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Abstract

We consider a financial market driven by a Lévy process with filtration {Ft}t∈[0,T ].
An insider in this market is an agent who has access to more information than an honest
trader. Mathematically, this is modelled by allowing a strategy of an insider to be adapted
to a bigger filtration Gt ⊇ Ft. The corresponding anticipating stochastic differential
equation of the wealth is interpreted in the sense of forward integrals. In this framework,
we study the optimal portfolio problem of an insider with logarithmic utility function.
Explicit results are given in the case where the jumps are generated by a Poisson process.

Key words and phrases: forward integral, Malliavin derivative, insider trading, utility
function, enlargement of filtration.

AMS (2000) Classification: primary 91B28; secondary 60H05, 60H07.

1 Introduction

A trader on the stock market is usually assumed to make his decisions relying on all the
information which is generated by the market events. This information is assumed to be free
and at everyone’s disposal: a dealer who is selecting some portfolio can exploit the knowledge
of the whole history of market events up to the time in which his decisions are to be taken. In
general the vast number of varied market events (i.e. full information) makes it difficult for
traders to take advantage of the total information available and, most of the times, decisions
are actually based on some partial information. In any of these cases it is always assumed
that dealers can only read the information needed from the flow of the market events up to
their present time.

However it is registered that some people have more detailed information than others, in
the sense that they act with present time knowledge of some future event. This is the so-
called insider information and those dealers taking advantage of it are the insiders. Insider
trading is illegal and prosecuted by law.

Nevertheless it is mathematically challenging to model their behavior on the market and
some part of the most recent literature in mathematical finance is related to this problem.
The aim of the research in this direction is however not to help the insider trading, but to
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give a picture of how much better and with which strategies an insider can perform on the
market if he uses optimally the extra information he has at disposal.

The mathematical challenges are all nested in the fact that information from the future
is used and thus the usual techniques of stochastic integration cannot be directly applied.

In this line of interests our paper deals with an optimal portfolio problem for an insider
in a market driven by a Lévy process. In the sequel we give a detailed description of the
market model we are considering and our approach to insider trading modeling. A sketch of
the content of this paper is given in the final part of this introduction.

Given a complete filtered probability space (Ω,F ,Ft, P ), t ∈ [0, T ], and a time horizon
T , consider a financial market with two investment possibilities:

(Bond price) dS0(t) = r(t)S0(t)dt; S0(0) = 1(1.1)

(Stock price) dS1(t) = S1(t−)[µ(t)dt+
∫

R
θ(t, z)Ñ(dt, dz)]; S1(0) > 0.(1.2)

Here we assume that

r(t) = r(t, ω), µ(t) = µ(t, ω), θ(t, z) = θ(t, z, ω) are Ft-adapted caglad processes(1.3)
(i.e. left continuous and with right limits), where t ∈ [0, T ], ω ∈ Ω, z ∈ R\{0}.
− 1 < θ(t, z) dt× νF (dz) a.e.,(1.4)

E

[∫ T

0

{
|r(t)|+ |µ(t)|+

∫
R
θ2(t, z)νF (dz)

}
dt

]
<∞,(1.5)

where Ñ(dt, dz) = N(dt, dz)− dtνF (dz) is the compensated Poisson random measure associ-
ated to a given compensated pure jump Ft-Lévy process η(t) = η(t, ω), ω ∈ Ω . This means
that

(1.6) η(t) =
∫ t

0

∫
R
zÑ(dt, dz).

See e.g. [A], [B], [P] and [Sa] for more information about Lévy processes.
Note that here the filtration {Ft} (F0 trivial) represent the increasing flow of information

that is generated by the market events according to the above dynamics. This represents the
full information at disposal to all honest traders.

Since a square integrable Lévy process Λ(t) can be written in the form

Λ(t) = αt+ βB(t) +
∫ t

0

∫
R
zM̃(ds, dz),

where B(t) is a Brownian motion, M̃(ds, dz) a compensated Poisson random measure and α,
β are constants, we see that the model (1.2) may be regarded as the pure jump part of the
model

(1.7) dS1(t) = S1(t−)[µ(t)dt+ γ(t)dΛ(t)]
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driven by the Lévy process Λ(t). In the other extreme, the continuous part of (1.7) is the
more widely studied model

(1.8) dS1(t) = S1(t)[µ(t)dt+ σ(t)dB(t)].

It has been argued (see e.g. [Ba], [CT], [ER], [S]) that (1.2) represents a better model for
stock prices than (1.8).

Now suppose that we use the model (1.1) & (1.2) and that a trader is free to choose at
any time t the fraction π(t) = π(t, ω), ω ∈ Ω of his total wealth invested in the stocks. The
corresponding wealth X(t) = X(π)(t) will have the dynamics

dX(t) = X(t−)
[
{r(t)(1− π(t)) + π(t)µ(t)} dt+

∫
R
π(t)θ(t, z)Ñ(dt, dz)

]
; X(0) = x > 0.

(1.9)

We have referred to a dealer whose choice of portfolio π(t) at time t is only based on the
information {Ft} available from the market up to time t as an honest trader. In this case the
mathematical modeling deals with π(t) as an Ft-adapted stochastic process and the integral
on the extreme right-hand side of (1.9) is well defined as an Itô integral.

In this paper we study the situation in which an agent, the insider, has access to larger
information modeled by a general filtration {Gt} larger than the one available to any honest
trader, i.e.

Gt ⊃ Ft, t ∈ [0, T ],

The insider relies on this wider information at decision making time and the corresponding
stochastic process π(t) is Gt-adapted. This opens new mathematical challenges since it is no
longer clear how to interpret the integral

(1.10) ′′
∫

R
π(t)X(t−)θ(t, z)Ñ(dt, dz) ′′

stemming from the right-hand side of (1.9).
We choose to model the integral above as a forward integral, which will be denoted by

(1.11)
∫

R
π(t)X(t−)θ(t, z)Ñ(d−t, dz).

See Section 2 for definition and properties.
The reasons for taking this approach into account are

1. The forward integral may be regarded as the limit of the natural Riemann sums coming
from the situation we are modelling, see e.g. [BØ].

2. The forward integral provides the natural interpretation of the gains from trade process.
Indeed, suppose a trader buys one stock at a random time τ1 and keeps it until another
random time τ2 > τ1, when he sells it, then the gains obtained is S(τ1) − S(τ2) =∫
ϕ(s)d−S(s) where ϕ(s) = χ(τ1,τ2](s) is the portfolio.
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3. If the Lévy process η(t) happens to be a semimartingale with respect to Gt, then (1.10)
would make sense within semimartingale theory and as such the integral would coincide
with the forward integral (1.11).

In this paper we specifically deal with the following problem. For a given T and a filtration
{Gt} such that Ft ⊂ Gt ⊂ F for all t ∈ [0, T ], we want to find a function Φ(x) and a portfolio
π∗(t) ∈ A such that

(1.12) Φ(x) := sup
π∈A

Ex
[
lnX(π)(T )

]
= Ex

[
lnX(π∗)(T )

]
,

where A is the family of admissible portfolios and Ex denotes the expectation with respect
to P when X(π)(0) = x > 0. We call π∗(t) = π∗i (t) an optimal portfolio for the insider and
Φ(x) = Φi(x) the value function for the insider. See Section 3 for a more precise formulation
of this problem.

Optimal insider portfolio problems of this type were first studied by Karatzas and Pikovsky
[KP]. They assumed the following:

a) The market is described by the Brownian motion model (1.1) and (1.8).

b) The insider filtration is of the form

Gt = Ft ∨ σ(L)

where L = L(ω), ω ∈ Ω is some F-measurable random variable.

c) B(t) is a semimartingale with respect to {Gt}. This case is mostly studied in literature
and it is commonly referred to as enlargement of filtration.

In particular, they showed that if

Gt = Ft ∨ σ(B(T0))

for some T0 > T , then

π∗i (t) =
µ(t)− r(t)
σ2(t)

+
1
σ(t)

B(T0)−B(t)
T0 − t

is an optimal portfolio for the insider. For comparison, the corresponding optimal portfolio
π∗h(t) for the honest trader is

π∗h(t) =
µ(t)− r(t)
σ2(t)

.

Moreover the difference between the values Φi(x) and Φh(x) for the insider and the honest
trader, respectively, is

Φi(x)− Φh(x) =
1
2

∫ T

0

ds

T0 − s

In particular, if T0 = T then Φi(x) = ∞.
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Subsequently, optimal strategies for an insider have been studied by many researchers in
the last years, but to the best of our knowledge most of them assume a priori a semimartingale
framework, i.e. the assumption c) above. In [BØ] however, the optimal insider portfolio
problem in the Brownian motion model (1.1) & (1.8) was aproached without assuming a
priori conditions b) and c) above. Our paper may be regarded as jump diffusion version of
the paper [BØ].

The present paper is organized as follows.
In Section 2 we revise the main concepts and results on the anticipative calculus. As

announced, the forward integration is our main tool and lays beneath the approach to insider
modeling we are considering here. From the technical point of view some results on forward
integration depend on the deep relationship between the forward and the Malliavin calculus,
see e.g. Proposition 2.6. Hence in this section we recall the definitions and the results on
both type of anticipative stochastic calculus which play a crucial role in the solution of our
problem. We refer to [DMØP] for a full discussion on these results.

In Section 3, we concentrate on the optimal insider portfolio problem for the pure jump
model (1.1) & (1.2). We consider a general insider filtration Gt ⊃ Ft, without assuming a
priori the pure jump conditions corresponding to b) and c) above. In fact, one of our main
results is that if there exists an optimal portfolio for the insider, then the driving process∫ t

0

∫
R
θ(t, z)Ñ(dt, dz)

is a Gt-semimartingale (see Theorem 3.5). Thus we show that given the existence of an
optimal portfolio, we are necessarily in the enlargement of filtration framework. This result
is actually a variant of the result of Delbaen and Schachermayer in ([DS], Th 7.2) which is
restricted to locally bounded, adapted cadlag processes. We obtain this result by deriving
explicitly the special semimartingale decomposition in terms of the optimal portfolio of the
process ∫ t

0

∫
R

θ(s, z)
1 + π∗(s)θ(s, z)

Ñ(d−s, dz),

where π∗(s) is the optimal portfolio. We also obtain an equation for the optimal insider
portfolio, provided that it exists (Theorem 3.3).

In Section 4, we consider the mixed financial market

(Bond price) dS0(t) = r(t)S0(t)dt(1.13)

(Stock price) dS1(t) = S1(t−)[µ(t)dt+ σ(t)dB(t) +
∫

R
θ(t, z)Ñ(dt, dz)],(1.14)

where both a continuous and a pure jump component are taken into account. Here in addition
to (1.3)-(1.5) we assume

(1.15) E

[∫ T

0
σ2(t)dt

]
<∞ and σ 6= 0.

We obtain analogous results as in Section 3 for the market (1.13) & (1.14). (For information
on forward integrals with respect to Brownian motion see [NP],[RV1]-[RV3] and [BØ]).
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Finally, in Section 5, we apply the above results to the special case when the insider has
at most knowledge about the value of the underlying driving processes B(T0) and η(T0) at
some time T0 ≥ T . This means that the insider filtration Gt is such that

Ft ⊆ Gt ⊆ G′t,

where G′t = Ft ∨ σ (B(T0), η(T0)) corresponds to full information about the underlying pro-
cesses at time T0. We derive necessary and sufficient conditions for an optimal insider portfolio
and give explicit results about the optimal portfolio and the finiteness of the value function
Φ(x) for both the pure jump market (1.1) & (1.2) and the mixed market (1.13) & (1.14) in
the special case in which the underlying jump process η(t) is a compensated Poisson process.
For related works in the context of insider modeling and portfolio optimization see also [EJ],
[EGK], [KY1], [KY2], [K].

2 Framework

In this section we briefly recall the framework and the results achieved in [DMØP] (see also
[DØP], [ØP]) which we are using in Section 3. As presented in the introduction, our object of
interest is a square integrable pure jump Lévy process with no drift defined on a probability
space (Ω,F , P ) with time horizon T :

(2.1) η(t) =
∫ t

0

∫
R
zÑ(dt, dz), t ∈ [0, T ].

where Ñ(dt, dz) = (N − νF )(dt, dz) is the compensated Poisson random measure of η. Let
Ft be the filtration generated by η(s), s ≤ t, t ∈ [0, T ]. Note that with abuse of notation we
put

νF (dt, dz) := dt νF (dz).

In the first subsection we first define the Malliavin derivative for Lévy processes and in the
second subsection we focus on the forward integral and its relation to the Malliavin derivative.
The relation between forward integrals and Malliavin calculus (see Proposition 2.6) is used as
a technical tool in order to exchange limits and forward integrals in computations in Section
3.

2.1 Chaos expansion and Malliavin derivative

Here and in the sequel let λ = λ(dt) = dt denote the Lebesgue measure on [0, T ] and let
L2

(
(λ× νF )n

)
be the set of all deterministic functions f : ([0, T ]× R)n → R such that

‖f‖2
L2((λ×νF )n) :=

∫
([0,T ]×R)n

f2(t1, z1, ..., tn, zn)dt1νF (dz1)...dtnνF (dzn) <∞.

Let L̃2
(
(λ× νF )n

)
denote the set of all symmetric functions in L2

(
(λ× νF )n

)
.

Put
Gn = {(t1, z1, ..., tn, zn); 0 ≤ t1 ≤ ... ≤ tn ≤ T and zi ∈ R, i = 1, ..., n}
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and let L2(Gn) denote the set of all functions g : Gn → R such that

‖g‖2
L2(Gn) :=

∫
Gn

g2(t1, z1, ..., tn, zn)dt1νF (dz1)...dtnνF (dzn) <∞.

Then
‖f‖2

L2((λ×νF )n) = n!‖g‖2
L2(Gn); f ∈ L̃2

(
(λ× νF )n

)
.

If f ∈ L2(Gn), we define its n-fold iterated integral with respect to Ñ by

Jn(f) :=
∫ T

0

∫
R
...

∫ t2

0

∫
R
f(t1, z1, ..., tn, zn)Ñ(dt1, dz1)...Ñ(dtn, dzn)

and if f ∈ L̃2
(
(λ× νF )n

)
we define

In(f) := n!Jn(f)

Then we have the following chaos expansion theorem, originally due to Itô ([I2]) (see also
[L]).

Theorem 2.1 Every FT -measurable random variable F ∈ L2(P ) admits the representation

(2.2) F = E[F ] +
∞∑

n=1

In(fn)

for a unique sequence of symmetric functions fn ∈ L̃2
(
(λ× νF )n

)
. Moreover,

‖F‖2
L2(P ) = (E[F ])2 +

∞∑
n=1

n!‖fn‖2
L2((λ×νF )n).

Using this expansion, we define Malliavin differentiation as follows.

Definition 2.2 The space ID1,2 is the set of all FT -measurable random variables F ∈ L2(P )
admitting the chaos expansion: F = E[F ] +

∑∞
n=1 In(fn), such that

(2.3) ‖F‖2
ID1,2

:=
∞∑

n=1

n · n! ‖fn‖2
L2((λ×νF )n) <∞.

The Malliavin derivative Dt,z is an operator defined on ID1,2 with values in the standard
L2-space L2(P × λ× νF ) given by

(2.4) Dt,zF :=
∞∑

n=1

nIn−1(fn(·, t, z)),

where fn(·, t, z) = fn(t1, z1, ..., tn−1, zn−1; t, z).
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For more information on Dt,z we refer to [L]. Note that if (2.3) holds then

E

[∫ T

0

∫
R
(Dt,zF )2νF (dz)dt

]
=

∞∑
n=1

n · n! ‖fn‖2
L2((λ×νF )n) <∞.

If F ∈ ID1,2 we say that F is Malliavin differentiable. The operator Dt,z is proved to be
closed and to coincide with a certain difference operator defined in [Pi], in the sense that

(2.5) Dt,z(F ·G) = F ·Dt,zG+G ·Dt,zF +Dt,zF ·Dt,zG λ× νF − a.e.

if both F and G are Malliavin differentiable. From this we deduce

Lemma 2.3 Let f : R → R be continous and let F ∈ ID1,2. Then

(2.6) Dt,z(f(F )) = f (F +Dt,z(F ))− f(F ).

For a proof see [ØS], Lemma 3.6.

2.2 Forward integrals and the Itô formula

In this subsection we recall the forward integral with respect to a Poisson random measure
Ñ , introduced in [DMØP]. The notion of the forward integral has its origin in the works
[RV1] and [NP], from which also our notation for the forward integral has been inspired.
Then we recall some formulas concerning the forward integral, in particular the Itô formula
for forward processes.

Definition 2.4 The forward integral∫ T

0

∫
R
ψ(t, z)Ñ(d−t, dz)

with respect to the Poisson random measure Ñ , of a caglad stochastic function ψ(t, z), t ∈
R+, z ∈ R, with

ψ(t, z) := ψ(t, z, ω), ω ∈ Ω,

is defined as

lim
m→∞

∫ T

0

∫
R
ψ(t, z)1Um(z)Ñ(dt, dz)

if the limit exists in L2(P ). Here the {Um} is an increasing sequence of compact sets Um ⊆
R \ {0} with νF (Um) <∞, m = 1, 2, ..., such that

⋃∞
m=1 Um = R \ {0}.

Note that for each m the integral above is well-defined as a Lebesgue integral in t, z.

Remark 2.5 Note that if G is a random variable then

(2.7) G ·
∫ T

0

∫
R
ψ(t, z)Ñ(d−t, dz) =

∫ T

0

∫
R
G · ψ(t, z)Ñ(d−t, dz).

For certain forward integrands we have the following duality formula (see [DMØP])
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Proposition 2.6 Let ψ(t, z) be forward integrable and assume

i) ψ(t, z) = ψ1(t)ψ2(t, z) where ψ1(t), ψ2(t, z) are caglad, ψ1(t) ∈ ID1,2 for a.a. t and ψ2(t, z)
is Ft-adapted such that

E

[∫ T

0

∫
R
(ψ2(t, z))2νF (dz)dt

]
<∞

ii) Dt+,zψ(t, z) = lims→t+ Ds,zψ(t, z) exists for a.a. (t, z) with

E

[∫ T

0

∫
R
|Dt+,zψ(t, z)|νF (dz)dt

]
<∞.

Then

(2.8) E

∫ T

0

∫
R
ψ(t, z)Ñ(d−t, dz) = E

∫ T

0

∫
R
Dt+,zψ(t, z)νF (dz)dt.

Definition 2.7 A forward process is a measurable stochastic function X(t) = X(t, ω), t ∈
R+, ω ∈ Ω, that admits the representation

(2.9) X(t) = x+
∫ t

0

∫
R
ψ(s, z)Ñ(d−s, dz) +

∫ t

0
α(s)ds,

where x = X(0) is a constant. A shorthand notation for (2.9) is

(2.10) d−X(t) =
∫

R
ψ(t, z)Ñ(d−t, dz) + α(t)dt; X(0) = x.

We call d−X(t) the forward differential of X(t), t ∈ R+.

We can now state the Itô formula for forward integrals.

Theorem 2.8 [DMØP] Let X(t), t ∈ R+, be a forward process of the form (2.9) and assume
ψ(ω, t, z) continuous in z around zero for a.a. (ω, t) and

∫ T
0

∫
R ψ(t, z)2νF (dz)dt < ∞ a.e.

Let f ∈ C2(R). Then the forward differential of Y (t) = f
(
X(t)

)
, t ∈ R+, is given by the

following formula:

(2.11) d−Y (t) = f ′
(
X(t)

)
α(t)dt

+
∫

R

(
f
(
X(t−) + ψ(t, z)

)
− f

(
X(t−)

)
− f ′

(
X(t−)

)
ψ(t, z)

)
ν(dz)dt

+
∫

R

(
f
(
X(t−) + ψ(t, z)

)
− f

(
X(t−)

))
Ñ(d−t, dz).

Note that this formula has the same form as in the non-anticipating case, see e.g. [A].
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3 Optimal insider portfolio in a pure jump market

Suppose now that our financial market is as in the introduction of the form (1.1) & (1.2) and
in addition we assume θ(ω, t, z), ω ∈ Ω, t ∈ [0, T ], z ∈ R\{0}, continuous in z around zero
for a.a. (ω, t).

Let an insider filtration be given by Gt ⊃ Ft for all t ∈ [0, T ]. Let π(t) = π(t, ω) denote
the portfolio of the insider measured as the fraction of the wealth invested in the stock at
time t. Then we give the following

Definition 3.1 The set A of admissible portfolios consists of all processes π(t) such that

π(t) is a Gt-adapted process.(3.1)

π(t)θ(t, z) is caglad and forward integrable w.r.t. Ñ(dt, dz).(3.2)
π(t)θ(t, z) > −1 + ε for νF (dz)dt-a.a. (t,z) for some ε > 0 depending on π.(3.3)

E

[∫ T

0

∫
R

(π(t)θ(t, z))2 νF (dz)dt
]
<∞.(3.4)

π is Malliavin differentiable and Dt+,zπ(t) = lim
s→t+

Ds,zπ(t) exists for a.a. (t, z).(3.5)

θ(t, z)(π(t) +Dt+,zπ(t)) > −1 + ε for a.a. (t,z) for some ε > 0 depending on π.(3.6)

E

[∫ T

0

∫
R
|θ(t, z)Dt+,zπ(t)|νF (dz)dt

]
<∞.(3.7)

Note that by Lemma 2.3 we can write , since Dt+,zF = 0 when F is Ft-measurable

Dt+,z ln (1 + π(t)θ(t, z)) = ln
(
1 + θ(t, z)(π(t) +Dt+,zπ(t))

)
− ln (1 + π(t)θ(t, z)) ,

such that together with conditions (3.2) and (3.6) we have

ln (1 + π(t)θ(t, z)) is caglad and forward integrable.(3.8)
ln (1 + π(t)θ(t, z)) ∈ ID1,2 and Dt+,z ln (1 + π(t)θ(t, z)) exists for a.a. (t, z).(3.9)

E

[∫ T

0

∫
R
|Dt+,z ln (1 + π(t)θ(t, z)) |νF (dz)dt

]
<∞.(3.10)

If we now interpret the integral (1.10) as the forward integral, the wealth X(t) = X(π)(t)
of the insider is described by the equation

dX(t) = X(t−)
[
{r(t)(1− π(t)) + π(t)µ(t))} dt+

∫
R
π(t)θ(t, z)Ñ(d−t, dz)

]
, X(0) = x.

(3.11)

This gives a mathematical framework in which we can proceed to solve the optimization
problem (1.12) for the insider:

(3.12) Φ(x) := sup
π∈A

Ex
[
lnX(π)(T )

]
= Ex

[
lnX(π∗)(T )

]
.
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Note that (3.2), (3.3), (3.5) and (3.6) ensure the forward integrability of ln (1 + π(t)θ(t, z)) in
L2(P ). By the Itô formula for forward integrals (Theorem 2.8) together with the conditions
(3.4), the solution of equation (3.11) is therefore

(3.13)
X(T )
x

= exp
(∫ T

0
(r(s) + (µ(s)− r(s))π(s)) ds+

∫ T

0

∫
R

ln (1 + π(s)θ(s, z)) Ñ(d−s, dz)

−
∫ T

0

∫
R

(π(s)θ(s, z)− ln (1 + π(s)θ(s, z))) νF (dz)ds
)
.

Then we know from Proposition 2.6 that

E

[∫ T

0

∫
R

ln (1 + π(s)θ(s, z)) Ñ(d−s, dz)
]

= E

[∫ T

0

∫
R
Ds+,z ln (1 + π(s)θ(s, z)) νF (dz)ds

]
.

Combining this with (3.13), we get

(3.14) E

[
ln
X(π)(T )

x

]
= E

[∫ T

0

(
r(s) + (µ(s)− r(s))π(s)

+
∫

R

{
ln (1 + π(s)θ(s, z))− π(s)θ(s, z) +Ds+,z ln (1 + π(s)θ(s, z))

}
νF (dz)

)
ds

]
.

Now suppose π = π∗ is optimal for the problem (3.12). Fix t ∈ [0, T ) and h > 0 such that
t+ h ≤ T . Choose β ∈ A of the form

β(s) = χ[t,t+h](s)β0; 0 ≤ s ≤ T,

where β0 is a bounded Gt-measurable random variable such that Dt,zβo is bounded a.e. Then
it is clear from Definition 3.1 that there exists a δ > 0 such that π∗+yβ ∈ A for all y ∈ (−δ, δ).
Then the function

g(y) := E
[
lnX(π+yβ)(T )

]
, y ∈ (−δ, δ),

is maximal for y = 0. Hence, by (3.14),

(3.15) 0 = g′(0) = E

[∫ T

0

(
(µ(s)− r(s))β(s)

+
∫

R

{
θ(s, z)β(s)

1 + π(s)θ(s, z)
− θ(s, z)β(s) +Ds+,z

(
θ(s, z)β(s)

1 + π(s)θ(s, z)

)}
νF (dz)

)
ds

]
Note that some easy calculations, using conditions (3.3)-(3.7), justify the differentiation inside
the integration. Now, by putting

ξ(s, z) =
θ(s, z)

1 + π(s)θ(s, z)
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and using again Proposition 2.6, we deduce by an approximation argument that (3.15) be-
comes

(3.16)

0 = E

[∫ T

0
β(s)

{
µ(s)− r(s)−

∫
R
θ(s, z)π(s)ξ(s, z)νF (dz)

}
ds+

∫ T

0

∫
R
β(s)ξ(s, z)Ñ(d−s, dz)

]
.

Moreover, from the special form of β(s) we get

(3.17)

0 = E

[
β0

{∫ t+h

t

(
µ(s)− r(s)−

∫
R
θ(s, z)π(s)ξ(s, z)νF (dz)

)
ds+

∫ t+h

t

∫
R
ξ(s, z)Ñ(d−s, dz)

}]
.

Since β0 was an arbitrarily chosen Gt-measurable, we deduce that

(3.18)

0 = E

[∫ t+h

t

{
µ(s)− r(s) +

∫
R
−θ(s, z)π(s)ξ(s, z)νF (dz)

}
ds+

∫ t+h

t

∫
R
ξ(s, z)Ñ(d−s, dz)

∣∣∣∣Gt

]
.

Define

(3.19)

M (π)(t) =
∫ t

0

{
µ(s)− r(s)−

∫
R

π(s)θ2(s, z)
1 + π(s)θ(s, z)

νF (dz)
}
ds+

∫ t

0

∫
R

θ(s, z)
1 + π(s)θ(s, z)

Ñ(d−s, dz).

Then we have proved

Theorem 3.2 Suppose π(s) = π∗(s) is optimal for problem (3.12). Then M (π)(t) is a mar-
tingale with respect to the filtration Gt. Further, the process

Rt :=
∫ t

0

∫
R

θ(s, z)
1 + π(s)θ(s, z)

Ñ(d−s, dz)

is a special Gt-semimartingale with decomposition given by (3.19) (for the definition of a
special semimartingale see e.g. [P] p. 129).

Because Ft ⊂ Gt the random measure N(dt, dz) has a unique predictable compensator
w.r.t. Gt, say νG(dt, dz) (see [JS], p.66). Note, however, that this alone would not imply
that Rt is a Gt-semimartingale, because νG(dt, dz) need not integrate to a process of finite
variation. We may write

(3.20)

M (π)(t) =
∫ t

0

∫
R

θ(s, z)
1 + π(s)θ(s, z)

(N − νG)(ds, dz) +
∫ t

0

∫
R

θ(s, z)
1 + π(s)θ(s, z)

(νG − νF )(ds, dz)

+
∫ t

0

{
µ(s)− r(s)−

∫
R

π(s)θ2(s, z)
1 + π(s)θ(s, z)

νF (dz)
}
ds.

Hence by uniqueness of the semimartingale decomposition of the Gt-semimartingale M (π)(t)
(see e.g. [P], Th.30, Ch.7) we conclude that the finite variation part above must be 0.
Therefore we get the following result.
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Theorem 3.3 Suppose π ∈ A is optimal for problem (3.12). Then π solves the equation
(3.21)∫ t

0

{
µ(s)− r(s)−

∫
R

π(s)θ2(s, z)
1 + π(s)θ(s, z)

νF (dz)
}
ds =

∫ t

0

∫
R

θ(s, z)
1 + π(s)θ(s, z)

(νF − νG)(ds, dz).

And in particular we get

Corollary 3.4 Suppose Ft = Gt, t ∈ [0, T ]. Then a necessary condition for π to be optimal
is that for a.a. s

(3.22) µ(s)− r(s)−
∫

R

π(s)θ2(s, z)
1 + π(s)θ(s, z)

νF (dz) = 0.

(This could also be seen by direct computation.)

The following result may be regarded as a jump diffusion version of the result in [BØ] in
the Brownian motion context. It may also be regarded as a variant (in the Malliavin calculus
setting) of the result of [DS], stating that if S(t) is a given locally bounded, adapted cadlag
price process with filtration Gt and there is no arbitrage by simple strategies on S(t), then
S(t) is a Gt-semimartingale.

Theorem 3.5 Suppose there exists an optimal portfolio for problem (3.12). Then the process∫ t

0

∫
R
θ(s, z)Ñ(ds, dz), 0 ≤ t ≤ T,

is a Gt-semimartingale.

Proof. We only need that
∫ t
0

∫
R θ(s, z)(νF − νG)(ds, dz) exists and is of finite variation.

Because then the Gt-martingale∫ t

0

∫
R
θ(s, z)(N −νG)(ds, dz) =

∫ t

0

∫
R
θ(s, z)(N −νF )(ds, dz)+

∫ t

0

∫
R
θ(s, z)(νF −νG)(ds, dz)

exists and
∫

R θ(t, z)Ñ(dt, dz) is a Gt-semimartingale. By Theorem 3.2 we know that∫ t

0

∫
R

θ(s, z)
1 + π(s)θ(s, z)

(νF − νG)(ds, dz)

is of finite variation. So by our assumption (3.3) it follows that∫ t

0

∫
R
θ(s, z)(νF − νG)(ds, dz)

is of finite variation also.
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4 Optimal portfolio in a mixed market

In this section we treat the more general situation of the financial market given by (1.13) &
(1.14), i.e. the risky asset is driven by a Lévy-Itô diffusion which in addition to the jump
part contains Brownian motion as source of uncertainty. The reasoning in this situation is
completely analogous to Section 3 and will therefore not be carried out in detail. For the
analogous definitions and results of Section 2 concerning the forward integral for Brownian
motion we refer to [BØ], for general information on forward integrals see [NP] and [RV1]-
[RV3].

Again we assume Gt ⊃ Ft to be an insider filtration and π(t) = π(t, ω) to be the portfolio of
the insider measured as the fraction of the wealth invested in the stock at time t. The set A of
admissible portfolios now consists of all processes π(t) as in Definition 3.1 which in addition
are such that π(t)σ(t) is forward integrable w.r.t B(t). Then the wealth X(t) = X(π)(t) of
the insider is described by the equation

dX(t) = X(t−)
[
{r(t)(1− π(t)) + π(t)µ(t))} dt+ π(t)σ(t)d−B(t) +

∫
R
π(t)θ(t, z)Ñ(d−t, dz)

]
,

(4.1)

where d−B(t) denotes the forward integral w.r.t. Brownian motion. The optimization prob-
lem for the insider in which we are interested is as before

(4.2) Φ(x) := sup
π∈A

Ex
[
lnX(π)(T )

]
= Ex

[
lnX(π∗)(T )

]
.

Combining the Itô formula for Brownian motion and jump measure forward integrals (see
[BØ] and Theorem 2.8), the solution of equation (4.1) is

(4.3)
X(T )
x

= exp
(∫ T

0

{
r(s) + (µ(s)− r(s))π(s)− 1

2
σ2(s)π2(s)

}
ds+

∫ T

0
σ(s)π(s)d−B(s)

−
∫ T

0

∫
R
{π(s)θ(s, z)− ln (1 + π(s)θ(s, z))} νF (dz)ds+

∫ T

0

∫
R

ln (1 + π(s)θ(s, z)) Ñ(d−s, dz)
)
.

Plugging in π(s) + yβ(s) as portfolio and using Proposition 2.6 yields

(4.4) E

[
ln
X(π+yβ)(T )

x

]
= E

[∫ T

0

{
r + (µ− r)(π + yβ)− 1

2
(π + yβ)2σ2

}
ds

+
∫ T

0

∫
R

{
ln (1 + (π + yβ)θ)− (π + yβ)θ +Ds+,z ln (1 + (π + yβ)θ)

}
νF (dz)ds

+
∫ T

0
(π + yβ)σd−B(s)

]
,

where we have ommitted the arguments of the integrands for the sake of notational simplicity.
Differentiating expression (4.4) w.r.t. y, setting y = 0 and using the same arguments as in
Section 3 results in the following
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Theorem 4.1 Define

(4.5) M (π)(t) =
∫ t

0

{
µ(s)− r(s)− σ2(s)π(s)−

∫
R

π(s)θ2(s, z)
1 + π(s)θ(s, z)

νF (dz)
}
ds

+
∫ t

0
σ(s)dB(s) +

∫ t

0

∫
R

θ(s, z)
1 + π(s)θ(s, z)

Ñ(d−s, dz).

Suppose π(s) = π∗(s) is optimal for problem (4.2). Then M (π)(t) is a martingale with respect
to the filtration Gt.

Further, we see that the orthogonal decomposition of M (π)(t) into a continuous part M (π)
c (t)

and a discontinuous part M (π)
d (t) is given by

M (π)
c (t) =

∫ t

0
σ(s)dB(s) +

∫ t

0
σ(s)α(s)ds(4.6)

M
(π)
d (t) =

∫ t

0

∫
R

θ(s, z)
1 + π(s)θ(s, z)

Ñ(d−s, dz) +
∫ t

0
γ(s)ds(4.7)

where α(s) and γ(s) are unique Gs-adapted processes such that∫ t

0
σ(s)α(s)ds+

∫ t

0
γ(s)ds =

∫ t

0

{
µ− r − σ2π −

∫
R

π(s)θ2(s, z)
1 + π(s)θ(s, z)

νF (dz)
}
ds.

So the proof of Theorem 3.5, together with the fact that
∫ t
0

1
σ(s)dM

(π)
c (s) = B(t) +

∫ t
0 α(s)ds

also is a Gt-martingale, gives

Theorem 4.2 Suppose there exists an optimal portfolio for problem (4.2). Then the under-
lying processes ∫ t

0

∫
R
θ(s, z)Ñ(ds, dz) and B(t), 0 ≤ t ≤ T,

are Gt-semimartingales.

Finally, we get as an analog to Theorem 3.3

Theorem 4.3 Suppose π ∈ A is optimal for problem (4.2). Then π solves the equation

(4.8)
∫ t

0

{
µ(s)− r(s)− σ2(s)π(s)−

∫
R

π(s)θ2(s, z)
1 + π(s)θ(s, z)

νF (dz)
}
ds

=
∫ t

0
σ(s)α(s)ds+

∫ t

0

∫
R

θ(s, z)
1 + π(s)θ(s, z)

(νF − νG)(ds, dz),

where α(s) is the process from (4.6) and νG is the Gt compensator of N .

And in particular for the honest trader:

Corollary 4.4 Suppose Ft = Gt, t ∈ [0, T ]. Then a necessary condition for π to be optimal
is that for a.a. s

(4.9) µ(s)− r(s)− σ2(s)π(s)−
∫

R

π(s)θ2(s, z)
1 + π(s)θ(s, z)

νF (dz) = 0.

15



5 Example: enlargement of filtration

Now let the underlying driving jump process of the risky asset in the mixed financial market
(1.13) & (1.14) be a pure jump Lévy process η(t), i.e.∫ t

0

∫
R
θ(t, z)Ñ(dt, dz) =

∫ t

0

∫
R
zÑ(dt, dz) =: η(t).

In this Section we want to analyze the optimization problem in which the insider has at
most knowledge about the value of the underlying driving processes B(T0) and η(T0) at some
time T0 ≥ T . This means that the insider filtration Gt is such that Ft ⊆ Gt ⊆ G′t, where
G′t = Ft ∨σ (B(T0), η(T0)) corresponds to full information about the underlying processes at
time T0.

Proposition 5.1 Let Gt be an insider filtration such that Ft ⊆ Gt ⊆ G′t. Then

(5.1) B(t)−
∫ t

0

E [B(T0)|Gs]−B(s)
T0 − s

ds

and

(5.2) η(t)−
∫ t

0

E [η(T0)|Gs]− η(s)
T0 − s

ds = η(t)−
∫ t

0
E

[∫ T0

s

∫
R

z

T0 − s
Ñ(dr, dz)

∣∣∣∣Gs

]
ds

are Gt-martingales for 0 ≤ t ≤ T .

Proof. We know by an extension of a result of Itô [I3] (see also [P] p.356) that for a general

Lévy process Λ(t) with filtration F̂t, the process

Λ(t)−
∫ t

0

Λ(T0)− Λ(s)
T0 − s

ds

is a
{
F̂t ∨ σ (Λ(T0))

}
-martingale for t ≤ T0. Using this result and the fact that B(t) and η(t)

are independent we get that

B(t)−
∫ t

0

B(T0)−B(s)
T0 − s

ds and η(t)−
∫ t

0

η(T0)− η(s)
T0 − s

ds

are G′t-martingales for 0 ≤ t ≤ T . So we have

E

[
B(t)−

∫ t

0

E [B(T0)|Gs]−B(s)
T0 − s

ds

∣∣∣∣Gr

]
= E

[
B(t)−B(r)−

∫ t

r

E [B(T0)|Gs]−B(s)
T0 − s

ds

∣∣∣∣Gr

]
+B(r)−

∫ r

0

E [B(T0)|Gs]−B(s)
T0 − s

ds

= E

[
E

[
B(t)−B(r)−

∫ t

r

B(T0)−B(s)
T0 − s

ds

∣∣∣∣G′r] ∣∣∣∣Gr

]
+B(r)−

∫ r

0

E [B(T0)|Gs]−B(s)
T0 − s

ds

= 0 +B(r)−
∫ r

0

E [B(T0)|Gs]−B(s)
T0 − s

ds.
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For η(t)−
∫ t
0

E[η(T0)|Gs]−η(s)
T0−s ds the reasoning is analogous.

Proposition 5.1 tells us that in the present situation of enlargement of filtration the process
α(s) from (4.6) is of the form −E[B(T0)|Gs]−B(s)

T0−s . Moreover, we can easily deduce the Gt

compensator νG of N from Proposition 5.1.

Proposition 5.2 The Gt compensating measure νG of the jump measure N is given by

νG(ds, dz) = νF (dz)ds+ E

[
1

T0 − s

∫ T0

s
Ñ(dr, dz)

∣∣∣∣Gs

]
ds(5.3)

= E

[
1

T0 − s

∫ T0

s
N(dr, dz)

∣∣∣∣Gs

]
ds.(5.4)

Proof. We know (see [JS] p.80) that it is sufficient to show that if ν̂G is the right-hand side

of (5.3) then ∫ t

0

∫
R
f(z)(N − ν̂G)(ds, dz)

is a Gt-martingale for all f ∈ G, where G is a family of bounded deterministic functions on
R, zero around zero, which determines a measure on R with weight zero in zero. The same
argument holds if we take G to be the family of invertible functions f(z) which are integrable
w.r.t. ν̂G (which implies that it is also integrable w.r.t. νF ). Let f(z) be such a function and
consider the Lévy process

B(t) + η̄(t),

whose filtration is denoted by F̄t and where

η̄(t) :=
∫ t

0

∫
R
f(z)Ñ(ds, dz).

Since f(z) is invertible we have F̄t = Ft and Ḡ′t = G′t, where Ḡ′t = F̄t ∨ σ (B(T0), η̄(T0)).
From Proposition 5.1 we then get that

M̄(t) :=
∫ t

0

∫
R
f(z)Ñ(ds, dz)−

∫ t

0
E

[∫ T0

s

∫
R

f(z)
T0 − s

Ñ(dr, dz)
∣∣∣∣Gs

]
ds

is a Gt-martingale. Equation (5.4) is a straight forward algebraic transformation.

Using the measure given by (5.3), we see that the necessary condition for an optimal
portfolio given by equation (4.8) in the situation of this section becomes (note that θ(t, z) = z)

(5.5)
∫ t

0

{
µ(s)− r(s)− σ2(s)π(s)−

∫
R

π(s)z2

1 + π(s)z
νF (dz)

}
ds

=
∫ t

0

{
−σ(s)

E [B(T0)|Gs]−B(s)
T0 − s

− E

[∫ T0

s

∫
R

z

(1 + π(s)z)(T0 − s)
Ñ(dr, dz)

∣∣∣∣Gs

]}
ds
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When η(t) is of finite variation this can be rewritten as

(5.6)
∫ t

0

{
µ(s)− r(s)− σ2(s)π(s)−

∫
R
zνF (dz)

}
ds

=
∫ t

0

{
−σ(s)

E [B(T0)|Gs]−B(s)
T0 − s

− E

[∫ T0

s

∫
R

z

(1 + π(s)z)(T0 − s)
N(dr, dz)

∣∣∣∣Gs

]}
ds

Given some additional assumptions, this is also a sufficient condition for a portfolio π ∈ A
to be optimal:

Theorem 5.3 Assume that η(t) is of finite variation. The portfolio π = π(s, ω), ω ∈ Ω, s ∈
[0, T ], is optimal for the insider if and only if π ∈ A and for a.a. (s, ω) π solves the equation

(5.7) µ(s)− r(s)− σ2(s)π(s)−
∫

R
zνF (dz)

= −σ(s)
E [B(T0)|Gs]

− −B(s)
T0 − s

− E

[∫ T0

s

∫
R

z

(1 + π(s)z)(T0 − s)
N(dr, dz)

∣∣∣∣Gs

]−
,

where the notation E[...]− denotes the left limit in s.

Proof. By Proposition 5.1 and Proposition 5.2 equation (4.3) becomes

E

[
ln
Xπ(T )
x

]
= E

[∫ T

0

{
r(s) + (µ(s)− r(s))π(s)− 1

2
σ(s)2π2(s)−

∫
R
π(s)zνF (dz)

}
ds

+
∫ T

0
σ(s)π(s)d(B(s) + α(s)ds)−

∫ T

0
σ(s)π(s)α(s)ds

+
∫ T

0

∫
R

ln(1 + π(s)z)(N − νG)(ds, dz) +
∫ T

0

∫
R

ln(1 + π(s)z)νG(ds, dz)
]

= E

[∫ T

0

{
r(s) + (µ(s)− r(s))π(s)− 1

2
σ(s)2π2(s)−

∫
R
π(s)zνF (dz)

}
ds

+
∫ T

0

{
σ(s)π(s)

E [B(T0)|Gs]−B(s)
T0 − s

+ E

[∫ T0

s

∫
R

ln(1 + π(s)z)
(T0 − s)

N(dr, dz)
∣∣∣∣Gs

]}
ds

]
.(5.8)

We can maximize this pointwise for each fixed (s, ω). Define

H(π) =r(s) + (µ(s)− r(s))π − 1
2
σ(s)2π2 −

∫
R
πzνF (dz)

+ σ(s)π
E [B(T0)|Gs]−B(s)

T0 − s
+ E

[∫ T0

s

∫
R

ln(1 + πz)
(T0 − s)

N(dr, dz)
∣∣∣∣Gs

]
.
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Then a stationary point π of H is given by

0 = H ′(π) =µ(s)− r(s)− σ2(s)π(s)−
∫

R
zνF (dz)

+ σ(s)
E [B(T0)|Gs]−B(s)

T0 − s
+ E

[∫ T0

s

∫
R

z

(1 + π(s)z)(T0 − s)
N(dr, dz)

∣∣∣∣Gs

]
.

Since H is concave, a stationary point of H is a maximum point of H. But, since for a given
omega the set of dicontinuities has Lebesgue measure zero, the equation

µ(s)− r(s)− σ2(s)π(s)−
∫

R
zνF (dz)

= −σ(s)
E [B(T0)|Gs]

− −B(s)
T0 − s

− E

[∫ T0

s

∫
R

z

(1 + π(s)z)(T0 − s)
N(dr, dz)

∣∣∣∣Gs

]−
,

also describes an optimal portfolio.

In order to get explicit expressions for π, we now apply this to the case when η(t) is a
compensated Poisson process of intensity ρ > 0. In this case the corresponding Lévy measure
is

νF (dz)ds = ρδ1(dz)ds,

where δ1(dz) is the unit point mass at 1, and we can write

η(t) = Q(t)− ρt,

Q being a Poisson process of intensity ρ. Since in this case

K(π) = ln(1 + π)
E [Q(T0)|Gs]−Q(s)

T0 − s

is concave in π, we get by Theorem 5.3 that a necessary and sufficient condition for an optimal
insider portfolio π for a.a (s, ω) is given by the equation

(5.9)

0 = µ(s) − r(s) − ρ − σ2(s)π(s) + σ(s)
E [B(T0)|Gs]

− −B(s)
T0 − s

+
E [Q(T0)−Q(s)|Gs]

−

(1 + π(s))(T0 − s)
.

1) The pure jump case:

If we deal with market (1.1) & (1.2), i.e. σ = 0, we have the following

Theorem 5.4 Assume that r(s) and µ(s) are bounded and ρ+ r(s)− µ(s) > 0 and bounded
away from 0. Then

i) There exists an optimal insider portfolio if and only if

E [Q(T0)|Gs]−Q(s) > 0

for a.a (s, ω). In this case

(5.10) π∗(s) =
E [Q(T0)−Q(s)|Gs]

−

(T0 − s)(ρ+ r(s)− µ(s))
− 1

is the optimal portfolio for the insider.
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ii) Assume there exists an optimal insider portfolio. Then the value function Φ(x) for the
insider is finite for all T0 ≥ T .

Proof. Part (i) follows from equation (5.9) setting σ(s) = 0. It remains to prove (ii). We

substitute the value (5.10) for π∗ into the expression (5.8) and get

(5.11) E

[
ln
Xπ(T )
x

]
= E

[∫ T

0

{
2r(s)− µ(s) + ρ+

(
E [Q(T0)|Gs]−Q(s)

(T0 − s)

)
+ ln

(
E [Q(T0)|Gs]−Q(s)

(T0 − s)(ρ+ r(s)− µ(s))

) (
E [Q(T0)|Gs]−Q(s)

(T0 − s)

)}
ds

]
.

By means of the value of the moments of the Poisson distribution and of the Jensen inequality
in its conditional form, we obtain

(5.12) E

[∫ T

0

E [Q(T0)|Gs]−Q(s)
T0 − s

ds

]
=

∫ T

0

E[Q(T0)−Q(s)]
T0 − s

ds = ρT <∞

and

(5.13) E

[∫ T

0
ln (E [Q(T0)|Gs]−Q(s))

E [Q(T0)|Gs]−Q(s)
T0 − s

ds

]
≤ E

[∫ T

0

(
E[QT0 |Gs]−Q(s)

)2

T0 − s
ds

]

≤
∫ T

0

E
[
E[(Q(T0)−Q(s))2|Gs]

]
T0 − s

ds

≤
∫ T

0

E[(Q(T0)−Q(s))2]
T0 − s

ds

=
∫ T

0

(
ρ2(T0 − s) + ρ

)
ds <∞

and also

(5.14) E

[∫ T

0
ln

(
1

T0 − s

)
E [Q(T0)|Gs]−Q(s)

T0 − s
ds

]
= ρ

∫ T

0
ln

(
1

T0 − s

)
ds <∞.

Using (5.12)-(5.14), we see that (5.11) is finite.

Remark. In the pure Poisson jump case Theorem 5.4 shows that if the insider filtration
is G′ = F ∨ σ(Q(T0)), then there is no optimal portfolio since E [Q(T0)|Gs] − Q(s) = 0 for
all ω such that Q(T0) = 0. This is contrary to the pure Brownian motion case with the
enlargement of filtration G′ = F ∨ σ(B(T0)), where we have an optimal portfolio (see [KP]).
The reason is that the insider has an arbitrage opportunity as soon as he knows where Q(t)
does not jump. On the other hand, as soon as there exists an optimal portfolio in the Poisson
pure jump market for an insider filtration F ⊆ G ⊆ G′, then the value function Φ(x) for the
insider is finite also for T0 = T , which again is contrary to the pure Brownian motion case.
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2) The mixed case:

If we deal with the mixed market (1.13) & (1.14), we get the following

Theorem 5.5 Set

α(s) = −E [B(T0)−B(s)|Gs]
−

T0 − s
and γ(s) = −E [Q(T0)−Q(s)|Gs]

−

T0 − s
.

Then

i) For all insider filtrations F ⊆ G ⊆ G′ and T0 > T there exists an optimal insider portfolio
given by

(5.15) π∗(s) =
1

2σ2(s)
(
µ(s)− r(s)− ρ− σ(s)α(s)− σ2(s)

+
√

(µ(s)− r(s)− ρ− σ(s)α(s) + σ2(s))2 − 4σ2(s)γ(s)
)

ii) The value function Φ(x) for the insider is finite for all T0 > T .

Proof. Part i) follows by solving equation (5.9) for π. Here, the conditio π(s) > −1 is
not fulfilled µF (dz)dt a.e. but N(dz, dt) a.e. which is sufficient in the our situation of the
Poisson process. Concerning part ii), it is sufficient to consider the largest insider filtration
G′t = Ft ∨ σ (B(T0), Q(T0)). Then

α(s) = −B(T0)−B(s)
T0 − s

and γ(s) = −Q(T0)−Q(s)
T0 − s

.

Using the fact that

E[
∫ T

0
α2(s)ds] =

∫ T

0

1
T0 − s

ds = ln
(

T0

T0 − T

)
in addition to (5.12)-(5.14) and Jensen inequality, one can show the finiteness of Φ(x) with
the same techniques as in the proof of Theorem 5.4.

Remark. Contrary to the pure Poisson jump case, the mixed case gives rise to an optimal
insider portfolio for all insider filtrations F ⊆ G ⊆ G′. The reason is that while it is possible
to introduce arbitrage possibilities for the insider through an enlargement of filtration in the
pure jump case (see e.g. [G]), this is no longer the case in the mixed market. But in contrast
to the pure jump case, the finiteness of the value function Φ(x) is only ensured for T0 stricly
bigger than T . However, choosing the filtration “small enough with respect to the information
B(T0)”, one can generate a finite value function also for T0 = T . The most obvious example
would be Gt = Ft ∨ σ (Q(T0)), in which case α(s) ≡ 0. This example is treated in [EJ].
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