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Abstract

In this paper we develop a white noise framework for the study of stochastic partial differ-
ential equations driven by a d—parameter (pure jump) Lévy white noise. As an example we
use this theory to solve the stochastic Poisson equation with respect to Lévy white noise. The
starting point of our theory is a chaos expansion in terms of generalized Charlier polynomials.
Based on this expansion we define Kondratiev spaces and the Lévy Hermite transform.
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1 Introduction

White noise analysis has become a subject of much current interest. This theory was first
treated by Hida [H] and extensively studied in many other works. See [HKPS| and the
references therein. These investigations are based on the concept of a Gaussian measure and
the associated expansion into Hermite polynomials. Later on an extension of white noise
theory to non-Gaussian analysis was established in [AKS] and developed further by [KDSU]
and [KDS]. The main tool of this theory is a biorthogonal decomposition, which extends
the Wiener-It6 chaos expansion. White noise analysis has been used in a broad range of
applications. This approach was originally applied in quantum physics. See for example
[AH-K] or [AHPS]. Subsequently new applications have been found in stochastic (partial)
differential equations [HOUZ]. See also [KA] and [BL] to mention a few. More recently, the
theory has been applied to finance [AOPU]. See [HO|, [EvdH] for the fractional Brownian
motion case and [DOP], [OP] in the non-Gaussian case.

The object of this paper is to provide a white noise framework, based on results in [LP],
[DOP], [OP] and [HOUZ], to study SPDE‘s driven by (pure jump) Lévy processes. We apply
this theory to solve the stochastic Poisson equation driven by a d—parameter (pure jump)
Lévy white noise. That is, consider the following model for the temperature U(x) at point z
in a bounded domain D in R?. Suppose that the temperature at the boundary 0D of D is
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kept equal to zero and that there is a random heat source in D modeled by Lévy white noise
L]

n(z) = n(x1, ..., zq). Then U is described by the equation

Ux)=—-n(x) , z=(21,...,2q) €D
{ S O et (1.1.1)

It is natural to guess that the solution must be

Ux) = Ulz,w) = /D Gz, y)dn(y), (11.2)

where G(z,y) is the classical Green function for D and the integral on the right is a multipa-
rameter [t6 integral with respect to the d—parameter Lévy process n(z). But the integral on
the right side of (1.1.2) only makes sense if G(z,-) is square integrable in D with respect to
the Lebesgue measure. The latter is true if and only if the dimension d is chosen lower than
4. Despite of this difficulty we will show the existence of a unique explicit solution

xr—U(z,-) € (S)_1,

where (S8)_; is a suitable space of stochastic distributions, called the Kondratiev space.

The stochastic Poisson equation (1.1.1) was discussed by Walsh [W] in the case of Brow-
nian white noise W. He proved that there exists for all d a Sobolev space H~"(D) and an
H~"(D)—valued stochastic process

U=U(w):Q— H (D)
such that (1.1.1) holds in the sense of distributions, e.g.
(U(-,w),A¢) =— (W(-,w),¢) as. for all p € H "(D).

The solution of Walsh is given explicitly by

W)= | [ Glnéte)andB) 6 € H(D) (113

The system (1.1.1) was also studied in [HOUZ]| in the Gaussian case. There the solution
U(z), which takes values in the Kondratiev space, can be described by its action on its test
functions f € (S)

({U(x), f) = y G(z,y) (W(y). f)dy; f € (S (1.1.4)
If we compare (1.1.3) and (1.1.4) we find that the Walsh solution takes z—averages for almost
all w, whereas the last one takes w—averages for all x.

Our solution is an extension of (1.1.4) to Levy processes. The approach we use to solve
(1.1.1) is based on a chaos expansion in terms of generalized Charlier polynomials (compare
[LP]) and on concepts developed in [HOUZ], [DOP] , [@P] . Our method, which can be
applied to other classes of SPDE‘s, has the advantage that SPDE‘s can be interpreted in the
usual strong sense with respect to time and space. There is no need for a weak distribution



intepretation with respect to time and space. Furthermore, the Walsh construction reveals
the disadvantage of defining a multiplication of (Sobolev or Schwartz) distributions, if one
considers SPDE‘s, where the noise is involved multiplicatively. However, on the Kondratiev
space (S)_1 we can define a multiplication, the Lévy Wick product. This gives a natural
intepretation of SPDE‘s, where the noise or other terms appear multiplicatively. Furthermore,
in some cases solutions can be explicitly obtained in terms of the Wick product. See [HOUZ].

Finally, let us mention that there has recently been an increasing interest in solving
SPDE‘s driven by d—parameter Lévy processes. We refer to [M], [AW] and the references
therein.

We shall give an overview of the paper. In Section 2 we introduce a white noise frame-
work for the study of SPDE's driven by d—parameter Lévy processes. The starting point of
our theory is a chaos expansion in terms of generalized Charlier polynomials. Based on this
expansion we define Kondratiev spaces, the Wick product and the d—parameter Lévy white
noise. Further, we give the definition of the Lévy Hermite transform and state a character-
ization theorem for the Kondratiev space (S)_;. In Section 3 we use the tools developed in
Section 2 to apply it to solve the stochastic Poisson equation driven by a d—parameter Lévy
white noise.

2 Framework

In this section we give the general framework to be used later. The starting point for our
discussion are white noise concepts for Lévy processes, developed in [DOP], [@P] and [LP].
Actually, we empasize the use of multidimensional structures, i.e. the white noise we intend
to consider is indexed by a multidimensional parameter set. Our presentation and notation
will follow that of [HOUZ] closely, where Gaussian white noise theory is treated. For more
information about white noise theory we refer to [HKPS], [Ku] and [O].

2.1 A white noise construction of Poisson random measures associated
with a Lévy process

In this paper we confine ourselves to (d—parameter) pure jump Lévy processes without drift.

A pure jump Lévy process n(t) on R with no drift is a process with independent and
stationary increments, continuous in probability and with no Brownian motion part. The
characteristic function of such a process is given by the Lévy-Khintchine formula in terms of
the Lévy measure v of the Lévy process, i.e. in terms of a measure v on Ry := R — {0}, that
integrates the function 1 A z2. Hence driftless pure jump Lévy processes can be characterized
as Lévy processes with characteristic triplet (0,0,v). For general information about Lévy
processes see [B] and [Sa]. In general, such processes do not possess the chaotic representation
property, but they admit a chaos representation with respect to Poisson random measures (see
[I]). Therefore we aim at viewing these processes as elements of a certain Poisson space. In
this framework we will give a white noise construction of Poisson random measures and, since
our emphasis lies on processes indexed by multidimensional sets, we will define d—parameter



(pure jump) Lévy processes. Further, we prove a chaos expansion in terms of generalized
Charlier polynomials.

A usual starting point in white noise analysis is the application of the Bochner-Minlos
theorem to prove the existence of a probability measure on the space of tempered distributions
S'(RY). However, it turns out that S'(RY) is not the most appropriate for dealing with Lévy

processes since this choice would require restrictive conditions to be imposed on the Lévy
measure. This circumstance comes from the fact that the Lévy measure has a singularity at
zero. Therefore we use the construction of a nuclear algebra S(X) , which is more tractable
for our purpose. In fact, the space S(X) is a variant of the Schwartz space on X = R? x Ry,
more precisely S(X) is a subspace of the Schwartz space modulo a certain subspace depending
on the Lévy measure. Let us first give the construction of S(X) (compare [LP]).

In the following let {£,},>0 be the complete orthogonal system of L*(R ), consisting of
the Hermite functions. Then the (countably Hilbertian) nuclear topology of the Schwartz

space S(R?) is induced by the compatible system of norms

loll2:= > (1 4+ @) (¢,€a)T2may, 7 € NG, (2.1.1)

aeNd

where &, := H?:l €, and (1 + a)? = H?Zl(l + ;)? for a = (a1,...,aq) € N and
¥ = (1, .,7a) € Nd. Now let us take a numbering of the norms in (2.1.1), say [[|,, and

define the norms HSOHp =2 ||<PHW p € N. Then HHp , p € N are increasing pre-Hilbertian
norms on S(R?). It is well-known that the norms ||-|| , are equivalent to the norms [|-[|, .
given by

16llgo0 = sup sup |(1+|2[")@7¢(2)|. g € No, (2.1.2)

0<k,|v|<q zeRd

where 97p = - o @ for v = (71,...,74) € Nd with |y| := v + ... + 74. We mention

71 d
21" .0z,

the following important property of the norms ||-[|, (see [IK]): For all p € N there exists a
constant M, > 0 such that for all ¢,¢ € S(R?)

lell, < My llell, 11, (2.1.3)
We then define the space S(X) by

0
0zq 1

S(X) = {go € S(R™) 1 (21, ..., 29,0) = ( ©)(21,y .y 24,0) = 0} (2.1.4)
It follows that S(X) is a closed subspace of S(R¥*!). Thus S(X) is a (countably Hilbertian)
nuclear space with respect to the restriction of the norms |[-[|,. Moreover it is a nuclear
algebra, that is S(X) is in addition a topological algebra with respect to the multiplication
of functions. In the sequel we denote by A*¢ the Lebesgue measure on R% and by v a Lévy
measure of on Rg. We set 7 = A*? x v. We need the following result.



Lemma 2.1.1 There exists an element denoted by 1 @ v in 8'(X) such that
(1ei.6) = [ otuia)

for all ¢ € S(X), where <1 ® v, q§> = (1 ®@ v)(¢) is the action of 1 ® v on ¢. The notation v

shall indicate that v is the Radon-Nikodym derivative of v in a generalized sense.
Proof Set L(p) = [y ¢(z)n(dz). Let ¢p, ¢ € S(X) with ¢, — ¢ in S(X). By Taylor’s
formula we have for ¢ € S(X) that

¥(2)

= o(z1, .., 2a,0) + (aZsto)(ZL e 2d,0) + (aZdHcP)(Zl, woes 2d5 0)Zd41
+%(%;<p)(21, o 2 €)25 101

_ %(%;gp)(zl,...,zd,ﬁ)zg_i_l

for a point ¢ between 0 and zgz,1. We assume without loss of generality that the measure v
vanishes outside of [—1,0) U (0, 1]. Therefore it follows by (2.1.2) that

L=l < [ [ leule.n) - ol 2) w23 a)

V(@A |2 + 21 lon(@, 2) — o(x,2)| 22 xd
< /Rd /1 1< )

1

1
< len — / ——X\(dz / 22v(dz) — 0 for n — .
H HQ,OO Rd (1+|x‘2) ( ) 1 ( )

So the linear functional L is continuous on S(X). O

Next define the space

Ny o= {6 € 8(X) : ¢l 20 = 0} (2.1.5)

By the same arguments as in the proof of Lemma 2.1.1 it can be shown that A is a closed
subspace of S(X). Furthermore, one checks that it is a closed ideal of S(X ). Now we introduce
the space S(X), which we use to construct the white noise measure.

Definition 2.1.2 We define the space S(X) as follows
S(X) =8(X)/N (2.1.6)

The space S(X) is a (countably Hilbertian) nuclear algebra with the compatible system of
norms

6| = inf , peN. 2.1.7
HqﬁHN Jnt [l6+l,. p (2.1.7)



See p.72 in [GV]. Further, let S'(X) denote the topological dual of S(X).

We obtain the following corollary to Lemma 2.1.1:

~

Corollary 2.1.3 The functional L(¢) := [ ¢(z)7(dz) satisfies the inequality

2@)| < 1, |9

pYTr

for all p > pg, which yields the continuity of the functional L on S (X). N
Theorem 2.1.4 There exists a unique probability measure y on the Borel sets of S'(X)
with the following Poissonian characteristic functional with intensity 7= such that for all

¢ € S(X)
/. ) = e ( [ @ - 1)d7r> , (2.1.8)

where (w, ¢) = w(¢) is the action of w € S'(X) on ¢ € 8(X). Moreover there exists a pg € N
such that 1 ® 7 € S_,,(X) and a natural number gy > po such that the imbedding operator
gqo (X) — gpo (X) is Hilbert-Schmidt and ,u(g_qO(X)) = 1. The space gp(X) denotes the
completion of S(X) with respect to ||-| pn and S ,(X) is the corresponding dual with norm
1

Proof Since |e** — 1| < |z| the result follows from Corollary 2.1.3 and Bochner*s theorem
for conuclear spaces [GV].OO

We call the probability measure p on = g'(X ) in Theorem 2.1.4 Lévy white noise
probability measure. It turns out that this measure satisfies the first condition of analyticity
in the following sense (see [KDS]).

Lemma 2.1.5 The Lévy white noise measure u satisfies the first condition of analyticity,
that is there exists € > 0 and a pg such that

| exple oy )dle) < oc.
S'(X)

Proof The proof follows the argument of Lemma 3 in [U]. Introduce the moment functions
of u, which by a criterion of Cramer [C] can be expressed by

Mafo)i= [ 0" ) = G0

t=0

for every ¢ € S(X), n € N. Define the set

k
AF = {(al, yag) € NF Zai = n}
i=1

Then we obtain the following expression for M, :

n k ey
M () = ZZ—: > 11 % (2.1.9)



We get for the number pg in Theorem 2.1.4 that
(1@ 0, @) < 1@ P _py 7 |9l - <00

Next relation (2.1.3) implies that for all p € N there exists a constant M, > 0 such that for
all ¢, € S(X)

160l n < Mp 19l 7 1917 - (2.1.10)

Thus we get that

(L& 0,¢%)| < 11 @, (Mpo)® [|6lla

if we choose My, > 1. So we deduce from (2.1.9) that

Ma(9)] < Z”' ZH” ”‘p‘* e |l

=1 """ aeAk j=1
= n(Hl ® anpo,ﬂ') Po ||¢Hp0,ﬂ"

where F),(z) is the n’th moment of the Poisson distribution with intensity = and where C, is
a constant. Further it is known that for a Poisson distribution with intensity z = |1 ® v||
there exists a constant C'; such that for all n € N

Ppo,T

Ey([1 ey < nlClygp)

—Ppo,m po.m

Therefore we get for a C' > 0 that

| M ()] < n!C™ |61,

po,m *

The claimed result follows from Lemma 3 in [KDS].OJ

Further, consider the function « defined by a(¢) = log(1l + ¢) mod N for ¢ = ¢ with
¢o(x) > —1. Note that « is holomorphic at zero and invertible. With the help of Lemma 2.1.5,
it can be shown just as in [LP] that there exist symmetric kernels Cp(w) such that for all ¢
in an open neighbourhood of zero in S(X)

e(¢,w) == % = n;) % (Cp(w),d%™), (2.1.11)

where ¢®" € S(X )®". The symbol S(X )®” denotes the n-th symmetric tensor product of
S(X) with itself. The elements of this space can be seen as functions f € S(X™) modulo
Nixn such that f = f(z1,...,2,) is symmetric with respect to the variables z1,...,x, € X.

From relation (2.1.11) we conclude that the C,, are generalized Charlier polynomials (see
[KDS]). We have that

{<Cn(w), ¢(“>> o™ e §(X)®" n e NO} (2.1.12)



is a total set in L?(x). Furthermore for all n, m, ¢(® € g(X)®" and ¢(™) e g(X)@’m the
orthogonality relation

/~ <cn(w), ¢<n)> <C’m(w), ¢<m)> () = Bl (3™, ™) 12 ) (2.1.13)

S(X)

holds. See [LP]. N
Remark 2.1.6 It can be easily seen from relation (2.1.13) and the construction of S(X)

that the Lévy white noise measure p is non-degenerate in the followmg sense (see KDSL ): Let

F bea contlnuous polynomial, i.e. F is of the form F( ) =Yg (W, o > for w € S'(X),

N € Ny with ¢ € Sc(X)®n (complexification of S(X)®"). If F =0 pu—a.e. then F(w) =0
for all w € & (X). We mention that this property is essential for the construction of certain
test function and distribution spaces (see [KDS], [LP]).

Next, for functions f : X — R define the symmetrization (f)" of f by

(M1 ey ) = %Zf(xgl, ey T (2.1.14)

for all permutations o of {1, .. n} Then a function f: X™ — R is symmetric, if and only
if f f . Denote by LZ(X" *™) the space of all symmetrlc functions on X", which are
square integrable with respect to m*™. Let f, € L?(X™, 7%"). Slnce S( ) is dense in L%(X, )

(compare [LP]), we can choose a sequence fy(f) in §(X )®" with f — fp in L2(X™, X0,
Then relation (2.1.13) implies the existence of a well defined (Cy(w), f, ) such that
(Cu(@), fo ) = lim <Cn(w), f;;'>> in L2(X"™, 7). (2.1.15)
Since C1(w) =w — 1@ i for all ¢ € S(X) (see [LP]), we get
Jo, 1850 ) = 1S (2116

Further, if we define for Borelian Ay C R Ay C Ry with 7(A; x As) < oo the random
measures

N(A1,Ag) == (w, XA, xA,) and N(A1,Ag) = (w— 1@ D, XA, xA,) - (2.1.17)

we see from their characteristic functions that N is a Poisson random measure and N is
the corresponding compensated Poisson random measure. The compensator of N(A1, Ag) is
given by 7. Therefore it is natural to define the stochastic integral of ¢ € L?(m) with respect
to N by

/X é(x,2)N(dz,dz) = (w—1Q D, ¢) . (2.1.18)

In particular, if we define

n(z) = / X[0,21] ... x[0,24] (T) * zN(dz,dz) for & = (21, ..., x4) € RY, (2.1.19)
X



where [0, x;] is interpreted as [z;,0], if ; < 0 and where the Lévy measure v is assumed to
integrate 22, then 7j(x) has a version n(z), which is cadlag in each component x;. This follows
with the help of relation (2.1.13). We call n(z) d—parameter Lévy process or space-time Lévy
process.

We conclude this section with a chaos expansion result in terms of the generalized Charlier
polynomials C),. The result is a consequence of (2.1.12) and (2.1.13).

Theorem 2.1.7 If F € L2(y), then there exists a unique sequence f, € L(X™) such
that

F(w) = (Cn(w), fa) - (2.1.20)

n>0

Moreover, we have the isometry

IF Nz = Dt full 22 (xmy (2.1.21)

n>0

2.2 Chaos expansion, Kondratiev spaces (S),, (S)-, and Lévy white noise

First we reformulate the chaos expansion of Theorem 2.1.7. Then we use the new expansion
to define a Wick product on spaces of stochastic test functions and stochastic distributions.
The definitions and results here are analogous to the one-parameter case, which is treated in
[DOP], [OP].

(From now on we suppose that our Lévy measure v satisfies the condition of [NS], namely
that for every € > 0 there exists a A > 0 such that

/ exp(A |z|)v(dz) < oo. (2.2.1)
R\(—¢,e)

This implies that our Lévy measure has finite moments of all orders > 2.

For later use we introduce multi-indices of arbitrary length. To simplify the notation,
we regard multi-indices as elements of the space (N} ). of all sequences a = (a1, ag, ...) with
elements a; € Ny and with compact support, i.e. with only finitely many «; # 0. We define

Further, we set Index(o) = max{i: a; # 0} and |a| =), a; for o € J.

Next we consider two families of orthogonal polynomials. We use these polynomials to
reformulate the chaos expansion of Theorem 2.1.7. First let {{;}r>1 be the Hermite functions
just as in Section 2.1. Now choose a bijective map

h:N% — N.

Define the function (x(x1,...,xq) = & (z1) - ... fid(.’Ed), if k = h(i1,...,iq) for i; € N. Then
{Ck}r>1 constitutes an orthonormal basis of L2(R?).



Further, let {l;,}m>0 be the orthogonalization of {1, z, 2%, ...} with respect to the inner-
product of L?(p), where o(dz) = 22v(dz). Then define the polynomials

1

= zlm—1(2) (2.2.2)
[m—1ll£2(p)

pm(2)

The polynomials p,, form a complete orthonormal system in L?(v) (see [@P]). Next define
the bijective map

2:NXN—N; (i,j) —j+ (i +j-2)(i+j—1)/2 (2.2.3)

Note that z(i, j) gives the ”Cantor diagonalization” of N x N.
Then, if k = z(i,7) for i, j € N, let

or(z,2) = Gi(z)pj(2)

Further, assume Index(a) = j and |a| = m for a € J and identify the function §%* as

6®a((xla Zl)a ceey (iL‘m, Zm)) = (224)
0P @ e @6 (w1, 21), 0 (Tms 2m)) = G121, 21) - - 61(Tas 7 )
e 05 (Tag+.taj_1 415 Zag+.toy_1+1) - 05(Tm, Zm),

where the terms with zero-components «; are set equal to 1 in the product (5;80 =1).
Finally, we define the symmetrized tensor product of the ‘s, denoted by 6% as

(5®a((a:1, 21); ooy (T 2m)) = (6®O‘)A((az1, 21)y ees (T Zm))

R ~ (2.2.5)
= 07880 (21, 21), oors (T, 2m))-
For o« € J define
Ko(w) == <C‘a‘(w), 5®a> (2.2.6)
where we let Ko(w) = 1. For example if o = € with
é(j) = { éi‘fsrej =l s (2.2.7)
we obtain
Ka(w) = {w,0%) = (0,8) = (. G(@)ps (=) (2.2.8)
if 1= 2(4, ).

By Theorem 2.1.7 any sequence of functions f,, € L 2(rXm), m = 0,1,2,... such that
Y om>1m! |\fm|\i2(ﬂxm) < oo defines a random variable F € L*(p) by F(w) = 350 (Cm(w), fm)-

10



Since each f,, is contained in the closure of the linear span of the orthogonal family {6690‘}‘ al=m
in L 2(7*™), we get for all m > 1 the representation

Fm= Y cad® (2.2.9)
|a|=m

in L 2(7*™) for ¢4 € R. Hence, we can restate Theorem 2.1.7 as follows.

Theorem 2.2.1 The family {K,}ocs constitutes an orthogonal basis for L2(p) with
norm expression

2
||Ka||L2(“) =al:= ajlasl..., (2210)
for a = (a1, @2, ...) € J. Thus every F € L%(11) has the unique representation

F=> coKa (2.2.11)
acJ

where ¢, € R for all a and where we set ¢g = E[F].
Moreover, we have the isometry

IF |20 = Y aled. (2.2.12)
aeJ

Example 2.2.2 (i) Choose F(w) = n(z) the d—parameter Lévy process. Then n(z) =
f[O,m]X...X[O,xd]xRo zN(dz,dz) = <waX[0,z1]><...><[0,md] (z) - z) a.e. and it follows by (2.2.8) that

T4 T
n(z) = Z m/ / Ce(z1,..xg)dry..drg - K 1), (2.2.13)
0 0

k>1

where m = ||| ;2(,) -
(ii) Let Ay C R™, Ay C Rp with (A1 x Ag) < oo. Set fi(z,2) = xa;xA,(Z,2). Then by
(2.2.8) and (2.2.9) we get for F'= N(A1,A2) = (w, f1)

Nt A) = > /A X Co(@)pm (2)v(d2)d - K 2km) - (2.2.14)

km>1

Next we define various generalized function spaces that relate to L%(u1) in a natural way.
These spaces turn out to be a useful tool to study stochastic partial differential equations.
Our spaces are Lévy versions of the Kondratiev spaces, which were originally introduced in
[K]. See also [AKS] and [KLS] in the context of Gaussian analysis. The one-parameter case
with respect to the Lévy white noise measure p can be found in [DOP], [OP]. The extension
to multidimensional parameter sets is analogous.

Definition 2.2.3 (i) The stochastic test function spaces

11



Let 0 < p < 1. For an expansion f = Y ;oK € L?(11) define the norm
I£15 5 =D (a)! ™7 ca(2nN)e (2.2.15)
aceJ

for k € Np, where (2N)k® = (2. 1)ka1(2.2)kaz_ (2. m)kam if Index(a) = m.
Let

(S)pe :=Af | fll, x < o0}
and define

(S)p =) (S)oks (2.2.16)

endowed with the projective topology.

(ii) The stochastic distribution spaces

Let 0 < p < 1. In the same manner, define for a formal expansion F' = Zaej bo K, the
norms

1P, =Y (@) 7P (2N) 7% & € N. (2.2.17)
aceJ
Set
() pk = A{F: |[Fll_, < oo}
and define
(S)p=J (S)pt: (2.2.18)
keNg

equipped with the inductive topology.

We can regard (S)—, as the dual of (S), by the action
(F,f) =) bacaa! (2.2.19)
aceJ

for F =73 c;baKq € (S)—pand f =3 ,c;0aKq € (S), . Note that for general 0 < p < 1
we have

(8)1C(8), (8o L* ) c(S)-0C(S)-,C(S) (2.2.20)
The space (S) := (S)p resp.(S)* := (S)—o is a Lévy version of the Hida test function space
resp. Hida stochastic distribution space. For more information about these or related spaces

in the Gaussian and Poissonian case we refer to [HKPS] and [HQOUZ.

One of the remarkable properties of the space (S)* is that it accomodates the (d—parameter)
Lévy white noise. See [DOP].

12



Definition 2.2.4 The (d-parameter) Lévy white noise n(z) of the Lévy process 7(z) (with
m = |[z]|f2(,y) is defined by the formal expansion

n(z) =m Z G (2) K zrm) (2.2.21)

k>1

where (j(z) is defined by Hermite functions, z(i, j) is the map in (2.2.3) and where € € J is
defined as in (2.2.7).
Remark 2.2.5 (i) Because of the uniform boundedness of the Hermite functions (see e.g.

[T]) the Lévy white noise 7(z) takes values in (S)* for all 2. Further it follows from relation
(2.2.13) that

ad

Do, = i(z) in (S)". (2.2.22)

This justifies the name white noise for 7(z).

(i) Just as in [OP] the (d—parameter) white noise N(z, z) of the Poisson random measure
N(dz,dz) can be defined by

N(z,2)= Y G@)pm(z)  Kewm (2.2.23)

k,m>1

where py,(z) are the polynomials from (2.2.2). We have that N(z,z) is contained in (S)*

r—a.e. The relation (2.2.14) admits the interpretation of N (z, z) as a Radon-Nikodym deriva-
tive, i.e.(formally)

N(z,z) = % in (S)*, (2.2.24)

The last relation entitles us to call N(z, z) white noise.

Moreover, 7(z) is related to N(z,z) by

n(z) :/Rzﬁ(x,z)u(dz). (2.2.25)

The relation above is given in terms of a Bochner integral with respect to v (see [OP]).

2.3 Wick product and Hermite transform

In this section we define a (stochastic) Wick product on the space (S)_1 with respect to the
Lévy white noise measure p. Then we give the definition of the Hermite transform and apply
it to establish a characterization theorem for the space (S)_1.
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The Wick product was first introduced by Wick [Wi] and used as a renormalization
technique in quantum field theory. Later on a (stochastic) Wick product was considered by
Hida and Ikeda [HI]. This subject both in mathematical physics and probability theory is
comprehensively treated in Dobroshin and Minlos [DM]. Today the Wick product provides
a useful concept for a variety of applications, e.g. it is important in the study of stochastic
ordinary or partial differential equations (see e.g. [HOUZ]).

The next definition is a d—parameter version of Definition 3.11 in [DOP].

Defintion 2.3.1 The Lévy Wick product F ¢ G of two elements

F=) auK, G=)Y bsKse(S) 1 withas, by €R
acJg BeJ
is defined by

FoG= ) anbsKaip (2.3.1)
a,BeT

Remark 2.3.2 Let fn, =3, _, cab®e € L2(7*") and gy, = > 18l=m bﬁé@g
€ L2(7*™) according to relation (2.2.9). Then we have

Fagm =Y Y cabpd®@t = N N 6™

|al=n[B]=m [Y|=n+m atpf=y
in L2(7*(™+m)). Hence

(Cn(w), fn) © (C(w), gm) = <Cn+’m(w)a fn®gm> . (2.3.2)

Remark 2.3.3 A remarkable property of the Wick product is that it is implicitly con-
tained in the It6-Skorohod integrals. The reason for this fact is that if Y (¢) = Y (¢,w) is
Skorohod integrable, then (see [DOP])

/Y )om(t) /Y ot (2.3.3)

The left hand side denotes the Skorohod integral of Y (¢) and the integral on the right is the
Bochner-integral on (S)*. The Skorohod integral extends the It6 integral in the sense that
both integrals coincide, if Y (t,w) is adapted, i.e. we have then

/Y Yon(t) /y Yan(t) (2.3.4)

Note that a version of relation (2.3.3) holds for the white noise N(t,z), too (see [@P]).
The extension to the d—parameter case is given in [LP].
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Remark 2.3.4 It is important to note that the spaces (S); , (S)—1 and (S), (S)* form
topological algebras with respect to the Lévy Wick product ¢ (for an analogous proof see
[PT] and [HOUZ]). For more information about the Wick product and Skorohod integration
in the Poissonian and Gaussian case see e.g. [HKPS] ,[HOUZ] and [NZ].

The Hermite transform, which appeared first in Lindstrgm et al. (1991) [LOU], gives
the interpretation of (S)_1 in terms of elements in the algebra of power series in infinitely
many complex variables. This transform has been applied in many different directions in
the Gaussian and Poissonian case (see e.g. [HOUZ]). Its definition for (d—parameter) Lévy
processes is analogous.

Definition 2.3.5 Let F' = }_ . ;a0Ks € (S)-1 with as € R. Then the Lévy Hermite
transform of F, denoted by HF', is defined by

HF(z) = ) asz" €C, (2.3.5)
aceJ

if convergent, where z = (21, 22,...) € CY (the set of all sequences of complex numbers) and

o a1 (2 [0}
2% = 217257 .2p" (2.3.6)

if o = (v, ag,...) € J, where z;-) =1.
Example 2.3.6 We want to determine the Hermite transform of the d—parameter Lévy
white noise 7(z). Since n(z) = m > k1 k(@) K

c2(k,1) We get

Hm)(z,2) =m > (@) - 2w (2.3.7)

k>1

which is convergent for all z € (CN)c (the set of all finite sequences in CN ).
One of the useful properties of the Hermite transform is that it converts the Wick product
into ordinary (complex) products.

Proposition 2.3.7 If F, G € (S)_1, then

H(F o G)(z) =H(F)(z) - H(G)(z) (2.3.8)
for all z such that H(F)(z) and H(G)(z) exist.
Proof The proof is an immediate consequence of Definition 2.3.1.0J

In the following we define for 0 < R, ¢ < oo the infinite-dimensional neighborhoods K,(R)
in CN by

Ko(R) = {(&,&,...) €TV Y ¢ 2N)™ < R?}. (2.3.9)
a#0

By the same proof as in the Gaussian case (see Theorem 2.6.11 in [HOUZ]|) we deduce
the following characterization theorem for the space (S)_;.
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Theorem 2.3.8 (i) If =} _;a,K, € (§)-1, then there are ¢, M, < co such that

HF(2)| < 3 Jaa] [29] < My( D (2N)1 |222)3 (2.3.10)
acJ acJ

for all z € (CN)C
In particular, HF' is a bounded analytic function on K, (R) for all R < oo.
(ii) Conversely, assume that g(z) = )7 ba2® is a power series of z € (CN)c such that

there exist ¢ < oo, § > 0 with g(z) is absolutely convergent and bounded on K,(9) then there
exists a unique G € (S§)_1 such that HG = g, namely

G=) buK, (2.3.11)
aeJ

3 Application: The stochastic Poisson equation driven by
space-time Lévy white noise

Let us illustrate how the framework, developed in Section 2, can be applied to solve the
stochastic Poisson equation

AU(z) = —n(z); z €D
{ Ulz) = 0 v €aD (3:-1.1)

where A = Zﬁzl % is the Laplace operator in R?, D is a bounded domain with regu-

lar boundary (see e.g. Chapter 9 in [@]) and where 7(z) = m Yo, Cr(2) K ) is the
d—parameter Lévy white noise (Definition 2.2.4). -

As mentioned in the introduction the model (3.1.1) gives a description of the temperature
U(z) in the region D under the assumption that the temperature at the boundary is kept
equal to zero and that there is a white noise heat source in D.

Note that AU(z) in (3.1.1) is defined in the sense of the topology on (S)_;.

Now we aim at converting the system (3.1.1) into a deterministic partial differential
equation with complex coefficients by applying the Hermite transform (2.3.5) to both sides of
(3.1.1). Then we try to solve the resulting PDE, and we take the inverse Hermite transform
of the solution, if existent, to obtain a solution of the original equation. Before we proceed
to realize our strategy, we need the following result.

Lemma 3.1.1 Suppose X and F' are functions from D in (3.1.1) to (S)_1 such that
AHX(z,2) = HF(x,2) (3.1.2)

for all (z, )EDXK((S)forsomeq<oo 6> 0.
Furthermore assume for all j that - 2HF (x,2) is bounded on D x K,(6), continuous with

respect to x € D for each z € K4(0) and analytic with respect to z € K,(¢) for all z € D.
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Then
AX(z) = F(z) for all z € D. (3.1.3)

Proof Use repeatedly the same proof of Lemma 2.8.4 in [HOUZ] in the case of higher order
derivatives .[J

Now, we take the Hermite transform of (3.1.1) and we get

{ Au(z,2) = —H(i)(w,2); v €D (3.1.4)

u(z,z) =0 r€90D ’

where u = HU and H(7)(x, 2) = m > k1 Ck(®) 22w for 2 € (CN)c (see 2.3.7). By comparing
the real and imaginary parts of equation (3.1.4), one checks that

u(z,2) = » G(z,y) - H(n)(y, 2)dy (3.1.5)

where G(z,y) is the classical Green function of D with G = 0 outside of D (see e.g. Chapter
9 in [@]). Since G(z,-) € L'(R?) for all x, the right side of (3.1.5) exists for all z € (cY),
and z € D. Hence u(z, z) is defined for such z, z.

Further we see for all z € ((CN)C that

e, < et [ 166 )] Gu(0)dy < const. 3 12
k Rd k
< comst (3 |25 2 (2N)?) 23 (2N) 25k /2 (3.16)
k

k
< const.- R - (Z(Qk)72)1/2 < oo
k

for all z € K5(R). Besides this (3.1.5) shows that u(z, z) is analytical in z. Thus we conclude
by the characterization theorem (Theorem 3.8) that there exists a function U : D — (S)_4
such that HU(z,z) = u(zx, z). Next we want to verify the assumptions of Lemma 3.1.1 for

X =U and F = —7.7 . It is known from the general theory of deterministic elliptic PDE’s
(see e.g. [BJS]) that for all open and relatively compact V in D there exists a C such that

[ul-s 2)llcz+aqry < CUIAUC 2l caqvy + (1w 2)llew) (3.1.7)

for all z € ((CN)C . Since Au = —H7 and u are bounded on D x Ks(R), it follows that

59—;211(:1:, z) is bounded for such z, z. Thus by Lemma 3.1.1 U is a solution of system (3.1.1).
i

Further, we follow from Lemma 3.18 in [D@QP] that the Bochner integral [, G(z, y)n(z)ds
exists in (S)* (see Definition 3.16 in [DOP]) and that

[ caiwiy=mY [ Gk (3.18)

k>1

17



Then one realizes that the right side of (3.1.5) is the Hermite transform of (3.1.8).
So we obtain the following result.

Theorem 3.1.2 There exists a unique stochastic distribution process U : D — (S)*,
solving system (3.1.1). The solution is given by

Uz) = /RdG(w,y)fv(y)dy = mZ/Rd G(z,9)C(y)dy Ko, (3.1.9)

k>1
where m = ||z[[ 12(,) -

Remark 3.1.3 Since the singularity of G(z,y) at y = z is |x — y|27d for d > 3 and log ﬁ
for d = 2 (with no singularity for d = 1) it is easy to see that G(z, -) is square integrable in
D with respect to the Lebesgue measure, if and only if d < 3 . So for dimensions d < 3 one

gets by Remark 2.3.3 the representation

U(:c):/Rde(x,y)oﬁ(:c)dxz/Rda(x,y)dn(:g). (3.1.10)

Remark 3.1.4 The solution (3.1.9) can be characterized by its action on the test functions
f € (8) as follows

W)= | Gla) (). £y 1€ (S), (3:1.11)

Hence relation (3.1.11) gives raise to the intepretation that the solution U(z,w) takes w—averages
for all .

We conclude with a remark about an alternative approach to SPDE’s driven by Lévy
space-time white noise.

Remark 3.1.5 Let us briefly describe how the concepts in [LP] can be used to establish a
framework similar to Section 2. Instead of the spaces (S)_, consider the distribution spaces
in [LP] and instead of the H—transform use the S—transform in [LP]. The S—transform is
of the form

S(F)(¢) = (F(w), é(9,w)))

for distributions F' and for ¢ in an open neighbourhood of zero in S (X), where the function
é(¢,w) is as in (2.1.11) and where {(-,-)) is an extension of the innerproduct on L?(u).

Moreover the process 1.7(95) can be replaced by
n(x) = (C1(w), 26)

and the white noise N can be defined by

N(CE, Z) = <01 (w), 5(m’z)> s
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where 0, is the Dirac measure in a point y. Further by the properties of the S—transform

(see [LP]) one can prove a similar result as Lemma 3.1.1. Moreover the S—transform of

n(z) = (C1(w), 26,) is

S(n(x))(¢) = [ oz, 2)v(dz)

Ro

(see proof of Proposition 7.5 in [LP]). Hence we can solve system (3.1.1) by finding a function
u such that

Au(z, @) = — [o ¢ v(dz), v € D
u(z, ¢) =0, xeaD

The obvious candidate for u is given by the Green function G :
u(w.o)= [ o) [ o)y
Rd Ro

Hence the solution is given by the inverse S—transform, yielding the same result as in Theorem
3.1.2 for all Lévy measures. Moreover within a similar setting one can solve more general
versions of the problem. However the use of the H—transform has some advantages. For
instance it enables the application of methods of complex analysis.
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