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Abstract

Smooth surfaces S C P* containing a family of plane curves not forming
a fibration are studied. The result, under two extra assumptions, is that S
is either the (projected) Veronese surface, the rational normal scroll or the
quintic elliptic scroll or S is contained in a quadric cone of rank 3 or 4 and
linked to a plane by a complete intersection.

Introduction

It is a well known result of C. Segre that the only surfaces in P* containing a two
dimensional family of plane curves are the Veronese surface, the rational normal
scroll and the cones.

In [8] and [3] A. Lanteri and A. Aure studied scrolls in P*, i.e. smooth surfaces
with a family of lines. There are exactly two scrolls, namely the rational normal
scroll and the quintic elliptic scroll.

Afterwards, P. Ellia and G. Sacchiero showed in [5] that if S is a smooth surface in
P4 ruled in conics, then S is either the Del Pezzo surface of degree 4, the Castelnuovo
surface of degree 5 or an elliptic conic bundle of degree 8 discovered by H. Abo, W.
Decker and N. Sasakura in [1]. The same result was also obtained in [4] by R. Braun
and K. Ranestad in a more geometric way.

Finally, K. Ranestad proved in [9] that if S is a fibration by plane curves of
degree greater than two, then S is bielliptic or abelian of degree 10 or S is contained
in a quadric cone of rank 4.



In this paper we deal with smooth surfaces S C P* having a family of plane
curves not forming a fibration, i.e. such that any two curves of the family intersect.
Our result, under two extra assumptions, is that S is either the quintic elliptic scroll,
the (projected) Veronese surface or the rational normal scroll or S is contained in a
quadric cone of rank 3 or 4 and linked to a plane by a complete intersection.

We also conjecture that if through the general point of S there pass more than
two plane curves, then S is the Veronese surface or the rational normal scroll.

This problem was proposed during the international school PRAGMATIC 2002
held in Catania. The authors would like to thank Prof. Fyodor Zak for fruitful
discussions. We also wish to thank the OMATS programme for financial support
and Prof. Kristian Ranestad for useful remarks and comments.

1 Preliminaries

We will work over C the field of complex numbers.

We denote by S an irreducible nondegenerate smooth surface in P4 equiped with
an algebraic family of plane curves. A curve of the family will be denoted by C.

By G(k,n) we mean the Grassmann variety of k-planes in P™.

We denote by ¥ C ((2,4) the curve in the Grassmannian parametrising the
plane curves C'. We call V& C P* the hypersurface covered by the planes of .

Two plane curves are algebraically equivalent, in particular numerically equiva-
lent (see [6] V, Ex. 1.7) so we can define the number C? to express the intersection
of two plane curves of the family. The case C? = 0 was studied by the authors
mentioned in the introduction, so we will study the case C?* > 1.

We will denote the elements of the Grassmannian G/(k,n) by small letters and
use the corresponding capital letter for the linear subspace in P” that they define.

Let ¥ C G(1,4) be the dual curve of ¥ in the dual Grassmannian of lines in P*.
Furthermore, for W C G(k,n) we denote by W C G(n — k — 1,n) the dual variety.

Ss. C P* will denote the surface covered by the lines of 3.
With ¥® we will denote the second symmetric product of ¥.
For a; > 0, we denote by S(aq,...,a,) the rational normal scroll of n-planes.

We will use the following well known facts:



1. Severi’s theorem. The only smooth surface that can be isomorphically projected
to P*is the Veronese surface.

2. Zariski’s Main Theorem. Let f : X — Y be a birational projective morphism of
noetherian integral schemes, and assume that Y in normal. Then for every y € Y,
f~(y) is connected.

3. Castelnuovo’s bound. If C' C P, n > 3, is a smooth, nondegenerate, irreducible
curve of degree d and genus g, then:

g<m(m—1)(n—1)/24+ me whered—1=m(n—1)+eand 0 <e <n—2.

2 Examples

Example 2.1  Consider P? and a curve ¥ C P? of degree d. Let vy(P?) be the
double Veronese embedding of P? in P°. This surface can be isomorphically projected
to P* from a general P € P5. We have a curve in G(2,5), which will be also called X,
corresponding to planes containing a conic C' = vy(L) for [ € ¥. Then vy(P?) C P°
(or its projection to P*) is a surface with a family of conics corresponding to ¥,
C? =1 and through a point of vy(P?) there pass d conics of the family.

In particular, when d = 1 (corresponding to the case in which ¥ C P?is a pencil)
the associated ¥ C (G(2,5) is a twisted cubic via Pliicker embedding and Vi C P?is
the rational normal scroll S(0,1,2).

If d = 2 (corresponding to the case in which ¥ C P2 is the dual of a conic), then
note that through a general point P € P° there pass a one dimensional family of
P** spanned by a couple of planes of ¥ C G(2,5). Hence, when we project vy(IP?)
from P we get that the general plane of ¥ C ((2,4) is intersected by another plane
of X.

Example 2.2  Consider P? and a curve ¥ C P? of degree d. Fix a point P € P?
and consider the complete linear system of conics through P. Its image in P* turns
out to be an embedding of BI,P? as the rational normal scroll S(1,2). Lines [ € &
not passing through P go to conics C' = vy(L), while the d lines through P go to
degenerate conics, namely a pair of different lines in a plane. Then S(1,2) C P*is
a surface with a family of conics corresponding to ¥, C? = 1 and through a point
of S(1,2) there pass d conics of the family.

When d = 1 (corresponding to the case in which ¥ C P?is a pencil), ¥ C G(2,4)
is a conic via Pliicker embedding and Vs C P* is a quadric cone.

If d = 2 (corresponding to the case in which ¥ C P? is the dual of a conic),
¥ C ((2,4) is a rational normal quartic via Pliicker embedding. In this case,



Sz C P*is the projected S(2,2) with a singular point corresponding to the pair of
lines of ¥ C P? through the point we are blowing up.

Example 2.3 Denote by Es the quintic elliptic scroll in P4, Two lines L, L, C Es
span a P? and its residual intersection with Fs is an elliptic curve C of degree 3. In
this way we get a one dimensional family of plane curves in Es and C? = 1. Moreover
the curve ¥ C ((2,4) parametrising these plane curves is the quintic elliptic curve
in P4 via Pliicker embedding (see for instance [4]). Hence, S5 C P4 is again Fs.

Example 2.4 Let V5 C P* be a quadric cone of rank 4 and ¥ C (G(2,4) the
corresponding conic parametrising one of the families of planes inside V. Let Q € P*
be the vertex of the cone. Consider S C P* the smooth surface linked to a plane of
Vs (of the other family) by a complete intersection with a hypersurface of degree e.
Then the planes of ¥ contain a curve C' of degree e and C? = 1.

To illustrate this, we will concentrate on the cases e = 2 and e = 3. Note that
when e = 2 we get the rational normal scroll S(1,2) of Example 2.2 with d = 1.

If e = 3 we get the Castelnuovo surface of P4, i.e. the blow up of P4 in 8 points
Py, ..., Pr embedded by the complete linear system [4L —2FEy — Fy ... — E7|. Plane
cubics through the 8 points go to cubics of the Castelnuovo surface and they intersect
precisely in one point, namely the fixed point of the system of plane cubics through
the 8 points.

Example 2.5 Let V5 C P* be a quadric cone of rank 3 and ¥ C (G(2,4) the
corresponding conic parametrising the family of planes inside Vi. Let L C P* be
the vertex of the cone. Consider S C P* the smooth surface linked to a plane of ¥
by a complete intersection with a hypersurface of degree e. Then the planes of X
contain a curve C of degree e¢ and let us see that C? = 1.

First of all note that L. C S (Cf. Proposition 4.2). Then C; = L+ D; where D; is
an effective plane curve of degree e — 1. Call H a hyperplane section of S containing
L. Clearly H? = 2e — 1 and hence a straightforward computation gives L? = 3 — 2e
and C? = 1, having in mind that necessarily D; - D; = 0.

We analyse the cases e = 2 and e = 3. When e = 2 we are just considering
Example 2.2 in the case d = 1 and ¥ C P? the pencil of lines through the point we
are blowing up.

If e = 3 we get again the Castelnuovo surface of P* in the particular case when
Py, ..., P; lay on a conic. This conic goes to the line I which is the vertex of the
cone V.

Remark 2.6 In Frample 2.5 we gel two different families of plane curves in S,
namely C'* and D' depending on whether L is considered or not. Then C* =1 but



D?* = 0, and hence we also get a fibration of S. We would like to remark thal the
quadric cone of rank 3 was not considered in [9].

3 The geometry of -

Let us start by analysing the curve ¥ C G/(2,4).

Case 1. If two general planes of ¥ intersect along a line, it is easy to see that either
all the planes are contained in a P? (in which case S would be degenerate) or all the
planes contain a line L C P* and hence Vs C P*is a cone of vertex L. A priori, two
cases should be distinguished:

1.1. L is contained in S.
1.2. L is not contained in S.

Case 2. Otherwise two general planes of ¥ intersect in a point which is contained
in S, so C*? = 1 necessarily. There are two possibilities:

2.1. If two general planes of ¥ intersect in a fixed point Q, then V& C P*is a
cone of vertex ().

2.2. If the intersection points move on the surface, then note that S is obtained
by considering the union of the intersection points of general planes and taking the
closure of this variety.

Again there are two possibilities that should be considered separately:
2.2.1. Through the general point P € S there pass exactly two planes of X.
2.2.2. Through the general point P € S there pass more than two planes of ¥.

Before stating our result, we would like to point the extra assumptions we need
to proceed in Case 2.2:

(1) Through the general point of S there pass exactly two plane curves of S. So
we are not considering Case 2.2.2 above.

(2) The general plane of ¥ is not intersected by another plane of ¥ along a line
(neither the infinitely close one).

Let us explain more precisely the above sentence. We say that a plane 7 € ¥ is
intersected by the infinitely close one along a line when the embedded tangent line
to ¥ at 7 (via Plicker embedding) is contained in the Grassmannian.

Theorem 3.1 Let S C P* be a smooth surface covered by an algebraic family of
plane curves C. Suppose that C* > 1 and that condition (1) and (2) hold. Then:
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(i) S is contained in a quadric cone of rank 3 in Case 1, and Case 1.2 is nol
possible.

(i1) S is contained in a quadric cone of rank 4 (unless S is the Veronese surface)
in Case 2.1.

(i1i) S is the rational normal scroll S(1,2) or the quintic elliptic scroll Es in
Case 2.2.

Furthermore, we always get C? =1

Up to now, we are not able to remove this conditions. Of course, the (projected)
Veronese surface of Example 2.1 with d = 2 satisfies that the general plane of ¥ is
intersected by some plane along a line, so (2) is not satisfied.

On the other hand, we have Examples 2.1 and 2.2 which satisfy (1) when con-
sidering d > 3. In these cases we actually have a two dimensional family of conics
covering the surface. Hence it is reasonable to make the following conjecture.

Conjecture 3.2 If S C P* is a smooth surface covered by a one dimensional family
of plane curves and through the general point of S there pass more than two plane
curves of the family, then S is either the (projected) Veronese surface or the rational
normal scroll.

The proof of Theorem 3.1 will be developed throughout the rest of the paper
analysing every case separately.

4 Vs 1s a cone

This section is devoted to Case 1 and Case 2.1 of the previous section in which
Vg C P*is a cone of vertex a line or a point respectively.

Let us see that something else can be said about the curve ¥ C (G(2,4). Indeed,
we can prove the following lemma.

Lemma 4.1 If Vx is a cone, then ¥ is a rational curve.

Proof. Let ¥ C ((2,4) be the curve parametrising the planes of the family and
Vs C P* the hypersurface which is the union of the planes. In the natural incidence
variety in P* x (G(2,4) between points and planes, there is a P*-fibration Uy, over X
whose projection into P*is Vx. Then, we have the following diagram



gCUz
W N
S C Vs »

where Uy, := {(P,7)|P € 7} C P* x ¥ and S is the strict transform of S in Us.

We observe that S is smooth, since the map p : S —5 S is a birational morphism
and S i1s smooth. We proceed then with a case-by-case analysis.

Case 2.1. Since all the planes of V5 meet in one fixed point @, the strict transform
of @ in S is a connected curve v (Zariski’s Main Theorem) such that one of its
components meets all the planes of Uy. Since v is mapped onto the point @) by the
map p, we deduce that the above component of 7 is a (—1)-curve which dominates
Y. Then ¥ is rational.

Case 1.1. Consider the strict transform by p of L C 5. This is a curve 4 such
that there exists, at least, one irreducible component of v meeting all the planes of
Us. Since the map p is birational, we have that this component is rational and since
it dominates ¥, we conclude again that X is rational.

Case 1.2. Since L ¢ S, we deduce that L NS consists of a finite number of
points. Moreover, we have that all the plane curves of the family pass through, at
least, a point () C L. As in Case 2.1, if we consider the strict transform of ) we
obtain a curve v such that one of its components meets all the planes of Uy. Hence,
by the same reason, ¥ is rational. O

Finally, as a consequence of the above result, we can give a more precise descrip-
tion of the surface S C P*.

Proposition 4.2 If S is not the Veronese surface of Fxample 2.1 with d = 1, then
Vs is a quadric cone. Furthermore, S is linked to a plane by the complete intersection
of Vs and a hypersurface of P* and Case 1.2 is not possible.

Proof. Since S is either linearly normal or the Veronese surface by Severi’s Theorem,
we deduce from Lemma 4.1 that, except in the Veronese case, Vy C P*is a quadric
cone of rank 3 or 4. Otherwise, Vx is a projected rational scroll of planes and hence
S would be projected from a bigger projective space. It is a well known result
(see for instance [3], Proposition 1.3.1) that in this case we have the following two
possibilities:

(a) S is a complete intersection of Vg and another hypersurface.
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(b) S is linked to a plane by the quadric cone Vg and another hypersurface.

We observe that the case (a) does not occur, since we would have that S should
be singular in the points of the vertex of Vx. In fact, every embedded tangent
space to S is the intersection of the embedded tangent spaces to both hypersurfaces

defining S.

Finally, we remark that in Case 1 the vertex L is contained in 5, i.e. Case 1.2
is not possible. In fact, attending to (b), S turns out to have odd degree. Then, if
L ¢ S, the intersection of S with a hyperplane containing I would be a reducible
curve of even degree, which is a contradiction. Moreover we proved in Example 2.5
that C? =1 also in this case. O

5 V5 1s not a cone

We start this section by considering the general case in which the intersection point
of two general planes of ¥ moves on S. Recall the two extra assumptions we use:

(1) Through the general point of S there pass exactly two plane curves of S.

(2) The general plane of ¥ is not intersected by another plane of ¥ along a line
(neither the infinitely close one).

Consider the map a : ¥(3) ——5 § ¢ P* which associates to each pair of general
planes (my,m2) its intersection point P = II; N Il;.

Lemma 5.1 The map « is birational and through every point of S there pass at
most two plane curves.

Proof. The map « is clearly birational because of assumption (1). Call I'(¥) C
() % S the closure of the graph of the map a and py, p; its projections to ¥ and
S respectively. If P € S is contained in three or more planes, we apply Zariski’s
Main Theorem to py : I'(¥) — S and we get that all the planes pass through P,
which is a contradiction. O

Lemma 5.2 ¥ is smooth.

Proof. Suppose by contradiction that ¥ is singular at = and let Y — X be its
normalization. Then Y¥(?) is singular along the curve o, = {(z,y)|y € ¥} ¢ ¥®@
and ¥ — Y is a birational morphism. Now take a point (z,y) € o, in which
a is actually defined. We claim that a(z,y) is a singular point of S. Indeed, its



preimage in Y2 is the finite set of points {(Z1,y)...(Zn,y)} where &; € Y is the set
of points over z.

Therefore S must be singular by Zariski’s Main Theorem. But S is smooth, so
we have arrived to a contradiction. O

In what follows we will work with the dual curve ¥ C G(1,4). Two general lines
of ¥ do not intersect in this case. Moreover ¥ is nondegenerate, in the sense that is
not contained in a G(1,3). Hence we can consider the rational map ¢ : »@ __, P4
which associates to each pair of skew lines (I,1') its linear span A = (L, L’). We
define the secant variety S(¥) C P* of ¥ to be the closure of the image of this
map. Note that S(¥) = S and that no A € S(X) contains more than two lines of 3.
(properly counted) because of Lemma 5.1.

Thus, we have changed the problem to study smooth curves in G(1,4) without
trisecant A’* and, by duality, assumption (2) means that the general line of Y C
G(1,4) is not intersected by another line of . (neither the infinitely close one). We
remark that, in this situation, a plane curve ' C II of the family is precisely the
dual curve of the curve of A’® containing the line L = 1I.

Proposition 5.3 Lel ¥ C G/(1,4) be a smooth nondegenerate curve as above. Then
Y is either rational of degree 3 or 4 or is elliptic of degree 5.

Proof. Let | € ¥ be a general line of ¥. Consider the projection m; : ¥ ——» G(1,2)
and let Y’ be the image of ¥ under this projection. Note that ¥’ is smooth because
we have no trisecant A’ as was discussed before. By duality, this claim is equivalent
to say that a general plane curve C' is smooth. Denote d and d’ the degrees of ¥ and
>’ respectively (d' turns out to be the degree of C'). We are assuming (2), so the
general [ € ¥ is not intersected by another line of ¥. Then we prove that d’ = d — 2.

In fact, d’ is the number of lines of ¥’ through a point P € P2, which corresponds
to lines of ¥ meeting the plane I = (P,L) C P% This is the Schubert variety
Q(I1,4), which is singular along the lines of Il with multiplicity 2. To prove that the
intersection multiplicity of ¥ and Q(II, 4) along [ is exactly 2, we have to check that
the embedded tangent line to ¥ at [ is not contained in the tangent cone to Q(II, 4)
(see [7], Corollary 12.4). This is true because by assumption (2) the embedded
tangent line to ¥ at / is not contained in the Grassmannian.

Then we have g(¥) = W. Compairing ¢(¥) with Castelnuovo bounds for
curves in P4 (if the span of ¥ is a P? then is necessarily a twisted cubic or is contained
in a quadric, in which case Y is contained in a G(1,3)), we get that d = 3,4 or 5. O

To finish the proof of Theorem 3.1, we just have to check that the case d = 3
in Proposition 5.3 does not produce a new example. In fact, Sy C P* is necessarily
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s(1,

2) and hence § C P? is nothing but the set of P containig the exceptional

line of the scroll, so S = P2

On the other hand, if ¥ C G(1,4) is either rational of degree 4 or elliptic of

degree 5, then Sg C P*is either a projected S(2,2) or Ej respectively, and in these
cases S is either S(1,2) or Fs5 as in Examples 2.2 and 2.3.

Remark 5.4 The projected Veronese surface in Case 2.2.1 corresponds to Fxample
2.1 with d = 2, so condition (2) does not hold.
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