DEPT. OF MATH. UNIVERSITY OF OSLO
PURE MATHEMATICS No. 34
ISSN 0806—2439 December 2003

Explicit strong solutions of stochastic differential
equations on Hilbert spaces

Alberto Lanconelli?»?) and Frank Proske!

December 18, 2003

Department of Mathematics, University of Oslo
Box 1053 Blindern, N-0316 Oslo, Norway
Department of Mathematics, University of Pavia,
via Ferrata,l , 27100 Pavia, Italy

e-mails: albertol@math.uio.no, proske@math.uio.no

Abstract

We give an explicit representation of strong solutions of It6-SDFE’s in Hilbert spaces
in terms of a non linear operation on a stochastic distribution space. This formula can
be potentially used to obtain solutions of SDE’s and SPDE’s with non Lipschitzian
coefficients.
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1 Introduction

The main objective of this paper is to utilize methods and concepts from white noise theory
to construct explicit solutions of fully nonlinear stochastic (partial) differential equations.
The results of this paper are based on ideas developed in [17]. In the latter paper the authors
demonstrate how white noise concepts can be applied to give an explicit representation of
global strong solutions of one dimensional 1t6-SDE’s. We intend to extend this result to
SDE’s in Hilbert spaces driven by Gaussian noise. The solutions of such equations can be
potentially used to derive solutions of certain classes of SPDE’s. Employing connections
between infinite dimensional SDE’s and SPDE’s it would be interesting for instance to study
stochastic Navier Stokes equations ([2]). The current literature about explicit solutions of
stochastic (partial) differential equations is dominated by the idea to fill up the “gap” be-
tween ordinary (or partial) differential equations and S(P)DE’s (see [21],[4],[22],[10]). The
latter authors’ idea is to reduce the problem of finding explicit solutions to that of determin-
ing solutions of ODE’s and PDE’s pathwisely. Our methodology to solve S(P)DE’s is novel




since we are not in need to resort to solutions of deterministic differential equations. Our
point of view is even converse and it could possibly serve as a starting point to investigate
solution of ODE’s and PDE’s.

The approach can be for instance applied to finite dimensional SDE’s when the drift co-
efficient is not necessarily Lipschitz. We point out that in this case the above mentioned
reduction method fails . Our explicit formula can be invoked to gain information on the
structure of solutions of SDE’s from a different point of view. This closed form expression
can be for instance used to study path properties and long time behaviour of solutions. We
think that it is also possible to verify this formula as a strong solution of an S(P)DE directly.
This would open the possibility of constructing strong solutions of S(P)DE’s involving coeffi-
cients under regularity assumptions (e.g. non-Lipschitzian diffusion coefficients) not covered
by general existence theorems.

We propose a method which can be possibly adapted to inquire into the case of S(P)DE’s
driven by Levy processes ([16]).

2 Preliminaries from White Noise theory

In this Section we pass in review some concepts from Gaussian white noise analysis. For
more information about white noise theory we recommend the reader to consult for in-
stance the books [6], [14], [20], [7]. In the following we consider the space of temperated
distributions S’'(R). By the Bochner theorem there exists a unique probability measure on
(S'(R), B(S'(R))) such that

/ e dy() = ¢ T2y
'(R)

holds, where (w, ) denotes the action of w € S’'(R) on ¢ € S(R). The triple (S'(R), B(S"(R)), i)
is referred to as white noise probability space. We denote by H a real separable Hilbert
space. Let us choose an orthonormal basis {e;}$°, of H. As shorthand notation we write
L2(H) for L2(S"(R), u; H).

We recall the Wiener-It6 chaos expansion in terms of Hermite polynomials (see for instance

[9]):

2 " 22

hn(x) = (_1)ne%dx" (e72), n=0,1,2,..

Consider the orthonormal basis of £?(R) consisting of the Hermite functions

1

n(z) = Wfi((n - 1)!)7567%@1,1(“’6), n=12,..

Then one constructs an orthogonal £2(j1) basis {H,(w)}aer given by

e}

Haw) = [ ha((w,6).

i=1

The multiindex set Z stands for the space of sequences a = (i, ag,...) with components
a; € Ny and with compact support. Thus every F' € £3(u) can be uniquely represented as

F(w) = anHa(w), o €R

o€l



where each H,(w) has the norm expression
||H0t||i2(,u) =al:i=olay) - -.
For convenience we introduce the notation
Indexa = sup{k|ay # 0}.

Using the family {H,(w)}aer one obtains the £2(H) orthogonal basis {Ha(w)e; faer ien-
The Hida stochastic test function space (S) can be defined as the space of

flw) = Z aoHa(w) € ﬁg(ﬂ)

a€l

such that the growth condition

I£155 =D alal(2N)* < oo for all k € N

a€l

with weights
(2N)? = 2014% . .(2k)P .. if B = (B1,o,...) €T

is satisfied. The norms || - |jox, ¥ € N induce the projective topology on (S). The Hida
stochastic distribution space (S)* is defined as the topological dual of (S). So we get the
following Gel’fand triplet

(S) = L) = ().

This concept of distribution spaces can be extended to the Hilbert space setting (see [5]).
Similarly to the one dimensional case the Hida stochastic test function space on H, indicated
by S(H), can be described by the set of all

flw) = Z Z aioHo(w)ei, ajn € R

a€l i=1

in £?(H) such that for all k € N

A5, =D alag, (2N)* < oo,

a€el i=1

S*(H) is the dual of S(H) and we obtain the chain of inclusions
S(H) — L*(H) — S*(H).

The dual paring between F(w) = > .7 baHo(w) € S*(H) and f(w) = >, cr@aHa(w) €
S(H) can be represented as

(F. )= aNag, ba)n.

o€l

We are going to establish the definition of the singular noise of a ()-Wiener process on H.
For this purpose take the bijective map

7:NXxN—-=N



given by
o i+ D+ +D)
(¢,5) — j+ 5 :
We consider a positive symmetric trace class operator on H denoted by () with eigenvalues

A; > 0. The Q)-Wiener process on H can be written as

BO(t) := Z ViBi(t)es, (2.1)

where {f3;(t) };>1 are independent Brownian Motions given by

o

Bty =) 5r(i,j),k:/0 §i(s)dsHe, (w)

k=1

where 6 ,, denotes the Christoffel symbol.
Equation (2.1) can be reformulated as

BYt) =Y k() He (w), >0
k=1
where

Or(t) = 5T(i,j),k:\/)\7i(/0 &(s)ds)e;.

The Hida stochastic distribution space S*(H) exhibits the nice feature to contain the singular
white noise W%(t) of the Q-Wiener process B%(t). The singular noise of the Q-Wiener
process B?(t) can be defined by the formal expansion

W) = bV AE (DeiHe, (). (2:2)

It can be checked that W%(t) is an element in S*(H) for all ¢.
We introduce a multiplication of distribution in S*(H) via the Wick product

O SY(H) x S*(H) — 5*(H)

given by
(F,G) — Z%Hw(w)
YEL
with N
9y = Z Z Ciadige;
=1 a+pB=y
for -
F(w) = Z Z CiaHa(w)e;
a€Z i=1
G(w) = Z Z digHg(w)e;.
BeT i=1
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As an example the Wick version of the exponential function, denoted by exp®, can be defined
by

exp®(F) = Z %FO" € S*(H) (2.3)

n>0
where F°" is the n-th Wick power
F°":= FO .- OF (n times) .

One of our main tools to derive the explicit solution of an SDE on H is the H-transform.
As in the finite dimensional case its definition is based on the expansion along the basis
{Ha(w)}aez. We define the Hermite transform of F(w) =Y _,caHa(w) € S*(H) as

acl

HE(z) == F(2) := anza (2.4)

acl

for 2 € CN such that the series converges in Hc (the complexification of H). Tt can be shown
that HF(z) converges absolutely in the infinite dimensional neighborhood of 0 in CY given

by

K, :={z € C": |z < (20)7% i€ N}
Based on the H-transform one can give necessary and sufficient conditions whether the power
series (2.4) is the H-transform of an element in S*(H). For instance, if

X(z) = anza,ca €H
a€l

is bounded by some M < oo, then there exists a unique element F' in S*(H) such that
HF(z) = X(z). Moreover F' can be choosen as

F(w) =Y caHaw).

o€l

Consider F,G € S*(H). Then for all z such that HF;(z) = (HF(2),¢;) and HG;(z) =
(HG(2), e;) exist we get the relation

H(FOG) (2) = ZHFi(z)HGi(z)ei.

The latter relation shows that in the case of (S)* = S*(R), H is an algebra homomor-
phism between (S)* (w.r.t.<) and the algebra of the power series in infinitely many complex
variables, that is we have

H(FOG)(2) = HF (2)HG(2).
3 Explicit Solution

In this section we aim at determining an explicit representation for global strong solutions
of the It6-SDE

dX,(w) = b(Xy(w))dt + o(X;(w))dB2 (w), Xo=xe€ H (3.1)



where b: H — H and 0 : H — L(H, H) are continuous mappings.
{Xi}i>0 is called a global ~ strong  solution of (3.1) if the following integrability conditions
are fulfilled

mfwwmw<m,

t
E%uw&mwwM<m

and if X; solves the equation

Xt(w)::c—i—/o b(XS(w))der/o 0(X,(w))dB? (w)

where it is assumed that )
0(Xs)Q7 € Lz)(H, H)
(L(2)(H, H) is the space of Hilbert-Schmidt operators from H into itself).

Now suppose that b and o satisfy a Lipschitz condition on bounded sets that means for all
n € N there exists a constant L, such that for all z,y € H, ||z] < n,||y|| < n we have

16(z) = b(y)l| + llo(z) = o)l Lem,m) < Lnllz =yl
Further we require that b and o fulfill the growth condition
(z,b(x)) < K(1+ [l])

and
o ()17 gy < K(1+ [l]|?)

for all z € H and for some constant K. It follows from a result of Leha-Ritter [18] that there
exists a unique global strong solution {X;}>o.

Let us assume that there exists A : H — H such that the following conditions hold:

i) There exists A™! : H — H such that A(A"1(z)) = A"Y(A(z)) = x,Vz € H;

i) A'(x)o(z) = Idy,Vr € H;

i) B{IA (B ] < oo

iv) ||A(2)b(z) + 132, A (2)[o(z) VN, o () v Nei]|lo < o0, Vz € H

where {\;};>1 are the eigenvalues of @) and {¢;};>; are the corresponding eigenvectors which
form an orthogonal system of H. The norm |- [|o is defined by ||z]|o := Q72 (2)||, z € Hy =
Qz(H) and (-, ) is the inner product associated with || - ||o.

Using the infinite dimensional It6 formula (see [1],[4]) we apply the transformation A to the
strong solution X; of (3.1) and obtain

o0

dA(X)) = N (X)) (b(X,)dt + o(X,)dBP) + % D AN (X))o (X) v Niei, o (X)) Nieildt

i=1
Then condition ii) yields:

oo

dA (X)) = (A (X)b(Xe) + % > A (X))o (X) vV Nes, (X v/ Ned)dt +dBP. (3.2)

i=1



Employing the proof of Theorem 2.7.10 in [7] we see that

HX,(2) = E[Xtexp{/o (h(s, z),dB%?)y — %/0 |h(s, 2)|ads}]

where h(s,z) = HW&(z). Then by invoking the infinite dimensional Girsanov‘s theorem
(see [3], page 290) we get that )

where {Xt}tZO is the strong solution of
dX, = (b(X,) + o(X,)h(t, 2))dt + o(X,)dB?, X, = z.
(3.2) applied to X, gives

AACR,) = (A (A7 (ACR))BA™ (A(K)) + Ak, ) + DA™ (ACK)) e + dBE.

2
where N
I(X,):= ZA (X)) [0 (X)) New, (X)) vV e

We put Z; := A(Xt). By making use of Girsanov‘s theorem again we find that
HX,(2) = B[N (A(X)] = EIN N (Z)] =

= Bl (Bean] [ (1o, 2) + (A (BOMA (B) + T4 (BY), B
5 [ Ihss)+ X AT BOMA (B) + ST (B[

We are coming to our main result.

Theorem 3.1 Suppose that the conditions (i)-(iv) hold. Further let us denote by 3i(t) €
(S)* = S*(R) the singular noise of the independent standard Brownian motions [(;(t) in
(2.1). Then the explicit strong solution X(w) of (3.1) takes the form

Xi(w) = Zai(w)ei
i>1
with R
ai(w) = Ep[{A1(BY), e:) M (w)]
where the quantity M7 (w) is given by

M (@) = eop* (3 [ oo+ /AN (A (BT B+ 3TN (B). o))~
5 [ B+ VRN (A BN (BD) + ST (), o))

E; denotes a Bochner expectation on an auziliary probability space (Q, F, 1), BY := B2(&)
and B;(t) := Bi(t,@). )
The integrals occuring in the Wick exponential of M7 are stochastic integrals (w.r.t. (3;(t))
and Bochner integrals on S*(R) (see for instance [17] for details).
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PRrOOF. Taking into account that the H-transform of W& in (2.2) can be written as
k>1
which converges in a certain neighborhood K, of 0 in C¥, this implies that

[ rwR) + X (A BENHA B + ST (B, 4B =

t
: A . 1 . R
:Z/ (H(B:(1)(2) + VAN (ATH(B2)b(A 1(B?))Jrf(f\ Y(B2)), ei)o)dpi(t).
i>1 70

Using (2.3) the statement of the theorem will follow if we are allowed to extract the H-
transform in the latter relation. But this can be done as consequence of

Lemma 3.2 Adopting the above notation the series

> [ bt ondis. o

i>1

*

converges in (S)* = S*(R). Moreover My (w) is Bochner integrable w.r.t. E; on (S)*.

Proor.  The proof is based on the use of Fernique’s theorem as in Lemma 3.1 in [17]
applied to the (S)*-valued Gassian element

Z/Ot Bils,w)dBi(s, ©).

i>1

a O
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