
A comparison of norms for characterizing

numerical solutions arising in simulations

of the electrical cardiac activity

by

Ivar W. K. Framnes

MASTERTHESIS
for the degree of

MASTER OF SCIENCE

(Master i Anvendt matematikk og mekanikk)

Faculty of Mathematics and Natural Sciences
University of Oslo

Mai 2011

Det matematisk- naturvitenskapelige fakultet
Universitetet i Oslo

Contents

1 Introduction 5
1.1 The Heart and Fibrillation . 5
1.2 Diagnostic Models . 6

1.2.1 This Thesis . 10

2 Mathematical Modeling of Cardiac Tissue 12
2.1 Bidomain and Monodomain Model 12
2.2 Aliev Panfilov Two Variable Cell Model 15
2.3 Mathematical Norms . 17

3 Numerical Methods 20
3.1 The Explicit Model . 20

3.1.1 Godunov Splitting . 20
3.1.2 Euler Method . 23
3.1.3 Explicit Finite Difference Method 24

3.2 The Semi-Implicit Model . 29
3.2.1 Strang Splitting . 30
3.2.2 Runge Kutta Methods 32
3.2.3 Semi-Implicit Finite Difference Method 33
3.2.4 A Posteriori Error Estimate 36

3.3 Discrete norms . 38

4 Fibrillating Patterns and Norm Comparisons 40
4.1 Action Potential Simulator 40
4.2 Fibrillating Patterns . 44
4.3 Norm Comparisons . 54

5 Conclusion 61

A Implementation of Solvers 64
A.1 The Partial Differential Equation Solver 64
A.2 The Ordinary Differential Equation Solver 65

2

B Implementation of Numerical Comparison Devices 67
B.1 Norms and Semi-Norms . 67
B.2 Frequency Measurement . 68

3

Acknowledgments

First of all I want to thank my advisors Ola Skavhaug, Glenn Terje Lines
and Aslak Tveito for their comments and suggestions while I worked on this
thesis. Especially thanks to Glenn for spending extra time to help me in the
final stage of my work with the thesis. Further, I would like to thank Sven
Haadem for giving me good advice, Damir Nedic for motivating me and my
parents and brothers for all their love and care. Lastly, a special thanks to
my dear Ida Solhjell for proofreading my thesis, and for encouraging me.

4

Chapter 1

Introduction

1.1 The Heart and Fibrillation

The heart is considered one of the most important organs. By pumping

blood through the circulatory system the heart transports vital oxygen from

the lungs to the rest of the body. Even if a heart failure is non-lethal it can

lead to irreparable damage to other organs, such as the brain. If the brain is

denied oxygen, it will be permanently damaged in just a matter of minutes.

In the western part of the world, heart related illnesses are by far the most

common cause of death. Gaining a greater understanding of the heart is

thus of great importance.

The human heart has a mass of between 250 and 350 grams and is about

the size of a fist. It has four chambers: two superior atria and two inferior

ventricles. The atria are the receiving chambers, while the ventricles are

the discharging chambers. A single heart beat consists of a series of electro-

chemical events causing an electrical wave to propagate through the cardiac

tissue. This is a well-synchronized process which results in a rhythmic con-

traction of the cardiac muscle. However, certain pathological conditions can

destabilize this electrical wave, leading to cardiac arrhythmia and causing

fibrillations. These fibrillations take on different forms with varying degree

of severity. A ventrical fibrillation is an uncoordinated contraction of the

ventrical chambers, and makes the heart quiver. This fibrillation is lethal

within minutes if not treated.

5

When simulating the electrical activity in the cardiac muscle, it is of great

interest to see how changes to physiological parameters can cause destabiliza-

tion of the heart’s electrical activity. Distinguishing physiological properties

leading to electrical instabilities resulting in cardiac fibrillation, is of partic-

ular interest. It is therefore essential that we are able to compute whether or

not a specific simulation is fibrillatory. Observed by the human eye, this is

easy to recognize, and can easily be distinguished from stable behavior. The

difficulty lays doing so in a computational manner. A numerical technique

for analyzing stability would enable us to run large scale series of simulations

and automatically deduce whether the solution is fibrillatory or not.

The electrical activation of the cardiac muscle is a well-studied phenomenon,

and offers a wide range of mathematical models describing the different elec-

trophysiological properties of the heart. In this thesis we will implement

a simple mathematical model to simulate cardiac fibrillation, and look at

different ways of numerically measuring the results and exploring how to

distinguish turbulent from laminar flows.

1.2 Diagnostic Models

All the infomation given in this section comes form [5]. There exist several

diagnostic devices for analyzing heart conditions. The most commonly used

technique is the easily recognizable electrocardiogram. This technique is in

fact the oldest of the noninvasive tools, and was first published in 1887 by

Augustus D. Waller. Waller held several demonstrations on his technique,

many of which where on his dog, Jimmy. With Jimmy’s paws submerged

in buckets of saline the dog’s paws acted as electrodes. As it is impossible

to measure the electrical potential for a single point, Waller recorded the

potential difference between Jimmy’s rear and front paws. He observed that

the potential difference pulsated in sync with the rhythm of Jimmy’s heart

beat. Later Waller presented evidence that supported his idea that this

potential difference resulted from the electrical activity in cardiac muscle.

Waller was the first to name the technique electrocardiogram, or ECG.

6

Willem Einthoven, who had been attending one of Waller’s demonstra-

tions, was intrigued by Waller’s method and came up with an idea for refin-

ing it. Einthoven submerged a person’s hands and left leg in the conductive

saline solution. With a third electrode, he was able to make the ECG more

sensitive and at the same time more robust. The ECG with three electrodes

was able to measure the potential difference between each of the them, re-

sulting in three leads instead of only one. These leads where defined as

I = φLA − φRA

II = φLL − φLA
III = φLL − φRA,

where φLL, φLA and φRA denoted the potential measured at the left leg,

left arm and right arm, respectively. These leads were bipolar leads, in the

sense that they recorded the potential difference between two points.

Viewing the body as a volume conductor, the electrical current caused by

the cardiac muscle can be thought of as a dipole. An electrical dipole is a

pair of closely spaced poles with opposing charge, but with equal magnitude

(−q, q). The dipoles generate an electrical field, causing current to flow

through the conductive medium, which again is measured by the ECG. The

dipole moment measures the electrical polarity of a system of charges, and

can be given by

p = qd,

where the dipole moment is p, and d is a vector from the negative to the pos-

itive pole. During the activation of the cardiac tissue, the current sources

can be approximated by a number of dipoles and respectable dipole mo-

ments. The sum of these dipole moments is the heart vector. This vector

describes the sources of electrical current in the tissue.

Einthoven’s ECG made it possible to create a projection from the heart

vector onto the three leads. With this model it was possible gather a lot of

information from just three leads ECG. One might think that no additional

information could be obtained by adding further leads. In fact, this would

have been the case if the heart truly was dipole in the frontal plane, defined

7

by just these three leads. However, this simplified view of the heart is not

always sufficient. Especially, in the cases where the heart vector was not

oriented in the frontal plane. Also, the dipole approximation could not fully

reproduce the complicated electrical activity in cardiac tissue.

A group of scientist led by Wilson invented the next generation of ECG’s.

Since the electrical potential had to be measured relative to some reference

potential, an independent reference, or zero reference, would be helpful.

This zero reference should preferably be constant during the heart cycle.

As no electrical charge enters or leaves the body during the heart cycle,

the sum of all potential had to be zero. Wilson and his group constructed

an independent reference by connecting all three of Einthoven’s electrodes.

These leads would approximate the potential generated by the entire body.

Wilson and his group kept Einthoven’s former electrodes and added six

new ones. These six electrodes were connected to the front of the chest

and defined the unipolar leads, V 1− V 6. These leads were unipolar as the

potential difference recorded was measured using the independent reference.

In 1938, V 1− V 6 together with Einthoven’s leads constituted the standard

nine-lead ECG.

In 1942, Goldberger improved the ECG even further by including three

additional leads; aV R, aV L and aV F . These were all unipolar leads each

connected to the three electrodes introduced by Einthoven. This is the

standard twelve-lead ECG used today, but there are still discussions on

whether or not more leads should be added.

When trying to understand the underlying physiology of the ECG, it

is necessary to study the electrochemical reactions that take place in the

cardiac muscle. Cardiac cells are part of a class the cells called excitable cells.

These cells have the ability to respond actively to electrical stimulus. Other

examples of excitable cells are nerve and skeletal cells. While in resting

state, excitable cells maintain an internal ionic concentration different from

its surroundings. This means that the electrical charge of ions in the cell

results in a potential difference across the cellular membrane. This potential

difference is called transmembrane potential or simply membrane potential.

8

If electrical stimulus is applied to an excitable cell, it will respond accord-

ing to one of two possible patterns: If the electrical stimulus is small, the

membrane potential will become slightly elevated and quickly return to its

resting value again. On the other hand, if the stimulus is sufficiently strong,

and able to raise the transmembrane potential to some threshold level, the

respond is very different. In this case, the conductive property of the cell

membrane changes, resulting in a rapid flux of ions onto the cell. This

causes depolarization, lifting the transmembrane potential to some peak

value, which is either around zero or significantly above zero, depending on

cell types inspected. After the quick depolarization phase, the membrane po-

tential slowly is lowered to its normal resting value. This phase is called the

repolarization phase and the complete process with de- and repolarization

is called action potential. In many excitable cells, the repolarization phase

lowers the transmembrane potential quite rapidly. However, for cardiac cells

the membrane potential lingers for some time around its depolarized state.

This is called the plateau phase.

Figure 1.1 shows the potential difference across a lead during a typical

heart beat. The straight line segments appear when the potential differ-

ence is zero, corresponding to the intervals in the cardiac cycle when there

are no source terms in the cardiac tissue. The five deflections occur dur-

ing the electrical activation of the cardiac cells. Einthoven identified these

five deflections as the P -wave, followed by the QRS-complex, and lastly the

T -wave. The P -wave are recorded when the Atria, the smaller heart cav-

Figure 1.1: The sketched signal showing the potential variation measured over a
single lead during a cardiac cycle

ities, are being depolarized. The QRS-complex, indicate the activation of

the larger heart cavitis; the ventricles. The final T -wave characterizes the

9

repolarization of the whole cardiac muscle.

During the last decades, there has been great development in understand-

ing and modeling biological systems. Studies of cellular and sub-cellular

processes have been refined, paving the way for advanced mathematical mod-

els describing biological phenomena. Several models have been constructed

characterizing the electrophysiology of the cardiac muscle, examining the

heart in different scales. The concept of a heart vector is an example of such

a model introduced nearly a hundred years ago. The heart vector model,

however, was based on the top down approach, and did not take into account

the underlying physiology.

In 1958, Hudgkin and Huxley proposed a quantitative model for wave

propagation in excitable cells. The Hudgkin and Huxley model was based

on detailed models of ionic currents. This greatly impacted the modeling of

various biological phenomena. While Hogkin and Huxely’s model only con-

tained four ordinary differential equations with only one of which described

the ionic current, their model created a basis for the development of other

more sophisticated models.

In 1962, D. Noble developed the first physiological model of cardiac tissue.

Since then, several more realistic models have been developed, some of which

even incorporates single cell processes. Though the acute degree of detail

made these models computationally strenuous, the rapid development of

computational hardware and numerical techniques have helped making them

viable simulators. These models have surpassed the analytical approach of

the ECG, and additionally also have the ability to predict heart behavior.

1.2.1 This Thesis

In Chapter 2 we will look at some mathematical models for simulating action

potential propagation in cardiac tissue. We will explore which models are

best suited for reproducing fibrillatory patterns. The model will be a set of

differential equations, and in Chapter 3 we will examine different numerical

methods for solving these equations. Choice of solver will be determined

by its accuracy and stability, for a time efficient solver. In Chapter 4, we

initiate different patterns of fibrillations, based on the models introduced

10

in Chapter 2, and compare these patterns by using some well-known norms

to distinguish between stable and non-stable fibrillations. We will refer to

break-up solutions as unstable or chaotic.

11

Chapter 2

Mathematical Modeling of

Cardiac Tissue

2.1 Bidomain and Monodomain Model

There exists a number of models describing the electrical activity in cardiac

tissue. These models vary in level of detail and are dependent on the bio-

physiological phenomenon of interest. Modeling each cell as a separate unit

before coupling them together, offers a great level of detail and precision.

However, the vast number of cells makes this approach extremely numeri-

cally strenuous. The bidomain model was developed in the late 1970s and

is used extensively in numerical simulations of electrical behavior in the

heart [8]. These model are based on volume-averaging techniques when pre-

dicting electrical behavior in cardiac tissue. Rather than treating every car-

diac cell as separate entities, they model a quantity of cells at a given point

P as an average for some ball, BP , surrounding P . These balls are scaled

so that they are small compared to the domain, but large in comparison to

a single cell [5].

The bidomain equations are a set of coupled partial differential equations

governing the intracellular potential vi and extracellular potential ve. On

the interior of the domain, Ω, both the extracellular and intracellular regions

12

of the electrical potential satisfy these conservation equations [4]:

∇(Mi∇vi) = χIm, (2.1)

∇(Me∇ve) = −χIm. (2.2)

The electrical conductivity is represented by the parameters Mi and Me

corresponding to the intra- and extracellular domain, respectively. Im is the

transmembrane current density, and is given by

Im = Cm
∂(vi − ve)

∂t
+ Iion, (2.3)

where Iion is the ionic current defined which will be discussed further in

Section 2.2. The parameter χ denotes the ratio between surface area and

the volume of the cell membranes, while Cm is the electrical capacitance of

the tissue. The parameters Mi, Me and χ represent the discrete structure

of the tissue averaged over a scale of many cell lengths [4].

The transmembrane potential v of the cardiac muscle is defined as:

v = vi − ve ⇒ vi = v + ve.

This eliminates vi for equation (2.1), and results in the standard formulations

∇(Mi∇v) +∇ · ((Me +Mi)∇ve) = 0,

∇(Me∇ve) = −χIm.
(2.4)

The cardiac muscle is surrounded by insulator material which is reflected in

the boundary conditions [7]

n · (Mi∇(ve + v)) = 0, n · (Me∇Ve) = 0 on ∂Ω1,

n · (Mi∇(ve + v)) = 0, ve = vstim on ∂Ω2.
(2.5)

The division of boundary ∂Ω into ∂Ω2 and ∂Ω1 refers to the sinoatrial node.

The sinoatrial node is the impulse-generating tissue located on the wall

of the right atrium of the cardiac muscle, and generates the normal sinus

rhythm causing cardiac contraction. This is accounted for in the ∂Ω2 part

of the boundary conditions.

13

Cardiac tissue is anisotropic, meaning that the electrical conductivity is

directionally dependent. The anisotropy property is determined by molecu-

lar, cellular and histological determinants [10]. This property is represented

by the conductivity tensors Mi and Me, which for three dimensions are given

as:

Mi =

σ
i
l 0 0

0 σit 0

0 0 σin

 and Me =

σ
e
l 0 0

0 σet 0

0 0 σen

 ,

where σl, σt and σn are the conductivity values for each direction in the

intracellular and extracellular domains.

As mentioned, the purpose of this thesis is to compare solutions to iden-

tify various break up patterns of wave propagation. The most important

attribute when deciding on which mathematical model to use, is its ability

to accurately portray various fibrillatory patterns. With this in mind, it

is important that the model produces results that can be easily visualized.

Hence, we let Ω be the unit square in two dimensions, i.e.:

Ω = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1}.

This simplification of the domain Ω also eases the implementation of the

solver. To generate a natural speed of the propagating wave, we adjust the

capacitance of the tissue, Cm. For more details, see Section 4.1.

The level of physiological detail offered by differentiating intra- and ex-

tracellular conductivity is unnecessary and computationally exerting. By

assuming equal anisotropic rates for the intra- and extracellular domain, i.e.

Me = λMi, for some scalar λ, we can simplify the bidomain equations (2.4)

into a single partial differential equation.

Assuming Me = λMi, then

∇(Mi∇ve) = − 1

1 + λ
∇ · (Mi∇v),

λ∇ · (Mi∇ve) = −χIm − Ise,

14

which results in the following simple equation:

λ

1 + λ
∇ · (Mi∇v) = χIm.

This is known as the monodomain equation and defines the monodomain

model. The boundary terms with equal anisotropic rates are

n · (Me∇ve) = n · (λMi∇ve) = 0,

and since Mi 6= 0 and λ 6= 0, we have the Neumann boundary conditions:

∂v

∂n
= 0 on ∂Ω. (2.6)

As extracellular potential ve has been removed from the equations, the

boundary conditions of (2.5) is superfluous, resulting in a single intact

boundary.

The assumption of equal anisotropic rates contradicts the physiological

measurements of extracellular and intracellular conductivity. This makes it

difficult to specify a parameter λ that obtains a good approximation to the

underlying biophysiological behavior. Additionally, some important electro-

physiological phenomena vanish with the assumption of equal anisotropy

rates [5]. However, the monodomain model is not without its merits. It

is considerably more compliant than the bidomain model when it comes to

mathematical analysis and computation. Since the biophysiological accu-

racy is of lesser importance, the computational and analytical advantages

provided by the monodomain model outweighs the accuracy given by the

bidomain model.

2.2 Aliev Panfilov Two Variable Cell Model

In the equation (2.3) the transmembrane current density is given by

Im = Cm
∂v

∂t
+ Iion,

where Iion is the ionic current given by some ionic model. It is common

practice to examine these models in terms of single cell simulation. In the

15

sense of modeling single cells, the charge transported by the ionic current

accumulated at the membrane affects the transmembrane potential as fol-

lows:

Cm
∂v

∂t
= −Iion + Is.

Here Is denotes externally applied stimulus, which triggers the action po-

tential in the cell. The models portraying the ionic current vary in biological

accuracy and are chosen in accordance to the physiological behavior of in-

terest. These ionic models can generally be grouped into three different

categories [5]:

1. Phenomenological models, which are constructed to reproduce the

macroscopically observed cell behavior. These are the simplest of the

ionic models.

2. First generation models. These attempt to describe both the observed

cellular behavior and the underlying physiology. These models repro-

duce the ionic currents that are most important for the action poten-

tial, and uses a simplified formulation of the underlying physiological

process.

3. Second generation models offer a very detailed description of cell phys-

iology. The models are based on advanced experimental techniques,

enabling fine-scaled observations of the cell physiology.

As mentioned in Section 2.1, our main concern is accurate representation

of the action potential and the different break up patterns. The physiologi-

cal properties of the tissue in terms of cellular behavior should be accurate

in the sense of action potential. The FitzHugh-Nagumo models is a set of

first generation models which permit analytical estimation, and are usually

numerically efficient for studying two- and three dimensional pulse dynam-

ics in cardiac tissue. The models are successful in describing the qualitative

aspects of the excitation propagation. However, they fall short when sim-

ulating several quantitative parameters of cardiac tissue, especially when

modeling the shape of the action potential and the restitutional properties

of the tissue.

The AlievPanfilov model is known for giving an accurate representation

of the action potential and fibrillatory patterns, much thanks to the restitu-

16

tional property of the model [2]. The model it self consists of two equations

characterizing the fast and slow process of depolarization and repolarization:

∂v

∂t
= −(vpeak − vrest)(kV (V − a)(V − 1) + V s) + Is,

∂s

∂t
= 0.25ε(v, s)(−s− kV (V − a1)).

(2.7)

Here ε(v, w) = ε0 +µ1w/(v+µ2) and V = (v−vrest)/(vpeak−vrest). The

parameters k, a, ε0 are given and may be adjusted to simulate different cell

types. vpeak is the highest value of the transmembrane potential, while vrest

is the membrane potential for cell at resting state. The variable s is the re-

covery potential initiating the repolarization process of the action potential.

The parameters µ1 and µ2 are parameters governing the restitutional prop-

erties of the tissue and will be regulated to simulate different repolarization

phases. Changes to µ1 and µ2 directly affects the action potential duration

and cycle length [2]. In 4, we will see how different fibrillatory patterns can

be constructed by varying the parameter µ1.

2.3 Mathematical Norms

Let X be a vector space over some field F. A norm on X, as defined in [6],

is a function ‖ · ‖ : X −→ R such that for all x, y ∈ X,α ∈ F,

i) ‖x‖ ≥ 0

ii) ‖x‖ = 0⇔ x = 0

iii) ‖αx‖ = |α|‖x‖

iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

If X = Rn, then,

‖x− y‖ =
√
|x1 − y1|2 + |x2 − y2|2 + · · ·+ |xn − yn|2,

is the Euclidean norm. This norm gives the shortest distance between two

two points x, y in Euclidean geometry. Similarly, it might be possible to

construct a norm to measure the distance between fibrillatory and stable

solutions of cardiac simulations in some function space. We will therefore

apply a few well-known norms to different fibrillatory simulations, to see if

17

they have some particular qualities to numerically differentiate these from

laminar flows.

A vector space X on which there is a norm, is called a normed vector

space, or just a normed space [6]. In this thesis we will look at some of the

most well-known normed spaces, namely the Lebesgue and Sobolev spaces.

More specifically, we will be looking at the Lebesgue space L2(Ω) and the

Sobolev spaces H1(Ω) and H2(Ω). The norms defining these spaces are

‖f‖L2(Ω) =

(∫
Ω
|fx|2 dx

) 1
2

, (2.8)

‖f‖H1(Ω) =
(
‖f‖L2(Ω)2 + ‖∇f‖2L2(Ω)

) 1
2
, (2.9)

‖f‖H1(Ω) =
(
‖f‖L2(Ω)2 + ‖∇f‖2L2(Ω) + ‖∇2f‖2L2(Ω)

) 1
2
, (2.10)

These are the most common variants among the Lebesgue and Sobolev

space. One reason for their popularity, is that they have a very much sought

after property, they are Banach. A space which is Banach is a complete space

in which every Cauchy sequnece converges.

As it might not be obvious that these norms actually satisfies all the

axioms of a norm, we will show that they do. Note however, that it is

enough to only show that L2-norm satisfies all the axioms, as the H1- and

H2-norms are variants of the L2-norm, and the same argmuents apply to

them. Supposing Ω is non-empty, then

0 = ‖f‖2L2(Ω) =

∫
Ω
|f(x)|2 dx⇒ f = 0∀x ∈ Ω,

and if f(x) = 0 for all x ∈ Ω then

‖f‖2L2(Ω) =

∫
Ω
|f(x)|2 dx = 0.

The axiom ii) is trivial as |f | ≥ 0. For iii), let α ∈ F. Then

‖αf‖L2(Ω) =

(∫
Ω
|αf(x)|2 dx

) 1
2

= |α|
(∫

Ω
|(x|2 dx

) 1
2

.

18

Lastly, suppose f, g : Ω −→ Fn. Then we get

‖f + g‖2L2(Ω) =

∫
Ω
|f(x) + g(x)|2 dx

≤
∫

Ω
|f(x) + g(x)|(|f(x)|+ |g(x)|) dx

≤ ‖f + g‖L2(Ω)

((∫
Ω
|f(x)|2 dx

) 1
2

+

(∫
Ω
|g(x)|2 dx

) 1
2

)
= ‖f + g‖L2(Ω)(‖f‖L2(Ω) + ‖g‖L2(Ω)).

Thereby it is shown that the L2-norm, given by (2.8), satisfies all norm

criteria.

Another type of measurement used on functions are semi-norms [6]. For

some vector space X, the semi-norm on X is a real-valued function p : X −→
R, such that

i) p(x+ y) ≤ p(x) + p(y) x, y ∈ X

ii) p(αx) = |α|p(x) x ∈ X,α ∈ F

The semi-norm is weaker in the sense that p(x) = 0 does not necessarily

imply that x = 0. Total variation is a semi-norm, and is defined as

V (f,Ω) =

∫
Ω
|∇f(x)| dx,

It is clear that

V (f + g,Ω) =

∫
Ω
|∇(f + g)(x)| dx ≤

∫
Ω
|∇f(x)| dx +

∫
Ω
|∇g(x)| dx,

and

V (αf,Ω) =

∫
Ω
|α∇f(x)| dx = |α|

∫
Ω
|∇f(x| dx.

However, unlike for norms, V (f,Ω) = 0 simply implies that ∇f = 0. For a

real-valued function f on an interval [a, b] ⊂ R, the total variation defines

the measure of the one-dimensional arc length of the curve. Similarly, we

hope find some features on the total variation of the solutions obtained in

Section 4.2, which can distinguish between different fibrillatory patterns.

19

Chapter 3

Numerical Methods

3.1 The Explicit Model

Originally, we wanted to use an explicit solver for the monodomain model

for simulating the electrical behavior in cardiac tissue. Explicit methods for

solving partial- and ordinary differential equations are simple and straight-

forward to implement. Since the physiological accuracy is of minor impor-

tance, we concluded that a first order method would suffice. However, the

problem with a explicit solver is the strict stability conditions put on ∆t,

especially by the finite difference method. These requirements forces ∆t to

be very small, generating a vast number iteration, making the simulator nu-

merically inefficient. This will be discussed throughout the following section,

particularly in Section 3.1.3.

3.1.1 Godunov Splitting

Solving nonlinear partial differential equations like the monodomain equa-

tion can be a difficult task. Operator splittings are amongst techniques

that simplifies these nonlinear problems. The method given below is the

Godunov splitting [5]. Utilizing Godunov splitting, we formulate the mon-

odomain equation, (2.1), in terms of operators:

20

L1v = − 1

Cm
Iion(v, w) (3.1)

L2v =
λ

χCm(1 + λ)
∇ · (Mi∇v) (3.2)

Ks = 0.25ε(v, s)(−s− kV (V − a− 1)) (3.3)

With these operators, we define the following equations:

L1w =
∂w

∂t
,

Ks =
∂s

∂t
,

w(tn) = v(tn)

(3.4)

and

L2u =
∂v

∂t
,

u(tn) = w(tn + ∆t).

(3.5)

Each equation is solved on the interval t ∈ [tn, tn + ∆t]. The solution to

Equation (3.4), w(tn + ∆t), is used as the initial value for Equation (3.5),

while the solution u(tn+∆t) gives the solution to Equation (2.1) for a single

time step, i.e. v(tn + ∆t).

Utilizing the Godunov splitting reduces the difficult nonlinear partial dif-

ferential equation into a system of coupled equations: a linear partial dif-

ferential equation and an ordinary differential equation. It may seem like

the solution has been estimated for an interval of 2∆t. However, only some

parts of the monodomain equation (2.1) are included in each calculation.

Performing a Taylor series expansion on the solution of Equation (2.1),

v(tn+1), and comparing it to the approximate solution u(tn+∆t), we will see

that the result is in fact a consistent approximation. The Taylor expansion

of the exact solution of Equation (2.1) at time t = tn + ∆t, is given by

v(tn+1) = v(tn) + ∆t
∂v

∂t
|t=tn + ∆t2

∂2v

∂t2
|t=tn +O(∆t). (3.6)

In terms of operators (3.2) and (3.1), the monodomain equation can be

written as follows:

21

∂v

∂t
= (L1 + L2)v.

Furthermore, since neither L1 or L2 is explicitly dependent on t, then

by direct differentiation

∂kv

∂tk
= (L1 + L2)kv.

The notation (L1 +L2)k implies that the operator (L1 +L2) is applied k

times. For more details, see [5]. Hence, writing (3.6) in terms of operators,

we get:

v(tn+1) = v(tn) + ∆t(L1 + L2)v(tn) + ∆t2(L1 + L2)2v(tn) +O(∆t3). (3.7)

Similarly, by Taylor expanding the solution of Equation (3.4), we get

w(tn + ∆t) = v(tn) + ∆tL1v(tn) + ∆t2L2
1v(tn) +O(∆t3). (3.8)

The Taylor series for the solution of Equation (3.4), u, can be written as

u(tn+∆t) = wtn+∆t)+∆tL2w(tn+∆t)+∆t2L2
2u(tn+∆t)+O(∆t3). (3.9)

If we include the expression found in (3.8) for the initial value w(tn+∆t)

in Equation (3.9), this gives us

u(tn+∆t) = v(tn)+∆t(L1+L2)v(tn)+∆t2(L2
1+2L2L1+L2

1)v(tn)+O(∆t2).

(3.10)

Then, by examining the difference between (3.7) and (3.10), we see that

w(tn + ∆t)− v(tn+1) =
∆t2

2
(L1L2 + L2L1)v(tn) +O(∆t3)

= O(∆t2).

This shows that the Godunov splitting gives a consistent approximation

to v with an a priori error estimate of O(∆t2) for the interval [tn, tn+1].

22

It is shown that the error of each discrete time interval [tn, tn+1] is pro-

portional to ∆t2. Moreover, we see that the error accumulates to n∆t2 after

n time steps. Then, solving the monodomain equation for a fixed time in-

terval, t ∈ [0, T], the number of intervals N is proportional to ∆t−1. This

gives an a priori error estimate of O(∆t) at t = T , and further gives the

notion that the Godunov splitting has a first-order time accuracy.

3.1.2 Euler Method

When solving Equation (3.4) on some interval t ∈ [tn, tn+1], we integrate

the equation on both sides, such that∫ tn+1

tn

∂w

∂t
=

∫ tn+1

tn

L2w(t) dt.

w(tn + ∆t) is satisfied by the equation

w(tn + ∆t) = w(tn) +

∫ tn+1

tn

L2w(t) dt. (3.11)

In most cases, the integral on the right hand side is quite hard to compute

analytically and must be approximated. The approximation of the integral

in equation (3.11) is in many ways what results in the precision of the

numerical method being used.

The forward Euler method is a simple numerical method for solving or-

dinary differential Equations [5]. The forward Euler method estimates the

integral by assuming w(t) = w(tn), and then setting L2w(t) = C, where

C ∈ R, and thereby we obtain the following approximation:

w(tn + ∆t) = w(tn) + C

∫ tn+1

tn

dt = w(tn) + ∆tL2w(t).

This is a very rough approximation, but is computationally efficient.

By Taylor expanding the actual solution to Equation (3.4), it is easy

to see that the a priori error estimate accumulates to n∆t2. Using the

same argument as for the Godunov splitting when solving Equation (3.4)

on an interval t ∈ [0, T], the number of intervals N are proportional to

∆t−1, leading to the well-known fact that the forward Euler is a first order

accuracy method.

23

One of the drawbacks using the forward Euler method, is the poor sta-

bility. The stability function is defined as R(z) := 1 + z, where z = λ∆t

and the value λ is the Eigenvalues of the Jacobian matrix [5]. This gives the

stability domain

S = {z ∈ C : |1 + z| ≤ 1},

which results in the forward Euler being stable as long as −2 ≤ λ∆t ≤
0. It is clear that the the stability of the solver is very dependent on the

Eigenvalues.

Eigenvalues

In figures 3.1-3.5 we see the Eigvenvalues to Jacobian matrix functions of

s and v. The obtained Eigenvalues are dependent on the parameter µ1

(see Section 4). Thus in Section 4.2, we had to construct one plot for each

µ1. s is plotted on the x-axis, v is plotted on the y-axis. In terms of

stability, we are interested in finding the smallest negative Eigenvalues, as

areas with positive Eigenvalues are areas results from unstable break up of

the action potential. These positive Eigenvalues are generated by the rapid

depolarization process.

The red line marked by the ◦, defines the domain where the solutions s

and v are located. The smallest Eigenvalue within the solution domain is for

all simulations λ = −2.5. This results in the following stability restriction

on ∆t:

∆t ≤ 0.85,

which is a sufficiently large time step. However, as we will see in Section

3.1.3, the estimate on ∆t will become considerably more strict.

3.1.3 Explicit Finite Difference Method

The partial differential equation of the Godunov splitting, can been solved

with an explicit finite difference method [1]. The finite difference method

utilizes approximations of derivatives, by combining nearby function values,

using a set of weights. In one dimension, the finite difference approximation

to the second derivative of u, can be found by considering the Taylor series

24

0.0 0.5 1.0 1.5 2.0 2.5 3.0100

80

60

40

20

0

20

40

-2
.0

00

-1.800

-1.600
-1.400

-1.200

-1.000
-0.800
-0.600
-0.400

-0.200
-0.200

0.000

Figure 3.1: The smallest Eigenvalues of the Jacobian matrix for simulation
with µ1 = 0.07

0.0 0.5 1.0 1.5 2.0 2.5 3.0100

80

60

40

20

0

20

40

-2
.0

00

-1.800

-1.600
-1.400

-1.200

-1.000
-0.800

-0.600

-0.600

-0.400
-0.400

-0.200-0.200

0.000

Figure 3.2: The smallest Eigenvalues of the Jacobian matrix for simulation
with µ1 = 0.14

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0100

80

60

40

20

0

20

40

-2
.0

00

-1.800

-1.600
-1.400

-1.200

-1.200

-1.000

-1.000

-0.800

-0.800

-0.600
-0.600

-0.400
-0.400

-0.200

-0.200
0.000

Figure 3.3: The smallest Eigenvalues of the Jacobian matrix for simulation
with µ1 = 0.28

0.0 0.5 1.0 1.5 2.0 2.5 3.0100

80

60

40

20

0

20

40

-2.250-2.000

-2
.0

00

-1.750

-1.750

-1.500

-1.500

-1.250

-1.250

-1.000

-1.000

-0.750

-0.750

-0.500

-0.500

-0.250

-0.250
0.000

Figure 3.4: The smallest Eigenvalues of the Jacobian matrix for simulation
with µ1 = 0.56

26

0.0 0.5 1.0 1.5 2.0 2.5 3.0100

80

60

40

20

0

20

40

-4.500-4.000-3.500-3.000-2.500-2.000

-2
.0

00

-1.500

-1.500

-1.000

-1.000

-0.500

-0.500

0.000

Figure 3.5: The smallest Eigenvalues of the Jacobian matrix for simulation
with µ1 = 1.12

u(x+ ∆x) = u(x) + ∆x
∂u

∂x
+

∆x2

2

∂u

∂x
+O(∆x3),

and

u(x−∆x) = u(x)−∆x
∂u

∂x
+

∆x2

2

∂u

∂x
+O(∆x3).

Adding the two equation, we find that

∂2u

∂x2
=
−2u(x) + u(x−∆x) + u(x+ ∆x)

∆x2
+O(∆x2), (3.12)

yielding a second order spatial estimate of the second derivative. With

a similar argument as for the forward Euler we have that

u(tn + ∆t) = u(tn) + ∆tL2u(tn) +O(∆t2). (3.13)

From these estimates we can see that the the finite difference method

will have second-order accuracy in space, and only first-order accuracy for

time discretization. Note that by reducing O(∆t2) to O(∆t), the estimation

of ∂u/∂t follows the same line of argument as made for Godunov splitting

and forward Euler.

27

The construction of the finite difference scheme for Equation (3.5) depends

on the specified domain. As mentioned in Section 2.1, we will consider the

domain as a the unit square:

Ω := {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1}.

Fibrillatory action potential is easily recognizable and very characteristic

on a two dimensional plane. Also, the rectangular shape of the domain

synergises well with the finite difference method. The actual shape of the

cardiac muscle should have little consequence for the norm comparisons.

The fact that the square is unitary is of no regard, as propagation of the

action potential can be regulated by modifying the electrical capacitance,

Cm, of the tissue. The unit square is easily discretizised by

Ωh := {(xi, yj) : 0 ≤ i, j ≤ for i, j ∈ N}. (3.14)

Here (xi, yj) := (i∆x, j∆y), where h = 1/m defines the distance between

spatial grid points in an m×m mesh of Ω. For simplicity, we let ∆x = ∆y =

h.

For the two dimensional case, the Equation (3.5) is given by

∂u

∂t
=

λ

χCm(1 + λ)

[
σil
∂2u

∂x2
+ σit

∂2u

∂y2

]
. (3.15)

We denote u(xi, yj , tn) := ui,jn . Using the derivative estimates obtained

above ((3.13) and (3.12)) we construct the so-called five-point stencil for the

finite difference scheme. Then the discrete solution to equation 3.15 on the

interior of the domain, Ωh/∂Ωh, is given by

ui,jn+1 = (1−2rσil−2rσit)u
i,j
n +rσil(u

i+1,j
n +ui−1,j

n)+rσit(u
i,j+1
n +ui,j−1

n). (3.16)

For convenience of notation, we introduce

r =
λ∆t

χCm(1 + λ)h2
. (3.17)

The solution on the boundary of Ω differs slightly from Equation (3.16),

due to the Neumann boundary conditions. Since ∂u/∂n = 0, we incorporate

28

some auxiliary grid points to Ωh. The auxiliary nodes are defined by the

equations

u−1,j
n − u1,j

n

2h
= 0

um,j
n − um+1,j

n

2h
= 0, (3.18)

and

ui,−1
n − ui,1

2h
= 0

ui,mn − ui,m+1
n

2h
= 0. (3.19)

Then, letting ui,−1
n = ui,1n , ui,m+1

n = umn , u
−1,j
n = u1,j

n and um,j
n = um+1,j

n ,

we use Equation (3.16), giving the solutions un+1 on ∂Ωh.

The explicit finite difference method was deemed non-viable. The strict

stability requirements imposed by it [1],

∆t

∆h2
≤ 1

2
,

made the solver numerically inefficient, forcing an extremely small ∆t. With

a 200 × 200 mesh, then h = 1/200, resulted in 80000 iterations for each

millisecond of simulation. Considering that we are running simulations on

the interval t ∈ [0ms, 1000ms], we can easily conclude that the vast number

of iterations makes the solver too slow for practical use.

3.2 The Semi-Implicit Model

As described in Section 3.1, the stability condition offered by the mentioned

solvers are much too strict. In this section we will examine some models with

more relaxed stability requirements. However, since the requirements are

less strict on ∆t, we will employ methods with second-order time accuracy

to warrant an even larger ∆t. This way we are able to fully exploit the

benefits of loose stability conditions.

We will still be utilizing operator splitting to deal with the non-linearity of

the monodomain equation, but instead of the first order Godunov splitting,

we apply the slightly different Strang splitting. For the partial derivative

part of the Strang splitting [5], we employ a semi-implicit finite difference

method with a Crank-Nicolson scheme. The ordinary differential equation

29

is still solved explicitly, but to achieve second-order time accuracy, we utilize

a Runge-Kutta method [11].

3.2.1 Strang Splitting

The Strang splitting algorithm is very similar to the Godunov splitting [5].

The main difference is that the Strang splitting offers second-order accuracy

by including an intermediate time step. As described earlier, this splitting

technique divides the monodomain equation into the operators

L1 = − 1

Cm
Iion, (3.20)

L2 =
λ

χCm(1 + λ)
∇ · (Mi∇v), (3.21)

K = 0.25ε(v, s)(−s− kV (V − a− 1)), (3.22)

using each operator to solve a coupled set of equations. However, while

the Godunov splitting solved the Equations (3.4) and (3.5) on the full length

of the interval [tn, tn + ∆t], the Strang splitting incorporates an additional

step to the algorithm. The Strang splitting can be described as a three step

algorithm:

(i) First we solve
∂w

∂t
= L1w,

∂s

∂t
= Ks,

w(tn) = v(tn)

(3.23)

for t ∈ [tn, tn + ∆t/2].

(ii) Then,
∂u

∂t
= L2u,

u(tn) = w(tn + ∆t/2),

(3.24)

is solved for t ∈ [0,∆t].

30

(iii) Finally we solve the problem

∂w

∂t
= L1w,

∂s

∂t
= Ks,

w(tn + ∆t/2) = u(tn + ∆t),

(3.25)

for the remainder of the interval t ∈ [tn + ∆t/2, tn + ∆t]. Further, the

solution to the final equation is set to w(tn+1) = v(tn+1)

To show that the Strang splitting truly gives O(∆t2) precision, consider

the Taylor series expansion for w in Equation (3.23) with the initial value

v(tn);

w(tn + ∆/2) = v(tn) +
∆t

2
L1v(tn) +

∆t2

4
L2

1v(tn) +O(∆t3)

This is the initial value for the Equation (3.24). Thus the solution u(tn+

∆t) is given by:

u(tn + ∆t) = v(tn)+∆t

(
L1

2
+ L2

)
v(tn)+

∆t2

2

(
L2

1

4
+ L2L1 + L2

2

)
v(tn) +O(∆t3).

Lastly, by Taylor expanding the solution of Equation (3.25) with the

initial value found above, we get

w(tn + ∆t) = v(tn)+∆t (L1 + L2) v(tn)+

∆t2

2

(
L2

1 + L1L2 + L2L1 + L2

)
v(tn) +O(∆t3).

Using the Taylor series from Equation (3.7), we estimate

v(tn + ∆t)− w(tn + ∆t) = O(∆t3.)

With the same argument as for Godunov splitting, we have that the local

error is proportional to O(∆t3), and the accumulate error after N intervals

is equal to ∆t−1. Hence, the a priori error estimate on the Strang splitting

31

is O(∆t2).

3.2.2 Runge Kutta Methods

For an ordinary differential equation on the form

∂w

∂t
= f(w), (3.26)

the Runge-Kutta methods provide a numerical approximation to the

solution of these equations [11]. The general discrete solutions of equation

(3.26) is given by the Runge-Kutta methods as:

yi = wn + ∆t

s∑
j=1

ki,jf(yj) forÂ 1 ≤ i ≤ s+ 1, (3.27)

wn+1 = ys+1. (3.28)

The parameters ki,j ∈ R and specifies the method being used. The vari-

ables yi are intermediate estimates used for computing wn+1. The solution

scheme becomes implicit if at least one coefficient ki,j 6= 0 for j ≤ i. How-

ever, due to the Eigenvalues obtained in section 3.1.2, we conclude that there

will be little to gain computationally by implementing an implicit solver, as

these tend to be numerically strenuous.

By letting all ki,j = 0 for j ≤ i, we generate an explicit method. For our

solver we want to use a second-order method. By choosing k2,1 = 1 and

k3,1 = k3,2 = 1/2 for s = 3, we get a O(∆t3) approximation to the solution

on a single interval.

Consider the Taylor series

f(wn + ∆tf(wn)) = f(wn) + ∆t
∂f

∂w
f(wn) +O(∆t2). (3.29)

Note that
∂2w

∂t2
=
∂f

∂t
=
∂f

∂u

∂u

∂t
=
∂f

∂u
f.

Hence, the Taylor series from equation (3.29) is given as

32

f(wn + ∆tf(wn)) = f(wn) + ∆t
∂2w

∂t2
+O(∆t2),

=
∂w

∂t
+ ∆t

∂2w

∂t2
+O(∆t2).

The discrete solution to equation (3.26) given by the coefficient k2,1 = 1

and k3,1 = k3,2 = 1/2, is further defined as

wn+1 = wn +
∆t

2
y1 +

∆t

2
y2

= wn +
∆t

2

∂w

∂t
+

∆t

2

∂w

∂t
+

∆t2

2

∂2w

∂t
+O(∆t3),

which compared to the solution of equation (3.26) gives an approximation

of O(∆t3). As earlier, the error accumulates to O(n∆t), which after N

intervals proportional to ∆t−1 results in a second-order time discretization

accuracy. This concludes that the Runge-Kutta method described by the

coefficients k2,1 = 1 and k3,1 = k3,2 = 1/2 is a second-order solver.

The stability function is given as [5]

R(z) = 1 + z +
z2

2
,

where z := λ∆t, and λ are the eigenvalues of the Jacobian matrix of f .

Similar to the forward Euler described above, this Runge-Kutta method is

stable as long as |R(z)| ≤ 1. Hence, ∆t must satisfy −2 ≤ λ∆t(1+λ∆t/2) ≤
0. With the smallest Eigenvalue obtained in section 3.1.2, this results in the

following estimate on ∆t.

−2.42∆t2 + 2.4∆t− 2 ≤ 0

3.2.3 Semi-Implicit Finite Difference Method

The partial differential Equation (3.24) will be solved using a semi-implicit

finite difference method with a Crank-Nicolson time step approximation.

This is a popular technique for solving partial differential equations occur-

ring in electrochemical kinetic modeling [3]. One of the major advantages

33

of the method is that it is unconditionally stable [9], thus ∆t and ∆x can

be chosen independently.

The time scheme for the Equation (3.24) with a Crank-Nicolson estimate

is given by

u(tn + ∆t)− ∆t

2
L2u(tn + ∆t) = u(tn) +

∆t

2
L2u(tn)). (3.30)

The time accuracy can be shown to be second-order by considering the

Taylor series

L2u(tn + ∆t) = L2u(tn) + ∆tL2u(tn) +
∆t2

2
L2u(tn) +O(∆t3). (3.31)

Including the Taylor series expression (3.31) for L2u(tn + ∆t) in Equation

(3.30), we get

u(tn + ∆t) = u(tn) + ∆tL2u(tn) +
∆t2

2
L2u(tn) +O(∆t3)

It is easy to see that the time error accumulates as O(∆t3) for each time

step, thus the collective error estimate of one complete simulation will be

O(∆2).

Applying the estimates on the second derivatives found in Equation (3.12),

the one dimensional solution to the partial differential Equation (3.24) is

given by

uin+1 + ∆t
(
ruin+1 −

r

2
ui−1
n+1 −

r

2
ui+1
n+1

)
= uin + ∆t

(
−ruin +

r

2
ui−1
n +

r

2
ui+1
n

)
,

(3.32)

where uin = u(n∆t, i∆x) and similar to constants (3.17)

r =
λ

χCx(1 + λ)∆x2
.

By regarding each discrete value ui,j as entries in a m×m matrix,

34

U =


u1,1 · · · u1,m

...
. . .

...

um,1 · · · um,m

 ,

the problem (3.32) is solved by the linear equation:

(I −∆tA)Un+1 = (I + ∆tA)Un = b, (3.33)

for the interior of the domain. From Equation (3.32), it is i easy to see

that A must be tridiagonal matrix with −r on the diagonal and r/2 on the

off-diagonal.

In the one dimensional case, the grid points in the field Un+1 only receive

a contribution from the horizontally neighboring grid points, while in two

dimensions we also have to consider the vertically neighboring entries. This

makes it slightly more difficult to construct the matrix A. The finite differ-

ence method with a Crank-Nicholson time scheme in two dimensions for the

monodomain equation is given by

ui,jn+1 + ∆tσil
r

2
(2ui,jn+1 − u

i−1,j
n+1 − u

i+1,j
n+1)∆tσit

r

2
(2ui,jn+1 − u

i,j−1
n+1 − u

i,j+1
n+1) =

ui,jn + ∆tσil
r

2
(−2ui,jn + ui+1,j

n + ui−1,j
n)∆tσit

r

2
(−2ui,jn + ui,j+1

n + ui,j−1
n).

(3.34)

In principal it is very similar to the one dimensional case, in the sense

that we solve a linear Equation on form (3.33). However, to account for

both the horizontal and vertical grid points of the mesh Un when finding

Un+1, we have to transform the un and un+1 so that

u =



um,1

...

um,m

...

u1,m

...

u1,1


.

35

Then, we solve the equation

(I −∆tA)un+1 = (I + ∆tA)un = b, (3.35)

where A and I from Equation (3.33) are sparse m2 ×m2 matrices.

Looking at A in terms of m × m block matrices while neglecting the

boundary conditions, we see from Equation (3.34) that for each i

ui,i −Ai,i−1u·,i−1
n+1 −A

i,iu·,in+1 −A
i,i+1u·,i+1

n+1 =

ui,i +Ai,i−1u·,i−1
n+1 +Ai,iu·,in+1 +A,i+1u·,i+1

n+1 .

Hence, all block matrices Ai,i−1 = Ai,i+1 must be diagonal matrices with

σilr/2 on the diagonal. From the one dimensional instance we can conclude

that all the diagonal block matrices Ai,i must be the tridiagonal matrix with

−σilr−σitr on the diagonal and σitr/2 on the off-diagonal. However, because

of the Neumann boundary conditions, the entries (1, 2) and (m,m − 1) of

each Ai,i must be counted twice, i.e. these entries will be σitr, accounting for

the end points of each column. Similarly, we get A1,2 = Am,m−1 = 2Ai,i−1 =

2Ai,i+1 for i = 2, . . . ,m− 1. For details on how to solve the linear Equation

(3.35), see appendix A.1.

3.2.4 A Posteriori Error Estimate

We have examined the a priori for each method used. In this section,

we will check if this estimate correlates to the a posteriori error estimate.

Solving the monodomain equation on the interval t ∈ [0ms, 6ms], we ran

several simulations using different values for ∆t. For each solution we applied

an external stimulus is = 15mV/ms lasting from 0ms to 3ms. The finest

time discretization used was ∆t = 0.005ms, the solution v0 was defined as

the closest approximation to the analytical solution. We define a discrete

function

ε(i) := ‖v0 − vi‖L2(Ω).

Here vi are solutions to the Equation(2.1) with increased ∆t for each i. The

norm used is the L2 norm, which will be discussed in more detail in 3.3.

36

Figure 3.6: The a postriori error estimate. The solid line shows the error ε(i)
plotted on a logarithmic scale, while · shows O(∆t) and + shows O(∆t2).

37

From Figure 3.6 we can see that for a large ∆t the error estimate is by no

means O(∆t2). However, as ∆t decreases, ε(∆t) slowly converges to O(∆t2),

which was to be expected.

3.3 Discrete norms

The norms given in Section 2.3, are applied to continuous functions. How-

ever, the solution to the monodomain Equation (2.1) is a discrete approxi-

mation. With the finite difference scheme the domain was discretized into

smaller rectangular domains, ωi,j . Treating the solution v as constant over

each of these ωi,j , we approximate the integral of v by:

∫
Ω
|f | dx =

m∑
i=1

m∑
j=1

∫
ωi,j

|f | dx =

m∑
i=1

m∑
j=1

h2|fi,j |.

This results in the following discrete norms

‖f‖L2(Ω) = h

 m∑
i=1

m∑
j=1

|fi,j |2
 1

2

,

‖f‖H1(Ω) = h

 m∑
i=1

m∑
j=1

(|fi,j |2 + |∇fi,j |2)

 1
2

,

‖f‖H2(Ω) = h

 m∑
i=1

m∑
j=1

(|fi,j |2 + |∇fi,j |2 + |∇2fi,j |2)

 1
2

.

The derivatives can be approximated by considering the following Taylor

series:

f(x+ ∆x) = f(x) + ∆x
∂f

∂x
+O(∆x2),

and

f(x−∆x) = f(x)−∆x
∂f

∂x
+O(∆x2).

Hence, by much the same argument as in Section 3.1.3, we achieve the

following approximation

∂f

∂x
=
fi−1,j − fi+1,j

2h
,

38

and similarly,
∂f

∂y
=
fi,j−1 − fi,j+1

2h
.

This gives the derivative of v across the neighboring ωi,j in x and y direction.

For more information on implementation of norms, see Appendix B.1. When

applying total variation to discrete functions, we use the same estimates on

the integrals and derivatives as for the norms.

39

Chapter 4

Fibrillating Patterns and

Norm Comparisons

4.1 Action Potential Simulator

So far, we have looked at some well-known mathematical models, describing

the biophysiological properties of wave propagation in cardiac tissue. Fur-

thermore, we discussed the bidomain model which divided the tissue into

two domains, an intracellular and an extracellular domains. The domains

had different anisotropic rates, in the sense that the conductivity of the tis-

sue is directionally dependent on the intra- and extracellular domain. But

by assuming equal anisotropic rates, we reduced the bidomain model into

much simpler the monodomain model

λ

1 + λ
∇ · (Mi∇v) = χIm. (4.1)

Here λ is some scaler, such that the conductivity tensors Me = λMi. Typical

conductive values for cardiac tissue is σel = 2.0mS/cm, σet = 1.65mmS/cm, σil =

3.0mS/cm and σit = 1.0mS/cm [5]. It is easy to see that there exists no single

λ where Me = λMi. We can simplify yet again by assuming

λ =
σel /σ

i
l + σet /σ

i
t

2
≈ 1.15.

The parameter χ in (4.1) is the surface to volume ratio of the cell mem-

brane, which is given as 2000cm−1, see [5]. The transmembrane current

40

density, given by the parameter Im, is defined by

Im = Cm
∂v

∂t
+ Iion.

Here Cm describes electrical capacitance of the tissue, which in the physi-

ological case is 1µF/cm2, [5]. However, this parameter will be adjusted, since

the domain is unitary:

Ω = {(x, y) ∈ R : 0 ≤ x, y ≤ 1},

for a more realistic action potential dynamic. Iion is the ionic model, which

in our case is the Aliev Panfilov two variable model

∂v

∂t
= −(vrest − vpeak)(kV (V − a)(V − 1) + V w) + is,

∂s

∂t
= 0.25ε(v, s)(−w − kV (V − a− 1)),

where

V =
v − vrest

vpeak − vrest
,

ε(v, s) = ε+ µ1
s

V + µ2
,

This model is known for generating fibrillatory patterns and thus suits our

purpose perfectly. The different constants are dependent on cell types, and

setting k = 8, a = 0.01 and ε = 0.01 gives action potential similar to ven-

tricular cells. The other parameters µ1 and µ2 govern the restitutional

properties of the tissue. We use µ2 = 0.3, while µ1 will be varied to produce

various break-up patterns. To start, we let µ1 = 0.07. Our monodomain

model with Aliev Panfilov’s cellular model is simulated by using the meth-

ods Strang splitting, explicit Runge-Kutta and semi-implicit finite difference

method, all explained in Section 3.2.

The stimulus is(t) is split into two parts: S1(t) represents the stimulus

applied by the sinusoidal node, which is applied to the upper part of the

domain. S2(t) is applied to the left side of the domain, and reflects the

41

distortion signal initiating fibrillation. is(t) is then defined as

is(t) := S1(t) + S2(t)

where S1(t) and S2(t) enters 1/4 of the domain in respectable directions.

With the stimulus is(t) = (15mV/ms, 0) on the interval t ∈ [0ms, 3ms]

we were able to induce action potential on the full domain. By regulat-

ing the electrical capacitance of the tissue, Cm, we modify the speed at

which the action potential propagates through the tissue. We found that

for Cm = 1µF/cm2 the whole domain became depolarized within 20ms,

while for Cm = 15µF/cm2, the depolarization of the complete domain took

70ms, which is much closer to the physiological phenomenon. Hence, we let

Cm = 15µF/cm2.

Included below, are some figures depicting the transmembrane potential

on a 200× 200-mesh at different stages of a normal heart beat. In Figure

4.1 we see the rapid depolarization process spreading through the cardiac

tissue. After the depolarization phase, the plateau phase follows, where

transmembrane potential is hovering around the peak value. Afterwards,

the repolarization of the complete tissue starts, which is depicted in Figure

4.2. We can see that the repolarization resembles a continuous trail slowly

lowering the transmembrane potential to its normal resting value. During

this repolarizing process, we will in the following section apply S2 stimulus

to initiate fibrillations.

42

Figure 4.1: Action potential propagation after 10ms of simulation. The red
represents depolarized tissue, while blue represents tissue in a resting state.
In between, we see tissue that have started the depolarization process, and
we see that the process is very rapid.

43

Figure 4.2: Action potential propagation after 230ms of simulation. The
blue part is repolarized tissue. We see that the repolarization process is
much more gradual than the depolarization process.

4.2 Fibrillating Patterns

In this section we will examine how changes to the restitutional properties

of the recovery potential results in different fibrillatory patterns. We will

be looking at different fibrillation patterns, from seemingly chaotic to quite

stable spiral patterns. The critical parameter making the solution stable or

non-stable is µ1.µ1 greatly affects the duration of the action potential, as

shown in Figure 4.3. The figure depicts the action potential of a single cell

for simulations with various µ1-values.

We will have to apply S2 stimulus at different times t to be able to

obtain fibrillation for each simulation. By applying the S2-stimulus at times

when half of the domain is in resting state and the other half is in the

repolarization phase, we can to initiate re-entry.

44

Figure 4.3: Action potential of a single cardiac cell with different values for
µ1. The x-axis shows the time, while the y-axis gives the transmembrane
potential. For plot denotation see Table 4.1.

45

Figure 4.4: Action potential development for t = 500ms and µ1 = 0.07.

For each simulation a 15mV/ms, S1-stimulus was initiated at t = 0, lasting

for 3ms. The transmembrane potential at t = 0 is at resting value, i.e.

v = vrest = −85mV, while the recovery potential is w0 = 0. For each

simulation, we apply an S2-stimulus of 30mV/ms also lasting for 3ms, at a

later point in time, typically in the interval [50ms, 300ms], depending on µ1.

Each simulation models the development of the transmembrane potential

on the interval t ∈ [0ms, 1000ms]. For each new simulation, the control

parameter µ1 is doubled until the solutions becomes non-chaotic.

Figures 4.4 and 4.5 display the behavioral pattern of fibrillatory action

potential when µ1 = 0.07. In this simulation the S2-stimulus was applied at

t = 220ms.

46

Figure 4.5: Action potential development for t = 1000ms and µ1 = 0.07.

We see that with µ1 = 0.07, the behavioral pattern of the transmembrane

potential is chaotic. By first simulating the transmembrane potential for

µ1 = 0.14 and S2 = 0, we observed that half the tissue was in a repolarization

phase at t = 150ms. Hence, using the given values for µ1, and further

inducing the S2 stimulus at t = 150ms, we achieve the fibrillatory behavior,

as seen in Figures 4.6 - 4.7.

47

Figure 4.6: Action potential development for t = 500ms and µ1 = 0.14.

Figure 4.7: Action potential development for t = 1000ms and µ1 = 0.14.

48

Figure 4.8: Action potential development for t = 500ms and µ1 = 0.28.

We observe similar chaotic behavior as for µ1 = 0.07. In the third

simulation, we let µ1 = 0.28, as depicted in Figures 4.8 -4.9 . Here the S2-

stimulus is applied at t = 100ms, where t was found as earlier by observing

the non-fibrillatory solution. With µ1 this large, the repolarization phase is

shortened, and the transmembrane potential of the upper part of the domain

enters resting state before the lower part become depolarized, therefor such

an early S2 stimulus.

49

Figure 4.9: Action potential development for t = 1000ms and µ1 = 0.28.

When we let µ1 = 0.56, we get a very different result. At this point the

repolarization phase is so short that depolarization of the lower part of the

domain has not even begun before the upper part of the domain has reached

its resting value. We applied the S2-stimulus at t = 60ms, and Figure 4.10

clearly shows a spiral structure. However, around t = 800ms, the structure

breaks up and becomes chaotic as well, as shown in Figures 4.11 - 4.12.

Lastly, with µ1 = 1.12 the simulation result in the stable spiral depicted in

Figure 4.13. Each simulation described in this section, has begun with spiral

like structures. For solutions with µ1 < 0.56, the spiral wave breaks up, as

the repolarization phase is long, and thus the depolarization process catches

up with the repolarization of the spiral arms, and creates an unstructured

pattern. For the solution where µ1 = 0.56, the repolarization of the tissue

is almost fast enough to let the transmembrane potential reach its resting

state before becoming depolarized again, but after a while the solution does

slowly become chaotic and unstructured. When µ1 = 1.12 the repolarization

phase has been sufficiently shortened, such that the membrane potential has

reached its resting value before the depolarization process of the spiral arm

starts, and thus we get a stable spiral pattern.

50

Figure 4.10: Action potential development for t = 500ms and µ1 = 0.56.

Figure 4.11: Action potential development for t = 800ms and µ1 = 0.56.

51

Figure 4.12: Action potential development for t = 1000ms and µ1 = 0.56.

Figure 4.13: Her we see the action potential development t = 1000ms, with
µ1 = 1.12

52

Figure 4.14: Structure of fibrillatory patterns for µ1 = 0.07 (left), µ1 = 0.14,
(right).

Figure 4.15: Structure of fibrillatory patterns for mu1 = 0.28 (left) and
mu1 = 0.56 (right).

In order to get an overall picture of the behavior of the transmembrane

potential in each simulation, we have constructed an algorithm recording

the depolarization frequency. The algorithm simply records how often the

membrane potential in a given grid point exceeds 0. The Figures 4.14 and

4.16 show the depolarization frequency of the transmembrane potential for

some areas on Ω. The color scale goes from blue to red, which represents the

lower and higher frequency areas of the given simulation. For more details,

see Appendix B.2. For simulations with µ1 < 0.56, the pattern appear

random and chaotic. Interestingly, we see that for µ1 = 0.56 and µ1 = 1.12,

the frequency is more or less even across the whole tissue. Note however,

that the frequency increases somewhat closer to the center of the spiral,

except at the spiral tip, where the frequency is much lower. For µ1 = 0.56,

53

Figure 4.16: Structure of fibrillatory patterns for mu1 = 1.12 (right).

µ1 symbol colour

0.07 + blue
0.14 · green
0.28 ◦ red
0.56 −· cyan
1.12 − black

Table 4.1: Denotation according to µ1.

we can also see the trace meandering spiral tip caused by the re-entry of the

fibrillatory signal.

4.3 Norm Comparisons

Figures 4.17-4.19 show the development of the norms (2.8)-(2.10), as de-

scribed in Section 2.3, as functions of t on the intervalÂ t ∈ [500ms, 1000ms].

For t in this interval, the non-fibrillatory solutions are constant, as the trans-

membrane potential have reached its resting value. Thus

‖vrest‖L2(Ω) = vrest‖1‖L2(Ω)

We will concentrate on exploring features of the normed fibrillatory solu-

tion, obtained at [500ms, 1000ms], as the non-fibrillatory solution is constant

on the given interval.

In Figures 4.17, 4.18 and 4.19, we see the development of the L2-, H1-

and H2-norms respectively, for the different fibrillatory patterns obtained in

Section 4.2.

54

Figure 4.17: L2-norm of the simulations run in Section 4.2. See Table 4.1
for graph denotation.

55

Figure 4.18: H1-norm of the simulations run in Section 4.2. See Table 4.1
for graph denotation.

56

Figure 4.19: H1-norm of the simulations run in Section 4.2. See Table 4.1
for graph denotation.

57

From Figures 4.17-4.19 we see that the norms on the different solutions

are oscillating. However, the oscillating pattern obtained by solutions for

µ1 < 1.12 are seemingly chaotic, while the pattern for µ1 = 1.12 is stable

with rhythmic oscillations of minor and constant amplitude.

Figure 4.20 shows the total variation of the simulations on t ∈ [500ms, 1000ms].

We see that for the semi-norm total variation, applied to the stable spiral

Figure 4.20: Total variation of the simulations run in Section 4.2. See Table
4.1 for graph denotation.

solution obtained by letting µ1 = 1.12, we get a periodic oscillating function

with equal amplitude and constant phase. Note that the amplitude is con-

siderably larger than for the norms. As for the norms, the behavior of the

semi-norm on the other solutions are still chaotic.

An interesting feature with this norm analysis is the comparisons of so-

lution obtained by setting µ1 = 0.56 and the stable spiral solution where

58

Figure 4.21: A comparisons of the L2-norm for the solutions obtained for
µ1 = 0.56 and µ1 = 1.12 on the interval [0msm, 1000ms]. For graph denota-
tion see Table 4.1.

µ1 = 1.12. The semi-stable spiral solution, where µ1 = 0.56 did not show

visual signs of break up, before t ≈ 700 where patterns started to change

considerably. However, considering the the norms of this solution, espesi-

cally, the L2-norm and the total variation semi-norm, it is clear that this

result are nowhere near a periodic pattern. This is seen more clearly in the

Figures 4.21 and 4.22. This property might be used to destinguish between

different fibrillatory patterns.

59

Figure 4.22: A comparisons of the total variation semi-norm for the solutions
obtained for µ1 = 0.56 and µ1 = 1.12 on the interval [0msm, 1000ms]. For
graph denotation see Table 4.1.

60

Chapter 5

Conclusion

In this thesis we have looked at different mathematical models for portraying

action potential propagation in the heart’s excitable tissue, and we explored

the different qualities of the these models in terms of reproducing this bio-

physiological phenomena. The models we examined were defined by a set

of partial differential equations. We considered bidomain models, but as

these have a high level of detail, they take too much time to solve. Thus

we wanted to use a simpler model. We showed how the bidomain models

can be simplified into the monodomain models, and chose the latter, as

solving them are much more efficient, and we still get a sufficiently detailed

model for the purpose of this thesis. The partial differential equation from

the monodomain model was non-linear, and thus we chose to rather use an

approximation to the solution of the monodomain equation, obtained by

operator splitting. This left us with one linear partial differential equation,

and an ordinary differential equation. There are many ways to model the

ionic current of excitable cells, and we chose the Aliev Panfilov model, due

to its ability to replicate different break up patterns.

In Chapter 3, we studied different numerical methods for solving the dif-

ferential equations obtained by the monodomain model. For the partial

differential equation, we first tried an explicit finite difference scheme, but

as the stability requirements were strict, a very fine time resolution was nec-

essary. The method therefore became too time inefficient. Thus we ended

up using the more time-efficient semi-implicit finite difference scheme. With

this solver for the partial differential equation we were able to greatly in-

61

crease the time steps. Thus we solved the ordinary differential equation

using a simple second order explicit solver for increased accuracy.

By varying model parameters that control the recovery property of the

action potential, we were able to generate different fibrillatory patterns.

Further, we implemented various norms, to see if these could be used for

distinguishing between laminar and turbulent flows. We applied Lebesgue-

and Sobolev-norms, more precisely the L2-, H1- and H2 norms, for each

time step t. In addition, we also applied the total variation semi-norm.

Applying these norms and the semi-norm to the solutions resulted in a

discrete function f(t) for each norm. We found that the function f(t) was

periodic for stable fibrillatory solutions for all norms and for the semi-norm,

while for unstable solutions, f(t) was seemingly chaotic. seemed stable early

on in the simulation, but eventually became unstable after some time, f(t)

never converges to a periodic stable function. This leads us to believe that it

might be possible to generate numerical methods for distinguishing between

stable and non-stable break up patterns for the simulated solutions.

The L2-norm and total variation semi-norm generated the easiest recog-

nizable periodic wave. By finding whether these norms applied to a given

solution generates a periodic repeating pattern or not, we might also be able

to find if the solution is stable. By running it at different time intervals, this

might reveal if the solution will generate a chaotic or non-chaotic structure

of the transmembrane potential. It does however take some time before f(t)

converges to a periodic stable function, and over a short time window it is

impossible to determine whether or not the solution will become fibrillatory

stable or not. As seen in Figures 4.21 and 4.22, f(t) was not periodic for

stable solutions, before t ≈ 250ms. One of the problems is thus to find when

f(t) converges, if the solution is stable.

An approach not used in this thesis is discrete cosine transforms. Discrete

cosine transforms expresses a function or signal in terms of a sum of sinu-

soids with different frequencies and amplitudes. The transform operates on

a function with finitely many data points. The most common of these trans-

forms is the type-II DCT, some times called the DCT. In two dimensions

62

the DCT is given by

Vk,l =

m−1∑
i=0

m−1∑
j=0

vi,j cos

[
π

m

(
i+

1

2

)
l

]
cos

[
π

m

(
j +

1

2

)
k

]
,

where vi,j is the discrete data points for i, j = 0, . . . , N − 1 and l, k =

0, . . . ,m−1. Since the DCT transforms the signal into the frequency domain

one would expect to able to distinguish between the types of solutions based

purely on data from a single time step. The frequency spectrum of a chaotic

solution would typically be broader.

63

Appendix A

Implementation of Solvers

A.1 The Partial Differential Equation Solver

When we constructed the numerical model, we quickly found that one of

the most tasking calculations was constructing the sparse matrices A from

Section 3.2.3. However, A can be written as a scalar multiplied by matrix

A0, and this matrix depends only on the discretization of the domain. We

construct A0 in Python as follows:

When writing A0 to file, we can simply load the matrix into the solver for

each simulation, as long as the the spatial discretization remains the same.

The full solver was constructed as an object. As input when initiating the

object, we use the variables defining the discrete time and space domains.

Also we imported the pre-made matrix A0 and declared a LU -factorized

solver for the matrix I + r/2∆tA0 = B. This was done as follows:

s e l f .B = s e l f . r∗ s e l f . dt∗ s e l f . theta ∗A 0 ; s e l f .B. s e td i ag (1 + A 0 . d iagona l ())

A = − s e l f . r∗ s e l f . dt∗ s e l f . theta ∗A 0 ; A. s e td i ag (1 + A 0 . d iagona l ())

s e l f . s o l v e r = sc ipy . spar s e . l i n a l g . f a c t o r i z e d (A. toc s c ()

Note, that this was only done once. When solving the partial differential

equation, we called the method:

def PDEsolver (v) :

V = numpy . reshape (v , numpy . s i z e (v))

b = s e l f .B. dot (V) ; u = s e l f . s o l v e r (b)

return numpy . reshape (u , numpy . shape (v))

64

import s c ipy . spar se as sp
import she lve
def s t i f f n e s sMa t r i x (n) :

dx = 1.0/n ; s i gma l = 3 . 0 ; s igma t = 1 .0

A = sp . l i l m a t r i x ((n∗∗2 , n∗∗2))
A += (− 2∗ s i gma l − 2∗ s igma t)∗ sp . eye (n∗∗2 , n∗∗2 , format = ’ l i l ’) + \

s igma t∗ sp . eye (n∗∗2 , n∗∗2 , k = 1 , format = ’ l i l ’) +\
s igma t∗ sp . eye (n∗∗2 , n∗∗2 , k =−1, format = ’ l i l ’) +\
s i gma l ∗ sp . eye (n∗∗2 , n∗∗2 , k = n , format = ’ l i l ’) +\
s i gma l ∗ sp . eye (n∗∗2 , n∗∗2 , k =−n , format = ’ l i l ’)

for i in xrange (1 , n) :
A[i ∗n , i ∗n+1] += sigma t
A[i ∗n , i ∗n−1] −= sigma t
A[i ∗n−1, i ∗n−2] += sigma t
A[i ∗n−1, i ∗n] −= sigma t

A[0 , 1] += sigma t
A[n∗∗2−1, n∗∗2−2] += sigma t
A [: n , :] += s igma l ∗ sp . eye (n , n∗∗2 , k = n , format = ’ l i l ’)
A[n∗∗2−n : , :] += s igma l ∗ sp . eye (n , n∗∗2 , k = n∗∗2−2∗n , format = ’ l i l ’)

f i l = ” . / data/matrix / s t i f f n e s sMa t r i x %.4d” % n
save = she lve . open (f i l) ; key = ”matrix ”
save [key] = A; save . c l o s e ()

A.2 The Ordinary Differential Equation Solver

The ordinary differential equation was solved using the the following explicit

Runge-Kutta method:

def RKtrans (s e l f , v , w, i s t) :

dt = s e l f . dt∗ s e l f . theta / s e l f .m

f1 = s e l f . f (v , w, i s t)

f 2 = s e l f . f (v + dt∗ f1 , w, i s t)

re turn v + dt ∗0 .5∗ (f 2 +f1)

de f RKrecovery (s e l f , v , w) :

dt = s e l f . dt∗ s e l f . theta / s e l f .m

g1 = s e l f . g (v , w)

g2 = s e l f . g (v , w + dt∗g1)

return w + dt ∗0 .5∗ (g2 + g1)

We also confirmed that our explicit Runge-Kutta method gave an accurate

representation of the action potential on a single cell, by comparing the

results to a much slower singly-diagonally-implicit Runge-Kutta method:

65

def J (s e l f , v , w, i s t) :

V = (v − s e l f . vRest)/ (s e l f . vPeak − s e l f . vRest)

eps = s e l f . eps + s e l f .mu1∗w/(V+s e l f .mu2)

epsV = s e l f .mu1∗w∗ (1 . 0/ (s e l f . vPeak − s e l f . vRest)) / (V + s e l f .mu2)∗∗2
epsS = s e l f .mu1/(V + s e l f .mu2)

J11 = s e l f . k ∗ ((V − s e l f . a)∗ (V − 1) + V∗(V −1) + V∗(V − s e l f . a)) + w

J12 = V

J21 = 0.25∗ epsV∗(−w − s e l f . k∗V∗(V − s e l f . a −1)) −\
0.25∗ eps ∗(s e l f . k ∗ (1 . 0/ (s e l f . vPeak − s e l f . vRest))∗ ((V − s e l f . a − 1) + V))

J22 = 0.25∗ epsS∗(−w − s e l f . k∗V∗(V − s e l f . a − 1)) − 0.25∗ eps

return np . array ([[J11 , J12] , [J21 , J22]])

de f f (s e l f , v , w, i s t) :

V = (v − s e l f . vRest)/ (s e l f . vPeak − s e l f . vRest)

re turn −(s e l f . vPeak − s e l f . vRest)∗ (s e l f . k∗V∗(V −\
s e l f . a)∗ (V − 1 . 0) + V∗w) + i s t

de f g (s e l f , v , w) :

V = (v − s e l f . vRest)/ (s e l f . vPeak − s e l f . vRest)

eps = s e l f . eps + s e l f .mu1∗w/(V + s e l f .mu2)

return 0.25∗ eps∗(−w − s e l f . k∗V∗(V − s e l f . a − 1 . 0))

de f SDIRK(s e l f , v , w, i s t) :

dt = s e l f . dt∗ s e l f . theta

f o r i in xrange (s e l f .m) :

f o r j in xrange (s e l f .m) :

y = np . array ([v [i , j] , w[i , j]])

A = np . eye (2 , 2) − dt ∗0.5∗ s e l f . J (v [i , j] ,w[i , j] , i s t)

whi le True :

F = − y + dt ∗0.5∗np . array ([s e l f . f (y [0] , y [1] , \
i s t [i , j]) , s e l f . g (y [0] , y [1])]) +\
np . array ([v [i , j] , w[i , j]])

dy = np . l i n a l g . s o l v e (A, F)

y += dy ; c += 1

i f np . abs (dy .max ()) < 0 . 0 01 : break

y = np . array ([v [i , j] , w[i , j]]) + dt∗np . array ([s e l f . f (y [0] , y [1] , \
i s t [i , j]) , s e l f . g (y [0] , y [1])])

v [i , j] = y [0] ; w[i , j] = y [1]

This method gave much the similar representation as the explicit method,

but was deemed to slow for practical use.

66

Appendix B

Implementation of Numerical

Comparison Devices

B.1 Norms and Semi-Norms

The norms were calculated using the following methods:

def L2(func , h) :

func = numpy . reshape (func , numpy . s i z e (func))

norm = numpy . sum(numpy . abs (func)∗∗2)
return h∗numpy . sq r t (norm)

de f H1(func , h) :

dx = de r i v x (func , h)

dy = de r i v y (func , h)

return numpy . sq r t (L2(func , h)∗∗2 +\
L2(dx , h)∗∗2 + L2(dy , h)∗∗2)

de f H2(func , h) :

dx = de r i v x (func , h)

dy = de r i v y (func , h)

dxdx = de r i v x (dx , h)

dxdy = de r i v x (dy , h)

dydx = de r i v y (dx , h)

dydy = de r i v y (dy , h)

return numpy . sq r t (L2(func , h)∗∗2 +\
L2(dx , h)∗∗2 + L2(dy , h)∗∗2 +\
L2(dxdx , h)∗∗2 + L2(dydy , h)∗∗2 +\
L2(dxdy , h)∗∗2 + L2(dydx , h)∗∗2)

de f TV(func , h) :

TV = numpy . sum(numpy . sum(de r i v x (func , h) +\
de r i v y (func , h)))∗h∗∗2

return TV

where h = ∆x = ∆y, and func = v (the transmembrane potential). The

derivatives were found using the following algorithm:

67

def de r i v y (func , h) :

dy va l = (numpy . r o l l (func . t ranspose () , 1) −\
numpy . r o l l (func . t ranspose () , −1))/(2∗h)

dy = numpy . z e ro s (numpy . shape (func))

dy [1 : l en (func)−2 , 1 : l en (func)−2] += \
dy val [1 : l en (func)−2 , 1 : l en (func)−2]

re turn dy

and

def de r i v x (func , h) :

dx va l = (numpy . r o l l (func , 1) − numpy . r o l l (func ,−1))/(2∗h)

dx = numpy . z e ro s (numpy . shape (func))

dx [1 : l en (func)−2 , 1 : l en (func)−2] += \
dx val [1 : l en (func)−2 , 1 : l en (func)−2]

re turn dx

B.2 Frequency Measurement

def f requency (data , name) :

measure = data [0]

compare = np . z e ro s (np . shape (measure))

cc = np . z e ro s (np . shape (measure))

f o r i in xrange (l en (data)) :

func = data [i]

f o r k in xrange (l en (measure)) :

f o r l in xrange (l en (measure)) :

i f func [k , l] > 0 .00 and cc [k , l] == 0 :

compare [k , l] += 1

cc [k , l] = 1

e l i f func [k , l] <= 0 and cc [k , l] == 1 :

cc [k , l] = 0

fname = ”./ data/ svg/%s . png” % name ; typ = ”png”

p . imsave (fname , compare , format = typ)

This method gave the depolarization frequency for each grid point in the

domain Ω. The color scheme of each plot is relative to each simulation.

68

Bibliography

[1] R. Winther A. Tveito. Introduction to partial differential equations. A

computational approach, 1998.

[2] Rubin R. Aliev and Alexander V. Panfilov. A simple two-variable model

of cardiac excitation. Chaos, Solitons and Fractals, 7(3):293 – 301, 1996.

[3] Leslaw K. Bieniasz, Ole Østerby, and Dieter Britz. The effect of the dis-

cretization of the mixed boundary conditions on the numerical stability

of the crank-nicolson algorithm of electrochemical kinetic simulations.

Computers and Chemistry, 21(6):391 – 401, 1997.

[4] N. Hooke, C.S. Henriquez, P. Lanzkron, and D. Rose. Linear algebraic

transformations of the bidomain equations: Implications for numerical

methods. Mathematical Biosciences, 120(2):127 – 145, 1994.

[5] A. Tveito X. Cai K. A. Mardal J. Sundnes, G. T. Lines. Computing the

electrical activity in the heart. Monographs in computational science

and engineering, 2006.

[6] B. P. Rynne and M. A. Youngson. Linear functional analysisi. pages 1

– 82, 2008.

[7] Kirill Skouibine, Natalia Trayanova, and Peter Moore. A numerically

efficient model for simulation of defibrillation in an active bidomain

sheet of myocardium. Mathematical Biosciences, 166(1):85 – 100, 2000.

[8] J. Sundnes, G. T. Lines, and A. Tveito. An operator splitting method

for solving the bidomain equations coupled to a volume conductor

model for the torso. Mathematical Biosciences, 194(2):233 – 248, 2005.

[9] J. W. Thomas. The effect of the discretization of the mixed boundary

conditions on the numerical stability of the crank-nicolson algorithm of

69

electrochemical kinetic simulations. Texts in Applied Mathematics, 22,

1995.

[10] Miguel Valderrábano. Influence of anisotropic conduction properties in

the propagation of the cardiac action potential. Progress in Biophysics

and Molecular Biology, 94(1-2):144 – 168, 2007. Gap junction channels:

from protein genes to diseases.

[11] Liping Wen, Yuexin Yu, and Shoufu Li. Stability of explicit and di-

agonal implicit runge-kutta methods for nonlinear volterra functional

differential equations in banach spaces. Applied Mathematics and Com-

putation, 183(1):68 – 78, 2006.

70

	Introduction
	The Heart and Fibrillation
	Diagnostic Models
	This Thesis

	Mathematical Modeling of Cardiac Tissue
	Bidomain and Monodomain Model
	Aliev Panfilov Two Variable Cell Model
	Mathematical Norms

	Numerical Methods
	The Explicit Model
	Godunov Splitting
	Euler Method
	Explicit Finite Difference Method

	The Semi-Implicit Model
	Strang Splitting
	Runge Kutta Methods
	Semi-Implicit Finite Difference Method
	A Posteriori Error Estimate

	Discrete norms

	Fibrillating Patterns and Norm Comparisons
	Action Potential Simulator
	Fibrillating Patterns
	Norm Comparisons

	Conclusion
	Implementation of Solvers
	The Partial Differential Equation Solver
	The Ordinary Differential Equation Solver

	Implementation of Numerical Comparison Devices
	Norms and Semi-Norms
	Frequency Measurement

