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Summary

In the last decade we have seen a tremendous growth in the issuance of derivatives
linked to the credit risk of an individual, or a pool of obligors. While some have
been around for a while, some are relatively new. One such derivative is called
Synthetic CDO which is the topic of this thesis. The investors in these derivatives
are protection buyers, or protection sellers of credit risk. Being a market instrument,
the premium demanded for taking such risks is subject to market expectation about
the present and future "credit health" of one or more companies. In the light of
history, we seek to quantify the risk of actually experiencing the events triggering
the contingent payment in such a derivative. This history, and the corresponding
empirical event probabilities, are inherent in credit ratings issued by specialized
rating companies. We use these probabilities in a multivariate rating transition
model to capture these risks in the setting of synthetic CDOs. Also, investors are
not only exposed to the risk of losses following such credit events, but also to the risk
that the value of their position will change due to market expectation and general
supply /demand factors. We therfore use market history on these instruments along
with a standard pricing model to forcast a future distribution of market prices that
are subject to the occurrence of such credit events. Aggregating all these factors, we
calculate a Profit € Loss distribution for such an investment on a one-year horizon.
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Chapter 1

Introduction

The risks associated with the value of finacial obligations decreasing due to unex-
pected events, is called credit risk. Such events could be failure to pay a coupon on
a bond, miss a payment on a loan, bankruptcy, or having your status downgraded
in a credit rating system. In the last decade several instruments have emerged in
order to handle such risks, not only as a way of providing protection against these
risks or for hedging purposes, but also to meet different investors appetite when it
comes to maximizing future returns. Common derivatives offered are Credit Default
Swaps (CDS), n-th to default CDS, Collateralized Debt Obligations (with various
types of exposures, loans, bonds, cds), CDO? (CDO‘s on CDO's) and even forward
starting contracts and options on some of these are possible. Although some of
these instruments have existed for a while, one has over the last years witnessed
a rapid growth in the credit derivatives market, mainly due to the standardization
documentation and the introduction of indices like the iTraxx family and DJ CDX
family (North American)!. Both indices consist of the most liquid names in terms of
CDS contracts, with a new index version launched every 6 months, and these indices
again having subindices and standard traded contracts and maturities. The ISDA?
documentation consist of standard terms and what defines a "credit event/default".
Therefore we now avoid many of the legal disputes experienced in the earlier years
of the market. To get a feel for the size and growth of the market, ISDA‘s 2006
mid-year market survey estimated the notional amount of credit default swaps to
be $26.0 trillion, being $17.1 trillion 6 months earlier. On the CDO side, global
issuance averaged between 40-50000 $MM quarterly from 2004 to the end of 2005,
before booming to about 190000 $MM quarterly issuance, from Q4 2006 and into
2007. While writing this thesis, the CDO market has taken a dramatic downturn to
about 11$MM in Q1 2008, which one safely can attribute the ongoing credit crisis
originating from the US sub prime mortgage market.

In this thesis we examine a particular type of credit derivative, the synthetic
CDO. We will introduce what has been the standard model for valuing these deriva-
tives and try to explain and quantify some of the risks connected to such an invest-

'nformation about both indices can be found at www.markit.com
2ISDA- International Swaps And Derivatives Association www.isda.org



ment. The remainder of this chapter gives an introduction to some common credit
derivatives, Chapter 2 gives an introduction to the pricing model, Chapter 3 discuss
some risk factors and models to quantify them, and finally in Chapter 4 we provide
numerical examples before concluding in Chapter 5.

1.1 Credit Default Swaps (CDS)

The CDS market is big and is considered to be the major risk-transferring instrument
developed in the past few years. The contracts allows market participants to transfer
credit risk on both individual credits and a portfolios of credits. We give short
descriptions of some of these instruments below. An excellent introduction to some
of the credit derivatives in this paper and their applications can be found in Bomfim
(2004) and Chaplin (2005).

1.1.1 Single name CDS

The single-name CDS is one of the most basic credit derivatives and involves two
parties, a protection buyer and a protection seller. The structure can easily be
compared to that of an insurance contract. Here the contract can be written on an
entity or corporate name, where the the insured (protection buyer) pays a premium
to the insurer (protection seller) in the absence of the events which is specified in
the contract. Figure 1.1 illustrates a CDS contract. The protection buyer pays a
premium called the swap premium or the spread, until the maturity of the contract
provided there are no defaults. In the case of a default/credit event the contract
terminates and two things happen: The protection buyer pays the accrued premium
from the last payment and up to the credit event, and receives the difference between
the underlying entity’s face value and the recovered value. Much in line with the
insurance analogy: When damaging a car the insurance company covers the cost of
repairing it, not the cost of buying a new car (provided it can be repaired). Usually
the annual premiums are expressed in basispoints (0.01%) and payed quarterly.

Premium

Contingent payment

Figure 1.1: Illustration of a Credit Default Swap
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Figure 1.2: The typical cash flow of a CDS. The protection seller receives a premium
in the absence of a credit event. If the event occurs, the protection buyer receives
the recovered value.

Entities or corporates which the contract is written on is commonly referenced
to a defaultable bond. Settlement can be cash or physical, implying the protection
seller either pays an amount of cash or delivers an amount of the firm’s defaulted
bonds, physical delivery is common when dealing with traded debt. The following
example will serve as an illustration:

For some reason company A has doubts about company B‘s ability to fulfill
their obligations, and therefore decides to enter a CDS contract with bank C. Com-
pany A buys protection on company B from bank C on a notional of 1 billion €
and pays a swap premium of say 50 bps per annum (500 €). Furthermore let us
assume the recovery rate to be 40%. In the case of company B defaulting, company
A receieves 1 billion * (1-0.4) = 600 000 € from bank C. Figure 1.2 gives the general
idea. Though a simple example, it illustrates some of the major benefits of these
instruments, namely the fact that no asset need to be transfered between parties of
the contract, and the reference entity need not even know about the existing con-
tract. The contract allows a credit risky asset (i.e a bond) to be transformed into a
credit risk-free asset by purchasing default protection referenced to this credit.

1.1.2 Basket Default Swap

A basket default swap is much like the single-name CDS, but here the contract
is written on a portfolio of reference entities. The simplest structures are first-to-
default, second-to-default- and n-th to-default swaps. In a first-to-default basket,
the contract terminates when the first entity in the portfolio defaults, and in an n-th
to-default swap the contract terminates after n defaults. The latter means that swap
premiums are still payed during the first n — 1 defaults. The same benefits of the



single-name CDS applies to the basket swap. Picture a bank sitting on a diversified
pool of large loans. If the bank wanted to reduce its required economic capital, it
could instead of selling loans and risking valuable client relationships, enter into a
basket default swap and thereby free up capital.

1.1.3 Index CDS

Like the basket default swap, the index CDS offers protection on a portfolio of
entities, here a standardized index of CDSs‘. The mechanics are however different
from that of the basket or single-name swap. In the case of the single-name and
basket swaps the contract terminates when the reference entity (or the n-th) defaults.
In an index CDS the defaulted entity is removed from the pool, but premiums
continue to be payed on a reduced notional. Figure 1.3 gives a stylized example.
The portfolio consists of 100 equally weighted names, and the protection buyer
wishes to purchase default protection on the lot. Let us further assume that the
recovered amount given a loss is zero, and that the total notional bought protection
on is 100 billion €. In this setting, one default results in a reduction on the notional
of 1 billion €. When a firm defaults the protection seller pays the buyer 1 billion
€, and receives a reduced coupon until the end of the contract, or the next default,
causing a further reduction on the cash flow.

Today there are two families of standardized indices, already mentioned: the
Dow Jones CDX and the International Index Company iTraxx. The Dow Jones CDX
consist of entities in North America and emerging markets while iTraxx consist of
entities from Europe and Asia. They are both standardized in terms of composition
procedure, premium payment and maturity. Most actively traded are the the Dow
Jones CDX NA IG? and the iTraxx Europe, with the 5 year contract being most
common. Contracts with 3-,7- and 10 year maturities are also available. The com-
position of both indices are 125 equally weighted investment grade’ names, and is
renewed every 6 months with the launch of a new "series". The new series contains
the majority of the names of the previous series, with some new names replacing
names taken out. The start date of the new series is often referred to as the roll
date. After the roll date (March and September), the index will be "on-the-run"
for the next 6 months until the launch of the next series. The composition of each
series remains static in its lifetime if no default occurs. Deals related to series 5
for example, may be rolled into series 6 (on market terms) when the next series is
introduced, or the series 5-deal may be held to maturity. The iTraxx Europe index
consist of a diversified pool of names from the sectors Autos, Consumer, Energy,
Financial, Industrial and TMT?, and will be given more attention in the remainder
of the thesis. Contracts available on the iTraxx Europe are futures, options on the
spread movement, and standardized tranches which will be discussed in the next
section.

3North American Investment Grade
4By investment grade, one refers to obligors with rating Baa or better in Moody’s scale.
STMT- telecommunications, media and technology
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Figure 1.3: Illustration of a stylized index CDS.




1.2 Collateralized Debt Obligations (CDO)

Insurance companies have bought protection on layers of their loss distributions for
many years. In these layer contracts, re-insurance companies sell protection on the
reference-companys‘ losses above a certain barrier. A CDO is basically a portfolio
of debt instruments where the losses are sliced into such layers.

1.2.1 The general case

In the credit-risk terminology such layers are called tranches and is the defining fea-
ture of a CDO. A CDO can be backed by a pool of many kinds of debt obligations
such as bonds, loans, CDSs‘, other CDO‘s to mention a few. Normally the one that
initiate the CDO (i.e a bank), called sponsor, creates a company that is responsible
for the administration of the CDO. This company, called the special purpose vehicle
(SPV) works as an independent entity, so that the investors (buyers of tranches/pro-
tection sellers) are isolated from the credit risk of the sponsor. To obtain the desired
exposure, the SPV can buy a pool of debt instrument or synthesize a deal by enter-
ing CDSs‘. If the SPV buys the pool, the CDO is called a cash CDO. When the pool
is made up of bonds, it‘s called a collateralized bond obligation(CBO), when it is
made up of loans, it is called a collateralized loan obligation (CLO). A bank may in
this way securitize or transfer risk on some of its loans by initiating a CLO. On the
other hand, if the SPV gains credit exposure through CDSs‘, it‘s called a synthetic
CDO. To explain the mechanics of the CDO, we provide an example similar to that
in Logstaff & Rajan (2006).

Assume that a financial institution sets up a portfolio consisting of 100 separate
bonds with rating BBB, each with a market value of 1 million. The issuer sells claims
against the cash flows generated by the portfolio. These claims are termed CDO
tranches and vary in credit risk from very high (equity tranche, or first-loss piece)
to very low (senior tranche, super-senior). The equity tranche is responsible for
the first losses up to 3% of the total notional, in return the holder of this tranche
earns a higher spread than the holder(s) of the other tranches. The next tranche
absorbs losses from 3% and up to 7% and so on. This structure is often called the
waterfall of the CDO, which specifies the attachment- and detachment points of the
tranches. Let us assume that the spread on the equity tranche is 2500 bps, if there
are no defaults the investor earns a high coupon during the lifetime of the deal.
On the other hand, if one of the firms in the portfolio defaults, the investor looses
1/3 of his investment (again assuming zero recovery), and if three firms default
his entire investment is gone. Comparing this to the index CDS example (Figure
1.3), where one default translates into one percent loss, the riskyness of the equity
tranche becomes clear. Because the equity tranche is extremly risky (some losses
are expected) the sponsor usually holds the equity tranche and the SPV sells the
other tranches to investors.



The mechanics of the CDO should now be clear, and possible some of its
benefits. The ability to tailormake different tranches to meet different investors risk
appetite makes it a very versatile product. Figure 1.4 shows one possible structure.
Some tranche exposures can be in swap-format, and some may be in a funded format,
meaning that the SPV issues bond-like notes called credit-linked notes (CLN®).
Usually tranches are given a rating from agencies like Standard&Poors, Moody's or
Fitch, thus a tranche investment (i.e mezzanine) with rating BBB, should in theory
be comparable to a BBB bond, although history has proven otherwise.

1.2.2 Index tranches

The mechanics of index tranches are the same as the synthetic CDO. It is not strictly
speaking a synthetic CDO because, like the index CDS, it‘s not funded by the sale
of CDSs‘(see Hull & White (2004)). One simply uses CDO technology to slice the
index CDS into tranches. Both the DJ CDX NA IG and iTraxx Europe offers 5
standardized tranches. The tranche structure of iTraxx Europe is 0-3%, 3-6%, 6-
9%, 9-12% and 12-22%. Table 1.1 (found in Kalemanova et al. (2005)) shows some
market quotes for the iTraxx Europe tranches. Note that the equity tranche is
quoted differently than the others. The equity tranche pays a fixed spread of 500
basis points per annum in addition to an upfront payment. The market quote is the
upfront percentage payment. The other tranche quotes referes to the annual spread
paid to investors, and is paid quarterly.

Index | 0-3% 36% | 6-9% | 9-12% | 12-22% |
32 bps | 23.53% | 62.75 bps | 18 bps | 9.25 bps | 3.75 bps ‘

Table 1.1: iTraxx Europe (5 year) index and corresponding tranche quotes, on April
12, 2006.

6A CLN is most easily compared to a coupon paying bond. The investor pays the notional
amount, receives spread and interest rate quarterly and in the absence of default, receives back the
notional + interest at maturity
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Figure 1.4: Illustration of a stylized CDO.



1.2.3 Summary

It is easily understood that in order to price the instruments introduced in this
chapter, one should have a model that describes default behavior. With several
entities, we need a model that describes joint default behavior. Imagine the equity
investor in the CDO example and assume that it is a 5 year contract. In the case of
one default, his 3 million investment is reduced to 2 million. However, the realized
loss he experiences over the whole lifetime of the deal will depend greatly upon when
the loss occurred. If the default happens at the end of year one, he will experience
one year of coupons on 3 million, and four years with coupons on 2 million. If the
default happens in the last year of the contract, he would get coupon on 3 million for
four years, and then a smaller coupon in the last year. If the investor could choose
amongst the two, the latter is certainly the lesser of two evils. So, the timing of
default is an important issue: Do the defaults tend to cluster, or do they appear to
arrive independently of one and another in time? We introduce the standard model
for valuation in the next chapter.
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Chapter 2

Pricing Models

2.1

Overview

Credit risk pricing models mainly belong to one of the following two categories:

Structural models. This theory first introduced by Merton (1974) is often called

an option-based theory. The aim of this approach is to model the process lead-
ing to default. In this model default occurs when the value of the firm‘s assets
drops below the face value of the debt. In the original model, the assump-
tion on the asset value process led one directly into the pricing framework of
Black&Scholes, and one could price credit risk by considering the face value
of debt as the strike in an european call option. In this model default could
only happen at the maturity of the debt. Todays structural models have come
a long way since then, mainly by introducing other models for the asset value
process. Introducing jumps in the process allowed sudden events that could
lead to default, which was crucial in order to match credit spreads seen in the
market. Though theoretically appealing, one of the drawbacks of this theory
is that a company‘s current financial status is only shared to the public at
certain times a year. Also, all company debt is not directly observable in the
market.

Reduced form models. In this approach one attempts to model the time of de-

fault itself, commonly through the use of of an intensity process. A good
reference book is Schonbucher (2003). The approach used in this thesis is a
simple version of an intensity based model.

11



2.2 CDO pricing ingredients

In order to derive a pricing model, some notation is needed. Let

N = Number of obligors

D(0,t) = Discount factor

Ti = Default time of obligors

Qi(t) = Risk neutral default probability of obligor i

Si(t) = 1— Q;(t) = Risk neutral survival probability of obligor
A; = Notional exposure to obligor i

R; = Recovery rate of obligor:

L(t) = Cumulative loss on portfolio notional at timet

a = Tranche attachment point

d = Tranche detachment point

L,4(t) = Cumulative loss on tranche at timet

EL,4(t) = Expected cumulative loss on tranche notional at timet

To begin with, note that we can express the total portfolio loss as

L(t) = > (1= R)Ail{r <y, (2.1)

i=1

where Iy, .4 is the indicator function. The term (1 — R;) is often called Loss Given
Default (LGD) and expresses the fraction of the notional A; lost in the case of a
default. R; can be modeled explicitly, or estimated from historical default data. We
will consider the case of equal recovery rates and equal notionals for all entities.
The recovery assumption will be of great help when we later on extract risk neutral
default probabilities from market data. Equal recovery rates is not a necessary
assumption, but it makes computations simpler. Recoveries could i.e be random
as in Anderson & Sidenius (2004). However, with the assumptions made, we need
not keep track of who defaulted, since every default results in the same amount of
loss. The cumulative loss can now be expressed as a fraction of the total portfolio
notional:

L) = (=R Y T, (2.2

In this setting the loss amount can only take on the values k(lng), k=0,1...N.

It is easy to see that the loss distribution and the distribution of the number of
defaults denoted 7 (t), now become exchangeable, that is

P (L<t> - W) —p (i Igpiety = k) = m(t). (2.3)

As can be viewed in the right panel of Figure 2.1, we seek the cumulative tranche
loss as a function of portfolio loss, which we express in the following way:

12
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1

0.00
1
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Number of defaults Number of defaults

Figure 2.1: Left: Tllustration of tranche capital structure. Right: Tranche losses in
% of portfolio notional as a function of defaults.

With these expressions at hand the key ingredient of a general pricing model,
namely the expected loss of a tranche, can be written in a more compact form:

ELa,d@) = E[La,d<t>]

_ 1 al . . B M
- ; max {min(L(t), d) 0} P (L(t) _ - )
- - ! =3 ma {min(L(t), d) — a,0} mi(t), (2.4)

where we multiply by the term dfla to get the loss expressed in tranche notional and
not portfolio notional. If the total portfolio was 100 billion € , than a 0-3% tranche
notional would be 3 billion €.

2.2.1 The general setup

A CDO tranche basicly consists of two parts, a premium part and a default part.
The premium part, often referred to as premium leg, expresses the expected value
of the cash flows the protection seller receives during the lifetime of the contract.
We denote the premium payment times by t; < t, < .... < t, = T, where T is
the length of the contract. By assuming independence between the non-stochastic

13



riskless discount rate and default probabilities, the expected present value of the
premium leg becomes

tn
PL=Y S.aAt; D(0,t;) [I — ELqa(t:)],
i=1
where At; = ¢; — t;_; denotes the payment frequency, S,q the tranche premi-

um /spread, D(0,¢;) the discount factor, and the term 1 — E'L, 4(¢;) the remaining
fraction of tranche notional which premiums are received on. Similarly, the de-
fault leg expresses the expected discounted cash flows of the payments made by the
protection seller in the event of defaults (see appendix A.1):

tn Xk

DL = / D(0,t) dELqq(t) Z D(0,ti—1) [ELqa(t;) — ELga(ti—1)] .

The fair value of a CDO is such that, at the time of inception the contract has zero
value. This amounts to choosing a spread S such that PL(S) — DL = 0, hence

Sfazr _ Z:ka D(O, ti—l) [ELa,d(ti) - ELa,d(ti—l)] .
" >ity At D(0,t) [1 = ELga(t:)]

The market practice for the equity tranche is a bit different, as mentioned earlier.
Usually the holder of the equity piece receives an upfront payment and a predefined
fixed running spread. In this case, the fair premium is the upfront payment that
makes the value of the CDO with predefined running spread, zero. The upfront
payment is usually quoted in percent(%), see Section 1.2.2, and equals

tnXk tn
Uphy’ =Y D(0,t; 1) [ELoa(t:) — ELoa(ti1)] = Siig > At D0, 1) [1 = ELga(t)] .
i=1 =1

2.3 Termstructure of default probabilities

The termstructure of default probabilities, often called a credit curve, is a funda-
mental part of the pricing model. The slope and curvature gives information about
the risk, or price of risk with respect to time. There are numerous methods of
constructing a credit curve. One approach could be using a structural model, i.e
Merton and its extensions. Another approach is using historical default rates from
rating agencies’ databases, like the ones shown in figure 2.2!. However, the last op-
tion is not suitable for pricing, since the market prices default risk differently than
implied by historical measures. By that we mean that historical default rates can
differ substantially from default rates implied from market data, as will be seen in

!Includes bond and loan issuers rated as of January 1 of each year. Annual default study found
at www.moodys.com.
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Section 2.3.2. A good exposition on how to fit a curve to historical data can be
found in Bluhm et al. (2003) and Bluhm & Ludger (2006). In this thesis we will
be using market data (i.e defaultable bonds, CDS) to estimate the implicit default
term structure, by means of a inhomogeneous Poisson process. We will not present
the mathematical background validating the use of point and jump processes in a
credit risk context here, but accept the fact that it is a commonly used approach
2. Again we refer to the book by Schénbucher (2003) for a treatment of the topic,
with similar content found in McNeil et al. (2005).

P(t<t)

80

60

%

20

Figure 2.2: Average Cumulative Issuer-Weighted Global Default Rates by Letter
Rating, 1983-2006. Source Moody's.

2.3.1 Inhomogeneous Poisson process and hazard rates

Definition 2.3.1. Let the random variable T be a stopping time (i.e time of default),
with distribution function F(t). Assume that F(t) < 1 for all t, and that F(t) has
density f(t). The function h(t):= f(t)/ (1 — F(t)) is called the hazard rate of T.

The hazard rate h(t) can be interpreted as the instantaneous chance of default,
given survival up to time ¢ (see Appendix A.2). An intuitive justification for working

2See O‘Kane & Turnbull (2003) for a presentation of a standard CDS model.
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with hazard rates, can be made by looking at Figure 2.2 again. Notice that the
curves assigned to sub investment grade ratings (Ba and below) have a tendency
to slow down their growth. The opposite effect is most often experienced with
investment grade ratings. The effect might be explained by considering that a lot
of sub investment grade firms are "do-or-die" firms: They either make it, or not.
Conditional on survival, bad credits today tend to become better credits over time.
Therefore working with hazard rates or forward hazard rates we have the ability
to accommodate such effects by letting the hazard rate change accordingly through
time.

Definition 2.3.2. (Schénbucher (2003)) An inhomogeneous Poisson process with
intensity function \(t) > 0 is a non-decreasing, integer-valued process with initial
value N(0) = 0 whose increments are independent and satisfy

exp{—/tT)\(s) ds}. (2.5)

If we now consider the time of default as the first jump of a inhomogeneous
poisson process, we get the survival probabilities as a consequence of (2.5) by

n

Tl

PIN(T) = N(t) = n] = (/tT)\(s) ds)

P[N(T) — N(0) = 0] = exp {_ /OT A(s) ds} . (2.6)

By utilizing such a framework, we can reach any termstructure of hazard rates by
suitable choice of the intensity function. In the following section we are going to
calibrate the intensity function to market data by assuming it is a deterministic
function of time. In this setting, the intensity function and the conditional /forward
hazard rates coincide.

2.3.2 Calibration to market data

The goal of this section is to extract the risk neutral, or implied default probabilities
of market data. The reason for extracting these probabilities, is that they serve as
building-blocks in more complex multiname products, such as n-th to default baskets
and CDOs. Their use will become clear when we return to the loss distribution and
CDO pricing model in Section 2.4.2. The method is called "bootstrapping"? and
works in the same way as deriving forward rates from bonds or swap rates. The
method can be found in O‘Kane & Turnbull (2003) but we present it for the sake of
completeness.

This method utilizes a simple model for the valuation of CDSs‘. We begin by
noting that a CDS like the CDO tranches, can be seen as consisting of two parts.
The risk neutral expectation® of the contingent payments made to the protection

3Not to be confused with it‘s statistical brother in name (see Efron & Tibshirani (1994)).
4We use the common term risk neutral default probabilities when speaking of default probabil-
ities inferred from market prices. Perhaps arbitrage-free probabilities is a more suiting term.
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seller, must equal the expectation of the contingent payments made by the protection
buyer at the time of inception. If we ignore the premium accrued and day-count
conventions, we have that the following must hold:

T=tn

S AL D(0,t) S(t;) = (1-R) /TD(O,t) dQ(t). (2.7)

i=1

Again we can approximate the integral by a sum, where a monthly discretization is
sufficiently accurate according to O‘Kane & Turnbull (2003). Note that the term
on the left hand side which we multiply the spread S with, is called Risky Annuity
and is the marginal present value of the protection leg. The next assumptions
commonly made are a fixed recovery rate and that the hazard rate term structure
is either piecewise flat, piecewise linear or a mixture of the two. With the discount
factors®, CDS contracts of different maturities, commonly 1, 3, 5, 7 and 10 years, the
assumption of a piecewise flat hazard rates, we can solve for the hazard rates in an
iterative fashion. Let ¢; and t,, denote 1—22 and 75 respectively and S; the spread of the
CDS with maturity i year(s). Then one finds the hazard rates using the following

algorithm:

e Set T=12 months and input the spread for maturity 1Y in (2.7), along with
discount factors and recovery rate.

e Use a numerical root finding algorithm to obtain A\ ;. That is, find Ao ; such

that
12 g
D(0, t;) (e Porti-1 — g=Aoati) _ ! At,D(0,t,)e o1t = (.
; (0, t:)(e e ot I_anéu (0, tn)e

e Set T—36 months and input the spread for maturity 3Y, use probabilities
obtained from previous step for t € [0,1] and find A, 3 by solving

12 24
Z D(O, ti)(e—)\o,l tic1 e—Ao,1 ti) + Z D(O, tz‘+12) 6_>‘0’1(6_)‘1’3 tic1 6_>\1’3 ti) .
=1 i=1

Sg o1 tn —X0,1—A1,3tn
1_R< > ALDO e YT AL D(0, 1, p)e 0 M ) =

n=3,6,9,12 n=36,..,24
e Repeat the procedure with the rest of the contracts, increasing in maturity.
For t longer than the longest maturity it is common to assume a flat hazard

rate. In this setting the hazard rate function becomes a step function, and in our
example the survival probabilities is given by

5I.e derived by Euribor and Euro swap rates by bootstrapping.
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exp{—)\m t} s 0<t<1

eXp{—)\oJ — )\173<t — 1)} , 1<t <3
S(t) = eXp{—/\o’l — 2)\173 — )\375(75 — 3)} R I <t S 5
exp{—)\o,l — 2)\173 — 2)\3’5 — )\577(15 — 5)} s b<t S 7

eXp{—/\o’l — 2)\173 — 2)\3’5 — 2)\5’7 — )\7710(t — 7)} s t>T7.

Let us provide an example. Table 2.1 contains mid CDS quotes for a European
company named Gaz De France, and is a member on the iTraxx Europe series 7
index. Gaz De France was an Aa rated issuer by Moody‘s classification of credit-
worthiness, in the considered time period. Figure 2.3 shows the result of applying
the bootstrapping procedure, and Figure 2.4 the corresponding hazard rates. For
the sake of comparison we have included the "Aa" termstructure found in Figure
2.2. One can observe several things from these two figures. First of all one can see
the increasing forward hazard rates, which is typical for investment grade names, as
previously argued. Secondly, in this case one can see a substantial difference between
the termstructure of default probabilities implicit in the market instrument, and the
termstructure of observed or historical default rates. The difference might not look
so dramatic if we had chosen another company. In fact, there is no rule saying that
two companies with the same quoted spread levels need to be in the same rating
category, although they will generally not differ much, rating or spread-wise.

CDS maturity | T=1 T=3 T=5 T="7 T=10 | Rating
Gaz De France | 2.4 bps | 4.7 bps | 7.1 bps | 10.6 bps | 14.9 bps Aa

Table 2.1: CDS mid quotes on 27.06.07 and rating obtained from Bloomberg.

As for any traded market instrument, a CDS spread is a result of market expectation.
Factors like supply and demand, risk aversion, or a general view of future market
environment, affects prices. Recently one has observed the impact of the "crisis"
originating from the U.S sub prime mortgage market, on other markets. In the
European credit markets one has witnessed a general widening of spreads, and overall
volatility has increased. Liquidity might also be an issue, although the names on
the iTraxx are among the most liquid. Fear of getting negative "mark-to-market"
values because of liquidity reasons, or a simply panic-like behavior due to increasing
credit risk, will cause protection sellers to demand a higher spread, if willing at all.
Many investors wanting to exit at once, will drive spreads. The point is that, if
we can not quantify these other factors in a valuation model, the market implied
default probabilities will also contain other factors than the market view of default
only.
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2.4 Default dependency

As mentioned at the end of Chapter 1 the concept of dependent default times is an
important matter in multiname credit risk. One way of specifying a multivariate
default time distribution is through a copula. We quickly review the concept of
copulae, and then present the market standard one-factor gaussian copula model.

2.4.1 Copulae

Definition 2.4.1 (Copulae). A d-dimensional copula is a distribution function on
[0,1]¢ with standard uniform marginal distributions.

Theorem 2.4.2 (Sklar 1959). Let F be a joint distribution function with margins
Fy, ..., Fy. Then there exists a copula C: [0,1]* — [0,1] such that, for all x,...., 24
c R?,

F(zy,..,xq) = C(Fi(x1),...., Fa(zq)) . (2.8)

If the margins are continuous, then C'is unique.
A consequence of Sklar‘s theorem is that we can imply a copula from a multi-
variate distribution, by evaluating (2.8) at the arguments z; = F~!(v;), and then use

it with arbitrarily chosen marginals to obtain a fully valid multivariate distribution.
Copulae residing in this class are called implicit copulae.

Example 2.4.3 (Gaussian Copula). Recall the multivariate normal distribution
®,4(0,P) with expectation zero and correlation matrix P:

1 L rp-1
f(x):Wexp{—ax P x}. (2.9)

We obtain the copula by evaluating the multivariate normal distribution at
the arguments x; = F~'(u;) such that Fy (F{ '(w), ..., Fy (ug)) = Clu, ..., ug).

CE™* (uy, ooyug) = Paop (D7 (wr), ..., D (ug))
> (uy) o~ (uq)
:/ / F(x[0,P) dy - dzg. (2.10)

[e.e] e}

We can now couple this copula with our marginal default time distributions
and obtain what is called a meta-gaussian distribution

P(r <t ..,mg<t) = CL"**(Qi(t),....,Qu(t))
O1(Q1 (1)) OH(Qq(t))
_ / / F(x[0,P) da; -+ dzg.(2.11)

—00 —00
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We can view this framework as a mapping of quantiles. The quantile of a nor-
mally distributed random variable is mapped to the quantile of the default time dis-
tribution. In general the point x; = x is transformed to ¢; = t where t = Q; ' (®(x)).
The copula thus expresses the joint probability of these quantile mappings. The
latter relation is useful if we want to simulate dependent default times. A simple
algorithm:

e Draw a random vector x of multivariate normal numbers.

Set u; = ®(x;) for all 4.

Recover the time of default by setting t; = Q;*(u;) for all i.

Repeat desired number of times.

Note that other copulae might be used for this purpose. A good introduction
to copulae with examples related to credit risk can be found McNeil et al. (2005),
and a bit more extensive introduction can be found in Cherubini et al. (2004).

2.4.2 Loss distribution and one-factor Gaussian copula

While the evaluation of (2.11) might require high dimensional integration, the mar-
ket has adopted another way of specifying the marginals X; of the multivariate
normal distribution. Letting X; have a factor structure, reduces the number of in-
tegrations needed to just one. The idea behind factor models is to assume all the
obligors are influenced by the same sources of uncertainty, or same set of factors.
There could be one or more systematic factors influencing the credit environment,
and in addition one idiosyncratic effect. Let the X; be the sum of two independent
variables, one representing a common factor, and the other the idiosyncratic:

Where —1 < a; < 1 and both Y and Z; are i.i.d N(0,1) variables.® Notice that in
(2.12) that there is nothing new to the distributional assumptions on the random
vector X, it still follows a multivariate normal distribution, but with correlation ma-
trix given by corr(X;, X;) = a;a; (Appendix A.3). Factor models are convenient as
they can be used to describe dependency amongst credits using a "credit-vs-common
factors" analysis instead of a pairwise analysis.” The a; are sometimes called load-
ing factors because one can think of them as a way of describing the influence the
systematic factors have on an obligors credit risk. I.e, one would expect that firms
with high creditworthiness or high rating to be more affected by a downturn in the

60ne may encounter different parameterizations of the model, this one is taken from Hull &
White (2004)

"Apart form the difficulty of estimating default correlation, in that they are rare events, one
would in the iTraxx Europe case have to estimate N(N-1)/2=7750 pairwise correlations.
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economy, and less affected by idiosyncratic risk. While several papers have different
ways of explaining factor models, we will simply look at it as a different way of
specifying the copula model, that will aid us in computing (2.11). Let us see why
by looking at the gaussian copula again:

P(X: <0 Mug),..., Xq <D M (ug)). (2.13)

We want to compute the probability in the meta-gaussian default time distribution
P (X, <O QD). Xa < 071 [Q(t) (2.14)
Using the relation (2.12), we substitute X; and get:

P(a1Y+\/1—a1Z1<<P [Q1()], ..., aaY + /1 —ajZy < O [Qd(t)])

Q1 (t)] — Y O Qq(t)] — agY
—plz < < . 2.15
( V1—a2 V1—da? ) (2.15)

Conditioning on the common factor Y = y gives independence, and the conditional
probability of (2.15) reduces to the product of d normally distributed variables:

P(n<ty..,mg<tl]Y=y) = HCID ( \/%)a; iy) . (2.16)

Integrating out the common factor Y yields the unconditional distribution:

P(r <t,..,tq<t) / HCD ( Qi) = alg) o(y) dy. (2.17)

1—a

The last assumption made in these markets, is that all correlations are equal,
or a; = a for all firms. Though unrealistic to believe that all dependence can be
summarized in one parameter, we will stick with it for now and explain its use
in the next section. From this point on we can choose three paths to relate our
default distribution to the loss. The first approximation is often called L HP-model,
short for large homogeneous portfolio. By assuming that we have a homogeneous
portfolio and letting the number of obligors become large (d — o0), we get an
analytical solution to the problem. We consider two other options. One assuming
that all entities have the same probability of default (homogeneous portfolio- HP),
and another assuming we have a heterogeneous portfolio. Here heterogeneous in
the sense that each obligor have his/hers own probability of default. These are for
obvious reasons called semi-analytical models.

Let us first consider the conditional distribution (2.16). Conditioning upon
the common factor, the defaults in the portfolio become independent events. We let
the probability that entity ¢ defaults before time ¢ be denoted by

piltly) = @ (‘I’l @1/@‘ y) | (2.18)
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Homogeneous portfolio: When all p;(t|y) are equal, the conditional distri-
bution of the number of defaults becomes Binomial (N, p(t|y)). We get the uncon-
ditional distribution by integrating out the common factor. In this way we get the
last unknown quantity py needed in the evaluation of expected tranche loss (2.4) by:

oo

P(# of defaults = k) = /

(3 )ttt (= pte) ot dy. (219

Heterogeneous portfolio: If we assume a heterogeneous portfolio, we are
no longer in the binomial setting since the probabilities are unequal. There is still
(]]X) ways we can order k defaults, but now each ordering results in a different prob-
ability since the individual probabilities differ. In order to compute the conditional
probabilities we choose a numerical method found in Hull & White (2004) and Zhen
(2006).

Let m(k|Y') be the conditional probability that & out of the IV entities will de-
fault before ¢, then 7(0[Y) = [[, Si(¢|Y), where S;(t]Y) is the conditional survival
probability of entity 7. This case is trivial, since there is only one way we can get
zero defaults. For & > 0 we have that:

n(kY) = 7 (0]Y) 3wy ewi, (2.20)

J1<<Jg

where
C1=SY)  ptY)
YT TS aY) T Sy 22

Newton-Girard Formula: If we let u; = Zle wF be the sum of the k-th
power of the variables and v, = ) wj, - - -wj, be symmetric polynomials of
order k, then

J1<<Jk

Up — V1Uk—1 + VoUg—9 — =+ + (—1)]?711}]?71711 + (—1)kkvk = 0, (222)

for1<k<N

By using Newton-Girard Formula we can compute v from uy in a recursive
manner, and get the conditional probabilities of k defaults by 7(k|Y) = 7(0]Y)uy.
As usual the unconditional probabilities require integrating out the common factor
Y since

n(h) = / (kY )(y)dy. (2.23)

o0

This is only one of many numerical methods one can employ. Usually, the
methods are based on fast fourier transforms or some recursive scheme. A popular
recursive method can be found in Anderson et al. (2003), and a very similar one
called probability bucketing can be found in Hull & White (2004). For a comparison
of several methods the reader might have a look at the PhD thesis by Ma (2007).
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2.5  Valuation of iTraxx tranches

As mentioned, the iTraxx family offers a broad exposure to the credit market through
a variety of products. After briefly discussing the role of correlation and the base
correlation concept, we turn our attention to valuation of index tranches using the
framework introduced in Section 2.4.2.

The Itraxx tranches differs from ordinary tailor made synthetic CDO's in that
they are highly liquid, where the unfunded format has proved more liquid than the
funded format, i.e issued notes. As in any liquid market, prices are mainly driven
by supply and demand factors and not models. This does not mean that models
are useless, as they play an important role in hedging, or more generally to extract
market information. Generally a more complex model will be able to answer more
questions than a simple one. In the case of the homogeneous model in our setting,
we can look at sensitivities on the price with respect to changes in the correlation
parameter, the uniform spread or default probability and the recovery level. With
a heterogeneous model we can answer the same questions but at a more granular
level, i.e what is the effect of a spread widening on just one, or a few names?

The correlation parameter can be viewed as an implied parameter, it is not in
any way a result of estimation on historical data. The correlation parameter is the
answer to the question: Given todays market prices, what is the level of correlation
in the gaussian copula model that reproduces these prices? As the gaussian copula
model is not capable of reproducing all tranche prices with just one correlation fig-
ure, we have to solve for a different correlation value for each tranche in question.
The single implied correlation parameter corresponding to a tranche price is called
compound correlation, and Figure 2.5 illustrates a well known observation, namely
the existence of a "correlation smile”. By this we mean that the correlation value
drops when moving from the equity tranche to the lower mezzanine tranche, and in-
creases again with subordination. This itself does perhaps not pose a problem when
only considering the standard tranches of the iTraxx, but compound correlation has
its sets of problems. First of all, there has been occasions when no correlation value
would solve for a price, i.e the known "correlation crisis" in 2005 when Ford and
GM had their debts downgraded. Secondly, there could be two values giving the
same price in the case of mezzanine tranches. Last but perhaps most important, is
that there is no good way of telling what the correlation should be when valuing be-
spoke tranches, or tranches with non-standard attachment and detachment points.
Seeking to overcome some of these issues, JPMorgan introduced the concept of base
correlation which has become a market standard quoting mechanism.

2.5.1 Base correlation

Whereas one speaks of a correlation smile in the compound correlation case, one
refers to the strictly increasing base correlations as a correlation skew. Instead
of viewing a tranche as a function of the one loss distribution resolving from one

correlation parameter, one views a tranche as a difference of base tranches. The base
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Figure 2.5: Compound vs. base correlation

tranches is in a sense a series of equity tranches. The only difference in the valuation
is how we calculate the expected tranche loss F L, 4(t). If we denote by p, and p, the
compound correlation of a equity tranche with attachment and detachment [0,a%]|
and [0,d%)] respectively we rewrite E'L, 4(t) as

ELad<t) _ dEL07d7pd(t) — CLEL()@’pa (t) . (224)

’ d—a
Here we can see that the expected loss of a tranche can be viewed as the expected
loss of a equity tranche with detachment point d(> a), reduced by the loss of a
equity tranche with detachment point a. The whole base correlation curve can
then be obtained in an iterative manner. We start with the tranche with lowest
subordination, here the compound correlation and base correlation coincide. We
then search for the correlation parameter p, in (2.24) using the spread corresponding
to the (a,d%)-tranche. With this correlation parameter we continue to search for
the the next correlation parameter using the the spread of the next tranche, until
we have solved for all the tranches.

Since the base correlations are increasing with detachment points we get a
more sensible way of valuing non standard tranches. For example, if we were to
value a tranche with attachment 2% and detachment point 5% we would interpolate
the base correlation curve to find the corresponding correlation values for the two
base tranches. This procedure is of course not flawless, as the slope of the curve
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comes in to play. In the case of a perfectly linear curve, simple linear interpolation
will be a sensible choice, but if there is some curvature linear interpolation might
not be so sensible. One might consider other alternatives and in any way check if
the prices given by the model admits arbitrage opportunities.
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Figure 2.6: Loss distribution at terminal time 5 years, for two different correlation
values.

What other information than simply being a model parameter might we in-
fer from the correlation values? Let us take a look at how compound correlation
influences our loss distribution. Figure 2.6 shows two loss distributions from our
homogeneous model with two different correlations. We see that increasing correla-
tion values shifts mass to the tail, implying there is a higher probability for many
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defaults. As more mass is shifted to the tail, the expected loss of an equity tranche
holder reduces, and therefore the spread of the tranche also reduces. This has the
opposite effect on senior tranches. Remembering the factor-structure in equation
2.12, increasing correlation means that we are putting more weight on the system-
atic factor. In this setting the market can view the correlation parameter as an
indication of the state of the overall credit environment, where high correlation val-
ues indicate a bad overall credit environment, and low correlation values have the
opposite effect.

2.5.2 Homogeneous vs. heterogeneous loss distributions

In order to compute a loss distribution one has to consider the recovery rate. While
it is possible to take a view on each obligor, i.e based on historical default rates for
sector and perhaps rating, one will usually encounter a recovery rate of 40% in most
academic papers treating the iTraxx. Recovery rate studies on corporate bonds can
be found at www.moodys.com, where one can read that the recovery rates calculated
from year to year exhibit a mean reversion towards a long-term mean of roughly
40%, which in a way justify using such a value. In the case of the iTraxx index,
market makers are given the opportunity to send in their views on the recovery
rate along with the preferred list of names to be included in the index. Before each
roll, the recovery rate is rounded to the nearest 5% before posted on the web-site.
Taking a look at the iTraxx presentation found at www.itraxx.com, one can see that
all indices except subordinated financials exhibit a recovery rate of 40%, where the
latter is 20%. This means that every protection seller or buyer is exposed to recovery
risk unless hedged, as the true recoverd value can not be known in advance. The
recovery assumption is nontheless a very practical and necessary assumption as it
is a key ingredient in models. Deals between two parties are made and perhaps
unwound, using the same recovery rate assumption. The parties might still have
very different views on the true recovery rate. We will be using a recovery rate of
40% in all valuation models.

Before calculating any prices, we investigate the dataset we had available for
pricing. The data consist of end-of-day mid-quotes for all iTraxx constituents on
June 27, 2007. The quotes are for both the 3 year and 5 year contract. It may be
argued that one should have more maturities when considering a non-flat termstruc-
ture, but one should also bear in mind liquidity as an issue, as many CDS contracts
only have liquidity at the 5 year contract. Another solution when few maturities
are available, is using a linear hazard rate function as mentioned in Section 2.3.2,
or some other form of interpolation to make the termstructure smoother. We have
not investigated the effect in this thesis.

Figure 2.7 shows the distribution of spreads, with the majority of contracts
lying within the interval [0,50] bps. In Table 2.2 we have included some summary
statistics of the single names along with the iTraxx index quote. Note that the
iTraxx index quote is not the same as the average of the individual CDSs. It is
actually closer to a weighted average of the single name spreads, where the survival
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Figure 2.7: Sorted single name CDS spreads on iTraxx series 7, on June 27, 2007.
Source Bloomberg.

Index | Min | 1st Quartile | Median | Mean | 3rd Quartile | Max
3Y | 14.233 | 4.20 7.79 13.17 | 15.70 19.06 110.00
5Y | 24.806 | 6.90 13.00 23.10 | 27.11 32.20 202.70

Table 2.2: Summary statistics of all single name CDSs’ along with the index spread

probabilities act as weights. Taking into account the termstructure of survival/de-
fault probabilities and interest rates in this weighted average, yields what is called
the theoretical spread of the index. What do we mean my this? The Risky Annu-
ities mentioned in 2.3.2 acts as weights. Denoting S; and Ra;, the spread and Risky
Annuity of name i respectfully, we get the following formula:

Si RO,Z'

R (2.25)

Indezx theoretical spread = Z

The interested reader will find some illustrative examples and explanation for
this relationship in the technical report from HVB-Felsenheimer et al. (2004). The
difference between the theoretical spread and the quoted index spread is known as
basis-to-theoretical. This basis is generally larger in volatile markets and smaller in
calmer markets. One possible explanation for the existence of such a basis is that
the index being a more liquid instrument than single names, will contain a smaller
liquidity premium. It can also be argued that credit trends are more quickly seen
on the index. If there is a worsening in the overall credit environment, it is more
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likely to be seen on the index level before a general widening of single name spreads,
thus creating a lag-effect. In a homogeneous pool setting one usually uses the index
spread for calculating the uniform default probabilities to be used in the model.
Since there exists a basis, the expected portfolio loss will not be the same in the
two models. Because the index CDS is a much more liquid instrument than the
single name constituents, and therefore believed to be a better overall measure of
expected portfolio loss, one usually adjust single names to the index when pricing
index tranches in a heterogeneous model. One way of doing this, is as mentioned
in Beinstein et al. (2005). One computes the ratio of the index spread over the
theoretical value, and multiply all single name spreads by this value. If considering
a non-flat curve, one adjust all maturities as well. In this setting both the slope an
level of single names is being adjusted. We provide an example using our data from
June 27, 2007.

Index | Theoretical Ratio | EL Index | EL Port | EL Adjusted Port
3 |14.233 15.662 0.90876 | 0.4239% | 0.46637% 0.424%
5| 24.806 26.95486 | 0.9202792 | 1.2673% | 1.3745% 1.26751%

Table 2.3: Single name adjustment

The portfolio expected loss in Table 2.3 is obtained by using equation 2.2 and
the linearity of the expectation:

E (L(t)) = (Z %f{w}) -y U <. )

i=1 =1

We see that after adjustment, the expected loss of the portfolio and the index
coincide. The small difference is due to numerical implementation. We visualize the
effect of moving from a homogeneous to a heterogeneous pool in Figure 2.8, where
only probabilities for the first 30 defaults are included. Clearly the homogeneous
pool approximation exhibit a greater probability of zero defaults, and corresponding
lower probabilities for the first few defaults than the heterogeneous model. This is
perhaps to be expected when looking at the spread distribution in Figure 2.7. The
few names with high spreads should intuitively have a greater probability of de-
faulting in the considered time horizon of 5 years, than the average. The simplifying
homogeneous approximation is not able to account for such effects leading to the
deviations observed in the loss distributions.

Table 2.4 shows some iTraxx quotes which we calibrate the two models to,
and obtain the base correlation curves shown in Figure 2.9. Observe that the base
correlations for the heterogeneous case are higher than in the homogeneous setting.
Thinking in terms of equity tranches, we saw that that the probabilities for expe-
riencing the first few defaults were higher in the heterogeneous setting. Thus using
the same correlation in both models, causes a higher premium in the heterogeneous
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model. To lower the spread of the tranche we increase the correlation parameter.
As mentioned, this causes probability mass to be shifted to the tail, and therefore
reduce the expected loss of the tranche.

Tranche | 0-3% Upfront | 0-3% | 3-6% | 6-9% | 9-12% | 12-22%
11.875% 500 63 16.25 | 7.25 3.375

Table 2.4: iTraxx tranche quotes on June 27, 2007 obtained from MorganMarkets.
All quotes except equity tranche are in basispoints.

As shown, the base correlations are highly model dependent, emphasising that
one should be careful when comparing published correlation numbers. Since different
banks will have different implementations or variations of the model, and not to
mention the source of data, the implied correlation will vary. This further supports
the idea of correlation acting more as a model parameter than a precise measure
of default dependency. Nevertheless, it is a well established framework and will
continue to be used until better models are developed. Base correlations has other
uses than simply reproducing already observable prices. We are presented with a
bigger challenge when asked to value a bespoke CDO. If the CDO has near identical
characteristics as our index tranches, we may argue that the prices in the synthetic
CDO should be given by the same base correlation curve inherit in the iTraxx
tranches. What we want is parameters that produce prices in our bespoke CDO
that the market would be willing to buy/sell protection for. We want a price for
our bespoke CDO that is fair in a market sense. The challenge then presents itself
in mapping the iTraxx base curve into the custom pool. While there exists several
mapping procedures, some of them explained in Baheti & Morgan (2007), we do not
know of any standard procedure.
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Figure 2.9: Base correlation curves obtained for for two models.
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We end this presentation of the market standard model with some remarks.
First of all the standard model is static, it does not take into account any evolution
of the termstructure of default, nor does it contain any dynamics on the dependence.
As such, it cannot price forward starting contracts or options. The poor fitting ca-
pabilities to all tranches simultaneously is considered a weakness, and much research
have been aimed at finding a dependence structure that allows for a better fit. Pop-
ular paths of research in this static framework has been varying the dependency
structure by using alternative copulae, or altering the distributions of the factors,
with the aim of eliminating the observed base correlation skew.
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Chapter 3

Risk

As with any financial instrument, there is no reward without taking risk. Structured
credit investors face mainly two sources of risk:

Default risk Obviously defaults contribute directly to losses. Depending on sub-
ordination, one or more defaults will reduce part of our tranche notional. If
the exposure is in the swap format, we must pay the lost amount, and if our
exposure is through a note (funded format), we will receive back the principal
amount less the loss at maturity.

Market risk This risk component arises from the financial movement of the un-
derlying factors, and affects us as the market value of our position can change
over time. Possible sources affecting a CDO, can be risk arising from changes
in interest rates, spread movements, liquidity, and rating movements if appli-
cable. In the most simple case consider selling protection on a single name for
the market spread of 100 bps per year. The day after the trade the spread on
that name widens to 150 bps. If for some reason you need to exit the posi-
tion, you may exit the position with your dealer, or perhaps buy protection
on that same name for the remainder of the original contract. In the latter
case you would be receiving 100 bps, and paying 150 bps - clearly a negative
mark-to-market value.

In this chapter we seek a method to quantify some of these sources. For the
market risk component we will only model spread risk explicitly through a simplified
model. For the default risk component we will rely on information based on historical
data, published by rating agencies. The evolution of rating changes and ultimately
default will be modeled in the framework of continuous time Markov chains, and for
that reason we will rely heavily on the work of Israel et al. (2001)(IRW) and Jarrow
et al. (1997)(JLT).
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3.1 Rating transition model

3.1.1 Rating migration

Rating agencies such as Moody‘s, StandardéPoors and Fitch have made it their
business to assess the credit quality of obligors. For many years they have been
assigning ratings based on financial and non-financial information. These ratings
represent the agencies views on the company‘s ability and willingness to meet its
financial obligations. The common master scale consist of letters, i.e Aaa, Aa, A,
Baa, Ba, B, Caa, C (Moody‘s) and AAA, AA, AA, BBB, BB, B, C (S&P and Fitch),
where Aaa and AAA in the two systems represent the best rating an obligor can
achieve. Both systems also use modifiers to brake ratings into a finer scale. Moody‘s
uses numbers 1, 2 and 3 i.e Aal, and StandardéPoors uses + and - , i.e AA+. By
forming cohorts or groups of obligors with same rating and perhaps other character-
istics, rating agencies can track the evolution of credit quality within these groups
through time. By using such history one can estimate default probabilities for the
different rating categories, and rating up/downgrade, also called rating migration.
While the major databases are only accessible to paying customers, some research
are made available to the public.

Before utilizing any framework it is natural to ask if the rating agency definition
of default deviates from the credit events we are seeking to model (ISDA definitions).
In Moody's (2007) we find the following definitions of default:

e A missed or delayed disbursement of interest and/or principal.

e Filing for bankruptcy, administration, legal receivership, or other legal blocks
(perhaps regulators) to the timely payment of interest and/or principal.

e A distressed exchange occurs when: (i) the issuer offers debt holders a new
security or package of securities that amount to a diminished financial obli-
gation (such as preferred or common stock, or debt with a lower coupon or
par amount); or (ii) the exchange had the apparent purpose of helping the
borrower avoid imminent default.

We will not state the ISDA definitions, they are treated thoroughly in JPMorgan
(2006), but they are basically the same, meaning that they both seek to cover any
event leading to an economic loss, thus gaining confidence in using rating agency
data.

The defining feature of a Markov chain, is its transition matrix. A rating
migration matrix completely summarises changes in credit ratings over a given time
horizon. The cells of the published transition matrices are discrete-time estimates
of rating migration probabilities. They show the rate of rating changes measured at
two points in time. The agencies publish these matrices annually, both the matrix
spanning only last years migrations, and the updated rating matrix averaged over

34



From/To | Aaa  Aa A Baa Ba B Caa-C Defaults WR
Aaa | 839 12,5 04 0 0.1 0 0 0 31

Aa| 1.2 8.4 92 05 0 0 0 0 36

Al 01 38 86 62 05 0.1 0 0 45

Baa 0 05 83 787 5 1.7 0.7 0.2 4.9

Ba 0 0 199 657 10.9 1.1 1 10.5

B 0 0 06 04 7.7 682 8.6 4.3 9.5

Caa-C 0 06 01 0 07 13.2 92.5 232 6.7

Table 3.1: Broad letter grade one-year average rating transition matrix for Europe
1985-2006. Rates in %. Source: Moody's.

several years. Table 3.1 shows the matrix presented in Moody‘s (2007), where one
also can find how the rates are calculated.

As usual, the (i,j)-th entry represents the probability of migrating from state
t to j within the given time horizon. The extra column named WR contains with-
drawn ratings. Withdrawn ratings are caused by debt maturing, failure to cooperate
or for some other reason like merging with another company etc. Though rating
agencies are likely to continue to observe these entities in case of re-entry or default,
information about them are not publicly available so we use the common approach
of treating the WR-category as non informing and simply add the values back in to
the columns proportional to column entries. Also in the case of rows not summing
exactly to one, the remainder of the sum is distributed using the same approach.
The resulting transition matrix can be viewed in Table 3.2, where we have added
the row Default with zero entries except the last column, indicating that default is
an absorbing state.

From/To Aaa Aa A Baa Ba B Caa-C Default
Aaa | 86.584 12.900 0.413 0.000 0.103  0.000  0.000 0.000

Aa | 1.246 88.681 9.553 0.519 0.000 0.000 0.000 0.000

Al 0.105 3.987 88.772 6.506 0.525  0.105  0.000 0.000

Baa | 0.000 0.526 8.728 82.755 5.258 1.788  0.736 0.210

Ba| 0.000 0.000 1.116 11.049 73.326 12.165 1.228 1.116

B | 0.000 0.000 0.668 0.445 8.575 75.947 9.577 4.788

Caa-C | 0.000 0.664 0.111 0.000 0.775 14.618 58.140  25.692
Default | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000

Table 3.2: Transition matrix adjusted for WR.

There are some features worth commenting. The matrix clearly exhibit domi-
nance along the diagonal, indicating a high likelihood of staying in the same state,
or migrating to a near state. Also notice the many zero entries which contradicts
intuition. However small the probability may be, there should be a positive prob-
ability of default, even in the highest credit classes. Clearly the zero entries is a
result of not observing the events, not that the event is impossible.
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As stated in Standard&Poors (2007), by assuming that the rating transition
rates are stable and follow a first order Markov process, cumulative default rates
and rating migrations can be projected for any number of years in the future. In
Jarrow et al. (1997) the same assumptions are made, but the chain is modeled in
continuous time. We are considering a stochastic process x(w,t), on the finite state
space S = {Aaa, Aa, A, Baa, Ba, B, Caa-C, D}. Here the rating function  : Q x
[0,T| — S, and we are now working under the actual or physical probability measure
P. We fist define some features of the Markov chain in our setting:

Definition 3.1.1. The (8x8) transition matrix for the period [t,T] under P is writ-
ten as

pia(t,T) pot,T) ... pis(t,T)
P21t T) pao(t,T) ... pas(t,T)
P(t,T) = : : : : (3.1)
pra(t,T) pro(t,T) ... prs(t,T)
0 0 0 1

where p, ;(¢,T) > 0 for all h, 5, h # j and pp ) =1 — Z§:17j¢hph7j(t,T).

Definition 3.1.2. For all h, the default time 7, is defined as
T, =infs >t : k(s) =8, (3.2)

which is the first time the company hits the state of default 8, assumed to be
absorbing.

By assuming the Markov property, conditioning on all the information given
up to time ¢ yields no extra information, or the future distribution of states depend
only on the current state. If we let F, represent the entire history' of the process
we have the relation

P (w(T) = jlF) = P(s(T) = jls(t) ), V] € S. (3:3)

The time-homogeneity assumption implies that the transition probabilities depend
only on the length of the time interval, not which interval. If we are considering a
discrete time Markov chain with given one-period transition matrix, all one-period
matrices must coincide, and the n-period transition matrix is simply the n-th fold
of the one-period matrix.

!Formally stochastic proscesses are collections of random variables, for instance indexed by
time. Fy is the sigma algebra which x(t) is a random variable with respect to.
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Definition 3.1.3. The continuous time-homogeneous Markov chain {x(¢) : 0 <t <
7} is specified in terms of its (8x8) constant infinitesimal generator, or intensity
matrix defined as

-1 G2 - ... Q18
Q21  —G22 ... ... (238

Q= : P (3.4)
q71 gr2 .. ... (78

0 0 0 0 1
where g, ; > 0 for all h, j, h # j, and gpp = — Z?Zl’#h qn,j for h =1,2....8.

In (3.4) the off-diagonal elements are the constant intensities of jumping to
rating 7 from h, whereas the diagonal elements are the constant intensities of moving
away from h. In our finite state Markov chain setting, the (8x8) rating transition
matrix for x of the T" — t period is

P<t7 T) — QRUT=t) _ i [(T _n:f)Q]n’ (3_5)

n=0

showing again that the probabilities in the time-homogeneous setting only depend
on the length of the time interval. In our setting it would be convenient to model
transitions over arbitrary time horizons, but a problem arises in that our given
empirical transition matrix might have entries such that (3.5) does not hold. This
is also known as the embedding problem, the embedding of a discrete time Markov
chain into a continuous time Markov chain.

Israel et al. (2001) identified a set of conditions for the existence of an exact
generator for a transition matrix. We restate the theorem here:

Theorem 3.1.4 (IRW). Let P be a transition matriz, and suppose that

a) det(P) < 0, or

b) det(P) > 11, pii, or

c) there are states i and j such that j is accessible from i, but p; ;=0.
Then there does not exist an exact generator for P.

Computing the determinant and the product of the diagonal entries in Table
(3.2), we get values of 0.1693 for the determinant and 0.1826 for the product, so part
a) and b) of Theorem 3.1.4 does not apply. However, by Part ¢) we do not have an
exact generator, since we observe that p; 3 > 0 (Aaa — A) and p34 > 0 (A — Baa),
but p; 4 =0 (Aaa — Baa). We may hope to find an approximate generator Q such
that P ~ e?. Both IRW and JLT provide suggestions as to how to compute an
approximation. We summarize some results from IRW into a theorem, also stated

in this form in Bluhm & Ludger (2006). The proof is found in IRW:
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Theorem 3.1.5 (Bluhm 06). If a migration matriz P is strictly diagonal dominant,
i.e pii > % for every 1, then the log-expansion

Qn = i(—l)“l@ neN (3.6)

converges to a matriz Q satisfying

1. Zj Gij for every i

2. e?=Pp
The convergence Q, — Q is geometrically fast.

The problem with this method, is that the matrix @ is not guaranteed to have
non-negative off-diagonal entries. This poses a problem in that given sufficiently
small t > 0, P, = ¢'? will also have negative off-diagonal entries, which means
that P, is not a proper Markov transition matrix. IRW note that these entries will
usually be quite small and propose to correct the problem by replacing the negative
off-diagonal entries with zeros and distribute the negative part along the rows of the
generator matrix proportionally to their absolute values. As in IRW let

Gi = |ga| +» max(qy,0); B;=» max(—g;,0) (3.7)
j#i J#

be the "good" and "bad" totals for each row 4, and then set

0, i1#jand g; <0
¢; =< Gj — Bilgij|/Gi, otherwise if G; >0 (3.8)
gij, otherwise if G; = 0.

The adjustment guarantees that Q is a valid generator. For illustrative purposes we
show the result of the log-expansion @) and Q;rw (the adjusted generator) in Table
3.3.

Another method of obtaining an approximate generator for the transition ma-
trix given is given in JL'T. They obtain an approximate generator by assuming that
there is never more than one transition per year, and give the following relationship:

log(pii) ., .
Qi = log pii; Qij = Dij p~<— 1> (1 #J), (3.9)

where we no longer encounter the problem of negative off-diagonal elements. The
proof is found in JLT.

As shown, we get the one-year transition matrix by computing the matrix
exponential of the generators. Prrw and Pj;pr are rounded to 6 decimal points.
With two possible solutions to the embedding problem, it is natural to ask which
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—0.14510 0.14744 —0.00325 —0.00031 0.00133  —0.00009 —0.00000 —0.00000

0.01418 —0.12358 0.10786 0.00195 —0.00038 —0.00004 0.00000 0.00000

0.00088 0.04484 —0.12530 0.07586 0.00394 0.00023 —0.00044 —0.00002

Q _ —0.00008 0.00382 0.10170 —0.19781 0.06663 0.01647 0.00893 0.00030
_ 0.00000 —0.00053 0.00598 0.14249  —0.32478 0.16270 0.00580 0.00831
0.00000 —0.00076 0.00771  —0.00266 0.11616  —0.29917 0.14510 0.03362

—0.00007 0.00929 0.00013 —0.00026 —0.00152 0.22216  —0.55987 0.33015

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

—0.14692 0.14560 0.00000 0.00000 0.00132 0.00000 0.00000  0.00000

0.01416  —0.12380 0.10767 0.00196 0.00000 0.00000 0.00000  0.00000

0.00088 0.04476 —0.12554 0.07572 0.00394 0.00024 0.00000  0.00000

Q _ 0.00000 0.00383 0.10169 —0.19786 0.06663 0.01647 0.00894  0.00031
IRW — 0.00000 0.00000 0.00598 0.14238 —0.32505 0.16257 0.00580 0.00831
0.00000 0.00000 0.00767 0.00000 0.11550 —0.30088 0.14428 0.03343

0.00000 0.00928 0.00013 0.00000 0.00000 0.22180 —0.56081  0.32960

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 3.3: Generator obtained by log-expansion(top), and then adjusted(bottom).

0.864261 0.127321 0.006888 0.000369 0.001062 0.000086 0.000008 0.000007

0.012427 0.886602 0.095370 0.005201 0.000313 0.000059 0.000022 0.000006

0.001049 0.039794 0.887505 0.064929 0.005244 0.001083 0.000317  0.000080

p . 0.000071 0.005278 0.087246 0.827527 0.052557 0.017854 0.007366 0.002100
IRW — 0.000009 0.000476 0.011176 0.110551 0.733023 0.121426 0.012213 0.011127
0.000008  0.000646 0.006783 0.006531 0.085312 0.758077 0.095101 0.047542

0.000051 0.006697 0.001127 0.000469 0.008685 0.145821 0.580785 0.256365

0.000000  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000

0.866646 0.121586 0.010099  0.000659 0.000919 0.000072  0.000010 0.000009

0.011650 0.889548 0.090405 0.007786 0.000432 0.000132 0.000030 0.000016

0.001225 0.037850 0.892566 0.059740 0.006212 0.001888 0.000325 0.000194

f"} o 0.000087 0.006758 0.083019 0.833433 0.046211 0.019475 0.006848 0.004170
JLT — 0.000011  0.000675 0.016039 0.101307 0.741447 0.108276 0.015168 0.017076
0.000006 0.000521 0.007271 0.009212 0.074221 0.772068 0.073958 0.062742

0.000045 0.006290 0.002030 0.001173 0.013045 0.127469 0.588116 0.261832

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000

Table 3.4: The transition matrix obtained by using approximations IRW and JLT
for the generator.

one is the best approximation. IRW suggest using a distance measure such as the
L*-norm of P —exp(Q) to see which distance of the two is smallest. Computing the
sum of the absolute value of the differences between the empirical matrix and the

approximations, we obtain in the two cases
norm[P — exp(Qrpw)] = 0.01822539:  norm[P — exp(Qr)] = 0.2138069,

which clearly favors the IRW method. As shown in Figure 3.1, using the homoge-
neous continuous time Markov chain, we have all the termstructures of default for
our rating categories. Migration to other states could also be an important, i.e some
cash flow CDO's have waterfall structures triggered by rating actions, diverting cash
flow in the case of downgrade etc.
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Figure 3.1: Termstructure of default in continuous time homogeneous Markov chain.
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3.1.2 Default adjustment

Though very appealing, the time homogeneity has one drawback which we address
in this section. The termstructure of default implied in the model does not take
into account any aging effect. That it, all the one-period transition matrices are the
same provided that the periods are of th same length. As addressed in 2.3, both
risk-neutral and historical default probabilities exhibit termstructure effects such as
increasing marginal default probabilities for investment grade names, and marginally
declining default probabilities for sub-investment grade names (conditional on sur-
vival). A way of achieving this, is by scaling the generator matrix appropriately.
The general idea is found in JLT, where the generator is scaled to match market
implied termstructures in order to price bonds and bond options. The method used
in this thesis is an explicit procedure found in Bluhm & Ludger (2006), and here we
seek to match historical default probabilities.

The adjustments done to the generator, is simply scaling the rows of the matrix.
By Definition 3.1.3, we see that scaling the rows conserves the properties of the
generator. We can achieve this by suitably choosing a diagonal matrix to multiply
the generator with. Formally let W(¢) denote the diagonal matrix with elements

Vi (t) = tPa, 5,(1), (i=1,..8,t>0) (3.10)

where fit

L0 i)
RS P e .11
and the function ¢, g(t) is defined as
1— —at tﬁfl
6 [0,50) = [0,00), 1 = dpft) = L (3.12)
— e (6%

for non-negative constants a and (3. Since we are interested in matching observed
default frequencies, the problem amounts to choosing vectors of o;’s and (;’s , such
that the default entries [i,8] of the ¢-year transition matrix matches the t-year ob-
served default frequencies as closely as possible. As a function to optimize, we have
chosen simply to minimize the sum of these squared deviations. As an example
of the method, Figure 3.2 shows the historical default frequencies for Europe as in
Moody‘s (2007) along with the time homogeneous and time in-homogeneous cumu-
lative default probabilities. Finally we can reach our goal of simulating portfolio
rating transitions, by utilizing the copula framework and Markov chain theory. We
use the fact that in a continuous time Markov chain, the transition matrix over time
interval [0,t] can be written as

P(0,t) = P(0,t — 1)P(t — 1,1) (3.13)

and use this relation to obtain transition matrices for arbitrarily small intervals.
We start by defining rating thresholds which corresponds to the event of staying
in the same rating or migrating to another state at the end of the intervals. The
thresholds are obtained by partitioning the unit interval [0,1] into 8 sub-intervals
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corresponding to the rating classes. We define these threshold as the cumulative
sums of the matrix rows, that is

Qp1

ap2

ap3

Qpa

Qps

Qpe

Qp7

Qapg

[0, pua(t—1,1)]

(P (t—1,t), lehj(t —1,1)]

(Z:phj@ - 11, ilphj(t —1,1)]
(iphj(t —1,1), iphj(t —1,8)]
(ilphj(t -1, ilphj(t —1,1)]

(D puslt =10, 3 ps(t = 1,1)]

(thj(t -1,1), thj(t —1,t)]
(thj(t— Lt), 1], (3.14)

for all rating classes h. The Markov chain can thus be simulated by drawing uni-
form variates and finding the corresponding interval. E.g if the sampled uniform
number was 0.5, we would conclude that a firm with initial rating Aaa would stay
in Aaa according to Table 3.2. For multivariate rating transitions, we rely again
on the concept of copulae. From Chapter 2.4 we have that a copula is a multivari-
ate distribution of uniform variates, and we can draw a vector of uniform variates
corresponding to the size of the portfolio and find the appropriate interval for all

names.
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Figure 3.2: Cumulative probability of default with, and without adjustment of gen-
erator. European default data only.
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3.2 Recovery risk

Although we have taken recovery to be a fixed fraction for valuation purposes, we
choose to incorporate it as a random factor in this risk assessment. In real life,
the recovered value of defaulted debt is not predetermined, but random and de-
pendent on the seniority of debt, and perhaps subject to country specific legislative
issues. In line with most commercial credit portfolio models, or credit Value-at-Risk
models such as J.P. Morgan‘s CreditMetrics®), Credit Suisse‘s CreditRisk-+®), McK-
insey‘s CreditPortfolio View®), KMV’s CreditPortfolioManager® and Kamakura’s
RiskManager®), we treat the recovery rate independently of the probability of de-
fault. As is the general case in CreditMetrics® we model the recovery rate as a
stochastic variable using a beta distribution. As shown in Figure 3.3, the beta dis-
tribution is a flexible two-parameter distribution with support on the unit interval
which is convenient for modeling recovery rates. The probability density function is
given as:

I'(a+b)
['(a)T'(b)

I'(z) = / t*~te7tdt, (3.15)
0

2711 — x)*7!, where

Usually the distribution parameters a and b are estimated by the method of
moments, which in Renault & Scaillet (2003) was not significantly different from
maximum likelihood estimates. The authors challenge the beta assumption on the
fact that empirical recovery rates sometimes exhibit bimodal densities, however they
show that the assumption of beta distribution compared to their beta kernel density
estimator, is benign with respect to credit VaR when considering quantiles less than
99%.

Remark 3.2.1. It is worth mentioning that although the modeling framework pre-
sented here share the features of traditional credit portfolio models, a lot of research
in recent years have focused on conditioning default probabilities, ratings migrations
and recovery rates on the business cycle, and on the interdependencies between de-
fault rates and recovery rates. The idea is that during economic downturns default
rates increase and recovery rates decline, thus amplifying the risk of a portfolio
during recessions. The reasons for omitting these models in this thesis is twofold,
the added complexity of model, and the data required to reestimate and calibrate
these models. Most of the research done in this area is conducted using the large
databases of information gathered by the rating agencies over the years, which is
not publically available. This does not mean that traditional models are useless,
cycle-effects are much more pronounced in non-investment grade credits, and we
are only considering investment grade credits in this thesis. The interested reader
might find the works of Edward I. Altman, Riidiger Frey, Alexander Mc.Neil, Til
Schuermann, Jon Frey, Stuart Trunbull, David Lando and their co-authors useful.
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Figure 3.3: The Beta density function with various parameters.
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3.3 Spread risk

As mentioned in the beginning of this chapter, a synthetic CDO tranche is subject
to mark-to-market movements as the underlying risk factors move over the life of
the transaction. While the previous sections sought to model the risk of default
only, default risk is only part of the picture when it comes to CDOs. A pure default
analysis might be sufficient for a HTM? or buy-and-hold investor, but if you want
to track the value of your position through time, or might consider offsetting your
position, it must be done at market terms. In this thesis we will consider the case
of a long position on a 5 year tranche and exiting the position one year later. This
means that we are initially selling protection on a tranche, and at a later time buying
protection on the same tranche which may or may not have experienced defaults.
You can offset the the initial contract in two ways:

e Buy protection on the same tranche and receive or pay the difference in spreads
for the remaining duration of the original contract. This cash flow may be
reduced if the tranche is hit by defaults, and is in this sense risky. E.g consider a
long position of 100bps, and then a short position after one year for the market
spread of 80 bps. In the case of no defaults, you will be receiving 20bps on
you tranche notional for 4 years.

long short 100-80=20 , 20bps * Notional * 4 Years
S5=100 bps §,=80bps —» Tranche notional may be reduced if defaults,
but it will only affect the cashflows.

I | |
I ' I
t=0 t=1 t=5

Figure 3.4: Note that the notional may also have been reduced before the short
position. This position will be more profitable than an unwind if there is no defaults,
or defaults happen late.

e Exit the position by doing a PV calculation of the position mentioned above.
That is discount the cash flows with interest rate and expected tranche loss,
or put in another way, multiply the spread difference by with "tranche risky
annuity". For the equity tranche the MTM is simply the change in upfront
payment, as the running spread is fixed at 500bps and the long-short position
will cancel each other.

In order to do a PV calculation of our 5 year position in one year, we need
to know the fair spread of a 4 year contract in one year time. This is of course
not known in advance, but we can build a probability distribution of future tranche
spreads by simulating the factors involved in pricing. If we consider a fixed interest
rate, the factors that are involved in the valuation model of Chapter 2, is either single

2HTM held-to-maturity securities are those securities that an investor intends to hold and is
able to hold until maturity. Unrealized gains or losses are not shown on the balance sheet, reflected
in report or reflected in reported net worth.
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long short 100-80=20 , 20bps * Notional * TRA <
S,=100 bps §,=80bps —»  20bps * Notional * 4 years
No longer exposed to credits

I | |
I ' I
t=0 t=1 t=5

Figure 3.5: The unwind will be more profitable if the offset position above experience
defaults, or a tranche wipe-out at an early time.

names spreads or portfolio spread, and base correlations. One way of achieving this,
is by fitting a suited time series model for the spread, and do a 1 year forecast for
either the uniform spread or on all names, along with base correlation curves.

Since we are working with the iTraxx we can choose an alternative route. The
composition between rolls are very similar, and since we have a long history of in-
dex spreads along with base correlations, we can do a non-parametric bootstrap of
the sets of index level and base correlations. We are then restricting the possible
outcomes to the ones already observed in history, but if there should be any re-
lations between the index level and base correlation curve, it will be preserved in
this method. To get the spread level of a 4 year contract, we simply interpolate
linearly between the quoted 3 and 5 year levels. As for the base correlation curve,
we will use the 5 year levels as a proxy for the 4 year levels. As stated in Garcia
& Goossens (2007) there is no widely accepted standard approach for interpolating
a base correlation surface for a nonstandard attachment point or for a nonstandard
maturity. Further they found no uniform behavior across maturity for a given at-
tachment point of the base correlation surface in the gaussian copula model. If one
had sufficient quotes for 4 year deal, a slightly better approach would be to back
out correlations and use these when sampling. In any case, ignoring the change
in base correlations will not yield a realistic picture of the spread variation of the
different tranches, the only free parameter to change would be the uniform spread.
Base correlation is also a measure for the relative supply and demand across the
capital structure, so shifts over time may be caused by supply /demand factors than
a fundamental change in the market‘s view of default correlation.

There is also another factor that investors need to be aware of. As time elapses,
the value of their investment will change even if spreads and correlation remain the
same. An equity investor will always be exposed to immediate risk of default, but
a senior investor will have a safer position through time as there is less time to
experience the amount of loss needed to hit his or hers tranche. So in relation to the
other tranches, the equity tranche has become more risky than mezzanine and senior
tranches. Time decay will therefore have a different impact on the different tranches.
These variations will also be portfolio specific, as the expected loss legs depends on
the timing of defaults over time, which again depends on the term structure of credit
spreads. Figure 3.6 illustrates the point. If time is the only changing parameter,
increasing time will shift expected losses to the right, meaning more mass located in
more senior tranches. Shorter term gives less expected loss in senior tranches, and
therefor reduces price of risk.
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Figure 3.6: Loss surface, or loss density as a function of time. 0-3 years on left, and
0-5 years on right.

3.4 Calculating the P&L distribution

As we now have covered the most important drivers of risk in a CDO investment, we
can turn our attention towards calculating the profit and loss distributions for our
CDO investment. The last, and positive contributing part to the tranche return is
what practitioners call the carry. The carry is simply the coupons earned through
the life of our investment, which may have been reduced due to defaults. In theory
all coupons should be calculated with earned interest, but we decide to omit them
for all tranches but the equity. In practice the accumulated interest earned would
be very small when considering only a short time horizon of one year and the the
spread size. The choice of including interest on the equity tranche is based on the
substantial size of the upfront payment, i.e 15% of notional. After one year this
amount will have increased by the one year risk free rate if no defaults occur. Two
scenarios are included in Figure 3.7 and 3.8 that illustrate in more detail the P&L
impact for an equity tranche, and a mezzanine/senior tranche.
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No defaults

N*Up_t0 N*(Up_t0-Up_t1)
I I
I I
t=0 t=1
Carry =0 Carry = N*Up_t0*exp(r)
+ N*500bps
One default
N*Up_t0 N*Up_tO0 - loss - (N-loss)*Up_t1
| ~A |
| A |
t=0 t=1/4 t=1
Carry =0 Carry = N*Up_t0*exp(r/4)

+ N*500bps/4
+(N-loss)*500bps*3/4

Figure 3.7: The Equity tranche. The 500 bps are distributed over the year quarterly.
Keep in mind that the upfront premium calculated in the case of one default will be
based on a thinner tranche (N-loss).

No defaults
N*(S5- S, )* TRA

t=0
Carry =0

| v

t=1

Carry =N*S;

Default
(N-loss)*(S5- S4)*TRA - loss

| %\Y
t=0 t=1/4

Carry=0

Figure 3.8: The Mezzanine/senior tranche(s). No upfront premium, but a running
spread payed quarterly. The spread and tranche risky annuity will be calculated

I
t=1
Carry = N*S5/4 + (N-loss)*S5*3/4

based on a thinner tranche if defaults occured.
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Chapter 4

Numerical example

4.1 Data

The data used in this thesis was obtained from Bloomberg and MorganMarkets'. The
data consist of company ratings and time series of single name CDSs for all names
on the iTraxx Series 7. Table 4.1 shows ratings in Moody’s scale along with business
sector, where sectors was found in the presentational material on www.markit.com.
Along with these, we also had time series of tranche and index quotes from March
2005 to April 2008, see Figure 4.3. Historical default rates and transition matrix
where found in Moody’s corporate default and recovery rates report of 2008. The
report contains empirical estimates for the most recent year, and also estimates that
are averaged over a larger time horizon. In this thesis we use averaged values from
1970 to 2007 based on global data. The methodology and details regarding how
these are calculated can be found in Moody‘s (2008). Before presenting any results,
we address some details concerning the data and what modifications that were done
in order to apply the theory introduced.

Ratings The ratings-dataset we had access to contained ratings with modi-
fiers. These modifiors are discarded in this study. This removes some of the gran-
ularity of the portfolio, but on the positive side, the empirical estimates of broad
letter default rates and rating migrations are based on more observations. This
should yield less uncertain estimates. Also, one can observe in Moody‘s (2008)
page 49, that the estimated migration matrix for ratings with modifiers exhibit non-
monotonicity with respect to rating. One would for instance not expect an Aa2 rated
firm to have higher default rates than an Aa3 rated firm. While this contradicts the
nature of ratings, it is not unthinkable to get such empirical estimates when dealing
with few observations.

!Kindly provided to us by Mr. Sigurd Ugland of KLP and Mr. Halvor Hoddevik of Arctic
Securities
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Company Rating Broad rating | Sector
01) ABN Ambro Bank NV Aa2 Aa Financials
02) Accor SA Baa Baa Consumer
03) Adecco SA Baa Baa Industrials
04) Aegon NV Al A Financials
05) Electrolux AB Baa2 Baa Consumer
06) Volvo AB A3 A Autos
07) Akzo Nobel NV A3 *- A Industrials
08) Alliance Boots PLC B2 *- B Consumer
09) Allianz SE Aa3 Aa Financials
10) Altadis SA Baal *- | Baa Consumer
11) Arcelor Finance SCA Baa3 Baa Industrials
12) Assicurazioni Genera... Al A Financials
13) Aviva PLC Al A Financials
14) AXA SA A2 A Financials
15) Banca Monte dei Pasc... Aa3 Aa Financials
16) Banca Popolare Itali.. A3 A Financials
17) Banco Bilbao Vlzcaya . Aal Aa Financials
18) Banco Comercial Port... Aa3 Aa Financials
19) Banco Espirito Santo.. Aa3 Aa Financials
20) Banco Santander Cent Aal Aa Financials
21) Barclays Bank PLC Aa2 Aa Financials
22) Bayer AG A3 A Industrials
23) Bayerische Motoren W.. Al A Autos
24) Bertelsmann AG Baal Baa TMT
25) BNP Paribas Aal Aa Financials
26) British American Tob.. Baal Baa Consumer
27) British Telecommunic.. Baal Baa TMT
28) Cadbury Schweppes PL . Baa2 * Baa Consumer
29) Capitalia SpA Al *+4 Aa Financials
30) Carrefour SA A2 A Consumer
31) Casino Guichard Perr... Baa3 Baa Consumer
32) Centrica PLC A3 A Energy
33) Ciba Specialty Chemi... Baa2 Baa Industrials
34) Commerzbank AG Aa3 Aa Financials
35) Cie de Saint-Gobain Baal Baa Industrials
36) Compagnie Financiere... Baa Baa Industrials
37) Compass Group PLC Baa2 Baa Consumer
38) Continental AG Baal *- | Baa Autos
39) DaimlerChrysler AG Baal Baa Autos
40) Deutsche Bank AG Aal Aa Financials
41) Deutsche Lufthansa A... Baa3 Baa Consumer
42) Deutsche Telekom AG A3 A T™MT
43) Diageo PLC A3 A Consumer
44) DSG International PL Baa2 Baa Consumer
45) E.ON AG A2 A Energy
46) Edison SpA Baa2 Baa Energy
47) Energias de Portugal... A2 *- A Energy
48) Electricite de Franc.. Aal Aa Energy
49) EnBW Energie Baden W A2 A Energy
50) Endesa SA A3 *- A Energy
51) Enel SpA Al *- A Energy
52) European Aeronautic ... Al A Industrials
53) Experian Finance PLC Baal Baa Consumer
54) Fortum Oyj A2 A Energy
55) France Telecom SA A3 A TMT
56) Gallaher Group PLC A2 * A Consumer
57) Gas Natural SDG SA Al A Energy
58) Gaz de France SA Aal *- Aa Energy
59) GKN Holdings PLC Baa3 Baa Autos
60) Glencore Internation.. Baa3 Baa Industrials
61) Groupe Auchan SA A2 A Consumer
62) Hannover Rueckversic... Aa3 Aa Financials
63) Hanson PLC Baa3 Baa Industrials
64) Hellenic Telecommuni... Baal Baa TMT
65) Henkel KGaA A2 A Consumer
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66) Iberdrola SA A2 *- A Energy
67) Imperial Chemical In... Baa2 *+ | Baa | Industrials
68) Imperial Tobacco Gro... Baa2 *- Baa | Consumer
69) Intesa Sanpaolo SpA Aa2 Aa Financials
70) Kingfisher PLC Baa3 Baa | Consumer
71) Koninklijke DSM NV A3 A Consumer
72) Royal KPN NV Baa2 Baa | TMT

73) Koninklijke Philips ... A3 A Consumer
74) Lafarge SA Baa2 Baa | Industrials
75) Linde AG Baal Baa | Industrials
76) LVMH Moet Hennessy L... | A3 A Consumer
77) Marks & Spencer PLC Baa2 Baa | Consumer
78) Metro AG Baa2 Baa | Consumer
79) Muenchener Rueckvers... Aa3 Aa Financials
80) National Grid PLC Baal A Energy
81) Pearson PLC Baal Baa | TMT

82) Peugeot SA Baal Baa | Autos

83) PPR Baa3 A Consumer
84) Publicis Groupe Baal Baa | TMT

85) Reed Elsevier PLC A3 A TMT

86) Renault SA Baal Baa | Autos

87) Repsol YPF SA Baa2 *- Baa | Energy
88) Reuters Group PLC Baal A TMT

89) Royal & Sun Alliance... A3 A Financials
90) RWE AG Al A Energy
91) Safeway Ltd Baa2 Baa | Consumer
92) Sanofi- Aventis Al A Industrials
93) Siemens AG Aa3 Aa Industrials
94) Sodexho Alliance SA Baal Baa | Consumer
95) Solvay SA A2 A Industrials
96) STMicroelectronics N... A3 A TMT

97) Stora Enso Oyj Baa3 Baa | Industrials
98) Suez SA A3 *+ A Energy
99) Svenska Cellulosa AB Baal Aa Consumer
100) Swiss Reinsurance Aa2 Aa Financials
101) Tate & Lyle PLC Baa2 Baa | Consumer
102) Telecom Italia SpA Baa2 Baa | TMT

103) Telefonica SA Baal Baa | TMT

104) Telekom Austria AG A3 A TMT

105) Telenor ASA A2 A TMT

106) TeliaSonera AB A2 A TMT

107) Tesco PLC A1 A Consumer
108) Royal Bank of Scotla... Aaa Aaa | Financials
109) Thomson Baa3 Baa | Consumer
110) ThyssenKrupp AG Baa2 Baa | Industrials
111) UniCredito Italiano ... Aa2 *- Aa Financials
112) Unilever NV Al A Consumer
113) Union Fenosa SA Baal Baa | Energy
114) United Utilities PL.C A3 *- A Energy
115) UPM-Kymmene Oyj Baa2 Baa | Industrials
116) Valeo SA Baa2 Baa | Autos
117) Vattenfall AB A2 A Energy
118) Veolia Environnement A3 A Energy
119) Vinci SA Baal Baa | Industrials
120) Vivendi Baa2 Baa | TMT

121) Vodafone Group PLC Baal A TMT

122) Volkswagen AG A3 A Autos
123) Wolters Kluwer NV Baal Baa | TMT

124) WPP 2005 Ltd Baa2 Baa | TMT

125) Zurich Insurance Co A3 Aa Financials

Table 4.1: Names on the iTraxx Series 7 along with ratings. "*+"’ means positive
outlook "*-" means negative outlook. Third column is ratings after removal of
modyfiers as explained in Section 4.1, and final column is sector.
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In doing this simplification, it is natural to check if we have made any major
changes to the portfolio characteristics. An important measure is portfolio expected
loss. After the adjustment, the expected loss was about 2% higher. In order to bring
them a little closer to each other a few changes was made to the data. If a company
had a 1-modifyer and positive outlook?, it was upgraded. Also if the company had
a 1-modifyer and FITCH and S&P had a higher rating, the company was upgraded.
Figures 4.1 and 4.2 show how the ratings are distributed before and after removal
of the modifiers. Some of the increased risk in the broad letter portfolio could also
be caused by the relatively fewer number Baa3 companies compared to Baal and
Baa2.

25

20

15

10

Aaa Aal Aa2 Aa3 A1 A2 A3 Baal Baa2 Baa3

Figure 4.1: Distribution of ratings with modifiers for iTraxx Europe Main series 7,
as of June 2007.

Market spreads Since the value of a position is always subject to market
terms, the timing of entering and exiting a position will always play a crucial role on
the return on the investment. Since we are bootstrapping previous market spreads,
also called historical simulation (see Hull (2006), page 438), a glance at history might
provide an intuition on the direction of the results. Figure 4.3 shows historical levels
for the period for which we had a complete set available. As can be seen, the set
includes the ongoing turmoil experienced since the summer of 2007. The spread
levels in this period are much higher than the previous years. Sampling from this
period will then likely result in large negative MtM’s if ones position was entered
before this period. In Chapter 2, we quoted spreads from June 27, 2007, which we

2A positive outlook means that a company is on review for an upgrade, but it is not surely
going to be upgraded.
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Figure 4.2: Ratings without modifiers.

will continue to use in the example of this chapter. Taking a look at the historical
levels, spring/early summer 2007 was a time of narrow spreads even if you exclude
recent times, hence without knowing the impact of time decay, the results should
yield negative MTM’s in most cases. The reader should not make the mistake of
concluding that this means that this asset class performs poorly in general, but view
this as a result of entering into a deal at a time when the market was very calm. A
deal analysis based on tranches from June 27, 2007, should in reality just be based
on market data up to this date, but we have included this last period of data to see
to what extent the carry, or coupons earned, outbalance the negative MtM’s.

Rating transition dependency We have not found any public research on
joint rating migrations, where dependencies have been estimated using corporate
bond history. In our example we are using a gaussian copula with correlation matrix
estimated from arithmetic returns on single name CDS spreads. This might seem
as an arbitrary choice, but many commercial credit portfolio models employ such
assumptions. In some structural, or firm value models, equity correlation is used as a
proxy for firm value correlation directly, or extracted after mapping equity returns to
asset /firm value returns. CreditMetrics uses this approach (see JPMorgan (1997)).
CDS spreads, although saturated by risk premiums and sometimes lack of liquidity,
are nonetheless an expression of a company’s relative credit risk. The effect of
estimating correlations with CDS data versus equity data have not been explored
in this thesis, and to our knowledge, not in any other paper. Further, since we
are simulating over periods of quarterly length, quarterly data have been used in
estimation of the covariance matrix.
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Figure 4.3: Historical levels for Itraxx Europe main index, and tranches. March
2005 - April 2008
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Recovery rates For the recovery rates, we use beta distributions. We add
some more heterogeneity to the portfolio by separating companies by industry. We
estimate the parameters by the method of moments using historical means and
standard deviations as found in Renault & Scaillet (2003). All sector names except
Industrials corresponded to the iTraxx sector names in this paper. For Industrials,
we averaged the values of Chemicals, High tech and Building. Table 4.2 shows the
values and parameters that we have used.

~

Sector Mean Std.dev Qa I}

TMT 0.2473 0.0753 7.871282 23.95760
Energy 0.4556  0.2561 1.267325 1.514337
Financials | 0.2970 0.2463 0.725208 1.716570
Autos 0.4298 0.2136  1.878847 2.492598
Industrials | 0.4349 0.2433 1.370498 1.781158
Consumer | 0.3680 0.2121 1.534529 2.635387

Table 4.2: Mean and standard deviation of recovery rates by sector, and correspond-
ing a and 3 parameters.

4.2 Losses

In our example, we will be using the euro denoted zero curve® from June 27, 2007,
and unit exposure to all names such that tranche sizes are as given in Table 4.3.
There is no requirement on the size of the exposure as far as we know. For the
sake of comparison we have made them a function of the pool notional. So that the
tranche notional equals the (pool notional x tranche width).

Pool | 0-3% | 3-6% | 6-9% | 9-12% | 12-22%
Notional | 125 | 3.75 | 3.75 | 3.75 | 3.75 12.5

Table 4.3: Itraxx tranche notionals with unit exposure to every name.

The experiment was carried out using 10000 Monte Carlo runs. The computa-
tions were done using R on a laptop with 3GB of RAM. Due to the high dimension-
ality of problem, memory allocation was an issue, and therefore it was not feasible
to carry out many more runs. We first compute the defaults by simulating rating
transitions in quarterly steps. When a company defaults, a random number from
the beta distribution corresponding to that company’s sector is drawn, and losses
are calculated. We then compute the carry for all the tranches as a function of losses
experienced in the pool. Figure 4.4 shows histograms of the number of defaults for
the Ttraxx series 7 portfolio after one and five years respectively.

3The interest rate yield curve derived from Euribor and euro denoted futures and swaps, kindly
provided by Mr. Bjgrn Bakken.
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Figure 4.4: Histogram of number of defaults after 1 year (top) and 5 years (bottom).
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As expected when dealing with low credit risk portfolios, defaults rarely hap-
pen. The tails of the loss distribution are in the gaussian copula attributed to the
level of correlation only, as discussed in Chapter 2. Any statistic based on large
quantiles is of course very uncertain due to the large amounts of simulations needed
to get a decent estimate. It is however worth noting how rare these events are, and
therefore how well protected the very senior tranches of the capital structure are.
That is, if one believes history to be a good prediction of the future.
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Figure 4.5: Losses after 1 year. Pool notional is 125.

Figures 4.5 and 4.6 shows histograms of losses experienced by those defaults.
Because of the high probability of zero defaults, large losses are not visible in the
histogram. Based on the simulations, we can also address some portfolio risk mea-
sures such as Value-at-Risk (VaR) and Expected Shortfall (ES). VaR is a quantile
in our loss distribution, and expresses what the losses are at some probability level.
ES on the other hand, is a conditional expectation, which tells us what losses to
expect given that losses exceed a given quantile.
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Figure 4.6: Losses after 5 years. Pool notional is 125.
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We define VaR and ES as

VaR, (L) =inf{z > 0|P(L; < x) > a} (4.1)
and
ES.(L;) =E[L;| Ly > VaR, (L)), (4.2)

where L; denotes the loss variable.

When dealing with simulations, it is an easy task to compute these quantities.
We sort the loss vector and pick out the 95% quantile. The ES is then simply
the mean of the outcomes exceeding this value, in our case 500 values. Figure 4.7
reports these measures of risk, and also shows some limitations of VaR. In general
one should be aware of summing up risk in single quantities like VaR. In our toy
example, calculating VaR at the 95% level gave a value of 4.3 units of notional.
This measure of risk tells us that with probability 95% losses will not exeed 4.3
within the 5 year term. This value recides in the junior tranche with 3.75 units of
notional subordinated by the equity tranche. However, if the losses were greater
than 4.3 units of notional, we actually expect a loss of approximately 8 units more
than VaR! That is, because of the fatness of the tails, when breaching the 95 % level
we actually expect to get a loss amount that wipes out the three first tranches and
takes a bite of the fourth tranche. Looking at VaR alone when considering worst
case scenarios, might give the illusion of a much more optimistic picture than might
be experienced.
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In Table 4.4 we show the hitting probabilities of the various tranches, that is
the probabilities
PDyranche = P(L(t) > «), (4.3)

where L(t) is the portfolio loss variable at time ¢, and « is the tranche attachment
point. We estimate the quantity by computing the relative frequency of losses that
are large enough to reduce the notional of the tranche in question. We denote by
L) () the loss in the i-th scenario and let (-) be the indicator function. An estimate
is then given by:

_ 1 <& .
PDiranehe = — > I(LD(t) > a). 4.4
tranch n; ( ()_0‘) ( )

The hitting probabilities express the probability of being affected by losses, or loosely
speaking the probability of default for a tranche. The effect of subordination is large
for tranches senior to equity with very low hitting probabilities. On the other hand,
the experiment shows how risky the equity tranche is, with nearly a 50% chance of
beeing hit with a loss. No losses has occurred in the iTraxx Europe pool to this
day, but the last years have been good times. It will be interesting to see if any of
the iTraxx constituents will default in the years to come, especially in view of the
ongoing credit crisis.

Tranche 0-3% | 3-6% | 6-9% | 9-12% | 12-22%
Hitting probabilities | 46.7% | 6.1% | 2% | 0.77% | 0.35%

Table 4.4: Hitting probabilities of tranches within 5 years.

4.3 Spreads and P&L

The previous section focused on a pure notional loss analysis for the whole term of
a b year contract. We will now focus on a one year perspective and therefore also
consider risks attached to market value.

As mentioned in Section 3.3, we need the spread of a 4 year contract in order
to calculate MtM values after one year. Since we have no history of tranches with
maturity 4 years, the 4 year spreads we calculate are model-implied. Using the
interest rate curve of June 27, 2007, we first calibrate the pricing model to the
available history. This is done by first calculating the termstructure of default
probabilities (market implied) using index spread level for the maturities of 3 and
5 years, and secondly by extracting the base correlation curve corresponding to the
tranche quotes. Unfortunately the calibration of the 12-22% senior tranche proved
to be very difficult. In order to get convergence in the root searching algorithm
used, a feasible interval of base correlations had to be supplied. For the 12-22%
tranche, this interval turned out to be very narrow, making the calculations a very
time consuming manual task. We do not know if this is an issue with the model
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itself, or due to the implementation, but for this reason we decided to omit this
tranche in further analysis. Using the simulated losses of Section 4.2 we calculate a
possible future spread as follows:

e For every simulated loss scenario, sample one historic set of uniform default
probabilities and base correlations.

— If there are no losses in the scenario, calculate tranche spreads using
sampled set, but with a 4 year term.

— If losses has occurred in scenario, calculate new attachment and detach-
ment points and find corresponding base correlations by interpolation.
Remove defaulted name(s) from pool, and calculate new tranche spreads
for a 4 year term.

For the interpolation and extrapolation on the base correlation curve, we fitted a
cubic spline with the help of the function splinefunc in the software package R.
While interpolation is straight forward, extrapolation poses some challenges. Since
we have no quotes for tranches with detachment points less than 3%, it is hard to say
what a correct value should be. In lack of better options, we set the base correlation
at detachment point 0% to be a 0.01. The extrapolation performed by the spline
function is then linear from the 3% point down to 0%.

In Figure 4.8 we present histograms of 4 years spreads obtained by historical
simulation. These are based on market data from March 2005 and up to June 27,
2007. These histograms do not include spreads based on default scenarios, but are
provided along with historic market spreads for the 5 year contract to show the
effect of a shorter term. As should be the case, spread levels are shifted downwards.
What should be noted, is that although time decay seemingly removes some of the
negative MtM risk using this history, there is still a very large variability in spread
levels that ultimately could cause a negative position. One should also keep in mind
that the considered time period is in itself a calm period. If faced with spread levels
seen this last year (following summer 2007), time decay effects would not help much.

Figure 4.9 have several features that deserve commenting. Here we have in-
cluded scenarios where losses has occurred. Black colored points are spreads without
losses, green colored marks are spreads where one or more losses in the pool has oc-
curred, but still below respective tranche attachment point. Red marks are tranche
spreads, when losses have affected the tranche directly by reduction of notional or a
total wipe-out(red marks at zero). When looking at these plots, one should keep in
mind the figures of the previous section. The median pool notional loss over a one
year time horizon was roughly 0.8. In the majority of outcomes, one will therefore
not expect a dramatic change in spreads for tranches senior to equity. Subordination
is still substantial. We stress the fact that this is a result of the models employed in
this thesis. A sudden event might cause a major reaction in overall spread levels on
a shorter term. This was experienced with the unexpected downgrading of Ford and
GM’s debt in May 2005, when spreads widened. However, the spreads quickly fell
back to their normal levels, and if we ignore supply /demand factors for a moment,
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spreads will generally reflect market expectation of credit risk. Our model simply
does not account for unezpected events.

Analysing spreads as in Figure 4.8 and 4.9, highlights a source of risk that
easily can be overlooked. Speaking of spread risk without taking into account spread
changes as a result of defaults, might understate the spread risk. Volatility or
standard deviation is arguably not a good measure of risk, especially when dealing
with highly skewed distributions, but we give a comparison to highlight the issue.
Table 4.3 shows the standard deviation of the model implied 4 year spread with,
and without default scenarios. The effect is substantial.

0-3% 3-6% 6-9% 9-12%
Without defaults | 6.65 % 20.3 bps 6.3 bps 4.4 bps
With defaults | 7.75 % 137.4 bps 54.3 bps 11.6 bps

Table 4.5: Standard deviation of 4 year spreads without defaults (top), and with
defaults (bottom).

Based on the simulations we can calculate a Profit € Loss distribution. In
Table 2.4 we quoted some iTraxx tranches from June 27, 2007. Comparing these
with the distribution of 4 year spreads should give a rough guide to the sign of MtM
values. If the 4 year spread is higher than the spread quoted, then you get a negative
MtM value. For all tranches but equity, it looks as if most outcomes will end with
a positive sign. For equity it is more uncertain, and also the time effect seems to
be of lesser importance, which is intuitive as a first loss piece is always exposed to
immediate default risk no matter how benign or grim the credit environment is. In
view of Section 3.4 we take into account both losses, carry and MtM values we can
calculate a P&L distribution that is relative to notional exposure. Such a calculation
is done and shown in Figure 4.10, where we have used the quoted values of June 27,
2007 as an example. This calculation is of course subject to the data at hand and
spreads at initiation, which where low and therefore yields low expected returns. All
distributions but the one for the equity tranche exhibit extremly fat tails. This is as
expected since most default outcomes hit the equity tranche. Another observation
can be made by looking at the 5% quantiles. The size of the quantile tells us that
these losses are not based on pool defaults. Arguably the equity quantile could be
attributed to a default if the recovery was very high.

An unescapable issue with these kinds of risk assessments, is what history to
use. In the calculations done so far, we used history from March 2005 to June 27,
2007. We also had history for the following year, and including these spread levels,
will dramatically change the downside risk. Looking at Figure 4.3 again, tells us
that the levels in this period is many times higher than the history from March 2005
up to summer 2007. Since this accounts for roughly a quarter of the data we had
available, the probability of getting large negative MtM will increase substantially.
Arguably, downturn cycles of this magnitude will not appear at such a high rate, i.e
one in four years, but it would be unrealistic to claim that the levels now witnessed
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Figure 4.8: Histogram of 4 year model spreads (green), and 5 year market spreads
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will not happen again. Although the index tranche market has only been around
for about four years, credit spreads have been high in the past, in example late
80’s/early 90’s, and also at the beginning of this millenium. A possible solution to
the problem of the dominating downturn cycle in our data set, could be weighting
the sampling a bit. That is, sampling from this period with a smaller probability.
We would still get the large outcomes of spreads, but at lower frequency. We have
not investigated this effect, where one would also have to tackle the issue of how
often such cycles occurr. The effect of simply including this period in the same
experiment is shown in Figure 4.11. The results imply a negative expected return,
which is caused by by the relative large amount of wide spreads, which in turn yields
negative MtM values.
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Chapter 5

Conclusion

In this thesis we have introduced some common credit derivatives like CDSs and
CDOs. These are derivatives that originally where invented to diversify or manage
credit risk. For banks they offered the ability to reduce economic capital require-
ments by buying protection on some parts of their portfolio, without the need to
sell off exposures. Today they are not only used in a risk management setting, but
also actively traded by speculative investors, like any other market instrument. As
they are market instruments, one of the key interests was to explore the difference
between the probabilities of default inherit in the price of a market instrument and
those implied by history and published by rating agencies. We showed through an
example that they can differ substantially, but also discussed that a part of the dif-
ference might be attributed to other factors such as liquidity. This difference can be
understood as a risk premium, inherit in the market price. This differs from stan-
dard actuarial pricing used in insurance, where the technical premium is calculated
according to a model fitted to history, and then possibly added a risk premium.
Also market prices must obey the "law" of no arbitrage, which is not applicable for
a standard insurance contract, you can not short-sell your insurance policy as far as
we know.

As the main topic of the thesis is synthetic CDOs, we wanted to shed some
light of these differences in a portfolio instrument, and to explain some of the risks an
investor is faced with. Through a multivariate rating transition model, we handled
the risk of pure default, and using a standard synthetic CDO pricing model along
with historic market data, we forcasted a distribution of market spreads. This was
done on a one-year horizon for the iTraxx FEurope index, and P&L distributions
where calculated. The results obtained through simulation, imply that the main
source of risk in terms of return on a short horizons, can be explained by spread
risk. The equity tranche is always exposed to immediate risk of default, but all
other tranches seems very default remote. A reason for this, is that the constituents
on the iTraxx are all investment grade, and looking at history, investment grade
corporates rarely default on their obligations. Figure 5.1 shows this history. Keep
in mind that this is global history and not defaults in a pool of only 125 names.
Figure 5.2 shows this same history for sub investment grade corporates, and here the
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downturns periods mentioned in Section 4.3 are more apparent. This brings us to the
issue of model validity. We argued in Section 3.2 that investment grade corporates
are less sensitive to business cycles, and that a good rated company can withstand
downturns of the economy for a longer period of time, than a poorly rated company.
In such a view, ignoring business cycles when looking at a short horizon might not
be a big issue when dealing with investment grade credits. When looking at longer
time horizons, the effect of including business cycles in the model might be more
pronounced. A lower rated company must finance itself at a higher cost than a better
rated company. A downturn in the economy might trigger more downgrades, which
again could make the operating environment for an initially investment grade rated
company horrible when faced with a difficult market situation. It is therefore very
plausible that such spiral effects are amplified with business cycles. A further line
of research could therefore be to redo the assessments in this thesis, but including
business cycles affecting both market spreads and rating transitions, and possibly
at longer time horizons than a single year.
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Figure 5.1: Number of defaults globally on investment grade credits since 1970.
Source Moody‘s (2008)

72



v
o
Lo_
v
" v
= O
3 2 v
© v v
Q
° v
0 v v
v
v \VAVAV; \Y v vV
yvvV Vv v v
o -4 VVVVVyVVyVy
[ [ [ [
1970 1980 1990 2000

Time

Figure 5.2: Number of defaults globally on sub investment grade credits since 1970.
Source Moody‘s (2008)

73



74



Appendix A

Appendix

A.1 Default leg

First notice that L(t), and hence L, 4(t) is a pure jump process. At every jump of the
process there is a payment of L, 4(t7) — L, 4(t) > 0. We assume that the discount
function D(0,t) and the tranche loss function L, 4(¢) do not share any points of
discontinuity so that we can define Stieltjes integrals with respect to L,q4(t). We
take a partition of the interval [0,7], 0 =ty < t; < ... < t, = T and consider the
Riemann sum

Z D(0,&i-1) [Laa(ti) — Laa(ti-1)] (A.1)

for & € [t;, t;11]. Then if the sum tends to a fixed number I as max(t;,; — ;) — 0,
I is called the Stieltjes integral of D with respect to L, 4(t), and denoted

/ * D(0.1)dAL (1) (A.2)

By assuming independence between the deterministic discount function D(0,t)and
the tranche loss function L, 4(t), we approximate the expectation of the limiting sum,
or integral by a discrete sum on a fixed mesh of the partition, meaning t; —¢;,_; = ¢
for all 7.

E "z: D(0,ti-1) (Laa(ti) — Laa(ti-1))
tn Xk
= Z D(0,ti-1) [ELaa(ti) — ELqa(ti-1)] (A.3)

where t,, denotes the number of points in the summand of the default leg. I.e if we
have a 5 year contract which pays premium quarterly, ¢, = 5x4. The approximation
(A.3) becomes more accurate the higher value of k we choose. If we set k = 3 it
corresponds to a monthly discretization.
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A.2 Hazard Rates

Let the random variable 7 be the time of default. Then the instantaneous probability
of default, or hazard rate is defined as

Plr <t+ At|t >

ht) = fimg At (A4)
. Plt<7<t+ Al
S AT APy P A9

L [T fsyds 2R 9
= Ay = f(s)ds = Py~ aoeL- ). (A0)

By solving the ODE, we get

Ft) = 1— exp (— /0 “h(s) ds) (A7)

and

A.3 Factor Model

To derive det correlations in the factor model, we first note that

E(X;) = E(a;Y +4/1—a?Z;) = 0,becauseY, Z;i.i.d N(0,1)  (A.9)
Var(X;) = a’Var(Y)+ (1 —a?)Var(Z;) = 1. (A.10)

Since each X; have unit variance, the correlation is given by

Cov(X;, X;) = aa;Var(Y) + a;\/1 — a3 Cov(Y, Zj)

+ aj\/1—a?Cov(Z;,Y) + \/1 — a?\/l — a5 Cov(Z;, Z;)
a;a; = pPij- (A]_l)
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