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INFINITE DIMENSIONAL ANALYSIS OF PURE JUMP LEVY
PROCESSES ON THE POISSON SPACE

ARNE LOKKA AND FRANK NORBERT PROSKE

ABSTRACT. We develop a white noise calculus for pure jump Lévy processes on Poisson space.
This theory covers the treatment of Lévy processes of unbounded variation. The starting
point of the theory is a novel construction of a distribution space. This space inherits many
of the nice properties of the classical Schwartz space, but differs severely in its behaviour at
zero. We apply Minlos’ theorem to this space and get a white noise measure on this space
which satisfies the first condition of analyticity and which is non-degenerate. Furthermore
we obtain generalized Charlier polynomials for all pure jump Lévy processes. We introduce
Kondratiev test function and distribution spaces, the S—transform and Wick product. We
proceed to establish a differential calculus by using a transfer principle on Poisson spaces.

1. INTRODUCTION

The main objective of this paper is a suitable white noise framework for pure jump Lévy
processes. There are several papers dealing with white noise analysis and pure jump Lévy
processes (see e.g. [14], [13]), but as far as we know none of them present a framework which is
suitable for all pure jump Lévy processes. Some restrictions, typically integrability conditions,
are put on the Lévy measure. This paper presents a framework which works for all pure jump
Lévy processes.

A pure jump Lévy process L with no drift is a martingale with independent and stationary
increments, continuous in probability and with no Brownian motion part. The characteristic
function of such a process is given by the Lévy-Khintchine formula in terms of a measure v
called the Lévy measure of the Lévy process. Hence pure jump Lévy processes with no drift can
be characterized as Lévy processes with characteristic triplet (0,0, ) (see for instance [17] for
more details). The Poisson space is a natural space for dealing with Lévy processes for several
reasons. One of them is that Lévy processes in general do not possess the chaos representation
property with respect to the Lévy process itself. However, every square integrable functional of
the path of a pure jump Lévy process has according to [11] a chaos representation with respect
to Poisson random measures. By viewing a Lévy process as an element in an appropriate
Poisson space, we therefore obtain a more tractable framework. In addition, every functional
on the Poisson space can be given by a chaos expansion in terms of generalized Charlier
polynomials.

A usual starting point in white noise analysis is to apply the Bochner-Minlos theorem which
gives the existence of a probability measure on the space of tempered distributions S'(R?). It
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turns out that S’'(R?) is not the most appropriate for dealing with pure jump Lévy processes
since this choice would require restrictive conditions to be put on the Lévy measure. This
is due to the fact that the Lévy measure in general has a singularity at zero. Section two
is therefore devoted to the construction of a nuclear algebra S(X) which is a variation of
the Schwartz space on the space X, but which is more suitable for our purpose. In fact our
variant of the Schwartz space is topologically isomorphic to the Schwartz space modulo a
certain subspace depending on the Lévy measure. Within this framework we show that any
Lévy measure has a Radon-Nikodym derivative with respect to the Lebesgue measure in a
generalized sense. We denote this derivative by 7. The Bochner-Minlos theorem is then used
to prove the existence of a probability measure uy with Poissonian characteristic functional
with intensity A = v x m (m being the Lebesgue measure) such that

(1.1) / e"<9>dpy (w) = exp (/ (e — 1)d)\(ac))
S'(x) X

for all test functions ¢ in the Schwartz space S(X). The continuity of the functional on the
righthand side of (1.1) follows from the existence of the generalized Radon-Nikodym derivative
of the Lévy measure with respect to the Lebesgue measure. By using an idea of Us [23], we
can prove that u) satisfies the first condition of analyticity. Furthermore, we show that the
measure /i is non-degenerate in the sense of [12]. We then have all we need in order to have
a well defined system of orthogonal generalized Charlier polynomials. The construction and
existence of such polynomials is the topic of section 3. This construction is similar to the
constructions in [1] and [13].

We proceed in section 4 by extending the chaos expansion in terms of Charlier polynomials
treated in section 3. This is done by a Kondratiev type of construction of stochastic test func-
tions and stochastic distributions. Our construction corresponds to the (S(J))™" distribution
space in [23].

For all Lévy measures we therefore have that the process L given by

t
Li:=<w-—r,zlpy >= / / z(w(y, z) — v(y, Z))dZdy
o Jro

is well defined. The function 21, may not be in L?()\). In this case L; is not in L*(uy).
Hovewer L is a well defined process in the stochastic distributional sense. From the definition
of uy given by (1.1) and the Lévy-Khintchine formula it follows that the stochastic process
t +— L; is a pure jump Lévy process with no drift and Lévy measure v.

In section 5 we define the S-transform and the Wick product. This is included since both
the S-transform and the Wick product are useful tools. Even though our definition of the
S-transform is slightly different from the transformation in [1] we show by a little argument
that the relation between the S-transform, the Kondratiev distributions and holomorphic
functions proved in [1] is valid for our definition of the S-transform as well.

The measure u, does not admit a satisfactory construction of a differential calculus on
S’ (X). In section 6 we show how it is possible to circumvent this problem by transporting
analytical structures from configuration spaces using a unitary isomorphism in a similar fash-
ion as in [13]. This yields a Poisson measure m; on the configuration space (I, B(I')) such
that L*(T, 7) is unitary isomorphic to L?(u).

Section 7 deals with the Poissonian gradient and Skorohod integration. We start by proving
that the Poissonian gradient V¥ and the operator D defined via its action on chaos expansions
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in terms of Charlier polynomials are essentially equal. The Skorohod integral is then defined
by its action on the chaos expansions of parametrised families of stochastic distributions. We
show that Skorohod integration is the dual of the Poissonian gradient V¥. Hence Skorohod
integration is equal to (VF)* and we can link the Skorohod integral with results for (VF)* in
[13]. By using the duality between V¥ and the Skorohod integral, we can also prove relations
between S-tranformation, ordinary derivation and the Skorohod integral. Finally, we prove a
relationship between the Skorohod integral, the Wick product and the Lebesgue integral.

2. CONSTRUCTION OF THE NUCLEAR SPACES

First recall the following well known properties about the Schwartz space and its dual, the
space of tempered distributions. Define the operator

For each p € N, introduce the norm

|f‘p = | (A®k +1)Pf ‘ 0

where | - | is the norm of L?*(RF). Define the Hilbert spaces S,(R¥) as the completion of
S(R¥) with respect to the norm | - |, and denote by S_,(R¥) its dual. Then the Schwartz
space S(RF) is the projective limit of S,(R¥) and the space of tempered distributions S'(R¥)
the inductive limit of S_,(R¥).

Let &, denote the n’th Hermite function (see for instance [18, pp. 142]). The set of Hermite

functions {&,}5°, is an orthonormal basis for L?(R). The Hermite functions are closely related

to the Schwartz space in the following way: Let f =Y ° - a,&,. then

Ap =S e,

n=0

and hence [f[> = > (a2 (14 n)*. One can from this identity derive the N-representation

theorem for S(R¥), which states that the Schwartz space S(RF), is topologically isomorphic
to the following space: Let s be the set of multisequences {a, }qoent such that

(2.1) sup |aq||a|” < oo for each p € N
a€eNF

We equip s, with the topology generated by the seminorms

[{ao}aews || = (1 + a)*|aq|?

«

where 3 € NF and (1 + )% := Hle(l + ;)% (see [18, pp. 143] for more details). In order
to ease notation we make the following conventions:

X :=R% x R, for some d € N
where

Ry := R\ {0} R_ := (—00,0) R, = (0, 00)
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We will now define a set of orthonormal functions by a tranformation of the Hermite
functions. For each n € N define the functions &, by
- gn(_%)
n(T) =
i) = 0

where &, is the n’th Hermite function. Notice that by a change of variable we have,

oo [ oo ()b

= A én (?/)Em (?/) dy

from which we see that {£,}°, is an orthonormal basis for L?(Ry) since the Hermite functions
form an orthonormal basis for L*(R).

Let o € N* and set &, = Hle €a,- Define the space S(RE) by

S(ng) = { Z anka Sl;p laq||a]™ < oo for each m € N}

€Nk

For each 3 € N* introduce the norm

o0

IFI5:= D (14 a)*aof?

a€ENE

For each p € N we define the spaces S,(R) as the completion of S(R§) with respect to the
norm || - |5 with 3 = p. It is straightforward to check that S_,(RE) is the dual of S,(RE). We
equip S(RE) with the projective topology generated by the norms || - ||5, and define S'(RE) as
the inductive limit of S_,(RE). Tt follows that S'(Rf) is the dual of S(RE). Notice that the
unitary operator 7' : S(R) — S(Ry) given by

(2.2 1(S e ) = S

« «

is a topological isomorphism between S(R) and S(Ry).
For p € Z we define the spaces S,(X),

Sp(Xk) = Sp(de) ® Sp(RIS)
Then obviously, S_,(X) is the dual of S,(X). Define the test function space S(X) by
S(X) = 1) Sp(X)
pEN
equipped with the projective limit topology, and the corresponding distribution space S’(X)
by
§(x) = |Js5(x)
peN

with the inductive limit topology. From the construction of S(X*), §'(X*), S(RE) and S'(RE)
we have that S(R¥) is topologically isomorphic to S(R*) and S(R%) topologically isomorphic
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to S(R*). Therefore, S’(RE) is topologically isomorphic to &'(R¥) and &'(X*) topologically
isomorphic to &' (R¥1)). For the rest of the paper, || - ||, will denote the norm on S,(X).

Lemma 2.1. Let v be a Lévy measure. Then there exists a constant C' < oo such that
/ |gn(z) |v(dz) < C(n+1)°
Ro

Proof. We need the following upper bound for the Hermite functions &, (See [22, p. 26]).
Gn(@)] < M@n+1)72 2” <2(2n+1)
< Me ™ 22> 2(2n41)

for positive constants M and . Thus we obtain,

/ |gn(2) | v(dz) S/ oy €n(22’) 22v(dz) + &n(2) 1A 2*v(dz)
0 0 z 1 1A 22
Neee)
1
< M/\/W—Jrl)(e_“’(%)gz%)zzz/(dz)
0
+M/ (2n 4+ 1)71222 (2n + 1)2 (1 A 22)v(d2)
NeeTE=)
1 00
<Cy (/ 22v(dz) + (2n + 1)1_2 / (1A zg)u(dz))
0 0
< C(n+1)°

for some positive constants C; < oo and C' < oo since fRo 1 A 2*v(dz) < oc. One gets
analogously the same bound for the negative halfline. |

Lemma 2.2. Convergence in S(Ry) implies pointwise convergence.

Proof. Since this is true for the Schwartz space S(R) and since S(Ro) = T'(S(R)) under the
isomorphism 7' given by (2.2) the result follows. O

Proposition 2.3. Let v be a Lévy measure. Then there exists an element denoted by v in
S'(Rg) such that for all ¢ € S(Ry)

<U,¢p>= o(2)v(dz)
Ro

Proof. Define the functional F(¢) = fRo ¢(2)v(dz). We want to prove that F' is a linear

functional on S(Re). Let ¢y = Y 77, ak €, be a sequence of functions in S(Rg) converging to
o= ay&, in S(Rp). This means that
Z(l +n)*la, —af? -0 ask— o0

n=1

for all # € N. By Lemma 2.1, Lemma 2.2 and the Cauchy-Schwartz inequality,

| F(¢) — F(én) | < / | 6(2) — du(2) | v(d2)
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an — ay)En(2) | v(dz)

-L]%
fjan— n|/ |&ul2) | w(d2)

— n|C' 1+n)?

(2.3) < C(Z(l + n)**|a, — a’;|2) 2
n=1

Now, > (1 +n) ? is finite for p > 1. The continuity of F' then follows from (2.3) since
clearly F(¢y) converges to F(¢) whenever ¢y converges to ¢ in S(Rg). So, F is a linear
functional on S(Rp) and hence F' € §'(Rp). The claimed result follows. O

(i(l + n)2p) :

n=1

Corollary 2.4. Let v be a Lévy measure. There exists an element denoted by 1 Q¥ in S'(X)
such that

<1®u,¢>= /Xqﬁ(y, 2)v(dz)dy

for all ¢ € S(X), where dy denotes the Lebesgue measure on RY.

Proof. 1t is well known that 1 € S'(R). The claimed result therefore follows from Proposition
2.3. O

The notation 7 is used to indicate that © is the Radon-Nikodym derivative of v with
respect to the Lebesgue measure in a generalized sense. With a slight abuse of notation we
will frequently just write © instead of 1 ® 7. We define the measure A on X by

d\(y, z) == v(dz)dy

where dy denotes the Lebesgue measure on R?. By Corollary 2.4, the generalized Radon-
Nikodym derivative of A with respect to the Lebesgue measure on X is 1 ® v. Later we will
need the following:

Lemma 2.5. S(Ry) is dense in L*(v).
Proof. Choose a compact interval [k, ks] C Ry or [k, ko] € R_. Define the algebra,

N
= {U L, : I, C [ky, ko] interval}

n=1
We have that o(A) = B([ki, ks]). For each interval I, C [kq, ko], the function 1; can be

approximated by an element of S(Ry). For all U € B([k1, kq]) and € > 0 there exists an
A € A such that

(AAU) < e

v ‘ [k, k2]

where A denotes the symmetric difference (see [2]). If we apply the above to K, := [-n, —=]U
[%, n| the proof follows since K, converges monotonically to Ry. O
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Denote by L?(X™, \) the space of all functions on X™ which are square integrable with
respect to A*™. We let (-, -)) denote the innerproduct on L*(X, \) and |- |, the corresponding
norm on this space.

Proposition 2.6. The triplet
S(X) — L*(\) — §'(X)
is a Gel’fand triplet.

Proof. By the proof of Lemma 2.1 and the arguments of Lemma 2.3 one verifies that the
scalar product (-, )y of L?()), restricted to S(X) x S(X), is continuous. Since S(X) is dense
in L?(\) the proof follows. O

Now we introduce our space S(X ) which will serve as our starting point for the construction
of the white noise measure.

Definition 2.7. We define the space S(X) as follows:

S(X) == S(X)/N,

where

N)\i {(bES(X) : ||¢||L2()\):O}

Note that A} is a closed ideal in S(X) (see Proposition 2.6). Let S'(X) denote the topological
dual of S(X).

Further, for all p € N define the norms:
(2.4) ol = wigl/\ff)”gb—i-wﬂp

DA

Theorem 2.8. The space S(X) in Definition 2.7 is a nuclear algebra with a compatible sys-
tem of norms given by (2.4). Moreover the Cauchy-Bunjakowski inequality holds, that is for
all q there exists an M, such that for all ¢,vp € S(X) we have

1o [l g0 = Mall ]l 191

Proof. The first statement of the proof follows from [8, p.72]. Note that S(X) is a nuclear
algebra since it is topologically isomorphic to the classical Schwartz space. As for the Cauchy-
BunjaKowski intequality let us choose ¢, 9 € S(X) and p1, po € Ny. Then we have

[(@+p)(@+p2) ||, < Ml[&+pr]l [[¥+p2],

and

[+ o)W +p) |, = |60 +psl, > || 60
where p3 € N,. The result follows. O

QA

Remark 2.9. The space §'(X) is isomorphic to the orthogonal complement of Ny (see e.g.
[20]).
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Lemma 2.10. The functional L(¢) := [x ¢(x)d\(x) satisfies the inequality

| L(9)| < My ¢]],,
for all p > po which yields the continuity of the functional L.
Proof. Let 1¢» € Ny. Then by Corollary 2.4 we have

| L(9)

< Myllo+9],

= | [ o+ vir
X
The result follows by taking the infimum over all 1) € N,. O

Theorem 2.11. Let v be a Lévy measure. There exists a probability measure ) on S’(X)
such that for all ¢ € S(X)

b

(2.5) /S - "< duy(w) = exp < /X (e" — 1)d)\>

Moreover, there exists a po € N such that v € S,po (X) and a natural number qo > po such
that the imbedding operator Sgy(X) < Sy, (X) is Hilbert-Schmidt and

Hox (S*QO (X)) =1

Proof. Consider the functional ® given by

2(0) = e [ (¢4 - 1))

Obviously ®(0) = 1 and since ® is the Fourier transform of Poissonian variables it follows
that ® is positive definite. We need to show that ® is continuous. Obviously it is enough to
show that F(¢) = In(®(¢)) is continuous. We have that

RO = Flol = | [ (5= 1)ixe) - [ (@20 - yax)
. ‘ / (e90) _ 69:@)) A ()
(2.6) SAJM@—¢W@MM@

The continuity of F on S(X) then follows from (2.6) and Lemma 2.10. By the Bochner-Minlos
theorem for conuclear spaces (see for instance [10, thm. 1.1, pp. 2]) the result follows. O

From now on we will let py and ¢y denote the numbers described in Theorem 2.11.

Lemma 2.12 (1. condition of analyticity). u, satisfies the first condition of analyticity,
that is there exists € > 0 such that

[ explelwll-ma)dis(e) < o
S'(X)
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Proof. The proof follows the argument of [23, Lemma 3]. Introduce the moment functions of
fx, which by a criterion of Cramer [4] can be expressed by

dtn

=0
for every ¢ € S(X), t € R and n € N. Denote by A* the set

k
AF = {(al,...,&k) eNF:q; > 1,2041-:71}
i=1

We can then deduce the following expression for M,

(2.7) Zn'ZH<U¢J>

.aeAkJ 1
We have that
(2.8) | <20 > | <7l poal[@llpor < 00
By Theorem 2.8 there exists a constant Cy, such that

29) 160 < CoollBlmalltllpon for all 6,6 € S(X)
By the inequalities (2.8) and (2.9) we obtain from (2.7) that

| M, (¢ \_Z ZHHVH—poAch o

'aeAkJ 1
HVH A
Z ZH Sl G ) AN
k=1 'aeAkJ 1

= Fu(17]l-por) Cy ||¢||p0)\

where F),(x) is the n’th moment of the Poisson distribution with intensity z. We know that for

the Poisson distribution with intensity parameter = = |||, » < oo there exists a constant
C, such that for all n € N,

| Ea (7] pon)| < nlCy

—po:A

Hence there is a constant C' > 0 such that for all n € N and ¢ € S(X),
[ M (9)] < n!C[|9]l5,

from which the claimed result follows (see [12, Lemma 3]). O

Po,A

3. CHAOS EXPANSION AND ORTHOGONAL POLYNOMIALS

Let Y, Z be linear topological spaces. For a mapping f : Y — Z we define the derivative
in the weak sense at the point y € Y in the direction ¢ € Y by

d
Vol () = LI+ ed)|

We say that this mapping is differentiable along a subspace A C Y if the derivative V,f(y)
exists for any ¢ € A and V, f(y) = f'(y)¢ where f’(y) is a linear continuous mapping of A into
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Y. Let us introduce the differential operator V for this linear mapping, that is V4 =< V, ¢ >.
For higher order differentials we introduce the notation:

Vg, V4, =<V, 01 >---<V,0,>=<VR®---0V,0,® - ® ¢, >
For ¢ € S,,(X) introduce the function e(¢) = e(¢,w) given by:
e(p,w) := exp(< w,p>—<e?—1 >)

According to [1] it follows from the first condition of analyticity of uy given by Lemma 2.12
that e(¢) is analytic in a neighborhood of zero on the space S, (X). Set I(z) := In(1 + x).
The function [ is analytic in a neighborhood of zero and [(0) = 0. Hence it follows that the
function é(¢) given by

é(p,w) = (e(-,w) o 1)(¢) = exp(< w,In(1 4 ¢) > — < i, ¢ >)

is analytic as a function of ¢ € Sy (X) where ¢(z) > —1for all z € X. For ¢y,..., ¢, € S(X)
and w € §'(X) define

P(¢17 ey ¢n;w) = v@l o Vzné(a,u)”@:(]

Then from the analyticity at zero of é(f,w) we obtain the following expansion:

é(th,w) =3 %P(G, 0w
n=0

which is convergent in a neighborhood of zero. We have that
P(¢1, - pniw) =< V' Q- @ V&(0, w)|g=0, o1 @ -+ @ ¢, >
=< F(w), 1 ® - ® ¢y >
where
(3.1) Pw)=V'® . @ V(0,w)|p=o

We see that < P, (w), o™ > is well defined for all functions o € S(X)€", where S(X)®" is
the symmetric tensor product of S(X) with itself taken n times. This can be seen to be equal
to all functions f € S(X™) such that f = f(z1,...,2,) is symmetric A*"-almost everywhere

in the variables z1,...,z, where x1,...,2, € X (see (3.6) for more details). From [1] and
[13] we have that

{< Py(w), o™ >:n e NU{0}, o™ € S(X)®"}

forms a total set in L?*(uy) and
(3:2) Z w), 67" >
— n!

From the form of &(-) we see that the polynomlals P, are generalized Charlier polynomials.
In order to emphasize this we will from now on write C,(-) := P,(-). Moreover, from the
relation between e and € we get that

(33) Z% Calt), (# = 1) >



ANALYSIS OF LEVY PROCESSES ON THE POISSON SPACE 11

Proposition 3.1. For any m,n € N, ¢ € S(X)®" and ™ € S(X)®™ we have
/ < Cu(w), " >< Oy (), 1™ > dpa(w) = Gnmn! (™), ™),
"(X)

Proof. The proof is similar to the proof of [13, Prop. 2.3]. Choose ¢, € S(X) and 2z, 29 € C.
Then

/(X) é(z10,w)é(2z91, w)dpy(w)

= exp(— <V, 20+ 291 >) /( )exp (< w, In(1+ 210) + In(1 + 290) >) dpiy(w)
(X

exp( < U, 210 + 291 >) / exp (< w,ln((l +20)(1+ Zg’l/))) >> dpy(w)

"(X)
= (2’122 < U, >)
(2122 ¢, l/) )

% (¢®n’ ¢®n)/\

[
Mg 2

(3.4)

Il
=)

n

On the other hand we obtain by using (3.2),

/~/(X) é(z10,w)é(291, w)dpy(w)

2N n m
(3.5) P Onl'nj' / W), %" >< Cpp (W), Y&™ > dpy(w)

By comparing the coefficients in the expressions (3.4) and (3.5) we see that the result holds
for ¢ = (2,¢)®" and ™) = (251))®™. The proof then follows by using the linearity and the
polarization identity to extend the result to ¢{™ € S(X)®" and (™ € S(X)*™, O

Definition 3.2. A function F : §&'(X) — C of the form
Flw)=> <uw® ¢ > weS(X),NeN

is called a continuous polynomial iff ¢ € SC(%( )& (the complexification of S(X)®n). We
denote the space of continuous polynomials on S(X) by P(S'(X)).

Corollary 3.3 (non-degeneracy of j). For all I € P(S"(X)) with F = 0 py-almost ev-
erywhere we have F(w) =0 for allw € §'(X).

Proof. 1t can be shown that each continuous polynomial F' is representable in the form

N
= < Cow), én >
n=0
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where ¢, € S(X)®". Take without loss of generality F(w) =< Cp(w), ¢y >. Then by
Proposition 3.1

0=E,, [< Cn(w /cb JdA(x

Hence, ¢,, € N,, which implies that (;n is the null element in S (X). Therefore F is identically
7€ro. (]

A probability measure with the property in Corollary 3.3 is called non-degenerate (see
[12]). We will make use of this property for the construction of stochastic test function and
distribution spaces. .

For functions f : X™ — R define the symmetrization f of f by

(3.6) f(xl,...,xn) ::%Zf(xgl,...,xan)

for all permutations o of {1,...,n}. We call a function f : X™ — R symmetric if f = f, that
is it is equal to its symmetrization. Denote by L?(X™, \) the space of all symmetric functions
on X" which are square integrable with respect to A*". Let f, be a function in L?(X"\).
By Lemma 2.5 we can find a sequence of functions fél) eS (X )®" such that f}ﬁ converges to
fn in L2(X™ X) as i tends to infinity. We can therefore define < C,(w), f, > by

<Cn(w), fn> = ili_}g<0n(w), f,(f)> (limit in L*(py))

Note that this limit exists by Proposition 3.1. Moreover, let f) € S(X)®" be another
sequence converging to f,,. Then by Proposition 3.1,

[ (€00 0) = (a1 )Y donter =t 19 - 191

which shows that the definition is well defined. Notice also that from the definition of C; we
have that
d )
—— &exp(< w,In(l+n+ep) >—<v,n+ep> ) |
=<w-v,0>

Veé(n,w) |

e=0,n=0

From which we see that C(w) = w — v. By Proposition 3.1 we therefore obtain the familiar
isometry:

Lemma 3.4. Let f € L*(X,)). Then
| <woming s i) = I£3
"(X)

For any Borel sets Ay C R and Ay C Ry with 0 ¢ cl(Az) we can define the random measures
N(A1, Ag) =< w,1a,xa, > and N(Ay,Ay) :=< w — ©,15,xa, > . From the characteristic
function of it is clear that N is a Poisson random measure and N is the corresponding
compensated Poisson random measure. Moreover, the compensator of N(Aq, Ay) is given by
< U, 1p,xa, > which is equal to A(A1, Ay). We have therefore justified the following identity:

(3.7) /¢tz (dz,dt) =< w— v, ¢ >
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for all ¢ € L?(X,\). Thus in a generalized sense, the compensated Poisson random measure
N has a Radon-Nikodym derivative with respect to the Lebesgue measure on X which is
given by w — .

4. STOCHASTIC TEST AND DISTRIBUTION FUNCTIONS

In this section we will define spaces of test functions and distributions as pairs of dual
spaces with respect to the innerproduct (-, -), and stochastic test functions and distributions
as pairs of dual spaces with respect to the innerproduct on L?(uy). By Theorem 2.8,

(4.1) (6,0 =< ,8" >< P[0 167 lao,n < Mo 11| —go All 115,

From (4.1) it follows that S,(X) is contained in L*(X, \) for all p > ¢,. For each natural
number p > qo define the space S_, \(X) as the completion of S(X') with respect to the norm:

(4.2) 0] = 120l -px

We have the inclusions, S_, z(X) C S_(41)A(X). Define the space Sy(X) as the inductive
limit of S_ \(X).

Lemma 4.1. For every natural number p > qo, S_pA(X) is the L*(\) dual of S,(X).

Proof. By the inequality

(60| = [<vo o >] <o) l[vll, = o] 5 l¢ll,

it follows that the L*(X, \) dual of S,(X) consists of all elements ¢ for which |¢| ,  is finite.
Since this by definition is S_, (X)) the result follows. O

We will now contruct the Kondratiev type stochastic test function space and the Kondratiev
stochastic distribution space. Let f € P(S'(X)). Then by Corollary 3.3 f has a unique
representation:

N - ~
fw)=Y <Cuw) fo> fo€SX)®"
n=0

1

, as the completion of P :=

For any natural number p > ¢o define the Hilbert space (S)
P(S'(X)) with respect to the norm

(e}

oz =D 2 fullss fEP

n=0
with corresponding inner product given by:

o

(£, 9oz = Y (1) (fu ga)y

n=0

where (-,-), denotes the innerproduct on S,(X)®". Obviously (8)pi1 C (S),. We define the

space (S)' as the projective limit of (S)]. By [1, Thm. 4], (S)" is a nuclear Fréchet space

which is densely topologically embedded in L?(jy).

For every natural number p > ¢y define the space (S)_, as the L?(u) dual of (S)). We
~, C (8)7/,.,)- Denote by (S)"! the inductive limit of ()=}, which is

have the inclusion (S) ~(p+1)
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equal to the dual of (S)'. Let << -,- >> denote the dual pairing between (S)" and (S)~".
Moreover, for any F(w) =Y, < Cp(w), F,, > with kernels F,, € S{(X)®" define the norm:

oo}

1EI2 -1k = D 1 Eal2p0

n=0

Lemma 4.2. F € (8)7' iff F admits an expansion F(w) = Y07 < C,(w), F,, > where

- n=0
F, € S{(X)®" and ||F||—p—1,x < 00 for some p > qo. If f(w) = 17" < Cp(w), fn >€ (S)*,
then

(43) << F,f >>= Zn'(Fnafn))\

n=0
Moreover, << - - >> is an extension of the innerproduct on L?(uy).

Proof. Let F(f) =<< F,f >> where << -,- >> is given by (4.3). Assume first that
F, f € L*(y). Then

[e.9]

<< F,f>>=) nl(F, f.), =E[Ff]

n=0

Hence << -,- >> is an extension of the innerproduct on L?*(py). By the Cauchy-Schwartz
inequality,

o
<< B f>>] <Y nl|<i® B, f, >

n=0

i ~
<D Bt
n=0

< (i | F, | iw) " (i(n!)2 [E2 ||;j,A)I/2

n=0 n=0

=10 e 1

Hence any F = > < Cy(w), F, > with ||F||_, 1k < oo for some p belongs to (S)~'.
Choose an f, € S(X)®" and F € (8)~!. Then it follows from Lemma 4.1 that

({F, < Co(), fu >)) =nl < 0®"E,, f, >

for some F, € Si(X)®". Hence, any F € (S)~" has an expansion F = Y°° < C,(-), F, >
with F,, € S§(X)®". O

Remark 4.3. Our system of generalized Charlier polynomials coincides with the general-
ized Appell systems in [12], which provides in the same manner stochastic test function and
distribution spaces (compare [12, Example 27]).
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5. THE S-TRANSFORM AND WICK PRODUCTS

Let F € (S)"!. Then there exists a natural number p(F) > 0 such that F € (S):;(F).
Denote by U, the set

Up:={¢€SX):|¢llpn <1}
For any ¢ € S (X), it follows from the chaos expansion of é(¢) given by equation (3.2) that

(5.1) &&= D Il
n=0

From (5.1) we see that é(¢) € (S), iff ¢ € U,
)-

Definition 5.1. Let F' € (S)_, and £ € U,. We define the S transform of F' by:

S(F)(€) = ((Fw), &&w))

Note that since F' € (S)7, and é(&) € (S); it follows that |S(F)(&)] < oc.

1
-p

Lemma 5.2. Let F =" < Cy(w), F,, >€ (S)~,. Then

D
=S (R.€®), £el,
n=0

Proof. Let £ € U,. By Proposition 3.1 and the chaos expansion of €(§) given by (3.2),

) =(_ <Culw). F > <Culw) %é@m >)) =Y (Fn, 65,

O
Denote by [~! the inverse of the function I. We have that [7'(x) = e* — 1. Define another

transform Sp(F') by:
Sp(F)(€) = ((F(w), e(&.w)))

By Proposition 3.1 and the chaos expansion of e(¢) given by (3.3) it follows that for £ such
that e —1 € U, and F = Y7 | < Cp(w), F, >€ (S)7,,

o0

(52) Se(F)(€) = 3 (B (e~ 1), = (S(P) o7 )0
n=0

Denote by Hol(6y) the vector space of all functions which are holomorphic in a neighborhood
of By (See [1], [5] and [16] for more details). The function [~! is obviously analytic in a
neighborhood of zero. A characterization of the image of (S)~! under the Sp-transform was
proved in [1]. By equation (5.2) and the analyticity of [=' we deduce that the characterization
of the image of the Sp-transform in [1] also is valid for the S-transform, hence by [1, Thm.
5]:

Theorem 5.3. If F € (S)7" then S(F) € Hol(0). Conversely, if G € Hol(0) there is a
uniquely defined distribution F € (S)™' such that S(F) = (G on some neighborhood of zero in
(S)¢ (the complexification of (S)').



16 LOKKA AND PROSKE

Let U = Hol(0), the image of (S)™" under the S-transform. Then by Theorem 5.3 we have
that the S-transform is an isomorphism between (S)~! and U. Note also that if f, g € Hol(0)
then fg € Hol(0). Hence the following definition is well defined,

Definition 5.4. Let F,G € (S)!. We define the wick product, denoted by F ¢ G, of F and
G by

FoG:=8"(S(F)S(Q))

Note that it follows directly from the properties of the S-transform and the definition of
the Wick product that Wick multiplication is a continuous operation.

Proposition 5.5. Let F(w) = Y o2 < Cy(w), F, > and G(w) = > o0 < Cp(w), G, > be
elements in (S)™'. Then F oG € (S)™! and

(FoG)(w)= i( > <C’k(w),Fn®Gm>>

k=0 “n+m=k

Proof. By Theorem 5.3 we have that S(F) and S(G) both are in Hol(0). The product of
two holomorphic functions is a holomorphic function. Hence S(F)S(G) € Hol(0). Hence by
Theorem 5.3, F oG € (S)'. By Lemma 5.2,

(X X <Gl Rt =)0 =3 T (FEGne™),

k=0 n+m=k k=0 n+m=k

=SS (), (G,

k=0 n+m=k
o

- Z (Fm £®H)A(Gm’ §®m)/\

=S(Fw))(€) - S(Gw))(©)
and the result follows. O

For F € (S)7!, we set F°" := Fo---o F (the Wick product taken n times). Moreover, we
define the Wick exponential of F'; denoted exp®(F'), by

< - 1 on
exp’(F) = EF
n=0
whenever > | LFom € (8)7!. Tt is easy to check that if ¢ € S}(X) then < Cy(w), ¢ >€ (S)™

and

< Cy(w), ¢ >"=< Cp(w), p®" >
By the chaos expansion (3.2) of é(¢,w) we therefore have that
(5.3) é(p,w) = exp®(< w — i, ¢ >)
for all ¢ € S{(X) such that ¢(z) > —1 for all z € X.
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6. A UNITARY ISOMORPHISM AND CONFIGURATION SPACES

In this section we want to establish a unitary isomorphism between L?(uy) and the classical
Poisson space with intensity A defined via the configuration space. This isomorphism can be
used to transfer analytical structures from Poisson spaces to L?(uy).

We need the definition of a configuration space. Similarly to [13], we introduce the config-
uration space I over X = R?¢ x R, by

I':={yC X :card(yNK) < oo for any compact K C X }.

Denote by €, the Dirac measure in the point x € X. The correspondence

(6.1) DSyr—dy =) &, € My(X)
reY

provides a one-to-one mapping ® from I' into the space of positive integer valued measures
M, (X) over B(X). We endow I as a closed subset of M,,(X) with the relative vague topology.
That is, a sequence of measures o,, converges to o in I' iff for any f € C.(X) (i.e. the space
of continuous functions with compact support) we have

/X f(a)don(z) — /X F(@)do(x) for n — co.

Then for any f € C.(X) the continuous functionals

(6.2) [3y—<af > [ f@die) =3 1)

zEy

induce the topology of T'.
We need the following key observation regarding the support of j.

Proposition 6.1.

(6.3) M({st eS(X):ve r}) =1

Sl

where the Dirac measures €, in x are naturally identified with the corresponding delta functions

in S'(X).
Proof. Relation (6.3) follows from the path properties of Poisson processes (see e.g. [15]). O

Further we define the Poisson measure my on the Borel o-algebra B(I') with intensity
measure A as follows.

Definition 6.2. The Laplace transform of 7, is given by

(6.4) () = [ exp(< 7 =)am) =exp( [ (@ - Dar))

where ¢ € S(X). The existence of 7 follows from Proposition 6.1 and the identification in
relation (6.1).

Taking into account that we have

\/~ 6<w,¢>du)\(w) = ZP«A(SO) = lﬂ)\((p)
"(X)
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for all p € S (X), we conclude that the measure fux is the image of 7y under the mapping
O: T — ¢(I') =: Qin (6.1), that is for all B € B(S'(X)),

(6.5) iA(B) = (BN Q) =m(271(BNQ))

Relation (6.5) together with the change of Va1iable formula for the Lebesgue integral yields
then that for all f € L'(T, 7)) the function fo ® ! isin L'(Q, uy) and

/f NG /fo<1> w)dpn(w)

Thus we proved the following result.
Theorem 6.3. The map Ug : L*(uy) — L*(7y) given by
(6.6) gr—go®
18 a unitary isomorphism.

Remark 6.4. It is important to note that the measure p) does not admit the construction of
a satisfactory differential calculus on &'(X). Since gy (E4+¢) L ur(€) (see e.g. [7]), integration
by parts and adjoint operators are not available. We overcome this circumstance by using the
unitary isomorphism of Theorem 6.3 to transport analytical structures from L?(my) to L?(u)
(compare [13]). We will make use of this principle in Section 7, where a Poissonian gradient
for Lévy processes is introduced.

7. THE POISSONIAN GRADIENT AND THE SKOROHOD INTEGRAL

We start with the definition of the set D C L?(uy),

~{f0 =Y <) foz Y mlff <

Define the linear operator D : D+ L?*(\ x py), by

(7.1) Z(Cn (@), nfu(s )

for f(w) =302 < Cu(w), f, >€ D, where f,(-,z) is the function f, with the last argument
x = (t1,...,tq,2) € X held fixed. It can be seen from a direct calculation that

”DfH%Q()\xu)\) = Z”"”fn& <o
n=1

Thus, Df € L*(\ X py) whenever f € D. Note that (S)! C D. Define another linear operator
called the Poissonian gradient, denoted by V¥
(VP (r2)=f(r+e&)—f(7), 7€l zeX

for all variables of the form f(v) = g(< 7, ¢1 >,...,< 7,¢n >) with g € C*(R") and
b1,...,6n € S(X). Notice that V' is defined on L?(ry). We define the operator V¥ on
L*(1x) by

VP =U;'V U,
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Lemma 7.1. The operators D and VP coincide on a dense subset of L* (1), hence the closure
of D equals the closure of VT,

Proof. The chaos expansion (3.2) of é(¢,w) and the definition of D gives

Dattonw) = Du 3 (Culw) 21)

(7.2) = P(x)é(¢, w)
On the other hand, V¥ applied to é(¢,w) gives
(V72(6.0) (@) = (Us' V" Unél(6,0)) (2)

= U5 (#(67+ ) — e01))
_ Uq:l (é(¢77) (6<ez,ln(1+¢)> _ 1))

- 03! (&0 000))

(7.3) = é(¢,w)d(x)
By comparing (7.2) and (7.3) we see that D,é(¢,w) = (@Pé((b,w))(x) for all x € X and

¢ € S(X). Since both operators are closable and the linear span of variables of the form é(¢)
is dense in L?(uy) the result follows. O

We will now consider generalized random fields F' : X — (S)~!. Observe that the chaos
expansion of such fields may be written as

F(x) = Z<Cn(w)aFn('7$)>

where F,(-,z) € S{(X)®" for every x = (t,...,t4,2) € X and ||F(z)||_p_1.x < oo for
some natural number p > 0. We define L to be the set of all F : X — (S)~! such that
F, € 8{(X)®™*D and

s ~
Z |Fn|2_p’)\ < 0
n=0

for some natural number p > 0. Recall that F, is the symmetrization of F,.

Definition 7.2. Let F' € IL. Define the Skorohod integral by
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where Fn denotes the symmetrization of F,.

From the definition of the Skorohod integral conjoint with the assumption on elements of
L it follows that 6(F) € (S)~'. Obviously, the Skorohod integral is a linear operator.

Note that in [3] it was proved that for predictable integrands, the Skorohod integral coinsides
with the usual Ito-type integral with respect to the compensated Poisson random measure N.

The next result shows that the operator D (by Lemma 7.1 equal to AV ) is the dual of 9,
the Skorohod integral.

Theorem 7.3. Let F € L. and f € (S)'. Then
(7.4) / << F(x),Dyf >> d\(z) =<< §(F), [ >>
X

Proof. Put F(z) =Y < Cp(w),F,(-,z) > and f = >"°_, < Cp(w), fm > where F' € L
and f € (S)'. Then 6(F) € (S)'. Choose a natural number p > 0 such that §(F) € (S)_,.
By the Cauchy-Schwartz inequality,

/l ), fas1 (), [ dA(2) / | B fogr | AN
Xn+1

_ / | @D £ | dg oD
Xt
< B ]l
(7.5) = [Fa| s fasall,

where dx denotes the Lebesgue measure on X. By first changing the order of integration
and summation using [6, Thm. 2.15], then inequality (7.5) and finally the Cauchy-Schwartz
inequality and the definition of 6(F'), we obtain

/Zn—i—l @), far1(, @), | dA(2)

=3+ ) /\ ). fun (- 2), | dA)
< S kgt + DUl
n=0
00 00 1/2
< (X 5 (z CRSIRTAN
n=0 =0
= ([0 i [ £l s < 00

Therefore, by the dominated convergence theorem,

/ << F(z),D.f >> d\(x)

:/XZ(n—i—1)!(Fn(-,ﬂf),fn+1('al’)),\d)‘(l’)
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Z(TL + 1)!(Fna fn-l—l)/\

n=0
00

DS+ V(B farn),

n=0
=<<(F), f>>
where (%) is due to the fact that f,, 11 is symmetric and hence (Fn, fn—l—l))\ is equal to (Fn, fn—l—l))\
O

The result follows.
Notice that if §(F) € L*(uy) and f € D C L?(uy), then equation (7.4) reads

E{ / F(x)Dmfde)} — E[§(F)f]

According to Theorem 7.3, § = (VF)*. By using the Mecke identity it was proved in [13] that

(VP)F)(y) = /X F(y — e a)dy(z) - /X F(y,2)dA(z)

Hence,
Ua(S(F) ) = [ o= ewdn@) - [ Pl o)ix

Corollary 7.4. Let F € L. Then 6(F) € (S)—, for some p € N and

SO = [ (@) &) axz)

for all € € U,
Proof. By equation (7.2), we have that D,é(§,w) = é(§,w)&(x). Hence by Theorem 7.3,

S(8(F))(€) = ((5(F), (&)
- /X ((F(2),8(6)€(x)) A (2)

_ /X S(F())() - €(x)d\(x)
0

and the result follows.

Define a process W : X x 2 +— R by
W(z)(w) =< C1(w), €, >
.y ta,z) € X. We then

where €, is the Dirac delta function with mass at the point x = (¢,
have the following relationship between the Skorohod integral, the Wick product and the

Lebesgue integral:

Proposition 7.5. Let F € .. Then
/ (F(z) oW(m))dm
X

where dx denotes the Lebesgue measure on X.
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Proof. By Corollary 7.4 and the definition of the Wick product, we have that

s( /X F(:c)oW(ac)dac) () = /X S<F(x)<>W(:c)>(§)dac

I
05)
—~
!
S
N
™
722%
O
QU
>
&

The result then follows from Theorem 5.3. O
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