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Abstract

We give a short introduction to some of the theory and methods involved
in stochastic control with partial observation. As an illustration we use the
stochastic maximum principle and the Kalman-Bucy filter to solve explic-
itly a problem about optimal consumption in an economy where the mean
relative growth rate is only observed indirectly (partially).

1 Introduction

Many classic mathematical models in finance assume complete knowledge of all
the parameters involved. For example, if an economic quantity X (¢) grows like a
mean reverting Ornstein-Uhlenbeck process of the form

AX(t) = (u — pX (£))dt + a dW (1) (1.1)

where u, p > 0 and « are constants, it is often assumed that these constants are
completely observable. However, in practical situations one cannot observe these
quantities directly, only indirectly (partially) through the observations of X(s);
s < t. Then the question is: How do we find optimal consumption and/or optimal
portfolio in such a situation? This is an example of a stochastic control problem
with partial observation.

The purpose of this paper is to give an introduction to the theory and methods
of such problems. This is done by studying in detail the specific problem of optimal
consumption from the economy (1.1) under a terminal constraint in the case when
the mean relative growth rate u is only partially observed. We solve this problem
explicitly by using the stochastic maximum principle and the Kalman-Bucy filter.
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For more information about stochastic control with partial observation we refer to
g. [B2], [EGK] and the references therein.

2 Statement of the problem

a) Complete observation case

Suppose the wealth X (t) = X()(t) of a person with consumption rate c(t) > 0
satisfies the stochastic differential equation

{dX(t) = (- pX(t) — c())dt + a()dW (1) ; t € [0,T] 1)

X0)=2>0

Here c(t) = ¢(t,w) is an Fr-adapted process (our control), a(t) is a given deter-
ministic function and u, p, T,z are (known) positive constants.

Suppose the expected total discounted utility J(© corresponding to the con-
sumption rate c(t) is given by

J=J© = E[ /T =0t va(t) dt], (2.2)
0

where 0 > 0, v € (0,1) are (known) constants (1 —  is the risk aversion of this
person) and E = E” denotes the expectation given that X (0) = x.

We say that ¢ = c(t,w) is admissible and write ¢ € A if ¢(t,w) is Fi-adapted,
nonnegative and satisfies the terminal condition

EXT)] =2, (2.3)

where z7 € R is a given constant. This constraint expresses that on the average
a certain wealth z7 should be left for the next generation. Consider the problem

Problem 2.1 Find J and ¢ € A such that
J:=sup{J9;ce A} = JO. (2.4)

This is a stochastic control problem with complete information, because we assume
that all the parameters involved (u,p,a(:),...) are known and the consumption
rates considered are allowed to be adapted to the filtration F;.

b) Partial observation case

In the partial observation case the setup and the problem is the same as in (2.1)-
(2.4) above, but with one important difference:
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We no longer assume that p is a known constant. Instead we assume that
i = p(w) is a random variable with a known distribution and that p is independent
of {W(s)}s>o0. Thus the specific value of p in (2.1)—(2.4) is not known, and we
assume that we cannot observe it directly. We only assume that we can observe it
indirectly through the observations of the process £(t) defined by

dE(t) = pdt + a®)dW () ;  t>0  €0)=0 (2.5)

We claim that this is equivalent to saying that we observe the no consumption
wealth X (©)(¢) given by

dXOt) = (u — pXO(t))dt + a(t)dW () . (2.6)
To verify this claim, first note that by (2.6), we have
dXOt) + pX O (t)dt = de(t) (2.7)
or
d(e?t X O (1)) = ePtde(t) (2.8)
which gives
XO () = XO)e*t + /0 t e P de(s) . (2.9)

Hence, if we observe &£(s);s < t then we know X(©(s);s < t.
On the other hand, by (2.6) we also have

de(t) = dXOt) + pX O (t)dt (2.10)
which gives
£t) = XO@) — X (0) + p/t XO(s)ds . (2.11)
So, if we know X () (s);s < t, we also know {(s);z < t. This proves the claim.
Let G; denote the o-algebra generated by {£(s)}s<¢. We say that c(t,w) is

admissible for the partial observation problem and write ¢ € A, if ¢(t,w) is G-
adapted, nonnegative and satisfies the terminal condition

EX(T)] =z . (2.12)
The partial observation problem is
Problem 2.2 Find J* and c* € A, such that
J* =sup{J?;ce A,} = J) (2.13)
where, as before,

J© = E[/Te—‘” Léﬂdt]. (2.14)

Here E denotes the expectation with respect to the joint probability law of p and
{W () }eejo,1y-
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3 Optimal consumption with complete observa-
tion

We first solve the complete observation problem (Problem 2.1). To this end we
recall the stochastic mazimum principle (see e.g. [B1], [P] or [YZ] for proofs and
more details):

Suppose X (t) = X () (t) is a controlled stochastic system of the form

{dX(t) = b(t, X (1), u(t)dt + o(t, X (£)dW () ; ¢ €[0,T] 51)

X(0)==z

where b : [0,T]xR"xU — R" and ¢ : [0, T] x R® — R™ ™ are given C? functions
with respect to x whose partial derivatives are uniformly Lipschitz continuous
w.r.t. ¢ and uniformly continuous w.r.t. w, where (U,d(-,-)) is a metric space.
W) = (Wi(t),...,Wu(-)T is m-dimensional Brownian motion and u : [0,T] x
Q — U is an F;-adapted control process.

Let f:[0,7T]x R" xU - R, g: R" —» R and G : R"® — R" be given lower
bounded functions satisfying the same conditions as b and ¢ above and define the
performance functional

T
7@ = 8] / 76, X(8), u(®)dt + (X (T))] (32)

and the terminal condition
E[G(X"™/(T))]=0. (3.3)

Let A denote the set of all Fi-adapted processes u(t,w) : [0,7] x & — U such that
X @) (t) does not explode in [0, 7] and such that (3.3) holds. Consider the problem
to find J € R and @ € A such that

J=sup{JW;ue A} = J® (3.4)

If such 4 € A exists, then @ is called an optimal control and (@, X) (where X =
X (@) is called an optimal pair-.
Define the Hamiltonian H : [0,T] x R® x U x R" x R"*™ — R by

H(t,z,u,p,q) = b(t,z,u) p+trfo(t,z)Tq] + f(t,z,u) (3.5)

where (-)T denotes matrix transposed and tr[-] denotes matrix trace. Consider the

following stochastic backward differential equation in the pair of unknown adjoint

Fi-adapted processes p(t) € R"™, ¢(t) € R™"*™:

dp(t) = —Ho(t, X(t),u(t), p(t), q(t))dt + q(t)dW(t) ;  t€[0,T] (3.6)
p(T) = g:(X(T)) + AT G (X(T))
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Here H, = V,H = (& BHNT ig the gradient of H with respect to = and

01" " "7 Oxn
similarly with g,, G,. X (t) = X (¥ (¢) is the process obtained by using the control
u € Aand XA € RY is a constant. The equation (3.6) is the adjoint equation and
p(t) is sometimes interpreted as the shadow price (of a resource).

Theorem 3.1 [The stochastic mazimum principle]
a) (Necessary conditions for optimality)

Let (u(t), X (t)) be an optimal pair for problem (3.4). Then there exists a
constant A\ € RN and a solution (p(t),q(t)) of (3.6) with u(t) = a(t), X = X ()
such that

H(t, X(t),a(t), p(t), ()
= Iq?ea(}(H(t,)_((t),u,p(t),q(t)) for a.a. (t,w) €0, T]x Q. (3.7)

b) (Sufficient conditions for optimality)
Suppose X\ € RY, u € A, put X(t) = X (t) and let p(t),q(t) be a solution
of the corresponding adjoint equation (3.6). Assume that the functions

H(t,-,-,p(t),q(t)),9(-) and G(-) are concave for all t € [0,T) (3.8)
and that
H(E X(0), u(t),p(0), a(0) = max H(, X(0),,p(0),00)  (39)

for a.a. (t,w) €[0,T] x Q.
Then (u(t), X (t)) is an optimal pair for problem (3.4).
For proofs we refer to [B1], [YZ, Chapter 3] and [P].
We now apply the stochastic maximum principle to solve Problem 2.1 (com-

plete observation case).
Here the Hamiltonian function (3.5) is

,
H(t,z,c,p,q) = (W — pz — )p+a(t)g +e % (3.10)

Hence %(t, x,c,p,q) = —pp and the adjoint equation (3.6) gets the form

{dp(t) = pp(t)dt + q(t)dW (t) ;  t€[0,T] (3.11)

p(T) = A
We immediately see that the solution of this equation is

p(t) = e PTD q(t)=0. (3.12)
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Now ¢ — H(t,z,¢,p,q) is maximal when
OH
a—(t, z,¢,p,q) =0 ie. —p+e ¥t =0
c

This gives

dﬂ:@ﬁk%fj:Aﬁﬁm%;%TPMT—ﬂ+&ﬁ (3.13)

It remains to find A. From (2.1) we have

{dm) = (n— pX(®)dt + a(t)dW (t) —&(t)dt;  t e [0,T] (3.14)

X0)==z
Integrating and taking the expectation we get (using that p is constant)

EWUﬂ:x+m—p/EW@mk—/d$@.

0

Or, with y(t) = E[X(t)],

y'(t) +py(t) = p—c(t)

which integrates to

T
y(T) =y0) + [ e els))ds
0

Using the terminal condition (2.3) and (3.13) this gives

T
1
rr =ze T + e_pT/eps [u — AT exp{—l(—p(T —s)+ 63)}] ds
v -
0

=ze T 4 %(1 —e ) - 1;1 ATET exp (&1;) [1 —exp ( _pt ?T)]

0+ 1- 1-
Hence,
A= (xe—pT ¥ %(1 _ Ty = xT)V71 [;;Jp{exp (%) (3.15)
—exp(— 16_—11’)/)}]1v if §+vp#0

-1
A= (:re_pT + %(1 —e Ty — a:T)7 T' ™7 exp(—6T) if 6+yp=0 (3.16)
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With this value of A the value of &(t) given by (3.13) is optimal, provided
that
ze T 4 %(1 —e "1y > gp . (3.17)

This condition is necessary to make it possible at all to attain (2.3) for some

u(t) > 0.
We have proved:

Theorem 3.2 Assume that (3.17) holds. Then the optimal consumption rate ¢(t)
for the complete observation problem (Problem 2.1) is

&(t) = AT exp { (—p(T —t) + 6t)}; te0,T] (3.18)

1
v—-1
where X is given by (3.15),(5.16).

4 Optimal consumption with partial observation

From now on we assume that
T
/a72(t)dt < o0 (4.1)
0
Then we have the following fundamental result from linear filtering theory (see
e.g. [D], [Ka] or [O]).

Theorem 4.1 Let G; be the o-algebra generated by £(s), s <t (see (2.5)). Define
the innovation process B(t) = B(t,w) by

{dB(t) = a () (u — E[u|G))dt +dW (t); 20 12)

B(0) =0

Then B(t) is a Brownian motion. Moreover, B(s); s < t generates the same fil-
tration Fy as W(s); s < t.

Corollary 4.2 With B(t) as in Theorem 4.1 we have
pdt + a(t)dW (t) = E[u|G]dt + a(t)dB(t) (4.3)

We also need the following result, which is a special case of the Kalman filter
formula (see e.g. [D], [Ka] or [@, Example 6.2.11]):
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Theorem 4.3 As before let
d€(t) = pdt + a(t)dW (t) = E[u|Gi]dt + a(t)dB(t) ; t>0

and let G; be the o-algebra generated by £(s); s < t. Then, if we put

F=FE  and A= Bl(u— a7 (4.4
and
dY (t) = o 2(t)dE() and  dZ(t) = o 2(t)dt, (4.5)
we have
ElulG] = (4 + / a72(s)ds)71(ﬂA+ / o (5)dE(s))
0 0
=(A+Z@t) " (pA+Y()) . (4.6)
Using (4.3)-(4.6) we see that we can write our system X (t) in (2.1) on the form
AX(1) = (—pX(t) - c(t))dt +dE(t)
= (BlG] ~ pX(t) - c(t)db + a(t)dB() - (47

Note that in this equation all the coefficients are adapted to the observed filtration
Gi. Thus we have transformed the original partial observation problem (2.1), (2.13)
into the complete observation problem (4.7), (2.138). However, the price we pay
for this is that the constant p in (2.1) is replaced by the more complicated process

Elu| Gi] in (4.7).

We now proceed to solve the (complete observation) stochastic control prob-
lem (4.7), (2.13). To this end, we first write the system in Markovian form, as
follows:

dX (t) = "j:izy(g) —pX(t) - c(t)] dt +a(t)dB(t); X(0)=az (4.8)
dY (t) = a2(t)(A+ Z(t)) " (A + Y (t))dt + o~ ()dB(t) ; Y(0) =y (4.9)
dZ(t) = a2 (t)dt ; Z(0) ==z (4.10)

To emphasize the initial values z,y, z we sometimes write X*(t), Y¥(t) and Z*(t)
and we let E®¥* denote the expectation when these initial values are assumed.
In this setting it is natural to extend Problem 2.2 slightly, as follows:

Problem 4.4 Define

T
,
J)(z) = E””’O’O{/e_‘” CT(t)dt . s<T (4.11)
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Find J*(z) and c* € A, = Ap(z) such that

J*(x) = sup{J ) (z); ce A,} = J)(z) . (4.12)

To solve this problem we again apply the stochastic maximum principle (The-
orem 3.1). In this case the Hamiltonian is

_ (BA+y) ) 1, -
H(s,x,y,z,c,p,q)— (T—{—Z—pm_c)pl +a (S)(A+Z) (IUA+y)p2
24
+a2(s)ps + a(s)q +a ' (s)ga + e % : (4.13)

where p = (p1,p2,03)", ¢ = (01,02, 93)"
The function ¢ — H(s, z,y, 2, ¢, p,q) is maximal when

c=c*(s) = (pl(s)eds)’%l. (4.14)

The adjoint equation system gets the form

dpi(t) = ppi(t)dt + q:(t)dB(¢) (4.15)
dp2(t) = —(A+ Z°(1) " pa(t) + a2 (t)p2(t))dt + ¢2(t)dB(t) (4.16)
dps(t) = (A+Z°(t)) *[(RA+Y° (1)1 (1) (4.17)

+a 2 (1) (A + YO (£)pa(b)]dt + g3(t)dB(t)
with terminal values
P (T) =X, p2(T) = P3(T) = (4-18)

where A\; € R is a constant to be determined.
We see that (4.15) has the solution

D1 (t) = Aleip(Tit) 5 aq1 (t) =0. (419)

Hence, by (4.14),

(1) = AT exp (ﬁ(p(T 1) - o1)) . (4.20)

To determine A;, we now proceed as in the case of complete observations :
By integrating the equation

dX*(t) = (E[u|Gt] — pX*(t) — c*(t))dt + a(t)dW (1) (4.21)
and taking the expectation we get, with

i = B[] = E[E[|G/]] . (4.22)
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t

EIX*(8)] = 2+ fit— p /E ds—/ “(s)ds .

Hence the terminal condition (2.12) gives, by the same calculation as in Section 3,

AL = (mepr-F%(l—e*pT)—mT) B [5+ p{ p(vpj;) (4.23)

_exp(—:)}]l_”if §+yp#0

i1 —1
M = (zeT + %(1 _ Ty = xT)V T'=7 exp(—6T) if 6 +vp=0, (4.24)

provided that ~
ze T 4 %(1 —e "y > a7 . (4.25)

We have proved :

Theorem 4.5 Assume that (4.25) holds. Then the optimal consumption rate c*(t)
for the partial observation problem (Problem 2.2) is

1

(1) = AT exp (ﬁ(p(T 1)~ o)) (4.26)

where Ay is given by (4.23),(4.24).

Remark 4.6 Note that the solutions ¢(t) and c*(t) of the complete and partial
observation problem, respectively, are identical except that the constant p in the
expression for ¢(t) has been replaced by the constant i = E[u] in the expression
for c*(t).

Since i is assumed known a priori, this means -perhaps surprisingly- that
observing £(s); s < t has no effect at all on our consumption rate.

Remark 4.7 In general, we say that a partial observation control problem satisfies
the certainty equivalence principle if the following holds : Let S(6) denote the
optimal control in the complete observation case with known parameter 6. Then
S() is the optimal control in the partial observation case, where 6 = E[0|G;] is
the estimate of 8 based on the observation Gy.

It is known that the certainty equivalence principle holds in the quadratic-
linear partial observation control problems (see e.g. [B2]). On the other hand, it
has been proved that in the Merton type of optimal consumption/portfolio problem
in a Black-Scholes market with unobservable drift vector, the certainty equivalence
principle holds if and only if the utilities are of logarithmic type (see [Ku]). Our
problem gives another example where the certainty equivalence principle does not
hold.
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5 The value function

Finally we find the value functions J = J(z) and J* = J*(z) of the complete obser-
vation problem (Problem 2.1) and the partial observation problem (Problem 2.2),
respectively. We could compute J(z) and J*(x) by evaluating directly

o

T T
J(z) = B| / et v(t) at) and (@) =B / e L)J(t) at] .

respectively. However, it is easier to use the connection

LI =p0),  Lr@ =) 61)

between the maximum principle and dynamic programming (see e.g. [YZ, Theorem
5.4.1]):
In the complete observation case this gives, by (3.12)

%j(m) =xe T (5.2)
where A = A(z) is given by (3.15),(3.16). Therefore
_ 1 B " _ v
— pT 4 B _ e PTy _
J(m)—’y(me +p(1 e ") a;T) v+C,

where C' is a constant and

1— T 1—y _ .
o= L Emptep G5) —ep (= 1Z5)}] et i dbp 0 o
T 7 exp(—(6 + p)T) if 0+vp=0
Since J(z) = 0 when ze *T + %(1 — e ?T) = 2 we have C' = 0. Hence
- 1 " v
- =T 4 Prq_ ,—pTy _
J(x) 5 (:Ue + p(l e ") CUT) (V2 (5.4)
Similarly, for the partial observation problem we get, by (4.19),
d
aJ*(x) =\ (z)e *T (5.5)
where A; = A\ (z) is given by (4.23),(4.24).
This gives
1 _ o _ v
* I pT 4 B _ p=pTy _
() = (we " + S(—e) ar) 1, (5.6)

where 1y = 4 is given by (5.3).
We have proved:
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Theorem 5.1 The value functions J(z) and J*(z) of the complete observation
problem (Problem 2.1) and the partial observation problem (Problem 2.2), respec-
tively, are given by

J(z) = %(me*pT + %(1 —e*T) - I‘T)’Yi/l (5.7)

J*(z) = %(a:e*"T + %(1 —e*T) - I‘T)’Yi/ll (5.8)

where ¥ =1 are both given by (5.3).
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