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Abstract A global energy minimization criterion
based on Griffith’s theory is introduced for the node-
splitting lattice spring model. The fracture criterion
is computed by both direct numerical simulations of
energy release rate G and through a J-integral formula-
tion for comparison and validation. For mode I frac-
tures, the standard implementation of J-integral for-
mulation yields very good estimations of the energy
release rate, but for mixed mode fracture the estima-
tions deviates from the direct calculated energy release
rate. The reasons for this discrepancy are elucidated and
an approach to best approximate the J value is given.
This method is compared with the more standard max-
imum tip stress threshold crack criterion, and shows a
much better prediction of the energy release rate and is
more robust under grid refinement.
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1 Introduction

Lattice spring model (LSM) is a type of discrete ele-
ment model widely used in fracture mechanics (Hafver
et al 2014; Flekkøy et al 2002; Malthe-Sørenssen et al
1998; Meakin 1987; Martins et al 2018), fluid structure
interaction (Buxton et al 2005; Wu and Qi 2017) and
computer graphics (Selle et al 2008; Norton et al 1991)
due to its efficiency in coupling continuum media to
fracture networks and fluid processes. The model is
made up of nodes joint by one dimensional elastic ele-
ments like Hookean springs or beams. Despite its sim-
ple structure, the modeling approach has been used to
simulate complex systems like fractures in thin films
(Meakin 1987), fractures of extensional clay (Malthe-
Sørenssen et al 1998), rock weathering (Røyne et al
2008), hydro-fracture (Hafver et al 2014; Flekkøy et
al 2002) and bending cracks in the African elephant
skin (Martins et al 2018). The fracture criteria in these
models are usually discrete variations of the maximum
tangential stress (MTS) condition, e. g., if a spring
is extended further than a predefined critical thresh-
old. This type of fracture criterion has shown to give
convincing results for crack pattern generations. The
dynamics evolution of cracks predicted by LSM has
also worked well when the time scale of a system is
not given by the spring block model per se but by a
secondary process like diffusion or drying. However,
when we want to study a process like sub-critical crack
growth (Swanson 1984; Freiman 1984; Atkinson 1984;
Røyne et al 2011), where the kinetics of the system is
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given by the elastic state, rigorous and accurate fracture
criteria based on Griffith’s energy minimization (Grif-
fith 1921) are still absent for LSM. Although, cohe-
sive approach of bond-breakingmodel are recently pro-
posed (Zhang et al 2015; Kosteski et al 2012). But the
energy release rate is implicit. The standard MTS cri-
terion is sensitive to the grid resolution, where it scales
in a power law with mesh density. They are not directly
linked to the reaction rate theory that couples the frac-
ture criteria of energy release rate to the speed of frac-
ture propagation in sub-critical crack growth (Wan et
al 1990).

Here we will derive and study the fracture criteria
based on the linear elastic fracture mechanics (LEFM)
for LSM, specifically the node-splitting model (Hafver
et al 2014). Our goal is to base the fracture criteria in
lattice spring model on the energy release rate, to show
the role of mechanical work in the calculation of the
effective energy release rate and demonstrate how this
couple to rate determining processes. The calculation
of energy release rate using the node-splitting fracture
model is based on the virtual crack propagation tech-
niques seen in other numerical methods (Hellen 1975).
J -integral is an alternative equivalent method to calcu-
late energy release rate (Rice 1968; Rice and Budian-
sky 1973). The unique properties of node-splitting lat-
tice spring model provide a simple and flexible method
for J -integral calculation. The J -integration path can
be constructed directly on the lattice structure by con-
necting the existing nodes and bonds. The elastic field
values such as stress tensor, displacement gradient and
strain energy density for J -integration is derived solely
by using the lattice node equilibrium location with sim-
ple algorithms. We will show how to include surface
traction forces using Newton–Raphson methods by a
quasi-static coupling to fluid pressure as an example,
and show how the additional mechanical work done
by the traction forces influence the J -integral imple-
mentation of the fracture criteria. We noted that this
coupling scheme is simple to extend and not limited to
static pressures.

We will apply this model to sub-critical crack
growth, which refers to the slow growing and time
dependent opening of fractures below a material’s crit-
ical fracture stress (Wan et al 1990; Røyne et al 2011).
The crack velocity has been shown to depend on the
residue energy release rate �G = Ge − γs , where Ge

is the effective energy release rate and γs is the energy
needed to generate new fracture surface. The evalua-

tion of energy release rate is essential to the propaga-
tion velocity profile of sub-critical cracks, and will be
affected by the traction forces caused by, for instance,
the presence of fluids.

In Sect. 2, we will review the node-splitting fracture
model ofLSM, introduce an iterativeNewton–Raphson
solver for equilibrium and show the numerical methods
of the building blocks of fracture criteria such as stress,
strain tensor. Then,wewill detail the implementation of
energy release rate and J -integral for LSM, beginning
with traction free fracture surface in Sect. 3. To account
for the external process, in Sects. 4 and5,wewill couple
a static pressure as surface traction on to the fracture
surface of LSMand update the fracture criteria. Finally,
we will present the numerical results of the fracture
criteria and its application to sub-critical fracture from
Sects. 6 to 8.

2 Basics of node-splitting LSM

The LSMs are often used to model elastic media and
consist of nodes interconnected by bonds. They can
either be unstructured (Bolander Jr and Saito 1998;
Ostoja-Starzewski 2002) or structured (Meakin 1987;
Malthe-Sørenssen et al 1998; Hafver et al 2014) and
the neighbor interaction are usually modeled by linear
Hookean springs. However, in some situations, beam
or other elements (Schlangen and Garboczi 1996) are
used to enable modeling a wider range of mechanical
properties.

In this study, we will use a standard uniform trian-
gular grid for the node structure as shown in Fig. 1. The
bonds connecting nodes are linear Hookean springs
with equilibrium length l and the basic building block
of such a network is commonly a triangular cell.
Although, a square cell can also be used as a basic block
(Ostoja-Starzewski 2002). Each spring in the cell has
a spring constant of k/2. An internal bond consists of
edges from two neighboring cells so that the effective
spring constant is k, while a boundary bond has a spring
constant of k/2.

It can be shown that the continuum limit of this
model represents an isotropic homogeneous elastic
media with a Young’s modulus E of 2k/

√
3 and a Pois-

son’s ratio of 1/3 (Flekkøy et al 2002).We note that the
Young’s modulus can be adjusted by varying the spring
constant, but the Poisson’s ratio is fixed. If a different
Poisson’s ratio is required, bonds can be replaced by
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Fig. 1 Node-splitting LSM. The label Tip refers to fracture tip,
Sur f acemeans fracture surface and Path is the crack path. The
grey arrows show the possible future fracture directions

Fig. 2 Bond-breaking LSM

a beam as previously mentioned (Schlangen and Gar-
boczi 1996).

Bond-breaking, schematically shown in Fig. 2, is
the standard method to model brittle fractures in LSM
(Flekkøy et al 2002; Malthe-Sørenssen et al 1998;
Meakin 1987; Røyne et al 2008). In this type of model,
a fracture propagates by removing bond that exceeds
a predefined stress threshold. An alternative to bond-
breaking is a node-splitting model (Hafver et al 2014)
shown in Fig. 1. When a fracture grows, in the node-
splitting model, the node at the fracture tip splits into
two new nodes as indicated by the two small and oppo-

site arrows. The new fracture direction could, in princi-
ple, be in any of the five directions marked by arrows.
Once the fracture direction is determined by a frac-
ture criterion, the bond in this direction also splits and
the newly split bond changes from an internal one to
become a part of the fracture surface. Meanwhile, the
spring constant of the two newbonds at the fracture sur-
face is updated to k/2. The node-splitting mechanism
ensures a well defined fracture volume and conserva-
tion of elastic energy unlike bond-breaking, where the
potential energy of a bond is lost, when it is removed, in
addition to suffer an abrupt change in fracture volume.

As previously stated, we assume that the interaction
between neighboring nodes ismodeled by linear elastic
spring. The force on a central node, labeled as b in
Fig. 3, from the spring in lattice direction α is, in this
case, given by

fα,i = kα(|rb − rα| − l)cα,i . (1)

where fα,i is the i’th component of the spring force
and i is Cartesian component, kα is the spring constant
of a bond in direction α, rb and rα are the positions of
node b and its neighbor in the α-direction, cα,i is the
i’th component of the unit vector pointing from node
b to its α direction neighbor node, and (|rb − rα| − l)
is the bond elongation. The accumulated spring force,
Fb,i , on node b from its neighbors is

Fb,i (rb, rα=1, . . . , rα=6) =
6∑

α=1

fα,i . (2)

For all nodes in a LSM network, to establish the equi-
librium state, the sum of forces on each node must be
zero, that is, Fb,i = 0 for all nodes. Since only the
equilibrium state is of interest in this study, a standard
iterative Newton–Raphson method is used to solve the
non-linear system. The node positions at iteration n+1
is given by r (n+1)

i = r (n)
i + δri , where the δri is found

by solving the linear system of equations given by

F (n)
b,i + δrb, j

∂Fb,i
∂rb, j

+
∑

α

δrα, j
∂Fb,i
∂rα, j

∣∣∣∣
r(n)

= 0. (3)

where F (n)
b,i is the value of the sum of forces at iteration

n and we have used Einstein summation convention
for repeated indexes i and j . b is the label of a central
node shown in Fig. 3 and α indicates a neighbor. Once
the equilibrium position of the nodes, req, is found,
we can compute the strain, εi j , stress, σi j , tensor and
strain energy density, w, at each node. These quanti-
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Fig. 3 Definition of reference frame and notations of an intact
internal hexagon lattice cell

ties are essential for the development of fracture crite-
ria (Knowles and Sternberg 1972; Rice and Budiansky
1973; Bolander Jr and Saito 1998).

To illustrate how to implement thenumerical scheme,
we include a step by step description below. The algo-
rithm consists of four parts. First part is simulation
parameters input such as mesh resolution, spring prop-
erties, bond length. Second, a series of neighbor lists of
nodes are formed such as node id, spring constant, node
location. Third part is node list local modification due
to fracture. Last part is the Newton–Raphson iterative
solver where a linear system of equations are formed
and solved by iterative method.

1. Input simulation parameters

(a) Spring properties: stiffness k, bond length l
(b) Mesh resolution N
(c) Loading statement: strain ε/stress σ

2. Form neighbor list based on the hexagon lattice for
computing neighboring spring forces

(a) Assign an unique ID to each node and collect the
node id of hexagon neighbor to a list(nid-list)

(b) Collect stiffness of the neighboring bonds and
form the corresponding list as the ID list
above(k-list)

(c) Collect the locations of neighboring nodes and
form the same list(r-list)

3. Local modification of neighbor list due to node-
splitting fracture

(a) Modify nid-list,k-list and r-list according to the
length of pre-existing fracture

4. Determine linear system Jδr = F size and convert
node id to linear system index for assemble

(a) For example, node id n is converted to index
as 2n − 1 and 2n for the location of x and y
components of δr and F in J matrix

5. Newton–Raphson solver loop

(a) Compute gradient ∂Fb,i
∂rb, j

and force F (n)
b,i terms for

each node
(b) Assemble force and gradient terms in to the lin-

ear system Jδr = F according to the index
(c) Solve the linear system using an iterative solver
(d) Update the location of node toward equilibruim

r (n+1)
i = r (n)

i + δri
(e) Break loop when the threshold of L2 norm of

error is reached

6. Post processing: e.g. Energy release rate, J -integral

For a 2d grid where the third dimension is implicit,
the stress tensor σi j at internal node b is approximated
based on the forces from the neighboring bonds in the
following manner (Flekkøy et al 2002; Hafver et al
2014; Landau and Lifshitz 1986)

σi j ≈ 1

2
√
3l

6∑

α=1

(cα,i fα, j + cα, j fα,i ). (4)

The stress at nodes on the fracture surface, as shown
in Fig. 4, follows the same formula except that the pref-
actor becomes 1√

3l
due to the reduced number of neigh-

bors.
The displacement gradient ui, j = ∂ui

∂x j
is computed

from the Taylor expansion of the displacement vectors
ui = r eqi − r0i

�rα, j
∂ui
∂x j

≈ uα,i − ub,i . (5)

where ub,i and uα,i are the displacement vectors of
node b and its α neighbor and �rα, j = reqα,i − reqb,i . The
displacement gradient is calculated by solving the over-
determined system of linear equation using the least-
squares approximation. The strain tensor εi j is com-
puted based on the displacement gradient ui, j (Landau
and Lifshitz 1986; Sadd 2009)

εi j = 1

2
(ui, j + u j,i ). (6)
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Fig. 4 A schematic of half hexagon lattice on a fracture surface

For the stress and strain tensor, the discrepancy
between the numerical definitions here and theoretical
values scales linearly with strain loading.

The elastic energy density ω is computed in two
ways. In the first method, we use the standard formula
for the potential energy stored in a spring, and then
relate half of the energy of the spring to each of the
nodes connected to it. The energy density of a node b
is then given by

ω = 1

2A

6∑

α=1

kα

2
(�lα)2. (7)

where A is the area of the Voronoi cell, illustrated in
Fig. 3 by a gray dashed line. This definition is similar
to the stress equation in Eq.4 by using the information
of neighboring nodes. The energy density can also be
calculated from strain and stress tensor (Landau and
Lifshitz 1986; Sadd 2009) of the continuum theory as

ω = 1

2
εi jσi j . (8)

3 Introducing energy based fracture criteria to
node-splitting LSM based on LEFM

LSM has been used extensively to study fractures in
various settings (Meakin 1987; Malthe-Sørenssen et al
1998; Røyne et al 2008; Flekkøy et al 2002; Hafver
et al 2014; Martins et al 2018), where the fracture cri-
teria are usually a variate of the maximum tangential

stress (MTS) condition. Normally, the fracture crite-
rion is given by a predefined critical stress σc (Flekkøy
et al 2002) or a critical strain εc (Martins et al 2018).
when this is exceeded, the spring breaks and is sub-
sequently removed from the simulation. The MTS cri-
terion has shown convincing results for pattern gen-
erations and dynamic evaluation. However, when we
want to study a process such as sub-critical fracture, the
kinetics depends on the energy release rate of the spring
system (Wan et al 1990). MTS as a fracture criterion is
no longer a valid option as it shows strong dependence
on the mesh density of the spring network. As a result,
it is difficult to evaluate the energy release rate from
the stress intensity factor. Here, we introduce a direct
calculation technique of energy release rate based on
virtual crack extension to the node-splitting LSM start-
ing with a traction free fracture surface. Meanwhile,
we also show a J integral implementation as a valid
alternative for comparison and validation to the direct
energy release rate calculation.

3.1 Implementation detail of a direct calculation of
energy release rate in LSM network

Base on the virtual crack extension method, the overall
energy release rate is the change of potential energy
� over generating a finite fresh fracture surface and is
given as−δ�/δL (Lifeng andKorsunsky 2005), where
δL is the length of fresh crack in 2d. Potential energy is
the combination of strain energy E due to deformation
and work potential W by traction forces

� = E − W. (9)

For simplicity, we start without any traction force
such as fluid pressure on the fracture surface, the work
potential vanishes and the energy release rate is purely
elastic. Later, we will show a coupling scheme where
the static pressure is applied on the fracture surface and
its corresponding fracture criteria in Sects. 4 and5. The
potential energy is reduced to the strain energy E of
the body and is shown as

� = E =
∑

w(rb,i )A(rb,i ). (10)

where w is the elastic energy density seen in Eq.7 and
A is the area of a single Voronoi cell. The summation
is over the whole body.

Considering a solid body at equilibrium with an
existing fracture of length L , the strain energy is EI (L).
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Then, the fracture virtually extends a length of δL
which is the bond length l for LSM. The post strain
energy of the body due to extension is EI I (L + δL).
Thus, the change of potential energy is

− δ� = −δE = EI (L) − EI I (L + δL). (11)

However, due to the discrete nature of LSM, the frac-
ture can extend in five possible directions as indicated
by the arrows in Fig. 1. These directions are refereed as
α previously. In α direction, the solid body has a strain
energy of Eα

I I (L + δL). As a result, the elastic energy
release rate is

Gα(L) = (EI (L) − Eα
I I (L + δL))/δL . (12)

where Gα(L) is the energy release rate in direction α.
In this model, Griffith’s fracture criterion is given by

Gmax > 2γs . (13)

where γs is the surface energy of thematerial andGmax

is themaximumvalue amongGα and the fracture direc-
tion is in α direction where the maximum G occurs.

Although the direct calculation of elastic energy
release rate for LSM is straight forward, it can be
computationally expensive. It is because, to determine
where and when a fracture propagates, we must repeat-
edly solve the LSM system for five times in search of
the maximum G. We need an alternative method that is
just as accurate but computationally efficient to deter-
mine the energy release rate. J integral is such a valid
technique which we will introduce its implementation
for LSM starting with traction free surface and later
including external process in the following sections.

3.2 Implementation detail of J integral in LSM
network

The J -integral was initially developed as a scalar quan-
tity (Rice 1968) used in the study of mode I fracture.
Later, it was generalized into a vector form byKnowles
and Sternberg (1972)

Ji = lim
R→0

∫

�

(
ωni − n jσ jk

∂uk
∂xi

)
d�. (14)

where � is the integration path surrounding the frac-
ture, ni is the outward unit vector of � and R defines
the distance between the fracture tip and the location
where� intersects fracture surface as depicted in Fig. 5.

A local coordinate system is schematically defined in
Figs. 6 and7 for the calculation of J-integral, where
x axis aligns with the fracture axial direction and the
origin is placed at the fracture tip. The x-component
of J is equivalent to Rice (1968)’s scalar version of
the J -integral. In Sect. 2, we showed how to approxi-
mate displacement gradient ui, j , stress tensor σi j , and
strain energy densityw by solely using the equilibrium
locations of nodes. All that is left to do is to specify a
J -integration path.

Since LSM is a node-bond based model, it is nat-
ural to define J integration path by a series of nodes
joined by bonds as shown in Fig. 5 labeled by hexagon
and elongated hexagon path. We call this type of path
as on-node. Although, the implementation of a domain
integral is also possible by considering the triangle cell
as the integration element. Once again, the elastic field
quantities such as stress, energy density and displace-
ment gradient are known at each node. The outward
normal vector ni is calculated based on the geometry
of bonds. The J path integration is simply a summation
process along the on-node hexagon path. In addition
to the on-node integration path, off-node path with an
arbitrary shape can also be constructed in LSM. As an
example, see Fig. 5, where we show a circle path with
the fracture tip as center. The off-node circle path is dis-
cretized as a series of straight line segments. The elastic
field values are interpolated by the surrounding nodal
values of LSM through radial basis function approx-
imation. The outward unit vector is calculated based
on the geometry in the same way as in on-node path.
Similar to the on-node path, the off-node J integration
is also a summation process of the discrete segments.
The distance of fracture tip and the intersection loca-
tion between J path and fracture surfaces is measured
by R as shown in Fig. 5. In case of on-node path, due to
the discrete nature of LSM, we have chosen nodes on
the fracture surface as the intersection points between
integration path and fracture surface.

We recognize n jσ jk as the surface traction, Tk , for
the integration path �. The integral expression for Ji is
rewritten as

Ji =
∫

�

(
ωni − Tk

∂uk
∂xi

)
d�. (15)

The surface traction can be directly calculated in
LSM provided that the integration path is of on-node
type. The notation follows the hexagon lattice shown
in Fig. 8, where it is divided in to two parts by the inte-
gration path. For this particular setup, the traction is the
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Fig. 5 Definition of J -integration paths on a LSM gird. The
hexagon and elongated hexagon path are defined by joining LSM
nodes along bonds and they are called on-node type, while the
circle path is one example of the off-node arbitrary path

Fig. 6 Schematics of numerical simulation setup of node-
splitting LSM with a mode I fracture

summation of forces from bonds on the outward side
of the integration path

Ti =
(
f3,i + f4,i + f2,i

2
+ f5,i

2

)
/ ls . (16)

where ls is the specific length on which traction force
applies.

Lifeng and Korsunsky (2005) showed the relation-
ship between J and elastic energy release rate G(θ)

Fig. 7 Schematics of numerical simulation setup of node-
splitting LSM with a mix mode fracture

in an arbitrary fracture direction at the fracture front
given by the vector product between the unit vector
(cos(θ), sin(θ)) and J

G(θ) = J1 cos(θ) + J2 sin(θ). (17)

where θ is the angle between the direction where G is
measured and the x-axis of the local coordinate system
as shown in Figs. 6 and 7. A positive θ means that it
is measured counter-clockwise from x axis. Given this
relation, we note that the maximum value ofG is found
in the direction given by J. Hence, it suggests that J
gives the fracture propagation direction withmaximum
energy release rate.We defineφ as the angle of J vector
with x-axis and it is the inverse tangent of J2 over J1.

φ = tan−1
(
J2
J1

)
. (18)

Thus, we have the maximum energy release rate as
Gmax (θ = φ) = |J|.

4 Quasi-static coupling of the LSM model to
external process

To study the influence of fluid pressure on the frac-
ture stability, we treat it as traction force and apply
it as a boundary condition to LSM on the fracture sur-
face.Here,we introduce a quasi-static coupling scheme
based on the Newton–Raphson solver. For simplicity,
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Fig. 8 Notation for direct traction calculation on aLSMhexagon
cell

we demonstrate how to couple a static uniform pres-
sure to the node-splitting model. However, it should
be noted that the scheme is generic and can be applied
with amore realistic model such as a full fluid transport
process.

The implementation of surface traction as a bound-
ary condition in LSM is straight forward. Considering
a surface bond with one end connected to node b and
the other end connected with its neighbor node α as
illustrated in Fig. 3, the length of it is calculated using
the node’s location

l ′ = |rb,i − rα,i |. (19)

The pressure force on the bond is calculated by pressure
P multiplies the bond length in 2Dwith nα,i the surface
norm

F f
α,i = −Pl ′nα,i . (20)

We distribute the pressure force on the bond equally
to its associated nodes. For node b, the accumulated
pressure force is

F f
b,i =

∑
F f

α,i

2
. (21)

where the summation is over the surface bonds con-
nected to node b. The overall torque of the distributed
forces at the center of the bond is zero, which is equiv-
alent to the torque from the pressure force applied on
the bond. The Newton–Raphson method seen in Eq.3

is augmented with the variation of the pressure forces,
as follow

F (n)
b,i + δrb, j

∂Fb,i
∂rb, j

+
∑

α

δrα, j
∂Fb,i
∂rα, j

+F f (n)
b,i + δrb, j

∂F f
b,i

∂rb, j
+

∑

α

δrα, j
∂F f

b,i

∂rα, j

∣∣∣∣
r(n)

= 0.

5 Include mechanical work to the energy release
rate

To accurately account for the influence of fluids on
the stability of cracks, we must include the accompa-
nied mechanical work with the fracture growth crite-
ria and update the J calculation with traction on the
free surface. Here, we consider a mode I crack placed
horizontally in the geometrical center of a solid body
similar to those in Figs. 6 and 7. The equilibrium loca-
tion of the node on the fracture surface prior the prop-
agation is r0b,i . After the propagation, the equilibrium

location of the same fracture surface node is reqb,i . Thus,

the displacement of the node is ub,i = reqb,i − r0b,i . The
mechanical work Wb on a single node is measured by
the fluid force F f

b,i along the displacement ub,i . The
overall mechanical work W is the summation of work
on all fracture surface nodes which are in contact with
fluid

W =
∑

F f
b,i ub,i . (22)

Alternatively for uniform pressure, the mechanical
work can be simplified further as it is proportional to
the volume change of the fracture cavity due to fracture
growth

W = PδA. (23)

where δA is the fracture cavity area enlargement in 2d
and P is the applied pressure. Prior to the fracture prop-
agation, the overall cavity area is SI . After the fracture
propagation, the expanded cavity area is SI I . δA is equal
to SI I −SI .We apply the general potential energy form
seen in Eq.9 to include work potential and define an
effective energy release rate Ge to account for various
physical processes and it is calculated as

Ge = (EI − EI I + W )/2l. (24)

where we previously defined the elastic energy release
rateG = (EI −EI I )/2l. Similarly, we definemechani-
cal energy release rate as Gw = W/2l. Thus, the effec-
tive energy release rate is the combination of elastic
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energy release rate and mechanical energy release rate
as Ge = G + Gw.

The fluid pressure acts as a traction Ti at the fluid
solid interface. The strength of it is P for a static pres-
sure and its direction ni is perpendicular to the bond

Ti = −Pni . (25)

To include the effect of traction on the fracture sur-
face in J -integral calculation, we follow Karlsson and
Bäcklund (1978)’s approach of indirectly estimating a
near fracture tip J value. First, the J path is redefined
by adding fracture surface segments to a J pathwithout
surface traction. The conventional traction free J path
usually intersects with the fracture surface away from
the fracture tip to avoid the singularity at the fracture
tip. The surface segments start at the intersection loca-
tion of the conventional J path and end as close to the
fracture tip as possible, but not including it. Then, the
J Ti value, where the super script T implies a J calcula-
tion with traction on the fracture surface, is the addition
of the combined J values on the newly defined paths

J Ti (R) = Ji (R) + Jupsi (R) + J lws
i (R). (26)

where J s value of the fracture upper and lower surface
segments are calculated using the traction form shown
in Eq.15 and denoted respectively by the superscripts
ups and lws. In principle, the effective energy release
rate Ge is also the projection of the J Ti with traction
included as shown in Eq.17.

For uniform pressure, the J value on the fracture
surface is approximately proportional (Karlsson and
Bäcklund 1978) to the aperture δc of the crack at the
intersection location of the conventional J path with
the fracture surface.

J s(R) = Pδc. (27)

We denote the overall J using J A with the superscript
A for approximation.

J A(R) = Ji (R) + J s(R). (28)

6 Fracture growth simulations

We first show the numerical results of elastic energy
release rate and the corresponding J calculation of trac-
tion free fracture surface with two cases. They are a
mode I fracture and a mix mode fracture illustrated in
Figs. 6 and 7, respectively. See Sect. 3 for their imple-
mentations. In both cases, we use a two dimensional

rectangular domain of size Nx × Ny with Ni the nodal
number.

The LSM system is simulated at various grid resolu-
tions to show its convergence behavior. The horizontal
and vertical nodal number are chosen to be the same
with N ∈ [21, 41, 81, 161, 321, 641, 1281, 5121]. To
simulate the same domain, the nodal number is dou-
bled and bond length is halved from a previous grid
configuration.

The system is loaded by displacing the top and bot-
tom set of nodes in the vertical direction. The boundary
nodes are free to move horizontally.

For mode I, the fracture plane is in the horizontal
direction while, for the mix mode setup, it is inclined
with β = 30◦ from the loading direction. The crack is
initiated as a split node in the middle of the sample and
the physical fracture length is set to be twice the initial
bond length l0, that is 2l0. The initial configuration is
with N = 21.

6.1 Elastic energy release rate

Formode I crack, the fracture direction is in the fracture
plane. We use the notation Gθ=0◦ to denote the energy
release rate in this direction defined by θ = 0◦ as the
angular deviation from the local x-axis as shown in
Fig. 6. From here on, we omit θ for convenience.

At a fixed strain loading, the numerical results of
G0◦ show three features in relation with mesh den-
sity N as seen in Fig. 9. First, it converges with the
increment of mesh density, which is a property we
desire. Second, the relative error defined as (G[i +
1]−G[i])/G[i] decreases proportionally with 1/N i.e.
error halveswhen resolution doubles. Third, the overall
error between theG values of the lowest and the highest
mesh density is within 2%, which indicates that even
with a low mesh resolution, the energy release rate of
Mode I fracture can be accurately calculatedwith LSM.

In addition, numerical G0◦(ε) agrees well with the-
ory (Anderson 2017) as shown in Fig. 10. The linear
analysis is accurate for LSM. The relative error of the-
oretical and numerical values are approximately the
same for all strain loading. It has a quadratic growth rate
with the applied strain loading ε as G0◦ ∝ ε2 which
is also shown by theory (Anderson 2017). The rela-
tionship can be seen from the log-log scale plot, where
log(G) and log(ε) has a linear relationship indicating
a second order power law. The Griffith’s fracture crite-
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Fig. 9 Mode I energy release rate response at various resolutions
is shown on the left axis, whereG is normalized to the maximum
value Gmax . On the right axis, the relative error is calculated as
(G[i + 1] − G[i])/G[i] with i being a specific resolution

Fig. 10 Numerical mode I energy release rate response is shown
at various strain loadings, where the resolution is defined at
ln(Nx/N0) = −4.15 andG is normalized to the minimum value
Gmin at the lowest strain loading. The theoretical value of G0◦
(Anderson 2017) is shown together here

rion shown in Eq.13 is applied when G0◦(ε) exceeds
the surface energy 2γs .

For a mix mode fracture, we do not usually know
beforehand in which direction the maximum energy
release rate is. Thus, it is necessary to search through all
possible discrete directions at the fracture front marked
by array in Fig. 1 to determine the direction of maxi-
mum energy release rate. However, for the setup of an
inclined fracture in Fig. 7, theoretical and experimental
work (Erdogan and Sih 1963) suggests that the poten-
tial fracture direction is in the directionwith θ = −60◦,
when the inclination is at β = 30◦. We use negative
sign to represent θ below the local x-axis. As a result,

Fig. 11 Mix mode energy release rate response at various reso-
lutions, where G0◦ and G60◦ are normalized to Gmin

0◦ . The nor-
malization to Gmin

0◦ compares the magnitude difference of G0◦
and G60◦ as shown by theory (Anderson 2017)

Fig. 12 Mix mode energy release rate response at various strain
loadings, where the resolution is defined at ln(Nx/N0) = −4.15
and G is normalized to Gmin

0◦

in the simulations, we will only generate and compare
results from θ = −60◦ and θ = 0◦. From here on, we
drop the negative sign to refer to the same angles.

Similar to G0◦ of the mode I fracture, G60◦ and G0◦
of mix mode show convergence over grid resolution
as seen in Fig. 11. However, the error of G60◦ only
decreases proportionally with N−0.6. A smaller expo-
nent indicates a slower convergence rate compared to
G0◦ of both mode I and mix mode fractures who have
an exponent of −1. Moreover, the error of G60◦ at low
grid resolution is significant so that a high grid resolu-
tion is required to give accurate result.

The simulation values with mesh resolution N =
1281 show good agreement with theoretical values as
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shown in Fig. 12. The discrepancy is within a few per-
cent and the relative error of theoretical and numerical
values are approximately the same for all strain load-
ing. Due to the faster error reduction rate, the error of
G0◦ is smaller than the one ofG60◦ with the samemesh
resolution. The error can be further reducedwith higher
resolution.

With G60◦(ε) consistently a bigger value than
G0◦(ε) at any ε, the numerical result seen in Fig. 12
agrees with the theoretically predicted fracture direc-
tion of maximum energy release rate. Besides, G0◦(ε)
and G60◦(ε) scale with the strain loading ε quadrat-
ically the same way as G0◦(ε) of mode I. However,
G60◦(ε) has a higher growth rate compared to G0◦(ε)
as suggested by the log-log plot in Fig. 12. The higher
growth rate is also the indicator that the direction with
θ = 60◦ is the fracture directionwithmaximum energy
release rate. The Griffith’s fracture criterion in Eq.13 is
applied once G60◦(εc) exceeds the surface energy 2γs
of the material at the critical strain loading εc.

6.2 Traction free J integral

In this section, we show the numerical results related
to two properties of J-integral i.e. its equivalence to the
energy release rate and path independence. J-integral
has been considered equivalent to the energy release
rate with G(θ) = mi Ji and mi = (cos(θ), sin(θ))

(Lifeng and Korsunsky 2005). The maximum energy
release rate is in the direction of J as seen in Eq.18.
Path independence is another property of J -integral
(Rice 1968). To validate the path independence with
LSM, we design path variations with different geo-
metrical shapes and path intersection locations with
fracture surfaces. The simulation domains and strain
loading are kept the same as those in Sect. 6.1 to stay
comparative.

For mode I fracture, numerical values of J-integral
is path independent regardless of integration path vari-
ations. In Fig. 13, two sets of J1 values are given where
the path � is defined using two types of geometries
with one being hexagon of equal edges and the other
elongated. An illustration of the paths can be found
in Fig. 5. These two value sets are identical, indicat-
ing that J-integral is independent of path geometries.
In addition, numerical values of J1 stay a constant in
general despite of the intersection location of � with
fracture surface.We can conclude that J-integral is also

Fig. 13 The numerical values of J1(R)with hexagon, and elon-
gated hexagon integration paths are shown in reference with the
energy release rate of mode I fracture G0◦

Fig. 14 The numerical values of the directional angles as the
prediction of fracture direction are shown

path independent wherever � is placed on the fracture
surface. Although, we notice that J1 deviates from its
constant value with R/ l � 5%, where R measures the
distance between intersection location and fracture tip.

Such deviation suggests LEFM does not apply
around fracture tip for LSM. One plausible explanation
is that the small displacement assumption is broken as
large deformation often occurs around the fracture tip.
To support this assumption, as an evidence, the elastic
energy density on an integration path with R/ l � 5%,
seen from the lower part of Fig. 15, show discrepancy
between twomethods, where method II (Eq. 8) is based
on small deformation while method I (Eq.7) accounts
for the energy in a deformed spring with no assump-
tion. This discrepancy says that the continuum limit of
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Fig. 15 Energy density on two integration paths are given using
method 1 (Eq.7) and method 2 (Eq.8). Path one in the upper
figure intersect fracture surface away from tip, while path two in
the lower figure intersect closely

Fig. 16 J1(ε) and G0◦ (ε) of mode I are present together, where
the resolution is defined at ln(Nx/N0) = −4.15 and data is nor-
malized to the minimum value Gmin at the lowest strain loading

LSM as an elastic media based on small deformation
no longer holds. Further more, energy densities show
good match as seen from the upper part of Fig. 15 with
R/ l � 5%, where the small deformation assumption
is expected to be valid and the two methods are equiv-
alent. The two numerical methods show no superiority
of accuracy over one and another. However, method I
given in Eq.7 is simpler to implement numerically.

J points to the right fracture direction and can be
converted to the correct maximum energy release rate.
Thedirectional angle ofJ by applyingEq.18 is atφ ≈ 0
as shown in Fig. 14, which gives the fracture direction
with θ = 0. In addition, by following Eq.17, J is con-
verted to G0◦ as J1cos(0◦) + J2sin(0◦) and J1 should

Fig. 17 The numerical values of J1(R) are shown in reference
with G0◦ of mix mode fracture

Fig. 18 J2(R) is shown and normalized to G2 = (G0◦ −
2G60◦ )/

√
3.G2 is the expected value of J2 given the relationship

of energy release rate and J-integral

be equal to G0◦ . The numerical values of J1 and G0◦
seen in Fig. 13 are similar and have less than 1% dif-
ference.

J1(ε) is equivalent to the directly calculated G0◦(ε)
at various strain loading. The numerical values are
shown in Fig. 16. The Griffith’s fracture criterion can
be applied when J1(εc) exceeds the material surface
energy 2γs .

For mix mode fracture, the components of J show
distinct features. J1(R) is path independent given that
the x-axis of the local coordinate aligns with the frac-
ture. The numerical values of J1(R) is shown in Fig. 17
together with G0◦ . The relationship of J1 being equal
to G0◦ from Eq.17 with θ = 0 still holds, where we
only see around 1% error. However, J2(R) is not path
independent. The numerical values of J2(R) is shown
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Fig. 19 Directional angle φ(R) given by J

Fig. 20 The numerical values of the numerical derivatives J ′(R)

of J (R) are shown

in Fig. 18, which shows a dependence on R i.e. where
� intersects the fracture surface. One consequence of
the J2 path dependency is the directional angle of J is
no longer a unique value which indicates the direction
with maximum energy release rate. Instead, the direc-
tional angles have a wide range spanning from 45◦ to
63◦ as shown in Fig. 19.

J1(R) can be applied to best approximate the true
J2 value which is at the limit of R → 0 in Eq.14.
However, we pointed out earlier in mode I fracture that
the LEFM is broken with R → 0.We observe the same
with the numerical value of J1(R) deviating from its
constant. Here, we use the numerical gradient J ′

1(R) to
determine where the best possible intersection location
can be i.e. beyondwhich the continuum limit of LSM is
no longer elastic. When LEFM holds, J1(R) fluctuates
around a constant. We expect a small gradient J ′

1(R) as

Fig. 21 In the upper figure, J0◦ = J1cos(0◦) and J60◦ =
J1cos(60◦)+ J2sin(60◦). In the lower figure, φ is given accord-
ing to Eq.18

shown in Fig. 20 within the boxed region marked with
dark circles. Beyond the box region marked with gray
cross, LEFM does not hold. We choose the last dark
circle with R/ l around 17% as the cut-off location.
The resultant J(ε) with integration path intersecting
the fracture surface at the cut-off location shows good
agreement withG60◦(ε) andG0◦(ε) and the directional
angle has a very small variation across strain loadings
as can be seen in Fig. 21.

7 Energy release rate with uniform surface
traction

We applied constant pressure to a mode I symmetri-
cal and central crack. For comparison and validation
purpose, the effective energy release rate Ge is calcu-
lated in three manners. They are a direct calculation as
described in Sect. 5, a direct J T integration as in Eq.26
and a J A approximation based on Eq.28.

The directly calculated Ge and approximated J A

have minimal difference and are not sensitive to grid
resolutions and applied pressure values. They cross
validate each other as shown in Fig. 22. In the upper
sub-figure of Fig. 22, the numerical values of both Ge

and J A remain the same constant with the doubling of
grid resolution. It shows that the calculation of Ge is
accurate even with a low grid resolution. In the lower
sub-figure, with a higher applied surface pressure, the
characteristics of Ge and J A remain unaffected.

However, the directly integrated J T shows a signif-
icant discrepancy with the directly calculated Ge and
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Fig. 22 We show the numerical values of energy release rateGe
with a direct calculation and approximated J A at various mesh
resolution Ny . Two different pressure values were applied to the
fracture surface. In the upper sub-figure, a lower level pressure
was applied while in the lower sub-figure, a higher level one
was applied. In both sub plots, all values are normalized to its
corresponding maximum Ge value

Fig. 23 J T is plotted together with Ge with respect to mesh
density. J T was calculated using the same surface pressure values
and grid resolutions as those in Fig. 22

approximated J A values. It has a strong dependency on
the grid resolutions and applied pressure as shown in
Fig. 23. Here, the boundary conditions are the same as
those in Fig. 22. We define a relative error δint between
Ge and J T as (Ge(Ny)− J T (Ny))/Ge(Ny). In Fig. 23,
the error annotated by numbers in percentage decreases
proportionally with 1/

√
Ny . In addition, the relative

error is bigger under a higher surface pressure at each
corresponding grid resolution.

The relative error δint is due to the inability to fully
include all of the bonds on the fracture surface during
numerical integration. As mentioned in Sect. 5, with

Fig. 24 We ran a parametric study on the relative error defined
as (Ge(P) − J T (P))/Ge(P). The parametric parameters are
surface pressure P and external displacement loading u. In the
upper fig, a lower external loading us is applied. While in the
lower one, a higher one ub is applied. At each external loading,
a linear range of pressure P are applied and normalized to Pmin .
The annotated numbers of selected error are in percentage scale

Fig. 25 To verify the path independence of J T , we calculated
J T values at various intersection locations of J path and fracture
surface. We also present the components of J T separately as
Jups + J lws and J . All of the J values are normalized to the
maximum value of J T

pressure included, a newly defined J path comprises
of two parts. The first part is the conventional J path
surrounding the fracture and it normally intersects the
fracture surface away from the fracture tip. The sec-
ond part is portion of the fracture surface starting from
the intersection of conventional J path with fracture
surface and ending at the middle of the bond with the
fracture tip as its end. As a result, half of a bond is
excluded in the numerical integration. The exclusion
is necessary due to the singularity at the fracture tip.
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With the increase of grid resolution, the length of the
excluded half bond is effectively shortened. So that the
relative error minimizes.

To further show the dependency of δint on the values
of the applied pressure, a parametric study is included
here. As indicated in Fig. 24 by an orange dash line, ini-
tially, δint increases with pressure. Then, it converges
to a constant. Meanwhile, we applied two levels of
external displacement loading on the grid and show the
numerical results individually in the upper sub-fig with
a smaller value and the lower one with a bigger value.
The relative error decreases with the increase of exter-
nal displacement loading. It is because the influence of
pressure on the energy release rate is less significant in
comparison with a bigger external displacement load-
ing.

J T is largely path independent. As shown in Fig. 25,
J T remains a constant as long as the intersection of J
path with fracture surface is a few bonds away from
the fracture tip. It only deviates when the calculation
of J T has R within 5 percent of the fracture half length
l, where R indicates the distance between intersection
of J path with fracture surface and fracture tip. The
components of J T such as the surface integral Jups +
J lws and J vary significantly along the fracture surface.

In order to compare the accuracy of the directly cal-
culated Ge and direct integrated J T along a propaga-
tion path, Ge(L ′) and J T (L ′) are calculated at vary-
ing fracture length L ′. Ge(L ′) and J T (L ′) follows the
same trend with respect to propagation length L ′ as
shown in Fig. 26. The relative error δint (L ′) remains.
But, it decays exponentially initially when L ′ is small
and quickly converges to a constant as shown in Fig. 27.
The error is relatively big initially when the fracture
starts to propagate. It is because limited bonds make up
the fracture surface. The numerically integration J T on
the fracture surface is not accurate.

In addition, the components of Ge show a con-
sistent ratio despite of fracture length. The mechani-
cal component Gw and elastic components G of Ge

are shown individually in Fig. 26, where the ratios
Gw(L ′)/Ge(L ′) and G(L ′)/Ge(L ′) remain the same
along the whole propagation length. In the case shown
in Fig. 26, the ratio of the mechanical component
Gw(L ′)/Ge(L ′) is 79.2% and correspondingly the
elastic component G(L ′)/Ge(L ′) is 20.8%. While the
components of J T namely J s and J do not correspond
to the elastic and mechanical component of Ge.

Fig. 26 We propagated a mode I fracture in the fracture axial
direction. The crack had an initial length of L0. The propagated
length of the fracture is L ′ = (L − L0)/ l, where L is the overall
length and l is the bond length. Here, we present two groups of
data. Data group 1 is the Ge(L ′) and its components Gw(L ′) and
G(L ′). Data group 2 is J T (L ′) and its components Jups + J lws

and J

Fig. 27 we show the relative error defined as (Ge(L ′) −
J T (L ′))/Ge(L ′). The figure in figure shows the ln − ln plot of
the error and propagated length L ′. The linear portion is labeled
with orange ◦ and at the same time, the same portion is labeled
in the main figure

8 Numerical modeling of the sub-critical crack
growth

Sub-critical fracture is a type of stable crack (Røyne
et al 2011), where the crack front of the sub-critical
fracture propagates with a finite, small and control-
lable velocity v. An energy gradient �G defined as
the difference between the effective energy release rate
Ge and fracture surface energy 2γs dictates the crack
velocity. Due to the retraction of an energy gradient, an
activated crack may halt or heal. Based on the reaction

123



B. Ye et al.

rate theory, the crack velocity is modeled by a hyper-
bolic function of �G as shown below (Wan et al 1990;
Røyne et al 2011).

v = v0a0 exp

(
−�F

kT

)
sinh

(
α�G

kT

)
. (29)

where �G is equal to (Ge − 2γs), k is the Boltzmann
constant, T is the temperature in kelvin, v0 = kT

h is the
lattice vibration frequency, �F is the quiescent value
of the energy barrier and a0 is the characteristic atomic
spacing (Røyne et al 2011).

Our modeling approach is to propagate the lattice
spring model by a length �L and calculate the effec-
tive energy release rate Ge(L). Then, the calculation
of the crack velocity is according to Eq.29 by sub-
stituting Ge(L). As an example, we first started with
a small displacement loading to a sample with a dry
crack of original length L0. A dry crack refers to cracks
without applied pressure. Subsequently, we measured
the elastic energy release rate G(L0) and compared it
with a known surface energy 2γs . If G(L0) is smaller
than 2γs , the displacement loading underwent repeated
increment until G(L0) was equal or bigger than 2γs .
Under the critical displacement loading u0, the crack
propagated a length of �L . At the same time, we kept
track of the overall elastic energy E(L) of the sample
and calculate G(L) according to Eq.12. In this case,
the effective energy release rate Ge is solely the elas-
tic energy release rate G. The energy gradient �G is
G − 2γs and crack velocity is given by Eq.29. The
corresponding velocity profile labeled by orange line
is shown in the upper part of Fig. 28. With the propa-
gation of the crack, the elastic energy release rate also
increases. As a result, the crack propagation acceler-
ates. However, the elastic energy release rate eventu-
ally reaches its steady value even if the crack continues
growing. So the crack maintains its velocity and the
range of velocity only occupies part of the possible
range based on the reaction rate theory.

As indicated by the blue solid line in the upper sub-
figure of Fig. 28, the effects of pressure on the sub-
critical fracture are twofold. First, it increases the acti-
vation velocity. Second, the average velocity is higher
than the dry case or with a smaller applied pressure.
With the displacement loading kept the same as the
activation u0 of the dry crack, the inclusion of pressure
introduces additional mechanical work Gw. It acceler-
ates the crack growth.

Fig. 28 In the upper fig, the curve labeled as the reaction rate
theory is a fit from experiment in Røyne et al (2008) according
to crack velocity function v = v0a0 exp(−�F

kT ) sinh( α�G
kT ). The

fitting parameters are α = 2.9e−20m2 and �F = 7.6e−20 J.
The temperature was 22 ◦C . For the dry crack, the boundary
condition is solely a displacement loading u0. While for the wet
crack, the boundary conditions are the same displacement load-
ing u0 as dry crack coupled with a pressure of 0.05MPa applied
on the fracture surface. In the lower sub-fig, the dry crack has
a displacement loading u0 as the boundary condition. The wet
crack has a lower displacement loading u1 and a proper pressure
such that the activation energy release rate Ge(L0) is the same
as G(L0) of the dry crack

A dry crack and a wet crack with pressure applied
can effectively be identical sub-critical fracture in terms
of crack velocity and effective energy release rate. By
only lowering the displacement loadingof thewet crack
while keeping u0 the same for the dry crack, the acti-
vation energy release rate Ge(L0) of the wet crack was
adjusted to match G(L0) of a dry crack as well as sur-
face energy 2γs . Then, both of the dry and wet crack
propagated a length of �L . The resultant crack front
velocity profiles are shown in the lower sub-figure of
Fig. 28. It indicates that, at any crack length L , Ge(L)

is equal to G(L). Consequently, the crack velocity
vwet (L) of the wet crack is also equal to vdry(L) of
the dry crack.

The geometrical differences of the effective cracks
are small and differ only in the axial direction. As
shown in Fig. 29, the surface of wet crack overlaps the
one of the dry crack. The lateral geometrical difference
δxi defined as xwet

i − xdryi is numerically insignificant
as shown in Fig. 30, where i is the ID of a node on
the fracture surface. However, the axial difference δyi
increases linearly with i . The effects of the pressure are
twofold. On one hand, the normal component expands
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Fig. 29 Fracture cavity geometries

Fig. 30 Lateral and axial difference

the pre-pressurized crack labeled by dark ◦ in Fig. 29 to
match with the dry crack laterally. On the other hand,
the tangential component further elongates thewet cav-
ity linearly along the surface. The closer to the fracture
tip, the further the elongation is.

Pressure may be interpreted as a weakening agent
to the fracture strength. Alternatively, the energy gra-
dient can be rearranged as �G = G − (2γs − Gw).
2γs and Gw together define a new effective surface
energy γ e

s . The bigger the pressure, the weaker the
crack becomes. The critical elastic energy release rate
G0 for the activation of a weakened crack decreases
linearly with applied pressure as shown in Fig. 31.

Fig. 31 Pressure as a weakening agent

9 Conclusion

In this study, we have introduced two equivalent energy
based fracture criteria for the node-splitting LSM net-
work. These fracture criteria are a direct energy release
rate calculation and, for comparison and validation pur-
pose, a J -integral implementation. The direct energy
release rate is based on the virtual crack extension
method and the implementation of J -integral in LSM is
straight forward in LSM. They both show good agree-
ment on the energy release rate calculation for themode
I fractures. For mode II fractures, the J2 component of
vector Ji shows path dependency as elsewhere. As a
result, the J2 component causes the predicted energy
release rate and fracture direction deviating from those
of the direct calculation. We followed Eischen (1987)
to choose suitable J path to minimize the discrepancy.

These energy based fracture criteria enable LSM
to study a wider ranges of physical processes, whose
behavior depends on the energy release rate of the sys-
tem. As an example, in this study, we are able to calcu-
late the speed profile of the sub-critical fracture based
on the reaction rate theory. The node-splitting LSM
network coupled with the implemented fracture crite-
ria provides accurate energy release rate to enable the
calculation.

The coupling scheme of a static pressure with iter-
ative Newton–Raphson introduced here can be further
extended to include other processes. For one example,
instead of a static pressure, a full fluid solver can be
coupled to the iterative Newton solver by following the
same principle using node-splitting LSM as described
in Sect. 4. The static pressure impacts significantly on

123



B. Ye et al.

the energy release rate calculation in termsof J -integral
implementation. J -integral shows a strong dependency
on mesh resolution. A fine mesh around the fracture tip
is required to yield satisfactory results. However, the
direct calculation of effective energy release rate with
mechanical energy component due to the static pressure
is still accurate. Bymaking use of the accurate effective
energy release rate, the static pressure is shown to be
a weakening agent on the strength of the sub-critical
fracture with applications such as hydro-fracture.

The improvement of the elastic state of the fracture
tip such as the grid dependency of stress may be of
interest for future study. The abnormality of the stress
at the fracture tip may be due to large rotation of bonds
with grid size dependence. A local criterion may be
possible through techniques such as non-linear analysis
as compared to current linear analysis, or cohesive zone
model which creates a smooth crack tip for analysis.
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