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0 Introduction

The purpose of this paper is to prove a sufficient maximum principle for the opti-
mal control of jump diffusions, show its connections to dynamic programming and give
applications to financial optimization problems in a market described by such processes.

For diffusions (without jumps) the maximum principle has been studied by many
researchers. To the best of our knowledge the earliest versions of a maximum prin-
ciple for such process were given by Kushner [11] and Bismut [5]. Further progress
on the subject were subsequently given by Bensoussan [3], Haussmann [7], Peng [12]
and Cadenillas and Haussmann [6]; see also Yong and Zhou [18] and the references
therein. For diffusions with jumps, a necessary maximum principle was given by Tang
and Li [17]; see also Kabanov [8] and Kohlmann [9]. We consider general jump dif-
fusions and prove a sufficient maximum principle for such processes. In other words,
we prove a verification theorem saying that if a stochastic control satisfies the maxi-
mum principle conditions, then the control is indeed optimal for the stochastic control
problem (Theorem 1.1). We believe that such a result constitutes a useful alternative
to a verification theorem based on dynamic programming, since the latter involves a
complicated integro-differential equation (the Hamilton-Jacobi-Bellman equation) in
the jump diffusion case. We also show the connections to dynamic programming as
interpretations of the adjoint processes (Section 2).

As an illustration of our sufficient maximum principle we use it to solve a mean-
variance portfolio selection problem and a consumption-portfolio optimisation problem
in a jump diffusion market.

1 The sufficient maximum principle

Suppose the state X(t) = X(u)(t) of a controlled jump diffusion in Rn is given by

dX(t) = b(t,X(t), u(t)) dt+ σ(t,X(t), u(t)) dB(t)

+

∫
Rn

η(t,X(t−), u(t−), z) N̄(dt, dz); t ∈ [0, T ] (T constant.) (1)

Here b : [0, T ]×Rn×U 7→ Rn, σ : [0, T ]×Rn×U 7→ Rn×m and η : [0, T ]×Rn×U×Rn 7→
Rn×` are given continuous functions, and B(t) = B(t, ω); t ≥ 0, ω ∈ Ω is an m-
dimensional standard Brownian motion (Wiener process.) N̄(dt, dz) = (N̄1(dt, dz), . . . ,
N̄`(dt, dz))

T = (N1(dt, dz)−χ1 dλ1(z)dt, . . . , N`(dt, dz)−χ` dλ1(z)dt)T where the {Nj}
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are independent R`×1-valued Poisson random measures with Lévy measures λj respec-
tively, on a filtered probability space (Ω,F , {Ft}t≥0, P ) satisfying the usual conditions.
The truncation functions χj(z) serve the purpose of “compensating for small jumps”
and are taken to be 1 for “small” jumps and 0 for “large”; the condition will be given
implicitly in terms of existence of solution, but it may be convenient to put χj = 0

(i.e. dN̄j = dNj) or χj = 1 (i.e. dN̄j = dÑj = dNj − dλj dt, a compensated Poisson
measure) whenever the appropriate integrability conditions hold. In this formulation,
we will need the `× ` matrix I − Diag(χ) where Diag(χ) is diagonal with χ as entries
and I is the identity.

The process u(t) = u(t, ω); t ∈ [0, T ], ω ∈ Ω is our control process. We assume
that u(t, ω) has values in a given closed set U ⊂ Rk and that u(t, ω) is predictable,
left-continuous and with right limits. In addition we require that u(t, ω) gives rise to
a unique, strong solution X(t) = X(u)(t) of (1) for t ∈ [0, T ]. Such controls are called
admissible if also (3) below holds. The set of all admissible controls is denoted by A.
If u ∈ A and X(t) = X(u)(t) is the corresponding solution of (1), we call (u,X) an
admissible pair.

We consider a performance criterion J(u) of the form

J(u) = E
[ ∫ T

0

f(t,X(t), u(t)) dt+ g(X(T ))
]
; u ∈ A (2)

where f : [0, T ]×Rn×U 7→ R is continuous and g : Rn 7→ R is concave. As mentioned
above, we require

E
[ ∫ T

0

∣∣f(t,X(t), u(t))
∣∣ dt+ max{0, g−(X(T ))}

]
<∞, (3)

for u to be ∈ A. The problem is to maximize J(u) over all u ∈ A, i.e. we seek u∗ ∈ A
such that

J(u∗) = sup
u∈A

J(u). (4)

Such controls u∗ are called optimal controls. If X∗ = X(u∗) is the corresponding solu-
tion of (1) then (X∗, u∗) is called an optimal pair.
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Define the Hamiltonian H : [0, T ]×Rn × U ×Rn ×Rn×m ×R 7→ R by

H(t, x, u, p, q, r) = f(t, x, u) + bT(t, x, u)p+ tr(σT(t, x, u)q)

+

∫
Rn

[ ∑̀
j=1

( n∑
i=1

ηij(t, x, u, z)rij(t, z)
)

+ (ηT(t, x, u, z)p+ xTr(t, z))(I − Diag(χ))
]

dλ(z) (5)

where R is the set of functions r : Rn+1 7→ Rn×` such that the integral in (5) con-
verges. The adjoint equation (corresponding to the admissible pair (u,X)) in the un-
known adapted processes p(t) ∈ Rn, q(t) ∈ Rn×m and r(t, z) ∈ Rn×` is the backward
stochastic differential equation (BSDE)

dp(t) = −∇xH(t,X(t), u(t), p(t), q(t), r(t, ·))dt+q(t)dB(t)+

∫
Rn

r(t−, z) N̄(dt, dz) (6)

with terminal condition
p(T ) = ∇g(X(T )), (7)

where we for simplicity have assumed H differentiable w.r.t. x. As this paper concerns
sufficient conditions, we can assume ad hoc that a solution exists; the reader is referred
to [14] and [2] for BSDEs driven by both Brownian noise and Poisson jumps, while [1]
treats the semimartingale case. We then have the following verification theorem for
optimality:

Theorem 1.1. Let (û, X̂) be an admissible pair and suppose there exists an adapted
solution (p̂(t), q̂(t), r̂(t, z)) of the corresponding adjoint equation (6) such that for all
u ∈ A, we have

E
[ ∫ T

0

(X̂(t)−X(u)(t))T
{
q̂(t)q̂(t)T

+

∫
Rn

[
r̂(t, z)Diag(χ(z)) r̂(t, z)Tλ(dz)

]}
(X̂(t)−X(u)(t)) dt

]
<∞. (8)

and

E
[ ∫ T

0

p̂(t)T
{ ∫ [

η(t,X(t−), u(t), z)Diag(χ(z)) ηT(t,X(t−), u(t), z)λ(dz)
]

+ (σσT)(t,X(t), u(t))
}
p̂(t) dt

]
<∞, (9)
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ensuring that the integrals with respect to the local martingales (i.e. B and the “com-
pensated small jumps” part) indeed have zero mean. Moreover, suppose that

H(t, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)) = sup
u∈U

H(t, X̂(t), u, p̂(t), q̂(t), r̂(t, ·)) (10)

for all t ∈ [0, T ] and that

Ĥ(x) := max
u∈U

H(t, x, u, p̂(t), q̂(t), r̂(t, ·)) (11)

exists and is a concave function of x for all t ∈ [0, T ]. Then (û, X̂) is an optimal pair.

Remark 1.2. The concavity of Ĥ defined by (11) is Arrow’s generalization of the
frequently assumed a.e. concavity of (x, v) 7→ H(t, x, v, p̂(t), q̂(t), r̂(t, ·)). To the best of
our knowledge, this was first proved rigorously in [15] in the deterministic setting.

To prove Theorem 1.1 we need the following auxiliary result, which is a special case
of the Itô formula (see e.g. [4, Theorem 3.5.2, p. 265]):

Lemma 1.3 (Integration by parts formula for jump processes). Suppose the
processes Y (1)(t) and Y (2)(t) are given by{

dY (j)(t) = b(j)(t, ω) dt+ σ(j)(t, ω) dB(t) +
∫
η(j)(t, z, ω) N̄(dt, dz)

Y (j)(0) = y(j) ∈ Rn ; j = 1, 2
(12)

where b(j) ∈ Rn, σ(j) ∈ Rn×m and [η
(j)
ik ] ∈ Rn×` are predictable processes such that the

integrals in (12) exist. Then

E
[
Y (1)(T ) · Y (2)(T )

]
= y1 · y2 + E

[ ∫ T

0

Y (1)(t−) · dY (2)(t) +

∫ T

0

Y (2)(t−) · dY (1)(t)

+

∫ T

0

tr[σ(1)Tσ(2)](t) dt+

∫ T

0

( ∫
Rn

∑̀
j=1

( n∑
i=1

η
(1)
ij (t, z)η

(2)
ij (t, z)

)
dλj(z)

)
dt

]
, (13)

provided the integrals and the mean exist. Here, as usual, x ·y = xTy denotes the inner
product of x, y ∈ Rn = Rn×1.
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Proof of Theorem 1.1. Let (u,X) be an arbitrary admissible pair and consider

J(û)−J(u) = E
[ ∫ T

0

{f(t, X̂(t), û(t))−f(t,X(t), u(t))}dt+g(X̂(T ))−g(X(T ))
]

(14)

By concavity of g and Lemma 1.3 we get the following, where the L2 conditions (9)
and (8) ensure that the stochastic integrals with respect to the local martingales have
zero expectation:

E[g(X̂(T ))− g(X(T ))]

≥ E[(X̂(T )−X(T ))T∇g(X̂(T ))]

= E[(X̂(T )−X(T ))Tp̂(T )]

= E

[ ∫ T

0

(X̂(t−)−X(t−))T dp̂(t) +

∫ T

0

p̂T(t−)(dX̂(t)− dX(t))

+

∫ T

0

tr
[
{σ(t, X̂(t), û(t))− σ(t,X(t), u(t))}Tq̂(t)

]
dt

+

∫ T

0

∫
Rn

∑̀
j=1

n∑
i=1

{ηij(t, X̂(t), û(t), z)− ηij(t,X(t), u(t), z)}r̂ij(t, z) dλj(z) dt

]

= E

[ ∫ T

0

{
(X̂(t)−X(t))T(−∇xH(t, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)))

+

∫
Rn

(X̂(t)−X(t))Tr̂(t, z)(I − Diag(χ)) dλ(z)

+ p̂T(t){b(t, X̂(t), û(t))− b(t,X(t), u(t))}

+

∫
Rn

p̂T(t){η(t, X̂(t), û(t), z)− η(t,X(t), u(t), z)}(I − Diag(χ)) dλ(z)

+ tr
[
{σ(t, X̂(t), û(t))− σ(t,X(t), u(t))}Tq̂(t)

]
+

∫
Rn

∑̀
j=1

n∑
i=1

{ηij(t, X̂(t), û(t), z)−ηij(t,X(t), u(t), z)}r̂ij(t, z) dλj(z)

}
dt

]
. (15)
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By the definition (5) of H we have

E
[ ∫ T

0

{f(t, X̂(t), û(t))− f(t,X(t), u(t))} dt
]

= E

[ ∫ T

0

{
H(t, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·))−H(t,X(t), u(t), p̂(t), q̂(t), r̂(t, ·))

− {b(t, X̂(t), û(t))− b(t,X(t), u(t))}Tp̂(t)

− tr
{(
σ(t, X̂(t), û(t))− σ(t,X(t), u(t))

)T
q̂(t)

}
−

∫
Rn

∑̀
j=1

n∑
i=1

{
ηij(t, X̂(t), û(t))− ηij(t,X(t), u(t))

}
r̂ij(t, z) dλj(z)

−
∫

Rn

p̂T(t){η(t, X̂(t), û(t))− η(t,X(t), u(t))}(I − Diag(χ)) dλ(z)

−
∫

Rn

(X̂(t)−X(t))Tr̂(t, z)(I − Diag(χ)) dλ(z)

}
dt

]
. (16)

Adding (15) and (16) we get

J(û)− J(u)

≥ Ex
[ ∫ T

0

{
H(t, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·))−H(t,X(t), u(t), p̂(t), q̂(t), r̂(t, ·))

− (X̂(t)−X(t))T∇xH(t, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·))
}

dt
]
. (17)

As in the deterministic case the maximality of û(t) and the concavity of Ĥ yield
that the integrand in the r.h.s. of (17) is nonnegative for all t, a.s. See e.g. [16, p. 108].
For completeness we give the details: To simplify the notation put

h(t, x, u) = H(t, x, u, p̂(t), q̂(t), r̂(t, ·)) (18)

and

ĥ(t, x) = max
u∈U

h(t, x, u) . (19)

Then by (10) we have

h(t, X̂(t), û(t)) = ĥ(t, X̂(t)) (20)
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and by (11)

h(t, x, u(t)) ≤ ĥ(t, x) for all t, x . (21)

Therefore, subtracting (20) from (21) we get

h(t, x, u)− h(t, X̂(t), û(t)) ≤ ĥ(t, x)− ĥ(t, X̂(t)) for all (t, x, u) . (22)

Hence, to prove that the integrand in (17) is nonnegative it suffices to prove that on
[0, T ] we almost surely have

ĥ(t,X(t))− ĥ(t, X̂(t))−∇xh(t, X̂(t),û(t)) · (X(t)− X̂(t)) ≤ 0. (23)

Fix t ∈ [0, T ]. Since x 7→ ĥ(t, x) is concave, it follows by a standard separating hyper-
plane argument (see e.g. [13, Chapter 5, Section 23]) that there exists a supergradient

a ∈ Rn for ĥ(t, x) at x = X̂(t), i.e.

ĥ(t, x)− ĥ(t, X̂(t))− a · (x− X̂(t)) ≤ 0 for all x . (24)

Define φ(x) = h(t, x, û(t)) − h(t, X̂(t), û(t)) − a · (x − X̂(t)). Then by (22) and (24)

we have φ(x) ≤ 0 for all x. Moreover, we clearly have φ(X̂(t)) = 0, and therefore

∇φ(X̂(t)) = 0, i.e. ∇xh(t, X̂(t), û(t)) = a. Substituting this into (24) we get (23). We
therefore conclude that J(û) ≥ J(u) for all u ∈ A, which proves that û is optimal. �

2 Relation to dynamic programming

In the diffusion case it is well-known that there is a relation between the maximum
principle and dynamic programming. More precisely, the adjoint processes p(t), q(t)
can be expressed in terms of the derivatives of the value function V (t, x). See e.g. [18].
In this section we prove that a similar relation holds in the jump diffusion case. We
show that – under some conditions – the three adjoint processes p(t), q(t), r(t, ·) for
the jump diffusion case are given by

pi(t) =
∂V

∂xi

(t,X∗(t)) (25a)

qik(t) =
n∑

j=1

σjk(t,X
∗(t), u∗(t))

∂2V

∂xi ∂xj

(t,X∗(t)) (25b)

rij(t, z) =
∂V

∂xi

(t,X∗(t) + η(j)(t,X∗(t), u∗(t), z)− ∂V

∂xi

(t,X∗(t)) (25c)
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for all i = 1, . . . , n, j = 1, . . . , `, k = 1, . . . ,m, where X∗(t) is the solution of (1)
corresponding to an optimal control u∗(t) (see Theorem 2.1 below). In particular, note
that the adjoint process r(t, ·) represents the jumps of the x-gradient of V (t, x).

We now proceed to prove these formulas. To put our problem (4) into a Markovian
framework suitable for dynamic programming we let X(t) = Xs,x(t) be the solution of
(1) for t ≥ s with initial value X(s) = x and we put

Ju(s, x) = E
[ ∫ T

s

f(t,Xs,x(t), u(t)) dt+ g(Xs,x(T ))
]
; u ∈ A (26)

where f, g are as in (2). Then we define the value function V (s, x) of the problem (4)
by

V (s, x) = sup
u∈A

Ju(s, x) . (27)

Assume that an optimal Markovian (feedback) control u∗(t, x) = u∗ exists for this
problem and let X∗(t) be the corresponding optimal state process, i.e. X∗(t) is the
solution of (1) when u = u∗(t,X(t)). Then – under some conditions – the following
Hamilton-Jacobi-Bellman (HJB) equation of dynamic programming holds:

sup
u∈U

F (t, x, u) = F (t, x, u∗(t, x)) = 0 (28)

where F (t, x, u) is given by

F (t,x, u) := f(t, x, u) +
∂V

∂t
(t, x) +

n∑
i=1

bi(t, x, u)
∂V

∂xi

(t, x)

+ 1
2

n∑
i,j=1

(σσT)ij(t, x, u)
∂2V

∂xi ∂xj

(t, x) +
∑̀
k=1

∫
Rn

{
V (t, x+ η(k)(t, x, u, z))−V (t, x)

− χk(z)
n∑

i=1

ηik(t, x, u, z) ·
∂V

∂xi

(t, x)
}

dλk(z) , (29)

η(k) being column number k of the n × ` matrix η. If we differentiate F (t, x, u∗(t, x))
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with respect to xh and evaluate the result at x = X∗(t) we get

0 =
∂f

∂xh

(t,X∗(t), u∗(t,X∗(t))) +
∂2V

∂t ∂xh

(t,X∗(t))

+
n∑

i=1

bi(t,X
∗(t), u∗(t,X∗(t)) · ∂2V

∂xi ∂xh

(t,X∗(t))

+
n∑

i=1

∂bi
∂xh

(t,X∗(t), u∗(t,X∗(t)) · ∂V
∂xi

(t,X∗(t))

+ 1
2

n∑
i,j=1

(σσT)ij(t,X
∗(t), u∗(t,X∗(t)) · ∂3V

∂xi ∂xj ∂xh

(t,X∗(t))

+ 1
2

n∑
i,j=1

∂

∂xh

(σσT)ij(t,X
∗(t), u∗(t,X∗(t)) · ∂2V

∂xi ∂xj

(t,X∗(t))

+
∑̀
k=1

∫
Rn

{ n∑
i=1

∂V

∂xi

(t,X∗(t) + η(k)(t,X∗(t), u∗(t,X∗(t)), z))

·
(
δih +

∂ηik

∂xh

(t,X∗(t), u∗(t,X∗(t)), z)
)

− χk(z)
n∑

i=1

ηik(t,X
∗(t), u∗(t,X∗(t)), z) · ∂2V

∂xi ∂xh

(t,X∗(t))

− χk(z)
n∑

i=1

∂ηik

∂xh

(t,X∗(t), u∗(t,X∗(t)), z) · ∂V
∂xi

(t,X∗(t))

− ∂V

∂xh

(t,X∗(t))
}

dλk(z) , (30)

where δih = 1 if i = h, zero if not. Note that the terms containing the derivatives of
F (t, x, u) with respect to u vanish at u = u∗, because F (t, x, u) is maximal at u = u∗.
Define

Yh(t) =
∂V

∂xh

(t,X∗(t)) ; h = 1, 2, . . . , n . (31)
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Then by the Itô formula (see [4, Theorem 3.5.2, p. 265])

dYh(t) =
n∑

i=1

∂2V

∂xi ∂xh

(t,X∗(t))
(
bi(t,X

∗(t), u∗(t)) dt+ σi(t,X
∗(t), u∗(t)) dB(t)

)
+

∂2V

∂t ∂xh

(t,X∗(t)) dt+ 1
2

n∑
i,j=1

(σσT)ij(t,X
∗(t), u∗(t,X∗(t))) · ∂3V

∂xi ∂xj ∂xh

(t,X∗(t)) dt

+
∑̀
k=1

[ ∫
Rn

{ ∂V
∂xh

(t,X∗(t−) + η(k)(t,X∗(t), u∗(t,X∗(t)), z))− ∂V

∂xh

(t,X∗(t−))

−
n∑

i=1

∂2V

∂xi ∂xh

(t,X∗(t))ηik(t,X
∗(t), u∗(t,X∗(t)), z)

}
χk(z) dλk(z) dt

+

∫
Rn

{ ∂V
∂xh

(t,X∗(t−) + η(k)(t,X∗(t), u∗(t,X∗(t)), z))− ∂V

∂xh

(t,X∗(t−))
}
N̄k(dt, dz)

]
(32)

and substituting into (32) the value we get for ∂2V
∂t ∂xh

(t,X∗(t)) from (30) we get for each
h = 1, . . . , n:

dYh(t) = −
[
∂f

∂xh

+
n∑

i=1

bi
∂2V

∂xi ∂xh

+
n∑

i=1

∂bi
∂xh

· ∂V
∂xi

+ 1
2

n∑
i,j=1

(σσT)ij
∂3V

∂xi ∂xj ∂xh

+ 1
2

n∑
i,j=1

∂

∂xh

(σσT)ij
∂2V

∂xi ∂xj

+
∑̀
k=1

∫
Rn

{ n∑
i=1

((∂V
∂xi

(t, x+ η(k))− χk(z)
∂V

∂xi

)∂ηik

∂xh

− ηik
∂2V

∂xi ∂xh

χk(z)
)

+
( ∂V
∂xh

(t, x+ η(k))− ∂V

∂xh

)}
dλk(z)

]
dt

+
n∑

i=1

∂2V

∂xi ∂xh

(
bi dt+ σi dB(t)

)
+ 1

2

n∑
i,j=1

(σσT)ij ·
∂3V

∂xi ∂xj ∂xh

dt

+
∑̀
k=1

∫
Rn

{ ∂V
∂xh

(t, x+ η(k))− ∂V

∂xh

(t, x)−
n∑

i=1

∂2V

∂xi ∂xh

· ηik

}
χk(z) dλk(z) dt

+
∑̀
k=1

∫
Rn

{ ∂V
∂xh

(t, x+ η(k))− ∂V

∂xh

(t, x)
}
N̄k(dt, dz)

11



which simplifies to

dYh(t) = −
[
∂f

∂xh

+
n∑

i=1

∂bi
∂xh

· ∂V
∂xi

+ 1
2

n∑
i,j=1

∂

∂xh

(σσT)ij
∂2V

∂xi ∂xj

+
∑̀
k=1

∫
Rn

{( ∂V
∂xh

(t, x+ η(k))− ∂V

∂xh

)
(1− χk(z))

+
n∑

i=1

(∂V
∂xi

(t, x+ η(k))− χk(z)
∂V

∂xi

)∂ηik

∂xh

}
dλk(z)

]
dt

+
∑̀
k=1

∫
Rn

{ ∂V
∂xh

(t, x+η(k))− ∂V

∂xh

}
N̄k(dt, dz)+

n∑
i=1

m∑
j=1

∂2V

∂xi ∂xh

σij dBj (33)

where all functions are evaluated at x = X∗(t−), u = u∗(t,X∗(t−)). From (5) we note
that

∂H

∂xh

(t, x, u, p, q, r) =
∂f

∂xh

(t, x, u) +
∂bT

∂xh

(t, x, u)p+ tr
(∂σT

∂xh

(t, x, u)q
)

+
∑̀
k=1

∫
Rn

{ n∑
i=1

∂ηik

∂xh

(t, x, u, z)rik(t, z)

+
(∂ηk

T

∂xh

(t, x, u, z)p+ rhk(t, z)
)
(1− χk(z))

}
dλk(z) . (34)

Note that

1
2

n∑
i,j=1

∂

∂xh

(σσT)ij
∂2V

∂xi ∂xj

= 1
2

n∑
i,j=1

∂

∂xh

( m∑
k=1

σikσjk

) ∂2V

∂xi ∂xj

= 1
2

n∑
i,j=1

m∑
k=1

(∂σik

∂xh

σjk + σik
∂σjk

∂xh

) ∂2V

∂xi ∂xj

=
n∑

j=1

m∑
k=1

( n∑
i=1

σik
∂2V

∂xi ∂xj

)∂σjk

∂xh

. (35)

On the other hand

tr
(∂σT

∂xh

q
)

=
m∑

k=1

[∂σT

∂xh

q
]

kk
=

m∑
k=1

n∑
j=1

qjk
∂σjk

∂xh

. (36)

Therefore, if we write x(t) = X∗(t), u(t) = u∗(t,X∗(t)) and define pi(t), qjk(t) and

12



rik(t, z) by (25), we get the following:

dYh(t) = − ∂H
∂xh

(t, x(t), u(t), p(t), q(t), r(t, ·)) dt+ qh(t) dB(t)

+
∑̀
k=1

∫
Rn

rhk(t
−, z) N̄k(dt, dz) +

∑̀
k=1

∫
Rn

n∑
i=1

∂ηik

∂xh

(t, x(t), u(t), z)

·
(
rik + pi(t)(1− χk(z))− (

∂V

∂xi

(t, x+ η(k))− χk(z)
∂V

∂xi

)
)

dλk(z) dt

= − ∂H
∂xh

(t, x(t), u(t), p(t), q(t), r(t, ·)) dt+ qh(t) dB(t)

+
∑̀
k=1

∫
Rn

rhk(t
−, z) N̄k(dt, dz) (37)

and we see that p(t), q(t) and r(t, ·) solve the adjoint equation (6). We thus have
proved:

Theorem 2.1. Assume that the value function V (s, x) defined in (27) belongs to
C1,3(R×Rn) and that there exists an optimal Markovian control u∗(t, x) for problem
(27) with corresponding optimal state process X∗(t) solving (1). Then the processes
p(t), q(t), r(t, ·) given by (25) solve the adjoint equation (6).

3 Applications to finance

In this section, we shall give two examples arising from financial optimization. Suppose
we have a mathematical market consisting of two investment possibilities:

(i) a risk free security (e.g. a bond), where the price S0(t) at time t is given by

dS0(t) = ρtS0(t) dt ; S0(0) > 0 (38a)

where ρt is a locally bounded deterministic function,

(ii) a risky security (e.g. a stock), where the price S1(t) at time t is given by

dS1(t) = S1(t
−)

[
µt dt+ σt dB(t) +

∫
R

η(t, z) Ñ(dt, dz)
]
, S1(0) > 0 , (38b)

13



where µt, σt 6= 0 and η(t, z) are locally bounded deterministic functions,µt > ρt and,

as above, Ñ is a compensated random measure. To ensure that S1(t) > 0 for all t we
assume that

η(t, z) = 0 for z ∈ (−∞,−1] . (39)

We also assume that t 7→
∫
R
η2(t, z) dλ(z) is a locally bounded function, where λ is the

Lévy measure of N as in the previous sections.

A portfolio is a predictable process θ(t) = (θ0(t), θ1(t)) ∈ R2 giving the number
of units held at time t of the risk-free and the risky security, respectively. The corre-
sponding wealth process X(t) = X(t) is then given by

Xθ(t) = θ0(t)S0(t) + θ1(t)S1(t) ; t ≥ 0 . (40)

The portfolio is called self-financing if

dXθ(t) = θ0(t) dS0(t) + θ1(t
−) dS1(t) (41)

or

Xθ(t) = Xθ(0) +

∫ t

0

θ0(s) dS0(s) +

∫ t

0

θ1(s
−) dS1(s) ; t ≥ 0 .

Let v(t) := θ1(t)S1(t) denote the amount invested in the risky security. Combining
(40) and (41), we get the wealth dynamics

dX(t) = {ρtX(t)+(µt−ρt)v(t)} dt+σtv(t) dB(t)+v(t−)

∫
R

η(t, z) Ñ(dt, dz) (42a)

where X(0) ∈ R is given. In Example 3.3 below we shall also allow the agent to
withdraw consumption from his wealth, thus giving

dX(t) = {ρtX(t) + (µt − ρt)v(t)− c(t)} dt+ σtv(t) dB(t) + v(t−)

∫
R

η(t, z) Ñ(dt, dz)

(42b)

as wealth process. The control v is called tame if the corresponding wealth process (42a)
is square integrable with respect to dt × dP over [0, T ] × Ω. Such a requirement is
necessary to exclude doubling strategies that would gain arbitrary profit at time T ,
but with the economically unrealistic consequence of unbounded intermediate losses.
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Example 3.1 (Mean-variance portfolio selection). In this application, we shall
consider the process (42a) (i.e. without consumption.) Our objective is to find an
admissible portfolio v(t) which minimizes the variance

Var[X(T )] = E
[
(X(T )− E[X(T )])2

]
under the condition that

E[X(T )] = A ,

where A is given real number. Using the Lagrange multiplier method we see that the
problem can be reduced to the problem of minimizing, for a given a ∈ R,

E[(X(T )− a)2]

without any constraints. To see this, note that

E[(X(T )− A)2 − λ(X(T )− A)] = E[(X(T )− (A+ λ
2
))2] + λ2

4
,

if λ ∈ R is a constant.

In the following we study the following equivalent problem

sup
v∈A

E
[
− 1

2
(X(v)(T )− a)2

]
, (43)

where X(t) = X(v)(t) is given by (42a) and the set A of admissible strategies consists
of the predictable tame portfolios v(t) such that (42a) has a strong solution in the
interval [0, T ].

In the no jump case (η = 0) the solution of this problem is well-known. We refer
to [10] for more information. We now illustrate our maximum principle (Theorem 1.1)
to solve the problem in the jump diffusion case. In this case the Hamiltonian (5) gets
the form

H(t, x, v, p, q, r) = {ρtx+ (µt − ρt)v}p+ σtvq + v

∫
R

η(t, z)r(t, z) dλ(z). (44)

Therefore the adjoint equation (6) is{
dp(t) = −ρt p(t) dt+ q(t) dB(t) +

∫
R
r(t, z) Ñ(dt, dz)

p(T ) = −X(T ) + a
(45)
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To solve this we try a process p(t) of the form

p(t) = φtX(t) + ψt , (46)

where φt, ψt are deterministic differentiable functions. Using (42a) this leads to

dp(t) = φt

[
{ρtX(t) + (µt − ρt)v(t)} dt+ σtv(t) dB(t)

+ v(t−)

∫
R

η(t, z) Ñ(dt, dz)
]
+X(t)φ′t dt+ ψ′t dt

=
[
φtρtX(t) + φt(µt − ρt)v(t) +X(t)φ′t + ψ′t

]
dt

+ φtσtv(t) dB(t) + φtv(t
−)

∫
R

η(t, z) Ñ(dt, dz). (47)

Comparing (45) and (47) we get

φtρtX(t) + φt(µt − ρt)v(t) +X(t)φ′t + ψ′t = −ρt(φtX(t) + ψt) (48a)

q(t) = φtσtv(t) (48b)

r(t, z) = φtv(t)η(t, z). (48c)

Let v̂ ∈ A be a candidate for an optimal control and let X̂(t) be the corresponding
wealth process with corresponding solution (p̂(t), q̂(t), r̂(t, ·)) of the adjoint equation.
Then

H(t, X̂(t), v, p̂(t), q̂(t), r̂(t, ·))

= ρtX̂(t)p̂(t) + v
[
(µt − ρt)p̂(t) + σtq̂(t) +

∫
R

η(t, z)r̂(t, z) dλ(z)
]
.

Since this is a linear expression in v, we guess that the coefficient of v vanishes, i.e.
that

(µt − ρt)p̂(t) + σtq̂(t) +

∫
R

η(t, z)r̂(t, z) dλ(z) = 0. (49)

Substituting (from (48b) and (48c))

q̂(t) = φtσtv̂(t) ; r̂(t, z) = φtv̂(t)η(t, z) (50)

into (49) and writing

Λt := σ2
t +

∫
R

η2(t, z) dλ(z) , (51)
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we get

v̂(t) =
(ρt − µt)p̂(t)

φtΛt

=
(ρt − µt)(φtX̂(t) + ψt)

φtΛt

. (52a)

On the other hand, (48a) gives

v̂(t) =
(φtρt + φ′t)X̂(t) + ρt(φtX̂(t) + ψt) + ψ′t

φt(ρt − µt)
. (52b)

Combining (52a) and (52b) we get

(ρt − µt)
2(φtX̂(t) + ψt) =

[
(φtρt + φ′t)X̂(t) + ρt(φtX̂(t) + ψt) + ψ′t

]
Λt . (53)

Comparing the terms containing X̂(t) we obtain the two equations

(ρt − µt)
2φt − [2ρtφt + φ′t]Λt = 0 (54a)

(ρt − µt)
2ψt − [ρtψt + ψ′t]Λt = 0 (54b)

which are equivalent to

φ′t =
((ρt − µt)

2

Λt

− 2ρt

)
φt , φ(T ) = −1 (55a)

and

ψ′t =
((ρt − µt)

2

Λt

− ρt

)
ψt , ψ(T ) = a . (55b)

The solutions of these equations are

φt = − exp
( ∫ T

t

{(ρs − µs)
2

Λs

− 2ρs

}
ds

)
; 0 ≤ t ≤ T (56a)

ψt = a exp
( ∫ T

t

{(ρs − µs)
2

Λs

− ρs

}
ds

)
; 0 ≤ t ≤ T. (56b)

With this choice of φt and ψt the processes

p̂(t) = φtX̂(t) + ψt, q̂(t) = φtσtv̂(t), r̂(t, z) = φtv̂(t)η(t, z)

solve the adjoint equation (45) with v̂(t) given by (52a). Moreover, with this choice
of v̂(t) conditions (10) and (11) of Theorem 1.1 is satisfied. Therefore we have the
following:
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Theorem 3.2. The solution v∗ ∈ A of the mean-variance portfolio selection prob-
lem (43) when X obeys (42a) is given (in feedback form) by

v∗(t,X∗) =
(ρt − µt)(φtX

∗ + ψt)

φtΛt

(57)

with φt, ψt given by (56) and Λt given by (51).

Proof. It only remains to check the L2 conditions (8) and (9) and tameness of v∗. The
control v∗ leads to a linear stochastic differential equation with bounded coefficients
for X∗, and is therefore tame. Hence v∗ itself is square integrable, and (48b) and (48c)
now imply (8) and (9).

Our solution (Theorem 3.2) is a generalization to jump diffusions of the (known)
solution in the diffusion case.

Example 3.3 (Consumption-portfolio optimization with almost sure termi-
nal condition). Consider now the wealth process (42b), i.e. with consumption. Our
objective is to solve the following consumption-portfolio optimization problem

sup
(c,v)∈A

E[

∫ T

0

e−
R t
0 δs ds c(t)

γ

γ
dt] (58)

subject to an almost sure terminal wealth constraint:

X(T ) ≥ 0 a.s. (59)

The set A is defined to be the class of predictable consumption-portfolio pairs u = (c, v)
with v tame, c nonnegative, such that (42b) has a strong solution in [0, T ] and (59)
holds. Here, δs is a given bounded deterministic function and γ is a given nonzero
constant, γ < 1.

The dynamic programming approach is not directly applicable to this type of con-
strained stochastic control problems with the a.s. terminal condition (59). However,
it is easy to see that our sufficient stochastic maximum principle (Theorem 1.1) still
applies, if we replace the terminal condition (7)

p(T ) = ∇g(X(T ))

by the transversality condition

E[(X̂(T )−X(T ))T∇g(X(T ))] ≥ E[(X̂(T )−X(T ))p̂(T )] (60)
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(see the step leading to (15) in the proof of Theorem 1.1).
Note the easy generalization to nonzero minimum terminal wealth, say, x̄ by con-

sidering X − x̄ instead of X.

Here, the Hamiltonian (5) gets the form

H(t, x, c, v, p, q, r) = e−
R t
0 δs ds c

γ

γ
−pc+pρx+v ·{p(µ−ρ)+qσ+

∫
R

r(t−, z)η(t, z)dλ(z)}

(61)
and the (modified) adjoint equation (6) becomes

dp(t) = −ρ(t)p(t) dt+ q(t) dB(t) +

∫
R

r(t−, z) dÑ(dt, dz) (62)

E[(X̂(T )−X(T ))p̂(T )] ≤ 0 (since g = 0). (63)

Now, let (ĉ, v̂) ∈ A with corresponding solution X̂, (p̂, q̂, r̂) of (42b) and (62) re-
spectively.

The value of c which maximizes H(t, X̂(t), v̂, p̂(t), q̂(t), r̂(t, .)) is

c = ĉ(t) =
(
e

R t
0 δs dsp̂(t)

) 1
γ−1

. (64)

Since the expression involving v in the Hamiltonian is linear, the maximum principle
(10) suggests that the v-coefficient should vanish, i.e.

p̂(t)(µt − ρt) + σtq̂(t) +

∫
R

η(t, z)r̂(t, z) dλ(z) = 0. (65)

We now guess that it is optimal to consume at a rate proportional to the current
wealth X̂(t). By (64), this suggests that:

p̂(t) = f(t)X̂(t)γ−1 (66)

for some deterministic differentiable function f (to be determined). Differentiating
(66), we get:

dp̂(t) = f ′(t)X̂(t)γ−1dt+ (γ − 1)f(t)X̂(t)γ−2
[
dX̂(t)− v(t)

∫
R

η(t, z)Ñ(dt, dz)
]

+ 1
2
(γ − 1)(γ − 2)f(t)X̂(t)γ−3σ2

t v̂(t)
2dt

+

∫
R

f(t){(X̂(t) + η(t, z)v̂(t))γ−1 − X̂(t)γ−1 − (γ − 1)X̂(t)γ−2v̂(t)η(t, z)}dλ(z)dt

+

∫
R

f(t){(X̂(t) + η(t, z)v̂(t))γ−1 − X̂(t)γ−1}Ñ(dt, dz).
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Using now (42b) and comparing with (62), we get, by equating the dÑ , dB and dt -
coefficients respectively:

r̂(t, z) = f(t)X̂(t)γ−1{(1 + v̂(t)η(t, z)X̂−1(t))γ−1 − 1} (67)

q̂(t) = (γ − 1)f(t)σtv̂(t)X̂(t)γ−2 (68)

and
f ′(t) + αtf(t) + (1− γ)e

R t
0

δs
γ−1

dsf(t)
γ

γ−1 = 0 (69)

where

αt = γρt + (γ − 1)(µt − ρt)v̂(t)X̂
−1(t) + 1

2
(γ − 1)(γ − 2)σ2

t v̂
2(t)X̂−2(t)

+
∫
R
{(1 + η(t, z)v̂(t)X̂−1(t))γ−1 − 1− (γ − 1)v̂(t)X̂−1(t)η(t, z)}dλ(z).

(70)

Substituting (66), (67) and (68) into (65), we get

F (v̂(t)X̂−1(t)) = 0,

where

F (π) = µt − ρt + σ2
t (γ − 1)π +

∫
R

η(t, z){(1 + η(t, z)π)γ−1 − 1}dλ(z),

which is easily seen to have a zero π̂(t) > 0, i.e.:

F (π̂(t)) = 0. (71)

With this choice of
v̂(t)X̂−1(t) = π̂(t) (72)

and αt given by (70), we can proceed to solve equation (69) by performing the change

of variable h(t) = (e
R t
0 δs dsf(t))

1
1−γ . We obtain that

f(t) = e−
R t
0 δs ds

(
f(T )

1
1−γ e

R T
0

δs
1−γ

ds
e

R T
t

αr−δr
1−γ

dr
+

∫ T

t

e
−

R t
s

αr−δr
1−γ

dr
ds

)1−γ

(73)

solves equation (69). Using (72), (64) and (66) we get that

ĉ(t) = e
R t
0

δs
γ−1

dsf(t)
1

γ−1 X̂(t). (74)
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The corresponding equation (42b) for X̂(t) becomes

dX̂(t) =X̂(t−){
(
ρt + (µt − ρt)π̂(t)− e

R t
0

δs
γ−1

ds
f(t)

1
γ−1

)
dt

+ σtπ̂(t) dB(t) + π̂(t−)

∫
R

η(t, z) Ñ( dt, dz)}.

The solution of this equation is

X̂(t) = X̂(0) exp
{∫ t

0

(
ρs + (µs − ρs)π̂(s)− e

R s
0

δr
γ−1

dr
f(s)

1
γ−1 − 1

2
π̂(s)σ2

s

)
ds

+
∫ t

0
σsπ̂(s) dB(s) +

∫ t

0
(
∫
R

ln(1 + η(t, s))N(ds, dz)−
∫
R
η(s, z)dλ(z)) ds

}
. (75)

It is reasonable to guess, by economic intuition, that the optimal wealth process will
satisfy the terminal condition with equality, i.e. X̂(T ) = 0 a.s., as excess wealth is
worthless. To achieve this, we must have, by (75),

f(T ) = 0,

which gives, by (73)

f(t) = e−
R t
0 δs ds

( ∫ T

t

e−
R t

s
αr−δr
1−γ

dr ds
)1−γ

. (76)

Then f(s) ∼ (T − s)1−γ as s→ T− and hence∫ T

f(s)
1

γ−1 ds ∼
∫ T

(T − s)−1 ds = ∞

which by (75) gives X̂(T ) = 0, as required. With π̂(t), p̂(t), q̂(t), r̂(t, .) and f(t) as
in (71), (66), (68), (67) and (76) respectively, we see that all the conditions of the
maximum principle are satisfied, including the traversality conditions (63). Therefore,
we have the theorem:

Theorem 3.4. An optimal control u∗ = (c∗, v∗) for problem (58) subject to the
dynamics (42b) is given in feedback form by

c∗(t, x) = e
R t
0

δs
γ−1

dsf(t)
1

γ−1x
v∗(t, x) = π̂(t)x

(77)

with f(t) given by (76) and π̂(t) given by (71).
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Proof. Again, we only need to check the L2 conditions (8) and (9) and tameness of u∗,
which hold by arguments similar to the proof of Theorem 3.2.

Remark 3.5. Note that we in fact get X∗(t) ≥ 0 a.s. for all t ∈ [0, T ], even though
we only require that X(u)(T ) ≥ 0 a.s. Therefore Problem (58) has the same solution if
the terminal condition (59) is replaced by the stronger condition

X(u)(t) ≥ 0 a.s. for all t ∈ [0, T ].

In this case the problem could also have been solved by dynamic programming (the
Hamilton-Jacobi-Bellman equation). However, it is difficult to see how dynamic pro-
gramming could be used without knowing that the two constrained problems are equiv-
alent.
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