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Abstract

We introduce the forward integral with respect to a pure jump Lévy process and we prove an
Itô formula for this integral. Then we use Mallivin calculus to establish a relationship between the
forward integral and the Skorohod integral and we apply this to obtain an Itô formula for the Skorohod
integral.
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1 Introduction.

The original infinite dimensional calculus developed by Malliavin [M] was designed to study
the smoothness of the densities of the solutions of stochastic differential equations. Although
this technique was developed further by many researchers, this application remained the only
one known for several years. This situation changed in 1991, when Karatzas and Ocone [KO]
showed how the representation theorem that Ocone had formulated some years earlier in
terms of the Malliavin derivative could be used in finance. Now this theorem is often known
as the Clark-Haussmann-Ocone (CHO) formula. More precisely, the CHO theorem gives a
method of finding replicating portfolios in complete markets driven by Brownian motion. This
discovery led to an enormous increase in the interest in the Malliavin calculus both among
mathematicians and finance researchers and since then the theory has been generalized and
new applications have been found. In particular, Malliavin calculus for Brownian motion
has been applied to compute the greeks in finance, see e.g. [AØPU], [FLLLT] and [FLLL].
Moreover, anticipative stochastic caluclus for Brownian motion involving the forward integral
(beyond the semimartingale context) has been applied to give a general approach to optimal
portfolio and consumption problems for insiders in finance, see e.g. [BØ1], [BØ2] and [KS].

An extension of the Malliavin method to processes with discontinuous trajectories was
carried out in 1987 by Bichteler, Gravereaux and Jacod [BGJ]. However, their work is focused
on the original problem of the smoothness of the densities of the solutions of stochastic
differential equations, a question that does not deal with the other more recent aspects of
the Malliavin calculus. For related works on stochastic calculus for stochastic measures
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generated by a Poisson process on the real line see [DKW], [K1], [K2], [NV1], [Pi1] and [Pi2],
for example.

Recently two types of Malliavin derivative operators D(m)
t and Dt,z have been introduced

for Lévy processes and the corresponding CHO representation theorems have been obtained.
See [L], [LSUV], [BDLØP], [DØP], and [ØP]. Although markets driven by Lévy processes
are not in general complete, the corresponding CHO theorem is still important for financial
applications. For example, it can be used to find explicitly the minimal variance portfolio
(see e.g. [BDLØP]) and to compute the greeks in certain jump diffucsion market models (see
e.g. [DJ]).

There has also been an increased interest in anticipative integration with respect to a
Lévy process and this is partly due to its application to insider trading in finance (see e.g.
[DMØP], [Ø2] and [ØS]). In Section 4 of this paper we introduce the forward integral with
respect to a pure jump Lévy process and we prove an Itô formula for such integrals (see
Theorem 4.7). Then we use a relation between forward integrals and Skorohod integrals (see
Lemma 4.4) to obtain an Itô formula for Skorohod integrals with respect to a pure jump Lévy
process (see Theorem 4.9).

Since Malliavin calculus plays a crucial role in our achievements, we give a review of the
main results of this theory in Section 3. Various versions of those results have already been
obtained and are known to the public. Nevertheless we think that it is of intrest to have a
unified approach based on white noise theory.

For completeness and convenience of the reader we recall the basic theory of white noise
for pure jump Lévy processes in Section 2.

2 Framework.

In this paper we deal with pure jump Lévy processes with no drift defined on a certain
probability space (Ω,F , P ) and the time horizon R+ = [0,∞). General information about
Lévy processes can be found in [Be], [P] and [Sa], for example. However we recall briefly our
framework. Cf. [DØP], [ØP].

Let Ω = S ′(R) be the Schwartz space of tempered distributions equipped with its Borel σ-
algebra F = B(Ω). The space S ′(R) is the dual of the Schwartz space S(R) of test functions,
i.e. the rapidly decreasing smooth functions on R. We denote the action of ω ∈ Ω = S ′(R)
applied to f ∈ S(R) by 〈ω, f〉 = ω(f). See [GV], for example.

Thanks to the Bochner-Milnos-Sazonov theorem, the white noise probability measure P
can be defined by the relation∫

Ω
ei〈ω,f〉dP (ω) = e

R
R ψ(f(x))dx−iα

R
R f(x)dx, f ∈ S(R),

where the real constant α and

ψ(u) =
∫

R

(
eiuz − 1− iuz1{|z|<1}

)
ν(dz)
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are the elements of the exponent in the characteristic functional of a pure jump Lévy process
with the Lévy measure ν(dz), z ∈ R, which, we recall, is such that

(2.1)
∫

R
1 ∧ z2ν(dz) <∞.

Assuming that

(2.2) M :=
∫

R
z2ν(dz) <∞,

we can set α =
∫

R z1{|z|>1}ν(dz) and then we obtain that

E
[
〈·, f〉

]
= 0 and E

[
〈·, f〉2

]
= M

∫
R
f(x)dx, f ∈ S(R).

Accordingly the pure jump Lévy process with no drift

η = η(ω, t), ω ∈ Ω, t ∈ R+,

that we do consider here and in the sequel, is the cadlag modification of 〈ω, χ(0,t]〉, ω ∈ Ω,
t > 0, where

(2.3) χ(0,t](x) =
{

1, 0 < x ≤ t
0, otherwise, x ∈ R,

with η(ω, 0) := 0, ω ∈ Ω. We remark that, for all t ∈ R+, the values η(t) belong to
L2(P ) := L2(Ω,F , P ).

The Lévy process η can be expressed by

(2.4) η(t) =
∫ ∞

0

∫
R
zÑ(dt, dz), t ∈ R+,

where Ñ(dt, dz) := N(dt, dz) − ν(dz)dt is the compensated Poisson random measure associ-
ated with η - cf. [I1], for example. Recall that the Poisson process is the most important
representative among the pure jump Lévy processes and it corresponds to the specific case
in which the measure ν is a point mass at 1.

Let Ft, t ∈ R+, be the completed filtration generated by the Lévy process in (2.4). We
fix F = F∞.

Aiming to treat the Malliavin calculus by means of chaos expansions, we now recall the
required spaces and the corresponding complete orthonormal systems.

In the space L2(λ) = L2(R+,B(R+), λ) of the square integrable functions on R+ equipped
with the Borel σ-algebra and the standard Lebesgue measure λ(dt), t ∈ R+, we consider the
complete orthonormal system ξj (j = 1, 2, ...) of the Laguerre functions of order 1/2, i.e.

(2.5) ξj(t) =
( Γ(j)

Γ(j + 1/2)

)1/2
e−tt1/4L

1/2
j−1(t) 1(0,∞)(t), t ∈ R+ (j = 1, 2, ...),

where Γ is the Gamma functions and L1/2
j are the Laguerre polynomials of order 1/2 defined

by

e−tt1/2L
1/2
j (t) =

1
j!
dj

dtj
(e−ttj+1/2) (j = 0, 1, ...).
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Cf. [T], for example.
In the space L2(ν) := L2(R,B(R), ν) of the square integrable functions on R equipped

with the Borel σ-algebra and the Lévy measure ν, we fix a complete orthonormal system
ψi (i = 1, 2, ...). In particular we can choose a complete system of polynomials as it was
suggested in [NS] and [DØP], provided that the moments of order grater than or equal to 2
of the measure ν are finite.

To simplify the notation we call J the set of multi-indexes α = (α1, α2, ...) which have only
finitely many non-zero values. We denote Index (α) = max{n : αn 6= 0} and |α| =

∑
n αn,

for α ∈ J .
By δk (k = 1, 2, ...) we identify the product

(2.6) δk(t, z) := ξj(t)ψi(z), t ∈ R+, z ∈ R,

where k = γ(i, j), and γ : N × N −→ N is a bijective map. Note that any bijective map can
be applied, e.g. we could consider the so-called “Cantor diagonalization” of the Cartesian
product N× N. We set

(2.7) εk(n) =
{

1, n = k
0, otherwise

(k = 1, 2, ...).

Now, for any α ∈ J with Index (α) = n and |α| = m we define the tensor product δ⊗α as

δ⊗α = δ⊗α1
1 ⊗ ...⊗ δ⊗αn

n

(
(t1, x1), ..., (tm, xm)

)
:= δ1(t1, x1) · ... · δ1(tα1 , xα1) · ... · δn(tα1+...+αn−1+1, xα1+...+αn−1+1) · ... · δn(tm, xm),

with δ⊗0
k := 1. Then we denote δb⊗α the symmetrization of the functions δ⊗αk .

In the space L2(P ) := L2(Ω,F , P ) of the square integrable random variables we consider
the following complete orthogonal system Kα (α ∈ J ):

(2.8) Kα := I|α|(δ
b⊗α), α ∈ J ,

where

Im(f) := m!
∫ ∞

0

∫
R
...

∫ t2

0

∫
R
f(t1, x1, ..., tm, xm)Ñ(dt1, dx1)...Ñ(dtm, dxm) (m = 1, 2, ...)

for the symmetric function f ∈ L2
(
(λ × ν)m

)
(m = 1, 2, ...) and I0(f) := f for f ∈ R. Cf.

[DØP] and [ØP]. In particular Kεk = I1(δk). Note that ‖Kα‖2
L2(P ) = α! = α1!α2!... (α ∈ J ).

The following result is given in [DØP], see also [ØP].

Theorem 2.1 (Chaos expansion I). Every F ∈ L2(P ) admits the unique representation
in the form

(2.9) F =
∑
α∈J

cαKα

where cα ∈ R for all α ∈ J , and c0 = EF . Moreover we have

‖F‖2
L2(P ) =

∑
α∈J

cαα!
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If we consider the symmetric functions

(2.10) fm =
∑

α: |α|=m

cαδ
b⊗α (m = 1, 2, ...)

then we obtain ∑
α∈J

cαKα =
∞∑
m=0

∑
α: |α|=m

cαIm(δb⊗α) =
∞∑
m=0

Im(fm).

The expansion here above is actually a result which was first proved in [I2]. We can state it
as follows.

Theorem 2.2 (Chaos expansion II). Every F ∈ L2(P ) admits the (unique) representation

(2.11) F =
∞∑
m=0

Im(fm)

via the unique sequence of symmetric functions fm ∈ L2
(
(λ× ν)m

)
, m = 0, 1, ....

For any formal expansion f =
∑

α∈J cαKα we define the norm

‖f‖2
0,k :=

∑
α∈J

α!c2α(2IN)kα (k = 0, 1, ...)

where (2IN)kα = (2 · 1)kα1(2 · 2)kα2(2 · 3)kα3 .... Now setting

(S)0,k := {f : ‖f‖0,k <∞}

we define

(S) :=
∞⋂
k=0

(S)0,k

with the projective topology, and

(S)∗ :=
∞⋃
k=0

(S)0,k

with the inductive topology. The space (S)∗ is the dual of (S) and the action of G =∑
α∈J aαKα ∈ (S)∗ applied to f =

∑
α∈J bαKα ∈ (S) is

〈G, f〉 =
∑
α∈J

aαbαα!

Note that
(S) ⊂ L2(P ) ⊂ (S)∗.

We refer to [HKPS] and [HoØUZ], for example, for the above definitions in the setting of the
Gaussian and Poissonian white noise. See also [PT], [BG], [HoØ] and references therein. For
the Lévy case, we refer to [DØP].
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Definition 2.3 The white noise
•
Ñ(t, x) of the Poisson random measure Ñ(dt, dz) is defined

by the following formal expansion

(2.12)
•
Ñ(t, z) =

∞∑
i,j=1

ξi(t)ψj(z) ·Kεγ(i,j) .

It can be proved that the white noise takes values in (S)∗, (λ × ν)-a.e. See [ØP]. The
justification of the name “white noise” comes from the fact that, for any B ∈ B(R) such that
its closure does not contain 0, we have

I1
(
χ(0,t]1B

)
=

∞∑
i,j=1

cγ(i,j)Kεγ(i,j)

with cγ(i,j) =
∫ t
0

∫
B ξi(s)ψj(z)ν(dz)ds ·Kεγ(i,j) . Cf. (2.8) and (2.10). Then

Ñ(t, B) =
∫ t

0

∫
B

( ∞∑
i,j=1

ξi(s)ψj(z)Kεγ(i,j)

)
ν(dz)ds.

So formally we have
•
Ñ(t, z) =

Ñ(dt, dz)
dtν(dz)

which is the analog of the Radon-Nikodym derivative in (S)∗.

Definition 2.4 The white noise
•
η(t) for the Lévy process is defined by the following formal

expansion

(2.13)
•
η(t) =

∞∑
i=1

ξi(t)Kεγ(i,1) ,

for a specific choice of the basis ψi, i = 1, 2, ..., in (2.6) - cf. [DØP].

The Lévy white noise takes values in (S)∗ for all t ∈ R+. Here the boundedness of the
Laguerre functions can be exploited, cf. [T].

Note that the Lévy white noise (2.13) is related to the white noise for the Poisson random
measure (2.12) by the following formula which involves Bochner integrals with respect to ν:

(2.14)
•
η(t) =

∫
IR
z
•
Ñ(t, z)ν(dz).

Definition 2.5 The Wick product F � G of two elements F =
∑

α∈J aαKα and G =∑
β∈J bβKβ in (S)∗ is defined by

(2.15) F �G =
∑
α,β∈J

aαbβKα+β .

The spaces (S) and (S)∗ are topological algebras with respect to the Wick product.
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3 Some anticipative calculus formulae.

In this section we present some known formulae for the Malliavin calculus in the case of pure
jump Lévy processes. We will need these results in Section 4. These formulae generalize the
known results for the Malliavin calculus in the case of Brownian motion, cf. [NP], [M], [N],
[Ø] , for example. First we recall the Skorohod integration and the Malliavin type stochastic
derivative we are dealing with.

Let X(t, z), t ∈ R+, z ∈ R, be a random field taking values in L2(P ). Then, for all t ∈ R+

and z ∈ R, Theorem 2.2 provides the chaos expansion via symmetric functions

X(t, z) =
∞∑
m=0

Im
(
fm(t1, z1, ..., tm, zm; t, z)

)
Let f̂m = f̂m(t1, z1, ..., tm+1, zm+1) be the symmetrization of fm(t1, z1, ..., tm, zm; t, z) as a
function of the m+ 1 variables (t1, z1), ..., (tm+1, zm+1) with tm+1 = t and zm+1 = z.

The following concept was first introduced by Y. Kabanov - see [Ka1] and [Ka2], for
example.

Definition 3.1 The random field X(t, z), t ∈ R+, z ∈ R, is Skorohod integrable if∑∞
m=0(m+ 1)!‖f̂m‖2

L2((λ×ν)m+1) <∞. Then its Skorohod integral with respect to Ñ , i.e.

I(X) :=
∫
IR+

∫
IR
X(t, z)Ñ(δt, dz),

is defined by

(3.1) I(X) :=
∞∑
m=0

Im+1(f̂m).

The Skorohod integral is an element of L2(P ) and

(3.2)
∥∥∥∥∫

IR+

∫
IR
X(t, z)Ñ(δt, dz)

∥∥∥∥2

L2(P )

=
∞∑
m=0

(m+ 1)! ‖f̂m‖2
L2((λ×ν)m+1).

Moreover,

(3.3) E

∫
R+

∫
R
X(t, z)Ñ(δt, dz) = 0.

The Skorohod integral can be regarded as an extension of the Itô integral to anticipative
integrands. In fact, the following result can be proved. Cf. [NV2]. See also [BL], [DØP] and
[ØP].

Proposition 3.2 Let X(t, z), t ∈ R+, z ∈ R, be a non-anticipative (adapted) integrand.
Then the Skorohod integral and the Itô integral coincide in L2(P ), i.e.∫

IR+

∫
IR
X(t, z)Ñ(δt, dz) =

∫
IR+

∫
IR
X(t, z)Ñ(dt, dz).
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Another remarkable property of the Skorohod integral is given in connection to the Wick
product. See [ØP] for the details and the proof. Before stating the result, we remind that a
random field Y taking values in (S)∗ is said to be (S)∗-integrable whenever 〈Y, f〉 ∈ L1(λ×ν)
for all f ∈ (S).

Definition 3.3 For any (S)∗-integrable random field Y (t, z) the (S)∗-integral is the unique
element in (S)∗ such that

(3.4)
〈 ∫

IR+

∫
IR
Y (t, z)ν(dz)dt, f

〉
=
∫
IR+

∫
IR
〈Y (t, z), f〉 ν(dz)dt, f ∈ (S).

Theorem 3.4 Let Y (t, z), t ∈ R+, z ∈ R, be Skorohod integrable and
∫ b
a

∫
IRE[Y (t, z)2]ν(dz)dt

< ∞ for some 0 ≤ a < b. Then Y �
•
Ñ is (S)∗−integrable over [a, b]× IR and we obtain the

following relationship

(3.5)
∫ b

a

∫
IR
Y (t, z)Ñ(δt, dz) =

∫ b

a

∫
IR
Y (t, z) �

•
Ñ(t, z)ν(dz)dt.

Thanks to the relation (2.4), we can easily recognize the Skorohod integral with respect
to the very Lévy process η(t), t ∈ R+, as a particular case of the Skorohod integration
with respect to the compensated Poisson random measure Ñ . See [DØP]. In fact, for the
integrands X(t, z) = z · ϕ(t): X(t, z) =

∑∞
m=0 Im(z · f(t1, z1, ..., tm, zm; t)), we have

(3.6)
∫ ∞

0

∫
R
X(t, z)Ñ(δt, dz) =

∫
R
ϕ(t)δη(t).

Now we consider the definition of the Malliavin type derivative Dt,z for compensated
Poisson random measures which was initially given in [L]. Other definitions have also been
studied by several authors for the same case of pure jump Lévy processes, the particular case
of Poisson random processes and for the case of the general Lévy process with no drift, see
for instance [BC], [Pi1], [Pi2], [NV1], [NV2], [NS], [LSUV], [DØP] and [BDLØP].

Definition 3.5 The space ID1,2 is the set of all the elements F ∈ L2(P ) admitting the chaos
expansion (2.11): F = E[F ] +

∑∞
m=1 Im(fm), such that

‖F‖2
ID1,2

:=
∞∑
m=1

m ·m! ‖fm‖2
L2((λ×ν)m) <∞.

The Malliavin derivative Dt,z is an operator defined on ID1,2 with values in the standard
L2-space L2(P × λ× ν) given by

(3.7) Dt,zF :=
∞∑
m=1

mIm−1(fm(·, t, z)),

where fm(·, t, z) = fm(t1, z1, ..., tm−1, zm−1; t, z).
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Note that if F ∈ ID1,2, then

E
[ ∫ ∞

0

∫
IR

(Dt,zF )2ν(dz)dt
]

= ‖F‖2
ID1,2

.

The operator Dt,z is proved to be closed and to coincide with a certain difference operator
defined in [Pi1].

The above operator can be extended to the whole space (S)∗ thanks to the chaos expansion
(2.9).

Definition 3.6 For any F =
∑

α∈J cαKα ∈ (S)∗ the Malliavin derivative Dt,zF is defined
as

(3.8) Dt,zF :=
∑
α∈J

cα

∞∑
i,j=1

αγ(i,j)Kα−εγ(i,j) · ξi(t)ψj(z).

It can be proved that Dt,zF ∈ (S)∗, λ× ν-a.e., for all F ∈ (S)∗. Moreover it can also be
shown that if F = limn→∞ Fn in (S)∗, then there exists a subsequence Fnk

∈ (S)∗ such that
Dt,zF = limn→∞Dt,zFnk

in (S)∗, λ× ν-a.e. See [ØP].
We remark that in general the stochastic derivative Dt,z, being essentially a difference

operator, does not satisfy a “chain rule” as in the case of the Malliavin derivative for the
Brownian motion setting. Cf. [NP], [N], [Ø], for example. Nevertheless a “chain rule” can
still be formulated in terms of the Wick product.

Proposition 3.7 (Chain rule via Wick product). Let F ∈ (S)∗ and let g(z) =
∑

n≥0 anz
n

be an analytic function in the whole complex plane. Then
∑

n≥0 anF
�n is convergent in (S)∗.

Furthermore, for g�(F ) =
∑

n≥0 anF
�n, the following Wick chain rule is valid

(3.9) Ds,xg
�(F ) =

(
d

dz
g

)�
(F ) �Ds,xF.

Proof. The first statement can be derived following similar proofs as in Theorem 2.6.12 and

Theorem 2.8.1 in [HØUZ]. For what concerns the chain rule, it can be easily shown that it
holds for polynomials. Then the result follows by the closeness of Dt,z and the continuity of
the Wick product.

Now we turn our attention more deeply to the calculus and we present some basic explicit
formulae. First of all we recall the following result proved in [BL]. See also [DJ] Theorem
2.6.

Theorem 3.8 (Duality formula). Let X(t, z), t ∈ R+, z ∈ R, be Skorohod integrable
and F ∈ ID1,2. Then

(3.10) E

[∫ ∞

0

∫
IR
X(t, z)Dt,zFν(dz)dt

]
= E

[
F

∫ ∞

0

∫
IR
X(t, z)Ñ(δt, dz)

]
.
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Corollary 3.9 (Closability of Skorohod integral). Suppose that Xn(t, z), t ∈ R+, z ∈
R, is a sequence of Skorohod integrable random fields and that the corresponding sequence
of integrals

I(Xn) :=
∫ ∞

0

∫
IR
Xn(t, z)Ñ(δt, dz), n = 1, 2, ...

converges in L2(P ). Moreover suppose that

lim
n→∞

Xn = 0 in L2(P × λ× ν).

Then we have
lim
n→∞

I(Xn) = 0 in L2(P ).

Proof. By Theorem (3.8) we have that

(
I(Xn), F

)
L2(P )

=
(
Xn, Dt,zF

)
L2(P×λ×ν) −→ 0, n→∞,

for all F ∈ D1,2. Then we conclude that limn→∞ I(Xn) = 0 weakly in L2(P ). And since the
sequence I(Xn), n = 1, 2, ..., is convergent in L2(P ), then the result follows.

In view of Corollary 3.9 we can extend the definition of Skorohod integral as follows.

Definition 3.10 Let Xn, n = 1, 2, ..., be a sequence of Skorohod integrable random fields
such that

X = lim
n→∞

Xn in L2(P × λ× ν).

Then we define the Skorohod integral of X as

I(X) :=
∫ ∞

0

∫
IR
X(t, z)Ñ(δt, dz) = lim

n→∞

∫ ∞

0

∫
IR
Xn(t, z)Ñ(δt, dz) =: lim

n→∞
I(Xn),

provided that this limit exists in L2(P ).

The following result is Lemma 6.1 in [NV1] (there obtained in a more general setting).

Lemma 3.11 Let F,G ∈ ID1,2 with G bounded. Then F ·G ∈ ID1,2 and we have

(3.11) Dt,z(F ·G) = F ·Dt,zG+G ·Dt,zF +Dt,zF ·Dt,zG λ× ν − a.e.

Proof. With the help of Lemma 9 in [L] the result can be verified for F and G of the form

g(η(t1), ..., η(tk)), where g is a smooth function with compact support. Then, by using a limit
argument the proof follows from the closedness of Dt,z.

Remark 3.12 For an extension of this result to normal martingales, see for example Propo-
sition 1 in [Pr2] or Proposition 5 in [PSV].

The following result is Theorem 7.1 in [NV1] (there obtained in a more general setting).
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Theorem 3.13 (Integration by parts). Let X(t, z), t ∈ R+, z ∈ R, be a Skorohod
integrable stochastic process and F ∈ ID1,2 such that the product X(t, z) · (F + Dt,zF ),
t ∈ R+, z ∈ R, is Skorohod integrable. Then

(3.12) F

∫ ∞

0

∫
IR
X(t, z)Ñ(δt, dz)

=
∫ ∞

0

∫
IR
X(t, z)

(
F +Dt,zF

)
Ñ(δt, dz) +

∫ ∞

0

∫
IR
X(t, z)Dt,zFν(dz)dt.

Proof. Let G ∈ ID1,2 be bounded. Then we obtain by Theorem 3.8 and Lemma 3.11

E

[
G

∫ ∞

0

∫
IR
FX(t, z)Ñ(δt, dz)

]
= E

[∫ ∞

0

∫
IR
FX(t, z)Dt,zGν(dz)dt

]

= E

[
GF

∫ ∞

0

∫
IR
X(t, z)Ñ(δt, dz)

]
− E

[
G

∫ ∞

0

∫
IR
X(t, z)Dt,zFν(dz)dt

]
−E

[
G

∫ ∞

0

∫
IR
X(t, z)Dt,zFÑ(δt, dz)

]
= E

[
G

(
F

∫ ∞

0

∫
IR
X(t, z)Ñ(δt, dz)−

∫ ∞

0

∫
IR
X(t, z)Dt,zFν(dz)dt

−
∫ ∞

0

∫
IR
X(t, z)Dt,zFÑ(δt, dz)

)]
.

The proof then follows by a density argument applied to G.

Remark 3.14 Using the Poisson interpretation of Fock space, the formula (3.12) has been
shown to be an expression of the multiplication formula for Poisson stochastic integrals. See
[Ka2], [Su], Proposition 2 and Relation (6) of [Pr3], Definition 7 and Proposition 6 of [PW],
Proposition 2 of [PSV] and Proposition 1 of [Pr1].

Formula (3.12) has been known for some time to quantum probabilitsts in identical or
close formulations. See Proposition 21.6 and Proposition 21.8 in [Pa], Proposition 18 in [B]
and Relation (5.6) in [A].

The following result is Theorem 4.2 in [NV1] (there obtained in a more general setting).

Theorem 3.15 (Fundamental theorem of calculus). Let X ∈ L2(P × λ× ν). Assume
that X(s, y) ∈ ID1,2 for all (s, y), and Dt,zX(s, y), s ∈ R+, y ∈ R, for (t, z) λ × ν-a.e. is
Skorohod integrable and that

E

[∫ ∞

0

∫
IR

(∫ ∞

0

∫
IR
Dt,zX(s, y)Ñ(δs, dy)

)2

ν(dz)dt

]
<∞.

Then
∫∞
0

∫
IRX(s, y)Ñ(δs, dy) ∈ ID1,2 and

(3.13) Dt,z

(∫ ∞

0

∫
IR
X(s, y)Ñ(δs, dy)

)
=
∫ ∞

0

∫
IR
Dt,zX(s, y)Ñ(δs, dy) +X(t, z).
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Proof. First suppose that

X(s, y) = In(fn(·, s, y)),
where fn(t1, z1, ..., tn, zn, s, y) is symmetric with respect to (t1, z1), ..., (tn, zn). By Definition
3.1 we have

(3.14)
∫ ∞

0

∫
IR
X(s, y)Ñ(δs, dy) = In+1(f̂n)

where
f̂n(t1, z1, ..., tn, zn, tn+1, zn+1)

=
1

n+ 1
[fn(tn+1, zn+1, ·, t1, z1) + ...+ fn(tn+1, zn+1, ·, tn, zn) + fn(t1, z1, ·, tn+1, zn+1)]

is the symmetrization of fn with respect to the variables (t1, z1), ..., (tn, zn), (tn+1, zn+1) =
(s, y). Therefore we get

Dt,z

(∫ ∞

0

∫
IR
X(s, y)Ñ(δs, dy)

)
= In(fn(t, z, ·, t1, z1) + ...+ fn(t, z, ·, tn, zn) + fn(·, t, z)).

On the other hand we see that

(3.15)
∫ ∞

0

∫
IR
Dt,zX(s, y)Ñ(δs, dy)

=
∫ ∞

0

∫
IR
nIn−1(fn(·, t, z, s, y))Ñ(δs, dy) = nIn(f̂n(·, t, z, ·)),

where

f̂n(t1, z1, ..., tn−1, tn−1, t, z, tn, zn) =
1
n

[fn(t, z, ·, t1, z1) + ...+ fn(t, z, ·, tn, zn)]

is the symmetrization of fn(t1, zn, ..., tn−1, zn−1, t, z, tn, zn) with respect to (t1, z1), ..., (tn−1, zn−1),
(tn, zn) = (s, y). A comparison of (3.14) and (3.15) yields formula (3.13).

Next consider the general case

X(s, y) =
∑
n≥0

In(fn(·, s, y)).

Define

Xm(s, y) =
m∑
n=0

In(fn(·, s, y)), m = 1, 2, ...

Then (3.13) holds for Xm. Since∥∥∥∥∫ ∞

0

∫
IR
Dt,zXm(s, y)Ñ(δs, dy)−

∫ ∞

0

∫
IR
Dt,zX(s, y)Ñ(δs, dy)

∥∥∥∥2

L2(P×λ×ν)

=
∑

n≥m+1

n2n!
∥∥∥f̂n∥∥∥2

L2((λ×ν)n+1)
−→ 0, m −→∞

the proof follows by the closedness of Dt,z.

The following result is Theorem 4.1 in [NV1] (there obtatined in a more general setting).
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Theorem 3.16 (The Itô-Lévy-Skorohod isometry). Let X ∈ L2(P ×λ× ν) and DX ∈
L2(P × (λ× ν)2). Then the following isometry holds

(3.16) E

[(∫ ∞

0

∫
IR
X(t, z)Ñ(δt, dz)

)2
]

= E

[∫ ∞

0

∫
IR
X2(t, z)ν(dz)dt

]
+ E

[∫ ∞

0

∫
IR

∫ ∞

0

∫
IR
Dt,zX(s, y)Ds,yX(t, z)ν(dy)dsν(dz)dt

]
.

Proof. Consider

X(t, z) =
∑
α∈J

cα(t, z)Kα.

Define
S1 =

∑
α∈J

α! ‖cα‖2
L2(λ×ν) , S2 =

∑
α∈J ,i,j∈IN

αγ(i,j)α!(cα, ξjψi)2

and
S3 =

∑
α,β∈J ,i,j,k,l∈IN

(i,j) 6=(k,l)

(αγ(i,j) + 1)α!(cα, ξjψi)(cβ , ξkψl) 1{α+εγ(i,j)=εγ(k,l)},

where (·, ·) = (·, ·)L2(λ×ν). Note that by the assumption and Lemma 3.12 in [ØP] the sums
above are convergent. First it follows that

E

[(∫ ∞

0

∫
IR
X(t, z)Ñ(δt, dz)

)2
]

= E

(∫ ∞

0

∫
IR
X(t, z) �

•
Ñ(t, z)ν(dz)dt

)2


= E

∫ ∞

0

∫
IR

(∑
α∈J

cα(t, z)Kα

)
�

∑
i,j

ξj(t)ψi(z)Kεγ(i,j)

 ν(dz)dt

2
= E

 ∑
α∈J ,i,j

(cα, ξjψi)Kα+εγ(i,j)

2
=

∑
α,β∈J ,i,j,k,l∈IN

(i,j) 6=(k,l)

(α+ εγ(i,j))!(cα, ξjψi)(cβ , ξkψl) 1{α+εγ(i,j)=εγ(k,l)} = S1 + S2 + S3,

since (α+ εγ(i,j))! = (αγ(i,j) + 1)α!.
Next, we have

E

[∫ ∞

0

∫
IR
X2(t, z)ν(dz)dt

]
= E

∫ ∞

0

∫
IR

(∑
α∈J

cα(t, z)Kα

)2

ν(dz)dt


=
∑
α∈I

∫ ∞

0

∫
IR
c2α(t, z)α!ν(dz)dt = S1.
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Finally, we get

E

[∫ ∞

0

∫
IR

∫ ∞

0

∫
IR
Dt,zX(s, y)Ds,yX(t, z)ν(dy)dsν(dz)dt

]

= E

∫ ∞

0

∫
IR

∫ ∞

0

∫
IR

(
∑
α,k,l

cα(s, y)ξk(t)ψl(z)αεγ(k,l)Kα−εγ(k,l))

·(
∑
β,i,j

cα(t, z)ξk(s)ψl(y)αεγ(i,j)Kβ−εγ(i,j))ν(dy)dsν(dz)dt


=

∑
α,β∈J ,i,j,k,l∈IN

(cα, ξjψi)(cβ, ξkψl)βγ(i,j)α! 1{α+εγ(i,j)=εγ(k,l)} = S2 + S3.

Combining the three steps of the proof the desired result follows.

Remark 3.17 Formula (3.16) can also be obtained as a consequence of the Poisson interpre-
tation of Fock space. See Proposition 17 in [B] and Proposition 1 in [PW]. For an isometry
of this type which is not based on Fock space, see Proposition 3.3 in [Pr4].

4 Forward integrals and generalized Itô formulae.

In this section we introduce the forward integral with respect to the Poisson random measure
Ñ . Then we prove an Itô formula for the corresponding forward processes and we apply
this to obtain an Itô formula for processes driven by Skorohod integrals. Here we can refer
to [NP], [RV] and [HuØ], for example, where these topics are developed for the Brownian
motion.

Definition 4.1 The forward integral

J(θ) :=
∫ T

0

∫
R
θ(t, z)Ñ(d−t, dz)

with respect to the Poisson random measure Ñ , of a caglad stochastic function θ(t, z), t ∈
R+, z ∈ R, with

θ(t, z) := θ(ω, t, z), ω ∈ Ω,

is defined as

J(θ) = lim
m→∞

∫ T

0

∫
R
θ(t, z)1UmÑ(dt, dz)

if the limit exists in L2(P ). Here Um, m = 1, 2, ..., is an increasing sequence of compact sets
Um ⊆ R \ {0} with ν(Um) <∞ such that limm→∞ Um = R \ {0}.

Remark 4.2 Note that if G is a random variable then

(4.1) G ·
∫ T

0

∫
R
θ(t, z)Ñ(d−t, dz) =

∫ T

0

∫
R
G · θ(t, z)Ñ(d−t, dz),

a property that does not hold for the Skorohod integrals.
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Definition 4.3 In the sequel we let M denote the set of the stochastic functions θ(t, z),
t ∈ R+, z ∈ R, such that

(i) θ(ω, t, z) = θ1(ω, t)θ2(ω, t, z) where θ1(ω, t) ∈ D1,2 is caglag and θ2(ω, t, z) is adapted and
such that

E
[ ∫ T

0

∫
R
θ2
2(t, z)ν(dz)dt

]
<∞,

(ii) Dt+,zξ = lims→t+ Ds,zξ exists in L2(P × λ× ν),
(iii) θ(t, z) +Dt+,zθ(t, z) is Skorohod integrable.

We let M1,2 be the closure of the linear span of M with respect to the norm given by

‖θ‖2
M1,2

:= ‖θ‖2
L2(P×λ×ν) + ‖Dt+,zθ(t, z)‖2

L2(P×λ×ν).

We can now show the relation between the forward integral and the Skorohod integral.

Lemma 4.4 If θ ∈ M1,2 then its forward integral exists and∫ T

0

∫
R
θ(t, z)Ñ(d−t, dz) =

∫ T

0

∫
R
Dt+,zθ(t, z)ν(dz)dt+

∫ T

0

∫
R

(
θ(t, z)+Dt+,zθ(t, z)

)
Ñ(δt, dz).

Proof. First consider the case when θ(ω, t, z) = θ1(ω, t)θ2(ω, t, z). Let us take a sequence of
partitions of [0, T ] of the form 0 = tn0 < tn1 < ... < tnJn

= T with |∆t| := max(tnj − tnj−1) −→ 0,
for n→∞, into account. By Theorem 3.13 we have

F ·
∫ tni

tni−1

∫
R
θ(t, z)Ñ(δt, dz) =

∫ tni

tni−1

∫
R
Fθ(t, z)Ñ(δt, dz)

+
∫ tni

tni−1

∫
R
θ(t, z)Dt,zFν(dz)dt+

∫ tni

tni−1

∫
R
θ(t, z)Dt,zFÑ(δt, dz).

Hence ∫ T

0

∫
R
θ(t, z)Ñ(d−t, dz) = lim

|∆t|−→0

Jn∑
i=1

θ1(tni−1)
∫ tni

tni−1

∫
R
θ2(t, z)Ñ(dt, dz)

= lim
|∆t|−→0

Jn∑
i=1

θ1(tni−1)
∫ tni

tni−1

∫
R
θ2(t, z)Ñ(δt, dz)

= lim
|∆t|−→0

Jn∑
i=1

∫ tni

tni−1

∫
R

[
θ1(tni−1) +Dt,zθ1(tni−1)

]
θ2(t, z)Ñ(δt, dz)

+ lim
|∆t|−→0

Jn∑
i=1

∫ tni

tni−1

∫
R
Dt,zθ1(tni−1) · θ2(t, z)ν(dz)dt

=
∫ T

0

∫
R
θ(t, z)Ñ(δt, dz) +

∫ T

0

∫
R
Dt+,zθ(t, z)ν(dz)dt+

∫ T

0

∫
R
Dt+,zθ(t, z)Ñ(δt, dz).

The proof is then completed by a limit argument in view of Definition 3.10 and Definition
4.3.
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Corollary 4.5 If the forward integral exists in L2(P ) then

(4.2) E

∫ T

0

∫
R
θ(t, z)Ñ(d−t, dz) = E

∫ T

0

∫
R
Dt+,zθ(t, z)ν(dz)dt.

Proof. This follows from (3.3) and Lemma 4.4.

Definition 4.6 A forward process is a measurable stochastic function X(t) = X(t, ω), t ∈
R+, ω ∈ Ω, that admits the representation

(4.3) X(t) = x+
∫ t

0

∫
R
θ(s, z)Ñ(d−s, dz) +

∫ t

0
α(s)ds,

where x = X(0) is a constant. A shorthand notation for (4.3) is

(4.4) d−X(t) =
∫

R
θ(t, z)Ñ(d−t, dz) + α(t)dt; X(0) = x.

We call d−X(t) the forward differential of X(t), t ∈ R+.

Theorem 4.7 (Itô formula for forward integrals). Let X(t), t ∈ R+, be a forward
process of the form (4.3) where θ(t, z), t ∈ R+, z ∈ R, is locally bounded in z near z = 0
P × λ- a.e. and such that∫ T

0

∫
R
|θ(t, z)|2ν(dz)dt <∞ P − a.s.

Suppose also that |θ(t, z)|, t ∈ R+, z ∈ R, is forward integrable. For any function f ∈ C2(R),
the forward differential of Y (t) = f

(
X(t)

)
, t ∈ R+, is given by the following formula:

(4.5) d−Y (t) = f ′
(
X(t)

)
α(t)dt

+
∫

R

(
f
(
X(t−) + θ(t, z)

)
− f

(
X(t−)

)
− f ′

(
X(t−)

)
θ(t, z)

)
ν(dz)dt

+
∫

R

(
f
(
X(t−) + θ(t, z)

)
− f

(
X(t−)

))
Ñ(d−t, dz).

Proof. The proof follows the same line of the one in the classical Itô formula (see [IW]
Chapter 2, Section 5). For simplicity we assume x = 0 and α ≡ 0. We can write

Xm(t) :=
∫ t

0

∫
R
θ(s, z)1Um(z)N(ds, dz)−

∫ t

0

∫
R
θ(s, z)1Um(z)ν(dz)ds.

We denote by 0 = σ0 < σ1 < ... the stopping times for which the jumps of the Lévy process
occur. Thus we obtain

f(Xm(t))− f(Xm(0)) =
∑
i

[
f(Xm(σi ∧ t))− f(Xm(σi ∧ t−))

]
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+
∑
i

[
f(Xm(σi ∧ t−))− f(Xm(σi−1 ∧ t))

]
=: J1(t) + J2(t),

with

f(Xm(σi ∧ t−)) =
{
f(Xm(σ−i )), σi ≤ t,
f(Xm(t)), σi > t.

By the change of variable formula for finite variation processes, it follows that

J2(t) = −
∫ t

0

∫
R
f ′(Xm(s))θ(s, z)1Um(z)ν(dz)ds.

Moreover it is

J1(t) =
∑
i

[
f(Xm)(σi)− f(Xm)(σ−i )

]
1{σi≤t,θ(σi,η(σi)) 6=0}

=
∫ t

0

∫
R

[
f
(
Xm(s−) + θ(s, z)1Um(z)

)
− f(Xm)(s−)

]
N(ds, dz)

=
∫ t

0

∫
R

[
f
(
Xm(s−) + θ(s, z)1Um(z)

)
− f(Xm)(s−)

]
Ñ(d−s, dz)

+
∫ t

0

∫
R

[
f
(
Xm,n(s−) + θ(s, z)1Um(z)

)
− f(Xm)(s−)

]
ν(dz)ds.

By letting m→∞, formula (4.6) follows.

In order to state an Itô formula for Skorohod integrals we need to combine Lemma 4.4 and
Theorem 4.7. To this end we go into the technical step of solving equations of the following
type: given a random variable G find the stochastic function F (t, z), t ∈ R+, z ∈ R, such that

(4.6) F (t, z) +Dt+,zF (t, z) = G,

for almost all (t, z) ∈ R+ × R. For example, if G = g
(
η(T )

)
, for some measurable function

g : R −→ R and

η(t) =
∫ t

0

∫
R
zÑ(dt, dz), t ∈ [0, T ],

then
F (t, z) := g

(
η(T )− zχ[0,T )(t)

)
does the job. In fact, with this choice of F (t, z), t ∈ R+, z ∈ R, we have

F (t, z) +Dt+,zF (t, z) = g
(
η(T )− zχ[0,T )

)
+ g
(
η(T )

)
− g
(
η(T )− zχ[0,T )

)
= G.

The above observation motivates the following definition.

Definition 4.8 The linear operator S is defined on the space of all FT -measurable random
variables G as follows. If G =

∏k
i=1 gi

(
η(ti)

)
, for some ti ∈ [0, T ], i = 1, ..., k, we define

(4.7) St,z

( k∏
i=1

gi
(
η(ti)

))
=

k∏
i=1

gi
(
η(ti)− zχ[0,ti)(t)

)
.
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Note that via this definition the solution of equation (4.6) can be written as F (t, z) =
St,zG, i.e.

(4.8) St,zG+Dt+,z

(
St,zG

)
= G.

Combining the above facts with Lemma 4.4 and Theorem 4.7, we obtain the following
result.

Theorem 4.9 (Itô formula for Skorohod integrals). Let

X(t) =
∫ t

0

∫
R
γ(s, z)Ñ(δs, dz) +

∫ t

0
α(s)ds, t ∈ [0, T ],

or, in shorthand notation,

δX(t) =
∫

R
γ(t, z)Ñ(δt, dz) + α(t)dt, t ∈ [0, T ].

Let f ∈ C2(R) and let Y (t) = f
(
X(t)

)
. Set

(4.9) θ(t, z) := St,zγ(t, z)

for all t ∈ [0, T ], z ∈ R, and assume θ ∈ M1,2. Then

(4.10) δY (t) = f ′(X(t))α(t)dt+
∫

R

{
f
(
X(t−) + θ(t, z)

)
− f

(
X(t−)

)
+Dt+,z

[
f
(
X(t−) + θ(t, z)

)
− f

(
X(t−)

)]}
Ñ(δt, dz)

+
∫

R

{
f
(
X(t−) + θ(t, z)

)
− f

(
X(t−)

)
− f ′

(
X(t−)

)
θ(t, z)

+Dt+,z

[
f
(
X(t−) + θ(t, z)

)
− f

(
X(t−)

)]
− f ′

(
X(t−)

)
Dt+,zθ(t, z)

}
ν(dz)dt.

Remark 4.10 Note that if γ and α are adapted, then θ(t, z) = γ(t, z), t ∈ R+, z ∈ R, and

Dt+,zθ(t, z) = Dt+,z

[
f
(
X(t−) + θ(t, z)

)
− f

(
X(t−)

)]
.

Therefore Theorem 4.9 reduces to the classical adapted Itô formula.

Proof. For simplicity we assume α ≡ 0. By (4.8) we have

θ(t, z) +Dt+,zθ(t, z) = γ(t, z).

Hence by Lemma 4.4 we have

X(t) =
∫ t

0

∫
R
θ(s, z)Ñ(d−s, dz)−

∫ t

0

∫
R
Ds+,zθ(s, z)ν(dz)ds.
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We can therefore apply Theorem 4.7 and get

Y (t)− Y (0) =
∫ t

0
f ′
(
X(s)

)(
−
∫

R
Ds+,zθ(s, z)ν(dz)

)
ds

+
∫ t

0

∫
R

{
f
(
X(s−) + θ(s, z)

)
− f

(
X(s−)

)
− f ′

(
X(s−)

)
θ(s, z)

}
ν(dz)ds

+
∫ t

0

∫
R

{
f
(
X(s−) + θ(s, z)

)
− f

(
X(s−)

)}
Ñ(d−s, dz)

−
∫ t

0

∫
R
f ′
(
X(s−)

)
Ds+,zθ(s, z)ν(dz)ds

+
∫ t

0

∫
R

{
f
(
X(s−) + θ(s, z)

)
− f

(
X(s−)

)
− f ′

(
X(s−)

)
θ(s, z)

}
ν(dz)ds

+
∫ t

0

∫
R
Ds+,z

{
f
(
X(s−) + θ(s, z)

)
− f

(
X(s−)

)}
ν(dz)dt

+
∫ t

0

∫
R

{
f
(
X(s−)+θ(s, z)

)
−f
(
X(s−)

)
+Ds+,z

{
f
(
X(s−)+θ(s, z)

)
−f
(
X(s−)

)}}
Ñ(δs, dz)

=
∫ t

0

∫
R

{
f
(
X(s−) + θ(s, z)

)
− f

(
X(s−)

)
− f ′

(
X(s−)

)
θ(s, z)

+Ds+,z

[
f
(
X(s−) + θ(s, z)

)
− f

(
X(s−)

)]
− f ′

(
X(s−)

)
Ds+,zθ(s, z)

}
ν(dz)ds

+
∫ t

0

∫
R

{
f
(
X(s−)+θ(s, z)

)
−f
(
X(s−)

)
+Ds+,z

[
f
(
X(s−)+θ(s, z)

)
−f
(
X(s−)

)]}
Ñ(δs, dz).

This completes the proof.

Remark 4.11 In [Pr1] a different anticipative Itô formula is obtained, valid for polynomials
f .

Remark 4.12 The Itô formula can be extended to cover the mixed case, involving a combi-
nation of Gaussian and compensated Poisson random measures.
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Séminaire de Probabilités XXIV, LNM 1426, 1990.

[NV2] Nualart, D., Vives, J.: A duality formula on the Poisson space and some applications. Seminar
on Stochastic Analysis, Random Fields and Applications (Ascona, 1993), pp. 205–213, Progr.
Probab., 36, Birkhuser, Basel, 1995.

21



[Ø] Øksendal, B.: An introduction to Malliavin calculus with applications to economics. Working
paper, No 3/96, Norwegian School of Economics and Business Administration, 1996.

[Ø2] Øksendal, B.: A universal optimal consumption rate for an insider. Preprint Series in Pure
Mathematics, University of Oslo, 27, 2004.

[ØP] Øksendal, B., Proske, F.: White noise for Poisson random measures. Preprint Series in Pure
Mathematics, University of Oslo, 12, 2002.

[ØS] Øksendal, B., Sulem, A.: Partial observation control in an anticipating environment. Preprint
Series in Pure Mathematics, University of Oslo, 31, 2003.

[Pi1] Picard, J.: On the existence of smooth densities for jump processes. Prob. Th. Rel. Fields 105
(1996), pp. 481–511.
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