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RENORMALIZED ENTROPY SOLUTIONS
FOR QUASILINEAR ANISOTROPIC

DEGENERATE PARABOLIC EQUATIONS

MOSTAFA BENDAHMANE AND KENNETH H. KARLSEN

Abstract. We prove the well posedness (existence and uniqueness) of
renormalized entropy solutions to the Cauchy problem for quasilinear
anisotropic degenerate parabolic equations with L1 data. This paper
complements the work by Chen and Perthame [19], who developed a
pure L1 theory based on the notion of kinetic solutions.

1. Introduction

We consider the Cauchy problem for quasilinear anisotropic degenerate
parabolic equations with L1 data. This convection–diffusion type problem
is of the form

(1.1) ∂tu+ divf(u) = ∇ · (a(u)∇u) + F, u(0, x) = u0(x),

where (t, x) ∈ (0, T ) × Rd; T > 0 is fixed; div and ∇ are with respect to
x ∈ Rd; and u = u(t, x) is the scalar unknown function that is sought. The
(initial and source) data u0(x) and F (t, x) satisfy

(1.2) u0 ∈ L1(Rd), F ∈ L1((0, T )×Rd).

The diffusion function a(u) = (aij(u)) is a symmetric d × d matrix of the
form

(1.3) a(u) = σ(u)σ(u)> ≥ 0, σ ∈ (C(R))d×K , 1 ≤ K ≤ d,

and hence has entries

aij(u) =
K∑
k=1

σik(u)σjk(u), i, j = 1, . . . , d.
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The nonnegativity requirement in (1.3) means that for all u ∈ R

d∑
i,j=1

aij(u)λiλj ≥ 0, ∀λ = (λ1, . . . , λd) ∈ Rd.

Finally, the convection flux f(u) is a vector–valued function that satisfies

(1.4) f(u) = (f1(u), . . . , fd(u)) ∈ (Liploc(R))d .

It is well known that (1.1) possesses discontinuous solutions and that
weak solutions are not uniquely determined by their initial data (the scalar
conservation law is a special case of (1.1)). Hence (1.1) must be interpreted
in the sense of entropy solutions [32, 41, 42]. In recent years the isotropic
diffusion case, for example the equation

(1.5) ∂tu+ divf(u) = ∆A(u), A(u) =
∫ u

0
a(ξ) dξ, 0 ≤ a ∈ L∞loc(R),

has received much attention, at least when the data are regular enough
(say L1 ∩ L∞) to ensure ∇A(u) ∈ L2. Various existence results for entropy
solutions of (1.5) (and (1.1)) can be derived from the work by Vol’pert and
Hudjaev [42]. Some general uniqueness results for entropy solutions have
been proved in the one-dimensional context by Wu and Yin [43] and Bénilan
and Touré [6]. In the multi-dimensional context a general uniqueness result
is more recent and was proved by Carrillo [15, 14] using Kružkov’s doubling
of variables device. Various extensions of his result can be found in [13,
27, 31, 29, 34, 35, 39], see also [17] for a different approach and [40] for a
uniqueness proof for piecewise smooth weak solutions. Explicit “continuous
dependence on the nonlinearities” estimates were proved in [20]. There
are also several recent studies concerned with the convergence of numerical
schemes for (1.5), see [25, 26, 30, 27, 36, 35, 2, 12]. In the literature just
cited it is essential that the solutions u possess the regularity ∇A(u) ∈ L2.
This excludes the possibility of imposing general L1 data, since it is well
known that in this case one cannot expect that much integrability (see, e.g.,
the citations below on renormalized solutions).

The general anisotropic diffusion case (1.1) is more delicate and was
successfully solved only recently by Chen and Perthame [19]. Chen and
Perthame introduced the notion of kinetic solutions and provided a well-
posedness theory for (1.1) with L1 data. Within their kinetic framework,
explicit continuous dependence and error estimates for L1 ∩ L∞ entropy
solutions were obtained in [18]. With the only assumption that the data
belong to L1, we cannot expect a solution of (1.1) to be more than L1.
Hence it is in general impossible to make distributional sense to (1.1) (or its
entropy formulation). In addition, as already mentioned above, we cannot
expect the gradient of the diffusion function to be square-integrable, which
seems to be an essential condition for uniqueness. Both these problems were
elegantly dealt with in [19] using the kinetic approach.
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The purpose of the present paper is to offer an alternative “pure” L1

well posedness theory for (1.1) based on a notion of renormalized entropy
solutions and the classical Kružkov method [32]. The notion of renormalized
solutions was introduced by DiPerna and Lions in the context of Boltzmann
equations [23, 22] (see also [24]). This notion (and a similar one) was then
adapted to nonlinear elliptic and parabolic equations with L1 (or measure)
data by various authors, see for example [10, 11, 38, 4, 3, 33, 7, 9, 21, 16,
8] (the list is far from being complete). Benilan, Carrillo, and Wittbold
[5] introduced recently a notion of renormalized Kružkov entropy solutions
for scalar conservation laws with L1 data and proved the existence and
uniqueness of such solutions. Their theory generalizes the Kružkov well
posedness theory for L∞ entropy solutions [32]. In passing, we mention that
an alternative L1 theory for scalar conservation laws has been developed
by Perthame [37]. He has build up a theory around the notion of kinetic
solutions, which is the notion that is generalized to (1.1) in [19].

Motivated by the above literature on renormalized solutions and [19], we
introduce herein a notion of renormalized entropy solutions for (1.1) and
prove its well posedness. Let us illustrate our notion of an L1 solution on
the isotropic diffusion equation (1.5) with initial data u|t=0 = u0 ∈ L1. To
this end, let Tl : R → R denote the truncation function at height l > 0
and let ζ(z) =

∫ z
0

√
a(ξ) dξ. A renormalized entropy solution of (1.5) is a

function u ∈ L∞(0, T ;L1(Rd)) such that (i) ∇ζ(Tl(u)) is square–integrable
on (0, T ) × Rd for any l > 0; (ii) for any convex C2 entropy-entropy flux
triple (η, q, r), with η′ bounded and q′ = η′f ′, r′ = η′a, there exists for any
l > 0 a nonnegative bounded Radon measure µl on (0, T )×Rd, whose total
mass tends to zero as l ↑ ∞, such that

∂tη(Tl(u)) + divq(Tl(u))−∆r(Tl(u))

≤ −η′′(Tl(u)) |∇ζ(Tl(u))|2 + µl(t, x) in D′((0, T )×Rd).
(1.6)

Roughly speaking, (1.6) expresses the entropy condition satisfied by the
truncated function Tl(u). Of course, if u is bounded by M , choosing l > M
in (1.6) yields the usual entropy formulation for u. In other words, a bounded
renormalized entropy solution is an entropy solution. However, in contrast
to the usual entropy formulation, (1.6) makes sense also when u is merely
L1 and possibly unbounded. Intuitively the measure µl should be supported
on the set {|u| = l} and in particular carry information about the behavior
of the “energy” on the set where |u| is large. The requirement is that the
energy should be small for large values of |u|, that is, the total mass of the
renormalization measure µl should vanish as l ↑ ∞. This is essential for
proving uniqueness of a renormalized entropy solution. Being explicit, the
existence proof reveals that µl((0, T )×Rd) ≤

∫
{|u0|>l} |u0| dx→ 0 as l ↑ ∞.

We prove existence of a renormalized entropy solution to (1.1) using an
approximation procedure based on artificial viscosity [42] and bounded data.
We derive a priori estimates and pass to the limit in the approximations.
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Uniqueness of renormalized entropy solutions is proved by adapting the
doubling of variables device due to Kružkov [32]. In the first order case, the
uniqueness proof of Kružkov depends crucially on the fact that

∇xΦ(x− y) +∇yΦ(x− y) = 0, Φ smooth function on Rd,

which allows for a cancellation of certain singular terms. The proof herein
for the second order case relies in addition crucially on the following identity
involving the Hessian matrices of Φ(x− y):

∇xxΦ(x− y) + 2∇xyΦ(x− y) +∇yyΦ(x− y) = 0,

which, when used together with the parabolic dissipation terms (like the one
found in (1.6)), allows for a cancellation of certain singular terms involving
the second order operator in (1.1). Compared to [19], our uniqueness proof
is new even in the case of bounded entropy solutions.

The remaining part of this paper is organized as follows: In Section 2 we
introduce the notion of a renormalized entropy solution for (1.1) and state
our main well posedness theorem. The proof of this theorem is given in
Section 3 (uniqueness) and Section 4 (existence).

2. Definitions and statement of main result

We start by defining an entropy-entropy flux triple.

Definition 2.1 (entropy-entropy flux triple). For any convex C2 entropy
function η : R → R the corresponding entropy fluxes

q = (q1, . . . , qd) : R → Rd and r = (rij) : R → Rd×d

are defined by

q′(u) = η′(u)f ′(u), r′(u) = η′(u)a(u).

We will refer to (η, q, R) as an entropy-entropy flux triple.

For k = 1, . . . ,K and i = 1, . . . , d, we let

ζik(u) =
∫ u

0
σik(ξ) dξ, ζk(u) = (ζ1k(u), . . . , ζdk(u)) ,

and for any ψ ∈ C(R)

ζψik(u) =
∫ u

0
ψ(ξ)σik(ξ) dξ, ζψk (u) =

(
ζψ1k(u), . . . , ζ

ψ
dk(u)

)
.

Let us introduce the following set of vector fields:

L2(0, T ;L2(div;Rd))

=
{
w = (w1, . . . , wd) ∈

(
L2((0, T )×Rd)

)d
: divw ∈ L2((0, T )×Rd)

}
.

Following [19] we define an entropy solution as follows:

Definition 2.2 (entropy solution). An entropy solution of (1.1) is a mea-
surable function u : (0, T )×Rd → R satisfying the following conditions:
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(D.1) u ∈ L∞(0, T ;L1(Rd)) ∩ L∞((0, T )×Rd).

(D.2) For any k = 1, . . . ,K,

ζk(u) ∈ L2(0, T ;L2(div;Rd)).

(D.3) (chain rule) For any k = 1, . . . ,K and ψ ∈ C(R),

divζψk (u) = ψ(u)divζk(u)

a.e. in (0, T )×Rd and in L2((0, T )×Rd).

(D.4) Define the parabolic dissipation measure nu,ψl (t, x) by

nu,ψ(t, x) = ψ(u(t, x))
K∑
k=1

(
divζk(u(t, x))

)2
.

For any entropy-entropy flux triple (η, q, r),

∂tη(u) +
d∑
i=1

∂xiqi(u)−
d∑

i,j=1

∂2
xixj

rij(u)

− η′(u)F ≤ −nu,η′′ in D′((0, T )×Rd),

that is, for any 0 ≤ φ ∈ D((0, T )×Rd),∫
(0,T )×Rd

η(u)∂tφ+
d∑
i=1

qi(u)∂xiφ+
d∑

i,j=1

rij(u)∂2
xixj

φ

 dx dt

+
∫

(0,T )×Rd

η′(u)Fφdx dt ≥
∫

(0,T )×Rd

nu,η
′′
(t, x)φdx dt.

(2.1)

(D.5) The initial condition is taken in the following strong L1 sense:

ess lim
t↓0

‖u(·, t)− u0‖L1(Rd) = 0.

Note that, thanks to (D.1) and ζk(0) = 0 for k = 1, . . . , d, condition (D.2)
is satisfied once we know that

divζk(u) =
d∑
i=1

∂xiζik(u) ∈ L2((0, T )×Rd).

An important contribution of Chen and Perthame [19] is to make explicit
the point that the chain rule (D.3) should be included in the definition of an
entropy solution in the anisotropic diffusion case. They also note that (D.3)
is automatically fulfilled when a(u) is a diagonal matrix, and can then be
deleted from Definition 2.2. This remark applies to the isotropic case (1.5).

Uniqueness of an entropy solution in the sense of Definition 2.2 was
proved in [19] using a kinetic formulation and regularization by convolution.
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The present paper offers an alternative proof based on the more classical
Kružkov method of doubling the variables [32].

Let us mention that (D.4) implies the following Kružkov type entropy
condition for all c ∈ R:

∂t |u− c|+
d∑
i=1

∂xi

[
sign (u− c) (fi(u)− fi(c))

]
−

d∑
i,j=1

∂2
xixj

[
sign (u− c) (Aij(u)−Aij(c))

]
− sign (u− c)F ≤ 0, A′

ij(·) = aij(·).

(2.2)

In the isotropic case (1.5), (2.2) simplifies to

∂t |u− c|+ div
[
sign (u− c) (f(u)− f(c))

]
−∆ |A(u)−A(c)| − sign (u− c)F ≤ 0, ∀c ∈ R.

(2.3)

After Carrillo’s work [15, 14], it is known that (2.3) implies uniqueness in
the isotropic case (1.5). In the anisotropic case (1.1), (2.2) is not sufficient
for uniqueness. Indeed, it is necessary to explicitly include the parabolic
dissipation measure in the entropy condition, as is done in (D.4).

As we discussed in Section 1, for unbounded L1 solutions u Definition
2.2 is in general not meaningful. In [19] the authors use a notion of kinetic
solutions to handle unbounded L1 solutions. It is the purpose of this paper
to use instead a notion renormalized entropy solutions.

Before we can introduce this notion, let us recall the definition of the
Lipschitz continuous truncation function Tl : R → R at height l > 0, which
is defined by

(2.4) Tl(u) =


−l, if u < −l,
u, if |u| ≤ l,

l, if u > l.

We then suggest the following notion of an L1 solution:

Definition 2.3 (renormalized entropy solution). A renormalized entropy
solution of (1.1) is a measurable function u : (0, T ) × Rd → R satisfying
the following conditions:
(D.1) u ∈ L∞(0, T ;L1(Rd)).

(D.2) For any k = 1, . . . ,K,

ζk(Tl(u)) ∈ L2(0, T ;L2(div;Rd)), ∀l > 0.

(D.3) (renormalized chain rule) For any k = 1, . . . ,K and ψ ∈ C(R),

divζψk (Tl(u)) = ψ(Tl(u))divζk(Tl(u)) ∀l > 0,
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a.e. in (0, T )×Rd and in L2((0, T )×Rd).

(D.4) For any l > 0, define the renormalized parabolic dissipation measure
nu,ψl (t, x) by

nu,ψl (t, x) = ψ(Tl(u(t, x)))
K∑
k=1

(
divζk(Tl(u(t, x)))

)2
.

For any l > 0 and any entropy-entropy flux triple (η, q, r), with |η′|
bounded by K (for some given K), there exists a nonnegative bounded
Radon measure µu,Kl on (0, T )×Rd such that

∂tη(Tl(u)) +
d∑
i=1

∂xiqi(Tl(u))−
d∑

i,j=1

∂2
xixj

r′ij(Tl(u))

− η′(Tl(u))F ≤ −nu,η
′′

l + µu,Kl in D′((0, T )×Rd),

that is, for any 0 ≤ φ ∈ D((0, T )×Rd),

∫
(0,T )×Rd

η(Tl(u))∂tφ+
d∑
i=1

qi(Tl(u))∂xiφ+
d∑

i,j=1

rij(Tl(u))∂2
xixj

φ

 dx dt

+
∫

(0,T )×Rd

η′(Tl(u))F (t, x)φ

≥
∫

(0,T )×Rd

nu,η
′′

l (t, x)φdx dt−
∫

(0,T )×Rd

φdµu,Kl (t, x).

(2.5)

(D.5) The total mass of the renormalization measure µu,Kl vanishes as
l ↑ ∞, that is,

lim
l↑∞

µu,Kl ((0, T )×Rd) = 0.

(D.6) The initial condition is taken in the following strong L1 sense:

ess lim
t↓0

‖u(·, t)− u0‖L1(Rd) = 0.

Note that since Tl(u) ∈ L∞((0, T ) × Rd), the integrals in (2.5) are all
well defined. Moreover, if a renormalized entropy solution u belongs to
L∞((0, T )×Rd), then it is also an entropy solution in the sense Definition
2.2 (simply let l ↑ ∞ in Definition 2.3).

Our main well posedness result is contained in the following theorem,
which is proved in Sections 3 (uniqueness) and 4 (existence).

Theorem 2.1 (well posedness). Suppose (1.2), (1.3), and (1.4) hold. Then
there exists a unique renormalized entropy solution u of (1.1).
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In applications [13] it may be of interest to require less regularity of σ(·)
than allowed for by (1.3). Although we do not pursue this here (but see
Lemmas 2.1 and 2.2 below), it is possible to prove Theorem 2.1 under the
assumption that σ(·) is piecewise smooth.

In the isotropic case it is not necessary to include the chain rule (D.3) as a
part of Definition 2.3 since it is then automatically fulfilled, as the following
two lemmas show.

Lemma 2.1 (chain rule). Let 0 ≤ σ ∈ L∞loc(R) and ψ ∈ L∞loc(R). Set

β(z) =
∫ z

0
σ(ξ) dξ, βψ(z) =

∫ z

0
ψ(ξ)σ(ξ) dξ.

Then, for any measurable function u such that β(Tl(u)) ∈ H1
loc(R

d),

(2.6) ∇βψ(Tl(u(x))) = ψ(Tl(u(x)))∇β(Tl(u(x))), ∀l > 0,

for a.e. x ∈ Rd and in L2
loc(R

d).

Proof. As in [19], (2.6) is a consequence of standard Sobolev space theory
(see, e.g., [28]). For the sake of completeness, let us sketch a proof.

Define the lower semicontinuous function β−1 : R → R by

β−1(w) := inf {ξ ∈ R | β(ξ) = w} .

Denote by E ⊂ R the set

E =
{
w ∈ R such that β−1(·) is discontinuous at w

}
.

Since β(·) is nondecreasing, E is at most countable. Introduce the function

v := β(Tl(u)) ∈ H1
loc(R

d) ⊂W 1,1
loc (Rd)

and the corresponding set

E =
{
x ∈ Rd : v(x) ∈ E

}
⊂ Rd.

Then the classical chain rule from Sobolev space theory gives

∂xiΨ(v(x)) = Ψ′(v(x))∂xiv(x), for a.e. x ∈ Rd \ E , i = 1, . . . , d,

where Ψ : R → R is defined by

Ψ′(v) = ψ(β−1(v)), v ∈ R.

However, on E the W 1,1
loc function v = v(x) is constant and hence from

standard Sobolev space theory

∂xiΨ(v) = ∂xiv = 0, for a.e. x ∈ E , i = 1, . . . , d.

By the definition of v and since β−1(β(ξ)) = ξ for all ξ, we obtain (2.6). �

Lemma 2.2. Let u be a renormalized entropy solution to (1.1) with a(u)
being a diagonal matrix:

a(u) = diag(a1(u), . . . , ad(u)), 0 ≤ ai ∈ L∞loc(R), i = 1, . . . , d.
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For any ψ ∈ L∞loc(R) and i = 1, . . . , d, let

ζi(u) =
∫ u

0

√
ai(ξ) dξ, ζψi (u) =

∫ u

0
ψ(ξ)

√
ai(ξ) dξ.

Then for i = 1, . . . , d

(2.7) ∂xiζ
ψi(Tl(u(x, t))) = ψ(Tl(u(x, t)))∂xiζi(Tl(u(x, t))), ∀l > 0,

for a.e. (x, t) ∈ (0, T )×Rd and in L2((0, T )×Rd).

Proof. Since ∂xiζi(Tl(u)) ∈ L2((0, T ) ×Rd) and u ∈ L∞(0, T ;L1(Rd)) (see
Definition 2.3), we have

ζi(Tl(u)) ∈ L2(0, T ;H1(Rd)).

Hence ζi(Tl(u(·, t))) ∈ H1(Rd) for a.e. t ∈ (0, T ). Then (2.7) follows from
an application of Lemma 2.1. �

3. Uniqueness of renormalized entropy solution

For the uniqueness proof, we need a C1 approximation of sign (·) and a
corresponding C2 approximation of the Kružkov entropy flux |· − c|, c ∈ R.

Lemma 3.1. For ε > 0, set

(3.1) signε (ξ) =


−1, ξ < ε,

sin
(
π
2εξ
)
, |ξ| ≤ ε,

1, ξ > ε.

For each c ∈ R, the corresponding entropy function

u 7→ ηε(u, c) =
∫ u

c
signε (ξ) dξ

is convex and belongs to C2(R) with η′′ε ∈ Cc(R) and |η′ε| ≤ 1 (so that the
constant K appearing in Definition 2.3 is 1). Moreover, ηε is symmetric in
the sense that ηε(z, c) = ηε(c, z) and for all u ∈ R

ηε(u, c) → η(u, c) := |u− c| as ε ↓ 0.

For each c ∈ R and 1 ≤ i, j ≤ d, we define the entropy flux functions

u 7→ qεi (u, c) =
∫ u

c
signε (ξ − c) f ′i(ξ) dξ,

u 7→ rεij(u, c) =
∫ u

c
signε (ξ − c)A′

ij(ξ) dξ,
(3.2)

where A′
ij(·) = aij(·) for 1 ≤ i, j ≤ d. Then as ε ↓ 0

qεi (u, c) → η(u, c) := sign (u− c) (f(u)− f(c)) ,

rεij(·, c) → rij(u, c) := sign (u− c) (Aij(u)−Aij(c)) ,
(3.3)

for 1 ≤ i, j ≤ d. Let qε = (qε1, . . . , q
ε
d), r

ε =
(
rεij

)
, and similarly for q, r.



10 M. BENDAHMANE AND K. H. KARLSEN

The function (3.1) is taken from [17]. The Kružkov entropy fluxes q, r in
(3.3) are symmetric. This is, however, not true for the entropy fluxes qε, rε,
but the symmetry error goes to zero as ε ↓ 0, that is,

qε(u, c)− qε(c, u) → 0, rε(u, c)− rε(c, u) → 0,

for all u, c ∈ R, and this is sufficient for proving uniqueness.
We are now ready to prove uniqueness of renormalized entropy solutions.

Theorem 3.1 (uniqueness). Suppose (1.3) and (1.4) hold. Let u and v
be renormalized entropy solutions of (1.1) with data F ∈ L1((0, T ) ×Rd),
u0 ∈ L1(Rd) and G ∈ L1((0, T )×Rd), v0 ∈ L1(Rd), respectively. Then for
a.e. t ∈ (0, T ),

‖u(·, t)− v(·, t)‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) +
∫ t

0
‖F (s, ·)−G(s, ·)‖L1(Rd) ds.

(3.4)

In particular, the Cauchy problem (1.1) admits at most one renormalized
entropy solution.

Proof. We shall prove (3.4) using Kružkov’s doubling of variables method
[32]. When it is notationally convenient we drop the domain of integration.

Let (ηε, qεi , r
ε
ij) be the entropy flux triple defined in Lemma 3.1, and denote

by µul , µ
v
l the corresponding renormalization measures.

From the definition of an renormalized entropy solution for u = u(t, x),

∫ ηε(Tl(u), c)∂tφ+
d∑
i=1

qεi (Tl(u), c)∂xiφ+
d∑

i,j=1

rεij(Tl(u), c)∂
2
xixj

φ

 dx dt

−
∫

signε (Tl(u)− c)F (t, x)φdx dt

≥
∫
nu,sign′ε(·−c)(t, x)φdx dt−

∫
φdµul (t, x),

(3.5)

∀c ∈ R, ∀l > 0 and for 0 ≤ φ = φ(t, x) ∈ D((0, T )×Rd).
From the definition of renormalized entropy solution for u = u(s, y),

∫ ηε(Tl(v), c)∂sφ+
d∑
i=1

qεi (Tl(v), c)∂yjφ+
d∑

i,j=1

rεij(Tl(v), c)∂
2
yiyj

φ

 dy ds

−
∫

signε (Tl(v)− c)G(s, y)φdy ds

≥
∫
nv,sign′ε(c−·)(s, y)φdy ds−

∫
φdµvl (s, y),

(3.6)

∀c ∈ R, ∀l > 0 and for every 0 ≤ φ = φ(s, y) ∈ D((0, T )×Rd).
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Choose c = Tl(v(s, y)) in (3.5) and integrate over (s, y). Choose c =
Tl(u(t, x)) in (3.6) and integrate over (t, x). Then adding the two resulting
inequalities yields

∫ (
ηε(Tl(u), Tl(v)) (∂t + ∂s)φ

+
d∑
i=1

[qεi (Tl(u), Tl(v))∂xiφ+ qεi (Tl(v), Tl(u))∂yiφ]

+
d∑

i,j=1

[
rεij(Tl(u), Tl(v))∂

2
xixj

φ+ rεij(Tl(v), Tl(u))∂
2
yiyj

φ
])

dx dt dy ds

−
∫

signε (Tl(u)− Tl(v)) (F (t, x)−G(s, y)) dx dt dy ds

≥
∫ (

nu,sign′ε(·−c)(t, x) + nv,sign′ε(·−c)(s, y)
)
φdx dt dy ds

−
∫
φ(t, x, s, y) dµul (t, x) dy ds

−
∫
φ(t, x, s, y) dµvl (s, y) dx dt,

(3.7)

where φ = φ(t, x, s, y) is any nonnegative function in D(((0, T )×Rd)2).
We introduce next a function 0 ≤ ω ∈ D(R) that satisfies ω(σ) = ω(−σ),

ω(σ) = 0 for |σ| ≥ 1, and
∫
R
ω(σ) dσ = 1. For ρ > 0 and z ∈ R, let

ωρ(z) = 1
ρω
(
z
ρ

)
. We take our test function φ = φ(t, x, s, y) to be of the

form

φ(t, x, s, y) = ϕ
(
t+s
2 , x+y2

)
ωρ
(
t−s
2 , x−y2

)
,

where ϕ ∈ D((0, T )×Rd), 0 ≤ ϕ ≤ 1, and ωρ
(
t−s
2 , x−y2

)
= ωρ

(x−y
2

)
ωρ
(
t−s
2

)
.

With this choice, we have

(3.8) (∂t + ∂s)φ = (∂t + ∂s)ϕ
(
t+s
2 , x+y2

)
ωρ
(
t−s
2 , x−y2

)
and

(∇x +∇y)φ = (∇x +∇y)ϕ
(
t+s
2 , x+y2

)
ωρ
(
t−s
2 , x−y2

)
.

Introduce the Hessian matrices

∇xxφ =
(
∂2
xixj

φ
)
, ∇xyφ =

(
∂2
xiyj

φ
)
, ∇yyφ =

(
∂2
yiyj

φ
)
.

Then one can check that the following crucial matrix equality holds:

(∇xx + 2∇xy +∇yy)φ = (∇xx + 2∇xy +∇yy)ϕ
(
t+s
2 , x+y2

)
ωρ
(
t−s
2 , x−y2

)
.
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Note that the two latter properties imply that for 1 ≤ i ≤ d

qεi (Tl(u), Tl(v))∂xiφ+ qεi (Tl(v), Tl(u))∂yiφ

= qεi (Tl(u), Tl(v)) (∂xi + ∂yi)ϕ
(
t+s
2 , x+y2

)
ωρ
(
t−s
2 , x−y2

)
+ [qεi (Tl(v), Tl(u))− qεi (Tl(u), Tl(v))] ∂yiφ

(3.9)

and for 1 ≤ i, j ≤ d

rεij(Tl(u), Tl(v))∂
2
xixj

φ+ rεij(Tl(v), Tl(u))∂
2
yiyj

φ

= rεij(Tl(u), Tl(v))
(
∂2
xixj

+ 2∂2
xiyj

+ ∂2
yiyj

)
ϕ
(
t+s
2 , x+y2

)
ωρ
(
t−s
2 , x−y2

)
− 2rεij(Tl(u), Tl(v))∂

2
xiyj

φ

+
[
rεij(Tl(v), Tl(u))− rεij(Tl(u), Tl(v))

]
∂2
yiyj

φ.

(3.10)

We also have

−
∫
φ(t, x, s, y) dµul (t, x) dy ds

≥ −
∫
ωρ
(
t−s
2 , x−y2

)
dy ds dµul (t, x) ≥ −µul ((0, T )×Rd)

(3.11)

and similarly

(3.12) −
∫
φ(t, x, s, y) dµvl (s, y) dx dt ≥ −µvl ((0, T )×Rd).

Insertion of (3.8)–(3.12) into (3.7) gives

∫ (
ηε(Tl(u), Tl(v)) (∂t + ∂s)ϕ

(
t+s
2 , x+y2

)
+

d∑
i=1

qεi (Tl(u), Tl(v)) (∂xi + ∂yi)ϕ
(
t+s
2 , x+y2

)
+

d∑
i,j=1

rεij(Tl(u), Tl(v))
(
∂2
xixj

+ 2∂2
xiyj

+ ∂2
yiyj

)
ϕ
(
t+s
2 , x+y2

))
× ωρ

(
t−s
2 , x−y2

)
dx dt dy ds

−
∫

signε (Tl(u)− Tl(v)) (F (t, x)−G(s, y)) dx dt dy ds

≥ E1(ε) + E2(ε) + E3(ε)− µvl ((0, T )×Rd)− µvl ((0, T )×Rd),

(3.13)
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where Ej(ε) =
∫

((0,T )×Rd)2
Ij(ε) dx dt dy ds, j = 1, 2, 3, with

I1(ε) =
(
nu,sign′ε(·−c)(t, x) + nv,sign′ε(·−c)(s, y)

)
φ

I2(ε) = 2
d∑

i,j=1

rεij(Tl(u), Tl(v))∂
2
xiyj

φ,

I3(ε) =
d∑
i=1

[qεi (Tl(u), Tl(v))− qεi (Tl(v), Tl(u))] ∂yiφ

+
d∑

i,j=1

[
rεij(Tl(u), Tl(v))− rεij(Tl(v), Tl(u))

]
∂2
yiyj

φ.

Thanks to Lemma 3.1, lim
ε↓0

E3(ε) = 0 and

lim
ε↓0

E2(ε) =
∫

2
d∑

i,j=1

rij(Tl(u), Tl(v))∂2
xiyj

φdx dt dy ds.(3.14)

Our goal now is to show that

(3.15) lim
ε↓0

E1(ε) + lim
ε↓0

E2(ε) ≥ 0.

To this end, note first that, since sign′ε (·) ≥ 0,

I1(ε) ≥ 2
K∑
k=1

sign′ε (Tl(u)− Tl(v)) divxζk(Tl(u))divyζk(Tl(v))φ,

so that

E1(ε) ≥
∫

2
K∑
k=1

sign′ε (Tl(u)− Tl(v)) divxζk(Tl(u))

× divyζk(Tl(v))φdx dt dy ds.

Invoking the chain rule (D.3) in Definition 2.3 (we can do this since
sign′ε (·) ∈ C(R)), we have for 1 ≤ k ≤ K

sign′ε (Tl(u)− Tl(v)) divxζk(Tl(u)) = divxζ
sign′ε(·−Tl(v))
k (Tl(u)),

sign′ε (Tl(u)− Tl(v)) divyζk(Tl(v)) = divyζ
sign′ε(Tl(u)−·)
k (Tl(v)).

(3.16)
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If we now use (3.16), then we can continue as follows:

E1 ≥
∫ K∑

k=1

divxζk(Tl(u))divyζ
sign′ε(Tl(u)−·)
k (Tl(v))φdx dt dy ds

+
∫ K∑

k=1

divxζ
sign′ε(·−Tl(v))
k (Tl(u))divyζk(Tl(v))φdx dt dy ds

= −
∫ K∑

k=1

divxζk(Tl(u))ζ
sign′ε(Tl(u)−·)
k (Tl(v)) · ∇yφdx dt dy ds

−
∫ K∑

k=1

ζ
sign′ε(·−Tl(v))
k (Tl(u)) · ∇xφdivyζk(Tl(v)) dx dt dy ds

= −
∫ K∑

k=1

d∑
j=1

(∫ Tl(v)

Tl(u)
sign′ε (Tl(u)− ξ)σjk(ξ) dξ

)
× divxζk(Tl(u))∂yjφdx dt dy ds

−
∫ K∑

k=1

d∑
i=1

(∫ Tl(u)

Tl(v)
sign′ε (ξ − Tl(v))σik(ξ) dξ

)
× divyζk(Tl(v))∂xiφdx dt dy ds.

We observe next that for 1 ≤ k ≤ K and 1 ≤ i, j ≤ d

lim
ε↓0

∫ Tl(v)

Tl(u)
sign′ε (Tl(u)− ξ)σjk(ξ) dξ = −sign (Tl(u)− Tl(v))σjk(Tl(u)),

lim
ε↓0

∫ Tl(u)

Tl(v)
sign′ε (ξ − Tl(v))σik(ξ) dξ = sign (Tl(u)− Tl(v))σik(Tl(v)).
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Hence, by the dominated convergence theorem,

lim
ε↓0

E1 ≥
∫ K∑

k=1

d∑
j=1

sign (Tl(u)− Tl(v))σjk(Tl(u))

× divxζk(Tl(u))∂yjφdx dt dy ds

−
∫ K∑

k=1

d∑
i=1

sign (Tl(u)− Tl(v))σik(Tl(v))

× divyζk(Tl(v))∂xiφdx dt dy ds

= lim
ε↓0

∫ K∑
k=1

d∑
j=1

signε (Tl(u)− Tl(v))σjk(Tl(u))

× divxζk(Tl(u))∂yjφdx dt dy ds

− lim
ε↓0

∫ K∑
k=1

d∑
i=1

signε (Tl(u)− Tl(v))σik(Tl(v))

× divyζk(Tl(v))∂xiφdx dt dy ds.

Invoking again the chain rule (D.3) in Definition 2.3 (keep in mind that
signε (·) and the components of σ(·) belong to C(R)), we have for 1 ≤ i, j ≤ d

K∑
k=1

signε (Tl(u)− Tl(v))σjk(Tl(u))divxζk(Tl(u))

=
d∑
i=1

∂xir
ε
ij(Tl(u), Tl(v)), 1 ≤ j ≤ d,

K∑
k=1

signε (Tl(u)− Tl(v))σik(Tl(v))divyζk(Tl(v))

= −
d∑
j=1

∂yjr
ε
ij(Tl(u), Tl(v)), 1 ≤ i ≤ d.

(3.17)

Using (3.17) and integration by parts, we get

lim
ε↓0

E1 ≥ − lim
ε↓0

∫ d∑
i,j=1

rεij(Tl(u), Tl(v))∂
2
xiyj

φdx dt dy ds

− lim
ε↓0

∫ d∑
i,j=1

rεij(Tl(u), Tl(u))∂
2
xiyj

φdx dt dy ds

= −
∫

2
d∑

i,j=1

rij(Tl(u), Tl(u))∂2
xiyj

φdx dt dy ds.

Consequently, adding this and (3.14) together yields (3.15).
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Summing up, sending ε ↓ 0 in (3.13) gives∫ (
Itime + Iconv + Idiff

)
(t, x, s, y)ωρ

(
t−s
2 , x−y2

)
dx dt dy ds

−
∫

sign (Tl(u)− Tl(v)) (F (t, x)−G(s, y))

× ωρ
(
t−s
2 , x−y2

)
ϕ
(
t+s
2 , x+y2

)
dx dt dyds

≥ −µul ((0, T )×Rd)− µvl ((0, T )×Rd),

(3.18)

where

Itime(t, x, s, y) = |Tl(u(t, x))− Tl(v(s, y))| (∂t + ∂s)ϕ
(
t+s
2 , x+y2

)
,

Iconv(t, x, s, y) =
d∑
i=1

qi(Tl(u(t, x)), Tl(v(s, y))) (∂xi + ∂yi)ϕ
(
t+s
2 , x+y2

)
,

Idiff(t, x, s, y) =
d∑

i,j=1

rij(Tl(u), Tl(v))
(
∂2
xixj

+ 2∂2
xiyj

+ ∂2
yiyj

)
ϕ
(
t+s
2 , x+y2

)
.

Let us introduce the change of variables

x̃ = x+y
2 , t̃ = t+s

2 , z = x−y
2 , τ = t−s

2 ,

which maps (0, T )×Rd × (0, T )×Rd into

Ω = Rd ×Rd ×
{(
t̃, τ
) ∣∣∣ 0 ≤ t̃+ τ ≤ T, 0 ≤ t̃− τ ≤ T

}
.

Observe that

(∂t + ∂s)ϕ
(
t+s
2 , x+y2

)
= ϕt̃(t̃, x̃), (∇x +∇y)ϕ(t, x, s, y) = ∇x̃ϕ(t̃, x̃).

This change of variables diagonalizes also the operator ∇xx + 2∇xy +∇yy:

(∇xx + 2∇xy +∇yy)ϕ
(
t+s
2 , x+y2

)
= ∇x̃x̃ϕ(t̃, x̃).

Keeping in mind that

x = x̃+ z, y = x̃− z, t = t̃+ τ, s = t̃− τ,

we may now estimate (3.18) as

∫
Ω

(
Itime + Iconv − Idiff

)
(t̃, x̃, τ, z)ωρ(z)δρ(τ) dt̃ dx̃ dτ dz

≥ −
∫
Ω

∣∣F (t̃+ τ, x̃+ z)−G(t̃− τ, x̃− z)
∣∣ωρ(z)δρ(τ)ϕ(t̃, x̃) dx̃ dt̃ dτ dz

− µul ((0, T )×Rd)− µvl ((0, T )×Rd),

(3.19)
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where

Itime(t̃, x̃, τ, z) =
∣∣Tl(u(t̃+ τ, x̃+ z))− Tl(v(t̃− τ, x̃− z))

∣∣ϕt̃(t̃, x̃),
Iconv(t̃, x̃, τ, z) =

d∑
i=1

qi
(
Tl(u(t̃+ τ, x̃+ z)), Tl(v(t̃− τ, x̃− z))

)
∂x̃iϕ(t̃, x̃),

Idiff(t̃, x̃, τ, z) =
d∑

i,j=1

rij
(
Tl(u(t̃+ τ, x̃+ z)), Tl(v(t̃− τ, x̃− z))

)
∂2
x̃ix̃j

ϕ.

Sending ρ ↓ 0 in (3.19) gives∫ (
|Tl(u)− Tl(v)| ∂tϕ+

d∑
i=1

qi (Tl(u), Tl(v)) ∂xiϕ

+
d∑

i,j=1

rij (Tl(u), Tl(v)) ∂2
xixj

ϕ

)
dx dt

≥ −
∫
|F (t, x)−G(t, x)|ϕdx dt

− µul ((0, T )×Rd)− µvl ((0, T )×Rd).

(3.20)

By standard arguments (choosing a sequence of functions 0 ≤ ϕ ≤ 1 from
D((0, T ) ×Rd) that converges to 1(0,t)×Rd and using the initial conditions
for u, v in the sense of, say, (D.6) in Definition 2.3, it follows from (3.20)
that for a.e. t ∈ (0, T )∫

Rd

|Tl(u(t, x))− Tl(v(t, x))| dx

≤
∫
Rd

|Tl(u0)− Tl(v0)| dx+
∫ t

0

∫
Rd

|F (s, x)−G(s, x)| dx ds

+ µul ((0, T )×Rd) + µvl ((0, T )×Rd).

(3.21)

Equipped with (D.5) in Definition 2.3 for u and v, sending l ↑ ∞ in (3.21)
yields finally the L1 contraction property (3.4). �

4. Existence of renormalized entropy solution

The purpose of this section is to prove the following theorem:

Theorem 4.1 (existence). Suppose (1.2), (1.3), and (1.4) hold. Then there
exists at least one renormalized entropy solution u of (1.1).

We divide the proof into two steps.
Step 1 (bounded data). Suppose the data u0 and F are bounded and

integrable functions. Repeating the proof in [19] we find that there exists
a unique entropy solution u to (1.1) (interpreted in the sense of Definition
2.2), and this entropy solution can be constructed by the vanishing viscosity
method [42]. For us it remains to prove that this entropy solution is also
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a renormalized entropy solution in the sense of Definition 2.3. To this end,
let uρ be the unique classical (say C1,2) solution to the uniformly parabolic
problem (see [42])

∂tuρ + divf(uρ) = ∇ · (a(uρ)∇uρ) + ρ∆uρ + F, ρ > 0,

uρ(x, 0) = u0(x).
(4.1)

Equipped with the ρ-independent a priori estimates in [42], Chen and Perthame
[19] prove

(4.2) uρ → u a.e. and in C(0, T ;L1(Rd)) as ρ ↓ 0,

where u is the unique entropy solution to (1.1).

For any C2 function S and
(
qSi
)′ = S′f ′i ,

(
rSij

)′
= S′aij for 1 ≤ i, j ≤ d,

multiplying the equation in (4.1) by S′(uρ) yields

∂tS(uρ) +
d∑
i=1

∂xiq
S
i (uρ)−

d∑
i,j=1

∂2
xixj

rSij(uρ)− ρ∆S(uρ)

− S′(uρ)F (uρ) = −
(
nS

′′
ρ +mS′′

ρ

)
(t, x),

(4.3)

where the parabolic dissipation measure nS
′′

n,ρ(t, x) is defined by

nS
′′

ρ (t, x) =
K∑
k=1

(
d∑
i=1

∂xiζ
S′′
ik (u(t, x))

)2

.

and the entropy dissipation measure mS′′
ρ (t, x) is defined by

mS′′
ρ (t, x) = ρS′′(uρ) |∇uρ|2 .

An easy approximation argument reveals that (4.3) continues to hold for
any function S ∈W 2,∞(R).

Inserting S(u) =
1
l

∫ u

0
Tl(ξ)ξ into (4.3) and then sending l ↓ 0, we get

the well known estimate

(4.4) ‖uρ‖L∞(0,T ;L1(Rd)) ≤ ‖u0‖L1(Rd) + ‖F‖L1((0,T )×Rd) .

We need to derive some additional a priori estimates (involving (2.4)) that
are independent of ρ and ‖u0‖L∞(Rd), ‖F‖L∞((0,T )×Rd).

Lemma 4.1. For any l > 0, we have∫
(0,T )×Rd

 K∑
k=1

(
d∑
i=1

∂xiζik(Tl(uρ))

)2

+ ρ |∇Tl(uρ)|2
 dx dt ≤ Cl,

for some constant Cl that is independent of ρ but not l. More precisely,

Cl = l
(
‖u0‖L1(Rd) + ‖F‖L1((0,T )×Rd)

)
.
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Proof. Introduce the function

S(u) =
∫ u

0
Tl(ξ) dξ =

{
|u|2
2 , if |u| ≤ l,

l |u| − l2

2 , if |u| > l.

Choosing this S(·) in (4.3), we derive

∫
Rd

S(uρ(T, x)) dx−
∫
Rd

S(u0(x)) dx−
∫ T

0

∫
Rd

F (uρ)Tl(uρ) dx dt

= −
∫

(0,T )×Rd

 K∑
k=1

(
d∑
i=1

∂xiζik(Tl(uρ))

)2

+ ρ |∇Tl(uρ)|2
 dx dt.

(4.5)

From the nonnegativity of S(·), it follows from (4.5)

∫
(0,T )×Rd

 K∑
k=1

(
d∑
i=1

∂xiζik(Tl(uρ))

)2

+ ρ |∇Tl(uρ)|2
 dx dt

≤
∫
Rd

S(u0(x)) dx+
∫ T

0

∫
Rd

F (uρ)Tl(uρ) dx dt.

(4.6)

Since for all u ∈ R, |Tl(u)| ≤ l and 0 ≤ S(u) ≤ l |u|, we deduce from (4.6)

∫
(0,T )×Rd

 K∑
k=1

(
d∑
i=1

∂xiζik(Tl(uρ))

)2

+ ρ |∇Tl(uρ)|2
 dx dt

≤ l
(
‖u0‖L1(Rd) + ‖F‖L1((0,T )×Rd)

)
,

which completes the proof of Lemma 4.1. �

Lemma 4.2. For any l > 0 and any δ > 0,

(4.7)
1
δ

∫
{l<|uρ|<l+δ}

 K∑
k=1

(
d∑
i=1

∂xiζik(uρ)

)2

+ ρ |∇uρ|2
 dx dt ≤ E(l),

for some bounded function E(·) on R+ that is independent of n, ρ, δ and
satisfies

lim
l↑∞

E(l) = 0,

If the data u0, F are bounded and

(4.8) l > M := ‖u0‖L∞(Rd) + ‖F‖L∞((0,T )×Rd) ,

then E(l) = 0.
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Proof. Let us define the function S(·) by S(0) = 0 and

S′(u) =
1
δ

(Tl+δ(u)− Tl(u)) =



−1, u < −l − δ,
−u−l
δ , −l − δ < u < −l,

0, −l < u < l,
u−l
δ , l < u < l + δ,

1, u > l + δ.

Inserting this S into (4.3) gives

1
δ

∫
{l<|uρ|<l+δ}

 K∑
k=1

(
d∑
i=1

∂xiζik(uρ)

)2

+ ρ |∇uρ|2
 dx dt

≤
∫
{|u0|>l}

|u0| dx+
∫
{|uρ|>l}

|F | dx dt := E(l).

(4.9)

Since u0 ∈ L1(Rd), F ∈ L1((0, T )×Rd), and, thanks to (4.4), uρ is uniformly
(in ρ) bounded in L1((0, T )×Rd), we have E(l) → 0 as l ↑ ∞.

If the data u0, F are bounded functions, then it is well known that
‖uρ‖L∞((0,T )×Rd) ≤ M , where M is defined in (4.8). We observe that if
l > M , then S(u0) = 0 and S′(uρ) = 0. Hence we deduce E(l) = 0. �

Let us choose a particular S = Sη,h in (4.3) of the form

Sη,h(0) = 0, S′η,h = η′h′,

η ∈ C2(R), η′′ ≥ 0,
∣∣η′∣∣ ≤ K,

h ∈ C2(R), supp(h′) ⊂ [−l, l].

This gives

∂tSη,h(uρ) +
d∑
i=1

∂xiq
Sη,h

i (uρ)−
d∑

i,j=1

∂2
xixj

r
Sη,h

ij (uρ)− ρ∆Sη,h(uρ)

− S′η,h(uρ)F (uρ) = −
(
nη

′′h′
ρ + µη

′h′′
ρ

)
(t, x),

(4.10)

where

µη
′h′′
ρ (t, x) := −

(
nη

′h′′
ρ +mη′h′′

ρ

)
(t, x)

= −η′(uρ)h′′(uρ)

 K∑
k=1

(
d∑
i=1

∂xiζik(uρ)

)2

+ ρ |∇uρ|2
 .

Let hl,δ : R → R denote the function defined by hl,δ(0) = 0 and

h′l,δ(u) =


1, |u| < l,
l+δ−|u|

δ , l < |u| < l + δ,

0, |u| > l + δ.
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Clearly,

(4.11) hl,δ(u) → Tl(u), h′l,δ(u) → 1{|u|<l},

for any u ∈ R. The idea is to choose h = hn,l in (4.10) and then let δ ↓ 0.
To this end, let us first define the Radon measure µKl,n,ρ,δ on (0, T )×Rd by

dµKl,ρ,δ(t, x) :=
K

δ
1{l<|uρ|<l+δ}

 K∑
k=1

(
d∑
i=1

∂xiζik(uρ)

)2

+ ρ |∇uρ|2
 dx dt,

that is, for any Borel set E ⊂ (0, T )×Rd,

µKl,ρ,δ(E) =
K

δ

∫
E∩{l<|uρ|<l+δ}

 K∑
k=1

(
d∑
i=1

∂xiζik(uρ)

)2

+ ρ |∇uρ|2
 dx dt.

Then, by Lemma 4.2,

µKl,ρ,δ((0, T )×Rd) ≤ E(l).

Consequently, we may assume that

µKl,ρ,δ
?
⇀ µKl,ρ in the sense of measures on (0, T )×Rd as δ ↓ 0,

µKl,ρ
?
⇀ µKl in the sense of measures on (0, T )×Rd ρ ↓ 0,

(4.12)

for some nonnegative bounded Radon measure µKl satisfying

(4.13) µKl ((0, T )×Rd) ≤ E(l) → 0 as l ↑ ∞.

For any 0 ≤ φ ∈ D((0, T )×Rd), thanks to (4.11) and the convexity of η,

lim
δ↓0

∫
(0,T )×Rd

n
η′′h′l,δ
ρ (t, x)φdx dt

=
∫

(0,T )×Rd

η′′(uρ)1{|uρ|<l}

 K∑
k=1

(
d∑
i=1

∂xiζik(uρ)

)2

+ ρ |∇uρ|2
φdx dt

≥
∫

(0,T )×Rd

η′′(Tl(uρ))
K∑
k=1

(
d∑
i=1

∂xiζik(Tl(uρ))

)2

φdx dt.

(4.14)

Again because of (4.11), it can be easily checked that as δ ↓ 0 (recall
q′ = η′f ′ and r′ = η′a)

Sη,hl,δ
(u) → η(Tl(u)), S′η,hl,δ

(u) → η′(Tl(u)),

q
Sη,hl,δ (u) → q(Tl(u)), r

Sη,hl,δ (u) → r(Tl(u)),
(4.15)

for any u ∈ R.
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Inserting h = hl,δ into (4.10) and using |η′| ≤ K, (4.12), (4.14), (4.15)
when sending δ ↓ 0, we get

∂tη(Tl(uρ)) +
d∑
i=1

∂xiqi(Tl(uρ))−
d∑

i,j=1

∂2
xixj

rij(Tl(uρ))

− ρ∆η(Tl(uρ))− η′(Tl(uρ))F

≤ −η′′(Tl(uρ))
K∑
k=1

(
d∑
i=1

∂xiζik(uρ)

)2

+ µKl,ρ in D′((0, T )×Rd).

(4.16)

We now want to send ρ ↓ 0 in (4.16). To pass to the limit in the first term
on the right-hand side of (4.16) we employ a standard lower semicontinuity
result found, e.g., in [1]. For any 0 ≤ φ ∈ D((0, T )×Rd) we have

lim inf
ρ↓0

∫
(0,T )×Rd

η′′(Tl(uρ))
K∑
k=1

(
d∑
i=1

∂xiζik(Tl(uρ))

)2

φdx dt

≥
∫

(0,T )×Rd

η′′(Tl(u))
K∑
k=1

(
d∑
i=1

∂xiζik(Tl(u))

)2

φdx dt.

(4.17)

Equipped with (4.17) and (4.12), passing to the limit ρ ↓ 0 in (4.16) yields

∫
(0,T )×Rd

(
η(Tl(u))∂tφ+

d∑
i=1

qi(Tl(u))∂xiφ+
d∑

i,j=1

rij(Tl(u))∂2
xixj

φ

)
dx dt

+
∫

(0,T )×Rd

η′(Tl(u))Fφdx dt

≥
∫

(0,T )×Rd

η′′(Tl(u))
K∑
k=1

(
d∑
i=1

∂xiζik(Tl(u))

)2

φdx dt

−
∫

(0,T )×Rd

φdµKl (t, x), ∀φ ∈ D((0, T )×Rd), φ ≥ 0.

(4.18)

It remains to prove that the chain rule (D.3) in Definition 2.3 holds. For
any ψ ∈ C(R), the classical chain rule gives for k = 1, ...,K

d∑
i=1

∂xiζ
ψ
ik(Tl(uρ)) = ψ(Tl(uρ))

d∑
i=1

∂xiζik(Tl(uρ)), ∀l > 0.

As in [19], the proof is to observe that this equality continues to hold in the
limit as ρ ↓ 0 since uρ converges strongly and

∑d
i=1 ∂xiζik(Tl(uρ)) weakly.

Step 2 (unbounded data). Suppose the data u0 and F satisfy (1.2). For
n > 1, introduce the truncated data u0,n = Tn(u0) and Fn = Tn(F ). We
have u0,n → u0, Fn → F in L1 as n ↑ ∞. Thanks to the L1 contraction



QUASILINEAR ANISOTROPIC DEGENERATE PARABOLIC EQUATIONS 23

property of the solution operator to (4.1), the following estimate holds for
a.e. t ∈ (0, T ):

‖un′(·, t)− un(·, t)‖L1(Rd)

≤
∥∥u0,n′ − u0,n

∥∥
L1(Rd)

+
∫ t

0
‖Fn′(s, ·)− Fn(s, ·)‖L1(Rd) ds→ 0,

as n, n′ →∞. Hence {un}n>1 is a Cauchy sequence in C(0, T ;L1(Rd)) and
has a limit point u. From Step 1 we know that each un is a renormalized
entropy solution of (1.1) with u0 and F replaced by u0,n and Fn, respectively.
Denote by µKl,n the corresponding renormalization measure. Lemma 4.1 and
(4.13) imply that the following n-independent a priori estimates hold for
each l > 0:

‖un‖L∞(0,T ;L1(Rd)) ≤ ‖u0‖L1(Rd) + ‖F‖L1((0,T )×Rd) ,

K∑
k=1

(
divζk(Tl(u))

)2
=

K∑
k=1

(
d∑
i=1

∂xiζik(Tl(un))

)2

≤ Cl,

µKl,n((0, T )×Rd) ≤
∫
{|u0|>l}

|u0| dx+
∫
{|un|>l}

|F | dx dt,

for some constant Cl that depends on l but not n. Equipped with these
estimates and the strong convergence un → u, we can repeat the steps in
the above limiting process for the viscous approximations {uρ}ρ>0 and prove
that the limit point u of {un}n>1 is a renormalized entropy solution of (1.1)

with a renormalization measure µu,Kl being a limit point of
{
µKl,n

}
n>1

. This

completes the proof of Theorem 4.1.
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