σ2

x
1x>0. (18)
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Proposition 3.1: Let X be the unique strong solution to the CIR Equation (2) with 0 < a <
σ 2

4 . Then there exists a reflected Brownian motion W̃ starting at S(x0) such that

X(t) := S−1 (W̃(τt)
)
, (19)

where

τt := ϕ−1
t (20)

with

ϕt :=
∫ t

0
ρ
(
S−1 (W̃(s)

))
ds. (21)

Before moving to the proof of Proposition 3.1, let us make some remarks regarding its
formulation.

Remark 3.1: (1) The process ϕ in (21) is well-defined. Indeed, let LW̃ = {LW̃(t, x), t ≥
0, x ≥ 0} be the local time of W̃, i.e. for any bounded measurable f,∫ t

0
f (W̃(s)) ds =

∫ ∞

0
f (x)LW̃(t, x) dx a.s.

Then, with probability 1,

ϕt =
∫ t

0
ρ
(
S−1 (W̃(s)

))
ds

=
∫ ∞

0
ρ
(
S−1 (y)) LW̃(t, y) dy

=
∫ ∞

0
ρ (x) S′(x)LW̃(t, S(x)) dx

= 1
σ 2

∫ ∞

0
x

2a
σ2

−1e−
2b
σ2

xLW̃(t, S(x)) dx

< ∞
because 2a

σ 2 − 1 > −1 and LW̃(t, S(x)) = 0 for x > S−1(maxs∈[0,T] W̃(s)).
(2) Since ϕ is strictly increasing and ϕ∞ = ∞ with probability 1, its inverse τ in (20) is

well-defined a.s.

Remark 3.2: The transformation (19) is invertible. Indeed, it is straightforward to check
that, with probability 1,

τt =
∫ t

0

1
ρ (X(s))

ds,

therefore,

W̃(t) = S (X (ϕt)) ,

where ϕ = τ−1 can be expressed as the inverse of the mapping t 
→ ∫ t
0

1
ρ(X(s)) ds. For more

details on transformations of this type, we refer the reader to [22, Chapter IV, §7].
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Proof: We will split the proof into two steps. First, we will follow [30, Chapter V,
Section 7, § 48] to prove that, for some given reflected Brownian motion W̃, the pro-
cess X(t) := S−1(W̃(τt)) is the weak solution to the SDE (2). Then we will utilize the
invertibility of transformation (19) outlined in Remark 3.2 to establish the existence of a
reflected Brownian motion W̃ together with the required representation for the given CIR
process X.

Step 1. Let Z̃ = {̃Z(t), t ≥ 0} be a standard Brownian motion starting at Z̃(0) = S(x0).
Consider a reflected Brownian motion

W̃(t) := |̃Z(t)| = S(x0) + Z(t) + LZ̃(t),

where Z(t) := ∫ t
0 signZ̃(s) dZ̃(s) is a Brownian motion and LZ̃(t) is the local time of LZ̃

at zero. Put V(t) := S−1(W̃(t)) and observe that, by the extension of Itô’s formula in [30,
Lemma IV.45.9],

V(t) − V(0)

=
∫ t

0

(
S−1 (W̃(u)

)) 2a
σ2 e−

2bS−1(W̃(u))
σ2 dW̃(u)

+
∫ t

0

1
σ 2

(
S−1 (W̃(u)

)) 4a
σ2

−1 e−
4b
σ2

S−1(W̃(u)) (a − bS−1 (W̃(u)
))
du

=
∫ t

0
(V(u))

2a
σ2 e−

2b
σ2

V(u)dZ(u)

+
∫ t

0

1
σ 2 (V(u))

4a
σ2

−1 e−
4b
σ2

V(u)
(a − bV(u)) du.

Hence, by Itô’s formula, for any infinitely differentiable function with compact support h,

Ct(h) := h(V(t)) − h(V(0)) −
∫ t

0

1
σ 2 (V(s))

4a
σ2

−1 e−
4b
σ2

V(s)Ah(V(s)) ds (22)

is a local martingale, where

Ah(x) := (a − bx)h′(x) + σ 2x
2

h′′(x)

is the generator of (2). Recall that

X(t) = V(τt)

and observe that, by (22), for any infinitely differentiable function with compact support
h, simple change of variables yields that

Cτt (h) = h(V(τt)) − h(V(0)) −
∫ τt

0

1
σ 2 (V(s))

4a
σ2

−1 e−
4b
σ2

V(s)Ah(V(s)) ds

= h(X(t)) − h(x0) −
∫ t

0
Ah(X(s)) ds.
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Since Cτt (h), t ≥ 0, is a local martingale by the optional stopping theorem,

h(X(t)) − h(x0) −
∫ t

0
Ah(X(s)) ds

is also a local martingale and therefore, by [30, V.19–V.20], X is the weak solution to (2).
Step 2. Let now X be the unique strong solution to (2). By Remark 3.2 and Step 1, the

process

W̃(t) := S(X(ϕt)),

where ϕ is defined as the inverse of the mapping t 
→ ∫ t
0

1
ρ(X(s)) ds, is a reflected Brownian

motion for which X admits the representation (19). �

3.2. Characterization of L in terms of LW̃

Having the representation (19) at our disposal, we are now ready to characterize the process
L from (15) in terms of the local time LW̃ of the corresponding reflected Brownianmotion.

Let X be the unique strong solution to the SDE (2) with 0 < a < σ 2

4 and W̃ be the
reflected Brownian motion such that

X(t) := S−1 (W̃(τt)
)
.

Denote LW̃ = {LW̃(t, x), t ≥ 0, x ≥ 0} the jointly continuous modification of the local
time of W̃ so that for any bounded measurable f,∫ t

0
f (W̃(s)) ds =

∫ ∞

0
f (x)LW̃(t, x) dx, t ≥ 0,

with probability 1.
First of all, let us express the local time LY = LY(t, y) of the process Y = √

X in terms
of LW̃ .

Proposition 3.2: Let

Y(t) :=
√
X(t) =

√
S−1

(
W̃(τt)

)
be the square root of the CIR process X. Then, for any bounded measurable f,∫ t

0
f (Y(s)) ds =

∫ ∞

0
f (y)LY(t, y) dy,

where, with probability 1,

LY(t, y) = 2
σ 2 y

4a
σ2

−1e−
2b
σ2

y2LW̃(ϕt , S(y2)) (23)

with ϕ being defined by (21).
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Proof: For any bounded measurable f, we can write∫ t

0
f (Y(s)) ds =

∫ t

0
f
(√

S−1
(
W̃(τu)

))
du

=
∫ ϕt

0
f
(√

S−1
(
W̃(z)

))
ρ
(
S−1 (W̃(z)

))
dz

=
∫ ∞

0
f
(√

S−1 (x)
)

ρ
(
S−1 (x)

)
LW̃ (ϕt , x) dx

=
∫ ∞

0
f
(
y
)
ρ
(
y2
)
LW̃

(
ϕt , S(y2)

)
2yS′(y2) dy

=:
∫ ∞

0
f (y)LY(t, y) dy.

The final result is obtained by recalling that

LY(t, y) = ρ
(
y2
)
LW̃

(
ϕt , S(y2)

)
2yS′(y2)

= 2
σ 2 y

4a
σ2

−1e−
2b
σ2

y2LW̃(ϕt , S(y2)). �

Define a normalized local time of the process Y as follows. Set

�(t, y) := y1−
4a
σ2 LY(t, y), y > 0, (24)

and

�(t, 0) := lim
y→0+ �(t, y).

Note that �(t, y) is continuous in (t, y) because

�(t, y) = 2
σ 2 e

− 2b
σ2

y2LW̃(ϕt , S(y2)).

However, we want to stress that �(t, y) is a function of the local time LY of the process Y
without mentioning the auxiliary Brownian motion W̃.

Theorem 3.1: Let X be the CIR process satisfying (2) and W̃ be the reflected Brownian
motion such that X(t) = S−1(W̃(τt)), t ≥ 0. Then, with probability 1, the process Y = √

X
satisfies the SDE of the form

Y(t) = √
x0 − b

2

∫ t

0
Y(s) ds + σ

2
W(t) + L(t), (25)

where

L(t) = −1
2

(
σ 2

4
− a

)∫ ∞

0
y

4a
σ2

−2 (
�(t, y) − �(t, 0)

)
dy. (26)
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Moreover,

L(t) := lim
ε↓0

1
2

∫ t

0

(
a√

X(s) + ε
− σ 2

4
X(s)

(X(s) + ε)
3
2

)
ds

= − lim
ε↓0

1
2

∫ t

0

(
σ 2

4 − a√
X(s) + ε

− σ 2

4
ε

(X(s) + ε)
3
2

)
ds.

Remark 3.3: Since the SDE (2) has a strong solution, Theorem 3.1 immediately yields that
the SDE (25)–(26) also has a strong solution.

Remark 3.4: Despite the fact that 4a
σ 2 − 2 ∈ (−2,−1), the integral∫ ∞

0
y

4a
σ2

−2 ∣∣�(t, y) − �(t, 0)
∣∣ dy

is finite with probability 1. Indeed, denote k := 4a
σ 2 ∈ (0, 1) and observe that, by (24) and

properties of local time LW̃ ,

sup
y≥1

|�(t, y) − �(t, 0)| < ∞ (27)

with probability 1 for any t ≥ 0. Moreover, since LW̃(t, ·) is Hölder continuous of order up
to 1

2 a.s. (see e.g. calculations in [30, Section IV.44]), for any δ ∈ (0, 12 ) and any fixed t>0
there exists a random variable C>0 such that, with probability 1,

|�(t, y) − �(t, 0)| ≤ C · (S(y2))
1
2−δ . (28)

Hence, on the one hand, ∫ ∞

1

∣∣�(t, y) − �(t, 0)
∣∣ yk−2 dy < ∞ a.s.

by (27). On the other hand, take δ ∈ (0, k
2(2−k) ) and observe that (28) implies∫ 1

0

∣∣�(t, y) − �(t, 0)
∣∣ yk−2 dy ≤ C

∫ 1

0

(
S(y2)

) 1
2−δ yk−2 dy

= C
∫ 1

0

(∫ y2

0
z− k

2 eβzdz

) 1
2−δ

yk−2 dy

≤ C
∫ 1

0

(∫ y2

0
z− k

2 dz

) 1
2−δ

yk−2 dy

≤ C
∫ 1

0
y−1+ k

2−δ′
dy < ∞ a.s.,

where δ′ := (2 − k)δ ∈ (0, k2 ) and C is a (random) constant that varies from line to line.
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Now we are ready to proceed to the proof of Theorem 3.1.

Proof: In Section 2, we obtained the representation (25) with L being a ucp-limit of the
form

L(t) = lim
ε↓0

1
2

∫ t

0

(
a√

X(s) + ε
− σ 2

4
X(s)

(X(s) + ε)
3
2

)
ds

= − lim
ε↓0

1
2

∫ t

0

(
σ 2

4 − a√
X(s) + ε

− σ 2

4
ε

(X(s) + ε)
3
2

)
ds.

Hence, one is left to prove that this limit exists in the sense of a.s. convergence and check
that the last equality in (26) holds.

Let k := 4a
σ 2 ∈ (0, 1) denote the dimension of the CIR process, i.e. we have to study the

a.s.-limit of the form

L(t) := − lim
ε↓0

1
2

∫ t

0

(
σ 2

4 − a√
X(s) + ε

− σ 2

4
ε

(X(s) + ε)
3
2

)
ds

= −σ 2

8
lim
ε↓0

∫ t

0

(
1 − k√
X(s) + ε

− ε

(X(s) + ε)
3
2

)
ds.

Observe that∫ t

0

1 − k√
X(s) + ε

ds =
∫ t

0

1 − k√
Y2(s) + ε

ds =
∫ ∞

0

1 − k√
y2 + ε

LY(t, y) dy

=
∫ ∞

0

1 − k√
y2 + ε

yk−1�(t, y) dy

=
∫ ∞

0

1 − k√
y2 + ε

yk−1(�(t, y) − �(t, 0)) dy

+ �(t, 0)
∫ ∞

0

1 − k√
y2 + ε

yk−1 dy

and, similarly,∫ t

0

ε

(X(s) + ε)
3
2
ds =

∫ t

0

ε

(Y2(s) + ε)
3
2
ds =

∫ ∞

0

ε

(y2 + ε)
3
2
LY(t, y) dy

=
∫ ∞

0

ε

(y2 + ε)
3
2
yk−1�(t, y) dy

=
∫ ∞

0

ε

(y2 + ε)
3
2
yk−1(�(t, y) − �(t, 0)) dy

+ �(t, 0)
∫ ∞

0

ε

(y2 + ε)
3
2
yk−1 dy.
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Let us study separately the asymptotics of

I1(ε) :=
∫ ∞

0

1 − k√
y2 + ε

yk−1(�(t, y) − �(t, 0)) dy,

I2(ε) :=
∫ ∞

0

ε

(y2 + ε)
3
2
yk−1(�(t, y) − �(t, 0)) dy,

I3(ε) := �(t, 0)

(∫ ∞

0

1 − k√
y2 + ε

yk−1 dy −
∫ ∞

0

ε

(y2 + ε)
3
2
yk−1 dy

)

as ε ↓ 0. First, observe that for any y ≥ 0

1 − k√
y2 + ε

yk−1|�(t, y) − �(t, 0)| ≤ yk−2|�(t, y) − �(t, 0)|

and note that by Remark 3.4,∫ ∞

0
yk−2 ∣∣�(t, y) − �(t, 0)

∣∣ dy < ∞ a.s.

Thus, by the dominated convergence theorem, with probability 1,

lim
ε↓0

I1(ε) = lim
ε↓0

∫ ∞

0

1 − k√
y2 + ε

yk−1 (�(t, y) − �(t, 0)
)
dy

= (1 − k)
∫ ∞

0
yk−2 (�(t, y) − �(t, 0)

)
dy.

Next, observe that, with probability 1,∣∣∣∣ ∫ ∞

1

ε

(y2 + ε)
3
2
yk−1 (�(t, y) − �(t, 0)

)
dy
∣∣∣∣

≤ ε

∫ ∞

1

∣∣�(t, y) − �(t, 0)
∣∣ yk−4 dy

≤ εC
∫ ∞

1
yk−4 dy → 0, ε ↓ 0. (29)

On the other hand, take an arbitrary δ ∈ (0, k
2(2−k) ), denote δ′ := (2 − k)δ and observe

that (28) yields ∫ 1

0

ε

(y2 + ε)
3
2
yk−1 ∣∣�(t, y) − �(t, 0)

∣∣ dy
≤ C

∫ 1

0

ε

(y2 + ε)
3
2
yk−1(S(y2))

1
2−δ dy
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= C
∫ 1

0

ε

(y2 + ε)
3
2
yk−1

(∫ y2

0
z− k

2 eβzdz

) 1
2−δ

dy

≤ C
∫ 1

0

ε

(y2 + ε)
3
2
yk−1

(∫ y2

0
z− k

2 dz

) 1
2−δ

dy

≤ C
∫ 1

0

ε

(y2 + ε)
3
2
y
k
2−δ′

dy

= Cε
k
4− δ′

2

∫ 1

0

ε− 1
2((

y/
√

ε
)2 + 1

) 3
2

(
y√
ε

) k
2−δ′

dy, (30)

where β := 2b
σ 2 . Hence, by substituting z = y/

√
ε in (30), we can write∫ 1

0

ε

(y2 + ε)
3
2
yk−1 ∣∣�(t, y) − �(t, 0)

∣∣ dy
≤ Cε

k
4− δ′

2

∫ ∞

0

1(
z2 + 1

) 3
2
z
k
2−δ′

dz

→ 0 (31)

with probability 1 as ε ↓ 0. Summarizing (29) and (31), we obtain that, with probability 1,

lim
ε↓0

I2(ε) = 0.

Finally, integration by parts yields∫ ∞

0

yk−1√
y2 + ε

dy = 1
k

∫ ∞

0

yk+1

(y2 + ε)
3
2
dy

and the right-hand side of the last equation is equal to

1
k

∫ ∞

0

yk−1(y2 + ε − ε)

(y2 + ε)
3
2

dy

= 1
k

∫ ∞

0

yk−1√
y2 + ε

dy − 1
k

∫ ∞

0

εyk−1

(y2 + ε)
3
2
dy.

Therefore ∫ ∞

0

ε

(y2 + ε)
3
2
yk−1 dy =

∫ ∞

0

1 − k√
y2 + ε

yk−1 dy

and

I3(ε) = �(t, 0)

(∫ ∞

0

1 − k√
y2 + ε

yk−1 dy −
∫ ∞

0

ε

(y2 + ε)
3
2
yk−1 dy

)
= 0.
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Summarizing all of the above and recalling that k = 4a
σ 2 , we finally obtain that with

probability 1

L(t) = −σ 2

8
lim
ε↓0

(I1(ε) − I2(ε) + I3(ε))

= −σ 2

8
(1 − k)

∫ ∞

0
yk−2 (�(t, y) − �(t, 0)

)
dy

= −1
2

(
σ 2

4
− a

)∫ ∞

0
y

4a
σ2

−2 (
�(t, y) − �(t, 0)

)
dy

which ends the proof. �

Remark 3.5: Theorem 3.1 implies that the limit

L(t) = lim
n→∞

1
2

∫ t

0

(
a√

X(s) + εn
− σ 2

4
X(s)

(X(s) + εn)
3
2

)
ds (32)

exists a.s. for any sequence {εn, n ≥ 1} such that εn ↓ 0 and does not depend on the partic-
ular choice of the sequence. Moreover, the proof of Theorem 3.1 yields that the existence of
the limit (32) is ensured for allω such that LW̃(ω; t, ·) is Hölder continuous. In other words,
the set of full probability where (32) holds can be chosen independently of a particular
sequence {εn, n ≥ 1}, as anticipated in Remark 2.1.

4. Discussion of the results

It is evident that the nature of the limit in (15) heavily depends on the relation between
parameters a and σ . Therefore, in order to put our findings from Section 3 into context,
let us provide some relevant results from [27] on the behaviour of Y when a ≥ σ 2

4 .

4.1. Square root of the CIR process when a ≥ σ2

4

4.1.0.1. Case I: a > σ 2

4 . Observe that, if∫ t

0

1√
X(s)

ds =
∫ t

0

1
Y(s)

ds < ∞ a.s., (33)

then the limit (15) is equal to

L(t) = 1
2

(
a − σ 2

4

)∫ t

0

1
Y(s)

ds

by monotone convergence. This is clearly the case for a ≥ σ 2

2 : indeed a ≥ σ 2

2 implies that
X (and henceY ) has strictly positive paths a.s. (see e.g. [3] or [14]) and therefore (33) holds
for all t ≥ 0. It turns out (see e.g. [27, Theorem 2.1(a)]) that (33) also holds if σ 2

4 < a < σ 2

2 ,
i.e. one can prove the following result.
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Theorem 4.1 ([27, Theorem 2.1(a)]): Let a > σ 2

4 . Then, for any t ≥ 0,∫ t

0

1
Y(s)

ds < ∞ a.s. (34)

and Y a.s. satisfies the SDE of the form

Y(t) = √
x0 + 1

2

(
a − σ 2

4

)∫ t

0

1
Y(s)

ds − b
2

∫ t

0
Y(s) ds + σ

2
W(t). (35)

Remark 4.1: Using the same arguments as in [9, Theorem 3.2], it is possible to prove that
for a > σ 2

4 the processY = √
X is the unique non-negative strong solution to the SDE (35).

However, if σ 2

4 < a < σ 2

2 , (35) has other strong solutions; moreover, the uniqueness in law
does not hold for (35). For a more detailed discussion of this phenomenon, we refer the
reader to [7] whereas a comprehensive overview of SDEs of the type (35) can be found in
[10].

4.1.0.2. Case II: a = σ 2

4 . The case a = σ 2

4 turns out to be different from the one described
above: in this regime, X can hit zero (see e.g. [3] or [14]) and, as noted in e.g. [27,
Theorem 2.1(b)], (34) does not hold for all

t > inf{s ≥ 0 | Y(s) = 0}.

However, the limit L from (15) has a simple interpretation in terms of Skorokhod reflec-
tions (see e.g. the seminal works [31,32]) as summarized in the following theorem.

Theorem4.2 ([27,Theorem2.1(b)]): Let a = σ 2

4 and denote τ := inf{s ≥ 0 |X(s) = 0}.

(1) For all γ > 0, ∫ τ+γ

0

1
Y(s)

ds = ∞ a.s.

(2) The processes Y := √
X and L defined by (15) is the (unique) solution to Skorokhod

problem

Y(t) = √
x0 − b

2

∫ t

0
Y(s) ds + σ

2
W(t) + L(t), (36)

with L being the corresponding Skorokhod reflection function, i.e. a continuous non-
decreasing process starting at 0 with points of growth occurring only at zeros of Y and
such that Y(t) ≥ 0.

Remark 4.2: Item 2) of Theorem 4.2 states that, when a = σ 2

4 , the square root process
Y = √

X coincides with a reflected Ornstein-Uhlenbeck (ROU) process. More details on the
latter can be found in e.g. [33].
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4.2. Comparison to the low-dimensional case

Aswe have seen in Section 3, the case 0 < a < σ 2

4 is arguably themost challenging one and
leads to the most involved value of the limit (15). First of all, note that (33) does not hold
due to Theorem 4.2 together with the comparison theorem for solutions of SDEs (see e.g.
[21]). Next, the limit L in (15) cannot be non-decreasing in t as it happens when a ≥ σ 2

4 .
Indeed, consider τ ≥ 0 such that X(τ ) > 0. Then, by a.s. continuity of X, there exists a
neighbourhood τ− < τ < τ+ such that X is bounded away from zero on (τ−, τ+). Denote
now −δ := a − σ 2

4 , δ > 0. Then, with probability 1, for all τ− < t1 < t2 < τ+

L(t2) − L(t1) = lim
n→∞

1
2

∫ t2

t1

(
a√

X(s) + εn
− σ 2

4
X(s)

(X(s) + εn)
3
2

)
ds

= lim
n→∞

1
2

∫ t2

t1

(
σ 2

4
εn

(X(s) + εn)
3
2

− δ√
X(s) + εn

)
ds

= −1
2

∫ t2

t1

δ√
X(s)

ds

< 0.

On the other hand, L is not strictly decreasing on the entire [0,T]: if it is strictly
decreasing (and, since L(0) = 0, non-positive), then Y ≤ U, where U is the standard
Ornstein-Uhlenbeck process defined by

U(t) = Y(0) − b
2

∫ t

0
U(s) ds + σ

2
W(t).

However, it is not possible since Y cannot take negative values.

5. Connection to Skorokhod reflections

Finally, let us present the connection of low-dimensional CIR processes with Skorokhod
problems. For δ > −σ 2

4 , consider a family of CIR processes {Xδ} with a = a(δ) = σ 2

4 + δ

and defined by

Xδ(t) = x0 +
∫ t

0

(
σ 2

4
+ δ − bXδ(s)

)
ds + σ

∫ t

0

√
Xδ(s) dW(s). (37)

As described above in Sections 3 and 4, the process Yδ :=
√
Xδ satisfies the SDE of the

form

Yδ(t) = √
x0 − b

2

∫ t

0
Yδ(s) ds + σ

2
W(t) + Lδ(t),

where the term Lδ depends on the parameter δ as follows:
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– if −σ 2

4 < δ < 0,

Lδ(t) = −1
2

(
σ 2

4
− a

)∫ ∞

0
y

4a
σ2

−2 (
�(t, y) − �(t, 0)

)
dy

= δ

2

∫ ∞

0
y

4δ
σ2

−1 (
�(t, y) − �(t, 0)

)
dy,

where �(t, y) = y− 4δ
σ2 LYδ (t, y) is the normalized local time of Yδ , see (24);

– if δ > 0,

Lδ(t) = 1
2

∫ t

0

δ

Yδ(s)
ds

and the integral is well-defined and finite with probability 1;
– if δ = 0, L0 is the Skorokhod reflection function, i.e. a continuous non-decreasing pro-

cess with points of growth occurring only at zeros of Y0 and such that Y0 ≥ 0, which
is a symmetric local time ofY0 at 0; in particular,Y0 is a reflectedOrnstein-Uhlenbeck
process.

The dynamics of Yδ with δ ≥ 0 described above allowed [27] to obtain the following
alternative representation to the Skorokhod reflection function L0.

Theorem 5.1 ([27, Theorem 2.4]): Let {δn, n ≥ 1} be an arbitrary positive sequence such
that δn ↓ 0, n → ∞. Then, with probability 1, for any T>0

sup
t∈[0,T]

|Yδn(t) − Y0(t)| → 0

and

sup
t∈[0,T]

∣∣L0(t) − Lδn(t)
∣∣ = sup

t∈[0,T]

∣∣∣∣∣L0(t) − 1
2

∫ t

0

δn√
Xδn(s)

ds

∣∣∣∣∣ → 0

as n → ∞.

Theorem 5.1 essentially concerns the case δ → 0+ but does not discuss what happens
when δ → 0−, so we finalize the Section by filling this gap.

Theorem 5.2: Let {δn, n ≥ 1} be an arbitrary positive sequence such that δn ↓ 0, n → ∞.
Then, with probability 1, for any T>0

sup
t∈[0,T]

|Y−δn(t) − Y0(t)| → 0 (38)

and

sup
t∈[0,T]

∣∣L−δn(t) − L0(t)
∣∣ → 0 (39)

as n → ∞.
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Proof: By [21, Theorem 1.1], for any t ≥ 0, X−δn(t) ≤ X−δn+1(t) ≤ X0(t) a.s. Moreover,
by [26, Theorem 4.1],

sup
t∈[0,T]

E
[∣∣X−δn(t) − X0(t)

∣∣] → 0, n → ∞,

and hence, for all t ≥ 0,

Y−δn(t)
P−→ Y0(t), n → ∞,

and ∫ t

0
Y−δn(s) ds

P−→
∫ t

0
Y0(s) ds, n → ∞.

Therefore, since monotone convergence in probability implies almost sure convergence,
for any t ≥ 0

Y−δn(t) → Y0(t)

and ∫ t

0
Y−δn(s) ds →

∫ t

0
Y0(s) ds

a.s. as n → ∞ and hence, with probability 1,

L−δn(t) = Y−δn(t) − √
x0 + b

2

∫ t

0
Y−δn(s) ds − σ

2
W(t)

→ Y0(t) − √
x0 + b

2

∫ t

0
Y0(s) ds − σ

2
W(t)

= L0(t), n → ∞.

It remains to note thatY0 as well as eachY−δn have a.s. continuous paths and {Y−δn(t), n ≥
1} is non-decreasing a.s. w.r.t. n, which immediately yields (38) by Dini’s theorem. Simi-
larly, L0 as well as all L−δn are continuous with probability 1 and

L−δn(t) = Y−δn(t) − √
x0 + b

2

∫ t

0
Y−δn(s) ds − σ

2
W(t)

≤ Y−δn+1(t) − √
x0 + b

2

∫ t

0
Y−δn+1(s) ds − σ

2
W(t)

= L−δn+1(t),

which implies (39). �
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