Wick product and semigroup

Alberto Lanconelli

May 5, 2003

Department of Mathematics, University of Pavia,
via Ferrata, 1, 27100 Pavia, Italy
Email: lanconel@dimat.unipv.it

Department of Mathematics, University of Oslo
Box 1053 Blindern, N-0316 Oslo, Norway,
Email: albertol@math.uio.no

Abstract

The purpose of this paper is to establish a relation between Wick version of analytic functions with respect to the brownian motion and its associated semigroup.

Key words and phrases: semigroup, Wick product, Hermite transform, Ito formula.

1 Introduction

The motivation for this paper comes from the study of Wick version of analytic functions in the white noise analysis setting; the starting point is to understand the behaviour of the operator:

$$\Diamond : f \rightarrow f^\diamond$$

where f is an analytic function; in [5] a connection between the brownian motion case and the backward heat equation is proved.

Here a more general result is proved: the Wick version of analytic functions works in opposite direction with respect to the action of the semigroup associated to the Brownian motion. This characterization will give a very useful and intuitive representation of the Hermite transform, which is a fundamental tool in the theory of stochastic differential equations (see [3]).

In Section 2 we briefly recall some basic white noise theory. Then in Section 3 the main result is proved and in section 4 we give a representation formula for the Wick version of analytic functions which can be used for the extension to more general functions. Finally in Section 5 we give a very short prove of the Ito formula based on the previous results.
2 Framework

Here we briefly recall some of the main concepts and results from white noise theory. For more information we refer the reader to [2] and [3]. Our notation will follow that from [3]. From now on we will assume that our Brownian motion is constructed on a white noise probability space (Ω, \mathcal{F}, P) and we let (S) and $(S)^*$ denote the space /nn/sarpanitu/gjestern_2/albertol/new.ten of stochastic test functions and the space of stochastic distribution functions (Hida distribution), respectively. Every $X \in L^2(P)$ has a unique representation

$$X(\omega) = \sum_{\alpha} c_{\alpha} H_{\alpha}(\omega), \quad c_{\alpha} \in \mathbb{R},$$

where

$$\| X \|_{L^2(P)}^2 = E_P[X^2] = \sum_{\alpha} |c_{\alpha}|^2$$

and where $\alpha = \alpha_1 \alpha_2 \cdots$ when $\alpha = (\alpha_1, \alpha_2, \ldots) \in \mathcal{I}$, \mathcal{I} denotes the set of all multi-indices $\alpha = (\alpha_1, \alpha_2, \ldots)$ of arbitrary but finite length, where $\alpha_1, \alpha_2, \ldots$ are nonnegative integers, and

$$\{H_{\alpha}(\omega)\}_{\alpha \in \mathcal{I}},$$

is a orthogonal $L^2(P)$ basis constructed using the Hermite functions $e_1(x), e_2(x), \ldots$ (which form an orthonormal basis for $L^2(\mathbb{R})$) and the Hermite polynomials. The space (S) of stochastic test functions is defined to be the set of all $X(\omega) = \sum_{\alpha} c_{\alpha} H_{\alpha}(\omega) \in L^2(P)$ such that

$$\| X \|_{L^2(P)}^2 := \sum_{\alpha} |c_{\alpha}|^2 (2N)_{\alpha} < \infty \text{ for all } q \in \mathbb{R},$$

where

$$(2N)_{\beta} = 2^{\beta_1} \cdots (2k)^{\beta_k} \cdots \text{ if } \beta = (\beta_1, \beta_2, \ldots) \in \mathcal{I}.$$

Similarly, the space $(S)^*$ of Hida distributions can be described as the set of formal series

$$X(\omega) = \sum_{\alpha} c_{\alpha} H_{\alpha}(\omega)$$

such that there exist $q \in \mathbb{R}$ such that

$$\| X \|_{L^2(P)}^2 := \sum_{\alpha} |c_{\alpha}|^2 (2N)^{-\alpha q} < \infty.$$

Thus we have

$$(S) \subset L^2(P) \subset (S)^*.$$

The family of seminorms $\| \cdot \|_{0,k}$ $k \in \mathbb{R}$ gives a natural projective topology on (S) and an inductive topology on $(S)^*$. With this topologies $(S)^*$ becomes the dual of (S). The action of $F(\omega) = \sum_{\alpha} a_{\alpha} H_{\alpha}(\omega) \in (S)$ on $f(\omega) = \sum_{\alpha} b_{\alpha} H_{\alpha}(\omega) \in (S)$ is given by

$$\langle F, f \rangle = \sum_{\alpha} a_{\alpha} b_{\alpha}.$$

One of the important features about the Hida space $(S)^*$ is that it contains the singular white noise $W_t(\omega)$ for all $t \in \mathbb{R}$.

2
Definition 2.1 The Wick product $X \diamond Y$ of $X(\omega) = \sum a_a H_a(\omega) \in (S)^*$ and $Y(\omega) = \sum b_\beta H_\beta(\omega) \in (S)^*$ is defined by

$$(X \diamond Y)(\omega) = \sum_{a, \beta} a_a b_\beta H_{a+\beta}(\omega) = \sum_{\gamma} \left(\sum_{a+\beta=\gamma} a_a b_\beta \right) H_\gamma(\omega).$$

This Wick product satisfies the associative, commutative and distributive law. Using the associative law we can define Wick powers

$$X^{\diamond n} = X \diamond X \cdots \diamond X, \quad (n \text{ times}).$$

More generally, if

$$f(z) = \sum_{k=0}^\infty a_k z^k$$

is entire, i.e., an analytic function of the complex variable z in the complex plane \mathbb{C}, we can, for some $X \in (S)^*$, define the Wick version

$$f^{\diamond} (X) = \sum_{k=0}^\infty a_k X^{\diamond k} \in (S)^*.$$

For example, if $\phi \in L^2(\mathbb{R})$ is deterministic, then

$$\exp^{\diamond} \left[\int \phi(s) dB_s \right] = \exp \left[\int \phi(s) dB_s - \frac{1}{2} \int \phi^2(s) ds \right].$$

We recall the following important connection between Ito integration and the Wick product: let $u(t, \omega)$ be an \mathcal{F}_t-adapted process such that $E[\int_a^b u^2(t, \omega) dt] < \infty$. Then $u(t, \omega) \diamond W_t$ is integrable in $(S)^*$ and

$$\int_a^b u(t, \omega) dB_t(\omega) = \int_a^b u(t, \omega) \diamond W_t(\omega) dt.$$

A very important tool in the white noise analysis is:

Definition 2.2 Let $X(\omega) = \sum a_a H_a(\omega) \in (S)^*$, then the Hermite transform of X (with respect to the basis $\{e_k\}_k$), denoted by $\mathcal{H}X$ or \hat{X}, is defined by

$$\mathcal{H}X(z) = \hat{X}(z) = \sum a_a z^a \in \mathbb{C}, \quad \text{(when convergent)}$$

where $z = (z_1, z_2, \ldots) \in \mathbb{C}^N$, and

$$z^a = z_1^{a_1} z_2^{a_2} \cdots z_N^{a_N}.$$

if $\alpha = (a_1, a_2, \ldots) \in \mathcal{I}$, where $z^0_j = 1$.

One can verify that the previous sum converges for all $z \in \mathbb{C}_{\mathcal{I}}^N$ (the set of all finite length sequences of complex numbers), and that any element in $(S)^*$ is uniquely characterized through its \mathcal{H}-transform. We recall the important relations

$$\mathcal{H}[X \diamond Y](z) = \mathcal{H}[X](z) \cdot \mathcal{H}[Y](z).$$
and
\[\mathcal{H}[f^\diamond(X)](z) = f(\mathcal{H}[X](z)), \quad \text{(when convergent)} \]
if \(f: \mathbb{C} \to \mathbb{C} \) is entire, \(f(\mathbb{R}) \subseteq \mathbb{R} \) and \(f^\diamond(X) \in (S)^* \).

We also mention the chain rule in \((S)^*\): suppose \(X: \mathbb{R} \to (S)^* \) is continuously differentiable and let \(f: \mathbb{C} \to \mathbb{C} \) be entire function such that \(f(\mathbb{R}) \subseteq \mathbb{R} \) and \(f^\diamond(X_t) \in (S)^* \) for all \(t \), then
\[
\frac{d}{dt} f^\diamond(X_t) = f^\diamond(X_t) \frac{d}{dt} X_t, \quad \text{in } (S)^*.
\]

3 Main result

Let \(\varphi: \mathbb{R} \to \mathbb{R} \) be an analytic function of the form
\[
\varphi(x) = \sum_{n=0}^{+\infty} a_n x^n
\]
where \(a_n \in \mathbb{R} \) for all \(n \in \mathbb{N} \cup \{0\} \) and consider its Wick version with respect to the brownian motion, i.e.
\[
\varphi^\diamond(B_t) = \sum_{n=0}^{\infty} a_n B_t^\diamond n.
\]
We introduce the notation
\[
(T_t \varphi)(x) := \varphi^\diamond(B_t)|_{B_t=x}.
\]
Then we have:

Theorem 3.1 If \(\varphi \) is an analytic function and \(\{P_t\}_{t \geq 0} \) is the semigroup associated to the brownian motion, i.e.
\[
(P_t \varphi)(x) = E^x[\varphi(B_t)] = \int_\mathbb{R} \varphi(x+y) \frac{1}{\sqrt{2\pi t}} e^{-\frac{y^2}{2t}} dy
\]
then
\[
(T_s (P_t \varphi))(x) = (P_{t-s} \varphi)(x) \quad \text{for all } 0 \leq s \leq t, x \in \mathbb{R}.
\]

Proof. Consider the problem
\[
\begin{cases}
\partial_t u(t, x) + \frac{1}{2} \partial_{xx} u(t, x) = 0 & \quad (t, x) \in [0, t_0] \times \mathbb{R} \\
\quad u(t_0, x) = \varphi(x) & \quad x \in \mathbb{R}
\end{cases}
\]
(3.1)
The unique solution to this problem (see, for instance, [6]) is
\[
u(t, x) = E^x[\varphi(B_{t_0-t})] = (P_{t_0-t} \varphi)(x).
\]
Now consider this new problem
\[
\begin{cases}
\partial_t v(t, x) + \frac{1}{2} \partial_{xx} v(t, x) = 0 & \quad (t, x) \in [0, t_0] \times \mathbb{R} \\
\quad v(0, x) = (P_{t_0} \varphi)(x) & \quad x \in \mathbb{R}
\end{cases}
\]
(3.2)
A solution (see [5]) is
\[v(t, x) = (T_t(P_{t_0}\varphi))(x). \]

On the other hand, if
\[v(t_0, x) = (T_{t_0}(P_{t_0}\varphi))(x) = \varphi(x) \text{ for all } x \in \mathbb{R} \]
then by uniqueness of problem 1 we must have
\[v(t, x) = u(t, x) \text{ for all } (t, x) \in [0, t_0] \times \mathbb{R} \]
i.e.
\[(T_t(P_{t_0}\varphi))(x) = (P_{t_0-t}\varphi)(x). \]

So, in order to prove the theorem, we have only to prove that
\[(T_t(P_t\varphi))(x) = \varphi(x) \text{ for all } x \in \mathbb{R} \text{ and } t \geq 0. \]

By linearity it is sufficient to prove the previous relation for polynomials.
Let \(\varphi(x) = x^n, n \in \mathbb{N}; \) hence
\[(P_t\varphi)(x) = E_t^x[\varphi(B_t)] = \int_{\mathbb{R}} \varphi(x + y) \frac{1}{\sqrt{2\pi t}} e^{-\frac{y^2}{2t}} dy = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} c_k(t) \]
where
\[c_k(t) = E_t^x[B_{t}^k]. \]

But
\[E_t^x[B_{t}^{2k}] = (2k - 1)!! t^k \text{ and } E_t^x[B_{t}^{2k+1}] = 0 \text{ for all } k \in \mathbb{N}, t \geq 0. \]

So
\[(P_t\varphi)(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} x^{n-2k} c_{2k}(t) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} x^{n-2k} (2k - 1)!! t^k. \]

Hence
\[(T_t(P_t\varphi))(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} (2k - 1)!! t^k h_{n-2k,t}(x) \]
where \(h_{n,t} \) is the \(n \)-th Hermite polynomial with parameter \(t \). These polynomials are defined by the relation
\[e^{xy - \frac{1}{2} y^2} = \sum_{n=0}^{+\infty} \frac{y^n}{n!} h_{n,t}(x). \]

Moreover we have
\[x^n = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} (2k - 1)!! t^k h_{n-2k,t}(x). \]

Therefore
\[(T_t(P_t\varphi))(x) = x^n = \varphi(x). \]
Corollary 3.2
1. $P_sT_t = T_{t-s}$ for all $0 \leq s \leq t$;
2. $T_{s+t} = T_sT_t$ for all $s, t \geq 0$;
3. $\mathcal{H}(\varphi(B_t))(z) = E^{\mathcal{H}(B_t)(z)}[\varphi(B_t)]$.

Proof.

1. It follows from the semigroup property of $(P_t)_{t \geq 0}$.
2. It follows from the semigroup property of $(P_t)_{t \geq 0}$.
3.
 \[
 \mathcal{H}(\varphi(B_t))(z) = \mathcal{H}(T_t(P_t\varphi)(B_t))(z) = \mathcal{H}((P_t\varphi)\circ(B_t))(z) = \\
 = (P_t\varphi)(\mathcal{H}(B_t)(z)) = E^{\mathcal{H}(B_t)(z)}[\varphi(B_t)].
 \]

\[
\square
\]

4 Representation formula and extension to not analytic functions

Consider the function

\[
\phi(x) = \int_{-\infty}^{+\infty} \varphi(x + iy)N_{0,t}(y)dy, \quad x \in \mathbb{R}, t \geq 0
\]

where i is the imaginary constant, $N_{0,t}(\cdot)$ is the density of a normal random variable with 0 mean and variance t and $\varphi : \mathbb{R} \to \mathbb{R}$ is a function such that the integral is finite for almost all $x \in \mathbb{R}$. Choose $\varphi(x) = x^n$; then

\[
\phi(x) = \int_{-\infty}^{+\infty} (x + iy)^n N_{0,t}(y)dy = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} i^k c_k(t) = \sum_{k=0}^{[\frac{n}{2}]} \left(\frac{n}{2k} \right) x^{n-2k} i^{2k} c_{2k}(t) = \\
= \sum_{k=0}^{[\frac{n}{2}]} \left(\frac{n}{2k} \right) x^{n-2k} (-1)^k (2k-1)! i^{2k} = h_{n,t}(x)
\]

where $h_{n,t}(x)$ is the n-th Hermite polynomial of degree n and parameter t. So by linearity we see that

\[
\phi(x) = (T_t\varphi)(x) \quad x \in \mathbb{R}, t \geq 0
\]

if φ is a polynomial; moreover by a limit argument we can say that the above relation holds also for those analytic functions such that the integral

\[
(T_t\varphi)(x) = \int_{-\infty}^{+\infty} \varphi(x + iy)N_{0,t}(y)dy, \quad x \in \mathbb{R}, t \geq 0
\]

converges. Using this equation we try to define the operator T_t for more general functions.
Proposition 4.1 Let $\varphi \in L^2(\mathbb{R})$ such that
\[\xi \mapsto \hat{\varphi}(\xi) e^{\frac{i \xi^2}{2}} \in L^2(\mathbb{R}), \forall t \geq 0 \]
where
\[\hat{\varphi}(\xi) = \int_{-\infty}^{+\infty} e^{ix\xi} \varphi(x) dx. \]
Then $T_t \varphi(\cdot) \in L^2(\mathbb{R})$ and is given by
\[(T_t \varphi)(x) = \int_{-\infty}^{+\infty} e^{-i\xi x} e^{\frac{i \xi^2 t}{2}} \varphi(\xi) d\xi. \]

Proof.
\[
\int_{-\infty}^{+\infty} \varphi(x + iy)N_{0,t}(y)dy = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-i\xi(x+iy)} \hat{\varphi}(\xi) d\xi \right)N_{0,t}(y)dy =
\]
\[
= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-i\xi x} e^{iy\xi} \hat{\varphi}(\xi) d\xi \right)N_{0,t}(y)dy = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{y\xi} N_{0,t}(y)dy \right) e^{-i\xi x} \hat{\varphi}(\xi) d\xi =
\]
\[
= \int_{-\infty}^{+\infty} e^{-i\xi x} e^{\frac{i \xi^2 t}{2}} \hat{\varphi}(\xi) d\xi
\]
and the last term belongs to $L^2(\mathbb{R})$ because of our hypothesis. \qed

5 Ito formula

Theorem 5.1 Let $\varphi \in C^2(\mathbb{R})$ be a function such that $(P_t \varphi) : \mathbb{R} \rightarrow \mathbb{R}$ ($(P_t)_{t \geq 0}$ is the brownian motion semigroup) is analytic for all $t \geq 0$ and let $\{B_t\}_{t \geq 0}$ be a 1-dimensional brownian motion. Then
\[\varphi(B_b) - \varphi(B_a) = \int_a^b \varphi'(B_t) dB_t + \frac{1}{2} \int_a^b \varphi''(B_t) dt \quad \text{for all } a, b \in \mathbb{R}, a \leq b. \]

Proof.
\[
\mathcal{H}(\int_a^b \varphi'(B_t) dB_t(z)) = \mathcal{H}(\int_a^b \varphi'(B_t) dB_t(z)) = \int_a^b \mathcal{H}(\varphi'(B_t))(z) \frac{d}{dt} \mathcal{H}(B_t(z)) dt =
\]
\[
= \int_a^b (P_t \varphi)(\mathcal{H}(B_t(z))) \frac{d}{dt} \mathcal{H}(B_t(z)) dt = \int_a^b \frac{d}{dt} [(P_t \varphi)(\mathcal{H}(B_t(z)))] - \partial_t [(P_t \varphi)(\mathcal{H}(B_t(z)))] dt =
\]
\[
= (P_b \varphi)(\mathcal{H}(B_b(z))) - (P_a \varphi)(\mathcal{H}(B_a(z))) - \int_a^b \frac{1}{2} (P_t \varphi')(\mathcal{H}(B_t(z))) dt =
\]
\[
= \mathcal{H}(\varphi(B_b) - \varphi(B_a)) - \frac{1}{2} \int_a^b \varphi''(B_t) dt(z).
\]
By uniqueness of the Hermite transform, the theorem is proved. \qed
Remark 5.2 Next important steps will be the extensions to diffusion and Levy processes and give explicit solution in terms of semigroup to stochastic differential equations of the form:

\[dX_t = b(t, X_t)dB_t, \quad t \geq 0 \]

with initial condition

\[X_0 = x. \]

Acknowledgments

I want to thank Bernt Øksendal and Frank Proske for their encouragement and interest and the Department of Mathematics, University of Oslo, for its warm hospitality.

References

