# A stochastic maximum principle for processes driven by fractional Brownian motion 

Francesca Biagini ${ }^{1)}$ Yaozhong $\mathrm{Hu}^{2)}$ Bernt $\emptyset$ ksendal ${ }^{33), 4)}$ Agnès Sulem ${ }^{5)}$

February 11, 2002

1) Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 5
I-40127 Bologna, Italy
Email: biagini@dm.unibo.it
2) Department of Mathematics, University of Kansas 405 Snow Hall, Lawrence, Kansas 66045-2142, USA Email: hu@math.ukans.edu
3) Department of Mathematics, University of Oslo Box 1053 Blindern, N-0316 Oslo, Norway , Email: oksendal@math.uio.no
4) Norwegian School of Economics and Business Administration, Helleveien 30, N-5045 Bergen, Norway
5) INRIA, Domaine de Voluceau, Rocquencourt B.P. 105, F-78153 Le Chesnay Cedex, France

Email: agnes.sulem@inria.fr


#### Abstract

We prove a stochastic maximum principle for controlled processes $X(t)=X^{(u)}(t)$ of the form $$
d X(t)=b(t, X(t), u(t)) d t+\sigma(t, X(t), u(t)) d B^{(H)}(t)
$$ where $B^{(H)}(t)$ is $m$-dimensional fractional Brownian motion with Hurst parameter $H=\left(H_{1}, \cdots, H_{m}\right) \in\left(\frac{1}{2}, 1\right)^{m}$. As an application we solve a problem about minimal variance hedging in an incomplete market driven by fractional Brownian motion.


## 1 Introduction

Let $H=\left(H_{1}, \cdots, H_{m}\right)$ with $\frac{1}{2}<H_{j}<1, j=1,2, \ldots, m$, and let $B^{(H)}(t)=\left(B_{1}^{(H)}(t), \ldots\right.$, $\left.B_{m}^{(H)}(t)\right), t \in \mathbb{R}$ be $m$-dimensional fractional Brownian motion, i.e. $B^{(H)}(t)=B^{(H)}(t, \omega)$, $(t, \omega) \in \mathbb{R} \times \Omega$ is a Gaussian process in $\mathbb{R}^{m}$ such that

$$
\begin{equation*}
\mathbb{E}\left[B^{(H)}(t)\right]=B^{(H)}(0)=0 \tag{1.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\mathbb{E}\left[B_{j}^{(H)}(s) B_{k}^{(H)}(t)\right]=\frac{1}{2}\left\{|s|^{2 H_{j}}+|t|^{2 H_{j}}-|t-s|^{2 H_{j}}\right\} \delta_{j k} ; 1 \leq j, k \leq n, \quad s, t \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

\]

where

$$
\delta_{j k}= \begin{cases}0 & \text { when } j \neq k \\ 1 & \text { when } j=k\end{cases}
$$

Here $\mathbb{E}=\mathbb{E}_{\mu}$ denotes the expectation with respect to the probability law $\mu=\mu_{H}$ for $B^{(H)}(\cdot)$. This means that the components $B_{1}^{(H)}(\cdot), \cdots, B_{m}^{(H)}(\cdot)$ of $B^{(H)}(\cdot)$ are $m$ independent 1dimensional fractional Brownian motions with Hurst parameters $H_{1}, H_{2}, \cdots, H_{m}$, respectively. We refer to $[\mathrm{MvN}]$, [NVV] and [S] for more information about fractional Brownian motion. Because of its interesting properties (e.g. long range dependence and self-similarity of the components) $B^{(H)}(t)$ has been suggested as a replacement of standard Brownian motion $B(t)$ (corresponding to $H_{j}=\frac{1}{2}$ for all $j=1, \cdots, m$ ) in several stochastic models, including finance.

Unfortunately, $B^{(H)}(\cdot)$ is neither a semimartingale nor a Markov process, so the powerful tools from the theories of such processes are not applicable when studying $B^{(H)}(\cdot)$. Nevertheless, an efficient stochastic calculus of $B^{(H)}(\cdot)$ can be developed. This calculus uses an Itô type of integration with respect to $B^{(H)}(\cdot)$ and white noise theory. See [DHP] and [HØ2] for details. For applications to finance see [HØ2], [HØS1] [HØS2]. In [Hu1], [Hu2], [HØZ] and $[\emptyset \mathrm{Z}]$ the theory is extended to multi-parameter fractional Brownian fields $B^{(H)}(x) ; x \in \mathbb{R}^{d}$ and applied to stochastic partial differential equations driven by such fractional white noise.

The purpose of this paper is to establish a stochastic maximum principle for stochastic control of processes driven by $B^{(H)}(\cdot)$. We illustrate the result by applying it to a problem about minimal variance hedging in finance.

## 2 Preliminaries

For the convenience of the reader we recall here some of the basic results of fractional Brownian motion calculus. Let $B^{(H)}(t)$ be 1-dimensional in the following.

Define, for given $H \in\left(\frac{1}{2}, 1\right)$,

$$
\begin{equation*}
\phi(s, t)=\phi_{H}(s, t)=H(2 H-1)|s-t|^{2 H-2} ; \quad s, t \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

As in [HØ2] we will assume that $\Omega$ is the space $\mathcal{S}^{\prime}(\mathbb{R})$ of tempered distributions on $\mathbb{R}$, which is the dual of the Schwartz space $\mathcal{S}(\mathbb{R})$ of rapidly decreasing functions on $\mathbb{R}$. If $\omega \in \mathcal{S}^{\prime}(\mathbb{R})$ and $f \in \mathcal{S}(\mathbb{R})$ we let $\langle\omega, f\rangle=\omega(g)$ denote the action of $\omega$ applied to $f$. It can be extended to all $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\|f\|_{\phi}^{2}:=\int_{\mathbb{R}} \int_{\mathbb{R}} f(s) f(t) \phi(s, t) d s d t<\infty
$$

The space of all such (deterministic) functions $f$ is denoted by $L_{\phi}^{2}(\mathbb{R})$.
If $F: \Omega \rightarrow \mathbb{R}$ is a given function we let

$$
\begin{equation*}
D_{t}^{\phi} F=\int_{\mathbb{R}} D_{r} F \cdot \phi(r, t) d r \tag{2.2}
\end{equation*}
$$

denote the Malliavin $\phi$-derivative of $F$ at $t$ (if it exists) (see [DHP, Definition 3.4]. Define $\mathcal{L}_{\phi}^{1,2}$ to be the set of (measurable) processes $g(t, \omega): \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ such that $D_{s}^{\phi} g(s)$ exists for a.a. $s \in \mathbb{R}$ and

$$
\begin{equation*}
\|g\|_{\mathcal{L}_{\phi}^{1,2}}^{2}:=\mathbb{E}\left[\int_{\mathbb{R}} \int_{\mathbb{R}} g(s) g(t) \phi(s, t) d s d t+\left(\int_{\mathbb{R}} D_{s}^{\phi} g(s) d s\right)^{2}\right]<\infty \tag{2.3}
\end{equation*}
$$

We let $\int_{\mathbb{R}} \sigma(t, \omega) d B^{(H)}(t)$ denote the fractional Itô-integral of the process $\sigma(t, \omega)$ with respect to $B^{(H)}(t)$, as defined in [DHP]. In particular, this means that if $\sigma$ belongs to the family $\mathbb{S}$ of step functions of the form

$$
\sigma(t, \omega)=\sum_{i=1}^{N} \sigma_{i}(\omega) \chi_{\left[t_{i}, t_{i+1}\right)}(t), \quad(t, \omega) \in \mathbb{R} \times \Omega
$$

where $0 \leq t_{1}<t_{2}<\cdots<t_{N+1}$, then

$$
\begin{equation*}
\int_{\mathbb{R}} \sigma(t, \omega) d B^{(H)}(t)=\sum_{i=1}^{N} \sigma_{i}(\omega) \diamond\left(B^{(H)}\left(t_{i+1}\right)-B^{(H)}\left(t_{i}\right)\right), \tag{2.4}
\end{equation*}
$$

where $\diamond$ denotes the Wick product. For $\sigma(t)=\sigma(t, \omega) \in \mathbb{S} \cap \mathcal{L}_{\phi}^{1,2}$ we have the isometry

$$
\begin{equation*}
\mathbb{E}\left[\int_{\mathbb{R}} \sigma(t, \omega) d B^{(H)}(t)\right]^{2}=\mathbb{E}\left[\int_{\mathbb{R}^{2}} \sigma(s) \sigma(t) \phi(s, t) d s d t+\left(\int_{\mathbb{R}} D_{s}^{\phi} \sigma(s) d s\right)^{2}\right]=\|\sigma\|_{\mathcal{L}_{\phi}^{1,2}}^{2} \tag{2.5}
\end{equation*}
$$

where $\mathbb{E}=\mathbb{E}_{\mu_{H}}$. Using this we can extend the integral $\int_{\mathbb{R}} \sigma(t, \omega) d B^{(H)}(t)$ to $\mathcal{L}_{\phi}^{1,2}$. Note that if $\sigma, \theta \in \mathcal{L}_{\phi}^{1,2}$, we have, by polarization,

$$
\begin{align*}
& \mathbb{E}\left[\int_{\mathbb{R}} \sigma(t, \omega) d B^{(H)}(t) \int_{\mathbb{R}} \theta(t, \omega) d B^{(H)}(t)\right] \\
& \quad=\mathbb{E}\left[\int_{\mathbb{R}^{2}} \sigma(s) \theta(t) \phi(s, t) d s d t+\int_{\mathbb{R}} D_{s}^{\phi} \sigma(s) d s \int_{\mathbb{R}} D_{t}^{\phi} \theta(t) d t\right] . \tag{2.6}
\end{align*}
$$

Also note that we need not assume that the integrand $\sigma \in \mathcal{L}_{\phi}^{1,2}$ is adapted to the filtration $\mathcal{F}_{t}^{(H)}$ generated by $B^{(H)}(s, \cdot) ; s \leq t$.

An important property of this fractional Itô-integral is that

$$
\begin{equation*}
\mathbb{E}\left[\int_{\mathbb{R}} \sigma(t, \omega) d B^{(H)}(t)\right]=0 \quad \text { for all } \sigma \in \mathcal{L}_{\phi}^{1,2} . \tag{2.7}
\end{equation*}
$$

(see [DHP, Theorem 3.9]).
We give three versions of the fractional Itô formula, in increasing order of complexity.
Theorem 2.1 ([DHP], Theorem 4.1) Let $f \in C^{2}(\mathbb{R})$ with bounded second order derivatives. Then for $t \geq 0$

$$
\begin{equation*}
f\left(B^{(H)}(t)\right)=f\left(B^{(H)}(0)\right)+\int_{0}^{t} f^{\prime}\left(B^{(H)}(s)\right) d B^{(H)}(s)+H \int_{0}^{t} s^{2 H-1} f^{\prime \prime}\left(B^{(H)}(s)\right) d s \tag{2.8}
\end{equation*}
$$

Theorem $2.2\left([\mathbf{D H P}]\right.$, Theorem 4.3) Let $X(t)=\int_{0}^{t} \sigma(s, \omega) d B^{(H)}(s)$, where $\sigma \in \mathcal{L}_{\phi}^{1,2}$ and assume $f \in C^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ with bounded second order derivatives. Then for $t \geq 0$

$$
\begin{align*}
& f(t, X(t))=f(0,0)+\int_{0}^{t} \frac{\partial f}{\partial s}(s, X(s)) d s \\
& \quad+\int_{0}^{t} \frac{\partial f}{\partial x}(s, X(s)) \sigma(s) d B^{(H)}(s)+\int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}(s, X(s)) \sigma(s) D_{s}^{\phi} X(s) d s \tag{2.9}
\end{align*}
$$

Finally we give an $m$-dimensional version:
Let $B^{(H)}(t)=\left(B_{1}^{(H)}(t), \cdots, B_{m}^{(H)}(t)\right)$ be an $m$-dimensional fractional Brownian motion with Hurst parameter $H=\left(H_{1}, \cdots, H_{m}\right) \in(1 / 2,1)^{m}$, as in Section 1. Since we are here dealing with $m$ independent fractional Brownian motions we may regard $\Omega$ as the product of $m$ independent copies of $\bar{\Omega}$ and write $\omega=\left(\omega_{1}, \ldots, \omega_{m}\right)$ for $\omega \in \Omega$. Then in the following the notation $D_{k, s}^{\phi} Y$ means the Malliavin $\phi$-derivative with respect to $\omega_{k}$ and could also be written

$$
\begin{equation*}
D_{k, s}^{\phi} Y=\int_{\mathbb{R}} \phi_{H_{k}}(s, t) D_{k, t} Y d t=\int_{\mathbb{R}} \phi_{H_{k}}(s, t) \frac{\partial Y}{\partial \omega_{k}}(t, \omega) d t \tag{2.10}
\end{equation*}
$$

Similar to the 1-dimensional case discussed in Section 1, we can define the multi-dimensional fractional (Wick-Itô) integral

$$
\begin{equation*}
\int_{\mathbb{R}} f(t, \omega) d B^{(H)}(t)=\sum_{j=1}^{m} \int_{\mathbb{R}} f_{j}(t, \omega) d B_{j}^{(H)}(t) \in L^{2}(\mu) \tag{2.11}
\end{equation*}
$$

for all processes $f(t, \omega)=\left(f_{1}(t, \omega), \ldots, f_{m}(t, \omega)\right) \in \mathbb{R}^{m}$ such that, for all $j=1,2, \ldots, m$,

$$
\begin{equation*}
\left\|f_{j}\right\|_{\mathcal{L}_{\phi_{j}}^{1,2}}^{2}:=\mathbb{E}\left[\int_{\mathbb{R}} \int_{\mathbb{R}} f_{j}(s) f_{j}(t) \phi_{j}(s, t) d s d t+\left(\int_{\mathbb{R}} D_{j, t}^{\phi_{j}} f_{j}(t) d t\right)^{2}\right]<\infty \tag{2.12}
\end{equation*}
$$

where $\phi_{j}=\phi_{H_{j}} ; 1 \leq j \leq m$.
Denote the set of all such $m$-dimensional processes $f$ by $\mathcal{L}_{\phi}^{1,2}(m)$, where $\phi=\left(\phi_{1}, \ldots, \phi_{m}\right)$.
It can be proved (see $[\mathrm{B} \emptyset])$ that for $f, g \in \mathcal{L}_{\phi}^{1,2}(m)$ we have the following fractional multi-dimensional Itô isometry

$$
\begin{align*}
& \mathbb{E}\left[\left(\int_{\mathbb{R}} f d B^{(H)}\right) \cdot\left(\int_{\mathbb{R}} g d B^{(H)}\right)\right]=\mathbb{E}\left[\sum_{i=1}^{m} \int_{\mathbb{R}} \int_{\mathbb{R}} f_{i}(s) g_{i}(t) \phi_{i}(s, t) d s d t\right. \\
& \left.\quad+\sum_{i, j=1}^{m}\left(\int_{\mathbb{R}} D_{j, t}^{\phi} f_{i}(t) d t\right) \cdot\left(\int_{\mathbb{R}} D_{i, t}^{\phi} g_{j}(t) d t\right)\right] . \tag{2.13}
\end{align*}
$$

We put

$$
\begin{align*}
(f, g)_{\mathbb{L}_{\phi}^{1,2}(m)}=\mathbb{E} & {\left[\sum_{i=1}^{m} \int_{\mathbb{R}} \int_{\mathbb{R}} f_{i}(s) g_{i}(t) \phi_{i}(s, t) d s d t\right.} \\
& \left.+\sum_{i, j=1}^{m}\left(\int_{\mathbb{R}} D_{j, t}^{\phi} f_{i}(t) d t\right) \cdot\left(\int_{\mathbb{R}} D_{i, t}^{\phi} g_{j}(t) d t\right)\right] \tag{2.14}
\end{align*}
$$

and define

$$
\mathbb{L}_{\phi}^{1,2}(m)=\left\{f \in \mathcal{L}_{\phi}^{1,2}(m) ;\|f\|_{\mathbb{L}_{\phi}^{1,2}(m)}^{2}:=(f, f)_{\mathbb{L}_{\phi}^{1,2}(m)}<\infty\right\} .
$$

Now suppose $\sigma_{i} \in \mathcal{L}_{\phi}^{1,2}(m)$ for $1 \leq i \leq n$. Then we can define $X(t)=\left(X_{1}(t), \cdots, X_{n}(t)\right)$ where

$$
\begin{equation*}
X_{i}(t, \omega)=\sum_{j=1}^{m} \int_{0}^{t} \sigma_{i j}(s, \omega) d B_{j}^{(H)}(s) ; 1 \leq i \leq n \tag{2.15}
\end{equation*}
$$

We have the following multi-dimensional fractional Itô formula:
Theorem 2.3 Let $f \in C^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$ with bounded second order derivatives. Then, for $t \geq 0$,

$$
\begin{align*}
& f(t, X(t))=f(0,0)+\int_{0}^{t} \frac{\partial f}{\partial s}(s, X(s)) d s+\int_{0}^{t} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(s, X(s)) d X_{i}(s) \\
& \quad+\int_{0}^{t}\left\{\sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(s, X(s)) \sum_{k=1}^{m} \sigma_{i k}(s) D_{k, s}^{\phi}\left(X_{j}(s)\right)\right\} d s  \tag{2.16}\\
& =f(0,0)+\int_{0}^{t} \frac{\partial f}{\partial s}(s, X(s)) d s+\sum_{j=1}^{m} \int_{0}^{t}\left[\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(s, X(s)) \sigma_{i j}(s, \omega)\right] d B_{j}^{(H)}(s) \\
& \quad+\int_{0}^{t} \operatorname{Tr}\left[\Lambda^{T}(s) f_{x x}(s, X(s))\right] d s . \tag{2.17}
\end{align*}
$$

Here $\Lambda=\left[\Lambda_{i j}\right] \in \mathbb{R}^{n \times m}$ with

$$
\begin{equation*}
\Lambda_{i j}(s)=\sum_{k=1}^{m} \sigma_{i k} D_{k, s}^{\phi}\left(X_{j}(s)\right) ; \quad 1 \leq i \leq n, \quad 1 \leq j \leq m \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
f_{x x}=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]_{1 \leq i, j \leq n} \tag{2.19}
\end{equation*}
$$

and $(\cdot)^{T}$ denotes matrix transposed and $\operatorname{Tr}[\cdot]$ denotes matrix trace.
The following useful result is a multidimensional version of Theorem 4.2 in [DHP]:
Theorem 2.4 Let

$$
\begin{equation*}
X(t)=\sum_{j=1}^{m} \int_{0}^{t} \sigma_{j}(r, \omega) d B_{j}^{(H)}(r) ; \quad \sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right) \in \mathcal{L}_{\phi}^{1,2}(m) \tag{2.20}
\end{equation*}
$$

Then

$$
\begin{equation*}
D_{k, s}^{\phi} X(t)=\sum_{j=1}^{m} \int_{0}^{t} D_{k, s}^{\phi} \sigma_{j}(r) d B_{j}^{(H)}(r)+\int_{0}^{t} \sigma_{k}(r) \phi_{H_{k}}(s, r) d r, \quad 1 \leq k \leq m \tag{2.21}
\end{equation*}
$$

In particular, if $\sigma_{j}(r)$ is deterministic for all $j \in\{1,2, \cdots, m\}$ then

$$
\begin{equation*}
D_{k, s}^{\phi} X(t)=\int_{0}^{t} \sigma_{k}(r) \phi_{H_{k}}(s, r) d r \tag{2.22}
\end{equation*}
$$

Now we have the following integration by parts formula.
Corollary 2.5 Let $X(t)$ and $Y(t)$ be two processes of the form

$$
d X(t)=\mu(t, \omega) d t+\sigma(t, \omega) d B^{(H)}(t), \quad X(0)=x \in \mathbb{R}^{n}
$$

and

$$
d Y(t)=\nu(t, \omega) d t+\theta(t, \omega) d B^{(H)}(t), \quad Y(0)=y \in \mathbb{R}^{n}
$$

where $\mu: \mathbb{R} \times \Omega \rightarrow \mathbb{R}^{n}, \nu: \mathbb{R} \times \Omega \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R} \times \Omega \rightarrow \mathbb{R}^{n \times m}$ and $\theta: \mathbb{R} \times \Omega \rightarrow \mathbb{R}^{n \times m}$ are given processes with rows $\sigma_{i}, \theta_{i} \in \mathcal{L}_{\phi}^{1,2}(m)$ for $1 \leq i \leq n$ and $B^{H}(\cdot)$ is an m-dimensional fractional Brownian motion.
a) Then, for $T>0$,

$$
\begin{align*}
& \mathbb{E}[X(T) \cdot Y(T)]=x \cdot y+\mathbb{E}\left[\int_{0}^{T} X(s) d Y(s)\right]+\mathbb{E}\left[\int_{0}^{T} Y(s) d X(s)\right] \\
& + \\
& +\mathbb{E}\left[\int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{n} \sum_{k=1}^{m} \sigma_{i k}(s) \theta_{i k}(t) \phi_{H_{k}}(s, t) d s d t\right]  \tag{2.23}\\
& +\mathbb{E}\left[\sum_{i=1}^{n} \sum_{j, k=1}^{m}\left(\int_{\mathbb{R}} D_{j, t}^{\phi} \sigma_{i k}(t) d t\right)\left(\int_{\mathbb{R}} D_{k, t}^{\phi} \theta_{i j}(t) d t\right)\right]
\end{align*}
$$

provided that the first two integrals exist.
b) In particular, if $\sigma(\cdot)$ or $\theta(\cdot)$ is deterministic then

$$
\begin{align*}
\mathbb{E}[X(T) \cdot Y(T)]= & x \cdot y+\mathbb{E}\left[\int_{0}^{T} X(s) d Y(s)\right]+\mathbb{E}\left[\int_{0}^{T} Y(s) d X(s)\right] \\
& +\mathbb{E}\left[\int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{n} \sum_{k=1}^{m} \sigma_{i k}(s) \theta_{i k}(t) \phi_{H_{k}}(s, t) d s d t\right] \tag{2.24}
\end{align*}
$$

Proof This follows from Theorem 2.3 applied to the function $f(t, x, y)=x y$, combined with (2.13).

## 3 Stochastic differential equations

For given functions $b: \mathbb{R} \times \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ and $\sigma: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ consider the stochastic differential equation

$$
\begin{equation*}
d X(t)=b(t, X(t)) d t+\sigma(t, X(t)) d B^{(H)}(t), \quad t \in[0, T] \tag{3.1}
\end{equation*}
$$

where the initial value $X(0) \in L^{2}\left(\mu_{\phi}\right)$ or the terminal value $X(T) \in L^{2}\left(\mu_{\phi}\right)$ is given. The Itô isometry for the stochastic integral becomes

$$
\begin{align*}
\mathbb{E}\left(\int_{0}^{T} \sigma(t, X(t)) d B^{(H)}(t)\right)^{2}= & \mathbb{E}\left(\int_{0}^{T} \int_{0}^{T} \sigma(t, X(t)) \sigma(s, X(s)) \phi(s, t) d s d t\right) \\
& +\mathbb{E}\left\{\left(\int_{0}^{T} \sigma_{x}^{\prime}(s, X(s)) D_{s}^{\phi} X(s) d s\right)^{2}\right\} \tag{3.2}
\end{align*}
$$

Because of the appearance of the term $D_{s}^{\phi} X(s)$ on the right-hand-side of the above identity, we may not directly apply the Picard iteration to solve (3.1).

In this section, we will solve the following quasi-linear stochastic differential equations using the theory developed in [HØ1], [HØ2]:

$$
\begin{equation*}
d X(t)=b(t, X(t)) d t+\left(\sigma_{t} X(t)+a_{t}\right) d B^{(H)}(t) \tag{3.3}
\end{equation*}
$$

where $\sigma_{t}$ and $a_{t}$ are given deterministic functions, $b(t, x)=b(t, x, \omega)$ is (almost surely) continuous with respect to $t$ and $x$ and globally Lipschitz continuous on $x$, the initial condition $X(0)$ or the terminal condition $X(T)$ is given. For simplicity we will discuss the case when $a_{t}=0$ for all $t \in[0, T]$. Namely, we shall consider

$$
\begin{equation*}
d X(t)=b(t, X(t)) d t+\sigma_{t} X(t) d B^{(H)}(t) \tag{3.4}
\end{equation*}
$$

We need the following result, which is a fractional version of Gjessing's lemma (see e.g. Theorem 2.10.7 in [HØUZ]).

Lemma 3.1 Let $G \in L^{2}\left(\mu_{H}\right)$ and

$$
F=\exp ^{\diamond}\left(\int_{\mathbb{R}} f(t) d B^{(H)}(t)\right)=\exp \left(\int_{\mathbb{R}} f(t) d B^{(H)}(t)-\frac{1}{2}\|f\|_{\phi}^{2}\right)
$$

where $f$ is deterministic and such that

$$
\|f\|_{\phi}^{2}:=\int_{\mathbb{R}^{2}} f(s) f(t) \phi(s, t) d s d t<\infty
$$

Then

$$
\begin{equation*}
F \diamond G=F \tau_{\hat{f}} G \tag{3.5}
\end{equation*}
$$

where $\diamond$ is the Wick product defined in [HØ2], $\hat{f}$ is given by

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} f(s) g(t) \phi(s, t) d s d t=\int_{\mathbb{R}} \hat{f}(s) g(s) d s \quad \forall g \in C_{0}^{\infty}(\mathbb{R}) \tag{3.6}
\end{equation*}
$$

and

$$
\tau_{\hat{f}} G(\omega)=G\left(\omega-\int_{0} \hat{f}(s) d s\right) .
$$

Proof By [DHP, Theorem 3.1] it suffices to show the result in the case when

$$
G(\omega)=\exp ^{\diamond}\left(\int_{\mathbb{R}} g(t) d B^{(H)}(t)\right)=\exp ^{\diamond}\langle\omega, g\rangle
$$

where $g$ is deterministic and $\|g\|_{\phi}<\infty$. In this case we have

$$
\begin{aligned}
F \diamond G & =\exp ^{\diamond}\left(\int_{\mathbb{R}}[f(t)+g(t)] d B^{(H)}(t)\right) \\
& =\exp \left(\int_{\mathbb{R}}[f(t)+g(t)] d B^{(H)}(t)-\frac{1}{2}\|f\|_{\phi}^{2}-\frac{1}{2}\|g\|_{\phi}^{2}-(f, g)_{\phi}\right)
\end{aligned}
$$

where

$$
(f, g)_{\phi}=\int_{\mathbb{R}^{2}} f(s) g(t) \phi(s, t) d s d t
$$

But

$$
\begin{aligned}
\tau_{\hat{f}} G & =\exp ^{\diamond}\left(\int_{\mathbb{R}} g(t) d B^{(H)}(t)-\int_{\mathbb{R}} \hat{f}(t) g(t) d t\right) \\
& =\exp ^{\diamond}\left(\int_{\mathbb{R}} g(t) d B^{(H)}(t)-(f, g)_{\phi}\right)
\end{aligned}
$$

Hence

$$
F \tau_{\hat{f}} G=\exp \left(\int_{\mathbb{R}} f(t) d B^{(H)}(t)-\frac{1}{2}\|f\|_{\phi}^{2}+\int_{\mathbb{R}} g(t) d B^{(H)}(t)-\frac{1}{2}\|g\|_{\phi}^{2}-(f, g)_{\phi}\right)=F \diamond G
$$

We now return to Equation (3.3). First let us solve the equation when $b=0$ and with initial value $X(0)$ given. Namely, let us consider

$$
\begin{equation*}
d X(t)=-\sigma_{t} X(t) d B^{(H)}(t), \quad X(0) \quad \text { given } \tag{3.7}
\end{equation*}
$$

With the notion of Wick product, this equation can be written (see [HØ2, Def 3.11])

$$
\begin{equation*}
\dot{X}(t)=-\sigma_{t} X(t) \diamond W^{(H)}(t) \tag{3.8}
\end{equation*}
$$

where $W^{(H)}=\dot{B}^{(H)}$ is the fractional white noise. Using the Wick calculus, we obtain

$$
\begin{align*}
X(t) & =X(0) \diamond J_{\sigma}(t) \\
& :=X(0) \diamond \exp ^{\diamond}\left(-\int_{0}^{t} \sigma_{s} W^{(H)}(s) d s\right) \\
& =X(0) \diamond \exp \left(-\int_{0}^{t} \sigma_{s} d B^{(H)}(s)-\frac{1}{2}\|\sigma\|_{\phi, t}^{2}\right), \tag{3.9}
\end{align*}
$$

where

$$
\begin{equation*}
\|\sigma\|_{\phi, t}^{2}:=\int_{0}^{t} \int_{0}^{t} \sigma_{u} \sigma_{v} \phi(u, v) d u d v \tag{3.10}
\end{equation*}
$$

To solve Equation (3.4) we let

$$
\begin{equation*}
Y_{t}:=X(t) \diamond J_{\sigma}(t) . \tag{3.11}
\end{equation*}
$$

This means

$$
\begin{equation*}
X(t)=Y_{t} \diamond \hat{J}_{\sigma}(t), \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{J}_{\sigma}(t)=J_{-\sigma}(t)=\exp \left(\int_{0}^{t} \sigma_{s} d B^{(H)}(s)-\frac{1}{2}\|\sigma\|_{\phi, t}^{2}\right) . \tag{3.13}
\end{equation*}
$$

Thus we have

$$
\begin{aligned}
\frac{d Y_{t}}{d t} & =\frac{d X(t)}{d t} \diamond J_{\sigma}(t)+X(t) \diamond \frac{d J_{\sigma}(t)}{d t} \\
& =\frac{d X(t)}{d t} \diamond J_{\sigma}(t)-\sigma_{t} J_{\sigma}(t) \diamond X(t) \diamond W^{(H)}(t) \\
& =J_{\sigma}(t) \diamond b(t, X(t), \omega) \\
& =J_{\sigma}(t) b\left(t, \tau_{-\hat{\sigma}} X(t), \omega+\int_{0} \hat{\sigma}(s) d s\right),
\end{aligned}
$$

where

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \sigma_{s} g(t) \phi(s, t) d s d t=\int_{\mathbb{R}} \hat{\sigma}_{s} g(s) d s \quad \forall g \in C_{0}^{\infty}(\mathbb{R}) \tag{3.14}
\end{equation*}
$$

We are going to relate $\tau_{\hat{\sigma}} X(t)$ to $Y_{t}$.

$$
\begin{aligned}
\tau_{-\hat{\sigma}} X_{t}(t, \omega) & =\tau_{-\hat{\sigma}}\left[J_{-\sigma}(t) \sigma \diamond Y_{t}(t, \omega)\right] \\
& =\tau_{-\hat{\sigma}}\left[J_{-\sigma}(t) \tau_{\hat{\sigma}} Y_{t}\right] \\
& =\tau_{-\hat{\sigma}} J_{-\sigma}(t) Y_{t}
\end{aligned}
$$

Since $\tau_{-\hat{\sigma}} J_{-\sigma}(t)=\left[J_{-\hat{\sigma}}(t)\right]^{-1}$, we obtain an equation equivalent to (3.4) for $Y_{t}$ :

$$
\begin{equation*}
\frac{d Y_{t}}{d t}=J_{-\sigma}(t) b\left(t,\left[J_{-\sigma}(t)\right]^{-1} Y_{t}, \omega+\int_{0} \hat{\sigma}(s) d s\right) \tag{3.15}
\end{equation*}
$$

This is a deterministic equation. The initial value $X(0)$ is equivalent to initial value $Y_{0}=$ $X(0) \diamond J_{-\sigma}(0)=X(0)$. Thus we can solve the quasilinear equation with given initial value.

The terminal value $X(T)$ can also be transformed into the terminal value on $Y(T)=$ $X(T) \diamond J_{-\sigma}(T)$. Thus the equation with given terminal value can be solved in a similar way. Note, however, that in this case the solution need not be $\mathcal{F}^{(H)}$-adapted (see the next section).

Example 3.2 In the equation (3.4) let us consider the case $b(t, x)=b_{t} x$ for some deterministic locally bounded function $b_{t}$ of $t$. This means that we are considering the linear stochastic differential equation:

$$
\begin{equation*}
d X(t)=b_{t} X(t) d t+\sigma_{t} X(t) d B^{(H)}(t) \tag{3.16}
\end{equation*}
$$

In this case it is easy to see that the equation (3.15) satisfied by $Y$ is

$$
\dot{Y}_{t}=b(t) Y_{t}
$$

When the initial value is $Y(0)=x$ (constant), $x \in \mathbb{R}$, then

$$
Y_{t}=x e^{\int_{0}^{t} b(s) d s}
$$

Thus the solution of (3.16) with $X(0)=x$ can be expressed as

$$
\begin{align*}
X(t) & =Y(t) \diamond J_{-\sigma}(t) \\
& =x \exp \left\{\int_{0}^{t} b(s) d s+\int_{0}^{t} \sigma_{s} d B^{(H)}(s)-\frac{1}{2}\|\sigma\|_{\phi, t}^{2}\right\} . \tag{3.17}
\end{align*}
$$

If we assume the terminal value $X(T)$ given, then

$$
\begin{aligned}
Y(t) & =Y(T) e^{\int_{t}^{T} b(s) d s} \\
& =X(T) \diamond J_{\sigma}(T) e^{\int_{t}^{T} b(s) d s} .
\end{aligned}
$$

Hence

$$
\begin{align*}
X(t)= & Y(t) \diamond J_{-\sigma}(t)=X(T) \diamond \exp \left\{\int_{t}^{T} b(s) d s\right. \\
& \left.-\int_{t}^{T} \sigma_{s} d B^{(H)}(s)-\frac{1}{2} \int_{t}^{T} \int_{t}^{T} \sigma(u) \sigma(v) \phi(u, v) d u d v\right\} . \tag{3.18}
\end{align*}
$$

## 4 Fractional backward stochastic differential equations

Let $b: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a given function and let $F: \Omega \rightarrow \mathbb{R}$ be a given $\mathcal{F}_{T}^{(H)}$-measurable random variable, where $T>0$ is a constant. Consider the problem of finding $\mathcal{F}^{(H)}$-adapted processes $p(t), q(t)$ such that

$$
\begin{gather*}
d p(t)=b(t, p(t), q(t)) d t+q(t) d B^{(H)}(t) ; \quad t \in[0, T],  \tag{4.1}\\
P(T)=F \quad \text { a.s. } \tag{4.2}
\end{gather*}
$$

This is a fractional backward stochastic differential equation (FBSDE) in the two unknown processes $p(t)$ and $q(t)$. We will not discuss general theory for such equations here, but settle with a solution in a linear variant of (4.1)-(4.2), namely

$$
\begin{gather*}
d p(t)=\left[\alpha(t)+b_{t} p(t)+c_{t} q(t)\right] d t+q(t) d B^{(H)}(t) ; \quad t \in[0, T],  \tag{4.3}\\
P(T)=F \quad \text { a.s. }, \tag{4.4}
\end{gather*}
$$

where $b_{t}$ and $c_{t}$ are given continuous deterministic functions and $\alpha(t)=\alpha(t, \omega)$ is a given $\mathcal{F}^{(H)}$-adapted process s.t. $\int_{0}^{T}|\alpha(t, \omega)| d t<\infty$ a.s.

To solve (4.3)-(4.4) we proceed as follows: By the fractional Girsanov theorem (see e.g. [HØ2, Theorem 3.18]) we can rewrite (4.3) as

$$
\begin{equation*}
d p(t)=\left[\alpha(t)+b_{t} p(t)\right] d t+q(t) d \hat{B}^{(H)}(t) ; \quad t \in[0, T], \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{B}^{(H)}(t)=B^{(H)}(t)+\int_{0}^{t} c_{s} d s \tag{4.6}
\end{equation*}
$$

is a fractional Brownian motion (with Hurst parameter $H$ ) under the new probability measure $\hat{\mu}$ on $\mathcal{F}_{T}^{(H)}$ defined by

$$
\begin{equation*}
\frac{d \hat{\mu}(\omega)}{d \mu(\omega)}=\exp ^{\diamond}\{-\langle\omega, \hat{c}\rangle\}=\exp \left\{-\int_{0}^{T} \hat{c}(s) d B^{(H)}(s)-\frac{1}{2}\|\hat{c}\|_{\phi}^{2}\right\}, \tag{4.7}
\end{equation*}
$$

where $\hat{c}=\hat{c}_{t}$ is the continuous function with supp $(\hat{c}) \subset[0, T]$ satisfying

$$
\begin{equation*}
\int_{0}^{T} \hat{c}_{s} \phi(s, t) d s=c_{t} ; \quad 0 \leq t \leq T \tag{4.8}
\end{equation*}
$$

and

$$
\|\hat{c}\|_{\phi}^{2}=\int_{0}^{T} \int_{0}^{T} \hat{c}(s) \hat{c}(t) \phi(s, t) d s d t
$$

If we multiply (4.5) with the integrating factor

$$
\beta_{t}:=\exp \left(-\int_{0}^{t} b_{s} d s\right),
$$

we get

$$
\begin{equation*}
d\left(\beta_{s} p(s)\right)=\beta_{s} \alpha(s) d s+\beta_{s} q(s) d \hat{B}^{(H)}(s) \tag{4.9}
\end{equation*}
$$

or, by integrating (4.9) from $s=t$ to $s=T$,

$$
\begin{equation*}
\beta_{T} F=\beta_{t} p(t)+\int_{t}^{T} \beta_{s} \alpha(s) d s+\int_{t}^{T} \beta_{s} q(s) d \hat{B}^{(H)}(s) . \tag{4.10}
\end{equation*}
$$

Assume from now on that

$$
\begin{equation*}
\|\alpha\|_{\hat{\mathcal{L}}_{\phi}^{1,2}[0, T]}^{2}:=\mathbb{E}_{\hat{\mu}}\left[\int_{[0, T] \times[0, T]} \alpha(s) \alpha(t) \phi(s, t) d s d t+\left(\int_{0}^{T} \hat{D}_{s}^{\phi} \alpha(s) d s\right)^{2}\right]<\infty . \tag{4.11}
\end{equation*}
$$

By the fractional Itô isometry (see [DHP, Theorem 3.7] or [HØS2, (1.10)]) applied to $\hat{B}, \hat{\mu}$ we then have

$$
\begin{equation*}
\mathbb{E}_{\hat{\mu}}\left[\left(\int_{0}^{T} \alpha(s) d \hat{B}^{(H)}(s)\right)^{2}\right]=\|\alpha\|_{\hat{\mathcal{L}}_{\phi}^{1,2}[0, T]}^{2} \tag{4.12}
\end{equation*}
$$

From now on let us also assume that

$$
\begin{equation*}
\mathbb{E}_{\hat{\mu}}\left[F^{2}\right]<\infty . \tag{4.13}
\end{equation*}
$$

We now apply the quasi-conditional expectation operator (see [HØ2, Definition 4.9a)])

$$
\tilde{\mathbb{E}}_{\hat{\mu}}\left[\cdot \mid \mathcal{F}_{t}^{(H)}\right]
$$

to both sides of (4.10) and get

$$
\begin{equation*}
\beta_{T} \tilde{\mathbb{E}}_{\hat{\mu}}\left[F \mid \mathcal{F}_{t}^{(H)}\right]=\beta_{t} p(t)+\int_{t}^{T} \beta_{s} \tilde{\mathbb{E}}_{\hat{\mu}}\left[\alpha(s) \mid \mathcal{F}_{t}^{(H)}\right] d s \tag{4.14}
\end{equation*}
$$

Here we have used that $p(t)$ is $\mathcal{F}_{t}^{(H)}$-measurable, that the filtration $\hat{\mathcal{F}}_{t}^{(H)}$ generated by $\hat{B}^{(H)}(s) ; s \leq t$ is the same as $\mathcal{F}_{t}^{(H)}$, and that

$$
\begin{equation*}
\tilde{\mathbb{E}}_{\hat{\mu}}\left[\int_{t}^{T} f(s, \omega) d \hat{B}^{(H)}(s) \mid \hat{\mathcal{F}}_{t}^{(H)}\right]=0, \quad \text { for all } \quad t \leq T \tag{4.15}
\end{equation*}
$$

for all $f \in \hat{\mathcal{L}}_{\phi}^{1,2}[0, T]$. See [HØ2, Def 4.9] and [HØS2, Lemma 1.1].
From (4.14) we get the solution

$$
\begin{align*}
p(t)= & \exp \left(-\int_{t}^{T} b_{s} d s\right) \tilde{\mathbb{E}}_{\hat{\mu}}\left[F \mid \mathcal{F}_{t}^{(H)}\right] \\
& +\int_{t}^{T} \exp \left(-\int_{t}^{s} b_{r} d r\right) \tilde{\mathbb{E}}_{\hat{\mu}}\left[\alpha(s) \mid \mathcal{F}_{t}^{(H)}\right] d s ; \quad t \leq T . \tag{4.16}
\end{align*}
$$

In particular, choosing $t=0$ we get

$$
\begin{equation*}
p(0)=\exp \left(-\int_{0}^{T} b_{s} d s\right) \tilde{\mathbb{E}}_{\hat{\mu}}[F]+\int_{0}^{T} \exp \left(-\int_{0}^{s} b_{r} d r\right) \tilde{\mathbb{E}}_{\hat{\mu}}[\alpha(s)] d s \tag{4.17}
\end{equation*}
$$

Note that $p(0)$ is $\mathcal{F}_{0}^{(H)}$-measurable and hence a constant. Choosing $t=0$ in (4.10) we get

$$
\begin{equation*}
G=\int_{0}^{T} \beta_{s} q(s) d \hat{B}^{(H)}(s) \tag{4.18}
\end{equation*}
$$

where

$$
\begin{equation*}
G=G(\omega)=\beta_{T} F(\omega)-\int_{0}^{T} \beta_{s} \alpha(s, \omega) d s-p(0) \tag{4.19}
\end{equation*}
$$

with $p(0)$ given by (4.17).
By the fractional Clark-Ocone theorem [HØ1, Theorem 4.15 b)] applied to $\left(\hat{B}^{(H)}, \hat{\mu}\right)$ we have

$$
\begin{equation*}
G=\mathbb{E}_{\hat{\mu}}[G]+\int_{0}^{T} \tilde{\mathbb{E}}_{\hat{\mu}}\left[\hat{D}_{s} G \mid \hat{\mathcal{F}}_{s}^{(H)}\right] d \hat{B}^{(H)}(s), \tag{4.20}
\end{equation*}
$$

where $\hat{D}$ denotes the Malliavin derivative at $s$ with respect to $\hat{B}^{(H)}(\cdot)$. Comparing (4.18) and (4.20) we see that we can choose

$$
\begin{equation*}
q(t)=\exp \left(\int_{0}^{t} b_{r} d r\right) \tilde{\mathbb{E}}_{\hat{\mu}}\left[\hat{D}_{t} G \mid \mathcal{F}_{t}^{(H)}\right] \tag{4.21}
\end{equation*}
$$

We have proved the first part of the following result:
Theorem 4.1 Assume that (4.11) and (4.13) hold. Then a solution $(p(t), q(t))$ of (4.3)(4.4) is given by (4.16) and (4.21). The solution is unique among all $\mathcal{F}^{(H)}$-adapted processes $p(\cdot), q(\cdot) \in \hat{\mathcal{L}}_{\phi}^{1,2}[0, T]$.

Proof It remains to prove uniqueness. The uniqueness of $p(\cdot)$ follows from the way we deduced formula (4.16) from (4.3)-(4.4). The uniqueness of $q$ is deduced from (4.18) and (4.20) by the following argument: Substituting (4.20) from (4.18) and using that $\mathbb{E}_{\hat{\mu}}(G)=0$ we get

$$
0=\int_{0}^{T}\left(\beta_{s} q(s)-\tilde{\mathbb{E}}_{\hat{\mu}}\left[\hat{D}_{s} G \mid \hat{\mathcal{F}}_{s}^{(H)}\right]\right) d \hat{B}^{(H)}(s)
$$

Hence by the fractional Itô isometry (4.12)

$$
\begin{aligned}
0 & =\mathbb{E}_{\hat{\mu}}\left[\left\{\int_{0}^{T}\left(\beta_{s} q(s)-\tilde{\mathbb{E}}_{\hat{\mu}}\left[\hat{D}_{s} G \mid \hat{\mathcal{F}}_{s}^{(H)}\right]\right) d \hat{B}^{(H)}(s)\right\}^{2}\right] \\
& =\left\|\beta_{s} q(s)-\tilde{\mathbb{E}}_{\hat{\mu}}\left[\hat{D}_{s} G \mid \hat{\mathcal{F}}_{s}^{(H)}\right]\right\|_{\hat{\mathcal{L}}_{\phi}^{1,2}[0, T]}^{2},
\end{aligned}
$$

from which it follows that

$$
\beta_{s} q(s)-\tilde{\mathbb{E}}_{\hat{\mu}}\left[\hat{D}_{s} G \mid \hat{\mathcal{F}}_{s}^{(H)}\right]=0 \quad \text { for } \quad \text { a.a. }(s, \omega) \in[0, T] \times \Omega .
$$

## 5 A stochastic maximum principle

We now apply the theory in the previous section to prove a maximum principle for systems driven by fractional Brownian motion. See e.g. $[\mathrm{H}],[\mathrm{P}]$ and $[\mathrm{YZ}]$ and the references therein for more information about the maximum principle in the classical Brownian motion case.

Suppose $X(t)=X^{(u)}(t)$ is a controlled system of the form

$$
\begin{equation*}
d X(t)=b(t, X(t), u(t)) d t+\sigma(t, X(t), u(t)) d B^{(H)}(t) ; \quad X(0)=x \in \mathbb{R}^{n} \tag{5.1}
\end{equation*}
$$

where $b:[0 . T] \times \mathbb{R}^{n} \times U \rightarrow \mathbb{R}^{n}$ and $\sigma:[0, T] \times \mathbb{R}^{n} \times U \rightarrow \mathbb{R}^{n \times m}$ are given $C^{1}$ functions. The control process $u(\cdot):[0, T] \times \Omega \rightarrow U \subset \mathbb{R}^{k}$ is assumed to be $\mathcal{F}^{(H)}$-adapted. $U$ is a given closed convex set in $\mathbb{R}^{k}$.

Let $f:[0, T] \times \mathbb{R}^{n} \times U \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ be given $C^{1}$ functions and consider a performance functional $J(u)$ of the form

$$
\begin{equation*}
J(u)=\mathbb{E}\left[\int_{0}^{T} f(t, X(t), u(t)) d t+g(X(T))\right] \tag{5.2}
\end{equation*}
$$

and a terminal condition given by

$$
\begin{equation*}
\mathbb{E}[G(X(T))]=0 . \tag{5.3}
\end{equation*}
$$

Let $\mathcal{A}$ denote the set of all $\mathcal{F}_{t}^{(H)}$-adapted processes $u:[0, T] \times \Omega \rightarrow U$ such that $X^{(u)}(t)$ exists and does not explode in $[0, T]$ and

$$
\begin{equation*}
E\left[\int_{0}^{T}|f(t, X(t), u(t))| d t+g^{-}(X(T))+G^{-}(X(T))\right]<\infty \tag{5.4}
\end{equation*}
$$

where $y^{-}=\max (0, y)$ for $y \in \mathbb{R}$, and such that (5.3) holds. If $u \in \mathcal{A}$ and $X^{(u)}(t)$ is the corresponding state process we call $\left(u, X^{(u)}\right)$ an admissible pair. Consider the problem to find $J^{*}$ and $u^{*} \in \mathcal{A}$ such that

$$
\begin{equation*}
J^{*}=\sup \{J(u) ; u \in \mathcal{A}\}=J\left(u^{*}\right) \tag{5.5}
\end{equation*}
$$

If such $u^{*} \in \mathcal{A}$ exists, then $u^{*}$ is called an optimal control and $\left(u^{*}, X^{*}\right)$, where $X^{*}=X^{u^{*}}$, is called an optimal pair.

Let $\mathcal{R}^{n \times m}$ be the set of continuous function from $[0, T]$ into $\mathbb{R}^{n \times m}$. Define the Hamiltonian $H:[0, T] \times \mathbb{R}^{n} \times U \times \mathbb{R}^{n} \times \mathcal{R}^{n \times m} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
H(t, x, u, p, q(\cdot))=f(t, x, u)+b(t, x, u)^{T} p+\sum_{i=1}^{n} \sum_{k=1}^{m} \sigma_{i k}(t, x, u) \int_{0}^{T} q_{i k}(s) \phi_{H_{k}}(s, t) d s \tag{5.6}
\end{equation*}
$$

Consider the following fractional stochastic backward differential equation in the pair of unknown $\mathcal{F}_{t}^{(H)}$-adapted processes $p(t) \in \mathbb{R}^{n}, q(t) \in \mathbb{R}^{n \times m}$, called the adjoint processes:

$$
\left\{\begin{array}{l}
d p(t)=-H_{x}(t, X(t), u(t), p(t), q(\cdot)) d t+q(t) d B^{(H)}(t) ; \quad t \in[0, T]  \tag{5.7}\\
p(T)=g_{x}(X(T))+\lambda^{T} G_{x}(X(T))
\end{array}\right.
$$

where $H_{x}=\nabla_{x} H=\left(\frac{\partial H}{\partial x_{1}}, \cdots, \frac{\partial H}{\partial x_{n}}\right)^{T}$ is the gradient of $H$ with respect to $x$ and similarly with $g_{x}$ and $G_{x} . \quad X(t)=X^{(u)}(t)$ is the process obtained by using the control $u \in \mathcal{A}$ and $\lambda \in \mathbb{R}_{+}^{n}$ is a constant. The equation (5.6) is called the adjoint equation and $p(t)$ is sometimes interpreted as the shadow price (of a resource).

Theorem 5.1 (The fractional stochastic maximum principle) Suppose $\hat{u} \in \mathcal{A}$ and put $\hat{X}=X^{(\hat{u})}$. Suppose there exists a solution $\hat{p}(t), \hat{q}(t)$ of the corresponding adjoint equation (5.7) for some $\lambda \in \mathbb{R}_{+}^{n}$ and such that the following, (5.8)-(5.11), hold:

$$
\begin{align*}
& X^{(u)}(t) \hat{q}(t) \in \mathcal{L}_{\phi}^{1,2} \quad \text { and } \quad \hat{p}^{T}(t) \sigma\left(t, X^{(u)}(t), u(t)\right) \in \mathcal{L}_{\phi}^{1,2} \quad \text { for all } u \in \mathcal{A}  \tag{5.8}\\
& H(t, \cdot, \cdot, \hat{p}(t), \hat{q}(t)), \quad g(\cdot) \text { and } G(\cdot) \text { are concave, for all } t \in[0, T],  \tag{5.9}\\
& H(t, \hat{X}(t), \hat{u}(t), \hat{p}(t), \hat{q}(\cdot))=\max _{v \in U} H(t, \hat{X}(t), v, \hat{p}(t), \hat{q}(\cdot)),  \tag{5.10}\\
& \Delta_{4}:=\mathbb{E}\left[\sum _ { i = 1 } ^ { n } \sum _ { j , k = 1 } ^ { m } \left(\int _ { 0 } ^ { T } D _ { j , t } ^ { \phi _ { j } } \left\{\sigma_{i k}(t, X(t), u(t))\right.\right.\right. \\
& \left.\left.\left.\quad-\sigma_{i k}(t, \hat{X}(t), \hat{u}(t))\right\} d t\right)\left(\int_{0}^{T} D_{k, t}^{\phi_{k}} \hat{q}_{i j}(t) d t\right)\right] \leq 0 \quad \text { for all } u \in \mathcal{A} . \tag{5.11}
\end{align*}
$$

Then if $\lambda \in \mathbb{R}_{+}^{n}$ is such that $(\hat{u}, \hat{X})$ is admissible (in particular, (5.3) holds), the pair ( $\hat{u}, \hat{X}$ ) is an optimal pair for problem (5.5).

Proof We first give a proof in the case when $G(x)=0$, i.e. when there is no terminal condition.

With $(\hat{u}, \hat{X})$ as above consider

$$
\begin{align*}
\Delta:= & \mathbb{E}\left[\int_{0}^{T} f(t, \hat{X}(t), \hat{u}(t)) d t-\int_{0}^{T} f(t, X(t), u(t)) d t\right] \\
= & \mathbb{E}\left[\int_{0}^{T} H(t, \hat{X}(t), \hat{u}(t), \hat{p}(t), \hat{q}(\cdot)) d t-\int_{0}^{T} H(t, X(t), u(t), \hat{p}(t), \hat{q}(\cdot)) d t\right] \\
& -\mathbb{E}\left[\int_{0}^{T}\{b(t, \hat{X}(t), \hat{u}(t))\}^{T} \hat{p}(t) d t-\int_{0}^{T} b(t, X(t), u(t))^{T} \hat{p}(t) d t\right] \\
& -\mathbb{E}\left[\int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{n} \sum_{k=1}^{m}\left\{\sigma_{i k}(s, \hat{X}(s), \hat{u}(s))-\sigma_{i k}(s, X(s), u(s))\right\} \hat{q}_{i k}(t) \phi_{H_{k}}(s, t) d s d t\right] \\
= & \Delta_{1}+\Delta_{2}+\Delta_{3} . \tag{5.12}
\end{align*}
$$

Since $(x, u) \rightarrow H(x, u)=H(t, x, u, p, q(\cdot))$ is concave we have

$$
H(x, u)-H(\hat{x}, \hat{u}) \leq H_{x}(\hat{x}, \hat{u}) \cdot(x-\hat{x})+H_{u}(\hat{x}, \hat{u}) \cdot(u-\hat{u})
$$

for all $(x, u),(\hat{x}, \hat{u})$. Since $v \rightarrow H(\hat{X}(t), v)$ is maximal at $v=\hat{u}(t)$ we have

$$
H_{u}(\hat{x}, \hat{u}) \cdot(u(t)-\hat{u}(t)) \leq 0 \quad \forall t .
$$

Therefore

$$
\begin{aligned}
\Delta_{1} & \geq \mathbb{E}\left[\int_{0}^{T}-H_{x}(t, \hat{X}(t), \hat{u}(t), \hat{p}(t), \hat{q}(\cdot)) \cdot(X(t)-\hat{X}(t)) d t\right] \\
& =\mathbb{E}\left[\int_{0}^{T}(X(t)-\hat{X}(t))^{T} d \hat{p}(t)-\int_{0}^{T}(X(t)-\hat{X}(t))^{T} \hat{q}(t) d B^{(H)}(t)\right]
\end{aligned}
$$

Since $\mathbb{E}\left[\int_{0}^{T}(X(t)-\hat{X}(t))^{T} \hat{q}(t) d B^{(H)}(t)\right]=0$ by (2.7), this gives

$$
\begin{equation*}
\Delta_{1} \geq \mathbb{E}\left[\int_{0}^{T}(X(t)-\hat{X}(t))^{T} d \hat{p}(t)\right] \tag{5.13}
\end{equation*}
$$

By (5.1) we have

$$
\begin{align*}
\Delta_{2}= & -\mathbb{E}\left[\int_{0}^{T}\{b(t, \hat{X}(t), \hat{u}(t))-b(t, X(t), u(t))\} \cdot \hat{p}(t) d t\right] \\
= & -\mathbb{E}\left[\int_{0}^{T} \hat{p}(t)(d \hat{X}(t)-d X(t))\right] \\
& -\mathbb{E}\left[\int_{0}^{T} \hat{p}(t)^{T}\{\sigma(t, \hat{X}(t), \hat{u}(t))-\sigma(t, X(t), u(t))\} d B^{(H)}(t)\right] \\
= & \mathbb{E}\left[\int_{0}^{T} \hat{p}(t)(d X(t)-d \hat{X}(t))\right] . \tag{5.14}
\end{align*}
$$

Finally, since $g$ is concave we have

$$
\begin{equation*}
g(X(T))-g(\hat{X}(T)) \leq g_{x}(\hat{X}(T)) \cdot(X(T)-\hat{X}(T)) \tag{5.15}
\end{equation*}
$$

Combining (5.12)-(5.15) with Corollary 2.5 we get, using (5.2), (5.7) and (5.11),

$$
\begin{aligned}
J(\hat{u}) & -J(u)=\Delta+\mathbb{E}[g(\hat{X}(T))-g(X(T))] \\
& \geq \Delta+\mathbb{E}\left[g_{x}(\hat{X}(T)) \cdot(\hat{X}(T)-X(T))\right] \\
& \geq \Delta-\mathbb{E}[\hat{p}(T) \cdot(X(T)-\hat{X}(T))] \\
& =\Delta-\left\{\mathbb{E}\left[\int_{0}^{T}(X(t)-\hat{X}(t)) \cdot d \hat{p}(t)\right]+\mathbb{E}\left[\int_{0}^{T} \hat{p}(t) \cdot(d X(t)-d \hat{X}(t))\right]\right. \\
& +\mathbb{E}\left[\int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{n} \sum_{k=1}^{m}\left\{\sigma_{i k}(s, X(s), u(s))-\sigma_{i k}(s, \hat{X}(s), \hat{u}(s))\right\} \hat{q}_{i k}(t) \phi_{H_{k}}(s, t) d s d t\right. \\
& \left.+\mathbb{E}\left[\sum_{i=1}^{n} \sum_{j, k=1}^{m}\left(\int_{0}^{T} D_{j, t}^{\phi_{j}}\left\{\sigma_{i k}(t, X(t), u(t))-\sigma_{i k}(t, \hat{X}(t), \hat{u}(t))\right\} d t\right)\left(\int_{0}^{T} D_{k, t}^{\phi_{k}} \hat{q}_{i j}(t)\right)\right]\right\} \\
& \geq \Delta-\left(\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}\right) \geq 0 .
\end{aligned}
$$

This shows that $J(\hat{u})$ is maximal among all admissible pairs $(u(\cdot), X(\cdot))$.
This completes the proof in the case with no terminal conditions $(G=0)$. Finally consider the general case with $G \neq 0$. Suppose that for some $\lambda_{0} \in \mathbb{R}_{+}^{n}$ there exists $\hat{u}_{\lambda_{0}}$ satisfying (5.8)-(5.11). Then by the above argument we know that if we put

$$
J_{\lambda_{0}}(u)=\mathbb{E}\left[\int_{0}^{T} f(t, X(t), u(t)) d t+g(X(T))+\lambda_{0}^{T} G(X(T))\right]
$$

then $J_{\lambda_{0}}\left(\hat{u}_{0}\right) \geq J_{\lambda_{0}}(u)$ for all controls $u$ (without terminal condition). If $\lambda_{0}$ is such that $\hat{u}_{\lambda_{0}}$ satisfies the terminal condition (i.e. $\hat{u}_{\lambda_{0}} \in \mathcal{A}$ ) and $u$ is another control in $\mathcal{A}$ then

$$
J\left(\hat{u}_{\lambda_{0}}\right)=J_{\lambda_{0}}\left(\hat{u}_{\lambda_{0}}\right) \geq J_{\lambda_{0}}(u)=J(u)
$$

and hence $\hat{u}_{\lambda_{0}} \in \mathcal{A}$ maximizes $J(u)$ over all $u \in \mathcal{A}$.
Corollary 5.2 Let $\hat{u} \in \mathcal{A}, \hat{X}=X^{(\hat{u})}$ and $(\hat{p}(t), \hat{q}(t))$ be as in Theorem 5.1. Assume that (5.8), (5.9) and (5.10) hold, and that condition (5.11) is replaced by the condition

$$
\begin{equation*}
\hat{q}(\cdot) \text { or } \sigma(\cdot, \hat{X}(\cdot), \hat{u}(\cdot)) \text { is deterministic. } \tag{5.16}
\end{equation*}
$$

Then if $\lambda \in \mathbb{R}_{+}^{n}$ is such that $(\hat{u}, \hat{X})$ is admissible, the pair $(\hat{u}, \hat{X})$ is an optimal pair for problem (5.5).

## 6 A minimal variance hedging problem

To illustrate our main result, we use it to solve the following problem from mathematical finance:

Consider a financial market driven by two independent fractional Brownian motions $B_{1}(t)=B_{1}^{\left(H_{1}\right)}(t)$ and $B_{2}(t)=B^{\left(H_{2}\right)}(t)$, with $\frac{1}{2}<H_{i}<1, i=1,2$, as follows:

$$
\begin{array}{ll}
\text { (Bond price) } & d S_{0}(t)=0 ; \quad S_{0}(0)=1 \\
\text { (Price of stock 1) } & d S_{1}(t)=d B_{1}(t) ; \quad S_{1}(0)=s_{1} \\
\text { (Price of stock 2) } & d S_{2}(t)=d B_{1}(t)+d B_{2}(t) ; \quad S_{2}(0)=s_{2} \tag{6.3}
\end{array}
$$

If $\theta(t)=\left(\theta_{0}(t), \theta_{1}(t), \theta_{2}(t)\right) \in \mathbb{R}^{3}$ is a portfolio (giving the number of units of the bond, stock 1 and stock 2 , respectively, held at time $t$ ) then the corresponding value process is

$$
\begin{equation*}
V^{\theta}(t)=\theta(t) \cdot S(t)=\sum_{i=0}^{2} \theta_{i}(t) S_{i}(t) . \tag{6.4}
\end{equation*}
$$

The portfolio is called self-financing if

$$
\begin{equation*}
d V^{\theta}(t)=\theta(t) \cdot d S(t)=\theta_{1}(t) d B_{1}(t)+\theta_{2}(t)\left(d B_{1}(t)+d B_{2}(t)\right) \tag{6.5}
\end{equation*}
$$

This market is called complete if any bounded $\mathcal{F}_{T}^{(H)}$-measurable random variable $F$ can be hedged (or replicated), in the sense that there exists a (self-financing) portfolio $\theta(t)$ and an initial value $z \in \mathbb{R}$ such that

$$
\begin{equation*}
F(\omega)=z+\int_{0}^{T} \theta(t) d S(t) \quad \text { for a.a. } \omega \tag{6.6}
\end{equation*}
$$

(See [HØ2] and [W] for a general discussion about this.)
Let us now assume that we are not allowed to trade in stock 1, i.e. we must have $\theta_{1}(t) \equiv 0$. How close to, say, $F(\omega)=B_{1}(T, \omega)$ can we get if we must hedge under this constraint?

If we put $\theta_{2}(t)=u(t)$ and interpret "close" as having a small $L^{2}(\mu)$ distance to $F$, then the problem can be stated as follows:

Find $z \in \mathbb{R}$ and admissible $u(t, \omega)$ such that

$$
\begin{align*}
J(z, u): & =\mathbb{E}\left[\left\{B_{1}(T)-\left(z+\int_{0}^{T} u(t)\left(d B_{1}(t)+d B_{2}(t)\right)\right)\right\}^{2}\right] \\
& =z^{2}+\mathbb{E}\left[\left\{\int_{0}^{T}(u(t)-1) d B_{1}(t)+\int_{0}^{T} u(t) d B_{2}(t)\right\}^{2}\right] \tag{6.7}
\end{align*}
$$

is minimal. We see immediately that it is optimal to choose $z=0$, so it remains to minimize over $u(t)=u(t, \omega)$ the functional

$$
\begin{equation*}
J(u):=\mathbb{E}\left[\left\{\int_{0}^{T}(u(t)-1) d B_{1}(t)+\int_{0}^{T} u(t) d B_{2}(t)\right\}^{2}\right] \tag{6.8}
\end{equation*}
$$

If we apply the fractional Itô isometry (2.13) we get, after some simplifications,

$$
\begin{align*}
J(u)= & \mathbb{E}\left[\int_{0}^{T} \int_{0}^{T}\left\{(u(s)-1)(u(t)-1) \phi_{1}(s, t)+u(s) u(t) \phi_{2}(s, t)\right\} d s d t\right. \\
& \left.+\left(\int_{0}^{T}\left\{D_{1, t}^{\phi} u(t)-D_{2, t}^{\phi} u(t)\right\} d t\right)^{2}\right] . \tag{6.9}
\end{align*}
$$

However, it is difficult to see from this what the minimizing $u(t)$ is.
To approach this problem by using the fractional maximum principle, we define the state process $X(t)$ by

$$
\begin{equation*}
d X(t)=(u(t)-1) d B_{1}(t)+u(t) d B_{2}(t) . \tag{6.10}
\end{equation*}
$$

Then the problem is equivalent to maximizing

$$
\begin{equation*}
J_{1}(u):=\mathbb{E}\left[-\frac{1}{2} X^{2}(T)\right] . \tag{6.11}
\end{equation*}
$$

The Hamiltonian for this problem is

$$
\begin{align*}
H(t, x, u, p, q(\cdot)) & =(u-1) \int_{0}^{T} q_{1}(s) \phi_{1}(s, t) d s+u \int_{0}^{T} q_{2}(s) \phi_{2}(s, t) d s \\
& =(u-1) \int_{0}^{T} q_{1}(s) \phi_{1}(s, t) d s+u \int_{0}^{T} q_{2}(s) \phi_{2}(s, t) d s \\
& =u\left[\int_{0}^{T} q_{1}(s) \phi_{1}(s, t) d s+\int_{0}^{T} q_{2}(s) \phi_{2}(s, t) d s\right]-\int_{0}^{T} q_{1}(s) \phi_{1}(s, t) d s . \tag{6.12}
\end{align*}
$$

The adjoint equation is

$$
\begin{align*}
& d p(t)=q_{1}(t) d B_{1}(t)+q_{2}(t) d B_{2}(t) ; \quad t<T  \tag{6.13}\\
& p(T)=-X(T) . \tag{6.14}
\end{align*}
$$

Comparing with (6.10) we see that this equation has the solution

$$
\begin{equation*}
q_{1}(t)=1-u(t), \quad q_{2}=-u_{2}(t), \quad p(t)=-X(t) ; \quad t \leq T . \tag{6.15}
\end{equation*}
$$

Let $\hat{u}(t)$ be an optimal control candidate. Then by (6.12)

$$
\begin{align*}
& H(t, \hat{X}(t), v, \hat{p}(t), \hat{q}(\cdot))=v\left[\int_{0}^{T} \hat{q}_{1}(s) \phi_{1}(s, t) d s+\int_{0}^{T} \hat{q}_{2}(s) \phi_{2}(s, t) d s\right]-\int_{0}^{T} \hat{q}_{1}(s) \phi_{1}(s, t) d s \\
& 16)=v\left[\int_{0}^{T}(1-\hat{u}(t)) \phi_{1}(s, t) d s-\int_{0}^{T} \hat{u}(s) \phi_{2}(s, t) d s\right]-\int_{0}^{T} \hat{q}_{1}(s) \phi_{1}(s, t) d s . \tag{6.16}
\end{align*}
$$

The maximum principle requires that the maximum of this expression is attained at $v=\hat{u}(t)$. However, this is an affine function of $v$, so it is natural to guess that the coefficient of $v$ must be 0 , i.e.

$$
\int_{0}^{T}(1-\hat{u}(s)) \phi_{1}(s, t) d s-\int_{0}^{T} \hat{u}(s) \phi_{2}(s, t) d s=0
$$

which gives

$$
\begin{equation*}
\int_{0}^{T} \hat{u}(s)\left(\phi_{1}(s, t)+\phi_{2}(s, t)\right) d s=\int_{0}^{T} \phi_{1}(s, t) d s \tag{6.17}
\end{equation*}
$$

This is a symmetric Fredholm integral equation of the first kind and it is known that it has a unique solution $\hat{u}(t) \in L^{2}[0, T]$. See e.g. [T, Section 3.15].

This choice of $\hat{u}(t)$ satisfies all the requirements of Theorem 5.1 (in fact, even those of Corollary 5.2) and we can conclude that this $\hat{u}(t)$ is optimal. Thus we have proved:

## Theorem 6.1 (Solution of the minimal variance hedging problem)

The minimal value of

$$
J(z, u)=\mathbb{E}\left[\left\{B_{1}(T)-\left(z+\int_{0}^{T} u(t)\left(d B_{1}(t)+d B_{2}(t)\right)\right)\right\}^{2}\right]
$$

is attained when $z=0$ and $u=\hat{u}(t)$ satisfies (6.17). The corresponding minimal value is

$$
\inf _{z, u} J(z, u)=\int_{0}^{T} \int_{0}^{T}\left\{(\hat{u}(s)-1)(\hat{u}(t)-1) \phi_{1}(s, t)+\hat{u}(s) \hat{u}(t) \phi_{2}(s, t)\right\} d s d t
$$

Remark Note that if $\phi_{1}=\phi_{2}$ then $\hat{u}(t) \equiv \frac{1}{2}$, which is the same as the optimal value in the classical Brownian motion case ( $H_{1}=H_{2}=\frac{1}{2}$ ).

Acknowledgments. This work is partially supported by the French-Norwegian cooperation project Stochastic Control and Applications, Aur 99-050. Y. Hu is partially supported by the National Science Foundation under Grant No. EPS-9874732 and matching support from the State of Kansas.

We are grateful to Fred Espen Benth and Nils Christian Framstad for helpful comments.

## References

[BØ] F. Biagini and B. Øksendal: Minimal variance hedging for fractional Brownian motion. (Manuscript 2001).
[DHP] T. E. Duncan, Y. Hu and B. Pasik-Duncan: Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38 (2000), 582-612.
[H] U. Haussman: A Stochastic Maximum Principle for Optimal Control of Diffusions. Longman Scientific and Technical 1986.
[Hu1] Y. Hu: Heat equation with fractional white noise potentials, Applied Mathematics and Optimization, 43 (2001), 221-243.
[Hu2] Y. Hu: A class of SPDE driven by fractional white noise. Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), 317-325, CMS Conf. Proc., 29, Amer. Math. Soc., Providence, RI, 2000.
[HØ1] Y. Hu and B. Øksendal: Wick approximation of quasi-linear stochastic differential equations. In H. Körezlioglu and al. (editors): Stochastic Analysis and Related Topics, V (Silivri, 1994), 203-231, Progr. Probab., 38, Birkhäuser Boston, Boston, MA, 1996.
[HØ2] Y. Hu and B. Øksendal: Fractional white noise calculus and applications to finance. Preprint, Department of Mathematics, University of Oslo, 10, 1999.
[HØS1] Y. Hu, B. Øksendal and A. Sulem: Optimal portfolio in a fractional Black \& Scholes market. In S. Albeverio et al. (eds.): Mathematical Physics and Stochastic Analysis. World Scientific 2000, pp. 267-279.
[HØS2] Y. Hu, B. Øksendal and A. Sulem: Optimal consumption and portfolio in a BlackScholes market driven by fractional Brownian motion. Preprint, Department of Mathematics, University of Oslo, 23, 2000.
[HØUZ] H. Holden, B. Øksendal, J. Ubøe and T. Zhang: Stochastic Partial Differential Equations. Birkhäuser 1996.
[HØZ] Y. Hu, B. Øksendal and T. Zhang: Stochastic partial differential equations driven by multiparameter fractional white noise. Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), 327-337, CMS Conf. Proc., 29, Amer. Math. Soc., Providence, RI, 2000.
[MvN] B.B. Mandelbrot and J.W. Van Ness: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968), 422-437.
[NVV] I. Norros, E. Valkeila and J. Virtamo: An elementary approach to a Girsanov formula and other analytic results on fractional Brownian motions. Bernoulli, 5 (1999), 571-587.
[ØZ] B. Øksendal and T. Zhang: Multiparameter fractional Brownian motions and quasilinear stochastic partial differential equations. Stochastics and Stochastics Reports 71 (2001), 141-163.
[P] S. Peng: A general stochastic maximum principle for optimal control problems. SIAM J. Control \& Optim. 28 (1990), 966-979.
[S] A. Shiryaev: Essentials of Stochastic Finance. World Scientific 1999.
[T] F.G. Tricomi: Integral Equations. Dover 1985.
[W] N. Wallner: Fractional Brownian Motion and Applications to Finance. Thesis, PhilippsUniversität Marburg, March 2001.
[YZ] J. Yong and X.Y. Zhou: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag 1999.


[^0]:    AMS 2000 subject classifications. Primary 93E20, $60 \mathrm{H} 05,60 \mathrm{H} 10$; Secondary 91 B 28.
    Key words and phrases: Stochastic maximum principle, stochastic control, fractional Brownian motion.

