
Some applications of

stochastic process techniques to statistics

by

Steffen Grønneberg

THESIS

Dissertation presented for the degree of

PHILOSOPHIÆ DOCTOR



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Steffen Grønneberg, 2011 
 
 
Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 1133 
 
ISSN 1501-7710 
 
 
All rights reserved. No part of this publication may be  
reproduced or transmitted, in any form or by any means, without permission.   
 
 
 
 
 
 
 
 
Cover: Inger Sandved Anfinsen. 
Printed in Norway: AIT Oslo AS.   
 
Produced in co-operation with Unipub.  
The thesis is produced by Unipub merely in connection with the  
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright  
holder or the unit which grants the doctorate.   



Preface

This thesis is dedicated to my grandmother, Ada Madssen, who meant the world

to me.

3





Contents

Chapter 1. Introduction to the Thesis 7

1. From the ancients to 1640 8

2. The first limit theorem and the variable Nε 13

2.1. Improvements on the Bernoulli bound 13

2.2. Uniformity and the Vapnik-Chervonenkis inequalities 18

2.3. CLT-based approximations for the tail of Nε 22

2.4. Full circle: Calculating the quantiles of the limiting distribution 24

2.5. A new type of sequential confidence bands for the Nelson–Aalen

estimator 25

3. Gorgias’ revenge: Model selection and pragmatism 26

3.1. Two-stage model selection procedures 29

3.2. The way ahead: Non-asymptotic model-selection 32

3.3. A connection between the AIC and Nε 33

4. Non-standard alternative models: Regression with jumps 35

Chapter 2. Paper 1: On the errors committed by sequences of estimator

functionals 43

Chapter 3. Paper 2: The Copula Information Criterion and its implications

for the Maximum Pseudo Likelihood Estimator 71

Chapter 4. Paper 3: The Copula Information Criteria 95

Chapter 5. Paper 4: Estimation and Inference for Jump Regression Models 133

5





Chapter1
Introduction to the Thesis

This thesis studies certain mathematical aspects of model selection, statistical

estimation theory and probability using stochastic process tools. Except for the

stochastic process tools that the our investigations use, it must be admitted up

front that the papers of the this thesis really concerns three different problems. An

introduction to a PhD thesis should summarize its papers through placing them

in connection with each other and in a broader context, as well as discussing their

interrelations in a wider perspective. As the enclosed papers are all of a somewhat

separate character, I have chosen to decrease the focus typical for such introductions.

The introduction begins with Section 1 that describes the start of probability,

both in the ancient rhetorical sense and in the mathematical sense starting around

1660. I will use this description as an anchor to connect the thesis’ papers through

a somewhat speculative discussion constituting the remainder of the introduction. I

hope the trained philosopher will forgive my amateur efforts in using philosophical

considerations as a tool to try to connect the papers.

Section 2 introduces the enclosed paper “On the errors committed by sequences of

estimator functionals”, which is accepted for publication in the international journal

Mathematical Methods of Statistics. We will look at how to calculate probabilities

related to the most fundamental law of probability: The weak and strong laws of

large numbers and their uniform extensions.

Section 3 introduces the papers “The Copula Information Criterion and its im-

plications for the Maximum Pseudo Likelihood Estimator” and “The Copula Infor-

mation Criteria”. The first paper is published in the book “Dependence modeling

– Vine Copula Handbook” and was written by invitation. In many ways, it serves

as an introduction to the more technical paper “The Copula Information Criteria”,

which is submitted for publication. To avoid repetition, we will introduce the con-

cepts involved in model selection in general – rather than focusing solely on the

copula information criterion. Section 3.3 provides a perhaps surprising connection
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8 1. INTRODUCTION TO THE THESIS

between “On the errors committed by sequences of estimator functionals” and the

AIC-heuristics used in “The Copula Information Criteria”.

Section 4 introduces the paper “Estimation and inference for jump regression

models”. This paper deals with a somewhat non-standard regression problem from

both the Bayesian and frequentist perspective. Our basic set-up is observations

y1, . . . , yn of the form

yi = m(xi, θ) + εi, for i = 1, . . . , n,

where m is a step function with steps specified by the covariates x1, x2, . . . , xn and

ε1, ε2, . . . , εn is mean zero Gaussian noise. We derive asymptotics for estimates of

the parameters specifying m, and show that Bayesian estimation is superior to ML

estimation from a frequentist perspective through using theory from Ibragimov &

Khasminskii (1981)

1. From the ancients to 1640

Statistics can be widely described as decision making under uncertainty. Uncer-

tainty is lack of information, and uncertain knowledge has been considered to be

second class knowledge almost throughout western history. However, as the ancient

golden age pre-Socratic Greek Sophist Gorgias puts it in his controversial essay,

Encomium of Helen,

For if all men on all subjects had memory of the past, (understanding)

of the present, and foresight into the future, logos would not be the

same in the same way; but as it is, to remember the past, to exam-

ine the present, or to prophesy the future is not easy; and so most

men on most subjects make opinion (doxa) an adviser to their minds.

But opinion is perilous and uncertain, and brings those who use it to

perilous and uncertain good fortune.

This is just one part of an argument on how Helen of the Illiad is not to blame

for escaping to Troy. The style of the encomium is such that it could be the lines

of an Oscar Wildean dandy. However, the above pragmatic description of certainty

and understanding is in clear contrast to Plato – whose main criticism against the

sophists is precisely against their use of probabilistic statements (Gagarin, 1994).

In the dialogue Phaedrus (267a), Plato – perhaps the greatest rhetorician of the

western civilisation – ridicules the rhetoricians’ by “We will let Tisias and Gorgias

rest in peace, who saw that probabilities should be more honoured than truths, and

who make small things appear great and great things small by the power of speech.”

Concerning Plato’s critique of the Sophists, Gagarin (1994) says

Plato provides no evidence to support his statement about the

value of probability; none the less, critics ever since have largely

accepted his views. [...] In sum, there is no evidence to support
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Plato’s claim, echoed nearly unanimously by modern scholars, that

Greek orators and rhetoricians valued probability more highly than

the truth. Undoubtedly probability was sometimes used to support

a false case, but so too was direct evidence; and the surviving

speeches, at least, indicate that orators at this time had a clear

and reasonable understanding of the value of probability arguments

and considered them valid only to the extent that direct evidence

for the truth was absent or inconclusive. Plato’s criticisms on this

point reflect his own concern with the overriding primacy of an

absolute standard of truth, which is tied to and validated by his

Forms; for him anything less than absolute truth was no truth at

all.

The probabilities of the Sophists were what we would consider intuitive subjec-

tive probabilities. As an example, Aristotle attributes the following two arguments

to the Corax of Syracuse (who, along with Tisias, is seen as the founder of ancient

Greek rhetoric) in his Rhetoric 1402a17-28: Suppose that a fight has broken out

between a weak and a strong man. The weak man uses the following probabilistic

argument for his innocence: It is not likely that he, a weak man, assaulted a strong

man. The other counters with more sophisticated probabilistic reasoning: He is not

likely to have assaulted a weak man, since he, a strong man, would immediately be

suspected of the crime. This argument is quite far away from our mathematically

formalized probabilistic reasoning, but as a rhetorical technique, it is part of a strain

of ideas that has been in continual use ever since.

Garber & Zabell (1979) summarizes the development of probabilistic arguments

in the rhetorical tradition until the emergence of mathematical probability around

1640. And while it is true that some ur-concept of probability is traceable to the

sophists, Ian Hacking argues in the preface of the second edition of Hacking (1975)

that the network of ideas containing the rhetoricians probabilistic arguments are

quite separate from the developments leading to the mathematical formalization of

probability around 1640. Mathematical statistics is concerned with the study of

statistics using a formalized concept of probability. With the greatest ease, mod-

ern statistics rely on advanced mathematical constructs such as abstract Brownian

motion processes, whose existence and properties rely specifically on our axiomati-

zation of probability and modern mathematics. In the next section, we will study

a very basic problem of probability using these advanced tools, and surprisingly

meet the limitations of the currently accepted framework quite easily in the form of

non-measurable “random variables”.

A strange and surprising feature of mathematical probability is that it is a fun-

damentally dual concept: Probability concerns both subjective and frequentist phe-

nomena. Hacking (1975, p 43) says “any theory on the emergence of probability must
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try to explain why the concept that emerged was dual in just this way.” Hacking

(1975, p 12) describes this as follows

It is notable that the probability that emerged so suddenly is Janus-

faced. On the one side it is statistical, concerning itself with sto-

chastic laws of chance processes. On the other side it is episte-

mological, dedicated to assessing reasonable degrees of belief in

propositions quite devoid of statistical background. (...) Pascal

himself is representative. His famous correspondence with Fermat

discusses the division problem, a question about dividing stakes in

a game of chance that has been interrupted. The problem is en-

tirely aleatory in nature. His decision-theoretic argument for belief

in the existence of God is not. It is no matter of chance whether

or not God exists, but it is still a question of reasonable belief and

action to which the new probable reasoning can be applied.

Hacking (1975) develops a now famous thesis on this development. He describes his

program on page 16 as

I am inviting the reader to imagine, first of all, that there is a space

of possible theories about probability that has been rather con-

stant from 1660 to the present. Secondly, this space resulted from

a transformation upon some quite different conceptual structure.

Thirdly, some characteristics of that prior structure, themselves

quite forgotten, have impressed themselves on our present scheme

of thought. Fourth: perhaps an understanding of our space and its

preconditions can liberate us from the cycle of probability theories

that has trapped us for so long. This last picture has a familiar

ring. The picture is, formally, the same as the one used by the psy-

choanalysts and by the English philosophers of language. “Events

preserved in memory only below the level of consciousness”, “rules

of language that lie deep below the surface” and “a conceptual

space determined by forgotten preconditions”: all three have, of

course, a common ancestor in Hegel.

The basis for his theory is the French philosopher Foucault’s discussion on the

sign in his book Foucault (1966). Foucault’s historical programme in Foucault (1966)

can be described as taking the problem of anachronisms seriously. His central con-

cept is that of epistemes, which is the conscious and subconscious assumptions and

requirements a time and culture demands of knowledge-claims. Many epistemes

can coexist, they can change and develop and have complex interplay. His cen-

tral program, which he calls the archaeological method, is to follow the origins and

developments of epistemes by analysing primary sources from the time under study.
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The thesis of Hacking (1975) is summarized as follows. In addition to the Great

Chain of Being – which describes an hierarchical structure of nature from the lowliest

stones, up to plants, to man and up to angels and finally God – a central part of

late medieval thought was the understanding that the world was connected through

similitudes, analogies and signs. Everything is connected, and each part of the

world is connected with everything else through these connections. This was not

a poetic image, but literal one: If an herb looked like a human organ, one should

interpret this as a sign: this herb might have healing powers for the similar organ.

In occult Christianity, this was extended to the thought that such signs were not

only similarities – but God’s writing in nature. If one could decipher these signs one

could read the thoughts of God. The alchemists and physicians had intricate systems

of interpretation to reach nature’s secrets. And while the alchemists wanted to read

God’s thoughts to come closer to Him, the physicians wanted to establish a science

based on these signs. The problem with such signs is that some signs are always

valid, while others are only valid sometimes. The signs that are not always regular

were called “signs with probability” (Hacking, 1975, p. 43). These signs had two

types of uncertainty: A subjective uncertainty – one did not always manage to

read God’s signs correctly – and frequentist uncertainty – the sign’s power does

not necessarily come into force; the herbal medicine does not always work. Hacking

(1975, p. 44-45) describes the connection between these thoughts and the emergence

of probability as follows.

The sign-as-evidence indicates with probability, but I do not claim

that the authors who employed it where an “influence” on the

founding fathers of probability. Some historians of ideas are much

concerned with the way in which work A can influence his succes-

sor B. Two kinds of influence are considered. B may deliberately

choose to employ central concepts or techniques of A, or else B may

unwittingly pursue a programme initiated by A. Such talk of “In-

fluence” is part of the historian’s language of precursors and antici-

pations. It would be amazing if Paracelsus [An alchemist physician

discussed in the connection of reading the thoughts of God, and

an inspiration to the Faust-myth] were an “influence” on a Pas-

cal or a Leibniz. The mathematicians despised what they knew of

the occult. Yet their contempt for those earlier hermetical figures

does not preclude the possibility that whenever these geometers

thought about opinion, they thought in a conceptual space that

was the legacy of the very empirics whom they scorned. The intel-

lectual objects about which, and in which, the new mathematicians

thought had been formed in the crucibles of the alchemists and the

vials of the physicians.
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After this discussion, Hacking (1975) continues to extend Foucault’s theories,

stated on page 70 of Foucault (1966) as follows.

If we question Classical1 thought at the level of what, archaeo-

logically, made it possible, we perceive that the dissociation of the

sign and resemblance in the early seventeenth century caused these

new forms – probability, analysis, combination and universal lan-

guage system – to emerge, not as successive themes engendering

one another or driving one another out, but as a single network

of necessities. And it was this network that made possible the

individuals we term Hobbes, Berkeley, Hume or Condillac.

This places the emergence of probability as a crucial ingredient of seventeenth

and eighteenth century thought.

While the above may quotations seem somewhat wild, and it may seem very

unscientific to rely on similitudes in the study of medicine, these old medieval cate-

gories of inference are still very much in use today as the basis for discovery. This is

the case, even in pure mathematics, as discussed thoroughly in Pólya (1945, 1954).

Mathematical exploration and discovery very much rests on these types of infer-

ences, and learning to do advanced mathematics may in some sense be thought of

as learning how to use the medieval categories of similitudes, analogies and signs –

while checking the resulting uncertain inferences through stringent deductions. It

is most unfortunate that this very important final step is unavailable for inference

regarding the real world.

The first major work of mathematical probability theory is Jacques Bernoulli’s

Ars conjectandi. Chapter 17 of Hacking (1975) describes its main mathematical

content as follows.

Chapter 5 of Part IV of Ars cojectandi proves the first limit theorem

of probability theory. The intended interpretation of this result is still

a matter of controversy, but there is no dispute about what Bernoulli

actually proved. He takes for granted a chance set-up on which he

can make repeated trials. There is a constant unknown chance p of

“success” S on any given trial. When n trials are made a proportion

sn of successes is observed. Bernoulli proves what is now called the

weak law of large numbers: the probability of an n-fold sequence in

which |p−sn| < ε increases to 1 as n grows without bound. Moreover,

for any given error ε, he shows how to compute a number n such that

the probability of getting sn in the interval [p− ε, p+ ε], itself exceeds

any given probability 1−δ. In particular, if (1−δ) = 0.999, we have a

moral certainty that sn will fall in the assigned interval. For example

1That is, the time between around 1750 to 1830, not the classical period of the ancients.
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if p is 3/5 then a moral certainty of error less than 1/50 is guaranteed

by an n in excess of 25 550.

Frequentist probability is fundamentally thought of through the law of large

numbers. Stability of long term frequencies is in our backbone when it comes to

probability, and yet any real world connection is clearly a theoretical postulate.

Proving the law of large numbers is in some sense circular: It must be valid, otherwise

the frequentist probability formalism does not make sense almost by definition.

The law of large numbers is in it self a rather empty result. In contrast, an

error bound is much more directly connected with the real world. We will discuss

such error bounds rather thoroughly in the following section, and here we will only

mention that we can do much better than the bound of Bernoulli: We get that

n = 6773 is the exact uniform bound, reached precisely when p = 1/2. It would

seem that a simple test of this claimed connection between the probability model

and the real world by throwing a fair coin n = 6773 times. However, we would need

to do this many times to assess the claim that |p − sn| > ε in no more than 0.1%

of the time. How many times must we perform this experiment in order to formally

test this hypothesis? We regress into an infinite loop which strictly speaking cannot

be resolved without some leap of faith.

In the case of a coin, we can be highly convinced of its long term frequency

distribution by the several laborious experiments performed by various people lack-

ing any strong sense of their own mortality and limited time as corporeal beings.

For more complex phenomena, such as non-repeatable stochastic processes like the

stock market, we cannot even in theory check the various probability statements

we casually make in the statistics literature. And, to take this line of thought to

its limit: we cannot ever repeat the exact conditions of an experiment. Probability

models depend crucially on our modelling assumptions, and the model specification

is in part a subjective process.

2. The first limit theorem and the variable Nε

We now move on to present the paper “On the errors committed by sequences of

estimator functionals”, which is a work in probability theory motivated by statistical

concerns. Our basis will be the Bernoulli bound presented in the previous section.

2.1. Improvements on the Bernoulli bound. A modern reader will not be

impressed by Bernoulli’s error-bound of n ≥ 25 550. His proof is based upon a

detailed analysis of the binomial coefficients, and he would be shocked to learn how

easily his result can be improved by the use of the Chebyshev-inequality. As it is

clear that for any random variable X, we have that

X = X × 1 = XI{X ≥ ε} + XI{X < ε} ≥ XI{X ≥ ε} ≥ εI{X ≥ ε},
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the linearity and monotonicity of expectation shows the Chebyshev inequality P (X ≥
ε) ≤ EX/ε. Hence, sub-additivity and the Chebyshev inequality gives

P{|X| ≥ ε} ≤P (X ≥ ε) + P (X < −ε) = P (X ≥ ε) + P (−X ≥ −ε)

=P (eλ1X ≥ eλ1ε) + P (eλ2X ≥ eλ2ε) ≤ Eeλ1(X−ε) + Ee−λ2(X−ε)

for any λ1, λ2 > 0. Now let Sn =
∑n

i=1 Xi, where Xi are independent with P (Xi =

1) = p and P (Xi = 0) = 1 − p. Calculus enables us to further bound the above

inequality, see e.g. Chapter 1.6 of Shiryaev (1995), which gives

(2.1) P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

)
≤ 2e−2nε2

.

Note that in contrast to Bernoulli’s statement, this inequality is uniform in p. Hence,

for any p, we are guaranteed that

(2.2) P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

)
≥ 1 − δ

is satisfied when

nExponential =

⌈
log(2/δ)

2ε2

⌉
.

When 1−δ = 0.999 and ε = 1/50, we get n = 9502. This is still a crude bound. Any

modern computer can easily calculate the exact solution, resulting in the comparison

between the exponential bound and the exact uniform bound in Figure 1(a). The

exact uniform bound is 6773.

These finite sample calculations may seem strange to the typical statistician:

For sufficiently small ε and δ, it is clear that the Central Limit Theorem yields very

good approximations. Such an approach would be based on the approximation

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

)
≈ P

(|N (0, p(1 − p)) | ≥ √
nε

)
= 1 − 2Φ

(
−

√
nε√

p(1 − p)

)
,

so that

(2.3) nNormal =

⌈
p(1 − p)

ε2
Φ−1

(
δ

2

)2
⌉

suffices. On the scale of Figure 1(a), the exact solution and the solution based on

the normal approximation are indistinguishable. The normal-approximated uniform

bound is �ε−2/4Φ−1(δ/2)2� = 6767, impressively close to the exact solution 6773

– but slightly underestimated. Figure 1(b) shows the difference between the exact

solution and nNormal, while Figure 1(c) shows their relative error. These errors can be

bounded by results such as the Berry–Esseen Theorem, but they differ in character

from the exponential bound, in that they both overestimate and underestimate n.

The above set-up is so simple that we can find exact solutions fairly easily. As

illustrated by the example we will momentarily study, we often cannot. What the
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Figure 1. Plots related to eq. (2.2).

above set-up does do though, is illustrate fundamental behavior of three types of

calculations in statistics:

(1) Exact, or approximately exact calculations – which are often impossible or

very difficult to find.

(2) Finite sample bounds – which are often skewed in a known direction.
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(3) The asymptotic approach. That is, solving the problem when n → ∞ or

some other control variable approaching a limit. Typically, such approxi-

mations are skewed in some unknown direction, which varies according to

the exact probabilistic law of the variables involved.

The choice of which of the above three computational methods to use is of funda-

mental practical importance in most areas of statistics. This problem is perhaps

especially clear in the field of model selection, as we will see in the next section.

Reaching better bounds than the above exponential bound of eq. (2.1) has been

a subject of intense research, summarized e.g. in Chapter 11.1 of Shorack & Wellner

(1986). The reason for this great interest in the simple binomial case is that for an

iid sequence Y1, Y2, . . ., the variable Sn/n =
∑n

i=1 Xi/n with Xi = I{Yi ≤ x} is the

empirical distribution function

Fn(x) =
1

n

n∑
i=1

I{Xi ≤ x}.

For a given x, Sn = nFn(x) is binomially distributed. As

P ( lim
n→∞

Sn/n = p) = P

(⋂
ε>0

∞⋃
n=1

{
sup
k≥n

|Sk/k − p| < ε

})
,

the convergence Sn/n
a.s.−−−→

n→∞
p is equivalent to

(2.4) lim
n→∞

P (sup
k≥n

|Sk/k − p| > ε) = 0

for a given ε > 0 by continuity of probability measures. Sub-additivity and inequal-

ity (2.1), gives

(2.5)

lim
n→∞

P (sup
k≥n

|Sk/k− p| > ε) ≤ lim
n→∞

∞∑
k=n

P (|Sk/k− p| > ε) ≤ lim
n→∞

2

1 − e−2ε2 e−2nε2

= 0.

Hence,

(2.6) Fn(x)
a.s.−−−→

n→∞
EI{Xi ≤ x} = F (x).

The sharper and more advanced bounds for the tail of a binomial variable lead

to e.g. uniform laws of iterated logarithms for the empirical distribution function

(Shorack & Wellner, 1986). However, inequality eq. (2.1) is strong enough to prove

the result Pitman & Pitman (1979) call “the existence theorem for statistics as a

branch of applied mathematics” and Love (1977) calls “the fundamental theorem of

statistics”, namely the Glivenko-Cantelli Theorem

sup
x

|Fn(x) − F (x)| = sup
x

|Fn(x) − P (X ≤ x)| a.s.−−−→
n→∞

0
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valid for any F . Indeed, the monotonicity of x 
→ Fn(x) implies that the point-wise

convergence of eq. (2.6) implies the uniform result, see the proof of Lemma 11.4.3

of Dudley (2003).

The weak law of large numbers Sn/n
P−−−→

n→∞
p is a purely asymptotic result, and

error-bounds for finite n – such as those of inequality (2.1) – must be given to show

that the asymptotics are of practical interest. The same applies to the strong law

Sn/n
a.s.−−−→

n→∞
p. The validity of (2.4) shows that

n 
→ P (sup
k≥n

|Sk/k − p| > ε)

is decreasing. A natural question is how fast such a convergence takes place. A

fruitful formulation of this question is to investigate the law of

Nε = sup{n : |Sn/n − p| > ε},
i.e. the last time the distance between Sn/n and p is larger than ε – or, the last time

an error larger than ε occurs. Indeed, Nε is finite almost surely for each ε > 0 if

Sn/n
a.s.−−−→

n→∞
p by the definition of limits, and conversely, Sn/n

a.s.−−−→
n→∞

p if Nε > ∞
almost surely for each ε > 0 by eq. (2.4). The relation

P (Nε > n) = P (sup{n : |Sn/n − p| > ε} > y) = P (sup
k≥n

|Sk/k − p| > ε)

reveals that the law of Nε is intimetely related to the speed at which the discrete

time stochastic process

n 
→ sup
k≥n

|Sk/k − p|
converges to zero.

In the current iid case, the law of Nε is defined in terms of the random variable

Ũ = (X1, X2, . . .)

defined on the product space R
∞. Under the typical construction of such a space,

such as the elementary construction in Theorem 6.2.4 of Stroock (2005), the law of

U =
∞∑

m=1

2−mXi

is a uniform random variable on [0, 1] when p = 1/2. Hence, for Lebesgue measure

λ, we have

P (Nε > n) =

∫ 1

0

sup
k≥n

∣∣∣∣∣
∞∑

i=k

y(i)
2i

k
− 1/2

∣∣∣∣∣ dλ(y)

where y(i) is the i’th binary expansion of y. In contrast to the discrete law of Sn for

finite n, we cannot simply instruct a computer to calculate this probability.

Considering the above list of possible ways of calculating the law of Nε, the first

method is not in general feasible, except for certain special cases. The enclosed
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paper “On the errors committed by sequences of estimator functionals” studies ap-

proximations of the third kind on the above list, for the limit law of ε2Nε as ε → 0+.

This is already a well-studied problem, but we extend these results to a much wider

class of estimators than that which was previously known. Parallelling the approx-

imation leading to eq. (2.3), our method is based on an advanced version of the

central limit theorem. Before we introduce the arguments leading to these approxi-

mations, let us consider non-asymptotic bounds. These bounds are reached from the

simple sub-additivity argument of eq. (2.5), and are hence rather crude. However,

in presenting these bounds, we will introduce the mathematical structures needed

to present the CLT-based approximations.

For the binomial case, which includes the empirical distribution function for a

fixed x, eq. (2.5) already implies the tail-bound

(2.7) P (Nε > n) = P (sup
k≥n

|Sk/k − p| > ε) ≤ 2

1 − e−2ε2 e−2nε2

.

By the above considerations, the variable of fundamental importance to the conver-

gence secured by the Glivenko-Cantelli Theorem is

Mε = sup{n : ‖Fn − F‖ > ε}
where ‖ · ‖ = supx | · | is the uniform norm. Interestingly, for sufficiently large n, the

very same bound as eq. (2.7) is valid also for the uniform Mε.

Indeed, Dvoretzky et al. (1956) proved the fundamental inequality

P (sup
x

|Fn(x) − F (x)| > ε) ≤ Ce−2nε2

for some C > 0 independent of n, F and ε. Massart (1990) proves that C = 2 is

the tight constant, as long as exp{−2nε2} < 1/2. This is in fact the same bound as

our fundamental inequality (2.1). Assuming n to be sufficiently large compared to

ε, sub-additivity immediately shows

(2.8) P (Mε > n) = P (sup
k≥n

‖Fn − F | > ε) ≤ 2

1 − e−2ε2 e−2nε2

.

2.2. Uniformity and the Vapnik-Chervonenkis inequalities. The basic

Bernoulli Binomial convergence Theorem shows that when X1, X2, . . . , is an iid

sample, we can for any ε, η > 0 find a N so that

(2.9) P

(∣∣∣∣#Number of Xi in A

n
− P (X ∈ A)

∣∣∣∣ > ε

)
< η

for all n ≥ N . In contrast, the Glivenko-Cantelli Theorem can be read as

(2.10) P

(
lim

n→∞
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi) − Ef(Xi)

∣∣∣∣∣
)

= 1,

where

F = {f(x) = I{x ≤ r} : r ∈ R}.
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That is, we have convergence such as eq. (2.9) in a uniform sense over F .

The convergence of eq. (2.9) is fundamentally different from eq. (2.9) in two

ways. Firstly, the Bernoulli Theorem only works with finite combinations of vari-

ables (X1, X2, . . . , Xn), while the Glivenko-Cantelli Theorem deals with the whole

sequence (X1, X2, . . . , Xn, . . .). Secondly, the Glivenko-Cantelli Theorem does not

deal with the convergence of one relative frequency, but the uniform convergence of

relative frequencies over some space. In this most basic setting, the convergence is

uniform over a set with a continuum cardinality.

The first point means we are here leaving the mathematical structures of the

sixteenth century of finite repetitions. Questions when applied to the strong law

of large numbers, such as the law of Nε, are usually framed in the measure theo-

retic formalization of Kolmogorov. Interestingly, this measure theory formalization

meets its limitation concerning questions of uniformity, as one often encounters non-

measurable variables. Although we encounter this problem in the current section, we

will wait until the next section before focusing on possible solutions to this problem.

From this perspective, it is natural to ask how large F can be. First of all, we

note that it cannot be arbitrarily large while still maintaining convergence such as

eq. (2.10). Let X ∼ U [0, 1] and put

F = {f(x) = I{x ∈ A} : A ∈ A}
where A is the Borel σ-algebra. For any realization X1(ω) = x1, X2(ω) = x2, . . . Xn(ω) =

xn, the event A = {X1(ω) = x1, X2(ω) = x2, . . . , Xn(ω) = xn} is measurable so that

I{x ∈ A} ∈ F . As it is countable, we have P (A) = 0, but 1
n

∑n
i=1 I{Xi ∈ A} = 1.

Hence,

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi(ω)) − Ef(Xi(ω))

∣∣∣∣∣ = 1.

While it should come as no surprise that there are limits to how large F can be

– and the above F is indeed extremely large – a more subtle problem is the fol-

lowing; still assuming X ∼ U [0, 1], we now set F to be the singleton {I{x ∈ A}}
where A is a non-measurable set with respect to the Borel σ-algebra (implied by the

continuum hypothesis). As supf∈F |f(X1)| is 1 if X1 ∈ A and zero otherwise, it is

non-measurable. Indeed,

sup
f∈F

| 1
n

n∑
i=1

f(Xi)|

is non-measurable for any n. There are also other settings for which the variable

Γn(F , P ) := sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi) − Ef(Xi)

∣∣∣∣∣
may be non-measurable, see Chapter 5 of Dudley (1999). Hence, in investigating the

types of F which secures the validity of eq. (2.10), we naturally meet mappings from
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Ω to R which are not random variables. To overcome the problem of measurability,

we will call function sets F a Glivenko-Cantelli set if there exists some measurable

random variable Γ̄n(F , P ) so that

(2.11) Γn(F , P ) ≤ Γ̄n(F , P )
a.s.−−−→

n→∞
0.

Talagrand (1987) showed that if F is Glivenko-Cantelli, the set

Ω∗ = {ω ∈ Ω : lim
n→∞

Γn(F , P ) = 0}
is P -measurable. Hence, eq. (2.10) is indeed valid also when Γn(F , P ) is non-

measurable for finite n. The first general characterization of the Glivenko-Cantelli

sets was found in Vapnik & Chervonenkis (1971). They also gave a very applica-

ble sufficient condition for F to be Glivenko-Cantelli: F if Glivenko-Cantelli if it

has finite so-called VC (Vapnik-Chervonenkis) index. Function spaces F with this

property also follow a uniform extension of the central-limit theorem. This extended

central limit theorem will be the basis for our approximations of the limit-law of

Nε in our paper “On the errors committed by sequences of estimator functionals”.

To later introduce these fundamental approximations without getting too technical,

we will spend some time on VC-classes. We follow the exposition of van de Geer

(2000).

Definition 1. Let D be a collection of subsets of X . For random variables

X1, X2, . . . , Xn ∈ X , define the random variable

ΔD(X1, . . . , Xn) = card{D ∩ {X1, . . . , Xn} : D ∈ D},
the number of different subsets of the form D ∩ {X1, . . . , Xn}. Define moreover the

number

mD(n) = sup{ΔD(X1, . . . , Xn) : X1, X2, . . . , Xn ∈ X},
and

V (D) = inf{n ≥ 1 : mD(n) < 2n}.
We call V (D) the index of the class D, and D is a Vapnik-Chervonenkis class if

V (D) < ∞.

Definition 2. The subgraph of a function g : X 
→ R is

subgraph(f) = {(x, y) ∈ X × R : f(x) > y}.
For a class of functions F , let V (F) be the index of the collection of subgraphs

{subgraph(f) : f ∈ F}. A collection of functions F is called a Vapnik-Chervonenkis

subgraph class if V (F) < ∞.

The following inequality is proved as Theorem 2.14.9 in van der Vaart & Well-

ner (1996) in a slightly more general case, and is originally proved in Vapnik &

Chervonenkis (1971).
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Theorem 1. Suppose F has finite VC-index. There then exists a random

variable Γ̄n(F , P ) with

Γn(F , P ) ≤ Γ̄n(F , P )

and constants D, V > 0 independent of P such that

P (Γ̄n(F , P ) > ε) ≤
(

D
√

nε√
V

)V

e−2nε2

.

Given a function space F with finite VC-index, define

Nε = sup

{
n : sup

f∈F
‖ 1

n

n∑
i=1

f(Xi) − Ef(X1)‖F > ε

}

= sup

{
n : sup

f∈F
‖Pn(f) − P (f)‖F > ε

}
= sup {n : ‖Pn − P‖F > ε}

where ‖K‖F = supf∈F |K(f)| is the uniform norm on F and

Pn(f) =
1

n

n∑
i=1

f(Xi), Pf = Ef(X1).

Following eq.(2.8), Theorem 1 shows that for some C, V > 0, we have

P (Nε > n) = P (sup
k≥n

‖Pk − P‖F > ε)

≤
∞∑

k=n

P (‖Pk − P‖F > ε)

≤ CεV

∞∑
k=n

kV/2e−2kε2

≤ CεV

∫ ∞

n

xV/2e−2xε2

dx

= CεV Γ(V/2 + 1)

(2ε)V/2+1
P (Gamma(V/2 + 1, 2ε2) > n)

When V > 2, the Gamma tail-bound inequality found in section 35.1.3 of DasGupta

(2008) gives

(2.12) P (Nε > n) ≤ C(V/4 + 1)εV −2xV/2e−2nε2

,

and when 0 < V ≤ 2, we have

(2.13) P (Nε > n) ≤ 2CεV

1 − e−2ε2 e−2nε2

.

Both of these inequalities are uniform in P . Section 6.4 of Dudley (1999) shows that

the existence of some random variable Γ̄n(F , P ) so that Γn(F , P ) ≤ Γ̄n(F , P )
P−−−→

n→∞
0 uniformly in P implies that F has finite VC-index. Hence, inequality (2.12) or

inequality (2.13) is valid when F is Glivenko-Cantelli uniformly in P .
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As mentioned above, these bounds for the distribution of Nε are based solely

on the subadditivity technique of (2.8), and are therefore rather crude. Although

slightly sharper inequalities do exist (see Section 6.5 of Dudley (1999)), any general

tail-bound that only uses VC-index of F has the potential of being improved in

concrete situations. For example, the space of half-lines on R (that is, the classical

empirical distribution case) has finite VC-index, but the above tail-inequality is

clearly inferior to eq. (2.8).

2.3. CLT-based approximations for the tail of Nε. Finite sample tail-

bounds for Nε which does not rely on the subadditivity step in eq. (2.8) can be found

in special cases. For example, in the simple average case, martingale inequalities

yield tail-bounds for Nε directly, without using subadditivity. See Chapter IV.5 and

Chapter VII.3.5 in Shiryaev (1995). However, there does not seem to be any known

and generally applicable way to reach sharp tail-bounds for the Nε variable for more

general estimates than the simple average.

Returning to the list of the three basic ways of calculating a probability, the two

first seem to be of little use except in special cases. We now investigate the third

option.

Suppose we have some estimator θ̂n based on n observations, and that

θ̂n
a.s.−−−→

n→∞
θ.

The estimator θ̂ may for example be 1
n

∑n
i=1 f(Xi), which typically estimates Ef(X1).

We wish to approximate the law of

Nε = sup{n ≥ 1 : ‖θ̂n − θ‖ > ε}
when ε is small. By definition of Nε, we have the following series of equivalences:

ε2Nε > y ⇐⇒ sup{n ≥ 1 : ‖θ̂n − θ‖ > ε} > y/ε2

⇐⇒ sup
n≥y/ε2

‖θ̂n − θ‖ > ε ⇐⇒ sup
s≥1

‖θ̂�s·y/ε2� − θ‖ > ε.

This means that

P (ε2Nε > y) = P (sup
s≥1

‖θ̂�s·y/ε2� − θ‖ > ε).

Let us now define m = �y/ε2�, so that

P (ε2Nε > y) = P (sup
s≥1

‖√m
[
θ̂sm − θ

]
‖ >

√
y0),

where y0 = ε2�y/ε2�. This shows that the variable ε2Nε is a functional of the

stochastic process

s 
→ Xm(s) =
√

m
[
θ̂sm − θ

]
.
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So if we have process convergence

Xm(s)
W−−−→

m→∞
X(s), s > 0

in an appropriate space, for some process X(s), we get

ε2Nε
W−−−→

ε→0+
sup
s≥1

‖Xs‖2

by the continuous mapping theorem. This means that

(2.14) P (Nε > λ) = P (ε2Nε > ε2λ) ≈ P (sup
s≥1

‖Xs‖2 > ε2λ)

for small ε. For this to be useful, we need to describe the limit process X. The

paper “On the errors committed by sequences of estimator functionals” shows that

for a large class of estimators, approximation in eq. (2.14) is valid and we identify

the limit structure and show that it is quite simple.

So far, we have looked at the estimation of the set

{Ef(X) : f ∈ F}

through simple averages. This can be seen as the estimation of the function

(2.15) f 
→ Ef(x).

“On the errors committed by sequences of estimator functionals” extends this study

to estimators of the form

θn = φ(Pnf)

where φ : l∞(F) 
→ E for some space E. That is, φ takes the function f 
→ Pnf

as an argument and returns a function. This is indeed a generalization of the case

of averages, as this case is regained when φ is the identity mapping. We work with

the assumption that φ is functionally differentiable in the Hadamard-sense with a

differential denoted by φ̇. The technical definitions are given in the paper.

Under some additional technical constraints, which are s fulfilled if F has finite

VC-index, we have

ε2Nε
W−−−→

n→∞
sup

0<s≤1
sup
e∈E

|φ̇[Zs(f)](e)|2,

as ε → 0, where Nε = sup{n : ‖φ(Pn) − φ(P )‖F}. Here, (s, f) 
→ Zs(f) is a

continuous mean zero Gaussian process on (0,∞) ×F with covariance function

Eφ̇Zs1(e1)φ̇Zs2(e2) = (s1 ∧ s2)Eφ̇W ◦(e1)φ̇W ◦(e2),

where W ◦ is a P -Brownian bridge process on F .
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2.4. Full circle: Calculating the quantiles of the limiting distribution.

In Section 2.1, we used the limiting result

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

)
≈ P

(|N (0, p(1 − p)) | ≥ √
nε

)
= 1 − 2Φ

(
−

√
nε√

p(1 − p)

)
,

to get

nNormal =

⌈
p(1 − p)

ε2
Φ−1

(
δ

2

)2
⌉

.

For a given ε, and optimizing away p, we readily found the uniform bound �ε−2/4Φ−1(δ/2)2� =

6767. In our current problem, we wish to use the approximation

(2.16) P (Nε > λ) = P (ε2Nε > ε2λ) ≈ P ( sup
0<s≤1

sup
e∈E

|φ̇[Zs(f)](e)|2 > ε2λ)

to approximate the law of Nε when ε is small. The law of Nε is much more difficult

to compute than the law of the limit variable. However, now even the limit variable

is subject to a law that is difficult to compute.

Under mild regularity conditions, the limit process is the supremum of a Gaussian

process. Although there is a extensive literature on approximating such probabili-

ties, these investigations have mostly found upper bounds of exceedance probabilities

given in terms of unspecified constants and are of little use in actual calculations.

Simulation is always possible, but for complex functionals φ̇ and large spaces F
this can be difficult. In some special cases of interest, good explicit bounds are

known, or the exact distribution can be simulated with ease. One such case is when

e 
→ φ̇[Zs(f)](e) is a Gaussian Martingale on [0, τ), as is the case for the Nelson–

Aalen estimator. Then the limit variable of ε2Nε is

σ2 sup
(s,t)∈[0,1]2

‖S(s, t)‖2

where S is a Brownian Sheet on [0, 1]2 and where

σ2 = inf
{

s :
〈
φ̇W ◦, φ̇W ◦

〉
s
> τ

}
where

〈
φ̇W ◦, φ̇W ◦

〉
s

is the covariation process of φ̇W ◦. This distribution can easily

be found by simulation, and fairly good tail-bounds are known.

For the general case, however, we are returned to the list of possible ways of

calculating probabilities. The left hand side of eq. (2.16) is clearly very much more

difficult to calculate than the right hand side. However, even with such a reduction,

this problem may still be difficult. Fatalov (2003) is a comprehensive survey of

bounds for norms of Gaussian processes where the involved constants are specified.

Only a very few seem to be useful for our current investigation.
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2.5. A new type of sequential confidence bands for the Nelson–Aalen

estimator. Let us look at a further application of the approximation given in

eq. (2.16). Besides its theoretical interest, the limit law of ε2Nε can be used to

derive approximate sequential confidence sets. Indeed, calculate or approximate the

upper α quantile of the limit variable of ε2Nε and denote this quantile by λα. Fix

the radius of the confidence set as ε0 and compute

(2.17) m = [λα/ε2
0].

By the distributional convergence, we get that

P (ε2Nε < λα) = P (‖φ(Pn) − φ(P )‖E ≤ ε0 for all n ≥ m)

= P (φ(P ) ∈ B (ε0, φ(Pn)) for all n ≥ m)

is close to 1 − α where

B(ε, y) = {x : ‖x − y‖E ≤ ε}
is an ε-ball in l∞(E). This has intuitive appeal. Whereas confidence sets are usually

of the form

P (φ(P ) ∈ Cn) ≥ 1 − α, for all n ≥ m

and thus only give a probability statement for one n ≥ m at the time, a fixed-volume

confidence set gives a simultaneous answer for all n ≥ m.

Let us illustrate this for the Nelson–Aalen estimator. Suppose that we observe

Xi = (Zi, Δi) ∼ F , in which Zi = Yi ∧Ci and Δi = 1{Yi ≤ Ci} are defined in terms

of unobservable iid failure times Yi < τ . Here Yi are distributed according to G and

we will assume that the censoring times Ci are iid. The Nelson–Aalen estimator

Λn(t) =

∫
[0,t]

1

H̄n

dH
uc
n ,

where

H
uc
n (t) =

1

n

n∑
i=1

Δi1{Zi ≤ t}

and

H̄n(t) =
1

n

n∑
i=1

1{Zi ≥ t}

converges uniformly

Λ(t) :=

∫
[0,t]

1

1 − G(t)
dG

almost surely under quite general conditions (Shorack & Wellner, 1986, see). That

is,

P

(
lim

n→∞
sup

0<t<τ
|Λn(t) − Λ(t)| = 0

)
= 1.

We are interested in finding the limit of

Nε = sup{n ≥ 1 : sup
0<t<τ

|Λn(t) − Λ(t)| > ε}.
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This estimator fits into the framework of our paper. As is well-known,
√

n(Λn −Λ)

converges to a Gaussian Martingale. This means the limit of ε2Nε reduces to the

study of the supremum of a Brownian Sheet. Let

σ2 =

∫
[0,τ ]

1 − ΔΛ(z)

P{Z ≥ z} dΛ(z)

and suppose S is a Brownian Sheet on [0, 1]2. Then we get

ε2Nε
W−−−→

ε→0+
σ2

(
sup

0≤s≤1
sup

0≤t≤1
|S(s, t)|

)2

.

Hence, the m of eq. (2.17) can be calculated to arbitrary precision for any given σ2.

We also give an upper bound for m in our paper.

Let us also note that the exact distribution of the supremum of a Brownian Sheet

do not seem to be known. The best known bound for its distribution seems to be

Talagrand (1994), which gives bounds in terms of unspecified constants. Csáki et al.

(2000) is almost useful, but works with sup S and not the required sup |S|, and their

results does not seem to be transferable to our case. Goodman (1976) provides good

general lower bounds, but his upper bound – which is what we need to bound m –

is worse than the one used in our paper.

3. Gorgias’ revenge: Model selection and pragmatism

A statistical model is the specification of some general patterns of summaries

of basic events ω ∈ Ω. The summaries of these events are given by a probability

measure P . This measure is often unknown to the modeller, but is supposed known

to be in a set of probability measures

{Pθ : θ ∈ Θ}
That is, there exists some θ0 ∈ Θ such that P = Pθ0 . Based on observations whose

distribution is P , a fundamental problem of statistics is to regain θ0. We will denote

a generic estimator of θ0 by θ̂. A good estimator is near θ0 with high probability.

The most classical situation is the observation of a series of random variables

X1, . . . , Xn in some space such as R
d. Let us denote the empirical estimator for θ0

based on these observations by θ̂n. Then, typical good estimators are consistent in

the sense that

(3.1) θ̂
P−−−→

n→∞
θ0.

The parameter set Θ is usually a Euclidian space with dimensionality much lower

than n.

Model building under uncertainty is in many ways one of the fundamental fea-

tures of rational existence. Rationality is the ability to reason with abstractions
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based on sense perception. The process of building and working with these abstrac-

tions can be understood as non-formalized model building. The belief in platonic

forms is a belief in these abstractions’ power to reach the actual objects of the world

– Kant’s “things in themselves”. The view of most philosophers after Kant is that

this is impossible. These general considerations can be translated into the statistical

dictum that all models are wrong, but some are useful.

If the validity of the statistical model is uncertain, as it always is, the theory of

model selection solves this problem by cutting the Gordian knot: Extend the size

of Θ, while limiting the dimensionality of the parameter set. This is achieved by

splitting Θ into smaller candidate models Θi ⊂ Θ, i ∈ I where the cardinality of I

is often small and the dimensionality of each Θi is moderate to small compared to

n. Empirical estimates of θ0, say θ̂ are then constrained to belong to some Θi.

While this problem is similar to basic statistical estimation described at the start

of this section, the major difference is that although⋃
i∈I

Θi ⊂ Θ,

we also have ⋃
i∈I

Θi �= Θ.

Indeed, Θ is often a very large space compared to
⋃

i∈I Θi. The process of constrain-

ing estimates to be in
⋃

i∈I Θi is an important distinction and has major practical

and theoretical consequences. The problem is that even though P ∈ {Pθ : θ ∈ Θ},
so that P = Pθ0 for some θ0 ∈ Θ, we may have

θ0 /∈
⋃
i∈I

Θi.

So, any empirical estimator θ̂n, based on n observations, can never fulfill the basic

consistency demand of eq. (3.1). In most situations, we rather have

(3.2) θ̂n
P−−−→

n→∞
θ◦

where

(3.3) θ◦ = argmin
θ∈S

i∈I Θi

D(P, θ)

is the least false parameter configuration with respect to some criteria function D.

If θ◦ and θ0 are sufficiently close, the resulting model is hoped to provide good

approximations to the real stochastic behavior of the observed system.

Let us here note that Θ cannot be chosen arbitrarily large. When Θ parametrizes

the space of all probability distributions that the observed data-points can have, it is

fundamentally impossible to estimate the parameters with respect to any non-trivial

criteria. We will expand on the relation between
⋃

Θi and Θ in Section 4.
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There is a two-fold irony surrounding the model selection problem in statistical

modelling. Firstly, it is ironic that mathematics, which is can be seen as Plato’s

strongest illustration of man’s wisdom into the hidden layers of the universe, is now

used to model uncertainty. Secondly, it is ironic that the necessity of model selection

and its typical non-consistency confirms Gorgias pragmatism and critique of certain

knowledge, and hence can be read as an answer to Plato’s ridicule of the Sophists –

through applied mathematics2.

The above paragraph describes the interpretation of the model selection. How-

ever, the mathematical distinction between the statistical estimation of the param-

eter θ◦ and the model selection problem is also subtle. Once the parameter sets

Θi, i ∈ I is fixed, the least false parameter of eq. (3.3) is just a number defined in

terms of the true model – known to be in Θ. There are many general strategies for

this set-up, such as those surveyed in Bickel et al. (1993). Using this theory, one

could perceive the model set as Θ and estimate the actual true parameter θ0 based

on this model, resulting in an empirical estimator θ̃n. Then, θ◦ could be estimated

as a plug-in estimator

(3.4) argmin
θ∈S

i∈I Θi

D(P, θ̃n).

However, this would mean we would have to estimate the very complex parameter

θ0 to estimate the much simpler parameter θ◦. In this process, we would break

what Vapnik (1995, page 30) calls “The main principle for solving problems using a

restricted amount of information”, given by

When solving a given problem, try to avoid solving a more general

problem as an intermediate step.

Also, estimating θ0 may only be possible to achieve with very slowly converging

estimators, and this would make the plug-in estimator of eq. (3.4) a very poor

estimator.

Another take on the problem would be to estimate θ◦ as a minimum distance

estimator parametrized by the set
⋃

i∈I Θi. That is, one could study estimators of

2However, it should be noted that Plato’s Socrates clearly was well aware of the limitations
and uncertainties of logical deductions. The nature of the Platonic dialogues limits any easy
interpretation on what Plato “meant” and his texts are far too interesting for such a simple
interpretation. The limitations and uncertain applicability of the seemingly primitive deduction-
rules used in several the dialogues seems to function as an illustration of such limitations. An
example of this type of awareness is found in the Phaedo, where Socrates is given the lines “ For if
what I say is true, then I do well to be persuaded of the truth, but if there be nothing after death,
still, during the short time that remains, I shall not distress my friends with lamentations, and my
ignorance will not last, but will die with me, and therefore no harm will be done.”. However, when
the forms are discussed, their presentation seems more religious than the critical effort Plato puts
into shaping logic.
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the form

(3.5) θ̃n = argmin
θ∈S

i∈I Θi

Dn(θ)

where Dn is calculated on the basis of observed data. However,
⋃

i∈I Θi is topo-

logically not connected, and does not adhere to any of the typical regularity con-

ditions associated with parametric statistics. Even so, there exist results capable

of giving non-asymptotic error bounds for such estimators in Spokoiny (2009) and

Golubev & Spokoiny (2009). These results can be used to derive both consistency

and rates of convergence for minimal distance estimators under highly non-standard

parametrizations such as
⋃

i∈I Θi. However, their probability bounds are defined in

terms of the true, unknown measure Pθ0 and therefore cannot be directly used to

give uncertainty estimates of the resulting estimator. While the direct estimation

of θ◦ as a minimum distance estimator parametrized by
⋃

i∈I Θi seems to be the

ideal perspective to work from, I do not know of any applied work that has used

such a program. Generally applicable uncertainty estimates are mostly unknown

and seem to be extremely difficult to find under general assumptions. This point is

taken somewhat further at the end of Section 3.2.

3.1. Two-stage model selection procedures. By far the most common model

selection technique is to split the estimation of θ◦into two stages. First, an index

în ∈ I is chosen by a model selection formula such as the AIC, that tries to reach i◦

– the index for which

θ◦ ∈ Θi◦

is achieved, under the assumption that this i is unique. Note the difference be-

tween this technique and the plug-in estimator of eq. (3.4): the estimation of i◦ is

constrained to the discrete set I with low cardinality.

After the calculation of î, one typically discards the probabilistic consequences

of model selection, and estimate the least false estimator

θ̃◦(i) = argminD(P, θ),

where the argmin is over θ ∈ Θ(̂i) – as if we know that î is the index actually known

to contain the least false parameter configuration.

As mentioned in the first section of the introduction, the paper “The Copula

Information Criterion and its implications for the Maximum Pseudo Likelihood Es-

timator” introduces the more technical paper “The Copula Information Criteria”

quite thoroughly. We will therefore not spend much time on the technical setting

for the copula information criteria, but will rather directly motivate the CIC as an

extension of the AIC formula. In order to do this, let us briefly motivate the AIC

formula.
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The MLE of a parametric model Θ based on n iid observations with cumulative

distribution function F ◦ and density f◦ is

(3.6) θ̂n(i) := argmax
θ∈Θi

∫
log fθ(x) dFn(x),

where fθ is the density of Pθ with respect to Lebesgue measure and Fn is the empirical

distribution function. Under mild regularity assumptions on the parametrization,

we have

θ̂n(i)
P−−−→

n→∞
θ◦ := argmax

θ∈Θ

∫
log fθ(x) dF ◦(x)

= argmin
θ∈Θ

KL(f◦, fθ).

Here,

KL(f◦, fθ) =

∫
log

fθ

f◦ dF ◦

is the Kullback–Leibler divergence between f◦ and fθ. It is zero if and only if f ◦ = fθ

almost surely. While Kullback–Leibler divergence is not a metric, it dominates the

Hellinger metric, defined by

h(f ◦, fθ) =

(
1

2

∫
(
√

f ◦ −
√

fθ)
2 μ

)2

.

In fact,

h(f ◦, fθ) ≤ 1

2
KL(f◦, fθ).

A simple proof is given in Lemma 1.3 of van de Geer (2000). There are also other

motivations for using Kullback–Leibler divergence, see the general treatment of

Claeskens & Hjort (2008) and the next subsection.

As elaborated in “The Copula Information Criterion and its implications for the

Maximum Pseudo Likelihood Estimator”, the AIC formula tries to estimate

argmin
θ∈S

i∈I Θi

KL(f ◦, fθ)

for model sets Θi, i ∈ I through first forming an estimator î, estimating the in-

dex i◦ ∈ I that the argmax in the above display achieves, and then estimate the

parameter configuration in Θî through Maximum Likelihood.

The estimation of i◦ is done through an estimator of the form

î = argmin
i∈I

{∫
log fθ̂n(i)(x) dFn(x) − pn

}
.

Here pn is a first order asymptotic approximation of the expectation of∫
log fθ̂n(i)(x) d[Fn − F ◦](x),
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so that

(3.7) E

∫
log fθ̂n(i)(x) dFn(x) − pn ≈ 0

when the model Θi is assumed to contain the true data-generating parameter. From

this perspective, the AIC is a natural generalization of the interpretation of the

MLE as a minimizer of KL-divergence: As the parameter estimation is estimated

through the MLE, the AIC methodology tries to reach the parameter configuration

in
⋃

i Θi attaining the least KL-divergence from the true density fθ0 to the set

{fθ : θ ∈ ⋃
i Θi}.

However, eq. (3.7) is admittedly a somewhat weak motivation for using pn. But

as we all know, we end up with the extremely simple formula pn = nlength(θ). A

slightly more motivated version of the problem is to require eq. (3.7) to hold also

when the models under consideration are wrong. This generalization leads to the

so-called TIC-formula, with a pn that depends on the data.

The TIC-formula is also motivated through its first order equivalence with a

certain version of cross-validation. Indeed, we have that for the TIC-choice of pn

(more involved than the AIC choice), we have

(3.8) TICn = 2nx̂vn + oP (1),

where

TICn = 2n

(∫
log fθ̂n(i)(x) dFn(x) − pn

)
and we work with the cross-validation sum

x̂vn = n−1

n∑
k=1

log f(Xk, θ̂(k))

in which θ̂(i) is the ML estimate

θ̂(i) = argmax
θ

∑
j �=i

log f(Xj, θ)

based on the sample without the i’th observation. While this is a stronger motivation

than eq. (3.7), there does not seem to be any applicable finite sample bounds on the

op(1)-term available.

In the CIC paper, we work not with the maximum likelihood estimator, but the

so-called maximum pseudo-likelihood estimator, given by

θ̂n(i) = argmax
θ∈Θi

∫
u∈[0,1]d

log cθ(u) dĈn(u)

where Ĉn is the empirical copula, given by

Ĉn(u) :=
1

n

n∑
i=1

I{Fn,⊥(Xi) ≤ u} =
1

n

n∑
i=1

d∏
j=1

I{Fn,j(Xi,j) ≤ uj}.

In the above display, Fn,j is the j’th marginal empirical distribution function.
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In our paper, we find a pn that solves

E

∫
log fθ̂n(i)(x) dĈn(x) − pn ≈ 0,

and call it the CIC. However, we find that such a pn is rarely finite. Because of

this infinitude, we find a pn that solves an analogue of eq. (3.8). We call this

formula the xv-CIC. It is of general applicability, and is simple and fast to calculate.

Unfortunately, we discovered the xv-CIC after “The Copula Information Criterion

and its implications for the Maximum Pseudo Likelihood Estimator” was published.

While I would have rewritten this papers concluding remarks if I had found the xv-

CIC before, the xv-CIC formula does have a completely different motivation than

the CIC formula. If this scope is preserved, the concluding remarks continue to hold.

3.2. The way ahead: Non-asymptotic model-selection. The CIC and xv-

CIC solve the problems defined in eq. (3.7) and eq. (3.8), and are hence susceptible

to any critiques one may present against the AIC and TIC. As described in “The

Copula Information Criteria”, our investigation was not initiated in search for the

most optimal model selection criteria, but to investigate the consequences of using

the simple “AIC formula” when using the MPLE. Although the AIC formula is by

far the most used model selection formula, its use has two main problems.

Firstly, it is often hard to take the uncertainty introduced in the model selection

properly into account when giving confidence intervals for the resulting parameter

estimates. This is difficult for the same reasons it is difficult to approximate the

distribution of eq. (3.5). However, Claeskens & Hjort (2003) and Hjort & Claeskens

(2003) works out the effects of model selection under local misspecification assump-

tions. However, it currently seems out of reach to do this without local misspecifi-

cation assumptions.

Secondly, the AIC formula sets out to solve an asymptotic problem from a very

specific point of view. While it is not at all sure that eq. (3.7) is fulfilled for a given

n, a more serious problem seems to be that eq. (3.7) does not give a correction term

pn directly connected to argmax-based the estimator

θ̂n(̂i),

but with the criteria function∫
log fθ̂n(i)(x) d[Fn − F ◦](x).

A more optimal – and clearly more challenging – perspective would be to solve

the problem of finding a pn that makes

θ̂n(̂i) = argmin
θ∈Θ(̂i)

Dn(θ)
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as good an estimator as possible – according to some specified criteria. Here pn

enters through the definition of î. That is,

î = argmin
i∈I

{Dn(θ) − pn} .

This non-asymptotic problem can indeed be solved from several perspectives and

in several settings. We mention the book-length treatments of Massart (2007) and

Tsybakov (2009), and the paper Akakpo & Durot (2010) that provides a general

framework for working with censored data and concentrates on an example con-

cerning histogram selection. Selecting the optimal histogram for observed data is a

seemingly simple problem even in the presence of censoring, but the solution to the

above problem is mathematically very complex. Optimality of the pn term is often

given through so-called Oracle inequalities, such as

E‖θ̂n(̂i) − θ◦‖2 ≤ C inf
i∈I

{
E‖θ̂n(i) − θ◦‖2

}
+ rn

where rn is showed to be small. However, even in the histogram case, the con-

stants involved are difficult to calculate, usually because such inequalities are con-

structed through concentration inequalities based on the chaining technique (Tala-

grand, 2005).

Finally, let us note that Oracle inequalities such as above, do not show that

direct estimators such as that of eq. (3.5) are inferior to selecting a wisely chosen

pn-term. Indeed, one can rather work directly through finding an optimal Dn-

function relative to
⋃

Θi and P . This most direct method is the most optimal way

of doing “model selection” – by returning the problem to perhaps the most classical

problem of statistical estimation: finding the optimal estimator to a given problem.

The claimed optimality is obvious, as the specification of Dn includes the problem of

specifying a pn. The choice of Dn is the problem posed and solved by Fisher (1922),

under different assumptions – where the main difference is a different topology for

the parameter set.

3.3. A connection between the AIC and Nε. It may seem surprising, but

there is a deep connection between the Nε variable and the AIC methodology. While

this connection is probably already known, I have not seen it in the literature. The

connection provides what I consider a very good motivation for using AIC-like model

selection procedures and also provides a surprising connection between two of the

thesis’ papers.

Suppose X1, X2, . . . , Xn, . . . are independent with distribution Pθ0 . Many test-

statistics for H0 : θ ∈ Θ0 ⊂ Θ rejects H0 if

Tn = Tn(X1, X2, . . . , Xn)
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is above a certain limit. Let

pn(t, θ) = Pθ0(Tn ≥ t)

be the exceedance probabilities of Tn under H0. Then,

Ln = LN(X1, X2, . . . , Xn) = pn(Tn)

is the p-value actually obtained. Now introduce the familiar variable

Nε = sup{n ≥ 1 : Ln > ε},

which may be infinite as we have not assumed Ln
a.s.−−−→

n→∞
0. Here, Nε is the minimum

sample size required for the Tn-test to become and stay significant. The following

Theorem is due to Bahadur (1971), and is given in Chapter 24 of Shorack & Wellner

(1986).

Theorem 2. Suppose

1

n
log Ln

a.s.−−−→
n→∞

−1

2
c(θ0)

with 0 < c(θ0) < ∞. Then,

P

(
lim
ε→0

Nε

2 log(1/ε)
=

1

c(θ0)

)
= 1.

The function c(θ0) is called the Bahadur-slope. Note that as [2 log(1/ε)]−1 goes

much faster to zero than ε2 when ε → 0+, the above limit theorem can be seen as a

Law of Large Numbers for the Nε variable, while the weak convergence of ε2Nε is a

Central Limit Theorem-like result.

The following Theorem uses the Nε variable to motivate the desire to work

with the probability model which minimize the Kullback–Leibler divergence to the

true model. It also establishes the optimality of the likelihood ratio test statistic

in certain settings. It appears as Theorem 22.5 in DasGupta (2008), where it is

called the Stein-Bahadur-Brown Theorem. For extensions where Θ is of continuum

cardinality, see Arcones (2005).

Theorem 3. Suppose X1, . . . , Xn are independent with distribution Pθ, where

θ ∈ Θ. Assume Θ is finite, and consider testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ \ Θ0.

Then the following are true.

(1) For any sequence of test statistics Tn, the Bahadur slope cT (θ) satisfies

cT (θ0) ≤ 2 inf
θ∈Θ0

KL(Pθ0 , Pθ).

(2) The likelihood ratio test statistic Λn satisfies cΛ(θ) = 2 infθ∈Θ0 KL(Pθ0 , Pθ).
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That is, for any test statistic Tn conforming to the regularity condition of The-

orem 2 and 3, we have

Nε

2 log(1/ε)

a.s.−−−→
ε→0+

1

c(θ0)
≥ 1

infθ∈Θ0 KL(Pθ0 , Pθ)
,

and for the best possible test statistic, we have

Nε

2 log(1/ε)

a.s.−−−→
ε→0+

1

infθ∈Θ0 KL(Pθ0 , Pθ)
.

This means that the larger the Kullback–Leibler divergence between two models,

the easier it is to distinguish between them through hypothesis testing. Conversely,

if the Kullback–Leibler divergence between two densities is small, it is very difficult

to distinguish between them using any test what so ever. As the test statistics are

arbitrary, this can be interpreted such that any testable feature of the two models are

similar. This line of thought is analogous to the discussion regarding pseudo-random

numbers in Brands & Gill (1995, 1996)

4. Non-standard alternative models: Regression with jumps

When we introduced the estimator defined in eq. (3.6), we worked with iid ran-

dom vectors X1, X2, . . . , Xn, and fitted their common distribution function. The

“model selection” step took into consideration that the classes of common distri-

bution functions could be misspecified, by embedding the finite dimensional model

originating from the assumption

P (X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) ∈ M1,p

:=

{
n∏

i=1

Pθi
(Xi ∈ Ai) : (θ1, . . . , θp) ∈ Θ ⊆ R

P
length(θi)

}
into the infinite dimensional model originating from the assumption

P (X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) ∈ M1,∞ :=

{
n∏

i=1

Pψ(Xi ∈ Ai) : ψ ∈ Ψ ⊆ R
∞

}
,

where ψ 
→ Pψ parametrizes all probability measures on R
d with respect to a given

σ-algebra. This is the set-up typically described as “non-parametric”, but it is

clearly incapable of supporting time-series models et cetera.

Let us here mention that while one of these models has finite dimensionality,

the other has infinite dimensionality. However, this is not really what distinguishes

them. The dimensionality of their parametrization is a highly algebraic concept,

and its infinitude is not very illuminating. While the dimensionality of Θ makes a

surprise visit in the AIC formula, a more useful measure of size may be the behaviour

of variables such as Nε described in Section 2. This is connected to various efforts

to measure the size of parameter sets through results such as Theorem 1, and these

measures usually have names connected to the somewhat vague concept of entropy.
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Now suppose that we have indices τ0 = 0 < τ1 < τ2 < . . . < τk = n so that

Xτ0+1, . . . , Xτ1 are iid, Xτ1+1, . . . , Xτ2 are iid, et cetera until Xτk−1
, . . . , Xτk

which

are also iid. Suppose our model is

Mi,pi
=

{ ∏
0≤j≤k−1

∏
τj−1<i≤τj

Pθi,j
(Xi ∈ Ai) : 0 < τ1 < τ2 < · · · < τk−1 < n,

θ ∈ Θ ⊆ R

P
i,j length(pi,j)

}
,

parametrized both by the τi’s and θ. However, how large is k? By analogy with

the relation between M1 and M2, one could imagine that one develops a model

selection strategy where

Np =
n⋃

i=1

Mi,p

is studied in relation to

N∞ = {Pψ(Xi ∈ Ai) : ψi ∈ Ψ} ,

where ψ 
→ Pψ parametrizes all probability measures on R
d with respect to a given

σ-algebra.

However, this is impossible – as we only have a single observation of each random

variable – and any useful concept of the entropy of N∞ must be infinite. It is

impossible to estimate any model inside N∞ as the model is simply too large and

does not make any assumptions other than the randomness of the observations.

This can be interpreted as lacking information in the model set N∞. We often

justify the iid assumption through experimental design3. However, with structural

changes such as those above, or more complex dependence structures found in time

series, the modelling assumptions are almost always subjective and based on ex-

perience. Let us also mention in this regard that the contrast between parametric

and non-parametric statistics is often artificially drawn between studying finite-

dimensional or infinite-dimensional subsets of M1,∞. When dealing with non-iid

observations, the relationship between what is the model, and what is the “super-

model” considered to be true is much more difficult – as exemplified by the impos-

sibility of dealing with N∞.

In our paper “Estimation and inference for jump regression models”, we work

with a mathematical structure similar to fitting models such as Md,p, with d/n

small. In this paper, we do not constrain ourselves to the above multiple change-

point set-up, but work in regression-type models of the form

yi = m(xi, θ) + εi, for i = 1, . . . , n,

3However, there are many well-known examples of serial correlation in designed experiments
(such as machines behaving differently through time etc). See Box et al. (2005).
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where m is a step function with steps specified by the covariates x1, x2, . . . , xn and

ε1, ε2, . . . , εn is mean zero Gaussian noise. This set-up extends to more involved

m functions, and more involved relationships between the observations and the

covariates such as a GLM-like framework. However, let us limit this discussion to

the simpler set-up with Md,p. An important technical point is that the asymptotical

approximations we use are based on letting τ1, . . . , τd−1 depend on n and all grow to

infinity slower than n, as n → ∞. This work was originally part of a larger project,

leading to a model selection formula for studying

D⋃
i=1

Mi,p

in relation to

ND =

{ ∏
0≤j≤D−1

∏
τj−1<i≤τj

Pψi
(Xi ∈ Ai) : 0 < τ1 < τ2 < · · · < τk−1 < n,

ψi ∈ Ψi for each i

}
,

where D is significantly smaller than n and specified a-priori. However, we realized

that the preparatory material needed in such a model-selection paper would contain

enough material for a separate paper. The result was “Estimation and inference for

jump regression models”.

One of the interesting features of such models is that the topology of the pa-

rameter space is drastically different from those topologies typically leading to as-

ymptotic
√

n-normality of ML estimators. In fact, the ML estimators τ̂i for (the

analogue of) τi are such that n(τ̂i−τi) have a non-trivial limit distribution, while the

remaining parameteres are
√

n-normal. Our underlying approximations work with

the likelihood function as a stochastic process, following the techniques described in

for example Ibragimov & Khasminskii (1981) and van der Vaart & Wellner (1996).

Through these techniques, we also derive the frequentist asymptotic behavior of the

Bayesian estimators for the parameters defining m and show that the Bayesian esti-

mator is in fact superior to the ML estimator in terms of asymptotic mean squared

error.

The theory surrounding these types of models is treated extensively in the lit-

terature, but we seem to be the first to study how these estimators behave when

the model is misspecified. In the current paper, we work with the following simple

misspecification. Assume that m is not a step function with d jumps, but a contin-

uous function plus a step-function with d jumps. We only work out the details for

d = 1, but similar – though more complex – developments lead to model selection

formulas to select the number of jumps in an AIC-like manner.
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ON THE ERRORS COMMITTED
BY SEQUENCES OF ESTIMATOR FUNCTIONALS

STEFFEN GRØNNEBERG AND NILS LID HJORT

Abstract. Consider a sequence of estimators θ̂n which converges almost surely
to θ0 as the sample size n tends to infinity. Under weak smoothness conditions,
we identify the asymptotic limit of the last time θ̂n is further than ε away from
θ0 when ε → 0+. These limits lead to the construction of sequentially fixed width
confidence regions for which we find analytic approximations. The smoothness
conditions we impose is that θ̂n is to be close to a Hadamard-differentiable func-
tional of the empirical distribution, an assumption valid for a large class of widely
used statistical estimators. Similar results were derived in Hjort and Fenstad
(1992, Annals of Statistics) for the case of Euclidean parameter spaces; part of
the present contribution is to lift these results to situations involving parameter
functionals. The apparatus we develop is also used to derive appropriate limit dis-
tributions of other quantities related to the far tail of an almost surely convergent
sequence of estimators, like the number of times the estimator is more than ε away
from its target. We illustrate our results by giving a new sequential simultane-
ous confidence set for the cumulative hazard function based on the Nelson–Aalen
estimator and investigate a problem in stochastic programming related to compu-
tational complexity.

1. Introduction and summary

Let (Ω,A, P ) be a probability space and Pn be the empirical distribution based

on the first n observations from an infinite iid sample X1, X2, . . . from P living on

some space X . That is, let

Pn :=
1

n

n∑
i=1

δXi

be the seemingly näıve estimator of the distribution function P – which puts a

point mass 1/n on every observed value in X . Although Pn can never converge

as a measure to P uniformly over the whole of X unless P is discrete, one can

measure closeness between Pn and P relative to a set of mappings F from X to R

by perceiving Pn as an element of l∞(F) evaluated as

Pn(f) :=

∫
f dPn =

1

n

n∑
i=1

f(Xi).

Key words and phrases. The last n, Hadamard-differentiable statistical functionals, Sequential
confidence regions, Gaussian processes, the Nelson-Aalen estimator.
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Likewise, one perceives P as an element of l∞(F) evaluated as

P (f) :=

∫
f dP = Ef(X),

and ask how large can F be in order for Pn to be very close to P as n → ∞.

A natural measure of closeness is the size of

(1) ‖Pn − P‖F := sup
f∈F

|Pn(f) − P (f)|.

As ‖Pn −P‖F may not be measurable, one can work with outer almost sure conver-

gence and ask when

P ∗
(

lim
n→∞

‖Pn − P‖F = 0
)

= 1,

defined in terms of the outer measure P ∗(B) = inf {P (A) : A ⊃ B, A ∈ A} for any

A ⊆ Ω. If this convergence takes place, F has the so-called Glivenko–Cantelli

property. Characterizations of how large F may be relative to the structure of P is

dealt with in the now classical expositions of Dudley (1999) and van der Vaart &

Wellner (1996).

Supposing that F is Glivenko–Cantelli (that is, has the Glivenko–Cantelli prop-

erty), it is natural to ask by which rate this convergence takes place. One way to

approach this is to ask how rapidly a function r(n) ↗ ∞ may grow in order to keep

the size of

r(n)‖Pn − P‖F
stable in some appropriate sense. This leads us to discover that under reasonable

conditions on F , the rate r(n) =
√

n gives
√

n‖Pn − P‖F = OP ∗(1).

These developments are described in van der Vaart & Wellner (1996) and Dudley

(1999), which gives conditions on F to be a so-called Donsker class – that is, con-

ditions for
√

n[Pn − P ] to converge weakly in l∞(F) to a P -Brownian Bridge in the

Hoffman-Jørgensen sense.

These two levels of accuracy are of fundamental importance in asymptotic statis-

tics and are connected in non-trivial ways. The present investigation concerns one

such connection. Talagrand (1987)’s deep study of the Glivenko–Cantelli property

of F shows (in his Theorem 22, see also Theorem 6.6.A of Dudley, 1999) that if F
is Glivenko-Cantelli and made up of P -integrable measurable functions, then

(2) Ω̃ :=
{

ω ∈ Ω : lim
n→∞

‖Pn − P‖F(ω) = 0
}

is measurable (even though ‖Pn − P‖F need not be) and P (Ω̃) = 1. This implies

that on all of Ω̃, there exists a last time an error larger than any prescribed ε > 0

is ever committed. Let

Nε = sup{n : ‖Pn − P‖F > ε}



ON THE ERRORS COMMITTED BY SEQUENCES OF ESTIMATOR FUNCTIONALS 3

be the last time an error larger than ε > 0 is ever committed. Notice that by the

definition of almost sure convergence,

{Nε < ∞ for each ε > 0} = Ω̃.

Hence, Nε is finite with probability one even though Nε may not be measurable.

It natural to inquire into the size Nε, and this question connects the two precision

levels above in the following manner. Define m = [y/ε2] and y0 = ε2[y/ε2] so that

(3)

P (ε2Nε > y) = P

(
sup
n≥m

‖Pn − P‖F > ε

)
= P

(
sup
s≥1

√
m‖P[ms] − P‖F >

√
y0

)
.

So if sups≥1

√
m‖P[ms] − P‖F has a non-trivial weak limit, we can use this to find

distributional approximations of Nε. What is needed is that the partial sum process

(4) Xn :=
√

n(P[ns] − P )

converges weakly on l∞([1,∞)×F) to some non-trivial variable X. This shows that

sup
s≥1

√
m‖P[ms] − P‖F = ‖Xn‖[1,∞]×F

W ∗−−−→
n→∞

‖X‖[1,∞]×F

by the continuous mapping theorem, which together with eq. (3) shows that

(5) ε2Nε
W ∗−−−→

ε→0+
‖X‖2

[1,∞]×F .

The class F is called functional Donsker if the so-called sequential empirical pro-

cess Zn(s, f) = sXm(s, f) converges weakly on [0, 1] × F to a mean zero Gaussian

process Z on (0, 1] ×F with covariance structure

(6) Cov (Z(s, f), Z(t, g)) = (s ∧ t) (Pfg − PfPg) ,

called a Kiefer-Müller process. The set of functional Donsker classes and Donsker

classes are in fact the same (see Chapter 12.2 of van der Vaart & Wellner, 1996), and

the seemingly stronger statement of full l∞([1,∞)×F) convergence of Xn to s−1
Zs

actually follows when F is functionally Donsker (Exercise 2.12.5 van der Vaart &

Wellner, 1996). Time reversal of the Kiefer-Müller process (exercise 2.12.4 van der

Vaart & Wellner, 1996) implies that Z(s, f) := X1/s(f) is a Kiefer-Müller process on

(0, 1] ×F . Hence,

ε2Nε
W ∗−−−→

n→∞
‖X‖2

[1,∞]×F = ‖Z‖2
(0,1]×F

for a Kiefer-Müller process Z on l∞((0, 1] × F) as long as F is Donsker. Thus,

while the mere almost sure existence of Nε is secured through the Glivenko–Cantelli

property of F , we get distributional approximations of Nε from the Donsker property

of F .

The above questions are natural for any statistical estimator, and not just for

the empirical distribution function. For a sequence of estimators {θ̂n}∞n=1 for which
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θ̂n
a.s.∗−−−→

n→∞
θ, we can define

Nε = sup{n : ‖θ̂n − θ‖ > ε}

where ‖ · ‖ is an appropriate norm. The present paper shows that the above connec-

tion between the Glivenko–Cantelli and Donsker properties of F is transferred from

the empirical distribution function Pn over F to all estimators θ̂ which are (in an

appropriate sense) close to being so-called Hadamard-differentiable statistical func-

tionals of Pn over F . The class of Hadamard-differentiable statistical functionals

includes a fair portion of statistical estimators in use – for example Z-estimators

with classical regularity conditions.

The investigation of Nε for various estimators has a long history in probability

and statistics, and goes back at least to Bahadur (1967). A steady stream of papers

has worked with the subject, and we mention Robbins et al. (1968), Kao (1978),

Stute (1983) and Hjort & Fenstad (1992). The theory contained in the present paper

generalizes these investigations and puts them in a general framework.

The perhaps most obvious motivation for studying Nε is to identify the proba-

bilistic aspects that influence its limit distribution as ε → 0+. We will see that

for Hadamard-differentiable statistical functionals, only the Hadamard-differential

and the choice of norm in defining Nε matters, besides the factors influencing the

limiting distribution of the last time an error larger than ε is committed by the

empirical distribution function itself. This gives a fresh and statistically motivated

interpretation of the Hadamard-differential as a measure of variance.

We note that practically all statistical estimators can in principle be studied by

only focusing on the empirical distribution. That is, for practically every possible

estimator θ̂n taking values on some space E, we can find a class F and nonrandom

mapping φn : Dn ⊆ l∞(F) �→ E so that

θ̂n = φn(Pn(f))

in which φn(Pn(f)) is φn evaluated at the mapping f �→ Pn(f). Clearly, the class of

all estimators written as φn(Pn(f)) is far too vast for a unified study, and we need

to impose some restrictions on φn. Such a study was initiated in Hjort & Fenstad

(1992) which identified the limit of ε2Nε when θ̂n = X̄n + Rn where X̄n = Pn(ι)

is an iid average and equal to the empirical distribution evaluated at the identity

functional, and Rn is small in the sense that
√

m supn≥m |Rn| = oP (1). They also

worked with estimators of the form θ̂n = φ(Fn) defined in terms of the classical

empirical distribution function Fn and where φ was assumed to be so-called locally

Lipschitz differentiable – a rather strong functional differentiation concept which

implies Hadamard-differentiability. Such estimators can be written as φ(Pn(f))

where f ranges over identity functions over (−∞, t) for t ∈ R.
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This paper studies maps φn = φ which for a Donsker class F are Hadamard-

differentiable and estimators θ̂n which are close to Hadamard-differentiable func-

tionals in the sense that

θ̂n = φn(Pn(f)) = φ(Pn(f)) + Rn

where again
√

m supn≥m |Rn| = oP ∗(1). We then apply these limit theorems to

provide new sequential fixed width confidence intervals for such estimators, and use

tail approximations for Gaussian processes to provide approximations for the sizes

involved in computing such confidence sets.

Hadamard-differentiability (henceforth H-differentiability) is a quite weak differ-

entiability concept, which means that a very large class of statistical estimators can

be written as H-differentiable statistical functionals of the empirical distribution.

Examples include the Nelson–Aalen and Kaplan–Meier estimators, the empirical

copula process and a large class of Z-estimators (see Section 3.9.4 of van der Vaart

& Wellner, 1996). We say that a map φ : Dφ ⊂ D �→ E defined on topological

vector spaces D and E is H-differentiable tangentially to a set D0 ⊆ D if there is a

continuous linear map φ̇θ : D0 �→ E, such that

(7) lim
n→∞

φ(θ + tnhn) − φ(θ)

tn
= φ̇θ(h)

for all converging sequences tn → 0 and hn → h such that h ∈ D0 and θ + tnhn ∈ Dφ

for every n. Let Δh(t) = φ(θ + th). If φ is H-differentiable at P , its H-differential is

given by Δ′
h(0) where Δ′ is the classical derivative. As we will deal with functionals

of empirical distributions, we will work exclusively with D ⊆ l∞(F) and E = l∞(E)

both equipped with the supremum norm. We will suppress the dependence which

φ has on F and the use of the uniform norm, and write φ(Pn) instead of φ(Pn(f)).

However, whether or not φ is Hadamard-differentiable is clearly dependent on both

F and the use of the uniform norm. See Remark 4 for further comments on this

interplay.

H-differentiability is one of many possible functional generalizations of ordinary

differentiation. The mathematical mathematical significance of H-differentiability is

that it is the weakest functional differentiability concept which respects a chain-rule

(Section A.5 Bickel et al., 1993). Its statistical significance is that it is the weakest

differentiability concept which allows a generally applicable functional extension

of the classical delta method of asymptotic statistics, called the functional delta

method (see van der Vaart & Wellner, 1996). We note that the above definition we

explicitly assumes that the H-differential is linear. This assumption can be avoided

at the cost of a somewhat more involved theory. As the main results of this paper

valid also under such a weakening, we follow the text of van der Vaart & Wellner

(1996) by assuming that the differential is linear as it simplifies our presentation.
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However, see Remark 2 for further discussion on the consequences of estimators with

non-linear H-differential for our investigation.

As a concrete example of an H-differentiable estimator, consider the Nelson–Aalen

estimator on [0, τ ]. Suppose that we observe Xi = (Zi, Δi) ∼ F where Zi = Yi ∧
Ci and Δi = 1{Yi ≤ Ci} are defined in terms of unobservable iid failure times

Yi < τ distributed according to G and observable iid censoring times Ci. Under

fairly general conditions, given e.g. in Shorack & Wellner (1986), the Nelson–Aalen

estimator Λn(t) converges almost surely to its limit, and we have

Λn(t) =

∫
[0,t]

1

H̄n

dH
uc
n

a.s.−−−→
n→∞

Λ(t) :=

∫
[0,t]

1

1 − G(t)
dG

where

H
uc
n (t) =

1

n

n∑
i=1

Δi1{Zi ≤ t} and H̄n(t) =
1

n

n∑
i=1

1{Zi ≥ t}.

Let Fn be the bivariate empirical distribution of the observations Xi = (Zi, Ci). By

van der Vaart & Wellner (1996, example 3.9.19), we can write

Λn(t) = φ(Fn)

for an H-differentiable functional φ. This H-differentiability structure now leads to

the famous process convergence of the Nelson–Aalen estimator
√

n (Λn(t) − Λ(t))
W ∗−−−→

n→∞
φ̇(Z)(t)

through a simple application of the functional delta method (see van der Vaart &

Wellner, 1996, section 3.9), where Z is a P -Brownian Bridge on [0, τ) × {0, 1}. In

the same manner, our paper shows that if we let

Nε = sup

{
n ∈ N : sup

0≤t≤τ
|Λn(t) − Λ(t)| ≥ ε

}
= sup

{
n ∈ N : ‖Λn − Λ‖[0,τ ] ≥ ε

}
,

the H-differentiability structure implies that

(8) ε2Nε
W ∗−−−→

n→∞

(
sup

0≤s≤1
sup

0≤t≤τ
|φ̇(Zs)(t)|

)2

= ‖φ̇Zs‖2
[0,1]×[0,τ ]

as an immediate consequence of our main result in Section 2, where Zs(z, c) is a

Kiefer-Müller process on (0, 1] × [0, τ) × {0, 1}. In this case, φ̇(Zs))(t) is also a

martingale in t for each s. This allows the application of the theorem of Section 3.2,

which simplifies the limit result of eq (8) to

ε2Nε
W−−−→

ε→0+
σ2

(
sup

0≤s≤1
sup

0≤t≤1
|S(s, t)|

)2

= σ2‖S‖2
[0,1]2

for a Brownian Sheet S on [0, 1]2 where

σ2 =

∫
[0,τ ]

1 − ΔΛ(z)

P{Z ≥ z} dΛ(z).
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We give an application of our limit results to sequential confidence sets in Section

3. The variable Nε is the last passage time of an ε-ball in the uniform norm, and

its limiting distribution can be used to construct sequential confidence sets. The

limit distribution of ε2Nε is defined in terms of a supremum of a Gaussian mean

zero process, and we utilize known tail-bounds for Gaussian processes to find closed

form approximations to the fixed-width confidence sets.

This martingale structure simplifies the construction of sequential confidence sets,

and Section 3.2 gives very tight approximations for the sizes needed to construct

such sets when the limit distribution of
√

n[φ(Pn) − φ(P )] is a martingale. This

results in a new and easily calculated sequential confidence set for the Nelson–Aalen

estimator. Indeed, let A−1 be the inverse of (the rapidly converging) sum

(9) A(λ) = 1 −
∞∑

k=−∞
(−1)k [Φ((2k + 1)λ) − Φ((2k − 1)λ)]

in which Φ is the cumulative distribution function of a standard Gaussian random

variable. We will show that for some m ∈ [σ2A−1(
√

α)2/ε2
0, σ

2A−1(
√

α/2)2/ε2
0 + 1],

we have that

P

(
Λ ∈
{

f : sup
t∈[0,τ ]

|f(t) − Λn(t)| ≤ ε0

}
for all n ≥ m

)
is close to 1 − α. In particular, the choice m = σ2A−1(

√
α/2)2/ε2

0 + 1 works.

Section 3.3 deals with related a problem arising in stochastic programming. Shapiro

& Ruszczynski (2008) gives several practical applications in operations research

where interest is in the value of minx∈X g(x) where g(x) = EG(x, ξ) is the expected

loss of a loss-function G defined in terms on a random vector ξ which has a known

distribution. Often g(x) is difficult to compute, but G(x, ξ) is simpler to compute,

while ξ is possible to simulate. This motivates approximating min g(x) by min ĝ(x)

where ĝn(x) = 1
n

∑n
i=1 G(x, ξi) in which ξ1, ξ2, . . . , ξn are iid realizations of ξ. A

natural question is how to choose n. Our general theory provides a well-motivated

answer in a large class of cases, and we work out the details for a risk averse sto-

chastic problem using a so-called absolute semideviation risk measure.

We conclude the paper with surveying other statistically relevant results connected

or implied by our main result in Theorem 1. We propose two new measures of

asymptotic relative efficiency and also prove convergence of variables related to

Nε. These variables are the number of errors larger than ε, the ratio of errors of

sizes contained in [aε, bε] relative to all errors larger than ε and the mean size of

errors larger than ε. The two last variables have not been studied in the literature

previously.

2. Limit Theorems

We will work under the following set of assumptions.
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(1) (Probability structure and spaces) Assume given a sequence of iid observa-

tions {Xn}∞n=1 living on a metric space space X and distributed according to

P . Suppose that F is made up of real-valued measurable square-integrable

functions from X to R.

(2) (Donsker structure) Assume that F is Donsker (and hence Glivenko–Cantelli)

with respect to P , and is bounded with respect to P in the sense that

supx supf∈F |f(x) − Pf | < ∞.

(3) (Differentiability structure) Assume that φ : Dφ ⊆ D = l∞(F) �→ l∞(E) =: E

is H-differentiable at P tangentially to D0 ⊆ D. Denote the H-differential at

P by φ̇.

Assumptions 1 and 2 are the basic assumptions of van der Vaart & Wellner (1996),

while assumption 3 is the weakest form of H-differentiability used in the literature

and assumes only differentiability at the single point P tangentially to D0 ⊆ D.

H-differentiability at P implies that φ is continuous at P (Proposition A.5.1,

Bickel et al., 1993), and secures that φ(Pn) converges outer almost surely to φ(P ).

In fact, the measurability of Ω̃ of eq. (2) shows that φ(Pn) even converge almost

surely to φ(P ) and that

(10) Ω̃ = {Pn → P} = {φ(Pn) → φ(P )} = {Nε < ∞ for each ε > 0}
where

Nε = sup{n : ‖φ(Pn) − φ(P )‖E > ε}.
Hence, Nε < ∞ with probability one, even though neither Nε nor φ(Pn) needs to be

measurable.

Most of the work in deriving the limit behaviour of Nε is done in the following

lemma. It states that weak convergence of the partial sum process

(s, f) �→ √
n
[
P[sn] − P

]
(f)

in l∞([1,∞) × F) implies weak convergence of the partial “sum” (or “partial func-

tional”) process

(s, e) �→ √
n
[
φ(P[sn]) − φ(P )

]
(e)

W ∗−−−→
n→∞

φ̇(s−1
Zs).

in l∞([1,∞) × F) if φ is H-differentiable. In a certain sense, the lemma is a gen-

eralized version of the functional delta method. However, we will make use of the

measurability of

{φ(Pn) → φ(P )}
which is difficult to prove for other types of estimators. And so if such measura-

bility conditions are in place also for other weakly converging sequences having a

separable and Borel-measurable limit variable, the transference of weak convergence

from partial sums to “partial functionals” is valid. However, we state the Lemma

specifically for φ(Pn) for concreteness.
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Lemma 1. Under assumptions 1-3, we have that
√

n
[
φ(P[sn])(e) − φ(P )(e)

] W ∗−−−→
n→∞

φ̇(s−1
Zs)

on l∞([1,∞) × F) where Z is a Kiefer-Müller process on [1,∞) × F and φ̇(s−1
Zs)

is short-hand for φ̇ evaluated at the l∞(F)-map f �→ s−1
Zs(f). The limit φ̇(s−1

Zs)

is a Gaussian process on l∞([1,∞) × E).

Proof. Recall that we assume that

φ : Dφ ⊆ D = l∞(F) �→ l∞(E) = E

is H-differentiable at P tangentially to D0 ⊆ Dφ. That is, there exists is a continuous

linear map φ̇θ : D0 �→ E, such that

lim
n→∞

∥∥∥∥φ(θ + tnhn) − φ(θ)

tn
− φ̇θ(h)

∥∥∥∥
E

= 0

for all converging sequences tn → 0 and hn → h such that h ∈ D0 and θ + tnhn ∈ Dφ

for every n. Define hs : D �→ E as the restriction map hs(f) = h(s0, f)
∣∣
s0=s

for

h ∈ l∞([1,∞) ×F) and let

Pφ = {h ∈ l∞([1,∞) ×F) : for all s ≥ 1, hs ∈ Dφ} ,

P0 =
{

h ∈ l∞([1,∞) ×F) : for all s ≥ 1, hs ∈ D0, lim
s→∞

hs = 0
}

,

Pn =
{

h ∈ l∞([1,∞) ×F) : for all s ≥ 1, hs ∈ Dn, lim
s→∞

hs = 0
}

where

Dn =

{
h ∈ l∞(F) : P +

1√
n

h ∈ Dφ

}
.

Define

Φ : Pφ �→ l∞([1,∞) × E), Φ̇P : P0 �→ l∞([1,∞) × E)

by

Φ(h)(s, e) = φ(hs)(e), Φ̇P (h)(s, e) = φ̇(hs)(e),

Define gn : Pm �→ l∞([1,∞) × E) and cn : Pm �→ l∞(E) by

gn(h) =
√

n

[
Φ

(
P +

1√
n

h

)
− Φ(P )

]
, cn(h) =

√
n

[
φ

(
P +

1√
n

h

)
− φ(P )

]
.

Although we know that H-differentiability of φ implies the validity of the extended

continuous mapping theorem (Theorem 1.11.1 van der Vaart & Wellner, 1996) on cn

for the spaces Dn and D0, we wish to use the mapping theorem on gn with the spaces

Pn and P0. To do this, we suppose that hn → h with hn ∈ Pn and h ∈ P0 and must

show that also gn(hn) → Φ̇(h). As P + 1√
n

hn,s ∈ Dφ for each s, H-differentiability

of φ at P tangentially to D0 implies that

sup
e∈E

|gn(hn)(s, e) − φ̇(h)(e)| → 0
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for each s, which is seemingly weaker than the required

sup
s∈[1,∞),e∈E

|gn(hn)(s, e) − φ̇(h)(e)| = sup
e∈E

sup
s∈[1,∞)

|gn(hn)(s, e) − Φ̇(h)(s, e)| → 0.

However, the inner supremum must be achieved by an s ∈ [1,∞). Indeed, as hn,s is

vanishing when s → ∞, we have that

lim
s→∞

gn(hn)(s, e) = gn(0) =
√

n [Φ(P ) − Φ(P )] = 0

by the continuity of φ at P and

lim
s→∞

Φ̇(h)(s, e) = Φ̇(0) = 0

by the linearity of φ̇. Let s(e) be the attained maximum of sups∈[1,∞) |gn(hn)(s, e)−
Φ̇(h)(s, e)| and pick, say, the smallest one if the point of maximum is not unique.

We have that

sup
e∈E

sup
s∈[1,∞)

|gn(hn)(s, e) − Φ̇(h)(s, e)| = sup
e∈E

|gn(hn)(s, e) − Φ̇(h)(s, e)|

= sup
e∈E

|cn(hs(e),n)(e) − Φ̇(hs(e))(e)|.

However, as hn,s ∈ Dn and hs ∈ D0 for any s ≥ 1, we have that h̃n = hs(e),n is just

a sequence in Dn converging to h̃ = hs(e), an element of D0. Indeed, let e ∈ E be

given. Then

‖hs(e),n − hs(e)‖F ≤ sup
s≥1

‖hn,s − hs‖F = ‖hn − h‖[1,∞)×F → 0

where the convergence follows as we know that hn → h in l∞([1,∞),F). We can

conclude with gn(hn) → φ̇(h), proving the validity of the extended continuous map-

ping theorem.

As Xn =
√

n[P[sn] − P ] converges weakly to a separable limit on l∞([1,∞) × F),

we are left with showing that Xn is concentrated on Pn. There are two defining

properties of Pn. The first is trivially fulfilled by Xn for each n. Notice that if φ is

to be used as a statistical functional, clearly

Pn = P +
1√
n

√
n[Pn − P ] ∈ Dφ,

and hence √
n[Pn − P ] ∈ Dn =

{
q ∈ l∞(F) : P +

1√
n

q ∈ Dφ

}
.

for each n. As

P +
1√
n

Xn = P +
1√
n

√
n[P[sn] − P ] = P[sn],

this means that also

P +
1√
n

Xn(s, f) ∈ Dn

for every s ≥ 1.



ON THE ERRORS COMMITTED BY SEQUENCES OF ESTIMATOR FUNCTIONALS 11

However, the second defining property is only fulfilled with probability one. In-

deed, Talagrand (1987) (see also Theorem 6.6.A of Dudley, 1999) shows that as F
is Glivenko–Cantelli and made up of measurable and integrable functions, we have

that

P
(

lim
n→∞

‖Pn − P‖F = 0
)

= 1,

even though ‖Pn − P‖F might not itself be measurable. As

{ lim
s→∞

Xn(s, e) = 0} = { lim
n→∞

‖Pn − P‖F = 0} =: Ω̃,

the process Xn is included in Pn with probability one, which suffices to allow the

application of the extended continuous mapping theorem, as the exclusion of a mea-

surable set with probability zero does not change the (outer) probability structure

of the problem. This is seen as follows. Given a B ⊆ Ω, we have that

P ∗(B ∩ Ω̃) = P
((

B ∩ Ω̃
)∗)

= P (B∗ ∩ Ω̃) = P (B∗) = P ∗(B),

where the second equality comes from the measurability of Ω̃C and exercise 1.2.15

in van der Vaart & Wellner (1996). Hence, we may conclude with

√
m
[
φ(P[sn]) − φ(P )

]
= gn(t, Xn)

W ∗−−−→
n→∞

Φ̇P (Xs) = φ̇(s−1
Zs)

on [1,∞)×E for a Kiefer-Müller process Z on [1,∞)×F from the extended contin-

uous mapping theorem. Finally, the Gaussianity of the limit process follows either

from the functional definition of Gaussian processes in Banach spaces or Lemma

3.9.8 of van der Vaart & Wellner (1996). �

Theorem 1. Let Zs(f) = Z(s, f) be a Kiefer-Müller process indexed by [0, 1)×F
and φ̇Zs is φ̇ evaluated at the map f �→ Zs(f). Given assumptions 1-3, the following

is true.

(1) For Nε = sup{n : ‖φ(Pn) − φ(P )‖F}, we have that

(11) ε2Nε
W ∗−−−→

n→∞
‖φ̇Zs‖2

(0,1]×E .

(2) Given an estimator θ̂n
a.s.∗−−−→

n→∞
θ, let Nε = sup{n : ‖θ̂n − θ‖E > ε}. Assume

θ̂n is close to being H-differentiable in the sense that θ̂n = φ(Pn) + Rn where√
m supn≥m ‖Rn‖E is oP ∗(1). We then have

(12) ε2Nε
W ∗−−−→

n→∞
‖φ̇Zs‖2

(0,1]×E .

In both cases, φ̇Zs is a zero mean Gaussian process. If D0 is a linear space, then

φ̇Zs has a covariance function with the product structure

(13) ρ ((s1, e1), (s2, e2)) := Eφ̇Zs1(e1)φ̇Zs2(e2) = (s1 ∧ s2)Eφ̇W ◦(e1)φ̇W ◦(e2).

where W ◦ is a P -Brownian bridge process on F .
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Proof. For the first part, we note that in light of eq. (3), it suffices to identify the

weak limit of supn≥m

√
m‖φ(Pn) − φ(P )‖E . Thanks to the Lemma, this is easy, as

sup
n≥m

√
m‖φ(Pn) − φ(P )‖E = sup

s≥1
‖φ(P[sn]) − φ(P )‖E =

√
m[Φ(Xm) − φ(P )]‖E

= ‖√m[Φ(Xm) − φ(P )]‖[1,∞)×E
W ∗−−−→

n→∞
‖φ̇s−1

Z̃s‖[1,∞)×E

by the continuous mapping theorem. Finally, we know that Zs(f) = s−1
Z̃1/s(f) is a

Kiefer-Müller process on (0, 1] ×F . This proves the first claim, and we can readily

extend this case to the second claim. Note that

P ∗(ε2Nε > y) = P ∗
(

sup
s≥1

√
m‖θ̂[ms] − θ‖E >

√
y0

)
.

Thanks to Lemma 1.10.2 (i) of van der Vaart & Wellner (1996), the stated conver-

gence follows if∣∣∣∣sup
s≥1

√
m‖θ̂[ms] − θ‖ − sup

s≥1

√
m‖φ(P[ms]) − θ‖E

∣∣∣∣ P∗−−−→
n→∞

0.

However, sups≥1 ‖·‖E = ‖·‖[1,∞)×E respects the triangle inequality, so that the above

difference is bounded by
√

m supn≥m ‖Rn‖E which converge to zero in probability by

assumption.

We are left with proving that φ̇Z has the stated covariance structure of eq. (13).

Construct a sequence W ◦
1 ,W ◦

2 , . . . of independent P -Brownian Bridges, and define

Zn(s, f) :=
1√
n

[ns]∑
i=1

W ◦
i (f)

which is a Gaussian mean zero process with covariance function given by

Cov [Zn(s1, f1), Zn(s2, f2))] =
[ns1] ∧ [ns2]

n
Cov [Zn(1, f1), Zn(1, f2)] .

This covariance function converges to the covariance function of a Kiefer-Müller

process on (0, 1] × F , so that the finite dimensional distributions of Zn converge

weakly to those of Z. We now prove that Zn is tight so that Zn
W ∗−−−→

n→∞
Z. Let

�P (f) = (P (f − Pf)2)
1/2

be the variance seminorm. Following the proof of Theorem

2.12.1 of van der Vaart & Wellner (1996), we need to show that for any ε, η > 0,

there exists a δ > 0 so that

lim sup
n→∞

P ∗
(

sup
|s−t|+�(f,g)<δ

|Zn(s, f) − Z(t, g)| > ε

)
< η.

By the triangle inequality, the supremum in the above display is bounded by

(14) sup
|s−t|<δ

‖Zn(s, f) − Zn(t, f)‖F + sup
0≤t≤1

‖Zn(t, f)‖Fδ
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where Fδ = {f − g : f, g ∈ F , �(f − g) < δ}. We can hence bound the probability

of each of these terms being larger than ε separately. By the generalized Lévy

inequality (see e.g. De la Pena & Gine, 1999, Theorem 1.1.5), we have that

P

(
sup

0≤t≤1
‖Zn(t, f)‖Fδ

> ε

)
= P

(
max
k≤n

‖ 1√
n

k∑
i=1

W ◦
i (f)‖Fδ

> ε

)
≤ 9P (‖Zn(1, f)‖Fδ

> ε/30) .

An inspection of the covariance of Zn(1, f) reveals that it is a P -Brownian Bridge

for each n. As F is Donsker, a P -Brownian Bridge is continuous with respect to

�P , so that ‖Zn(1, f)‖Fδ
converges to zero in probability as δ → 0+. To bound the

probability that the first term of eq. (14) is larger than ε, the arguments contained

in the proof of Theorem 2.12.1 in van der Vaart & Wellner (1996) imply that

P

(
sup

|s−t|<δ

‖Zn(s, f) − Zn(t, f)‖F > ε

)
≤
⌈

1

δ

⌉
P

(
max
k≤nδ

‖ 1√
n

k∑
i=1

W ◦
i (f)‖F > ε

)

=

⌈
1

δ

⌉
P

(
max
k≤nδ

‖ 1√
δn

k∑
i=1

W ◦
i (f)‖F >

ε

δ

)
.

Note again that Znδ is a P -Brownian Bridge W ◦ for each n. By the generalized

Lévy inequality, the above display is bounded by

9

⌈
1

δ

⌉
P
(
‖Znδ(1, f)‖F >

ε

30δ

)
= 9

⌈
1

δ

⌉
P
(
‖W ◦‖F >

ε

30δ

)
.

the finite second moment of ‖W ◦‖F (van der Vaart & Wellner, 1996, Lemma 2.3.9)

enables us to envoke the Borell inequality (van der Vaart & Wellner, 1996, Propo-

sition A.2.1) which imples that ‖W ◦‖F has exponentially decreasing tails. Hence,

the above display converges to zero. We assumed that D0 is a linear space, so that

we can apply φ̇ to Zn, which converges weakly to φ̇Z by the continuous mapping

theorem. The linearity of φ̇ also shows that

φ̇Zn(s, e) =
1√
n

[ns]∑
i=1

φ̇W ◦
i (e),

which has covariance function

ρn ((s1, e1), (s2, e2)) = Cov
[
φ̇(Zn(s1, f))(e1), φ̇(Zn(s2, f))(e2)

]
=

[ns1] ∧ [ns2]

n
Cov
[
φ̇(Zn(1, f))(e1), φ̇(Zn(1, f))(e2)

]
.

As φ̇Zn is Gaussian and converges weakly to φ̇Z and as φ̇Z1 = φ̇W ◦ for a P -Brownian

Bridge W ◦, we have that ρn → ρ, where ρ is defined in eq (13). �

Several remarks are in order.



14 STEFFEN GRØNNEBERG AND NILS LID HJORT

Remark 1. When φ(Pn) is a random variable, so that E = {e} is a singleton, the

covariance structure of eq. (13) shows that φ̇Zs =
√

Var IFφ(X)Bs for a Brownian

Motion Bs and where IFφ is the influence function of φ. Thus Theorem 1 is a proper

generalization of the basic result in Hjort & Fenstad (1992).

Remark 2. We note that the proofs of Lemma 1 and the first two parts of

Theorem 1 does not use the assumed linearity of φ̇, and is still true when the

definition of H-differentiability is weakened to only assume eq. (7). The chain-rule

still applies, and several new maps can be shown to be H-differentiable in this weaker

sense. See Römisch (2005) for a survey of such results. Our proof also applies in

the case of set-valued functionals when an appropriate metric for comparing sets is

assumed, such as the Attouch-Wets topology.

Remark 3. The limit of ε2Nε depends only on three things. Firstly, the Kiefer-

Müller process is a mean zero Gaussian process, with covariance structure defined

through P . Secondly, both Nε and the limit variable is defined in terms of the

uniform topology on E . Thirdly, while Nε is defined in terms of the full φ, the

limit only depends on the much simpler φ̇. This is interesting from a statistical

perspective and motivates the definition of

σ2 :=
Median‖φ̇Zs‖2

(0,1]×E
Median‖Zs‖2

(0,1]×F
(15)

as a measure of variance for φ(Pn). There are two main reasons for scaling the

median of the limit variable of ε2Nε with Median‖Zs‖2
(0,1]×F . Firstly, all stochasticity

of θn = φ(Pn) originates from Pn, making it natural to separate the variability

of Pn and the variability inherent in the structure of φ itself. Secondly, notice

that if θ̂ = X̄n is the empirical mean of iid random variables X1, X2, . . . , Xn, then

φ̇Zs = σBs for a Brownian Motion process Bs. Hence,

Median‖φ̇Zs‖2 = σ2 Median sup
0≤s≤1

|Bs|2.

so that the σ2 of eq. (15) coincides with the standard definition of variance.

Remark 4. The structure of the class of H-differentiable functionals depends

on the topology of both D and E. For a collection C ⊆ D we call φ a C-differentiable

functional at θ if

lim
t→0

sup
h∈C, θ+th∈Dφ

∥∥∥∥φ(θ + th)

t
− φ̇θ(h)

∥∥∥∥ = 0.

H-differentiability is equivalent to C-differentiability when C is the class of all com-

pact sets. If other topologies on D or E are used, this changes the class of H-

differentiable functionals in non-trivial ways. We note that the investigation of Dud-

ley (1992) works with Fréchet differentiability functionals with p-variation norms on

the D-space. Fréchet differentiability is C-differentiability when C is the class of all
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bounded sets of D, which is strictly stronger than H-differentiability – when the

same topology is used. However, the classes of H-differentiable and Fréchet differ-

entiable functionals are incommensurable when different topologies are used. See

Section 5.2 of Shao (2003) for examples of this incommensurability, and exercise 5.27

of Shao (2003) for a class of functionals of the classical empirical distribution which

are Fréchet differentiable with respect to the L1-norm, but not H-differentiable with

respect to the uniform norm. We have followed van der Vaart & Wellner (1996) in

working with the uniform topology on both D and E.

Remark 5. When working with estimators of the form θ̂n = φ(Pn) + Rn, we

can no longer guarantee the measurability of {Nε < ∞ for each ε > 0} as eq. (10)

need not hold. If Rn �≡ 0 but Rn
a.s.∗−−−→

n→∞
0, this only provides a the existence of a

version of the measurable cover of ‖θ̂n − φ(P )‖, which we denote by ‖θ̂n − φ(P )‖�,

that converges to zero almost surely. Although the convergence of eq. (12) is valid

without measurability, we can only guarantee the measurability of {N�
ε < ∞} for

ε > 0 where N�
ε := sup{n : ‖θ̂n − θ‖�

E > ε}.

3. Sequential confidence sets

As in Hjort & Fenstad (1992) and Stute (1983), our results about the limiting

distribution of ε2Nε can be used to construct sequential fixed-volume confidence

regions. As our limit result encompasses all H-differentiable functionals, this leads

to new confidence sets for many estimators, the Nelson–Aalen estimator being one

of them. In this connection we remark that Bandyopadhyay et al. (2003) find fixed-

value confidence intervals for the H-differentiable functional

(16) φ(FX,Y ) =

∫
FX dFY = P (X ≤ Y ).

The basis for their construction of a fix-volume confidence set for P (X ≤ Y ) is a

direct application of a special case of Theorem 1.

The connection between the limit of Nε and the construction of fixed-width con-

fidence sets is as follows. Calculate or approximate the upper α quantile of the

limit variable of the theorem and denote this quantile by λα. Fix the radius of the

confidence set as ε0 and compute m = [λα/ε2
0]. By the distributional convergence,

we get that

P (ε2Nε < λα) = P (‖φ(Pn) − φ(P )‖E ≤ ε0 for all n ≥ m)

= P (φ(P ) ∈ B (ε0, φ(Pn)) for all n ≥ m)(17)

is close to 1 − α where

B(ε, y) = {x : ‖x − y‖E ≤ ε}
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is an ε-ball in l∞(E). This has intuitive appeal. Whereas confidence sets are usually

of the form

P (φ(P ) ∈ Cn) ≥ 1 − α, for all n ≥ m

and thus only give a probability statement for one n ≥ m at the time, a fixed-volume

confidence set gives a simultaneous answer for all n ≥ m. This is intuitively pleasing,

and Hjort & Fenstad (1992) humorously mentioned that even Serfling’s physician

(Serfling, 1980, page 49) is interested in sequential fixed-volume confidence regions.

The difficult step in constructing the fixed width confidence set of eq. (17) is to

calculate λα. In some special cases, as in the case of eq. (16), the limit distribution

of ε2Nε can be found in a closed form expression. This seems out of reach for a

completely general H-differentiable φ. However, in some cases we can find useful

approximations for tail-probabilities of ‖φ̇Zs‖2
(0,1]×E . Although this quantile can in

theory be simulated directly from the Donsker Theorem, this is often very time

consuming, if even possible.

When the limit variable φ̇Zs is Gaussian, we have the well-developed theory of

Gaussian tail bounds at our disposal. Under typical conditions, φ̇Zs has zero mean

– see Section 3.9.2 of van der Vaart & Wellner (1996). In this case we can use

Proposition A.2.1 of van der Vaart & Wellner (1996) that gives the Borell inequality

in the form

(18) P (‖φ̇Zs‖2
(0,1]×E ≥ λ) = P (‖φ̇Zs‖(0,1]×E ≥

√
λ) < 2 exp

(
− λ

8E‖φ̇Zs‖2
(0,1]×E

)
for all λ > 0. The following Lemma shows that the above inequalities are non-trivial

under our assumptions.

Lemma 2. Let Zs(f) = Z(s, f) be a Kiefer-Müller process indexed by [0, 1)×F
and φ̇Zs is φ̇ evaluated at the map f �→ Zs(f). Given assumptions 1-3, ‖φ̇Zs‖(0,1]×E
has finite second moment.

Proof. By Proposition 1 below, we have

E‖φ̇Zs‖2
(0,1]×E =

∫ ∞

0

P (‖φ̇Zs‖2
(0,1]×E > x) dx ≤ 2

∫ ∞

0

P (‖φ̇Zs‖2
E > x) dx = 2E‖φ̇Z‖2

E

As φ̇Z is the weak limit of
√

n[φ(Pn) − φ(P )] as n → ∞, Lemma 2.3.9 of van der

Vaart & Wellner (1996) shows that E‖φ̇Z‖2
E is finite. �

The expectation of inequality 18 is simpler to approximate than the full distribu-

tion of ‖φ̇Zs‖2
(0,1]×E and provides a general bound for λα. However, E‖φ̇Z‖2

E is often

difficult to compute and the constants involved can be improved in special cases.

The following subsections gives explicit bounds for some classes of special cases.

Remark 6. The confidence sets presented in this section rely on the approx-

imation P (ε2Nε < λα) ≈ 1 − α through Theorem 1. An alternative construction
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of approximate sequential confidence sets for a fixed ε > 0 can be based on the

following observation. Let

(s, e) �→ Rms(e) =
[
φ(P[ms])(e) − φ(P )(e)

]− [φ̇(P[ms] − P )
]

and suppose a bound of the type

(19) P

(
sup

s≥1,e∈E
|Rms(e)| > y

)
≤ r(y)

is known. Following the notation of Section 1, the triangle inequality shows that

(20) P (ε2Nε > y) ≤ P

(√
m sup

s≥1,e∈E
|φ̇(P[ms] − P )(e)| >

√
y0/2

)
+ r (

√
y0/2) .

By the linearity of φ̇, the first term is the supremum of a sequential empirical

process, for which non-asymptotic bounds exist. The inequality of Talagrand (1996)

applies to sequential empirical processes as well, as it is proved through estimating

the Laplace transform, and the exponentiated partial sum is a submartingale, so

that Doob’s inequality can be applied. However, although good constants for the

Talagrand inequality are given in Massart (2000) for the non-sequential empirical

process, we are unaware of analogous results for the sequential case. Supposing such

constants known, one could bound any quantile from eq. (20). However, it may

be difficult to find useful r-functions for eq. (19). Analogously to the unspecified

precision underlying P (ε2Nε < λα) ≈ 1− α, one could also give conditions securing

sups≥1,e∈E |Rms(e)| = op(1) and ignore the second term of eq. (20) when solving for

y in eq. (20).

3.1. A reduction to the Kolmogorov–Smirnov limit. The weak limit of ε2Nε

is almost the limit of the Kolmogorov–Smirnov Goodness-of-fit functional for the

estimator φ(Pn). Approximating such goodness-of-fit limits is a well-known problem

and have been studied in many settings. The following result relates the ε2Nε limit

to that of the Kolmogorov–Smirnov functional.

Proposition 1. Let Zs(f) = Z(s, f) be a Kiefer-Müller process indexed by

[0, 1) × F and φ̇Zs is φ̇ evaluated at the map f �→ Zs(f). Given assumptions 1-3,

we have

P (‖φ̇Zs‖(0,1]×E > λ) ≤ 2P (‖φ̇Z‖E > λ).

where Z is an F -Brownian Bridge.

Proof. Fix an integer k > 0 and let m = 2k. For k = 1, 2, . . . , m and t ∈ [0, 1]d, let

Uk(e) = φ̇Zj/m(e) − φ̇Z(j−1)/m(e)

which is a symmetric stochastic process, and where U1, U2, . . . , Uk are independent

of each other. As φ̇Zj/m(e) =
∑j

i=1 Ui(e), the general Lévy’s inequality given e.g.
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in Proposition A.1.2 in van der Vaart & Wellner (1996), shows that

P

(
sup

1≤j≤m
‖φ̇Zj/m‖E > λ

)
= P

(
sup

1≤j≤m

∥∥∥∥∥
j∑

i=1

Ui

∥∥∥∥∥
E

> λ

)
≤ 2P

(∥∥∥∥∥
m∑

i=1

Ui

∥∥∥∥∥
E

> λ

)
,

which equals 2P (‖φ̇Z1‖E > λ). As Z1 is an F -Brownian Bridge, the claimed upper

bound follows from monotone convergence as k → ∞. �

The above result leads e.g. to explicit bounds for the limit distribution of ε2Nε

for the two-dimensional empirical distribution function through the results of Adler

& Brown (1986). Let W be a two-dimensional real valued F -Brownian-Bridge on

R
2 and K an F -Kiefer-process on (0, 1] × R

2. The above lemma, symmetry of zero

mean Gaussian processes and Theorem 3.1 of Adler & Brown (1986) shows that for

any F , we have

P

(
sup

(s,t)∈(0,1]×R2

|Zs(t)| >
√

λ

)
≤ 2P

(
sup
t∈R2

|W(t)| >
√

λ

)

≤ 4P

(
sup
t∈R2

W(t) >
√

λ

)
≤ 4

∞∑
k=1

(8k2λ − 2)e−2k2λ.

3.2. Gaussian Local Martingales. If φ̇W ◦ is a univariate local martingale in-

dexed by [0, τ) the limit variable of Nε has a particularly simple structure.

Theorem 2. Assume that D0 is linear, that E is [0, τ) for some 0 < τ < ∞,

and that for each s, the process φ̇(Zs)(t) is a square integrable continuous local

martingale in t starting at zero. Let
〈
φ̇W ◦, φ̇W ◦

〉
s

be the covariation process of

φ̇W ◦ and define σ2(t) = inf
{

s :
〈
φ̇W ◦, φ̇W ◦

〉
s
> t
}

. Then the limit variable of

Theorem 1 has the same distribution as σ2‖S‖2
[0,1]2 where S is a Brownian Sheet on

[0, 1]2 and σ2 = σ2(τ) is non-stochastic.

Proof. The Dambis Dubuins-Schwarz Theorem (Revuz & Yor, 1999, Theorem V.1.6)

shows that there exists a version W of Brownian Motion so that W (σ2(t)) = φ̇W ◦(t).
As φ̇W ◦ is a continuous mean zero Gaussian process with a product covariance

structure given by eq. (13), its quadratic variation process is non-stochastic (see

exercise V.1.14 Revuz & Yor, 1999). Hence,

Eφ̇W ◦(t)φ̇W ◦(s) = EW (σ2(t))W (σ2(s)) = σ2(t) ∧ σ2(s).

Theorem 1 shows that φ̇Z is a continuous mean zero Gaussian process with a product

covariance structure given by eq. (13). As the distribution of a mean zero Gaussian

process is determined by its covariance structure, this shows that defining S by

φ̇Z = S(s, σ2(t)) makes S(s, t) a Brownian Sheet on [0, 1] × [0, σ2(τ)]. Let N be the
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limit variable of Theorem 1. As φ̇W ◦ is continuous, its quadratic variation is also

continuous, which makes its inverse σ2(t) continuous as well. Hence,

N =

(
sup

0≤s≤1
sup

0≤t≤τ

∣∣S(s, σ2(t))
∣∣)2

=

(
sup

0≤s≤1
sup

0≤t≤1

∣∣S(s, tσ2(τ))
∣∣)2

.

The time scaling property of the Brownian Sheet then shows that

N = σ2(τ)

(
sup

0≤s≤1
sup

0≤t≤1

∣∣∣S̃(s, t)
∣∣∣)2

= σ2‖S̃‖2
[0,1]2

where S̃ is a Brownian Sheet on [0, 1]2. �

This leads directly to the following result concerning the Nelson–Aalen estimator.

Its proof follows as a direct consequence of Theorem 2 from the well-known fact that

the Nelson–Aalen estimator is composed of H-differentiable maps (van der Vaart &

Wellner, 1996, Example 3.9.19) and has a Gaussian Martingale limit. We also note

that a completely analogous corollary is also valid for the Kaplan–Meier estimator

(see example 3.9.31 of van der Vaart & Wellner (1996) and Theorem IV.3.2 of

Andersen et al. (1992)).

Corollary 1. Let Nε be the last time the Nelson–Aalen estimator Λ̂n is more

than ε away from Λ with respect to supremum distance and let

σ2(t) =

∫
[0,t]

1 − ΔΛ(z)

P{Z ≥ z} dΛ(z).

Then

(21) ε2Nε
W−−−→

ε→0+
σ2

(
sup

0≤s≤1
sup

0≤t≤1
|S(s, t)|

)2

for a Brownian Sheet S on [0, 1]2 and where σ2 = σ2(τ).

This can also be seen independently when working directly with the heuristics

leading to Theorem 1 through

Ym(s, t) =
√

m(Λ̂[ms](t) − Λ(t))

using martingale calculus. Using theory presented in Andersen et al. (1992), con-

vergence of Ym(s, t) to the Brownian Sheet W (s, σ2(t)) as m → ∞ can be proven.

However, such a proof would use the fine structure of φ. In contrast, the above

corollary is a trivial consequence of Theorem 2, and only rests on the well-known

martingale structure of φ̇Zs.

In the setting of Theorem 2, we can reach tight and general bounds for the m of

eq. (17). Let b =
√

λα/σ where λα is the upper α quantile of σ2‖S‖[0,1]2 . We have

that

(22) P (‖Bs‖[0,1] > b) ≤ P (‖S(s, t)‖[0,1]2 > b) = α ≤ 2P (‖Bs‖[0,1] > b),
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where B is Brownian motion on [0, 1] and where the upper bound is analogous to

Proposition 1. Hence,

A−1(
√

α) ≤ b ≤ A−1(
√

α/2)

where

A(λ) = 1 −
∞∑

k=−∞
(−1)k [Φ((2k + 1)λ) − Φ((2k − 1)λ)]

is the cumulative distribution function of ‖Bs‖[0,1] given in Section 2.7 of Sen (1981).

As m = [λα/ε2], we get that

σ2A−1(
√

α)2/ε2
0 ≤ m ≤ σ2A−1(

√
α/2)2/ε2

0 + 1.

One may improve on this bound by approximating the distribution of ‖S(s, t)‖[0,1]2

directly instead of using eq. (22).

3.3. An application to risk averse stochastic problems. As discussed in Shapiro

& Ruszczynski (2008), there is a rich class of applications in operations research

where one encounters problems of the form

(23) min
x∈X

g(x)

where g(x) = EG(x, ξ) is the expected loss of a loss-function G defined in terms on a

random vector ξ which has a known distribution and is supported on a set Ξ ⊆ R
d.

Often g(x) is difficult to compute, but G(x, ξ) is simpler to compute, while ξ is

possible to simulate. As numerical optimization of eq. (23) requires many evaluations

of g(x) at different values of x, a well-motivated procedure is to approximate g(x)

by

ĝn(x) =
1

n

n∑
i=1

G(x, ξi)

where ξ1, ξ2, . . . , ξn are iid realizations of ξ. The so-called sample average approxi-

mation to the stochastic problem of eq. (23) is then

(24) min
x∈X

ĝ(x).

Shapiro (2008) derives limit theorems for the sample average approximation for cer-

tain minimax stochastic problems by showing that under certain assumptions that

are natural in many operation research problems, the estimator of eq. (24) is a

H-differentiable functional of the empirical distribution. Under uniqueness assump-

tions on the optimization problem, the functional delta method then shows that√
n(vn−v) is asymptotically normal, where vn = minx∈X ĝ(x) and v = minx∈X g(x).

For concreteness, let us work with the following risk averse stochastic problem, given

by

min
x∈X

ρλ [G(x, ξ)]
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where G : R
m ×Ξ and ρλ(Z) := EZ +λE[Z −EZ]+ is the so-called absolute semide-

viation risk measure with λ ∈ [0, 1]. A most fundamental problem for using sample

average approximations is how to choose n. First of all, one needs to guarantee

that approximating g(x) by ĝ(x) does not distort the minimum value too much.

Secondly, one needs to make sure that the size of n that guarantees such a sufficient

precision level is not so large as to exceed the computational burden of working

work directly with g(x). Through assuming an exponential bound of the moment

generating function of ξ, Shapiro (2008) provides a formula for n(α, ε) such that for

a given α > 0,

(25) P (|v̂n(α,ε) − v| < ε) ≥ 1 − α

where

(26) n(α, ε) =
C1

ε2

(
log

C2

ε
+ log α−1

)
for constants C1, C2 depending on G, X and the distribution of ξ only. Without

assuming exponential bounds for the moment generating function of ξ, Theorem 1

identifies the limit distribution of ε2Nε = ε2 sup{n : |vn − v| > ε}. Assuming the

uniqueness conditions stated in Shapiro (2008), vn is asymptotically Gaussian, so

that Remark 1 and the computations of Section 3.2 shows that

(27) n ≥ N(α, ε) := σ2A−1(
√

α/2)2/ε2

implies that

(28) P (|v̂m − v| < ε for all m ≥ n)

is close to 1 − α for sufficiently small ε. Here σ2 is the asymptotic variance of√
n(vn − v) which is given in Equation 3.11 of Shapiro (2008) as

σ2 = Var
{
G(x∗, ξ) + λα∗ [G(x∗, ξ,−EG(x∗, ξ)]+ + λ(1 − α∗) [−G(x∗, ξ) − EG(x∗, ξ)]+

}
defined in terms of

x∗ = argmin
x∈X

ρλ [G(x, ξ)] , α∗ = P (G(x∗, ξ) ≤ EG(x∗, ξ)).

This result is valid under much less stringent assumptions than that of Shapiro

(2008), but is asymptotic in contrast to the finite sample bound of n(α, ε) in eq. (26).

It is interesting to note that n(α, ε) is larger than N(α, ε) by a factor of log ε−1. This

seems to originate from the coarseness of the exponential inequalities used in Shapiro

(2008).

4. Further applications

This section surveys other statistically motivated applications of Theorem 1.
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4.1. The multivariate case. Although we have suppressed it from our notation,

Theorem 1 is valid also in the multivariate case. Given a norm ‖ · ‖Rd on R
d, such

as the Euclidean or the maximum norm, we can work with

l∞(E) =

{
f ∈ M(E �→ R

d) : sup
e∈E

‖f(e)‖Rd < ∞
}

where M(E �→ R
d) is the space of all functions from E to R

d. Suppose that θ̂1,n
a.s.∗−−−→

n→∞
θ1 and θ̂2,n

a.s.∗−−−→
n→∞

θ2 are two sequences of estimators pertaining to the regularity

conditions of Theorem 1 and let

Nε := sup
{

n :
∥∥∥θ̂1,n − θ1

∥∥∥ > ε and
∥∥∥θ̂2,n − θ2

∥∥∥ > ε
}

= sup
{

n : max
{∥∥∥θ̂1,n − θ1

∥∥∥ ,∥∥∥θ̂1,n − θ1

∥∥∥} > ε
}

be the last time an error larger than ε is committed both for θ̂1,n and θ̂2,n. As

the map F �→ (F, F ) is linear and hence trivially H-differentiable, the chain-rule of

H-differentiability and Theorem 1 show that

ε2Nε
W ∗−−−→

ε→0+
sup

(i,s,e)∈{1,2}×(0,1]×E
|Zi,s(e)|2 = ‖Zs(e)‖2

(0,1]×E

for a vector-valued Kiefer-Müller process Zs = (Z1,s, Z2,s). Note that Z1,s and Z2,s

are independent if
√

n(θ̂1,n − θ1) is asymptotically independent of
√

n(θ̂2,n − θ2).

4.2. The number of ε-misses and two new variables. So far we have only

worked with the variable Nε. However, weak convergence of several statistically

interpretable variables also follow from Lemma 1.

Corollary 2. Let

Qε =
∞∑

n=1

I{‖φ(Pn) − φ(P )‖ ≥ ε}

be the number of errors larger than ε. Further let

Rε(a, b) =

∑∞
n=1 I{aε ≤ ‖φ(Pn) − φ(P )‖ ≤ bε}∑∞

n=1 I{‖φ(Pn) − φ(P )‖ ≥ ε}
be the ratio of errors of sizes contained in [aε, bε] relative to all errors larger than ε

and

Mε =

∑∞
n=1 ‖φ(Pn) − φ(P )‖I{‖φ(Pn) − φ(P )‖ ≥ ε}∑∞

n=1 I{‖φ(Pn) − φ(P )‖E ≥ ε} ,

the mean size of errors larger than ε. We then have that

ε2Qε
W−−−→

ε→0+

∫ ∞

0

I
{
‖φ̇Zs‖E ≥ 1

}
ds.

Denoting the limit variable of ε2Qε by Q, we further have

Rε(a, b)
W−−−→

ε→0+
Q−1

∫ ∞

0

I
{

a ≤ ‖φ̇Zs‖E ≤ b
}

ds,
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which we will call R(a, b). Finally, we also have

ε−1Mε
W−−−→

ε→0+
Q−1

∫ ∞

0

‖φ̇Zs‖EI
{
‖φ̇Zs‖E ≥ 1

}
ds.

Proof. We will only consider Qε, as the other cases follow similarly. Let us first show

that for

Qε(l) =
∞∑

n=[l/ε2]

I{‖φ(Pn) − φ(P )‖ ≥ ε}

we have

ε2Qε(l)
W−−−→

ε→0+

∫ ∞

l

I
{
‖φ̇Zs‖E ≥ 1

}
ds

each l > 0 and we afterwards let l → 0+. Indeed, as

∞∑
n=[l/ε2]

I{‖φ(Pn) − φ(P )‖ ≥ ε} =

∫ ∞

[l/ε2]

I{‖φ(P[s]n) − φ(P )‖ ≥ ε} ds

a change of variables gives

ε2Qε(l) =

∫ ∞

l

I{√m‖φ(P[ms]) − φ(P )‖ ≥ 1} ds + oP ∗(1) = Ql(Xn) + oP ∗(1),

where Ql is the mapping

D �→
∫ ∞

l

I{sup
f∈F

|Ds(f)| ≥ 1} ds.

As Ql is a continuous mapping in l∞([l,∞) × E), the claimed limit follows from

the continuous mapping Theorem and a trivial extension of Lemma 1 to prove

convergence on l∞([l,∞) × E) (when l > 0) instead of l∞([1,∞) × E). The full

convergence follows if we show that for each δ > 0 we have

lim
c→∞

lim sup
n→∞

P ∗
(

sup
l≤1/c

|Dl(Xn) − D0(Xn)| ≥ δ

)
= 0.

The linearity of the integral and subadditivity of outer measures implies that

P ∗
(

sup
l≤1/c

|Ql(Xn) − Q0(Xn)| ≥ δ

)
= P ∗
(∫ 1/c

0

I{√n‖φ(P[ns]) − φ(P )‖ ≥ 1} ds ≥ δ

)

≤ P ∗
(

c−1I{ sup
0<s≤1/c

√
n‖φ(P[ns]) − φ(P )‖ ≥ 1} ≥ δ

)

= P ∗
(

I{ sup
0<s≤1/c

√
n‖φ(P[ns]) − φ(P )‖ ≥ 1} ≥ cδ

)

which is zero for cδ > 1. �
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Figure 1. Median value and lower and upper 0.05 quantiles of the

variable R(1, b) (the limit of Rε(1, b)) for a range of b values for the

simple average.

While Hjort & Fenstad (1992) worked with Qε, both Mε and Rε are new. Note

that Rε does not require a normalization with respect to ε to gain a weak limit, and

as such has a very direct interpretation. For an illustration of the Rε result, Figure

1 displays the median value and the lower and upper 0.05 quantiles of the variable

R(1, b), the limit of Rε(1, b), for a range of b values (these calculations relate to the

case of a one-dimensional simple average). We learn e.g. that about half of all errors

ever committed above ε are below 1.53 ε, the rest above 1.53 ε. Amazingly, this fact

is established even though we may never observe or even simulate the underlying

Rε(1, b) variables.

4.3. Measures of asymptotic relative efficiency. Suppose that φ1(Pn) and φ2(Pn)

are H-differentiable statistical functionals both estimating φ(P ). A concrete exam-

ple is the median versus the mean when the density of P is symmetric. Let Ni,ε be

the last time φi(Pn) is further than ε away from φ(P ). A natural measure for the

asymptotic relative efficiency of φ1(Pn) compared to φ2(Pn) is then

ARE := M1/M2

where Mi is the median of Ni, the limit variable of ε2Ni,ε as ε → 0+. Recall that

φ1(Pn) and φ2(Pn) is implicitly dependent on which space Pn is defined. Indeed,

suppose φ1 and φ2 are functionals of l∞(F1) and l∞(F2). If F1 �= F2, a more natural

extension of the measure of variance proposed in Remark 3 is

(29) ARE :=

(
M1

Median‖Zs‖2
(0,1]×F1

)
/

(
M2

Median‖Zs‖2
(0,1]×F2

)
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If F1 = F2, the two measures agree.

These asymptotic relative efficiency measures do not distinguish between estima-

tors with the same H-differential. To distinguish between such cases, a second order

perspective is required. The ε2Qε-limit result of Corollary 2 may be the starting-

point for providing a.r.e measures when ε2N1,ε and ε2N1,ε have the same limit.

Indeed, let Qi,ε be the number of errors committed by φi(Pn) for i = 1, 2. As done

in Hjort & Fenstad (1995) and Hjort & Khasminskii (1993) for estimators connected

with averages, one can work with the asymptotic relative deficiency measure

ARD = lim
ε→0+

E{Q1,ε − Q2,ε},

which in such cases provides more detail than the a.r.e measure of eq. (29).
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THE COPULA INFORMATION CRITERION AND ITS
IMPLICATIONS FOR THE MAXIMUM PSEUDO LIKELIHOOD

ESTIMATOR

STEFFEN GRØNNEBERG

Abstract. This chapter surveys the asymptotic theory of estimation of a copula
from a frequentistic perspective and presents the problems involved in frequentistic
model selection among several candidate copulae when using the Maximum Pseudo
Likelihood Estimator (MPLE). Frequentistic copula model selection has recently
been addressed through the development of the Copula Information Criterion
(CIC) – a model selection formula which extends the Maximum Likelihood based
Akaike Information criterion (AIC) to the MPLE. We present the developments
leading to the CIC with a focus on its implications, while deferring proofs of
underlying limit theorems to the original CIC paper.

The CIC is in fact two different formulae, one for mis-specified copula mod-
els and another for correctly specified copula models, parallelling the Takeuchi
Information Criterion and the Akaike Information Criterion respectively.

These formulae show that there does not exist (in a certain technical sense)
an AIC formula for MPL estimation when the parametric copula has extreme
behavior near the edge of the unit cube. This means that one cannot estimate
first-order bias-correction terms of a desired part of the attained Kullback–Leibler
divergence between the MPL estimated copula and the data generating copula in
a class of copulae which has received much attention in for example econometrics.
This provides a demarcation for which types of copulae it is sensible to estimate
with the MPLE. Interestingly, the main motivating factor for using the MPLE is
also the source of the non-existence of a general MPLE based AIC formula.
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1. Introduction

Suppose n-dimensional stochastic vectors X1, X2, . . . , XN are observed, which are

independent of each other, and all coming from the same, unknown data generating

distribution

(1) F ◦(x) = C◦ (F ◦
1 (x1), . . . , F

◦
n(xn)) .

We assume that F ◦ is continuous, and we wish to model the copula C◦ through one,

or perhaps several parametric classes. In the praxis of parametric copula modelling,

there are four basic problems which are naturally met in any investigation. First, if

our model is

fθ(x) = cθ (F ◦
1 (x1), . . . , F

◦
n(xn))

n∏
i=1

f ◦
i (xi),

where the marginals F ◦
i are completely unknown, how should θ be estimated? Sec-

ond, how should the parametric form of cθ be chosen? Third, how should one select

among several candidate models on the basis of observed data? And fourth, is the

final model (or models) adequate?

The first problem has various solutions, where the Maximum Pseudo Likelihood

Estimator (MPLE) discussed in Genest et al. (1995) is the most popular. The

second problem is implicit in all multivariate model building, and much of this book

is devoted solely to provide flexible solutions to this problem. The fourth problem

is usually dealt with through goodness-of-fit tests which are based on the MPLE,

and there exists several investigations in this area (see Genest et al. (2006)).

The development of the CIC started from noticing that the third issue has been

ignored, or dealt with in an incorrect manner. Several published papers, and many

practitioners, have incorrectly used the “AIC formula”

(2) AIC• = 2�N,max − 2 length(θ)

as a model selection criterion, with �n,max = �n(θ̂) being the maximum pseudo like-

lihood, from the traditional Akaike information criterion

AIC = 2�#
N,max − 2 length(θ),

where �#
N,max is the usual maximum likelihood for a fully parametric model. One

computes this AIC• score for each candidate model and in the end chooses the model

with highest score.
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This ignores the fact that the pseudo likelihood is not a proper likelihood, and

unfortunately it does not lead to a correct formula. Grønneberg & Hjort (2008)

derive a proper generalization of the AIC for the MPLE and name it the Copula

Information Criterion (CIC). The formula is given by

(3) CIC = 2�N,max − 2(p̂∗ + q̂∗ + r̂∗)

with expressions for p̂∗ + q̂∗ + r̂∗ different from (and more complicated than) merely

length(θ). These quantities even vary non-trivially with the model parameter – in

clear contrast with length(θ) which is invariant to the actual value of θ.

But the story does not end here, as the CIC formula of Grønneberg & Hjort (2008)

does not exist for a large class of copula families such as copulae with extreme tail

dependence. This lack of existence is, however, not a deficiency of the arguments

used in Grønneberg & Hjort (2008), but is an inherent limitation for the asymptotic

behaviour of the MPLE. This makes model selection with the MPLE a more complex

problem than the fully parametric case, and the CIC formula can only attack model

selection problems concerning copulae which are sufficiently well-behaved along the

edges of the unit cube. The implications of this is discussed in the conclusion of the

chapter.

To understand these developments and the difficulties involved in the model selec-

tion problem for copula estimation with the MPLE, one needs to understand some

fundamental issues concerning the MLE, the AIC and the MPLE. The present chap-

ter is, in addition to the introduction and concluding remarks, divided into three

parts. The first part is Section 2, which presents the MLE, the AIC and the MPLE

from a perspective which naturally leads to the CIC formula. The second part of our

story is Section 3, which derives the two CIC formulae. Finally, we include a brief

simulation example in Section 4. Although we will omit the technical asymptotic

developments needed to make the arguments rigorous, we will discuss the needed

mathematical structures to such a degree that the above mentioned exploding bias

correction terms can be presented without simplification.

Let us first introduce some general notation that we use throughout the chapter.

Let F ◦
1 , F ◦

2 , . . . , F ◦
n be the marginal distributions of F ◦, and let

F ◦
⊥(x) := (F ◦

1 (x1), F
◦
2 (x2), . . . , F

◦
n(xn))

be the vector of marginal distributions. We will denote all sizes related to the true

data generating distribution F ◦ by circle superscripts, and all empirical estimates

through replacing the circle with a hat, so that for example F̂N can be seen right

away to estimate F ◦. The assumed continuity of F ◦ implies the existence of a unique

copula C◦ defined implicitly through

(4) F ◦(x) = C◦(F ◦
⊥(x))
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or equivalently through the more explicit

(5) C◦(v) = F ◦(F ◦
⊥
−1(u))

where

F ◦
⊥
−1(u) =

(
F ◦

1
−1(u1), F

◦
2
−1(u2), . . . , F

◦
n
−1(un)

)
is the vector of inverse marginal distributions.

2. The developments leading to the CIC

The MPLE and the AIC both generalize the MLE, but in completely different

ways. The AIC generalizes the MLE to multimodel estimation, while the MPLE

generalizes the MLE to situations where the marginals are unknown. The CIC

generalize both the MPLE and the AIC in that it implements the AIC-generalization

of the MLE to the MPL estimator. In order to present this generalization we thus

need to present the fundaments of the MLE, the AIC and the MPLE.

The MPLE sets out to estimate a copula parameter θ in a parametric model

fθ(x) = cθ (F ◦
⊥(x))

n∏
i=1

f◦
i (xi)

where the marginal distributions F ◦
⊥ are completely unspecified. Its precise form is

defined through the following two considerations.

(1) It asymptotically minimizes the Kullback–Leibler divergence between the

true data generating copula c◦ and a parametric copula cθ. This generalizes

the standard MLE.

(2) The estimation of the θ that minimizes Kullback–Leibler divergence between

c◦ and cθ is invariant to a large class of symmetries. An empirical estimate

θ̂ should be invariant to the same symmetries.

Although the motivation for using the ML estimator to estimate a parametric model

which is correctly specified is well known, its connection to the minimization of

Kullback–Leibler divergence in the general case is not. This perspective naturally

leads to the model selection strategy of Akaike, and Sections 2.1 and 2.2 treat these

two themes. The above mentioned invariance considerations are even less well-known

(it seems not to have been made explicit in any previous expositions), and we use

Section 2.3 for its discussion, where we also define the MPLE precisely. Finally,

Section 2.4 discusses the fact that the MPLE is not semiparametrically efficient,

and argues that the concept of semiparametrically efficiency is a very different way

of constructing estimators, and is often in a natural opposition to symmetry consid-

erations. The central argument is that the MPLE is not a semiparametric estimator

per se, but focuses on estimating the copula parameter θ◦ which is least false with

respect to Kullback–Leibler divergence while respecting the related symmetry con-

siderations. In doing so, it does provide nonparametric estimates of the vector of
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marginal distributions F ◦
⊥, but this infinite-dimensional part of the MPLE is merely

a by-product of symmetry considerations.

2.1. The fully parametric MLE. Let us quickly review how the MLE is justified

when we refuse to make the assumption of having the true data generating distri-

bution f ◦ contained in the parametric model to be fitted. For more details, with

a model selection perspective in mind, see Claeskens & Hjort (2008). Suppose (for

the moment) that we wish to fit a fully parametric density

fθ,γ(x) = cθ(F1,γ(1)(x1), . . . , Fn,γ(d)(xn)
n∏

i=1

f ◦
i,γ(i)(xi)

to observed data X1, . . . , XN ∼ F ◦. The MLE paradigm tries to estimate

(6) (θ◦ML, γ◦
ML) = argmax

θ,γ

∫
log fθ,γ dF ◦

from empirical data through replacing the unknown F ◦ with the known multivariate

empirical distribution F̂n defined by

F̂N(x) :=
1

N

N∑
i=1

n∏
j=1

I{Xj,i ≤ xj} =
1

N

N∑
i=1

I{Xi ≤ x}.

Recall that
∫

log fθ,γ dF ◦ is a so-called multivariate Lebesgue–Stieltjes integral, and

is just another way of writing E log fθ,γ(X). We will use this notation throughout

the chapter, as it leads to a very simple and rather general principle that often gives

consistent empirical estimators for many quantities of interest through replacing

“the circle with a hat” in F ◦ and F̂N . The Lebesgue–Stieltjes integral has cer-

tain continuity properties, so that under quite general conditions “uniform (strong)

consistency” of F̂N , meaning that

lim
N→∞

sup
x∈Rn

|F̂N(x) − F ◦(x)| = 0 almost surely,

implies that for each θ we have

(7) lim
N→∞

∫
log fθ,γ dF̂N =

∫
log fθ,γ dF ◦ almost surely.

This is close to showing that the plug-in step of “putting a hat on” F ◦ works in the

sense that (θ̂, γ̂)
a.s.−−−→

n→∞
(θ◦, γ◦). For F̂N , we have∫

log fθ,γ dF̂N =
1

N

N∑
i=1

log fθ,γ(Xi),

so eq. (7) is just a another way of stating the strong law of large numbers. But

this perspective will give us a simple way of making the consistency of the MPLE

plausible. For the standard MLE, the “plug-in” step takes us from

(θ◦ML, γ◦
ML) = argmax

θ,γ

∫
log fθ,γ dF ◦
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to the empirical estimate

(θ̂ML, γ̂ML) = argmax
θ,γ

∫
log fθ,γ dF̂N ,

which is also the standard definition of the MLE.

The ML-estimator was originally motivated by assuming that f◦ = fθ◦ML,γ◦
ML

and

then proceeding to find the estimator which asymptotically has the least variance

for the true parameter. In spite of this motivation, the MLE can be calculated even

when f◦ is not assumed to be expressible through fθ,γ and the above consistency

result is valid no matter what the true density f◦ is. Hence, the maximum like-

lihood estimator will consistently maximize
∫

log fθ,γ dF ◦. We now show that the

parameter configuration which maximize
∫

log fθ,γ dF ◦ is a “least false” parameter

in the following sense.

The relative entropy (“Kullback–Leibler divergence”) between f ◦ and fθ,γ is

KL(f◦, fθ,γ) =

∫
f◦ log

f ◦

fθ,γ

dx =

∫
f ◦ log f◦ dx −

∫
f◦ log fθ,γ dx,

where the second term is recognized from eq. (6). As the first term in the above

display does not vary with (θ, γ), we have

argmin
θ,γ

KL(f◦, fθ,γ) = argmax
θ,γ

∫
log fθ,γ dF ◦ = (θ◦ML, γ◦

ML),

so that finding the maximum likelihood estimate will asymptotically reach the pa-

rameter (θ◦, γ◦) which minimize the Kullback–Leibler divergence between f ◦ and

fθ,γ. We call (θ◦, γ◦) the least false parameter (with respect to Kullback–Leibler

divergence).

Kullback–Leibler divergence KL(f, g) is zero if and only if f = g almost surely

with respect to the Lebesgue measure, which means that we can use Kullback–

Leibler divergence to distinguish between two densities. This property is the absolute

minimal assumption needed to provide motivation to minimize KL(f◦, fθ,γ) with

respect to the parameter sets. There are also deeper motivations for using precisely

Kullback–Leibler divergence, and not just any other function which is zero if and

only if f = g almost surely, as it is connected with the mathematical concept of

information and entropy. See Claeskens & Hjort (2008) for a general discussion.

2.2. Kullback–Leibler divergence and model selection. Maximizing the like-

lihood function asymptotically reaches the parameter configuration that minimizes

the Kullback–Leibler divergence between f ◦ and fθ,γ. In the presence of several

competing parametric models

f1,α(1), . . . , fK,α(K),
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it is natural to define the best model as the model which minimizes Kullback–Leibler

divergence to the truth. Let

α(k)◦ = argmin
α(k)

KL(f ◦, fk,α(k))

denote the least false parameter configuration when constrained to the k’th para-

metric class, so that the parametric model with the index

k◦ = argmin
1≤k≤K

KL(f ◦, fk,α(k)◦)

is the best (in the Kullback–Leibler sense) model among the ones we are presently

considering – i.e., the global minimizer of Kullback–Leibler divergence in the space

of all parameter configurations possible among all considered models. As k◦ only

depends on the data generating distribution F ◦ through a multivariate Lebesgue–

Stieltjes integral, the plug-in principle suggests estimating k◦ with

k̃N = argmax
1≤k≤K

∫
log fα̂(k) dF̂N

where

α̂N(k) = argmax
α(k)

∫
log fk,α(k) dF̂N .

This is the main conceptual step in developing the Akaike Information Criterion,

and the precise AIC formula is simply refinements of this observation. Although k̃N

is a consistent estimator, it has non-negligible bias (in a sense to be made precise)

for small1 N . The above definition of k̃N simply defines the estimated best model as

the one with the highest log-likelihood at the maximum likelihood estimate, and the

standard AIC formula derives first order bias-corrections in a rather specific way. A

Taylor expansion together with well-known asymptotic likelihood theory show that∫
log fk,α̂(k) dF̂N −

∫
log fk,α̂(k) dF ◦ = Z̄N +

1

N
pN(k) + op(N

−1)

in which EZ̄N = 0 while pN(k) converges in distribution to a p(k) with expectation

p∗(k). Asymptotic likelihood theory provides an expression for the expectation

of p(k), and so we can estimate its expectation. This leads to a first order bias

correction term of ∫
log fk,α̂(k) dF̂N ,

in which it is crucial to notice that this expression is defined in terms of α̂(k),

the empirical estimate which is potentially being used, and not α◦(k), the least false

parameter configuration which is unknown. If we work under the assumption that f ◦

1First order bias correction terms are insignificant for large N , and so if N is sufficiently large,
the estimator k̃N yields a sensible model selection strategy.
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is in the parametric class under consideration, we get the rather amazing conclusion

that p∗(k) = length(α(k)), giving the famous AIC strategy

k̂AIC
N = argmax

1≤k≤K

[∫
log fk,α̂(k) dF̂N − 1

N
length(α(k))

]
requiring no empirical estimation of the bias-correction term. For this strategy to be

conceptually and formally consistent, we need to assume nested models. If this as-

sumption cannot be justified, one can use the Takeuchi Information Criterion, which

uses plug-in estimators of p∗(k), and hence is of higher variability. See Claeskens &

Hjort (2008) for a more detailed discussion. We will define the development of first

order bias correction terms as the AIC-programme, and it is this we will carry out

to conclude with the Copula Information Criterion. We stress the importance of the

op(N
−1) term, and note that it is the N−1 which defines to what resolution we need

to provide bias corrections if we are to implement the above “AIC programme”.

A feature of the AIC formula is that it works with the expectation of p(k), the

weak limit of pN(k). This is perhaps first and foremost motivated through mathe-

matical convenience as there is no general expression for EpN(k). However, a more

subtle point is that EpN(k) can be infinite for even simple models such as the bino-

mial model (Chapter 2 of Claeskens & Hjort (2008)). The AIC formula solves this

potential explosion (that is, the non-existence of expectations) through going to the

limit, and there everything works out nicely. For the CIC case, which transfers the

above derivations to parameter estimates based on the MPLE and not the MLE,

we get an additional bias correction term rn which has the unfortunate feature that

ErN is finite only if the expectation of the limit variable of rn has finite expecta-

tion. Thus, going to the limit does not help. Several common copulae models have

an exploding ErN , leading to non-existing bias-correction terms with respect to the

above defined AIC programme.

2.3. The MPLE, the empirical copula and invariance considerations. We

would like to fit a parametric copula cθ without specifying the marginal distributions.

So we work under the assumption that observed data have a parametric distribution

given by

fθ(x) = cθ (F ◦
1 (x1), . . . , F

◦
n(xn))

n∏
j=1

f ◦
j (xj).

If the parametric form of the copula includes the correct copula c◦, we wish to

find the true parameter value. Otherwise, we wish to find the θ which minimizes

Kullback–Leibler divergence between fθ and the true density

f ◦(x) = c◦ (F ◦
1 (x1), . . . , F

◦
n(xn))

n∏
j=1

f◦
k (xj).



THE COPULA INFORMATION CRITERION 9

That is, the loss function we wish to minimize is d(θ) = KL(f ◦, fθ), where the

minimum will be zero if and only if the model is correctly specified. Notice that

we do not focus on estimating the marginals f◦
i , but only on finding the least false

copula inside the parametric class under consideration.

In many cases, the nonspecification of the marginals comes from lack of a priori

knowledge of parametric forms for the marginals. If this is the case, the above posed

estimation problem has important symmetry properties, which motivates the use of

the MPLE from equivariance considerations of classical point estimation theory, as

described e.g. in Lehmann & Casella (1998). First, the copula of any stochastic

vector is left invariant to any (not necessarily linear) change in scale for the data.

More precisely, assume that a stochastic vector X has distribution function C◦ (F ◦
⊥).

The copula C◦ of X is then invariant to the whole class of functions

S :=
{
H : R

n �→ R
n : H(x1, . . . , xn) = (H1(x1), H2(x2), . . . , Hn(xn)) ,

and each Hi is monotonously increasing
}

in the sense that for an H ∈ S, the random vector H(X) also has the copula C◦. To

see this, notice that the marginal distributions of H(X) are given by FHi(Xi)(v) =

P{Hi(Xi) ≤ v} = P{Xi ≤ H−1
i (v)}, and so FH(X),⊥(x) = F⊥(H−1(v)). Thus,

FH(X),⊥(x)(H(X)) = F⊥ ◦ H−1 ◦ H(X) = F⊥(X) ∼ C◦,

which demonstrates the invariance. As the copula C◦ is completely unaffected under

S-transformations, this invariance will be shared by any parametric copula family

cθ. This should also be intuitively clear, as the copula represents the dependency

structure of X, and each H in S merely changes the scale of each coordinate. This

change in scale does not transform the (intuitive notion of) dependency among the

elements of X.
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The loss function d(θ) = KL(f ◦, fθ) is also invariant to the class S, as it in fact

does not depend on the marginals F ◦
⊥. To see this, notice that

KL(f ◦, fθ) =

∫
log

f◦

fθ

dF ◦

=

∫
log c◦ (F ◦

1 (x1), . . . , F
◦
n(xn)) dF ◦ +

n∑
j=1

∫
log f◦

j (xk) dF ◦

−
∫

log cθ (F ◦
1 (x1), . . . , F

◦
n(xn)) dF ◦ −

n∑
j=1

∫
log f ◦

j (xj) dF ◦

=

∫
log

c◦ (F ◦
1 (x1), . . . , F

◦
n(xn))

cθ (F ◦
1 (x1), . . . , F ◦

n(xn))
dF ◦(8)

=

∫
log

c◦ (v1, . . . , vn)

cθ (v1, . . . , vn)
dC◦(v)(9)

= KL(c◦, cθ),

where the transition from eq. (8) to (9) applies the change of variables formula for

multivariate Lebesgue–Stieltjes integrals.

This validates the principle of equivariance (see Lehmann & Casella (1998)),

meaning that any estimator of θ̂ should be invariant to transformations of S. It

is well-known from the problem of testing independence that multivariate rank sta-

tistics are “maximally invariant” (see Lehmann & Romano (2005) for precise defi-

nitions) with respect to the transformations in S, and so our estimator needs to be

a functional of multivariate rank statistics.

Univariate ranks are equivalently represented through the marginal empirical dis-

tribution function. Analogously, multivariate ranks are equivalently represented

through the empirical copula

ĈN(v) =
1

N

N∑
i=1

n∏
j=1

I{F̂N,j(Xi,j) ≤ vj}

so that any functional of the multivariate ranks is a functional of the empirical

copula. Here F̂N,⊥ is the vector of marginal empirical distributions multiplied by

N/(N + 1) to keep the observations away from the edge of the unit cube. That is,

(10) F̂N,⊥(x) =
(
F̂N,1(x1), F̂N,2(x2), . . . , F̂N,n(xn)

)
,

where

F̂N,j(xj) =
1

N + 1

N∑
i=1

I{Xi,j ≤ xj}.

When observing that the least false copula parameter θ◦ can be written as

θ◦ = argmin
θ

KL(f◦, fθ) = argmax
θ

∫
log cθ dC◦,
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and when one knows that the empirical copula is a uniformly strongly consistent

estimator of the data generating copula in the sense that

(11) sup
v

|ĈN(v) − C◦(v)| a.s.−−−→
n→∞

0,

a very natural estimator of θ◦ is the MPLE given by

θ̂ = argmax
θ

∫
log cθ dĈN = argmax

θ

1

N

N∑
i=1

log cθ

(
F̂N,⊥(Xi)

)
.

2.4. What about semiparametric efficiency? It is well known that the MPLE

is not universally semiparametrically efficient in the sense of e.g. Bickel et al. (1993).

In the context of model selection of semiparametric copula models, it can be argued

that this lack of semiparametric efficiency is not a serious deficiency. The semipara-

metric efficiency concept is defined for models that include the true data generating

distribution, which is certainly not the case in any investigation where non-nested

model selection is needed.

Although there does exist a semiparametric copula estimation routine which is

universally semiparametrically efficient (given in Chen et al. (2006)), it does not

respect the symmetry considerations leading to the MPLE. While the Chen et al.

(2006) method is well-motivated only when the parametric copula model includes

the data generating copula, the symmetry considerations motivating the MPLE are

valid no matter what copula is the data-generating one. Although it would be de-

sirable that the MPLE is semiparametrically efficient, this is not the problem the

MPLE sets out to solve. There should be no surprise if estimators derived from

equivariance considerations, and that happen to be interpretable also as semipara-

metric estimators, are not semiparametrically efficient, as these two concepts most

often represent opposing interests.

2.5. Large-sample theory for the MPLE. In Section 2.2, we saw that the large-

sample theory of the MLE was needed to derive bias corrections that motivated the

AIC formula. This section will state the large-sample results which form a basis for

the CIC. The results are justified in Genest et al. (1995); Tsukahara (2005); Chen

& Fan (2005), and we state them without further justification.

Recall the definition of F̂N,⊥ in eq. (10) and define

�N(θ) =
N∑

i=1

log cθ

(
F̂N,⊥(Xi)

)
as the “pseudo likelihood” function. Let

ÂN(θ) =
1

N
�N(θ) =

∫
log cθ dĈN
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be the normalized pseudo likelihood function so that

θ̂ = argmax
θ

�N(θ) = argmax
θ

ÂN(θ).

And while �N(θ) → ∞, we have normalized ÂN so that

ÂN(θ)
a.s.−−−→

n→∞

∫
log cθ dC◦ =: A(θ).

Classical Taylor expansion-based proofs of normality for M -estimators (estimators

which optimize a criterion function) require the asymptotic distribution of the score

function

UN :=
∂ÂN(θ0)

∂θ
.

As UN =
∫

φ(v, θ0) dĈN , where φ(·, θ) = ∂/∂θ log c(·, θ), the score function is a

multivariate rank statistic, whose asymptotic behaviour is derived in Ruymgaart

et al. (1972); Ruymgaart (1974). We get

√
N UN

W−−−→
n→∞

U ∼ Np(0, Σ)

where Σ is somewhat inflated compared to the standard Maximum Likelihood set-

ting.

We have

Σ = I + Cov

{
n∑

j=1

∫
[0,1]n

∂φ(v, θ0)

∂vj

(I{ξj ≤ vj} − vj) dC◦(v)

}

in which I is the Information matrix I = Eφ(ξ, θ0)φ(ξ, θ0)
t and ξ = (ξ1, ξ2, . . . , ξn)

is a random vector distributed according to C◦. Note that the above covariance is

taken with respect to ξ.

Regularity conditions then secure

(12)
√

N(θ̂ − θ0)
W−−−→

n→∞
J−1U ∼ Np(0, J

−1ΣJ−1),

where

J = −A′′(θ0) = −
∫

[0,1]n

∂2 log cθ0(v)

∂θ∂θt
dC◦.

If c◦ = cθ0 , the well known information matrix equality J = I is valid. This means

that the limit covariance of eq. (12) is simplified to

J−1 + J−1 Cov

{
n∑

j=1

∫
[0,1]n

∂φ(v, θ0)

∂vj

(I{ξj ≤ vj} − vj) dC◦(v)

}
J−1.
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3. Model selection with the MPLE

We are now ready to implement the AIC-programme for the MPLE parallelling

the developments of Section 2.2. All proofs and technical subtleties are omitted, for

which the reader can refer to Grønneberg & Hjort (2008).

Suppose we have K copulae models c1,θ(1), . . . , cK,θ(K) and wish to choose which

to use on the basis of empirical data. We assume that the MPLE is to be used in

the estimation of the copula parameters. This means we define the best parameter

configuration of each of the models to be the θ◦(k) which minimizes Kullback–Leibler

divergence between c◦ and ck,θ(k). In this perspective, there is only one natural way

to extend the AIC principle to our current setting, and that is to define the best

copula model to be the one with index

k◦ := argmin
1≤k≤K

KL(c◦, ck,θ◦(k)).

As for the AIC case, we can naively use

(13) k̃N := argmax
1≤k≤K

∫
log cθ̂(k) dĈN ,

which is consistent, but with poor small sample behaviour. We can make small-

sample corrections to the estimate k̃N analogous to the AIC formula. The definition

of k◦ as the best parametric copula model is the decisive step of the development to

the CIC. The remaining steps are entirely analogous to Section 2.2, and although

their validity requires some mathematical sophistication, the conceptual side of the

CIC is now fully developed.

As in the development of the AIC formula, we can use a Taylor expansion together

with the limit theorems of Section 2.5 to conclude that

ÂN(θ̂) − A(θ̂) = Z̄N + N−1pN + ÂN(θ◦) − A(θ◦) + oP (N−1)

where EZ̄N = 0 and pN is of a known form and converges to a Gaussian distribution.

But in contrast to the developments of the standard AIC in section 2.2, this

expansion is not sufficient to conclude with a model selection formula. To see this,

notice that in the standard ML case with known marginals, the ÂN(θ◦) − A(θ◦)
would be included in the mean zero variable Z̄N , as we would have

(14) EÂN(θ◦) = E

∫
log cθ◦(v)C̃N = E

1

N

N∑
i=1

log cθ◦(F
◦
⊥(Xi))

=

∫
log cθ◦(F

◦
⊥(x)) dF ◦ =

∫
log cθ◦(v) dC◦ = A(θ◦)

in which C̃N is the empirical distribution based on observations F ◦
⊥(X1), . . . , F ◦

⊥(XN).

As we are interested in bias correction terms, and accordingly only focus on the

mean value behaviour, we could in the classical ML case ignore both Z̄N and
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ÂN(θ◦) − A(θ◦). We then only had to investigate the behaviour of pN , and find

an estimator p̂∗ for p∗ = Ep where pN
W−−−→

N→∞
p to get the classical AIC formula.

In the MPLE case, we encounter the complication that

EÂN(θ◦) = E

∫
log cθ◦(v)C̃N =

1

N

N∑
i=1

E log cθ◦(FN,⊥(Xi)) �= A(θ◦),

in which we have the stochastic and far from trivial stochastic function FN,⊥(Xi)

inside of cθ◦ – in contrast to the F ◦
⊥(Xi) we had in eq. (14). Remember that the

AIC gives bias-corrections up to the oP (N−1) precision level. As we define this to

be the AIC-programme, we have to take the behaviour of F̂N,⊥ into consideration to

provide a genuine extension of the standard AIC. A two-term Taylor expansion of

log cθ◦(·) around F ◦
⊥(Xi)− F̂N,⊥(Xi) replaces the problematic F̂N,⊥ with F ◦

⊥ – which

we had in the standard ML case – and also quantifies the magnitude of error we are

committing. This error is of the desired order oP (N−1). We get that

(15) ÂN(θ◦) = N−1

N∑
i=1

[
log c(F ◦

⊥(Xi), θ
◦) + ζ ′(F ◦

⊥(Xi), θ
◦)t(V̂i − F ◦

⊥(Xi))

+
1

2
(V̂i − F ◦

⊥(Xi))
tζ ′′(F ◦

⊥(Xi), θ
◦)(V̂i − F ◦

⊥(Xi))

]
+oP (N−1)

where

ζ ′(v, θ) =
∂ log c(v, θ)

∂v
and ζ ′′(v, θ) =

∂2 log c(v, θ)

∂v∂vt

are the vector of derivatives and matrix of double derivatives of the log copula

density respectively.

The first summation term of eq. (15) has expectation A(θ◦), as the ML case, but

we also end up with two additional terms to deal with.

Through the use of empirical process theory, Grønneberg & Hjort (2008) concludes

that

ÂN(θ̂) − A(θ̂) = Z̃N + N−1(pN + qN + rN) + oP (N−1)

in which EZ̃N = 0. Further,

q∗N = EqN →
∫

[0,1]n
ζ ′(v; θ0)

t
(
1 − v
)
dC◦(v)

r∗N = ErN → r∗ = 1tΥ1

where Υ = (Υa,b)1≤a,b≤n is the symmetric matrix with

Υa,a =
1

2

∫
[0,1]n

ζ ′′
a,a(u; θ0)ua(1 − ua) dC◦,

Υa,b =
1

2

∫
[0,1]n

ζ ′′
a,b(u; θ0) [Ca,b(ua, ub) − uavb] dC◦

and ErN is finite only if Υ is. Here Ca,b is the cumulative copula of (X1,a, X1,b).
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Empirical estimates of these correction terms are readily be made. We deal with

correctly specified and mis-specified models separately. We construct an “AIC-like”

CIC, valid under the assumptions of a correctly specified parametric copula model,

and also a “TIC-like” CIC which estimates the bias-correction terms consistently

even without the assumption of a correctly specified parametric copula model.

In the “AIC-like” CIC formula, simplifications can be made, and we get a formula

which is visually very similar to the classical AIC formula. We get

ĈICAIC = 2�N,max − 2(p̂∗ + r̂∗).

The estimator p̂∗ is given by

p̂∗ = length(θ) + Tr
(
Î−1Ŵ

)
,

where Î−1 and Ŵ is the empirical estimates formed through using cθ̂ as plug-in

estimates of c◦ in the defining formulae of I and W , where Î−1 is a generalized

inverse of Î. The estimator r̂∗ is given by r̂∗ = 1tΥ̂1, defined in terms of the plug-in

estimators

Υ̂a,a =
1

2

∫
[0,1]n

c(v; θ̂)ζ ′′
a,a(v; θ̂)va(1 − va) dv,

Υ̂a,b =
1

2

∫
[0,1]n

c(v; θ̂)ζ ′′
a,b(v; θ̂)

[
Ca,b(va, vb; θ̂) − vavb

]
dv

where Ca,b(va, vb; θ) is the cumulative copula of (Ya, Yb) where (Y1, Y2, . . . , Yd) ∼ Cθ.

The formula for p̂∗ is almost the same as p̂∗ = length(θ) in the AIC formula, but

with an extra term Tr
(
Î−1Ŵ

)
which is always positive. However, r̂∗ can be both

positive and negative – depending on the estimated dependency structure of the

parametric copula.

One of the main advantages of the original AIC formula compared to the TIC is

that the bias-correction term is only length(θ), which does not have to be estimated

on the basis of observed data. The “AIC-like” CIC does not have this advantage

and we need to estimate high-order cumulants to apply it. An interpretation of the

terms in the “AIC-like” CIC formula is that Tr
(
Î−1Ŵ

)
takes into consideration the

inflated (compared to the standard ML) covariance matrix of the asymptotic limit

of the score function, while r̂∗ stabilize the effects of using nonparametric marginal

estimates F̂N,⊥ instead of the correct F ◦
⊥.

If we do not assume a correctly specified model, we get the more complicated and

more general “TIC-like” CIC formula

ĈICTIC = 2�N,max − 2(p̂∗ + q̂∗ + r̂∗),
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which is always valid. We use

p̂∗ = Tr
(
Ĵ−Σ̂
)

, q̂∗ =

∫
[0,1]n

ζ ′(v; θ̂)t
(
1 − v
)
dĈ(v),

and r̂∗ = 1tΥ̂1

where now

Υ̂a,a =
1

2

∫
[0,1]n

ζ ′′
a,a(v; θ̂)va(1 − va) dĈN ,

Υ̂a,b =
1

2

∫
[0,1]n

ζ ′′
a,b(v; θ̂)

[
ĈN,a,b(va, vb) − vavb

]
dĈN

where CN,a,b is the empirical copula based on (X1,a, X1,b), (X2,a, X2,b), . . . , (XN,a, XN,b).

We use the standard empirical estimates of Ĵ− and Σ̂ given in e.g. Chen & Fan

(2005), where Ĵ− is a generalized inverse of Ĵ .

3.1. Non-existence of bias correction terms and implications for the MPLE.

Many practitioners of copulae are mainly interested in the copulae which have ex-

treme tail dependence (see Joe (1997)). However, the bias correction terms q∗ and

r∗ is defined through the differentials of log cθ(v) with respect to v. These will con-

tinuously grow when extreme behaviour near the edge of the unit cube is introduced,

until they explode and do not have a finite expectation. Let us agree to call para-

metric copula models with non-existent r∗ (or q∗) “edge-extreme”. The implication

of these exploding terms is that empirical estimates of q∗ and r∗ do not exist, as it

simply does not make sense to estimate anything non-existent. Hence, there cannot

be any generally applicable model selection formula in the sense of providing a first

order bias-correction to the model relevant part of the attained Kullback–Leibler

divergence between the MPL estimated model and c◦. This poses a limitation for

the use of the MPLE, which is shared by all two-stage copula estimators which

estimate the marginals non-parametrically, say with F̃N,⊥, and the copula through

minimizing a pseudo likelihood

N∑
i=1

log cθ

(
F̃N,⊥(Xi)

)
.

To see this, notice the following.

The q∗ and r∗ terms can be traced back to Section 3 when we observed that

(16) EÂN(θ◦) �= A(θ◦).
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But this is actually the case for all two-stage estimators2, such as the IFM discussed

in Joe (1997). In the IFM case, we have parametric marginal estimates. Going

through the same procedures as Section 3 shows that

ÂN(θ◦) =
1

N

N∑
i=1

log cθ (Fγ̂,⊥(Xi))

where Fγ̂,⊥ is the vector of estimated marginal cumulative distributions found through

standard ML estimates. If F ◦
⊥ = Fγ◦,⊥, so that the parametric class of marginal

models is correctly specified, a Taylor expansion of

log cθ(v)
∣∣
v=F⊥,γ̂(Xi)

,

not in the full v, but for γ �→ F⊥,γ around γ̂ − γ◦ yields terms parallelling q∗ and r∗

of the CIC that always exist under classical regularity conditions for all copulae. So

the problem does not come from eq. (16), rather it comes from the need to perform

a Taylor-expansion around v in terms such as

(17) log cθ(v)
∣∣
v=F̂N,⊥(Xi)

.

Unless empirical estimators of F ◦
⊥ can be found such that N sup |F̃N,⊥ − F ◦

⊥| =

OP (1), this cannot be avoided at the precision level we have defined as the “AIC-

programme”. And one would even then have to demand regularity conditions on

the C◦ integrability of functions of ζ ′ and ζ ′′. This would still be confining with

respect to which types of parametric copulae that could have been estimated while

still having AIC-like model selection formulae.

Finally, we note that a solution which might seem promising is to utilize univariate

Extreme Value Theory (EVT) to estimate the tails of the marginals. EVT gives gen-

eral conditions for when the tails of univariate distributions can be approximated by

Generalized Pareto distributions, and there is a well-developed machinery for finding

empirical estimates for the parameters involved. As this would reduce the estimation

of the functional form of the tails of the distributions to a low-dimensional problem,

it would seem that a possible solution to the above problems would be to define

F̂N,⊥ coordinate-wise as the standard univariate empirical distribution functions be-

low thresholds, while using n estimated Generalized Pareto distributions above these

thresholds. Such an approach for estimating the univariate distributions is discussed

in McNeil & Saladin (1997), but the plug-in step of using such an F̂N,⊥ seems to

be new. However, there are two problems concerning such an approach. Firstly,

such EVT-estimates requires the specification of a point over threshold which is

defined either algorithmically or manually. In practice this hinders a mathematical

2This seems to be a new observation, whose consequences have not been properly dealt with. The
inequality (16) invalidates the AIC formula for all multi-stage estimation routines, and through
following the derivation of the CIC it is not difficult to provide modifications of (or quantify
consequences of using) the standard AIC formula in these settings.
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theory of estimation based on asymptotics. Secondly, simulations show that stan-

dard automated routines for specifying the points over threshold and estimating the

parameters of the Generalized Pareto distributions introduces so much new noise

in the estimation process that the resulting copula parameter estimates are mostly

inferior to the MPL estimates. These two issues show that such an EVT based

solution does not seem to be fruitful.

3.2. Philosophical implications of the CIC. This very brief section discusses

what implications the CIC formula has for the interpretation of the standard AIC

formula.

The AIC formula is often seen heuristically as expressing a formalization of Oc-

cam’s Razor. This interpretation is often presented as being some kind of general

principle, intrinsic to the arguments underlying the AIC formula.

Although the p̂∗ in the CIC formula retains the interpretation of being a “penalty

for complexity”, the full CIC formula has additional terms which can be both positive

and negative, and the “penalization term” can all in all be negative. Examples of

two such cases are found in Section 4. Hence the bias-correction term of the CIC no

longer has the straight-forward interpretation of “penalizing for complexity”, and

can no longer be directly interpreted as a formalized Occam’s Razor.

As the CIC is motivated through the same steps as the AIC, we see that the

“penalization for complexity” interpretation of the AIC – although valid in the AIC

case – is not a general principle which always follows from the underlying ideas of

the AIC. The CIC seems to be the first information based model selection criterion

that provides such a counterexample, hence the importance of this observation.

4. Illustrations

We include a brief illustration of the computational aspects of using the CIC,

while confirming its validity numerically. Consider the Frank and the Plackett cop-

ulae (families B3 and B2 in Joe (1997) respectively) and denote their cumulative

distribution functions by CF,δ and CP,δ. Fig. 1 a-d shows the CIC values for the two

models with varying δ. It is clear that the r∗-term dominates the CIC value, and

that it reflects the degree of positive or negative dependence in the data. The ran-

dom noise in the approximated p∗ values is due to variation inherent in Monte-Carlo

integration. Notice that for large degrees of negative dependence, both copulae give

CIC formulae that are negative.

Assume X ∼ N (0, 1) and Y ∼ N (0, 1) while the copula of (X, Y ) is a copula

mixture of the form λCF,δ + (1 − λ)CP,δ with λ = 80%. We want to use the known

(near) unbiasedness of the AIC in the fully parametric case to illustrate that the

CIC works as it should. We can do this by the following.
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Figure 1. Plots of true CIC values under the assumption of a cor-

rectly specified parametric model for the Frank and Plackett copulae

with varying dependence parameter.

If we restrict attention to parametric models with normal marginals and either a

Frank or a Plackett copula, we have

fi(x, y; δ) = ci

(
Φ−1(x), Φ−1(y); δ

)
φ(x)φ(y)

using the information that both marginals are known to be standard Normal and

where i ∈ {F, P}. The true copula is known to be a mixture of the two. Denote

this density by c◦, and let f ◦ be the full data-generating mechanism of (X, Y ). We

have

f ◦(x, y) = c◦
(
Φ−1(x), Φ−1(y)

)
φ(x)φ(y).

This means that the Kullback–Leibler divergence between f ◦ and fi,δ is

KL(f ◦, fi,δ) = E log
f◦(X, Y )

fi,δ(X,Y )
= E log

c◦ (Φ−1(X), Φ−1(Y ))

ci (Φ−1(X), Φ−1(Y ); δ)
= KL(c◦, ci,δ).



20 STEFFEN GRØNNEBERG

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Untransformed observations

x

y

(a) Actual simulated data
(Xi, Yi)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pseudo−obaservations

u

v

(b) Marginal transformed ob-
served data (Ûi, V̂i).
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Figure 2. Plots of simulated data.

implying

(18) ΔKL(f◦) := KL(f◦, fF,δF
) − KL(f◦, fP,δP

) = KL(c◦, cF,δF
) − KL(c◦, cP,δP

).

Consider the following three formulae.

1. The standard AIC formula 2�#
N,max−2 length(δ) where �#

N,max is the observed

maximum likelihood of the full likelihood of (X, Y ) under the assumption

that X ∼ N (μ1, σ
2
1) and Y ∼ N (μ2, σ

2
2) and with either a Frank or a Plackett

copula specifying their simultaneous distribution. Denote the observed AIC-

scores simply by AICF for the Frank-copula case and AICP for the Plackett-

copula case and let ΔAIC = AICF − AICP .

2. The wrong, but typically applied AIC-like formula 2�N,max − 2 length(θ),

where �N,max is the observed maximum pseudo-likelihood for the copula

model. Denote the observed (but unjustified) AIC-scores by AIC•
F and AIC•

P

and let ΔAIC• = AIC•
F − AIC•

P .
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3. The CIC formula 2�N,max − 2(p∗ + r∗) calculated under the assumption of

a correctly specified model. Denote the observed CIC-scores by CICF and

CICP and let ΔCIC = CICF − CICP .

Equation (18) shows that if the AIC• formula is correct, ΔAIC• should be ap-

proximately equal to ΔAIC, but if the CIC-formula is correct, ΔCIC should be

approximately equal to ΔAIC. A simulated sample of (X, Y ) with the mixture cop-

ula is illustrated in Figure 2 e-g with N = 2000. It is not obvious which model

is the best, as the fit of the MPLE models seems to be varying in different parts

of the sample space. However, assume that we want to know which model has the

least Kullback–Leibler divergence to the true model. Notice that we use the AIC-

like formulae, and not the TIC-like formulae, which is an approximation typical in

model selection practice, as the TIC-like formulae have a higher variability than the

AIC-like formulae.

We ran 500 simulations as above – each with 2000 sample points, and for each

simulation calculated the AIC, AIC• and CIC values. Table 1 shows that the CIC-

formulae on average agrees with the fully parametric AIC value, while the mean

of the incorrectly motivated AIC• misses the mean of AIC almost exactly by the

average of −2Δ(p∗ + r∗), the correction term which separates AIC• and CIC.

Min. 1st Qu. Median Mean 3rd Qu. Max.

ΔAIC −108.80 −26.73 −6.13 −5.28 16.87 84.95

ΔCIC −122.90 −28.80 −4.65 −5.00 18.14 93.15

ΔAIC∗ −120.30 −26.23 −2.07 −2.43 20.72 95.72

ΔAIC − ΔCIC −27.52 −7.42 −0.64 −0.28 6.51 39.26

ΔAIC − ΔAIC∗ −30.10 −9.99 −3.22 −2.85 3.94 36.69

MPLE δF 12.80 13.50 13.77 13.77 14.03 15.04

MPLE δP 43.06 47.05 48.74 48.71 50.12 56.13

p∗P + r∗P 2.78 2.83 2.84 2.84 2.85 2.96

p∗F + r∗F 4.00 4.04 4.06 4.06 4.08 4.13

2Δ(p∗ + r∗) −2.65 −2.50 −2.44 −2.44 −2.39 −2.23

Table 1. Summary statistics for the simulation of 500 data-sets each

consisting of 2000 samples

5. Concluding remarks

Standard semiparametric estimation theory, as summarized in Bickel et al. (1993),

postulates that the true, data generating distribution is included in the space of all

models spanned by the semiparametric model. The infinite-dimensional part of

semiparametric models often spans such a large space that it is realistic to make

this assumption. But for most practical uses of semiparametric copula models, this
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is not realistic and motivates the investigation of semiparametric model selection

techniques in the style of the AIC.

Standard semiparametric estimation theory is based on the assumption that the

rationale for using a semiparametric model (in contrast with using a fully nonpara-

metric model) is that the investigator possesses a priori knowledge of the correct

finite dimensional part of the data generating distribution. This is often not the

case in copula estimation.

The basis for the CIC investigation of Grønneberg & Hjort (2008) was to assess

the consequences of using the “AIC-formula” of eq. (2). The main conclusions were

• The “penalization” for dimensionality of the copula model is only part of the

story, and the correct sum of all bias correction terms can be negative.

• No proper generalization of the AIC formula exists for “edge extreme” copu-

lae when parameters are estimated with the MPLE. The class of edge extreme

copulae includes most copula models in common use.

Both of these points have practical implications for copula users. The first point

has an obvious implication: Do not use the AIC• formula of eq. (2) – its rationale is

unjustified and its use can lead to systematic bias when selecting models. The second

point has more subtle implications. It indicates that the estimation of parametric

edge extreme copulae is fundamentally more complex without the knowledge of finite

dimensional parametric marginals. Edge extreme copulae are often used to provide

multivariate extreme value estimates such as Value At Risk calculations for the sum

of dependent vectors for high quantiles. If this is the aim of the study at hand, the

MPLE seems not to be the best choice.

A possible solution to the second point is to to ignore the bias-correction term

which gets us in trouble, and work directly with k̃N of eq. (13). If N is sufficiently

large, first order bias corrections are insignificant (see the footnote on p.7), making

this a sensible model selection routine in some circumstances. This is implicitly

done in Chen & Fan (2005) (although they did not notice that the “AIC formula”

of eq. (2) is unjustified for the MPLE), and they provide statistical tests to assess

the conclusion of the resulting model selection strategy.

Another way to address the second point is to look for alternative estimators of

the copula parameter. It seems that the only well-known alternative to the MPLE

is the sieve based estimator proposed in Chen et al. (2006), motivated through semi-

parametric efficiency considerations. But the concept of semiparametric efficiency

is defined only when the model in question is correctly specified. This is clearly not

the case for any investigation in which the (non-nested) model selection problem

appears.
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A third possible approach to the second point is to develop an analogue to the

impressive machinery of Massart (2007) for the current situation. This seems cur-

rently out of reach, and would lead to a theory based on fundamentally different

principles than the comparatively simple AIC formula.

If none of the candidate copula models are edge extreme, the CIC formula provides

a general model selection strategy, but if at least one copula under consideration is

edge extreme there are currently no fully satisfying solutions to the model selection

problem. Finally, we note that model selection by cross-validation and boot-strap

procedures are reasonable methods also for the MPLE. However, their theoretical

properties are not yet well-understood.
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