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Abstract
We prove a stochastic maximum principle for controlled processes X(t) = X(u)(t)

of the form

dX(t) = b(t, X(t), u(t))dt + σ(t, X(t), u(t))dB(H)(t)

where B(H)(t) is m-dimensional fractional Brownian motion with Hurst parameter
H = (H1, · · · , Hm) ∈ (1

2 , 1)m. As an application we solve a problem about minimal
variance hedging in an incomplete market driven by fractional Brownian motion.

1 Introduction

Let H = (H1, · · · , Hm) with 1
2

< Hj < 1, j = 1, 2, . . . , m, and let B(H)(t) = (B
(H)
1 (t), . . . ,

B
(H)
m (t)), t ∈ R be m-dimensional fractional Brownian motion, i.e. B(H)(t) = B(H)(t , ω),

(t, ω) ∈ R × Ω is a Gaussian process in Rm such that

E
[
B(H)(t)

]
= B(H)(0) = 0(1.1)
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and

E
[
B

(H)
j (s)B

(H)
k (t)

]
= 1

2

{
|s|2Hj + |t|2Hj − |t − s|2Hj

}
δjk ; 1 ≤ j, k ≤ n , s , t ∈ R ,(1.2)

where

δjk =

{
0 when j �= k

1 when j = k

Here E = Eµ denotes the expectation with respect to the probability law µ = µH for B(H)(·).
This means that the components B

(H)
1 (·), · · · , B

(H)
m (·) of B(H)(·) are m independent 1-

dimensional fractional Brownian motions with Hurst parameters H1 , H2 , · · · , Hm, respec-
tively. We refer to [MvN], [NVV] and [S] for more information about fractional Brownian
motion. Because of its interesting properties (e.g. long range dependence and self-similarity
of the components) B(H)(t) has been suggested as a replacement of standard Brownian mo-
tion B(t) (corresponding to Hj = 1

2
for all j = 1, · · · , m) in several stochastic models,

including finance.
Unfortunately, B(H)(·) is neither a semimartingale nor a Markov process, so the powerful

tools from the theories of such processes are not applicable when studying B(H)(·). Never-
theless, an efficient stochastic calculus of B(H)(·) can be developed. This calculus uses an Itô
type of integration with respect to B(H)(·) and white noise theory. See [DHP] and [HØ2] for
details. For applications to finance see [HØ2], [HØS1] [HØS2]. In [Hu1], [Hu2], [HØZ] and
[ØZ] the theory is extended to multi-parameter fractional Brownian fields B(H)(x) ; x ∈ Rd

and applied to stochastic partial differential equations driven by such fractional white noise.
The purpose of this paper is to establish a stochastic maximum principle for stochastic

control of processes driven by B(H)(·). We illustrate the result by applying it to a problem
about minimal variance hedging in finance.

2 Preliminaries

For the convenience of the reader we recall here some of the basic results of fractional
Brownian motion calculus. Let B(H)(t) be 1-dimensional in the following.

Define, for given H ∈ (1
2
, 1),

φ(s, t) = φH(s, t) = H(2H − 1)|s − t|2H−2 ; s, t ∈ R .(2.1)

As in [HØ2] we will assume that Ω is the space S ′(R) of tempered distributions on R, which
is the dual of the Schwartz space S(R) of rapidly decreasing functions on R. If ω ∈ S ′(R)
and f ∈ S(R) we let 〈ω, f〉 = ω(g) denote the action of ω applied to f . It can be extended
to all f : R → R such that∥∥f

∥∥2

φ
:=

∫
R

∫
R

f(s)f(t)φ(s, t)ds dt < ∞ .

The space of all such (deterministic) functions f is denoted by L2
φ(R).

If F : Ω → R is a given function we let

Dφ
t F =

∫
R
DrF · φ(r, t)dr(2.2)
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denote the Malliavin φ-derivative of F at t (if it exists) (see [DHP, Definition 3.4]. Define
L1,2

φ to be the set of (measurable) processes g(t, ω) : R × Ω → R such that Dφ
s g(s) exists for

a.a. s ∈ R and∥∥g
∥∥2

L1,2
φ

:= E
[ ∫

R

∫
R
g(s)g(t)φ(s, t)ds dt +

( ∫
R
Dφ

s g(s)ds
)2]

< ∞(2.3)

We let
∫

R σ(t, ω)dB(H)(t) denote the fractional Itô-integral of the process σ(t, ω) with respect

to B(H)(t), as defined in [DHP]. In particular, this means that if σ belongs to the family S
of step functions of the form

σ(t, ω) =
N∑

i=1

σi(ω)χ[ti,ti+1)(t) , (t, ω) ∈ R × Ω ,

where 0 ≤ t1 < t2 < · · · < tN+1, then∫
R
σ(t, ω)dB(H)(t) =

N∑
i=1

σi(ω) �
(
B(H)(ti+1) − B(H)(ti)

)
,(2.4)

where � denotes the Wick product. For σ(t) = σ(t, ω) ∈ S ∩ L1,2
φ we have the isometry

E
[ ∫

R
σ(t, ω)dB(H)(t)

]2

= E
[ ∫

R2

σ(s)σ(t)φ(s, t)ds dt +
( ∫

R
Dφ

s σ(s)ds
)2]

=
∥∥σ

∥∥2

L1,2
φ

,(2.5)

where E = EµH
. Using this we can extend the integral

∫
R σ(t, ω)dB(H)(t) to L1,2

φ . Note that

if σ, θ ∈ L1,2
φ , we have, by polarization,

E

[∫
R
σ(t, ω)dB(H)(t)

∫
R
θ(t, ω)dB(H)(t)

]
= E

[∫
R2

σ(s)θ(t)φ(s, t)dsdt +

∫
R
Dφ

s σ(s)ds

∫
R
Dφ

t θ(t)dt

]
.(2.6)

Also note that we need not assume that the integrand σ ∈ L1,2
φ is adapted to the filtration

F (H)
t generated by B(H)(s, ·); s ≤ t.

An important property of this fractional Itô-integral is that

E

[∫
R
σ(t, ω)dB(H)(t)

]
= 0 for all σ ∈ L1,2

φ .(2.7)

(see [DHP, Theorem 3.9]).
We give three versions of the fractional Itô formula, in increasing order of complexity.

Theorem 2.1 ([DHP], Theorem 4.1) Let f ∈ C2(R) with bounded second order deriva-
tives. Then for t ≥ 0

f(B(H)(t)) = f(B(H)(0)) +

∫ t

0

f ′(B(H)(s))dB(H)(s) + H

∫ t

0

s2H−1f ′′(B(H)(s))ds .(2.8)
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Theorem 2.2 ([DHP], Theorem 4.3) Let X(t) =
∫ t

0
σ(s, ω)dB(H)(s), where σ ∈ L1,2

φ

and assume f ∈ C2(R+ × R) with bounded second order derivatives. Then for t ≥ 0

f(t, X(t)) = f(0, 0) +

∫ t

0

∂f

∂s
(s, X(s))ds

+

∫ t

0

∂f

∂x
(s, X(s))σ(s)dB(H)(s) +

∫ t

0

∂2f

∂x2
(s, X(s))σ(s)Dφ

s X(s)ds .(2.9)

Finally we give an m-dimensional version:

Let B(H)(t) =
(
B

(H)
1 (t) , · · · , B

(H)
m (t)

)
be an m-dimensional fractional Brownian motion

with Hurst parameter H = (H1, · · · , Hm) ∈ (1/2, 1)m, as in Section 1. Since we are here
dealing with m independent fractional Brownian motions we may regard Ω as the product
of m independent copies of Ω̄ and write ω = (ω1, . . . , ωm) for ω ∈ Ω. Then in the following
the notation Dφ

k,sY means the Malliavin φ-derivative with respect to ωk and could also be
written

Dφ
k,sY =

∫
R
φHk

(s, t)Dk,tY dt =

∫
R
φHk

(s, t)
∂Y

∂ωk

(t, ω)dt .(2.10)

Similar to the 1-dimensional case discussed in Section 1, we can define the multi-dimensional
fractional (Wick-Itô) integral∫

R
f(t, ω)dB(H)(t) =

m∑
j=1

∫
R
fj(t, ω)dB

(H)
j (t) ∈ L2(µ)(2.11)

for all processes f(t, ω) = (f1(t, ω), . . . , fm(t, ω)) ∈ Rm such that, for all j = 1, 2, . . . , m,∥∥fj

∥∥2

L1,2
φj

:= E
[ ∫

R

∫
R
fj(s)fj(t)φj(s, t)ds dt +

( ∫
R
D

φj

j,tfj(t)dt
)2]

< ∞(2.12)

where φj = φHj
; 1 ≤ j ≤ m.

Denote the set of all such m-dimensional processes f by L1,2
φ (m), where φ = (φ1, . . . , φm).

It can be proved (see [BØ]) that for f, g ∈ L1,2
φ (m) we have the following fractional

multi-dimensional Itô isometry

E
[( ∫

R
fdB(H)

)
·
( ∫

R
gdB(H)

)]
= E

[ m∑
i=1

∫
R

∫
R
fi(s)gi(t)φi(s, t)ds dt

+
m∑

i,j=1

( ∫
R
Dφ

j,tfi(t)dt
)
·
( ∫

R
Dφ

i,tgj(t)dt
)]

.(2.13)

We put

(
f, g

)
L1,2

φ (m)
= E

[ m∑
i=1

∫
R

∫
R
fi(s)gi(t)φi(s, t)ds dt

+
m∑

i,j=1

( ∫
R
Dφ

j,tfi(t)dt
)
·
( ∫

R
Dφ

i,tgj(t)dt
)]

(2.14)
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and define

L1,2
φ (m) =

{
f ∈ L1,2

φ (m);
∥∥f

∥∥2

L1,2
φ (m)

:= (f, f)L1,2
φ (m) < ∞

}
.

Now suppose σi ∈ L1,2
φ (m) for 1 ≤ i ≤ n. Then we can define X(t) = (X1(t) , · · · , Xn(t))

where

Xi(t, ω) =
m∑

j=1

∫ t

0

σij(s, ω)dB
(H)
j (s) ; 1 ≤ i ≤ n .(2.15)

We have the following multi-dimensional fractional Itô formula:

Theorem 2.3 Let f ∈ C1,2(R+ × Rn) with bounded second order derivatives. Then, for
t ≥ 0,

f(t,X(t)) = f(0, 0) +

∫ t

0

∂f

∂s
(s, X(s))ds +

∫ t

0

n∑
i=1

∂f

∂xi

(s, X(s))dXi(s)

+

∫ t

0

{
n∑

i,j=1

∂2f

∂xi∂xj

(s, X(s))
m∑

k=1

σik(s)D
φ
k,s(Xj(s))

}
ds(2.16)

= f(0, 0)+

∫ t

0

∂f

∂s
(s, X(s))ds +

m∑
j=1

∫ t

0

[
n∑

i=1

∂f

∂xi

(s, X(s))σij(s, ω)

]
dB

(H)
j (s)

+

∫ t

0

Tr
[
ΛT (s)fxx(s, X(s))

]
ds .(2.17)

Here Λ = [Λij] ∈ Rn×m with

Λij(s) =
m∑

k=1

σikD
φ
k,s (Xj(s)) ; 1 ≤ i ≤ n , 1 ≤ j ≤ m ,(2.18)

fxx =

[
∂2f

∂xi∂xj

]
1≤i,j≤n

,(2.19)

and (·)T denotes matrix transposed and Tr[·] denotes matrix trace.

The following useful result is a multidimensional version of Theorem 4.2 in [DHP]:

Theorem 2.4 Let

X(t) =
m∑

j=1

∫ t

0

σj(r, ω)dB
(H)
j (r) ; σ = (σ1, . . . , σm) ∈ L1,2

φ (m) .(2.20)

Then

Dφ
k,sX(t) =

m∑
j=1

∫ t

0

Dφ
k,sσj(r)dB

(H)
j (r) +

∫ t

0

σk(r)φHk
(s, r)dr , 1 ≤ k ≤ m .(2.21)

In particular, if σj(r) is deterministic for all j ∈ {1, 2, · · · , m} then

Dφ
k,sX(t) =

∫ t

0

σk(r)φHk
(s, r)dr .(2.22)
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Now we have the following integration by parts formula.

Corollary 2.5 Let X(t) and Y (t) be two processes of the form

dX(t) = µ(t, ω)dt + σ(t, ω)dB(H)(t) , X(0) = x ∈ Rn

and

dY (t) = ν(t, ω)dt + θ(t, ω)dB(H)(t) , Y (0) = y ∈ Rn ,

where µ : R × Ω → Rn, ν : R × Ω → Rn, σ : R × Ω → Rn×m and θ : R × Ω → Rn×m are given
processes with rows σi, θi ∈ L1,2

φ (m) for 1 ≤ i ≤ n and BH(·) is an m-dimensional fractional
Brownian motion.

a) Then, for T > 0,

E[X(T )·Y (T )] = x · y + E
[ ∫ T

0

X(s)dY (s)
]

+ E
[ ∫ T

0

Y (s)dX(s)
]

+ E
[ ∫ T

0

∫ T

0

n∑
i=1

m∑
k=1

σik(s)θik(t)φHk
(s, t)ds dt

]
+ E

[ n∑
i=1

m∑
j,k=1

( ∫
R
Dφ

j,tσik(t)dt
)( ∫

R
Dφ

k,tθij(t)dt
)]

(2.23)

provided that the first two integrals exist.

b) In particular, if σ(·) or θ(·) is deterministic then

E [X(T ) · Y (T )] = x · y + E

[∫ T

0

X(s)dY (s)

]
+ E

[∫ T

0

Y (s)dX(s)

]
+E

[∫ T

0

∫ T

0

n∑
i=1

m∑
k=1

σik(s)θik(t)φHk
(s, t)dsdt

]
.(2.24)

Proof This follows from Theorem 2.3 applied to the function f(t, x, y) = xy, combined with
(2.13). �

3 Stochastic differential equations

For given functions b : R × R ×Ω → R and σ : R × R → R consider the stochastic differential
equation

dX(t) = b(t, X(t))dt + σ(t, X(t))dB(H)(t) , t ∈ [0, T ] ,(3.1)

where the initial value X(0) ∈ L2(µφ) or the terminal value X(T ) ∈ L2(µφ) is given. The
Itô isometry for the stochastic integral becomes

E

(∫ T

0

σ(t, X(t))dB(H)(t)

)2

= E

(∫ T

0

∫ T

0

σ(t, X(t))σ(s, X(s))φ(s, t)dsdt

)
+E

{(∫ T

0

σ′
x(s, X(s))Dφ

s X(s)ds

)2
}

.(3.2)
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Because of the appearance of the term Dφ
s X(s) on the right-hand-side of the above identity,

we may not directly apply the Picard iteration to solve (3.1).
In this section, we will solve the following quasi-linear stochastic differential equations

using the theory developed in [HØ1], [HØ2]:

dX(t) = b(t, X(t))dt + (σtX(t) + at) dB(H)(t) ,(3.3)

where σt and at are given deterministic functions, b(t, x) = b(t, x, ω) is (almost surely) con-
tinuous with respect to t and x and globally Lipschitz continuous on x, the initial condition
X(0) or the terminal condition X(T ) is given. For simplicity we will discuss the case when
at = 0 for all t ∈ [0, T ]. Namely, we shall consider

dX(t) = b(t, X(t))dt + σtX(t)dB(H)(t) .(3.4)

We need the following result, which is a fractional version of Gjessing’s lemma (see e.g.
Theorem 2.10.7 in [HØUZ]).

Lemma 3.1 Let G ∈ L2(µH) and

F = exp�
(∫

R
f(t)dB(H)(t)

)
= exp

(∫
R
f(t)dB(H)(t) − 1

2
‖f‖2

φ

)
,

where f is deterministic and such that

‖f‖2
φ :=

∫
R2

f(s)f(t)φ(s, t)dsdt < ∞ .

Then

F � G = Fτf̂G ,(3.5)

where � is the Wick product defined in [HØ2], f̂ is given by∫
R2

f(s)g(t)φ(s, t)dsdt =

∫
R
f̂(s)g(s)ds ∀g ∈ C∞

0 (R)(3.6)

and

τf̂G(ω) = G(ω −
∫ ·

0

f̂(s)ds) .

Proof By [DHP, Theorem 3.1] it suffices to show the result in the case when

G(ω) = exp�
(∫

R
g(t)dB(H)(t)

)
= exp�〈ω, g〉 ,

where g is deterministic and ‖g‖φ < ∞. In this case we have

F � G = exp�
(∫

R
[f(t) + g(t)] dB(H)(t)

)
= exp

(∫
R
[f(t) + g(t)] dB(H)(t) − 1

2
‖f‖2

φ − 1
2
‖g‖2

φ − (f, g)φ

)
,
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where

(f, g)φ =

∫
R2

f(s)g(t)φ(s, t)dsdt .

But

τf̂G = exp�
(∫

R
g(t)dB(H)(t) −

∫
R
f̂(t)g(t)dt

)
= exp�

(∫
R
g(t)dB(H)(t) − (f, g)φ

)
.

Hence

Fτf̂G = exp

(∫
R
f(t)dB(H)(t) − 1

2
‖f‖2

φ +

∫
R
g(t)dB(H)(t) − 1

2
‖g‖2

φ − (f, g)φ

)
= F � G .

�

We now return to Equation (3.3). First let us solve the equation when b = 0 and with
initial value X(0) given. Namely, let us consider

dX(t) = −σtX(t)dB(H)(t) , X(0) given .(3.7)

With the notion of Wick product, this equation can be written (see [HØ2, Def 3.11])

Ẋ(t) = −σtX(t) � W (H)(t) ,(3.8)

where W (H) = Ḃ(H) is the fractional white noise. Using the Wick calculus, we obtain

X(t) = X(0) � Jσ(t)

:= X(0) � exp�
(
−

∫ t

0

σsW
(H)(s)ds

)
= X(0) � exp

(
−

∫ t

0

σsdB(H)(s) − 1
2
‖σ‖2

φ,t

)
,(3.9)

where

‖σ‖2
φ,t :=

∫ t

0

∫ t

0

σuσvφ(u, v)dudv .(3.10)

To solve Equation (3.4) we let

Yt := X(t) � Jσ(t) .(3.11)

This means

X(t) = Yt � Ĵσ(t) ,(3.12)

where

Ĵσ(t) = J−σ(t) = exp

(∫ t

0

σsdB(H)(s) − 1
2
‖σ‖2

φ,t

)
.(3.13)
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Thus we have

dYt

dt
=

dX(t)

dt
� Jσ(t) + X(t) � dJσ(t)

dt

=
dX(t)

dt
� Jσ(t) − σtJσ(t) � X(t) � W (H)(t)

= Jσ(t) � b(t, X(t), ω)

= Jσ(t)b(t, τ−σ̂X(t), ω +

∫ ·

0

σ̂(s)ds) ,

where ∫
R2

σsg(t)φ(s, t)dsdt =

∫
R
σ̂sg(s)ds ∀g ∈ C∞

0 (R) .(3.14)

We are going to relate τσ̂X(t) to Yt.

τ−σ̂Xt(t, ω) = τ−σ̂[J−σ(t)σ � Yt(t, ω)]

= τ−σ̂[J−σ(t)τσ̂Yt]

= τ−σ̂J−σ(t)Yt .

Since τ−σ̂J−σ(t) = [J−σ̂(t)]−1, we obtain an equation equivalent to (3.4) for Yt:

dYt

dt
= J−σ(t)b(t, [J−σ(t)]−1Yt, ω +

∫ ·

0

σ̂(s)ds).(3.15)

This is a deterministic equation. The initial value X(0) is equivalent to initial value Y0 =
X(0) � J−σ(0) = X(0). Thus we can solve the quasilinear equation with given initial value.

The terminal value X(T ) can also be transformed into the terminal value on Y (T ) =
X(T ) � J−σ(T ). Thus the equation with given terminal value can be solved in a similar

way. Note, however, that in this case the solution need not be F (H)
· -adapted (see the next

section).

Example 3.2 In the equation (3.4) let us consider the case b(t, x) = btx for some deter-
ministic locally bounded function bt of t. This means that we are considering the linear
stochastic differential equation:

dX(t) = btX(t)dt + σtX(t)dB(H)(t) .(3.16)

In this case it is easy to see that the equation (3.15) satisfied by Y is

Ẏt = b(t)Yt .

When the initial value is Y (0) = x (constant), x ∈ R, then

Yt = xe
∫ t
0 b(s)ds .

Thus the solution of (3.16) with X(0) = x can be expressed as

X(t) = Y (t) � J−σ(t)

= x exp

{∫ t

0

b(s)ds +

∫ t

0

σsdB(H)(s) − 1
2
‖σ‖2

φ,t

}
.(3.17)
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If we assume the terminal value X(T ) given, then

Y (t) = Y (T )e
∫ T

t b(s)ds

= X(T ) � Jσ(T )e
∫ T

t b(s)ds .

Hence

X(t) =Y (t) � J−σ(t) = X(T ) � exp
{∫ T

t

b(s)ds

−
∫ T

t

σsdB(H)(s) − 1
2

∫ T

t

∫ T

t

σ(u)σ(v)φ(u, v)dudv
}

.(3.18)

4 Fractional backward stochastic differential equations

Let b : R × R × R → R be a given function and let F : Ω → R be a given F (H)
T -measurable

random variable, where T > 0 is a constant. Consider the problem of finding F (H)-adapted
processes p(t), q(t) such that

dp(t) = b(t, p(t), q(t))dt + q(t)dB(H)(t) ; t ∈ [0, T ] ,(4.1)

P (T ) = F a.s.(4.2)

This is a fractional backward stochastic differential equation (FBSDE) in the two unknown
processes p(t) and q(t). We will not discuss general theory for such equations here, but settle
with a solution in a linear variant of (4.1)-(4.2), namely

dp(t) = [α(t) + btp(t) + ctq(t)] dt + q(t)dB(H)(t) ; t ∈ [0, T ] ,(4.3)

P (T ) = F a.s. ,(4.4)

where bt and ct are given continuous deterministic functions and α(t) = α(t, ω) is a given

F (H)-adapted process s.t.
∫ T

0
|α(t, ω)|dt < ∞ a.s.

To solve (4.3)-(4.4) we proceed as follows: By the fractional Girsanov theorem (see e.g.
[HØ2, Theorem 3.18]) we can rewrite (4.3) as

dp(t) = [α(t) + btp(t)] dt + q(t)dB̂(H)(t) ; t ∈ [0, T ] ,(4.5)

where

B̂(H)(t) = B(H)(t) +

∫ t

0

csds(4.6)

is a fractional Brownian motion (with Hurst parameter H) under the new probability measure

µ̂ on F (H)
T defined by

dµ̂(ω)

dµ(ω)
= exp� {−〈ω, ĉ〉} = exp

{
−

∫ T

0

ĉ(s)dB(H)(s) − 1
2
‖ĉ‖2

φ

}
,(4.7)
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where ĉ = ĉt is the continuous function with supp (ĉ) ⊂ [0, T ] satisfying∫ T

0

ĉsφ(s, t)ds = ct ; 0 ≤ t ≤ T ,(4.8)

and

‖ĉ‖2
φ =

∫ T

0

∫ T

0

ĉ(s)ĉ(t)φ(s, t)ds dt .

If we multiply (4.5) with the integrating factor

βt := exp(−
∫ t

0

bsds) ,

we get

d(βsp(s)) = βsα(s)ds + βsq(s)dB̂(H)(s) ,(4.9)

or, by integrating (4.9) from s = t to s = T ,

βT F = βtp(t) +

∫ T

t

βsα(s)ds +

∫ T

t

βsq(s)dB̂(H)(s) .(4.10)

Assume from now on that

‖α‖2
L̂1,2

φ [0,T ]
:= Eµ̂

[∫
[0,T ]×[0,T ]

α(s)α(t)φ(s, t)dsdt +

(∫ T

0

D̂φ
s α(s)ds

)2
]

< ∞ .(4.11)

By the fractional Itô isometry (see [DHP, Theorem 3.7] or [HØS2, (1.10)]) applied to B̂, µ̂
we then have

Eµ̂

[(∫ T

0

α(s)dB̂(H)(s)

)2
]

= ‖α‖2
L̂1,2

φ [0,T ]
.(4.12)

From now on let us also assume that

Eµ̂

[
F 2

]
< ∞ .(4.13)

We now apply the quasi-conditional expectation operator (see [HØ2, Definition 4.9a)])

Ẽµ̂

[
·|F (H)

t

]
to both sides of (4.10) and get

βT Ẽµ̂

[
F |F (H)

t

]
= βtp(t) +

∫ T

t

βsẼµ̂

[
α(s)|F (H)

t

]
ds .(4.14)

Here we have used that p(t) is F (H)
t -measurable, that the filtration F̂ (H)

t generated by

B̂(H)(s) ; s ≤ t is the same as F (H)
t , and that

Ẽµ̂

[∫ T

t

f(s, ω)dB̂(H)(s)|F̂ (H)
t

]
= 0 , for all t ≤ T(4.15)

11



for all f ∈ L̂1,2
φ [0, T ]. See [HØ2, Def 4.9] and [HØS2, Lemma 1.1].

From (4.14) we get the solution

p(t) = exp

(
−

∫ T

t

bsds

)
Ẽµ̂

[
F |F (H)

t

]
+

∫ T

t

exp

(
−

∫ s

t

brdr

)
Ẽµ̂

[
α(s)|F (H)

t

]
ds ; t ≤ T .(4.16)

In particular, choosing t = 0 we get

p(0) = exp

(
−

∫ T

0

bsds

)
Ẽµ̂ [F ] +

∫ T

0

exp

(
−

∫ s

0

brdr

)
Ẽµ̂ [α(s)] ds .(4.17)

Note that p(0) is F (H)
0 -measurable and hence a constant. Choosing t = 0 in (4.10) we get

G =

∫ T

0

βsq(s)dB̂(H)(s) ,(4.18)

where

G = G(ω) = βT F (ω) −
∫ T

0

βsα(s, ω)ds − p(0) ,(4.19)

with p(0) given by (4.17).
By the fractional Clark-Ocone theorem [HØ1, Theorem 4.15 b)] applied to (B̂(H), µ̂) we

have

G = Eµ̂[G] +

∫ T

0

Ẽµ̂

[
D̂sG|F̂ (H)

s

]
dB̂(H)(s) ,(4.20)

where D̂ denotes the Malliavin derivative at s with respect to B̂(H)(·). Comparing (4.18)
and (4.20) we see that we can choose

q(t) = exp

(∫ t

0

brdr

)
Ẽµ̂

[
D̂tG|F (H)

t

]
.(4.21)

We have proved the first part of the following result:

Theorem 4.1 Assume that (4.11) and (4.13) hold. Then a solution (p(t), q(t)) of (4.3)–

(4.4) is given by (4.16) and (4.21). The solution is unique among all F (H)
· -adapted processes

p(·), q(·) ∈ L̂1,2
φ [0, T ].

Proof It remains to prove uniqueness. The uniqueness of p(·) follows from the way we
deduced formula (4.16) from (4.3)-(4.4). The uniqueness of q is deduced from (4.18) and
(4.20) by the following argument: Substituting (4.20) from (4.18) and using that Eµ̂(G) = 0
we get

0 =

∫ T

0

(
βsq(s) − Ẽµ̂

[
D̂sG|F̂ (H)

s

])
dB̂(H)(s) .

12



Hence by the fractional Itô isometry (4.12)

0 = Eµ̂

[{∫ T

0

(
βsq(s) − Ẽµ̂

[
D̂sG|F̂ (H)

s

])
dB̂(H)(s)

}2
]

= ‖βsq(s) − Ẽµ̂

[
D̂sG|F̂ (H)

s

]
‖2
L̂1,2

φ [0,T ]
,

from which it follows that

βsq(s) − Ẽµ̂

[
D̂sG|F̂ (H)

s

]
= 0 for a.a.(s, ω) ∈ [0, T ] × Ω .

�

5 A stochastic maximum principle

We now apply the theory in the previous section to prove a maximum principle for systems
driven by fractional Brownian motion. See e.g. [H], [P] and [YZ] and the references therein
for more information about the maximum principle in the classical Brownian motion case.

Suppose X(t) = X(u)(t) is a controlled system of the form

dX(t) = b(t, X(t), u(t))dt + σ(t, X(t), u(t))dB(H)(t) ; X(0) = x ∈ Rn ,(5.1)

where b : [0.T ] × Rn × U → Rn and σ : [0, T ] × Rn × U → Rn×m are given C1 functions. The
control process u(·) : [0, T ] × Ω → U ⊂ Rk is assumed to be F (H)-adapted. U is a given
closed convex set in Rk.

Let f : [0, T ] × Rn × U → R, g : Rn → R and G : Rn → RN be given C1 functions and
consider a performance functional J(u) of the form

J(u) = E

[∫ T

0

f(t, X(t), u(t))dt + g(X(T ))

]
(5.2)

and a terminal condition given by

E [G(X(T ))] = 0 .(5.3)

Let A denote the set of all F (H)
t -adapted processes u : [0, T ] × Ω → U such that X(u)(t)

exists and does not explode in [0, T ] and

E
[ ∫ T

0

|f(t, X(t), u(t))|dt + g−(X(T )) + G−(X(T ))
]

< ∞(5.4)

where y− = max(0, y) for y ∈ R, and such that (5.3) holds. If u ∈ A and X(u)(t) is the
corresponding state process we call (u, X(u)) an admissible pair. Consider the problem to
find J∗ and u∗ ∈ A such that

J∗ = sup {J(u) ; u ∈ A} = J(u∗) .(5.5)

If such u∗ ∈ A exists, then u∗ is called an optimal control and (u∗, X∗), where X∗ = Xu∗
, is

called an optimal pair.
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Let Rn×m be the set of continuous function from [0, T ] into Rn×m. Define the Hamiltonian
H : [0, T ] × Rn × U × Rn ×Rn×m → R by

H(t, x, u, p, q(·)) = f(t, x, u) + b(t, x, u)T p +
n∑

i=1

m∑
k=1

σik(t, x, u)

∫ T

0

qik(s)φHk
(s, t)ds .(5.6)

Consider the following fractional stochastic backward differential equation in the pair of un-
known F (H)

t -adapted processes p(t) ∈ Rn, q(t) ∈ Rn×m, called the adjoint processes:{
dp(t) = −Hx(t, X(t), u(t), p(t), q(·))dt + q(t)dB(H)(t) ; t ∈ [0, T ]

p(T ) = gx(X(T )) + λT Gx(X(T )) .
(5.7)

where Hx = ∇xH =
(

∂H
∂x1

, · · · , ∂H
∂xn

)T

is the gradient of H with respect to x and similarly

with gx and Gx. X(t) = X(u)(t) is the process obtained by using the control u ∈ A and
λ ∈ Rn

+ is a constant. The equation (5.6) is called the adjoint equation and p(t) is sometimes
interpreted as the shadow price (of a resource).

Theorem 5.1 (The fractional stochastic maximum principle) Suppose û ∈ A and
put X̂ = X(û). Suppose there exists a solution p̂(t), q̂(t) of the corresponding adjoint equation
(5.7) for some λ ∈ Rn

+ and such that the following, (5.8)–(5.11), hold:

X(u)(t)q̂(t) ∈ L1,2
φ and p̂T (t)σ(t, X(u)(t), u(t)) ∈ L1,2

φ for all u ∈ A(5.8)

H(t, ·, ·, p̂(t), q̂(t)) , g(·) and G(·) are concave, for all t ∈ [0, T ] ,(5.9)

H(t, X̂(t), û(t), p̂(t), q̂(·)) = max
v∈U

H(t, X̂(t), v, p̂(t), q̂(·)) ,(5.10)

∆4 := E
[ n∑

i=1

m∑
j,k=1

( ∫ T

0

D
φj

j,t{σik(t, X(t), u(t))

−σik(t, X̂(t), û(t))}dt
)( ∫ T

0

Dφk

k,tq̂ij(t)dt
)]

≤ 0 for all u ∈ A .(5.11)

Then if λ ∈ Rn
+ is such that (û, X̂) is admissible (in particular, (5.3) holds), the pair (û, X̂)

is an optimal pair for problem (5.5).

Proof We first give a proof in the case when G(x) = 0, i.e. when there is no terminal
condition.

With (û, X̂) as above consider

∆ := E

[∫ T

0

f(t, X̂(t), û(t))dt −
∫ T

0

f(t, X(t), u(t))dt

]
= E

[∫ T

0

H(t, X̂(t), û(t), p̂(t), q̂(·))dt −
∫ T

0

H(t, X(t), u(t), p̂(t), q̂(·))dt

]
−E

[∫ T

0

{
b(t, X̂(t), û(t))

}T

p̂(t)dt −
∫ T

0

b(t, X(t), u(t))T p̂(t)dt

]
−E

[∫ T

0

∫ T

0

n∑
i=1

m∑
k=1

{
σik(s, X̂(s), û(s)) − σik(s, X(s), u(s))

}
q̂ik(t)φHk

(s, t)dsdt

]
=: ∆1 + ∆2 + ∆3 .(5.12)
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Since (x, u) → H(x, u) = H(t, x, u, p, q(·)) is concave we have

H(x, u) − H(x̂, û) ≤ Hx(x̂, û) · (x − x̂) + Hu(x̂, û) · (u − û)

for all (x, u), (x̂, û). Since v → H(X̂(t), v) is maximal at v = û(t) we have

Hu(x̂, û) · (u(t) − û(t)) ≤ 0 ∀t .

Therefore

∆1 ≥ E

[∫ T

0

−Hx(t, X̂(t), û(t), p̂(t), q̂(·)) · (X(t) − X̂(t))dt

]
= E

[∫ T

0

(X(t) − X̂(t))T dp̂(t) −
∫ T

0

(X(t) − X̂(t))T q̂(t)dB(H)(t)

]
Since E

[∫ T

0
(X(t) − X̂(t))T q̂(t)dB(H)(t)

]
= 0 by (2.7), this gives

∆1 ≥ E

[∫ T

0

(X(t) − X̂(t))T dp̂(t)

]
.(5.13)

By (5.1) we have

∆2 = −E

[∫ T

0

{
b(t, X̂(t), û(t)) − b(t, X(t), u(t))

}
· p̂(t)dt

]
= −E

[∫ T

0

p̂(t)
(
dX̂(t) − dX(t)

)]
− E

[∫ T

0

p̂(t)T
{

σ(t, X̂(t), û(t)) − σ(t, X(t), u(t))
}

dB(H)(t)

]
= E

[∫ T

0

p̂(t)
(
dX(t) − dX̂(t)

)]
.(5.14)

Finally, since g is concave we have

g(X(T )) − g(X̂(T )) ≤ gx(X̂(T )) · (X(T ) − X̂(T ))(5.15)

Combining (5.12)–(5.15) with Corollary 2.5 we get, using (5.2), (5.7) and (5.11),

J(û) − J(u) = ∆ + E
[
g(X̂(T )) − g(X(T ))

]
≥ ∆ + E

[
gx(X̂(T )) · (X̂(T ) − X(T ))

]
≥ ∆ − E

[
p̂(T ) ·

(
X(T ) − X̂(T )

)]
= ∆ −

{
E

[∫ T

0

(
X(t) − X̂(t)

)
· dp̂(t)

]
+ E

[∫ T

0

p̂(t) ·
(
dX(t) − dX̂(t)

)]

+ E

[∫ T

0

∫ T

0

n∑
i=1

m∑
k=1

{
σik(s, X(s), u(s))−σik(s, X̂(s), û(s))

}
q̂ik(t)φHk

(s, t)ds dt

+ E

[
n∑

i=1

m∑
j,k=1

( ∫ T

0

D
φj

j,t{σik(t, X(t), u(t)) − σik(t, X̂(t), û(t))}dt
)( ∫ T

0

Dφk

k,tq̂ij(t)
)] }

≥ ∆ − (∆1 + ∆2 + ∆3 + ∆4) ≥ 0 .
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This shows that J(û) is maximal among all admissible pairs (u(·), X(·)).
This completes the proof in the case with no terminal conditions (G = 0). Finally

consider the general case with G �= 0. Suppose that for some λ0 ∈ Rn
+ there exists ûλ0

satisfying (5.8)–(5.11). Then by the above argument we know that if we put

Jλ0(u) = E

[∫ T

0

f(t, X(t), u(t))dt + g(X(T )) + λT
0 G(X(T ))

]
then Jλ0(û0) ≥ Jλ0(u) for all controls u (without terminal condition). If λ0 is such that ûλ0

satisfies the terminal condition (i.e. ûλ0 ∈ A) and u is another control in A then

J(ûλ0) = Jλ0(ûλ0) ≥ Jλ0(u) = J(u)

and hence ûλ0 ∈ A maximizes J(u) over all u ∈ A. �

Corollary 5.2 Let û ∈ A, X̂ = X(û) and (p̂(t), q̂(t)) be as in Theorem 5.1. Assume that
(5.8), (5.9) and (5.10) hold, and that condition (5.11) is replaced by the condition

q̂(·) or σ(·, X̂(·), û(·)) is deterministic .(5.16)

Then if λ ∈ Rn
+ is such that (û, X̂) is admissible, the pair (û, X̂) is an optimal pair for

problem (5.5).

6 A minimal variance hedging problem

To illustrate our main result, we use it to solve the following problem from mathematical
finance:

Consider a financial market driven by two independent fractional Brownian motions
B1(t) = B

(H1)
1 (t) and B2(t) = B(H2)(t), with 1

2
< Hi < 1, i = 1, 2, as follows:

(Bond price) dS0(t) = 0 ; S0(0) = 1(6.1)

(Price of stock 1) dS1(t) = dB1(t) ; S1(0) = s1(6.2)

(Price of stock 2) dS2(t) = dB1(t) + dB2(t) ; S2(0) = s2 .(6.3)

If θ(t) = (θ0(t), θ1(t), θ2(t)) ∈ R3 is a portfolio (giving the number of units of the bond, stock
1 and stock 2, respectively, held at time t) then the corresponding value process is

V θ(t) = θ(t) · S(t) =
2∑

i=0

θi(t)Si(t) .(6.4)

The portfolio is called self-financing if

dV θ(t) = θ(t) · dS(t) = θ1(t)dB1(t) + θ2(t)(dB1(t) + dB2(t)) .(6.5)

This market is called complete if any bounded F (H)
T -measurable random variable F can be

hedged (or replicated), in the sense that there exists a (self-financing) portfolio θ(t) and an
initial value z ∈ R such that

F (ω) = z +

∫ T

0

θ(t)dS(t) for a.a. ω .(6.6)
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(See [HØ2] and [W] for a general discussion about this.)
Let us now assume that we are not allowed to trade in stock 1, i.e. we must have θ1(t) ≡ 0.

How close to, say, F (ω) = B1(T, ω) can we get if we must hedge under this constraint?
If we put θ2(t) = u(t) and interpret “close” as having a small L2(µ) distance to F , then

the problem can be stated as follows:
Find z ∈ R and admissible u(t, ω) such that

J(z, u) : = E
[{

B1(T ) −
(
z +

∫ T

0

u(t)(dB1(t) + dB2(t))
)}2]

= z2 + E
[{ ∫ T

0

(u(t) − 1)dB1(t) +

∫ T

0

u(t)dB2(t)
}2]

(6.7)

is minimal. We see immediately that it is optimal to choose z = 0, so it remains to minimize
over u(t) = u(t, ω) the functional

J(u) := E
[{ ∫ T

0

(u(t) − 1)dB1(t) +

∫ T

0

u(t)dB2(t)
}2]

.(6.8)

If we apply the fractional Itô isometry (2.13) we get, after some simplifications,

J(u) = E
[ ∫ T

0

∫ T

0

{
(u(s) − 1)(u(t) − 1)φ1(s, t) + u(s)u(t)φ2(s, t)

}
ds dt

+
( ∫ T

0

{
Dφ

1,tu(t) − Dφ
2,tu(t)

}
dt

)2]
.(6.9)

However, it is difficult to see from this what the minimizing u(t) is.
To approach this problem by using the fractional maximum principle, we define the state

process X(t) by

dX(t) = (u(t) − 1)dB1(t) + u(t)dB2(t) .(6.10)

Then the problem is equivalent to maximizing

J1(u) := E
[
− 1

2
X2(T )

]
.(6.11)

The Hamiltonian for this problem is

H(t, x, u, p, q(·)) = (u − 1)

∫ T

0

q1(s)φ1(s, t)ds + u

∫ T

0

q2(s)φ2(s, t)ds

= (u − 1)

∫ T

0

q1(s)φ1(s, t)ds + u

∫ T

0

q2(s)φ2(s, t)ds

= u
[ ∫ T

0

q1(s)φ1(s, t)ds +

∫ T

0

q2(s)φ2(s, t)ds
]
−

∫ T

0

q1(s)φ1(s, t)ds .(6.12)

The adjoint equation is

dp(t) = q1(t)dB1(t) + q2(t)dB2(t) ; t < T(6.13)

p(T ) = −X(T ) .(6.14)
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Comparing with (6.10) we see that this equation has the solution

q1(t) = 1 − u(t), q2 = −u2(t), p(t) = −X(t) ; t ≤ T .(6.15)

Let û(t) be an optimal control candidate. Then by (6.12)

H(t,X̂(t), v, p̂(t), q̂(·)) = v
[ ∫ T

0

q̂1(s)φ1(s, t)ds +

∫ T

0

q̂2(s)φ2(s, t)ds
]
−

∫ T

0

q̂1(s)φ1(s, t)ds

= v
[ ∫ T

0

(1−û(t))φ1(s, t)ds −
∫ T

0

û(s)φ2(s, t)ds
]
−

∫ T

0

q̂1(s)φ1(s, t)ds .(6.16)

The maximum principle requires that the maximum of this expression is attained at v = û(t).
However, this is an affine function of v, so it is natural to guess that the coefficient of v must
be 0, i.e. ∫ T

0

(1 − û(s))φ1(s, t)ds −
∫ T

0

û(s)φ2(s, t)ds = 0 ,

which gives ∫ T

0

û(s)(φ1(s, t) + φ2(s, t))ds =

∫ T

0

φ1(s, t)ds .(6.17)

This is a symmetric Fredholm integral equation of the first kind and it is known that it has
a unique solution û(t) ∈ L2[0, T ]. See e.g. [T, Section 3.15].

This choice of û(t) satisfies all the requirements of Theorem 5.1 (in fact, even those of
Corollary 5.2) and we can conclude that this û(t) is optimal. Thus we have proved:

Theorem 6.1 (Solution of the minimal variance hedging problem)
The minimal value of

J(z, u) = E
[{

B1(T ) −
(
z +

∫ T

0

u(t)(dB1(t) + dB2(t))
)}2]

is attained when z = 0 and u = û(t) satisfies (6.17). The corresponding minimal value is

inf
z,u

J(z, u) =

∫ T

0

∫ T

0

{
(û(s) − 1)(û(t) − 1)φ1(s, t) + û(s)û(t)φ2(s, t)

}
ds dt .

Remark Note that if φ1 = φ2 then û(t) ≡ 1
2
, which is the same as the optimal value in the

classical Brownian motion case (H1 = H2 = 1
2
).
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