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Preface

This thesis constitutes the written part of my mathematics Master, and its
seeds were sown in the ripe spring soil of 2007. I had spent a number of
preceding years away from the world of academics, trotting the continents
of the actual world, creating and releasing words and music, and playing
cards on a professional level.

Now, as exciting and adventurous as that kind of life may be, impending
adulthood began to make its voice heard, and my need for monetary stability
started to become more urgent than my need for adventure. So in 2007 the
decision was made to go back to school and finish my formal education,
and I once again found myself wandering the corridors of the Department of
Mathematics at the University of Oslo. This time on the hunt for a professor
who would want to guide me through the academic jungle.

Since my reasons for becoming a student once again were slightly on
the pragmatic side, I felt that it was important to find a subject for my
thesis that was somewhat concrete. Something that could be applied to the
physical world out there, even though it for formal reasons needed to be at
least partly within the boundaries of pure mathematics. But as I started
my advisor safari, it soon became clear that this would be a difficult task.

I arranged meetings with several of the professors residing in the Tower
of Abel (pun most likely intended), and although I was always greeted in
a friendly manner, my request for something ’more concrete’ was not. I
(obviously) already knew that these elusive and enigmatic creatures known
as mathematicians tend to be quite immersed in the realm of the abstract,
so this didn’t really come as much of a surprise. But since you’re sitting
there right now reading the preface of a mathematics thesis written by yours
truly, it all must have worked out in the end. So what happened? Did I
set aside my wish for something a little less pure than what the professors
I had visited were working on? Well... I considered it. But then I found
room 1027.

Room 1027 was where a professor by the name of Tom Lindstrøm had
his nest, and I recognized his name as the author of the textbook used
in the first mathematics course I ever took at the university level, back
in 1997. Mr. Lindstrøm was also a member of approximately nine million
different committees (he claims that this number is somewhat overestimated,
but I attribute his objection to modesty), had his nest located within the
domains of the Centre of Mathematics for Applications, as opposed to the
pure mathematics I was trying to avoid, and he even had his own fan group
on Facebook. Obviously, I went ahead and set up a meeting with him.

Sitting there in the aforementioned 1027, surrounded by the vast number
of notes and theses and books and other objects-made-from-a-combination-
of-paper-and-cryptic-symbols that this Lindstrøm creature had used when
builing his nest, I explained what kind of thesis I was looking to write.
He suggested that stochastic analysis, with its immediate applications to
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finance, would be a reasonable way to go. I of course had no idea what
stochastic analysis was, I had taken zero courses in finance and I barely
knew anything about probability theory, but something about it just felt
right. And after we ended the meeting with an additional hour of non-
math related chatter, this something felt even more right. So instead of
continuing my hunt, I simply asked Lindstrøm right then and there if he was
interested in being my advisor. His reply was something along the lines of
’Well... I wasn’t really supposed to have any master students this semester...
(dramatic pause) But I’ll make an exception. Welcome to CMA.’. It had
begun...

Over the course of the next two years, I was both a teacher and a
student, thinking that teaching calculus to freshmen would be a good way
to get back into the mathematical mindset. Then, in the spring of 2009,
after completing the required theoretical courses in measure theory,
stochastic analysis and finance, I finally started writing the actual thesis,
which I am now going to walk you through.

The first section of the thesis presents the classic Black-Scholes formula,
derived by solving partial differential equations and doing probabilistic
calculations. The details of these calculations are normally omitted from
textbooks on the subject, so it felt like a good idea to include them here, as
a reference.

Section two uses Girsanov’s Theorem to find the equivalent martingale
measure for the Black-Scholes market model, and with the help of this
measure presents an alternative way to arrive at the Black-Scholes formula.

In section three, we investigate what happens to the option price if the
parameters of the model, especially the volatility, are changed. Through
a series of MATLAB simulations, culminating in an animated movie, it is
demonstrated that the classic method of calculating the greek vega should
be approached with a great deal of caution.

The fourth section of the thesis leaves behind the safety of continuity and
introduces Itô-Lévy processes and a suitable version of the Itô formula to
go along with them. Inspired by the financial crisis, particular attention
is given to the Poisson process, which is introduced into our market model
in an attempt to simulate the possibility of sudden (discontinuous) market
falls.

Section five starts off with a discussion on EMMs and how they relate to
the notion of market completeness. An equivalent martingale measure for
the (discontinuous) market model we used in section four is calculated, and
later on used to find the option price, similarly to what was done for the
(continuous) Black-Scholes market in section two.

And so ends the tale of what came before, and the preview of what is still
to come. The only item left on the preface menu, before flipping the page
and getting down to business, is a slice of gratitude. I would like to
profoundly thank my parents, Bjørg & Torfinn Andersen, for their
neverending support, both financially and in every other way possible and
impossible. My advisor, professor Tom Lindstrøm, deserves massive kudos
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for being outstandingly flexible and forthcoming throughout the whole
learning and writing process. Thanks also go out to mr. Paul C. Kettler,
who taught me the basics of LATEX and provided valuable insights, and to
the administrative personnel at the Mathematics Department at the
University of Oslo, especially Mathias Barra. Live & Prosper. Takk.

Oslo, April 2010 Øyvind Wefald Andersen





EXPLORING & EXTENDING
THE BLACK-SCHOLES FORMULA

1. Introduction

We start by considering a traditional Black-Scholes market model on a
filtered probability space(Ω,F , {Ft}t≥0, P ), where we have a risk-free
investment (also called a bond)

(1.1) St = S0e
rt ,

and a risky investment Xt, believed to obey the stochastic differential
equation

(1.2) dXt = αXt dt+ σXt dBt , X0 = x0

or, equivalently

(1.3) Xt = x0 +
∫ t

0
αXs ds+

∫ t

0
σXs dBs .

Here, α, σ, and r are positive constants, Bt is a real-valued Brownian
motion, and t ≥ 0. σ is commonly referred to as the volatility.

Next we introduce the concept of a European call option:

Definition 1.1. A European call option is a contract that gives the right
(but not the obligation) to buy at time T a stock at price K, which is fixed
when the contract is signed.

The time T is called the maturity, and K is the strike price.

If XT ≥ K, this option enables its owner to buy the stock at price K and
then sell it immediately at price XT . The difference XT −K is the realized
gain. If XT < K, the gain is zero. In other words, the value of the option is
given by (XT −K)+ = max{XT −K, 0}.

Definition 1.2. Assuming there are no opportunities for arbitrage (NAO)
in the market, if θ = (µ, β) is a portfolio that finances the random variable
Z, then π(Z)t := µtSt + βtXt is the implicit price of Z at time t.

We would like to obtain a financing strategy for the random variable
Z = g(XT ) = (XT −K)+, and thus find its implicit price π(Z)t. This leads
us to what is known as the Black-Scholes formula.

1



2 EXPLORING & EXTENDING THE BLACK-SCHOLES FORMULA

1.1. The Black-Scholes Formula.

Let C1,2([0, T ]×R+,R) be the set of functions f from [0, T ]×R+ into R,
of class C1 with respect to t and C2 with respect to x.

We suppose that there exists p ∈ C1,2([0, T ]× R+,R) such that

π(Z)t = p(t,Xt), t < T

g(x) = p(T, x), x ∈ R+ .

Let Yt = p(t,Xt). Itô’s formula then gives us

dYt =
(
αXt

∂p

∂x
(t,Xt) +

∂p

∂t
(t,Xt) +

1
2
σ2(Xt)2 ∂

2p

∂x2
(t,Xt)

)
dt

+ σXt
∂p

∂x
(t,Xt) dBt .

(1.4)

Letting L denote the infinitesimal generator of the diffusion Vt = (St, Xt),
t ≥ 0, defined on C1,2([0, T ]× R+,R) by

Lp = αx
∂p

∂x
+
∂p

∂t
+

1
2
σ2x2 ∂

2p

∂x2
,

equation (1.4) can be rewritten as

(1.5) dYt = Lp(t,Xt) dt+ σXt
∂p

∂x
(t,Xt) dBt .

As previously mentioned, a strategy θ that finances Z is represented by a
portfolio (µ, β) where µ is the number of bonds, and β the number of risky
assets held.

Thus, if Vt = (St, Xt) we have, since the strategy is self-financing,

θt · Vt = µtSt + βtXt

= θ0 · V0 +
∫ t

0
θs dVs

= µ0S0 + β0X0 +
∫ t

0
µs dSs +

∫ t

0
βs dXs

= p(t,Xt) = Yt ,

(1.6)

so another expression for dYt is

dYt = µt dSt + βt dXt

= rµtSt dt+ βt(αXt dt+ σXt dBt)

= (rµtSt + αβtXt) dt+ σβtXt dBt .

(1.7)
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Comparing (1.5) and (1.7), and identifying the coefficients of the dt and
dBt terms, we obtain

(1.8) Lp(t,Xt) = rµtSt + αβtXt

and

(1.9) σXt
∂p

∂x
(t,Xt) = σβtXt .

From this we conclude that

βt =
∂p

∂x
(t,Xt)

and

µt = (St)−1

(
p(t,Xt)−Xt

∂p

∂x
(t,Xt)

)
.

We have thus obtained a financing strategy for Z as a function of its
implicit price. Substitution into (1.8) yields

Lp(t,Xt) = r

[
p(t,Xt)−Xt

∂p

∂x
(t,Xt)

]
+ α

∂p

∂x
(t,Xt)Xt .

After replacing Lp with its full expression and then simplifying, this last
equality can be written

(1.10) rXt
∂p

∂x
(t,Xt) +

∂p

∂t
(t,Xt) +

1
2
σ2(Xt)2 ∂

2p

∂x2
(t,Xt) = rp(t,Xt)

for t ∈ [0, T ]; P − a.s., and with

p(T,XT ) = g(XT ) a.s. .

Note that α does not appear in this equation.

We summarize these results as a theorem:

Theorem 1.3. Let {St}t≥0 be the price of a bond

dSt = rStdt

and let {Xt}t≥0 be the price of a risky investment satisfying

dXt = αXtdt+ σXtdBt .

Furthermore, let Z = g(XT ) be a positive random variable, with π(Z)t as
its implicit price. We assume that there exists p ∈ C1,2([0, T ]× R+,R)
such that

π(Z)t = p(t,Xt), t < T

g(x) = p(T, x), x ∈ R+ .
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Then p satisfies the parabolic equation

(1.11) rx
∂p

∂x
(t, x) +

∂p

∂t
(t, x) +

1
2
σ2x2 ∂

2p

∂x2
(t, x) = rp(t, x), x > 0, t ∈]0, T [

with boundary condition p(T, x) = g(x), x > 0 .

A strategy θ that finances Z is given by θ = (µ, β) where

µt = (St)−1

(
p(t,Xt)−Xt

∂p

∂x
(t,Xt)

)
βt =

∂p

∂x
(t,Xt) .

1.2. Obtaining an explicit solution.

The next step on our adventurous journey is to obtain an explicit solution
to equation (1.11). This is done as follows:

Let x and t be fixed, and let Zsx,t be the process indexed by s, (t ≤ s ≤ T ),
and defined by

Zs
x,t = x+ r

∫ s

t
Zu

x,t du+ σ

∫ s

t
Zu

x,t dBu .

Zs
x,t is initialized at point x at time t, so Zt

x,t = x. After time t, the
process has the same dynamics as dZu = rZu du+ σZu dBu .

Now we apply the following result, known as the Feynman-Kac formula:

Proposition 1.4. For a positive-valued function g ∈ C2(R) such that g, g′
and g′′ are all piecewise Lipschitz, the function

(1.12) p(t, x) := E
[
e−r(T−t)g(ZT x,t)

]
is the unique Lipschitz solution to (1.11). (A function g is Lipschitz on R
if there exists k > 0 such that |g(x)− g(y)| ≤ k|x− y| for all x, y.)

Proof. See Varadhan [18], Krylov [10] or Rogers and Williams [16] �

We now take a closer look at the process Zt satisfying

dZt = rZt dt+ σZt dBt .

It is possible to show that Zt takes strictly positive values, as long as
Z0 > 0. This enables us to define Yt = ln Zt where ln denotes the natural
logarithm. Using Itô’s formula, we have
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dYt =
1
Zt
rZt dt+

1
Zt
σZt dBt −

1
2

1
Z2
t

(σZt)2 dt

=
(
r − 1

2
σ2

)
dt+ σ dBt

or, written in integral form

Y (t) = Y0 +
∫ t

0

(
r − 1

2
σ2

)
ds+

∫ t

0
σ dBs

= lnZ0 +
(
r − 1

2
σ2

)
t+ σBt .

Now we recall the following result from elementary probability theory:

Proposition 1.5. Suppose that the random variable X is normally
distributed with mean µ and variance Λ. Then Y = aX + b is also normally
distributed, with mean aµ+ b and variance a2Λ.

Proof. See Gut [8], page 124. �

We know that Bt is normally distributed with mean 0 and variance t, and
so it follows that Yt is also normally distributed, with mean
lnZ0 +

(
r − 1

2σ
2
)
t and variance σ2t .

Since the logarithm of Zt is normally distributed, the distribution of Zt
is given the name lognormal.

Now, if the initial point in time is t, then the logarithm of Zx,ts is
distributed according to N

(
ln Zx,tt + (r − 1

2σ
2)(s− t) , σ2(s− t)

)
.

Alternatively, Z = eU where U is normally distributed.
This enables us to find an expression for the solution given in (1.12):

E
[
e−r(T−t)g(ZT x,t)

]
= e−r(T−t)E

[
g(ZT x,t)

]
= e−r(T−t)

∫ +∞

−∞
g(eu)fT−t(u) du ,

where fT−t(u) is the probability density function of the normal
distribution with mean

m = ln x+ (r − 1
2
σ2)(T − t)

and variance σ2(T − t).
When the function g has an explicit form, it is possible to develop these

calculations further. Let us see where we end up in the case of the European
call option, g(x) = (x−K)+ :
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p(t, x) = e−r(T−t)
∫ +∞

−∞
g(eu)fT−t(u) du

= e−r(T−t)
∫ +∞

lnK
eufT−t(u) du−Ke−r(T−t)

∫ +∞

lnK
fT−t(u) du

= I1 −Ke−r(T−t)I2

We calculate I1 and I2 separately:

I1 = e−r(T−t)
∫ +∞

lnK
eufT−t(u) du

= e−r(T−t)
∫ +∞

lnK
eu

1
σ
√

2π(T − t)
e
− (u−m)2

2σ2(T−t) du

= e−r(T−t)
1√
2π

∫ +∞

lnK

1
σ
√
T − t

e
2uσ2(T−t)−u2+2um−m2

2σ2(T−t) du

= e−r(T−t)
1√
2π

∫ +∞

lnK

1
σ
√
T − t

e
−(u2−2u(m+σ2(T−t))+m2)

2σ2(T−t) du

= e−r(T−t)
1√
2π

∫ +∞

lnK

1
σ
√
T − t

e
−(u2−2u(m+σ2(T−t))+(m+σ2(T−t))2−(m+σ2(T−t))2+m2)

2σ2(T−t) du

= e−r(T−t)
1√
2π

∫ +∞

lnK

1
σ
√
T − t

e
−(u−(m+σ2(T−t)))2

2σ2(T−t) e
−m2+(m+σ2(T−t))2

2σ2(T−t) du

Then we make the simplification

−m2 + (m+ σ2(T − t))2

2σ2(T − t)
=

2mσ2(T − t) + (σ2(T − t))2

2σ2(T − t)

= m+
1
2
σ2(T − t) = ln x+ r(T − t) ,

so that the second exponential factor under the integral sign reduces to
xer(T−t), giving us

I1 = x
1√
2π

∫ +∞

lnK

1
σ
√
T − t

e
−(u−(m+σ2(T−t)))2

2σ2(T−t) du

= x
1√
2π

∫ +∞

lnK

1
σ
√
T − t

e
− 1

2

(
u−(ln x+(r+1

2σ
2)(T−t))

σ
√
T−t

)2

du .

Next we make the change of variables v = u−(ln x+(r+ 1
2
σ2)(T−t))

σ
√
T−t ,

so dv
du = 1

σ
√
T−t or du = σ

√
T − t dv .

The upper limit of integration is still +∞, but the lower limit needs to
be changed:
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u = lnK ⇔ v =
lnK − (ln x+ (r + 1

2σ
2)(T − t))

σ
√
T − t

We now introduce the cumulative distribution function φ, given by

φ(x) =
1√
2π

∫ x

−∞
e−u

2/2 du =
1√
2π

∫ +∞

−x
e−u

2/2 du

and use it to complete our calculation of I1:

I1 = x
1√
2π

∫ +∞(
lnK−(ln x+(r+1

2σ
2)(T−t))

σ
√
T−t

) e−v2/2 dv

= x
1√
2π

∫ (
ln x+(r+1

2σ
2)(T−t)−lnK

σ
√
T−t

)
−∞

e−v
2/2 dv

= x · φ

(
ln
(
x
K

)
+ (r + 1

2σ
2)(T − t)

σ
√
T − t

)

)

Then it’s time for I2:

I2 =
∫ +∞

lnK
fT−t(u) du

=
∫ +∞

lnK

1
σ
√

2π(T − t)
e
− (u−m)2

2σ2(T−t) du

=
1√
2π

∫ +∞

lnK

1
σ
√
T − t

e
− 1

2

(
u−m
σ
√
T−t

)2

du

We once again make a change of variables, this time v = u−m
σ
√
T−t , still

giving us dv
du = 1

σ
√
T−t or du = σ

√
T − t dv .

Similarly to what we saw in the calculation of I1, the upper limit of
integration is still +∞, but the lower limit needs to be changed:

u = lnK ⇔ v =
lnK − (ln x+ (r − 1

2σ
2)(T − t))

σ
√
T − t

Continuing our calculations, we get
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I2 =
1√
2π

∫ +∞(
lnK−(ln x+(r− 1

2σ
2)(T−t))

σ
√
T−t

) e−v2/2 dv

=
1√
2π

∫ (
ln x+(r− 1

2σ
2)(T−t)−lnK

σ
√
T−t

)
−∞

e−v
2/2 dv

= φ

(
ln
(
x
K

)
+ (r − 1

2σ
2)(T − t)

σ
√
T − t

)

We summarize this as a theorem:

Theorem 1.6. (The Black-Scholes Formula)
The price of a European call is given by

p(0, x) = xφ(d1)−Ke−rTφ(d2)
where

d1 =
1

σ
√
T

(
ln
( x
K

)
+ T

(
r +

σ2

2

))
, d2 = d1 − σ

√
T .

We also have
p(t, x) = xφ(d1(t))−Ke−r(T−t)φ(d2(t))

where

d1(t) =
1

σ
√
T − t

(
ln
( x
K

)
+ (T − t)

(
r +

σ2

2

))
and

d2(t) =
1

σ
√
T − t

(
ln
( x
K

)
+ (T − t)

(
r − σ2

2

))
= d1(t)− σ

√
T − t .

2. Using equivalent martingale measures

Let us begin by defining a very relevant concept:

Definition 2.1. An equivalent martingale measure Q (EMM for short) is
a probability measure that is equivalent to P and such that, under Q, the
discounted stock price X̃t := Xt

St
is a martingale. Such a measure is also

called a risk-neutral measure.

Our work in the previous section was done under the assumption of no
opportunities for arbitrage (NAO) in the market. This is often replaced with
the assumption of the existence of an equivalent martingale measure Q. As
long as we confine ourselves to working in discrete time, these two
assumptions turn out to be the same. In continuous time, however,
additional technicalities that go beyond the scope of this text need to be
introduced if we want to use these two assumptions interchangeably.

(A short discussion on this subject can be found in Dana and Jeanblanc
[4], page 91-92. For a more detailed investigation, see Müller [12], Dalang
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et al. [3], Morton [11], Delbaen and Schachermayer [5],[6], Kabanov [9] or
Xia and Yan [19].)

In order to find an equivalent martingale measure for our market model,
we will make use of the following version of the Girsanov theorem:

Theorem 2.2. (Girsanov’s Theorem) Let {Lt}t≥0 be the process defined
by

(2.1) Lt = exp

(∫ t

0
h(s) dBs −

1
2

∫ t

0
h2(s) ds

)
,

where {h(s)}0≤s≤T is an adapted bounded process.

The process {Lt}t≥0 is the unique solution to

dLt = Ltht dBt , L0 = 1 ,

is a martingale, and satisfies E (Lt) = 1, ∀t ∈ [0, T ] .

Let Q be the probability measure defined on (Ω,FT ) by Q(A) = EP (1A LT ).
Under Q, the process B∗ defined by

B∗t = Bt −
∫ t

0
h(s) ds

is a Brownian motion.

Proof. A more general version of this theorem is proved in Øksendal [13],
page 162-165. �

Now, let S0 = 1, so that St = ert. The discounted stock price is then
given by

X̃t =
Xt

St
= e−rtXt .

We use Itô’s formula with g(t, x) = x · e−rt and get

dX̃t =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1
2
∂2g

∂x2
(t,Xt) (dXt)2

= −rXte
−rt dt+ e−rt (αXt dt+ σXt dBt)

= X̃t ((α− r) dt+ σ dBt) .

Let {Lt} be the process satisfying dLt = −(α− r)σ−1Lt dBt with L0 = 1.
Girsanov’s theorem (with ht = −(α− r)σ−1) shows that if we define Q on
FT by Q(A) = EP (1A LT ) or, equivalently dQ

dP = LT , then the process B∗t
given by

B∗t = Bt +
∫ t

0
(α− r)σ−1ds = Bt + (α− r)σ−1t

is a brownian motion under Q. We also have that
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dX̃t = X̃t(α− r) dt+ X̃tσ dBt

= X̃t(α− r) dt+ X̃tσ
(
dB∗t − (α− r)σ−1dt

)
= X̃tσ dB

∗
t .

The first part of Girsanov’s theorem ensures that the solution to
dXt = Xtht dBt (for any Brownian motion) is a martingale as long as ht is
bounded, so we see from the above calculations that X̃t is a Q-martingale.
Furthermore, Q is equivalent to P . Thus we have found the equivalent
martingale measure we were looking for.

Under Q, the risky investment Xt obeys the stochastic differential
equation

dXt = αXt dt+ σXt dBt

= αXt dt+ σXt

(
dB∗t − (α− r)σ−1dt

)
= Xt (r dt+ σ dB∗t )

We proceed by constructing a portfolio like the one in equation (1.6),

Yt = µtSt + βtXt .

Under our new probability measure Q, we have that

dYt = µt dSt + βt dXt

= µtrSt dt+ βtXt (r dt+ σ dB∗t )

= Ytr dt+ βtXtσ dB
∗
t

= Ytr dt+ dMt ,

where {Mt}t≥0 is defined by dMt = βtXtσ dB
∗
t . Under appropriate

integrability conditions, {Mt}t≥0 is a stochastic integral, and thus a
martingale.

Using Itô’s formula with g(t, x) = x · e−rt on Yt, we end up with

d
(
e−rtYt

)
= −rYte−rt dt+ e−rt (Ytr dt+ βtXtσ dB

∗
t )

= e−rtβtXtσ dB
∗
t

= e−rt dMt .

This means that the process {e−rtYt}t≥0 is also a martingale. Therefore
we have, from the definition of a martingale, that

e−rtYt = EQ
[
e−rTYT | Ft

]
,

and since ert is a deterministic function, we end up with
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Yt = p(t,Xt) = ert · EQ
[
e−rTYT | Ft

]
= EQ

[
e−r(T−t)g(XT ) | Ft

]
.

Theorem 2.3. The implicit price of g(XT ) is given by

(2.2) p(t,Xt) = EQ

[
e−r(T−t)g(XT ) | Ft

]
where Q is the equivalent martingale measure to P .

In particular, at time t = 0 we have

p(0, x) = EQ
[
e−rT g(XT )

]
= EP

[
e−rT g(ZT )

]
where {Zt}t≥0 satisfies dZt = Zt (r dt+ σ dBt) with Z0 = x, giving us the
same formula as in equation (1.12).

For a general time t, we proceed as follows:

From equation (2.2) we know that

p(t,Xt) = EQ

[
e−r(T−t)g(XT ) | Ft

]
.

Here, Xt is the solution of the stochastic differential equation

dXt = rXt dt+ σXt dB
∗
t , X(0) = X0

where B∗t is a Brownian motion under Q. The process Xt is an Itô diffusion,
so the Markov property applies, giving us

p(t,Xt) = E
X(t,ω)
Q

[
e−r(T−t)g(XT−t)

]
.

This means that the two functions

x 7→ p(t, x) and x 7→ ExQ

[
e−r(T−t)g(XT−t)

]
are equal when we substitute x = Xt, so the functions themselves have to
be equal:

p(t, x) = ExQ

[
e−r(T−t)g(XT−t)

]
In the above expression, Xt is the solution of the stochastic differential

equation

dXt = rXt dt+ σXt dB
∗
t , X0 = x .

Since this equation has a unique solution and is time-homogenous, the
solution XT−t at time T − t will have the same distribution as the solution
of

dZx,ts = rZx,ts ds+ σZx,ts dBs , Z
x,t
t = x
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at time T . We end up with

p(t, x) = ExQ

[
e−r(T−t)g(XT−t)

]
= EP

[
e−r(T−t)g

(
Zx,t(T )

)]
,

which is the same result as in equation (1.12).

We can also recover the partial differential equation from Theorem 1.3 by
applying Itô’s formula to p(t,Xt):

dp(t,Xt) =
∂p

∂t
(t,Xt) dt+

∂p

∂x
(t,Xt) dXt +

1
2
∂2p

∂x2
(t,Xt) · (dXt)

2

=
∂p

∂t
(t,Xt) dt+ rXt

∂p

∂x
(t,Xt) dt+ σXt

∂p

∂x
(t,Xt) dB∗t

+
1
2

(σXt)
2 ∂

2p

∂x2
(t,Xt) dt

It was shown earlier that dp(t,Xt) = dYt = Ytr dt + dMt where {Mt}t≥0

is a martingale. By setting the coefficient of the dB∗t -term equal to zero, we
therefore obtain

r · p(t,Xt) dt =
∂p

∂t
(t,Xt) dt+ rXt

∂p

∂x
(t,Xt) dt+

1
2

(σXt)
2 ∂

2p

∂x2
(t,Xt) dt .

This implies that p satisfies the partial differential equation

rp(t, x) = rx
∂p

∂x
(t, x) +

∂p

∂t
(t, x) +

1
2
σ2x2 ∂

2p

∂x2
(t, x) ,

which is the same as equation (1.11).

3. Parameter changes

Now that we have the basic framework established, we turn to the question
of what happens to the call price if the risky investment actually follows a
different model than the one assumed to be true in (1.2).

Here’s our new equation:

(3.1) dYt = α̃Ytdt+ σ̃YtdBt , Y0 = x0

As previously noted, α does not appear in the Black-Scholes Formula, so
changing α to α̃ does not have any impact on the call price. To see what
happens if we change σ to σ̃, we first try differentiating the call price with
regard to σ, keeping x and t fixed:
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∂p

∂σ
=

x√
2π

e−
1
2

(d1(t))2

σ2(T − t)−
(
ln
(
x
K

)
+ (T − t)(r + σ2

2 )
)

σ2
√
T − t


−Ke−r(T−t) 1√

2π
e−

1
2

(d2(t))2

−σ2(T − t)−
(
ln
(
x
K

)
+ (T − t)(r − σ2

2 )
)

σ2
√
T − t


=

x√
2π

e−
1
2

(d1(t))2
(√

T − t− d1(t)
σ

)
−Ke−r(T−t) 1√

2π
e−

1
2

(d1(t)−σ
√
T−t)2

(
−
√
T − t− 1

σ

(
d1(t)− σ

√
T − t

))
=

x√
2π

e−
1
2

(d1(t))2
(√

T − t− d1(t)
σ

)
−Ke−r(T−t) 1√

2π
e−

1
2(d1(t)2−2d1(t)σ

√
T−t+σ2(T−t))

(
− 1
σ
d1(t)

)
=

1√
2π

e−
1
2

(d1(t))2
(
x

(√
T − t− d1(t)

σ

)
+K

d1(t)
σ

e−r(T−t)e(d1(t)σ
√
T−t− 1

2
σ2(T−t))

)
=

1√
2π

e−
1
2

(d1(t))2
(
x

(√
T − t− d1(t)

σ

)
+K

d1(t)
σ

e−r(T−t)e

(
ln( xK )+(T−t)(r+σ2

2
)− 1

2
σ2(T−t)

))
=

1√
2π

e−
1
2

(d1(t))2
(
x

(√
T − t− d1(t)

σ

)
+K

d1(t)
σ

x

K
e−r(T−t)+r(T−t)

)
=

1√
2π

e−
1
2

(d1(t))2
(
x
√
T − t− x d1(t)

σ
+
x d1(t)
σ

)
=

1√
2π

e−
1
2

(d1(t))2 · x
√
T − t

This quantity is one of the so-called Greeks. It is usually referred to as
vega, and is denoted by ν. We summarize:

Proposition 3.1. Vega, the derivative of the call price with regard to the
volatility, is given by

(3.2) ν =
∂p

∂σ
=
x
√
T − t√
2π

e
− 1

2

 ln( xK )+(T−t)
(
r+σ2

2

)
σ
√
T−t

2

We observe that vega is always positive. This means that when the
volatility σ increases, so does the call price. Intuitively we would expect
that the greater the fluctuations in the price of the underlying stock, the
more a buyer is prepared to pay for the option. Since σ represents these
fluctuations, we see that this intuition is consistent with the preceding result.

However, in getting to this conclusion, we simplified matters quite a bit.
Namely by fixing the stock price x while letting σ change at will. But if we
take another look at equation (1.2) we see that if σ is changed, then so is
the stock price. And we have no guarantee that this change is a negligible
one.
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In order to investigate this further, we take a look at the explicit solution
to the equation that models the stock price:

Proposition 3.2. The stochastic differential equation given by

(3.3) dXt = αXt dt+ σXt dBt, X0 = x0

or, equivalently

(3.4) Xt = x0 +
∫ t

0
αXs ds+

∫ t

0
σXs dBs

has the solution

Xt = x0 · exp
(∫ t

0
σ dBs +

∫ t

0
(α− 1

2
σ2) ds

)
= x0 · exp

(
σBt + (α− 1

2
σ2)t

)
.

(3.5)

Proof. Let g(t, x) = x0 · exp
(
σx+ (α− 1

2σ
2)t
)
. Using Itô’s formula, we see

that Xt = g(t, Bt) is an Itô process, and that

dXt =
∂g

∂t
(t, Bt) dt+

∂g

∂x
(t, Bt) dBt +

1
2
∂2g

∂x2
(t, Bt) dt

= Xt(α−
1
2
σ2) dt+Xtσ dBt +

1
2
Xtσ

2 dt

= αXt dt+ σXt dBt

�

Using this result, we can rewrite the expression for the European call
price as follows:

d1(t,Xt) =
1

σ
√
T − t

(
ln

(
x0 · exp(σBt +

(
α− 1

2σ
2
)
t)

K

)
+ (T − t)

(
r +

σ2

2

))

=
1

σ
√
T − t

(
ln
(x0

K

)
+ σBt +

(
α− 1

2
σ2

)
t+ (T − t)

(
r +

σ2

2

))
=

1
σ
√
T − t

(
ln
(x0

K

)
+ σBt +

(
α− r − σ2

)
t+ T

(
r +

σ2

2

))

(3.6)

d2(t,Xt) =
1

σ
√
T − t

(
ln

(
x0 · exp(σBt +

(
α− 1

2σ
2
)
t)

K

)
+ (T − t)

(
r − σ2

2

))

=
1

σ
√
T − t

(
ln
(x0

K

)
+ σBt +

(
α− 1

2
σ2

)
t+ (T − t)

(
r − σ2

2

))
=

1
σ
√
T − t

(
ln
(x0

K

)
+ σBt + (α− r)t+ T

(
r − σ2

2

))

(3.7)
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p(t,Xt) = x0 · exp
(
σBt +

(
α− 1

2
σ2

)
t

)
φ(d1(t,Xt))−Ke−r(T−t)φ(d2(t,Xt))

(3.8)

3.1. Simulating the call price in MATLAB.

In an attempt to gain some useful information about the behaviour of the
call price when the parameters α and σ are changed, we use (3.8) as the basis
for a MATLAB simulation. Since the value of this expression depends on the
value of the Brownian motion Bt, we start by simulating Bt on the interval
[0, T ]. This is done using the following code, where the input parameter
delta_t is the time increment:

% browniansim.m
% Simulates Brownian motion B_t for 0<=t<=T and plots it
% input: (delta_t,T)
function brown=browniansim(delta_t,T)
t=0:delta_t:T;
brown(1)=0;
for i=2:length(t)

brown(i)=brown(i-1)+sqrt(t(i))*randn;
end
plot(t,brown)

An example of Brownian motion made by browniansim.m is shown in
figure 1.

Figure 1. Brownian motion.
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The next portion of MATLAB code, callprice.m, takes t (a fixed point in
time), r, α, σ, T,K and x0 as input parameters. It then uses browniansim.m
to get a value for Bt and plots a graph of the call price, given in equation
(3.8), as a function of α and σ while keeping the other input parameters
fixed:

% callprice.m
% Calculates the call price
% input: (t,r,alpha,sigma,T,K,x0)
function p=callprice(t,r,alpha,sigma,T,K,x0)
% B contains values of the Brownian motion B_t, 0<=t<=T
B=browniansim(0.001,T);
% B_t contains the particular value of the Brownian motion
% that will be used to calculate the call price later on
B_t=B(round(1+t*1000))
sigma_axis=(sigma*(2/3)):0.001:(sigma*(4/3));
alpha_axis=(alpha*(2/3)):0.001:(alpha*(4/3));
[X,Y]=meshgrid(sigma_axis,alpha_axis);
d1=(log(x0/K)+X*B_t+(Y-r-X.^2)*t+T*(r+0.5*X.^2))./(X*sqrt(T-t));
d2=(log(x0/K)+X*B_t+(Y-r)*t+T*(r-0.5*X.^2))./(X*sqrt(T-t));
p=x0*exp(X*B_t+(Y-0.5*X.^2)*t).*normcdf(d1,0,1)
-K*exp(-r*(T-t))*normcdf(d2,0,1);
colormap(pink)
surfc(X,Y,p)
xlabel(’sigma’)
ylabel(’alpha’)
shading flat

Before we use callprice.m to produce a graph, let us pause for a moment
and reflect on what we expect this graph to look like, based on our available
information thus far. Equation (3.2) tells us that the call price should be an
increasing function of σ, and we know that α does not appear in the Black-
Scholes Formula at all. In other words, the graph should be increasing along
the σ-axis and have level curves in the form of lines parallell to the α-axis.

Another question that deserves some attention, is what values to choose
for the various input parameters in callprice.m. Our explorations start
by using t = 0.5, r = 0.02, α = 0.03, σ = 0.15, T = 1, K = 10 and
x0 = 10. These values were chosen based on advice given by mr. Paul C.
Kettler, (who in addition to working for the Department of Mathematics at
the University of Oslo, used to run a stock broker firm) to represent a fairly
realistic market model.

For additional information about the graph, we also differentiate the call
price a second time with regard to σ:

∂2p

∂σ2
=
x
√
T − t√
2π

e−
1
2
d21 · ∂

∂σ

(
−1

2
d2

1

)
=
x
√
T − t√
2π

e−
1
2
d21 · (−d1) · ∂d1

∂σ
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Then we use this expression, along with the input parameter values to
determine the expected curvature properties of the graph of p:

∂d1

∂σ
=
σ2(T − t)−

(
ln
(
x
K

)
+ (T − t)

(
r + σ2

2

))
σ2
√
T − t

In this calculation, we assume that x is fixed, so that x = x0 = 10 = K.
This means that the logarithm term disappears, and we end up with

∂d1

∂σ
=

(T − t)
(
σ2 − r − σ2

2

)
σ2
√
T − t

=

√
T − t

(
σ2

2 − r
)

σ2
.

Since d1 is positive with this choice of input parameters, we have that

sgn

(
∂2p

∂σ2

)
= −sgn

(
∂d1

∂σ

)
= −sgn

(
σ2

2
− r
)

= sgn

(
r − σ2

2

)
In other words, p viewed as a function of σ should be convex for

σ <
√

2r = 0.2.
Now we have a good idea of what we would expect the graph of the call

price to look like, given that the error introduced by keeping the stock price
fixed while varying σ and α is a negligible one. So without further ado, here
is the first graph produced by callprice.m:

Figure 2. The first graph produced by callprice.m.
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We see that the graph in figure 2 is increasing and convex along the
σ-axis and has level curves in the form of lines parallell to the α-axis, which
was what we expected. But we are not finished with this investigation yet.
Here, the value of Bt ended up being 16.5. But for each different value
of Bt we get a new graph, and that new graph may exhibit qualitatively
different behaviour. So let us run callprice.m a few more times and see
what happens:

Figure 3. Graph produced by callprice.m with Bt = −6.87.

Figures 3, 4 and 5 depict graphs that are qualitatively very different from
the one shown in figure 2, neither being increasing along the σ-axis or having
parallell lines as level curves. Looking at the scale on the vertical axes, it is
possible that this is just some kind of anomaly created by MATLAB when
the call price approaches zero. But it is also possible that these graphs are
trying to tell us that a fair bit of caution should be applied when using (3.2)
to predict changes in the call price based on changes in the volatility.

More experimentation is definitely needed before reaching any form of
conclusion. Luckily for you, the reader, this experimentation has already
taken place, and you will not be bothered with all the details. But a
summary of what has been done behind the scenes should be in order:

To start things off, callprice.m was called upon quite a few times, while
varying some of the input parameters. More precisely, K ∈ {4, 7, 10, 13, 16},
t ∈ {0.1, 0.75, 0.99} and r ∈ {0.02, 0.1, 1}.
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Figure 4. Graph produced by callprice.m with Bt = −1.64.

Figure 5. Graph produced by callprice.m with Bt = −2.73.

All the different combinations of these values were used to make at least 50
graphs each. For fairly obvious reasons, these graphs are not included here
as figures. But if you (still referring to the reader) should happen to be in
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a particularly sceptical or curious state of mind while reading this, then by
all means feel free to use callprice.m to have your computer draw all of
the graphs for you, in the comfort of your own office.

What became apparent after looking through the graphs, was that the
qualitative shapes shown in figures 3,4 and 5 appeared quite a few times,
and not just with values close to zero on the vertical axis. Furthermore, it
seemed like the graphs were in accordance with that shown in figure 2 as
long as the value of Bt was positive and above a certain level L+, which
varied with the particular input parameters used. Similarly, if the value of
Bt was negative and beneath a certain level L−, then the graphs would again
look like the one in figure 2, but with reversed orientation, so that they were
decreasing along the σ-axis. If Bt ∈ (L−, L+), then the graphs would take
on various unusual shapes, like for instance the one shown in figure 4.

The most important factor in determining what these graphs would look
like, seemed to be the value of Bt obtained from browniansim.m. This
led to some rewritten MATLAB code, where the value of Bt was no longer
randomly determined, but instead included as yet another input parameter:

% movie_callprice.m
% Calculates the call price for use in a movie. Here the
% particular value of the Brownian motion to be used in
% the calculations, are given as an additional input
% instead of being simulated.
function p=movie_callprice(t,r,alpha,sigma,T,K,x0,Bt)
B_t=Bt;
sigma_axis=(sigma*(2/3)):0.001:(sigma*(4/3));
alpha_axis=(alpha*(2/3)):0.001:(alpha*(4/3));
[X,Y]=meshgrid(sigma_axis,alpha_axis);
d1=(log(x0/K)+X*B_t+(Y-r-X.^2)*t+T*(r+0.5*X.^2))./(X*sqrt(T-t));
d2=(log(x0/K)+X*B_t+(Y-r)*t+T*(r-0.5*X.^2))./(X*sqrt(T-t));
p=x0*exp(X*B_t+(Y-0.5*X.^2)*t).*normcdf(d1,0,1)-K*exp(-r*(T-t))
*normcdf(d2,0,1);
colormap(pink)
surfc(X,Y,p)
xlabel(’sigma’)
ylabel(’alpha’)
shading flat

The comments in the above code refer to a movie. What is being shown
in that movie is the graph of the call price (with t = 0.75, r = 0.02, α = 0.3,
σ = 0.15, T = 1, K = 4 and x0 = 10) as the value of Bt is reduced
from 0.5 to -0.5 in increments of 0.001. In other words, the movie tries to
show the transition from a graph such as in figure 2 to a graph with the
reverse orientation, as was discussed previously. To view this movie, run the
following m-file in MATLAB: (it calls on movie_callprice.m, so make sure
you give your copy of MATLAB access to that first)

% play_movie.m
for k=1:1000
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movie_callprice(0.75,0.02,0.03,0.15,1,4,10,0.5-0.001*k);
xlim([0.1 0.2])
ylim([0.02 0.04])
M(k)=getframe;

end
movie(M)

FIGURE 6. A collection of movie snapshots.
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Figure 6 shows a sequence of snapshots from the movie. These snapshots
are to be read linewise, from the top left to the bottom right, and were
selected to demonstrate how the shape of the graph changes when the value
of Bt decreases. By looking at the level curves, we can see how the graph
rotates 180 degrees and thus changes orientation, which is exactly what we
wanted the movie to show. For reference, the values of Bt in these snapshots
were (in order) 0.500, 0.260, 0.148, 0.100, 0.070, -0.022, -0.113 and -0.498.

Now seems like a good time to formulate a hypothesis based on our
experimental findings so far:

Observation 3.3. For each collection of input parameters (t, r, α, σ, T,K, x0)
chosen to represent a realistic market model, there exist numbers L+ and L−,
such that the call price is an increasing function of σ when Bt ≥ L+, and a
decreasing function of σ when Bt ≤ L−.

Unfortunately, at this point we only have circumstantial evidence to
support this claim.

3.2. Searching for more evidence.

In equation (3.2), we differentiated the call price with regard to the
volatility, keeping the stock price x fixed. Now we generalize this result by
differentiating the expression in equation (3.8) instead. That is, we
differentiate the call price without fixing x:

Definition 3.4. ν̃, the adjusted vega, is given by

(3.9) ν̃ =
∂ (p(t,Xt))

∂σ
.

Now let us perform this differentiation and see where it leads us:

∂ (p(t,Xt))
∂σ

= x0 · (Bt − σt) eσBt+(α− 1
2
σ2)t · φ (d1(t,Xt))

+
x0√
2π
eσBt+(α− 1

2
σ2)t− 1

2
(d1(t,Xt))2 · ∂

∂σ
(d1(t,Xt))

− K√
2π
e−r(T−t)−

1
2

(d2(t,Xt))2 · ∂
∂σ

(d2(t,Xt))

Here, d1(t,Xt) and d2(t,Xt) are as given in equations (3.6) and (3.7),
respectively. We differentiate d1(t,Xt) first:
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∂

∂σ
(d1(t,Xt)) =

(Bt − 2σt+ σT )σ
√
T − t

σ2(T − t)

−

(
ln
(
x0
K

)
+ σBt +

(
α− r − σ2

)
t+ T

(
r + σ2

2

))√
T − t

σ2(T − t)

=
Btσ − 2σ2t+ σ2T − ln

(
x0
K

)
− σBt +

(
σ2 + r − α

)
t− T

(
r + σ2

2

)
σ2
√
T − t

=
σ2
(
T
2 − t

)
+ (r − α)t− rT − ln

(
x0
K

)
σ2
√
T − t

Then we sink our teeth into d2(t,Xt):

∂

∂σ
(d2(t,Xt)) =

(Bt − σT )σ
√
T − t

σ2(T − t)

−

(
ln
(
x0
K

)
+ σBt + (α− r)t+ T

(
r − σ2

2

))√
T − t

σ2(T − t)

=
Btσ − σ2T − ln

(
x0
K

)
− σBt − (α− r)t− T

(
r − σ2

2

)
σ2
√
T − t

=
σ2
(
−T

2

)
+ (r − α)t− rT − ln

(
x0
K

)
σ2
√
T − t

The complexity of these expressions, and the presence of φ in particular,
suggests that getting information using the standard analytical techniques
is going to be a rough ride. So we once again turn to trusty old
MATLAB for answers. The following code plots ν̃ as a function of σ, using
t, r, α, σ, T,K, x0 and Bt as input parameters:

%adjustedvega.m
%plots the graph of the derivative of the call price with
%regard to sigma
function v=adjustedvega(t,r,alpha,sigma,T,K,x0,B_t)
sigma_axis=(sigma*(2/3)):0.001:(sigma*(4/3));
d1=(log(x0/K)+sigma_axis*B_t+(alpha-r-sigma_axis.^2)*t

+T*(r+0.5*sigma_axis.^2))./(sigma_axis*sqrt(T-t));
d2=(log(x0/K)+sigma_axis*B_t+(alpha-r)*t

+T*(r-0.5*sigma_axis.^2))./(sigma_axis*sqrt(T-t));
diff_d1=((T/2-t)*sigma_axis.^2+(r-alpha)*t-r*T-log(x0/K))

./(sqrt(T-t)*sigma_axis.^2);
diff_d2=((-T/2)*sigma_axis.^2+(r-alpha)*t-r*T-log(x0/K))

./(sqrt(T-t)*sigma_axis.^2);
v1=(B_t-sigma_axis*t).*exp(sigma_axis*B_t

+(alpha-0.5*sigma_axis.^2)*t).*normcdf(d1,0,1);
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v2=(1/sqrt(2*pi))*exp(sigma_axis*B_t
+(alpha-0.5*sigma_axis.^2)*t).*exp(-0.5*d1.^2).*diff_d1;

v3=K*exp(-r*(T-t))*(1/sqrt(2*pi))*exp(-0.5*d2.^2).*diff_d2;
v=x0*(v1+v2)-v3;
plot(sigma_axis,v)
xlabel(’sigma’)
ylabel(’adjusted vega’)

In the following visual presentation, each of the movie frames from figure
6 (along with two reference graphs depicting the call price when Bt ≥ L+

and when Bt ≤ L−) is shown together with its corresponding ν̃. So all
graphs are made using the parameter values t = 0.75, r = 0.02, α = 0.3,
σ = 0.15, T = 1, K = 4 and x0 = 10. The value of Bt is as given in the
captions.

FIGURE 7. Bt = 5

FIGURE 8. Bt = 0.500
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FIGURE 9. Bt = 0.260

FIGURE 10. Bt = 0.148

FIGURE 11. Bt = 0.100



26 EXPLORING & EXTENDING THE BLACK-SCHOLES FORMULA

FIGURE 12. Bt = 0.070

FIGURE 13. Bt = −0.022

FIGURE 14. Bt = −0.113
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FIGURE 15. Bt = −0.498

FIGURE 16. Bt = −5

Observe that ν̃ is positive in figures 7 through 10 and negative in figures
12 through 16. Since the figures are shown in order of decreasing Bt-values,
this means that if we choose L+ = 0.148 and L− = 0.070, the call price is
an increasing function of σ for Bt ≥ L+ and a decreasing function of σ for
Bt ≤ L−. So the claim put forth in observation (3.3) is (experimentally)
verified.

We would also like to know at what value of Bt the graph of the call price
changes orientation. So adjustedvega.m was modified in order to plot ν̃ as
a function of Bt, this time keeping σ fixed. Figure 17 shows the result of
running this modified code, appropriately named adjustedadjustedvega.m,
once again using the parameter values t = 0.75, r = 0.02, α = 0.3, σ = 0.15,
T = 1, K = 4 and x0 = 10. The additional parameters Bt_min and Bt_max
were chosen to be −0.5 and 0.5, respectively.

%adjustedadjustedvega.m
%plots the graph of the derivative of the call price
%with regard to sigma,
%using B_t as the variable, fixing sigma.



28 EXPLORING & EXTENDING THE BLACK-SCHOLES FORMULA

%B_t varies from Bt_min to Bt_max
function
v=adjustedadjustedvega(t,r,alpha,sigma,T,K,x0,Bt_min,Bt_max)
Bt_axis = Bt_min:0.001:Bt_max;
d1=(log(x0/K)+sigma*Bt_axis+(alpha-r-sigma^2)*t

+T*(r+0.5*sigma^2))/(sigma*sqrt(T-t));
d2=(log(x0/K)+sigma*Bt_axis+(alpha-r)*t

+T*(r-0.5*sigma^2))/(sigma*sqrt(T-t));
diff_d1=((T/2-t)*sigma^2+(r-alpha)*t

-r*T-log(x0/K))/(sqrt(T-t)*sigma^2);
diff_d2=((-T/2)*sigma^2+(r-alpha)*t

-r*T-log(x0/K))/(sqrt(T-t)*sigma^2);
v1=(Bt_axis-sigma*t).*exp(sigma*Bt_axis

+(alpha-0.5*sigma^2)*t).*normcdf(d1,0,1);
v2=(1/sqrt(2*pi))*exp(sigma*Bt_axis+(alpha-0.5*sigma^2)*t)

.*exp(-0.5*d1.^2)*diff_d1;
v3=K*exp(-r*(T-t))*(1/sqrt(2*pi))*exp(-0.5*d2.^2)*diff_d2;
v=x0*(v1+v2)-v3;
plot(Bt_axis,v)
xlabel(’B_t’)
ylabel(’adjusted vega’)

FIGURE 17. Graph produced by adjustedadjustedvega.m.

We see from figure 17 that ν̃ = 0 when Bt is approximately 0.11, so that
is where the graph of the call price changes orientation, using these specific
input parameters. However, we would like an answer that is a bit more
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accurate than that, so the following lines of MATLAB code was added to
adjustedadjustedvega.m:

%these additional lines of code find the approximate
%value of B_t for which the adjusted vega equals zero:
min_value=min(abs(v));
found=0;
counter=0;
while
found == 0
counter=counter+1;
if abs(v(counter)) == min_value

found=1;
end

end
root=Bt_min+(counter-1)*0.001

This is a simple algorithm that finds the smallest root (in case there are
more than one) of the graph shown in figure 17. Using it gave us this answer:

>> adjustedadjustedvega(0.75,0.02,0.3,0.15,1,4,10,-0.5,0.5);

root =
0.1120

Since we know how Bt is distributed, this information lets us calculate
with what probability the call price will decrease, given a slightly greater
market volatility than first anticipated. This gives a distinct advantage
compared to only using the traditional method of calculating the vega, where
the situation of a decreasing call price with increasing volatility never comes
up.

4. Modelling falls in the market

In this section we investigate what happens if equation (1.2) is correct,
apart from the possibility of a sudden fall in the market. Let us start by
defining a few new concepts:

Definition 4.1. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space. An
Ft-adapted process {η(t)}t≥0 = {ηt}t≥0 ⊆ R with η0 = 0 a.s. is called a Lévy
process if ηt is continuous in probability and has stationary, independent
increments.

Theorem 4.2. Let {ηt} be a Lévy process. Then ηt has a cadlag (right
continuous with left limits) version which is also a Lévy process.

Proof. See Protter [15] or Sato [17]. �
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Due to this result, we will assume that the Lévy processes we work with
are cadlag.

Definition 4.3. The jump of ηt at t ≥ 0 is defined by

(4.1) ∆ηt = ηt − ηt− .

Definition 4.4. Let B0 be the family of Borel sets U ⊂ R whose closure Ū
does not contain 0. For U ∈ B0 we define

(4.2) N(t, U) = N(t, U, ω) =
∑

s: 0<s≤t
XU (∆ηs) .

So N(t, U) is the number of jumps of size ∆ηs ∈ U which occur before or at
time t. N(t, U) is called the Poisson random measure (or jump measure) of
η(·). It is written in differential form as N(dt, dz).

It is well-known that the Brownian motion Bt has stationary and
independent increments (see for example Øksendal [13]), and therefore is a
Lévy process. But since Brownian motion has continuous paths, we need a
different kind of process in order to construct a market model that
allows these sudden market falls, modelled as discontinuous jumps. Enter
the Poisson process:

Definition 4.5. A Poisson process η(t) with intensity λ > 0 is a Lévy
process taking values in N ∪ {0}, such that

(4.3) P [η(t) = n] =
(λt)n

n!
e−λt ; n = 0, 1, 2, ...

There are several other (equivalent) ways to define Poisson processes.
This next definition will be useful to us later on:

Definition 4.6. A Poisson process is a stochastic process {η(t)}t≥0, with
independent, stationary, Poisson-distributed increments and with η(0) = 0.
In other words,

(i) the increments {η(tk)− η(tk−1)}1≤k≤n are independent random
variables for all 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn and all n.

(ii) η(0) = 0 and there exists λ > 0 such that

η(t)− η(s) ∈ Po (λ(t− s)) , for 0 ≤ s < t .

The constant λ is called the intensity of the process.

With the help of the Poisson process, we can now try to present a model
that takes the possibility of sudden market falls into account, by replacing
equation (1.2) with

(4.4) dZ(t) = αZ(t−) dt+ σZ(t−) dBt − γZ(t−) dηt , Z0 = x0 ,
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where 0 < γ < 1 and η is a standard Poisson process with intensity λ and
jumps of size 1. Note that the reason for using Z(t−) instead of plain old
Zt is that we now allow discontinuities in our processes. Since we want the
Poisson process to represent that the market suddenly drops in value by
a certain percentage, we want this to be a percentage of the market value
before the drop, not after.

Before attempting to solve equation (4.4), we investigate how to integrate
with respect to a Poisson process:

Let η be a Poisson process with intensity λ. This process only has jumps
of size 1, and so the stochastic measure N(t, U, ω) is given by

N(t, U, ω) = η(t, ω)XU (1) .

(The Poisson process η counts the number of jumps, and the characteristic
function XU checks if U contains 1, the only valid jump size.) This means
that

(4.5)
∫
g(z)N(t, dz, ω) = g(1)η(t, ω) .

We can also view N as a stochastic measure on [0,∞)×R. This measure
is generated by

N ((s, t]× U, ω) = (η(t)− η(s))XU (1) ,

and we have

(4.6)
∫
g(t, z)N(dt, dz, ω) =

∫
g(t, 1) dηt =

∑
g(t, 1)∆ηt .

When attempting to solve equation (4.4), we set g(t, z) equal to the
constant −γ and get

dZ(t) = Z(t−) [α dt+ σ dBt − γ dηt]

= Z(t−)
[
α dt+ σ dBt −

∫
R
γ N(dt, dz)

]
.

(4.7)

The process Z(t) given by the stochastic differential equation (4.7) is an
example of an Itô-Lévy process. We will use this term to describe stochastic
integrals of the form

(4.8)

Z(t) = Z(0) +
∫ t

0
α(s, ω) ds+

∫ t

0
σ(s, ω) dBs +

∫ t

0

∫
R
γ(s, z, ω)N(ds, dz)

or, equivalently
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(4.9) dZ(t) = α(t) dt+ σ(t) dBt +
∫

R
γ(t, z)N(dt, dz) ,

where the integrands satisfy the appropriate conditions for the integrals to
exist.

When finding an explicit solution to equation (1.2), we made use of Itô’s
formula. Does a similar formula exist for Itô-Lévy processes? If f : R2 → R
is a C2 function, is the process Y (t) := f (t, Z(t)) again an Itô-Lévy process
and if so, how do we represent it in the form given in equation (4.9)?

To answer this we make a heuristic argument where we let Z(c)(t) be the
continuous part of Z(t). In other words, Z(c)(t) is obtained by removing the
jumps from Z(t). Then an increment in Y (t) comes from an increment in
Z(c)(t) plus the jumps (coming from N(·, ·) ). So in view of the classical Itô
formula, a natural guess would be that

dY (t) =
∂f

∂t
(t, Z(t)) dt+

∂f

∂x
(t, Z(t)) dZ(c)(t) +

1
2
∂2f

∂x2
(t, Z(t)) ·

(
dZ(c)(t)

)2

+
∫

R

(
f
(
t, Z(t−) + γ(t, z)

)
− f

(
t, Z(t−)

))
N(dt, dz) .

It is possible to prove that this guess is correct, so we end up with the
following result:

Theorem 4.7. (The Itô formula for Itô-Lévy processes)
Suppose that Z(t) ∈ R is an Itô-Lévy process of the form

(4.10) dZ(t) = α(t, ω) dt+ σ(t, ω) dBt +
∫

R
γ(t, z, ω)N(dt, dz) .

Let f ∈ C2
(
R2
)

and define Y (t) = f (t, Z(t)). Then Y (t) is also an Itô-Lévy
process and

dY (t) =
∂f

∂t
(t, Z(t)) dt+

∂f

∂x
(t, Z(t)) [α(t, ω) dt+ σ(t, ω) dBt]

+
1
2
σ2(t, ω)

∂2f

∂x2
(t, Z(t)) dt

+
∫

R

(
f
(
t, Z(t−) + γ(t, z)

)
− f

(
t, Z(t−)

))
N(dt, dz) .

(4.11)

Proof. See Bensoussan and Lions [2], Applebaum [1] or Protter [15]. �

We now have all the necessary tools to obtain an explicit solution to
equation (4.4), so let’s get down to business:

The stochastic differential equation we wish to solve is

(4.12) dZ(t) = Z(t−)
[
α dt+ σ dBt −

∫
R
γ N(dt, dz)

]
,
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where α, σ and γ are constants, 0 < γ < 1. We start by rewriting this
equation as

dZ(t)
Z (t−)

= α dt+ σ dBt +
∫

R
(−γ)N(dt, dz) .

Then we define Y (t) = ln Z(t) and use the Itô formula for Itô-Lévy
processes:

dY (t) =
1

Z(t)
(
Z(t−)α dt+ Z(t−)σ dBt

)
+

1
2
Z(t−)2 · σ2 · (−1) · 1

Z(t)2
dt

+
∫

R
ln
(
Z(t−)− γZ(t−)

)
− ln

(
Z(t−)

)
N(dt, dz)

Since the first two terms of this expression only deal with the continuous
part of Z(t), we have that Z(t) = Z(t−) in these terms. We keep this in
mind when simplifying:

dY (t) =
1

Z(t)
(Z(t)α dt+ Z(t)σ dBt) +

1
2
Z(t)2 · σ2 · (−1) · 1

Z(t)2
dt

+
∫

R
ln
(
Z(t−)− γZ(t−)

)
− ln

(
Z(t−)

)
N(dt, dz)

= α dt+ σ dBt −
1
2
σ2dt+

∫
R
ln

(
Z(t−)− γZ(t−)

Z(t−)

)
N(dt, dz)

=
(
α− 1

2
σ2

)
dt+ σ dBt +

∫
R
ln (1− γ)N(dt, dz)

or, equivalently

Y (t) = Y (0) +
(
α− 1

2
σ2

)
t+ σBt +

∫ t

0

∫
R
ln (1− γ)N(ds, dz)

Since we defined Y (t) to be the logarithm of Z(t), we get

Z(t) = x0 · exp
((

α− 1
2
σ2

)
t+ σBt +

∫ t

0

∫
R
ln (1− γ)N(ds, dz)

)
= x0 · exp

((
α− 1

2
σ2

)
t+ σBt +

t∑
s=0

ln (1− γ) ∆ηs

)
.

(4.13)

We summarize these results:

Proposition 4.8. The stochastic differential equation given by

(4.14) dZ(t) = αZ(t−) dt+ σZ(t−) dBt − γZ(t−) dηt , Z0 = x0 ,
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where 0 < γ < 1 and η is a standard Poisson process with intensity λ and
jumps of size 1, has the solution

(4.15) Z(t) = x0 · exp

((
α− 1

2
σ2

)
t+ σBt +

t∑
s=0

ln (1− γ) ∆ηs

)
.

5. The return of the equivalent martingale measures

We start this section with a theorem describing a complete market :

Theorem 5.1. (Complete financial markets)
For a financial market V = (St, Xt) where there are no arbitrage
opportunities (NAO), the following two statements are equivalent:

(i) There is exactly one equivalent martingale measure Q.

(ii) Each f ∈ L∞ (Ω,F , P ) may be represented as f = a+ (θ · V )T
for some a ∈ R and portfolio θ.

In this case, a = EQ[f ], the stochastic integral θ · V is unique, and we have
that

(5.1) EQ [f | Ft] = EQ[f ] + (θ · V )t , t ∈ [0, T ] .

Proof. See Delbaen and Schachermayer [7]. The proof presented therein
assumes a finite probability space Ω and is done is discrete time, but the
result can be generalized. �

For a given f ∈ L∞ (Ω,F , P ), the constant a in Theorem 5.1 is called an
arbitrage-free price, if in addition to the market V , the introduction of the
contingent claim f at price a does not create an opportunity for arbitrage.

In section 2 we worked with a complete market, so the equivalent
martingale measure we found was unique. However, after introducing the
possible market falls by adding a Poisson process to the model in section 4,
our market is no longer necessarily complete. This means that there may be
several equivalent martingale measures to be found, each possibly leading
to a different suggestion regarding how to correctly price the call option.

Our next theorem makes this discussion a bit more precise:

Theorem 5.2. Assume that the market Vt = (St, Xt) satisfies (NAO) and
let f ∈ L∞ (Ω,F , P ). Define

(5.2) π(f) = inf {EQ[f ] | Q is an equivalent martingale measure }

and

(5.3) π(f) = sup {EQ[f ] | Q is an equivalent martingale measure }
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Either π(f) = π(f), in which case f is attainable at price π(f) := π(f) =
π(f), meaning that f = π(f) + (θ · V )T for some portfolio θ, and therefore
π(f) is the unique aribitrage-free price for f .

Or π(f) < π(f), in which case

]π(f), π(f)[ = {EQ[f ] | Q is an equivalent martingale measure }

and a is an arbitrage-free price for f if and only if a ∈ ]π(f), π(f)[ .

Proof. A proof assuming discrete time and finite Ω can be found in Delbaen
and Schachermayer [7]. Once again, the result can be generalized. �

Now let us start the hunt for an equivalent martingale measure that fits
the market model we used in section 4. For your convenience, the equations
describing that model are repeated here:

(5.4) St = S0e
rt

(5.5) dZ(t) = Z(t−)
[
α dt+ σ dBt −

∫
R
γ N(dt, dz)

]

Once again, we let S0 = 1, so that St = ert. The discounted stock price
is now given by

Z̃t =
Zt
St

= e−rtZt .

We use Itô’s formula for Itô-Lévy processes (theorem 4.7) with
f(t, x) = x · e−rt and get

dZ̃(t) = −rZ(t)e−rt dt+ e−rt
[
αZ(t−) dt+ σZ(t−) dBt

]
+
∫

R
e−rt

(
Z(t−)− γZ(t−)

)
− e−rtZ(t−)N(dt, dz)

= e−rtZ(t−)
[
(α− r) dt+ σ dBt +

∫
R
−γ N(dt, dz)

]
.

This means that the stochastic differential equation describing the
discounted stock price is

dZ̃(t) = Z̃(t−)
[
(α− r) dt+ σ dBt +

∫
R
−γ N(dt, dz)

]
= Z̃(t−) [(α− r) dt+ σ dBt − γ dηt] ,

(5.6)
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where η is still a standard Poisson process with intensity λ and jumps of
size 1.

We know from section 2 how to make the continuous part of equation
(5.6) into a martingale. Unfortunately, the jump term of said equation
complicates matters, since ηt is not a martingale. However, by
introducing what is known as a compensated Poisson process, we can still
find an equivalent martingale measure for this market.

Let us start by writing the Poisson process η(t) as

η(t) = ξt+ [η(t)− ξt] = ξt+ η̃(t) ,

where ξ is a constant. Our goal now is to choose a value for ξ so that the
compensated Poisson process η̃(t) = η(t)−ξt becomes a martingale. In other
words, we want the conditional expectation E [ η̃(t) | Fs] to equal η̃(s) for
t ≥ s.

We have that

E [ η̃(t) | Fs] = E [ η̃(t)− η̃(s) + η̃(s) | Fs]
= E [ η̃(t)− η̃(s) | Fs] + E [ η̃(s) | Fs] ,

and since E [ η̃(s) | Fs] = η̃(s), we end up with η̃ being a martingale as long
as

E [ η̃(t)− η̃(s) | Fs] = [ (η(t)− η(s))− ξ(t− s) | Fs] = 0 .

According to Definition 4.5, η(t)− η(s) is Poisson-distributed with mean
λ(t − s), where λ is the intensity of η. Therefore, if we choose ξ = λ, our
compensated Poisson process η̃ will be a martingale.

Proposition 5.3. Let η be a Poisson process with intensity λ. Then the
compensated Poisson process η̃, defined by

(5.7) η̃(t) = η(t)− λt ,
is a martingale under P .

We rewrite equation (5.6), using the compensated Poisson process:

dZ̃(t) = Z̃(t−) [(α− r) dt+ σ dBt − γ dηt]

= Z̃(t−) [(α− r) dt+ σ dBt − γ (λ dt+ dη̃t)]

= Z̃(t−) [(α− r − λγ) dt+ σ dBt − γ dη̃t]

(5.8)

Then we use the Girsanov theorem on the continuous part of the process
described in equation (5.8), by letting {Lt} be the process satisfying

(5.9) dLt = −(α− r − λγ)σ−1Lt dBt .

Define Q on FT by dQ
dP = LT . Then, still according to the Girsanov
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theorem, the process B∗t given by

B∗t = Bt +
∫ t

0
(α− r − λγ)σ−1ds = Bt + (α− r − λγ)σ−1t

is a brownian motion under Q. Furthermore,

dZ̃(t) = Z̃(t−) [(α− r − λγ) dt+ σ dBt − γ dη̃t]

= Z̃(t−)
[
(α− r − λγ) dt+ σ

(
dB∗t − (α− r − λγ)σ−1dt

)
− γ dη̃t

]
= Z̃(t−) [σ dB∗t − γ dη̃t]

or, equivalently

Z̃(t) = Z̃(0) +
∫ t

0
σZ̃(s−) dB∗s +

∫ t

0
(−γ)Z̃(s−) dη̃s .

We observe that Z̃ is the sum of two stochastic integrals, each with
regard to a martingale. This implies that the integrals themselves are also
martingales, and a sum of two martingales is yet again a martingale. All in
all we conclude that Z̃ is a martingale under Q, so that Q is an equivalent
martingale measure for the market described by equations (5.4) and (5.5).

Proposition 5.4. Let {Lt}t≥0 be the process defined by

Lt = exp

(∫ t

0
h(s) dBs −

1
2

∫ t

0
h2(s) ds

)
,

where h(s) = −(α−r−λγ)σ−1, and define Q on FT by dQ
dP = LT . Then Q is

an equivalent martingale measure for the market described by the stochastic
differential equations

St = S0e
rt

and

dZ(t) = Z(t−)
[
α dt+ σ dBt −

∫
R
γ N(dt, dz)

]
.

Now that we have found an equivalent martingale measure Q, we proceed
in a manner similar to what was done in section 2, in an attempt to find an
expression for the call price, or implicit price of g(ZT ), for this market. First
we express the stock price Z in terms of the compensated Poisson process η̃
and our newfound Brownian motion dB∗t :

dZ(t) = Z(t−) [α dt+ σ dBt − γ dηt]
= Z(t−)

[
α dt+ σ

(
dB∗t − (α− r − λγ)σ−1dt

)
− γ (λ dt+ dη̃t)

]
= Z(t−) [r dt+ σ dB∗t − γ dη̃t]

Like in section 2, we then proceed by constructing a portfolio

Yt = µtSt + βtZt .
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Under Q, we have that

dYt = µt dSt + βt dZt

= µtrSt dt+ βtZ(t−) [r dt+ σ dB∗t − γ dη̃t]
= r (µtSt + βtZt) dt+ βtZ(t−) [σ dB∗t − γ dη̃t]
= rYt dt+ dMt ,

where {Mt}t≥0 is defined by

dMt = βtZ(t−) [σ dB∗t − γ dη̃t] .

Under appropriate integrability conditions, {Mt}t≥0 is the sum of two
stochastic integrals, each with regard to a martingale. This means that M
itself is also a martingale.

We use Itô’s formula for Itô-Lévy processes (theorem (4.7)) on Yt with
f(t, x) = x · e−rt, and get

d
(
e−rtYt

)
= −rYte−rt dt+ e−rt

(
rYt dt+ βtZ(t−)σ dB∗t

)
+
∫

R
e−rt

(
Y (t−)− γβtZ(t−)

)
− e−rtY (t−)N(dt, dz)

= e−rtβtZ(t−)σ dB∗t +
∫

R
−γβte−rtZ(t−)N(dt, dz)

= e−rtβtZ(t−) [σ dB∗t − γ dη̃t]
= e−rtdMt ,

where
∫

R(·)N(dt, dz) refers to integration with regard to the compensated
Poisson process η̃. From this we see that the process {e−rtYt}t≥0 is a
martingale. So, from the definition of a martingale, we get

e−rtYt = EQ
[
e−rTYT | Ft

]
,

leading us to the same result as that given in theorem (2.3), namely that
the implicit price of g(ZT ) is given by

(5.10) Yt = p(t, Zt) = ert · EQ
[
e−rTYT | Ft

]
= EQ

[
e−r(T−t)g(ZT ) | Ft

]
.

By using the same arguments as in section 2, we can show that

(5.11) p(t, x) = EP

[
e−r(T−t)g

(
W x,t(T )

)]
,

where W x,t is the solution of the stochastic differential equation

dW x,t(s) = W x,t(s−) [r ds+ σ dBs − γ dη̃s] , W x,t(t) = x .

According to proposition (4.8) we have
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W x,t(s) = x·exp

((
r − 1

2
σ2

)
(s− t) + σ(Bs −Bt) +

s∑
u=t

ln (1− γ) ∆η̃u

)
,

and substitution into equation (5.11) yields

p(t, x) = EP

[
e−r(T−t)g

(
xe(r−

1
2
σ2)(T−t)+σ(BT−Bt)+

∑T
u=t ln (1−γ) ∆η̃u

)]
.

In order to arrive at an explicit formula for p when g(z) = (z − K)+,
we perform probabilistic calculations like those in section 1 for each of the
possible number of jumps η̃ can make during the time interval [t, T ]. Each
of these calculations will lead to an expression similar to the Black-Scholes
formula, and each of these resulting expressions will be valid with a certain
probability corresponding to the probability of the number of jumps that
occured. The formula we end up with will be quite complicated, so it will
most likely have little practical use.
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[17] K. Sato: Lévy Processes and Infinitely Divisible Distributions, Cambridge University

Press, Cambridge, 1999.
[18] S.R.S. Varadhan: Lectures on Diffusion Problems and Partial Differential Equations,

Tata Institute of Fundamental Research, Bombay, 1980.
[19] J. Xia, J.-A. Yan: Some remarks on arbitrage pricing theory. In: J.Yong (ed):

International Conference on Mathematical Finance: Recent Developments in
Mathematical Finance, World Scientific, 218-227, Singapore, 2001.


