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Abstract

This paper explores how, given a proof, we can systematically transform it into a proof that contains no irrelevancies and
which is as strong as possible. I define a weaker and stronger notion of what counts as a proof with no irrelevancies, calling
them perfect proofs and gaunt proofs, respectively. Using classical core logic to study classical validities and core logic to
study intuitionistic validities, I show that every core proof or classical core proof can be transformed into a perfect proof. In a
sequel paper, I show how proofs in core logic can also be transformed into gaunt proofs and I observe that this property fails
for classical core logic.

1 Introduction

When we formalize an argument and provide a proof to demonstrate its validity, oftentimes
redundancies, irrelevancies, and unnecessary detours creep into the proof. For instance, we may not
find the simplest or most direct proof. Or we may come up with a proof that contains unnecessary
detours in the sense, familiar to proof theorists, of having maximal sentence occurrences.

It can also happen, when formalizing an argument, that the original argument itself contains
irrelevancies or is unnecessarily weak. For instance, the argument may have contained irrelevant
premises or it may have a weaker conclusion than the premises warranted.

Either of these situations is suboptimal from a logical perspective. While there may be practical
reasons to be satisfied with a proof that contains irrelevancies or detours—for instance, because
it was the easiest to find and it serves your purposes—the simplest and most direct proof has a
distinguished standing from a proof-theoretical point of view. Similarly, there may be rhetorical
or dialectical reasons to provide a proof for a weaker argument even when a stronger argument is
available, but from a logical point of view we generally want to prove the strongest result possible.
We can ask, then, whether it is in general possible to avoid these logically suboptimal situations, and
if so how.

This leads to the guiding question of this paper: given a natural deduction proof, is there a way
to systematically transform it into a proof that contains no irrelevancies and in which the argument
proved to be valid is as strong as possible? In brief, the answer is yes, though it will depend to some
extent on whether we are interested in classical or intuitionistic validity and exactly how we define
a proof with no irrelevancies. With this guiding question and its intuitive motivation on the table, I
turn now to making it precise, so that it admits of a definitive answer.

1.1 Making the Question Precise

In what follows I will use the convention that @,Y, ... are metavariables ranging over sets of
formulas, ¢, ¥, ... are metavariables ranging over formulas, and 4, B, ... are metavariables ranging
over atoms.

Instead of arguments, I will talk of sequents. A sequent, as I will understand it here, is an ordered
pair A : @ of sets of sentences in a given language. Since I will be working in a natural deduction
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2 Coarsening natural deduction proofs I: finding perfect proofs

setting, and natural deduction proofs have at most one conclusion, @ will be at most a singleton. The
absurdity symbol _L is treated merely as a punctuation device in proofs, not a formula itself; hence a
natural deduction proof of L from A is really a proof of the zero-conclusion sequent A : ). We say
A’ . @' is a subsequent of A : @ iff A" C A and @’ C @; if either of these inclusions is proper,
then A’ : @’ is a proper subsequent.

I will be concerned with both classical validity and intuitionistic validity. As usual, A : @ is valid
when every interpretation that makes every member of A true also makes at least one member of
@ true. The difference between classical validity and intuitionistic validity is a matter of what an
interpretation is. In the classical case an interpretation can be taken to be a truth-assignment using
the familiar truth-tables. In the intuitionistic case, interpretations are given in terms of Kripke models
(or something equivalent, such as Heyting algebras). I will assume the reader is familiar with Kripke
models for intuitionistic logic and their basic features; see [23, Ch. 2] for a standard reference.

With these preliminary remarks in place, we can now offer a precise definition of what counts as
a proof with no irrelevancies or detours. In fact, there are two precisifications of this notion that I
will study. The first is based on the idea of perfect validity:

DEFINITION 1 (Perfect validity; perfect proofs).
A sequent A : @ is perfectly valid iff it is valid but has no proper subsequent that is valid. A proof
IT is a perfect proof iff every subproof, including I7 itself, is a proof of a perfectly valid sequent.'

EXAMPLE 1
The following are perfectly valid, both classically and intuitionistically:

e ANB:AAB.
e A, A— B:ANB.
e °4:4— B.

The following are not perfectly valid, either intuitionistically or classically:

e A AB,C : B, since this has the valid proper subsequent 4 A B : B.

e A,B,(AV B) — C : C, since this has the valid proper subsequents 4, (4 vV B) — C : C and
B,(AvB)— C:C.

e A,—A : B, since this has the valid proper subsequent 4, —4 : .

It is also possible for a sequent to be perfectly valid intuitionistically but not classically, for
example:

e P:PVv =P

The basic idea is that if any element of the sequent were irrelevant, then it could be omitted without
loss. Since no premise or conclusion can be omitted from a perfectly valid sequent without rendering
it invalid, no element of the sequent is irrelevant. A perfect proof, then, is a proof of a sequent with
no irrelevancies, and moreover it does not contain any detours through subproofs with irrelevancies.

! As Neil Tennant pointed out to me, the property of being a perfect proof will be decidable in the case of propositional
logic, but will be undecidable in general. This follows from the observation in [3] that Church’s Theorem precludes there
being a recursive enumeration of the perfectly valid sequents of first-order logic.
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Coarsening natural deduction proofs I: finding perfect proofs 3

The second way to precisify the idea of a proof with no irrelevancies or detours is based on the
notion of gaunt validity. Introducing this requires an auxiliary definition:

DEFINITION 2 (Coarsening).
A sequent A’ : @' is a coarsening of A : @ iff there is a uniform substitution o (that is, a mapping
from atoms to formulas) such that o (A’) = A and o (®') = &.

A coarsening A" : @' of A : @ is trivial just in case the mapping o that gives c A" = A and
o®' = @ is a one-one mapping of atoms to atoms. Thus a trivial coarsening is a mere relettering.
Note that if o maps all the atoms in A’ to other atoms it will be considered non-trivial provided it is
not one-one.

DEFINITION 3 (Gaunt validity; gaunt proofs).

A sequent A : @ is gauntly valid iff it is perfectly valid and has no non-trivial coarsening that is
perfectly valid. A proof IT is a gaunt proof iff every subproof, including I7 itself, is a proof of a
gauntly valid sequent.

EXAMPLE 2
The following are all gauntly valid, both classically and intuitionistically:

e A:AVB.
e ANBYANC: A
e mA AV B:B.

The following are not gauntly valid, either classically or intuitionistically:

e AN B: A A B, since it has the perfectly valid proper coarsening 4 : 4.
e 4,4 — (C AD) : C A D, since it has the perfectly proper coarsening 4,4 — B : B.
e A AB: B A A, since it has perfectly valid proper coarsening A A C,D AB: BAA.?

Again, there are also sequents that are intuitionistically gauntly valid but not classically so, for
example:

o ———4: 4.

The idea behind gaunt validity is to ask not only whether a premise or conclusion is needed for
the validity of a sequent, but whether all of the internal logical structure of a premise or conclusion
is needed for its validity.

The guiding question of this paper now admits of two precise versions: (1) Can any natural
deduction proof be systematically transformed into a perfect proof that is appropriately related to
the original proof? (2) Can any natural deduction proof be systematically transformed into a gaunt
proof that is appropriately related to the original proof?

2This example also reveals that a gauntly valid sequent can be longer than its substitution instances.
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4  Coarsening natural deduction proofs I: finding perfect proofs

1.2 Outine of the Paper and Main Results

In Section 2, I will present the natural deduction systems for core logic and classical core logic, which
will be the main tools I use to study perfect and gaunt validity. To a first approximation, classical core
logic can be thought of as subtracting ex falso quodlibet from classical logic and adding disjunctive
syllogism. This is a way of achieving the minimal revision of classical logic that does not make the
so-called Lewis Paradox 4, —4 : B provable. Core logic bears the analogous relation to intuitionistic
logic as classical core logic does to classical logic.

In Section 3, I will elaborate the historical background and conceptual motivation for our key
notions of perfect validity and gaunt validity. This will include their relation to the concept of
relevance, their connection to core logic and classical core logic, and the relation to the main results
proved in this paper.

Sections 4 and 5 contain the technical contributions of this paper. The main result below is that
for every proof IT of the sequent A : @ in classical core logic or core logic there is respectively
a classical core proof or core proof IT" of a perfectly valid sequent A’ : @’ such that for some
uniform substitution o, 0 A’ and o @’ are trivially equivalent to A and @, respectively (in a sense
made precise below).

Finally, in Section 6, I remark on the relation of these results to Tennant’s soundness conjecture
for core logic.

In the sequel to this paper I will show how, in the case of core logic, by adapting the methods of
this paper we can find a proof IT’ of a gauntly valid coarsening A’ : @’ that is similarly related to
A : @. This latter result is unique to core logic, as there are gauntly valid sequents in classical logic
which do not have gaunt natural deduction proofs.

2 Classical Core Logic

Classical core logic has the following rules of natural deduction. The vertical dots indicate the
possible occurrence of further proofwork, and where these are missing it is understood that the
node in question must be a leaf-node in the prooftree. In particular, major premises of eliminations
(MPEs) are not allowed to have any proofwork above them. Also, vacuous discharge is not allowed
in any of the rules: the premises to be discharged must really have been used.

Al ¢ Iﬂ

AE

Here either ¢, ¥, or both may occur as premises in the rightmost subproof.
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Here either 6 or L may occur as the conclusion of each subproof. If one or both subproofs end
in 6, then the conclusion of the rule is 6, and if both subproofs end in L, then the conclusion
of the rule is L.
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6 Coarsening natural deduction proofs I: finding perfect proofs

Core logic is the constructive system that results from omitting the rule CR.
The notion of a subproof will be essential for what follows:

DEFINITION 4 (Subproof).
If IT is a prooftree and # is a node in I1, the subtree of IT above n is a subproof of IT iff n is not a
major premise of an elimination (MPE).

This definition is motivated by the view of inference rules as clauses in an inductive definition
of proothood. (This view is typically left implicit in the presentation of a proof system, but see [11]
and [13, 52-55] for explicit statements). Then the subproofs of IT are the proofs that occur as parts
of the inductive construction of 7.

A proof of a sequent A : ¢ is a proof with conclusion ¢ whose undischarged premises are exactly
the members of A. A proof of A : J is a proof with conclusion L whose undischarged premises are
exactly the members of A. Note that, while a sequent is just a formal object which may be valid or
invalid, A ¢ is an assertion that there is a proof of ¢ whose premises are among A.

3 Background
3.1 Perfect Validity

While the notion of perfect validity is of obvious logical interest for any logician, it was first isolated
in connection with relevance logic and the problem of analyzing the concept of entailment. The
basic idea, as it was originally put by von Wright [25], Geach [6], Smiley [12], and perhaps most
clearly enunciated by Geach in [7], was that ¢ entails ¢ if it is possible to come to know i by a
deduction from ¢ whose validity did not turn on v being logically true or on ¢ being logically false.’
The definitions of Geach, von Wright, and Smiley only applied to single-premise entailment, but a
natural way to generalize this idea to multiple-premise deductions is to add the requirement that in
coming to know i by deduction from ¢y, ..., ¢, one must use all the ¢’s. This leads us to the idea of
a sequent @1, ..., ¢, : ¥ being valid and having no valid proper subsequents, or in other words, being
perfectly valid. Finally, Geach and von Wright were particularly interested in deduction; and since
deduction is arguably a formal matter, it should be closed under substitution. Thus, they thought that
entailments should also be closed under substitution. Later on, Burgess [5] would coin a term for
sequents that are obtained from perfectly valid sequents by substitution:*

DEFINITION 5
A sequent A : I is perfectible iff there is a perfectly valid sequent Ag : Iy and a substitution o such
that 0 (Ag) = Aando(Ip) =TI

3The main (and perhaps better-known) alternative to the von Wright, Geach, Smiley approach to entailment is, of course,
represented by [1] and [2].

4The notion of a perfectly valid sequent was first explicitly isolated in [16]; the notion of a substitution instance of a
perfect sequent was also present in that work, though the term ‘perfectible’ was not used. Verdée, de Bal, and Samonek [24]
also define a notion of relevant implication as substitution instances of perfectly valid sequents. Their approach to relevance is
similar to that in [3], though my emphasis was on the philosophical analysis of relevance while Verdée, de Bal, and Samonek
go further in the technical study of the notion. There is further interest in the fact that, while I offered my account as an
alternative to the Anderson-Belnap tradition of relevance, Verdée, de Bal, and Samonek bridge these two approaches by
defining a faithful translation from their system NTR of classical relevance to the logic R (see §4.3 of [24]).
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Coarsening natural deduction proofs I: finding perfect proofs 7

A different, though related, route to perfect validity is offered by the explication of relevance in
[3]. In that paper, I aimed to identify a robust notion of relevance. The goal was not to develop
a system of ‘relevance logic’ as an alternative to classical logic, however, but rather to study the
notion of relevance in the context of classical logic. The basic idea was that relevance is a relation
between sentences and sequents: a sentence is relevant to a sequent if it contributes to the validity of
that sequent. I then argued that this standard of relevance is best exemplified by the perfectly valid
sequents, since every sentence in the sequent is essential for the validity of the sequent: remove any
sentence from a perfectly valid sequent and you are left with an invalid sequent.’

Where von Wright, Geach, Smiley, and I arrived at the notion of perfect validity by conceptual
analysis or explication, Tennant approaches it from a more top-down methodology. In the early
programmatic work [14], he argued that a theory of entailment must account for ordinary deductive
reasoning, and in [15] and [16] he developed a proof system that arguably does so. This is an early
version of what would he would come to call classical core logic.® Specifically, Tennant argues that
all entailments should have normalizable natural deduction proofs, that the entailment relation should
be transitive at least when the premises are consistent, and that entailment should be preserved under
uniform substitution. On this basis, he defined entailment to be perfectibility: A entails ¢ iff A : ¢ is
perfectible. While Tennant has refined his system in various ways over the years, the main properties
established in these early works continue to hold for the up to date system of classical core logic.
The main properties of (classical) core logic are as follows; the results for classical core logic were
established in [15] and the results for core logic were established in [17].

THEOREM 1

1. A,—A : B is not provable in core logic or classical core logic.
2. If A : @ is provable in classical logic (intuitionistic logic, respectively), then there is some
subsequent A’ : @’ provable in classical core logic (core logic).

This theorem arguably substantiates Tennant’s claim that his system suffices to account for
ordinary deductive reasoning as it occurs in science and mathematics. It also follows from claim
2 that classical core logic and core logic are complete with respect to the classes of perfectible
sequents of classical or intuitionistic logic, respectively. In [16] he further established the converse
soundness claim for classical core logic:

THEOREM 2
If A : @ is provable in classical core logic, then it is a substitution instance of a classically perfectly
valid sequent.

In other words, every sequent provable in classical core logic is a substitution instance of a
classically perfectly valid sequent. Theorems | and 2 can be informally glossed as together showing
that classical core logic exactly captures the relevance-sensitive kernel of classical logic.

The analogue of Theorem 2 for core logic remains open, however, and is Tennant’s soundness
conjecture for core logic:

SIn [3], such sequents were mistakenly called ‘perfect’ rather than ‘perfectly valid’. I also defined another notion of
relevance that is weaker than perfect validity, though that notion will not matter to us here.

6Before 2012, Tennant called this system CR for classical relevance logic, and the intuitionistic counterpart was called
IR. See [22] for a thorough, up to date account of core logic and classical core logic.
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8 Coarsening natural deduction proofs I: finding perfect proofs

CONJECTURE 1
If A : @ is provable in core logic, then it is a substitution instance of an intuitionistically perfectly
valid sequent.

This conjecture is significant because it would establish that core logic adequately formalizes the
relevance-sensitive kernel of intuitionistic logic in the same way that classical core logic does for
classical logic.

3.2 Gaunt Validity

The notion of gaunt validity has less history than perfect validity. It was first isolated in print by
Tennant in [20, Ch. 11], though it is prefigured in Quine’s Maxim of Shallow Analysis: “expose
no more logical structure than seems useful for the deduction or other inquiry at hand.”” Part of
Tennant’s motivation derives from the circuitous nature of proofs such as:
Ve @) N @)
AAB AAB
ANB

@)

Such a proof is unnecessarily prolix, having gone through an entirely dispensable detour through
the atoms 4 and B, which is somewhat awkward. In addition to the intuitive oddity of such proofs,
Tennant is partly motivated by work in automated proof search. An algorithm that returned such
circuitous proofs would be indulging in unnecessary work. A proof search algorithm that found
gaunt proofs could potentially be more efficient.®

Alternatively, we can modify the ideas from [3] to motivate studying gaunt validity. As mentioned
above, the core idea in that paper was that relevance meant contributing to the validity of a sequent.
That paper was focused on the question of whether a premise is relevant to a sequent, but we can
equally ask whether the internal structure of a premise is relevant in the sense of contributing to
the validity of a sequent. If a complex formula could just as well be an atom without affecting the
validity of a sequent, then the internal logical complexity of that formula does not really contribute
anything to the validity of the sequent.’ For instance, say ¢, ¢ — ¥ : ¥ is perfectly valid; then even
if ¢ and  are highly complex sentences, their internal complexity is not essential to the validity of
this sequent. We could coarsen ¢ and Y to atoms, revealing the bare logically necessary structure of
this sequent: 4,4 — B : B. Just as perfectly valid sequents epitomize the ideal of a sequent in which
every member contributes something to its validity, gauntly valid sequents epitomize the ideal of a
sequent in which every iota of logical structure is needed for its validity.

7[10, 160]. Tennant has also explored gaunt validity at greater length in the unpublished work [21]. That work does not,
however, overlap with the results proved in this paper. Tennant’s terminology is slightly different from my own. He reserves
the term ‘gaunt’ to apply to proofs and where I use ‘gauntly valid’ to describe sequents he uses the expression ‘skeletally
valid’. I prefer my usage because it emphasizes the uniformity between the concept that applies to sequents and the concept
that applies to proofs, and because ‘skeletally valid’ is a bit of a mouthful. Both expressions, however, are meant to evoke the
idea that there should be no extra flesh on the bare logically necessary bones of a sequent.

8This conjecture is partly born out by the observation in [4] that classically gauntly valid sequents all have polynomially
sized proofs, which entails that classical gaunt validity is polynomially decidable. As noted in footnote 2, however, gauntly
valid sequents can be much longer than their substitution instances. So an efficient way to find gaunt proofs does not
necessarily provide an efficient way to find proofs in general.

9This connection between gaunt validity and relevance can be read as implicit in the discussion of [20], but is not explicitly
drawn out there.
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3.3 Relation to the present work

The results in Section 4 on classical core logic are closely related to the work of [16] (stated as
Theorem 2 above). I will improve on that work in a few regards, however. A small difference is that
Tennant omitted the connective — from his language, and it was not until [18] that he settled on a
particular set of rules for the arrow. I will consider the full language {—, A, vV, —} in what follows.
More significantly, while Tennant established that every provable sequent is a substitution instance
of perfectly valid sequent, I will consider properties not only of provable sequents, but of proofs
as wholes, showing that every proof can be coarsened to a perfect proof. Tennant’s approach also
turned on his use of a multi-conclusion sequent calculus, while I will focus on natural deduction
proofs, limiting us to a single conclusion. (Natural deduction and sequent calculi are each of interest
in their own right, so this is a mere difference from [16] rather than an improvement per se.) Finally,
and this is the most novel aspect of the current paper, I will build on the results about perfect validity
and classical core logic to establish entirely new results in §5 about perfect proofs in core logic. The
sequel paper will push these results about core logic even further, showing how core proofs can be
transformed into gaunt core proofs.

The present work is thus a contribution to Tennant’s program of studying (classical) core logic. It
is also a contribution to the program initiated in [3] of studying perfect validity within the context
of classical logic. The provable sequents of classical core logic are a proper subset of the provable
sequents of classical logic; but as noted above, whenever A : @ is provable in classical logic there is
some subsequent A’ : @’ provable in classical core logic. Hence classical core logic includes every
classically perfectly valid sequent, and we can use classical core logic as a tool for studying perfect
validity within classical logic.

4 Coarsening Classical Core Proofs

In this section I address the guiding question of this paper as it applies to classical logic, and for this
section a proof will refer to a proof in classical core logic unless otherwise stated. The main result
will be that a classical core proof of A : @ can be transformed into a perfect proof of a sequent
A’ . @' which is trivially equivalent to A : @ in the following sense.

DEFINITION 6 (c-variant).
A formula ¢, is a contraction-variant of ¢ (or c-variant, for short) iff ¢ can be obtained from ¢. by
successively replacing occurrences of ¥ V i with ¥ or replacing occurrences of ¢ A 1 with .

EXAMPLE 3
Each of the following is a c-variant of 4 Vv B:

e AV (BVB)
e (AVB)V AV (BAB))
o (UANA)YVB)YAN(AVB)

Note that being a c-variant is a transitive and anti-symmetric relation. Moreover, if ¢, is a c-variant
of ¢ then —¢, is a c-variant of —¢ and ¢, o ¥ is a c-variant of ¢ o ¥ and ¢ o ¢, is a c-variant of
Y o ¢, where o is any of the binary connectives.

The definition of a c-variant is primarily technical rather than philosophical in nature, being
motivated by its usefulness in the proof of Theorem 3. The philosophical significance of c-variants,
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10 Coarsening natural deduction proofs I: finding perfect proofs

however, is that a formula is trivially equivalent to its c-variants. Determining whether ¢ and v
are c-variants is neither conceptually nor computationally demanding. And although applying the
notion of synonymy to logical formulas is notoriously vexed, it would not be absurd to offer being
c-variants as a surrogate for synonymy in propositional logic.'’

I begin with a lemma which will be used in proving the main theorem.

LEMMA 1
If 4 is an atom and [7 is a perfect proof, then the result of uniformly substituting —4 for 4 in IT is
also a perfect proof.

PROOF. It will suffice to show that the result of uniformly substituting —4 for 4 in a perfectly valid
sequent A : @ is also perfectly valid. Denote the result of this substitution A[4/—A] : @[4/—A].
Note that for any model M there is a model N such that every atom other than A4 is true in N iff it is
true in M, and 4 is true in M iff it is false in N. Then M will be a countermodel to any subsequent
of A : @ iff N is a countermodel to the corresponding subsequent of A[4/—A] : ®[4/—A]. Thus
A : @ has valid proper subsequents iff A[4/—A4] : @[A/—A] has valid proper subsequents. O

THEOREM 3

If IT is a proof of A : @, then there is perfect proof IT" of A’ : @’ and a substitution o such that
o A’ consists of c-variants of the members of A and 0 @’ is a c-variant of @. That is, if ® = @, then
@' = and if @ = {¢p} then @’ = {¢'} and 0¢’ is a c-variant of ¢.

PROOF. Induction on the height of I7, defined as the length of the longest branch in I7. In the basis
case we have the trivial proof of ¢ from the premise ¢. Take as IT’ the trivial proof of 4 from A4, with
oA ¢.
For the induction step, I proceed according to the last rule applied in I7. I will begin with the cases
where the last rule is an I-rule.
First, assume the last rule applied in /7 is Al, so IT is of the form:
Ay A
I I,
) 0
/N

By i.h. we have perfect proofs:
A A
1‘[/1 and 1'[’2
,(//./ 9/
And we have the two substitutions o; and o> such that oiA;- = A; and o1/’ is a c-variant of ¥ and

020’ is a c-variant of 6. Without loss of generality we can assume that IT{ and [T are atom-disjoint,
since we can always reletter if need be. Then putting o := o U0, and taking IT’ to be the following

10 simple argument for this claim uses the following two plausible assumptions: (1) ¢ is synonymous with ¢ A ¢ and
¢ V ¢, and (2) if ¢ is synomymous with ¢, then the result /[¢/¢’] of replacing an occurrence of ¢ with ¢’ in a formula
¥ is synonymous with . Given these two premises, any definition of synonymy in propositional logic would be at least as
inclusive as being c-variants.
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Coarsening natural deduction proofs I: finding perfect proofs 11

proof will provide our result.
Ay A
m 1
w/ 9/
VAT
Second, assume the last rule applied in I7 is VI, so [T is:

A
ITy

v
Y ve
Then let I1; and o be as guaranteed by i.h., and let 4 be a new atom not occurring in IT;. I Letting
o =0 U{4 > 6}, we have IT' as follows.
A/
)
'(/f/
¥ v A
Third, assume the last rule applied in [T is —1. This can take three forms, giving us three subcases.
In the first subcase, we have IT of the form:

M

Note, however, that there may be multiple occurrences of ¢ in I7; that are discharged in IT by the
rule —I. And in the process of coarsening I1;, those occurrences might be coarsened to distinct

U The trick of using a new atom (here and elsewhere in this work) comes from [21].
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12 Coarsening natural deduction proofs I: finding perfect proofs

formulas /1, ..., ¥, provided only that o (), ..., (,) are all c-variants of . If this is the case,
then we add » — 1 terminal applications of AE as follows:

() — 5~ /
Yyt Ny 0

O A W A Wt A Ym)) o'
9/
WA AY) =0

1)

Since o (Y| A ... A ¥,)" is still a c-variant of , this proof meets our conditions.

The other two subcases are similarly straightforward. The only difference is that when —1 is
applied by refuting ¥/, then let the conclusion be ' — A, for 4 a new atom; and when —1 is
applied by deriving 8’ without v/', then let the conclusion be 4 — 6’.

Fourth, assume the last rule applied in /7 is —I. This case is straightforward. The only complication
is that, as in the case of — 1, the discharged premise ¥y may have been coarsened to several distinct
formulas /1, ..., ¥;,. If so, then we repeat the trick from —1I of adding n — 1 applications of AE at
the end of the proof IT'.

This completes the cases with [-rules. Next, we turn to E-rules. First, assume the last rule applied
is AE, so IT has the following form, with at least one of iy and 6 occurring as premises in the main
subproof:

— 1 —= O

W O A
IT,
/N . X 0

By the i.h. we have some ¢ and the following perfect proof:

W) ©" A

If both ¥’ and 6’ occur as premises in this proof, then our desired proof [T’ is formed by the obvious
application of AE. On the other hand, suppose that ¥' but not 6’ is used as a premise in I7;. Then,
letting 4 be a new atom, we have our proof IT" as follows.

1////\14 X/

Since we are discharging ¥ (and also 6’, if applicable), we have to consider the possibility that in
coarsening I7; to obtain IT}, v was split into several different coarsenings v/1, ..., ¥,,. If so, then add
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Coarsening natural deduction proofs I: finding perfect proofs 13

instances of AE to the bottom of IT] as necessary to obtain:

— (-1
H AE rules

—_
Ui A LAY x'
WA AY)ANA x'

/

X

@

M

Second, assume the last rule applied is VE, so IT has the form:

A 0 Ao
IT, ITy
Y Vo x/L x/L W
x/L

And we can assume that IT; and IT) are atom-disjoint. As expected we set o := o1 U 07. In either
of these proofs IT| and I1}, if ¥ or 6 have been coarsened to distinct formulas ¥/ or 6/, then again
use the trick of adding AE to the bottom of IT; or IT} as necessary. If one or both of these proofs has
1 as the conclusion, then we can obtain our desired proof I1’ by the obvious application of VE with
IT{ and IT} as subproofs. On the other hand, if neither IT{ nor IT; have L as a conclusion, then we
take the following proof for IT'.

I / I /
............ Ay 9 M
I} I
/ /
X1 X2
V' v X1V x XV "
X1V x

Now o (x1 V x3) = 01(x]) V 02(x3) = x V x, which is a c-variant of x, as required.
Third, assume the last rule applied is —E, so IT has the following form:

Ty Il
— 6
14 ﬁ X
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14 Coarsening natural deduction proofs I: finding perfect proofs

By i.h. we have the two perfect proofs, and again we can ensure that they are atom-disjoint:

Ay )
1'[’l and 1'[’2
/4 x'

If 6 has been coarsened to distinct formulas 6], add steps of AE to the end of IT;. Now we apply the
obvious instance of —-E to obtain a proof of A’, ¢’ — 6’ : x’. Note that oy’ may be a c-variant of
¥, and that o6’ may also be a c-variant of 6.

Fourth, assume the last rule applied is —E, so IT has the form:

A
IT,
- 4
1
By i.h. we have the perfect proof:
A/
T
I/I/

Note again that ov/’ might be a c-variant of 1. Since A" : v is perfectly valid, it follows that
A, =y’ : @ is also perfectly valid. This is because if there were a valid proper subsequent of the
form A}, =y : @ or A} : ¥ (with = ¢ A), then we would have the respective valid sequents
A ¢ or A} @, contradicting the perfect validity of A’ : . This allows us to form the desired
perfect proof IT:

This completes the cases with E-rules. The final case for our induction is when the last rule applied
i1s CR, so that IT is of the form:

In this case the i.h. guarantees that 60 = —, but it is not immediate that 6 is of the form —(y/’).
Since we know that — is a substitution instance of 6, however, we know that either 6 is of the form
—(y’) or 6 is an atom A. And in the latter case Lemma 1 guarantees that we can substitute —4 for 4
in I7{ and then apply CR to the result to obtain our desired perfect proof IT' of A" : v/’
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Coarsening natural deduction proofs I: finding perfect proofs 15

It is also possible, however, that there are multiple instances of the premise — which have been
coarsened to distinct formulas /1, ..., ¥;,. In that case, we append a series of VI rules and » instances
of CR as follows.

LT N
I
L 0
_
=Y V.. VY ViV VY,
L
@
2
L
—
v
—(Y| V...V Yy YV ..V Yy,
L
Now we can apply an instance of CR discharging —(/{ V...V ¥;), giving us a proof of ¢{ v ... vV ¥,
which is a c-variant of our original formula . ]
REMARK 1

At first glance it may seem like we could simply omit the case of CR and the proof would carry over
to core logic. This is too quick, however. In the case of —E, we inferred from the perfect validity of
A’ ' to the perfect validity of A’, =y’ : @. Classically, this is reasonable, since if there were a
proper subset Aj C A’ such that A, = : L were valid, then by classical reductio, we would have
Ajp : ', contradicting the perfect validity of A’ : ¢’. But this is a strictly classical move and it can
fail intuitionistically. For instance, 4 : AV —4 is perfectly valid intuitionistically, but 4, =(4AV—4) : ¢
is not, since it has the intuitionistically valid subsequent —(4 Vv —4) : . As we will see in the next
section, Theorem 3 does carry over to core logic, but it will take more work.

EXAMPLE 4
Let us look at three simple examples of classical core proofs and the perfect proofs that result from
applying the coarsening procedure of Theorem 3.
1. Our first example will be the following proof of 8 v ¢, ¢ — 6,—0 : 0
—q
e eV
v —0 v €
1

@

— @

1
ovy 6 @

0

The process of coarsening this proof will leave the structure of the tree as is, merely replacing the
formulas with atoms. Note that the occurrence of 8 in the main disjunction gets coarsened to a
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16  Coarsening natural deduction proofs I: finding perfect proofs
different atom than the occurrence in v — 6:

—a
—-C C()

@
L O

S B—>C B
AV B A L
A

@

2. Our second example will be somewhat more complicated. Consider the following proof of the
sequent @ : (¢ V) — (Y V ¢@).
— —
o p 1 v
oV ATINR AT IN
YV (
(V)= (Y V)

2)

The coarsening procedure applied to this proof will result in the following proof of the sequent
Bd:(AVB)—[(CVvA) vV (BVD)]

— @ —

A B
@ CVvA BvD
AV B (Cv AV BvVD) (CvA VvV BvVD) 0

(CvA) v (BVD)
(AV B) = [(CVA) V (BVD)]

2

In outline, here is how we reach this coarsened proof. We begin at the tops of each of the two
main subproofs. We coarsen ¢ to 4 and ¢ to B. Then when we move down to the instance of VI that
immediately follows 4, we replace the newly introduced disjunct ¥ with a new atom C; and similarly
at the instance of VI following B we replace the newly introduced disjunct ¢ with a new atom D.
Then at the subsequent occurrence of VE, the two main subproofs have different conclusions. So, as
prescribed by the coarsening procedure for VE in the proof of Theorem 3, we insert an instance of
VI so that the two subproofs have the same conclusion, namely (C Vv 4) V (B Vv D). Finally, we apply
the terminal application of —1.

Now the substitution that maps 4 +— ¢, D — ¢, B +— i, and C +— ¢ will give the substitution
instance (¢ V ) — [(Y V @) V (¥ V ¢)], which is a c-variant of (¢ V ) — (¥ V ¢@).

(3) Our third example will involve CR. Suppose we are given the proof:

—

@ 4
—(AV —A) AN —A
L
(4 vV —A4) AV —A4
1
)
av—a

In the coarsening process, the two MPEs —(4 v —4) will get coarsened to distinct formulas, so we
have to use the trick of inserting VI rules and we will end up with a proper coarsening of the original
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sequent @ : A v —~A4. What we get as a result of the coarsening process is:
— (0

%) 4
—(4 Vv B) AV B
L
—— B
—(C Vv —A4) Cv -4
L
G) AV B
—((AV B) V (CV —4)) AV BV (CV —4)
1
(2
3) CvVv -4 @
—((AV B)V (CV —4)) AV B)V (CV —A)

1
AV B) Vv (CV—A)

3)

This concludes our three examples.

One of the interesting consequences of Theorem 3 concerns a slight extension of our natural
deduction system for classical core logic. Begin with classical core logic in what is sometimes called
a ‘sequent natural deduction’ formulation. The inference rules are exactly the same, with the only
difference being that instead of writing a single formula at each node of the prooftree we write
a sequent where the left-hand side lists all the premises undischarged at that node of the proof.'?
Thus, for instance, if we have a proof of ¢ relying on open assumptions A and a proof of  relying
on open assumptions I”, then in an application of Al we would write:

A.:qb F:'w
AT :pAY

Add to this deductive system two more rules: first, we may apply uniform substitution to infer 0 A :
o¢ from A : ¢, and second, ¢ V ¢ or ¢ A ¢ may be replaced by ¢ wherever they occur, including
when ¢ Vv ¢ or ¢ A ¢ occurs as a subformula in some element of the sequent. Call this deductive
system D, just to have a name for it.

THEOREM 4
If A : @ is perfectly valid, then there is a derivation of A : @ in the system D such that every other
sequent occurring in this derivation is also perfectly valid.

PROOF. Consider a perfectly valid sequent A : @ of classical logic. Since classical core logic is
complete for the perfectly valid sequents of classical logic, we know that there will be a proof of
A : @. This proof may contain subproofs of imperfectly valid sequents, however. So apply the
coarsening procedure of Theorem 3; this provides a perfect proof of a coarsening of a c-variant of
A : @. Applying a uniform substitution will give us a proof of a c-variant of A : @, and finally
contracting self-disjunctions ¢ V ¢ or self-conjunctions ¢ A ¢ into ¢ will give us a proof of A : ¢i.]

This theorem can be pithily summarized as showing that every perfectly valid sequent can be
derived without a detour through imperfection. Now, applying a uniform substitution obviously will

1211 fact, this will give exactly the formulation of the sequent calculus for classical core logic provided in [22]. (This fact
results from the use of parallel elimination rules with requirement that major premises have no proofwork above them, so that
E-rules in natural deduction end up corresponding exactly to L-rules in the sequent calculus.)
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18  Coarsening natural deduction proofs I: finding perfect proofs

not in general preserve perfect validity, so the deductive system D will not prove only perfectly valid
sequents. However, in this deductive system, every perfectly valid sequent will have some perfect
proof.

5 Perfect Core Proofs

I now want to address the guiding question of this paper to intuitionistic logic. Applying the ideas
from above to core logic, I will show how every core proof be transformed into a perfect proof. For
this section and the next, unless otherwise stated, a proof will mean a core proof, and validity will
mean intuitionistic validity (which is in turn understood in terms of Kripke models).

The aim is to adapt Theorem 3 to show how core proofs can be coarsened into perfect proofs. I
begin with a lemma that addresses the difficulties noted in Remark 1.

LEMMA 2
Suppose that I7 is a perfect core proof of A : ¢ such that

1. Every leaf-node that is not an MPE is an atom;

2. In every application of VI, the newly introduced disjunct is a formula consisting of atoms not
occurring in the subproof above it, and further the new disjunct is not a tautology;

3. In every application of —1I in which the antecedent is refuted, the consequent of the newly
introduced arrow is an atom not occurring in the subproof above it; and in an application of
—1 in which the consequent is derived without the antecedent, the antecedent of the newly
introduced arrow is an atom not occurring above it;

4. In any rule that has two main subproofs, those two subproofs are atom-disjoint, except in an
application of VE where neither subproof has conclusion _L. In this case, the two subproofs are
atom-disjoint aside from their conclusions. Furthermore, in this case, both conclusions are the
disjunction ¢; V ¢, introduced by VI, where ¢; is atom-disjoint from the right subproof and ¢,
is atom-disjoint from the left subproof; and

5. In any application of AE, if one of the conjuncts of the major premise is not used as a premise
in the main subproof, then that conjunct is an atom not occurring in the subproof.

Then A, —¢ : @ is perfectly valid.

PROOF. Induction on height of I7. In the basis case, IT is the trivial proof of ¢ : ¢. Moreover, by
assumption, ¢ must be an atom 4, and clearly 4, —4 : @ is perfectly valid.

For the induction step, first consider cases where the last rule applied in I7 is an E-rule. It cannot
be an application of —E, since we have a proof of ¢, not L.

Next consider the case of VE. Suppose this application of VE is the uniform conclusion version;
the other versions can be treated similarly. Then I7 is of the form:

R A0 A2,
I, I,
o Or )
Y Vo 1V ¢r o1V ¢
b1V by

Byih A, ¥, —(¢; Vv ¢y) : @ and Az, 60, (¢ V ¢,) : O are both perfectly valid.
It will follow that Ay, Ay, ¥ Vv 6,—(¢ V @) : 0 is perfectly valid, too. The basic idea is that,
since Ay, ¥, ¢y and Az, 0, ¢, are atom-disjoint, for any proper subsequent of A1, Ax, ¥ Vv 0, —(¢; vV
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Coarsening natural deduction proofs I: finding perfect proofs 19

¢,) : ¥ we can create a countermodel by piecing together countermodels for the corresponding
proper subsequents of Ay, ¥, —¢; : ¥ and Aj, 6, —¢, : @. In more detail, suppose we have a proper
subsequent

Al AL [y v 01 [=(r v ¢)] 2 9,

where the brackets indicate that ¥ Vv 6 and —(¢; V ¢,) may or may not occur in this sequent. Now
we want to show that this sequent has a countermodel, that is, a Kripke model M where A}, A, ¢ v
6,—(¢; v ¢r) are all true at the root node. Suppose A} C A;. Then we know there is a model M,
where A/l, v, (¢ V @) are true at the root node, because Ay, ¥, —(¢; Vv ¢;) : @ is perfectly valid.
Similarly, we can find a model M, where A, —(¢; V ¢,) are true at the root node. By the assumption
that A1, ¥, ¢; and Ay, 0, ¢, are atom-disjoint, we can merge these two models into a single model
M, and the result is our desired countermodel in which A’l, A’z, YV 6, —(¢; V ¢,) are all true at the
root node. The argument is similar for the possibilities where A}, C A, or where ¥ vV 6 or =(¢; V ¢;)
do not occur in the subsequent in question.

The other cases of E-rules follow similarly by appeal to the induction hypothesis and the condition
on main subproofs being atom-disjoint.

Now assume the last rule applied in I7 is an I-rule. First, suppose it is Al so IT has the form:

Aj Ar

IT, I

v 0
YAl

By ih. Aj,—¢ : @ and Ay, —0 : @ are perfectly valid. By assumption, Ay, ¢ and A,, 0 are atom-
disjoint. Similar to the case of VE above, these two conditions entail that Ay, Ay, =y vV =0 : @ is
perfectly valid. Now suppose for reductio that some subsequent A, A}, =( A 6) : @ were perfectly
valid. Since = Vv =6 = —=(y A 0), it would follow that A’, A}, =y v =0 : @ is valid, contradicting
the perfect validity of Ay, Ay, =y v =6 : @.

Next, assume the last rule applied in I7 is V1. Then by i.h. we have a perfectly valid sequent A : ¢,
and a formula 6 with entirely new atoms, so A : ¥ V 6 is perfectly valid. Now if some subsequent
of A,—(¢¥ v 0) : ¥ were valid, then we could find some subsequent of A, =y, —0 : ¢ that were
valid. Since 6 shares no atoms with A, = and is not a tautology, it could be omitted from this valid
sequent without loss. So if there were a perfectly valid proper subsequent of A, =, =6 : @, then —0
would not be in this sequent. Then we would in fact have a valid proper subsequent of A, = : @,
which is impossible.

Next, assume the last rule applied in I7 is — 1. Begin by assuming that the first form of —1 is used,
so v is used in a derivation of 6 and discharged. Since I7 is perfect, A : ¥ — 6 is perfectly valid,
and by i.h. A, ¢, =0 : (@ is perfectly valid. Now ¥ A =6 + —=(¢y — 8), so if a proper subsequent
A, =y — 0) : @ were valid then A’, vy, =0 : @ would be valid too, but that is impossible.

Consider the second form of —1, where ¥ — 6 is inferred from a refutation of . Since I7 is
perfect, A, : ) is perfectly valid. Thus any proper subset of A, ¥ is satisfiable. By assumption, 6
consists of atoms not occurring elsewhere in I7, and so any subset of A, ¥, —6 is satisfiable whenever
the corresponding subset of A, ¥ is. Thus every proper subset of A, ¥ A —0 is satisfiable, and hence
A,=(y — 0) : @ is perfectly valid. The third form of —-I is treated similarly.

The final case concerns when the last rule applied in I7 is —I. So [T is a perfect proof of A : —¢.
It follows that A, —=—¢ : @ is also perfectly valid. O
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20 Coarsening natural deduction proofs I: finding perfect proofs

THEOREM 5
If IT is a core proof of A : @, then there is perfect core proof IT" of A’ : &’ and a substitution o
such that o A’ consists of c-variants of members of A and o @’ is a c-variant of @.

PROOF. In virtue of Theorem 3 and Remark 1, it suffices to show that the coarsening procedure
applied to applications of —E preserve perfection. And this is established in Lemma 2: proofs
obtained by the coarsening procedures for VI, —I, VE, and AE from Theorem 3 all meet the
conditions on [T that Lemma 2 relies on, so that the coarsening procedure for —E then preserves
perfection. d

This theorem does not show that every core-provable sequent is perfectible, so it does not resolve
Tennant’s Soundness Conjecture 1. It does, however, show that every core-provable sequent is
trivially equivalent to a perfectible sequent.

6 The Soundness of Core Logic

Given Tennant’s definition of entailment as perfectibility, showing that every sequent provable in
core logic is perfectible amounts to showing that core logic is sound for this definition of entailment.
This was the Soundness Conjecture 1. Milne [8] offered a counterexample to this conjecture, noting
that 4,B,4V B : AA B is provable in core logic, but is not perfectible. Milne acknowledges, however,
that this counterexample depends essentially on treating sequents as having at most one conclusion.
If we allow multiple-conclusion sequents, then 4,B,4 v B : A A B is a substitution instance of the
intuitionistically perfectly valid sequent C,D,4V B: A A D,C A B.

It is true that in Gentzen’s original formulation of the sequent calculi, the intuitionistic system LJ
was obtained from the classical system LK by restricting the conclusion set to having at most one
member. But this is not an essential restriction, and there exist multiple-conclusion sequent calculi
for intuitionistic logic.'® Similar to the classical case, multiple conclusions are given a disjunctive
reading: A : @1, ..., P, is valid just in case A : \/ ; @i 1s valid. Recognizing that Gentzen’s restriction
to single-conclusion sequents was a technical trick rather than an essential feature of intuitionistic
logic, the soundness question for core logic could be posed in terms of multiple-conclusion sequents.
Milne even suggested that Tennant’s soundness conjecture might hold when posed in these terms. '

In the natural deduction setting that I have been working in, we do not have multiple conclusions.
But we can still capture the same insight by rephrasing the soundness conjecture to state: if there is
a core proof of A : ¢, then there is an intuitionistically perfectly valid sequent Ag : ¢4, ..., ¢, and a
substitution o such thatc Ag = A and o¢p; = ... = 0¢, = ¢. While this claim does not follow from
what I have proved here, there is a sense in which Theorem 5 is intimately related to this soundness
claim.

If a multiple-conclusion sequent A : @ is perfectly valid, and has a single-conclusion substitution
instance A’ : ¢ under the substitution o, this is because o maps every member of @ to the same
formula ¢. This effect turns on treating sequents as pairs of sets of formulas rather than pairs of
multisets of formulas. If sequents are pairs of multisets, then to get fromo A : 6@ to A’ : ¢ would
require finitely many applications of the contraction rule. Analogously, if Ag : ¢1, ..., ¢, is perfectly
valid, and we have a natural deduction proof of Ag : ¢1 V ... V ¢, then applying the substitution o
will give us a natural deduction proof of A : ¢ Vv ... vV ¢. ‘Contracting’ this terminal self-disjunction

13See, for instance, [9, §5.3].
14[19] suggested a different reply to Milne, which I will not consider here.
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would be the equivalent in the natural deduction setting of applying the structural rule of contraction
in the multiset sequent setting.

Theorem 5 gives us a similar way to obtain a core-provable sequent from a perfectible sequent
by contracting self-disjunctions and self-conjunctions. That theorem requires a slightly more liberal
understanding of what counts as the natural deduction analogue of the structural rule of contraction in
the sequent calculus. The structural rule of contraction allows us to eliminate duplicate occurrences
of premises or conclusions from a sequent. The straightforward analogy would be to regard A, v : ¢
and A,y AV ¢ or A 1 ¢V ¢ as equivalent from the standpoint of natural deduction.’ In
other words, I am suggesting that if every core provable sequent could be obtained from a perfectible
sequent by contracting outermost self-conjunctions in the premise set and contracting outermost
self-disjunctions in the conclusion, that could naturally be seen as providing a positive solution to
the soundness problem for core logic.

What Theorem 5 shows, on the other hand, is that every core provable sequent can be obtained
from a perfectible sequent by contracting not-necessarily-outermost self-conjunctions and self-
disjunctions in both the premises and the conclusion. The relation to the soundness question is clear
and suggestive. But we do not have a direct answer to the soundness question per se.

7 Conclusion

This paper began with the guiding question of whether, given a natural deduction proof, there is a
way to systematically transform it into a proof that contains no irrelevancies and which in which the
argument proved to be valid is as strong as possible. I offered two different definitions of when a
proof contains no irrelevancies: the first is when we have a perfect proof and the second is when we
have a gaunt proof. I dealt with perfect proofs in this paper and the sequel paper deals with gaunt
proofs.

In order to transform an arbitrary core or classical core proof into a perfect proof, I developed the
idea of working top-down through a proof to gradually coarsen it into a perfect proof. This method
of coarsening is based on four essential ideas:

1. Leafnodes that are not MPEs can be coarsened to atoms, and this coarsening is then propagated
down the prooftree.

2. When an inference such as VI introduces a new formula that does appear previously in the
proof, that (sub)formula can be coarsened to an atom.

3. When a rule such as —E or Al has parallel subproofs, those subproofs can be relettered to be
atom-disjoint.

4. When we reach an E-rule R that discharges multiple instances of a formula ¢, if those instances
have been coarsened to distinct formulas qbi, ..., ¢, then we interpolate n instances of AE, so
that in the coarsened proof we have rule R discharging ¢] A ... A ¢,,; or, if R is an instance of
CR, we interpolate n VI’s to discharge —(¢] V ... V ¢y).

15 As a referee points out, contraction on the left in a sequent calculus is usually associated with the discharge of multiple
occurrences of a premise in natural deduction. Interestingly, something similar is true of contracting self-disjunctions and self-
conjunctions in the way I propose in the main text. In the coarsening procedures of Theorem 3, premises only get replaced by
their c-variants when they are MPEs that discharge multiple occurrences of premises. So when we contract self-disjunctions
and self-conjunctions to get from o A’ to A, we are doing so with MPEs that discharge multiple premises. On the other hand,
there is not a good analogy in natural deduction of contraction on the right in a sequent calculus. (Though [11] shows how
contractions on the right get elegantly implemented using directed proof nets.)
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By implementing these four ideas, we saw that a core or classical core proof of A : @ can always
be coarsened to a perfect proof of A’ : @', where A" : @’ is coarsening of a c-variant of A : @. In the
case of core proofs, as I explained, this result is closely related to Tennant’s Soundness Conjecture 1
for core logic; while it does not solve the conjecture, perhaps it is not unreasonable to describe it as
a partial solution.
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