Forward integrals and an Itô formula for fractional Brownian motion

Francesca Biagini\(^1\) Bernt Øksendal\(^2,3\)

Revised in April 2007\(^*\)

1) Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 5 I-40127 Bologna, Italy Email: biagini@dm.unibo.it

2) Center of Mathematics for Applications (CMA) Department of Mathematics, University of Oslo Box 1053 Blindern, N-0316 Oslo, Norway Email: oksendal@math.uio.no

3) Norwegian School of Economics and Business Administration, Helleveien 30, N-5045 Bergen, Norway

Abstract

We consider the forward integral with respect to fractional Brownian motion \(B^{(H)}(t) \) and relate this to the Wick-Itô-Skorohod integral by using the \(M \)-operator introduced by [10] and the Malliavin derivative \(D_t^{(H)} \). Using this connection we obtain a general Itô formula for the Wick-Itô-Skorohod integrals with respect to \(B^{(H)}(t) \), valid for \(H \in (\frac{1}{2}, 1) \).

AMS 2000 subject classifications: Primary 60G15, 60G18, 60HXX, 60H07, 60H40.

Key words and phrases: Forward integral, Wick-Itô-Skorohod integral, Wick product, Malliavin derivative, fractional Brownian motion, Itô formula.

\(^*\)Preprint of an article submitted for consideration in Infinite Dimensional Analysis, Quantum Probability and Related Topics 2008 [copyright World Scientific Publishing Company] [http://www.worldscinet.com/idaqp/idaqp.shtml]
1 Introduction

Fractional Brownian motion $B^{(H)}(t) = B^{(H)}(t, \omega), \ t \geq 0, \omega \in \Omega$, with Hurst parameter $H \in (0, 1)$ is a real-valued Gaussian process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with the property that

$$ E \left[B^{(H)}(t) \right] = B^{(H)}(0) = 0 \text{ for all } t \geq 0 $$

and

$$ E \left[B^{(H)}(t) B^{(H)}(s) \right] = \frac{1}{2} \left[t^{2H} + s^{2H} - |t - s|^{2H} \right]; \ t, s \geq 0 $$

where E denotes expectation with respect to \mathbb{P}.

Because of its properties the fractional Brownian motion has been used to model a number of phenomena, e.g. in biology, meteorology, physics and finance. See e.g. [24], [6], [7], [21] and the references therein. In that connection, it is of interest to develop a stochastic calculus based on $B^{(H)}(t)$.

In particular, one wants an integration theory, a white noise theory and a Malliavin calculus for such processes. See e.g. [6] and the references therein for an account of this.

There are several different integral concepts of independent interest, among which the pathwise integral and the Wick-Itô-Skorohod integral. For each of these integrals several versions of an Itô formula have been obtained. See for example [5], [7], [9], [15], [18], [19], [11].

The purpose of this paper is to prove a new general Itô formula for the Wick-Itô-Skorohod integral based on the M-operator of [10] and the Malliavin derivative $D^{(H)}_t$, valid for $H \in (\frac{1}{2}, 1)$.

2 Some preliminaries

Here we recall the approach of [10], [16],[7] to white-noise calculus for fractional Brownian motion.

We begin by recalling the standard setup for the classical white noise probability space. See e.g. [13], [17], [14] or [1] for more details.

Definition 2.1 Let $S(\mathbb{R})$ denote the Schwartz space of rapidly decreasing smooth functions on \mathbb{R} and let $\Omega := S'(\mathbb{R})$ be its dual, usually called the space of tempered distributions. Let \mathbb{P} be the probability measure on the Borel sets $\mathcal{B}(S'(\mathbb{R}))$ defined by the property that

$$ \int_{S'(\mathbb{R})} \exp(i < \omega, f >) d\mathbb{P}(\omega) = \exp(-\frac{1}{2} \| f \|^{2}_{L^2(\mathbb{R})}); \ f \in S(\mathbb{R}), $$

(2.1)
where \(i = \sqrt{-1} \) and \(\langle \omega, f \rangle = \omega(f) \) is the action of \(\omega \in \Omega = \mathcal{S}'(\mathbb{R}) \) on \(f \in \mathcal{S}(\mathbb{R}) \).

The measure \(\mathbb{P} \) is called the white noise probability measure. Its existence follows from the Bochner–Minlos theorem.

In the following we let
\[
h_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2}); \quad n = 0, 1, 2, \ldots
\]
(2.2)
denote the Hermite polynomials and we let
\[
\xi_n(x) = \pi^{-\frac{1}{4}} ((n - 1)!)^{-\frac{1}{2}} h_{n-1}(\sqrt{2}x)e^{-\frac{x^2}{2}}; \quad n = 1, 2, \ldots
\]
(2.3)
be the Hermite functions. Then \(\xi_n \in \mathcal{S}(\mathbb{R}) \). From [25], \(\{\xi_n\}_{n=1}^{\infty} \) constitutes an orthonormal basis for \(L^2(\mathbb{R}) \). Let \(\mathcal{J} \) be the set of all multi-indices \(\alpha = (\alpha_1, \alpha_2, \ldots) \) of finite length \(l(\alpha) = \max \{i; \alpha_i \neq 0\} \), with \(\alpha_i \in \mathbb{N}_0 = \{0, 1, 2, \ldots\} \) for all \(i \). For \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathcal{J} \) we put \(\alpha! = \alpha_1!\alpha_2! \cdots \alpha_n! \) and \(|\alpha| = \alpha_1 + \cdots + \alpha_n \) and we define
\[
\mathcal{H}_\alpha(\omega) = h_{\alpha_1}(\langle \omega, \xi_1 \rangle) h_{\alpha_2}(\langle \omega, \xi_2 \rangle) \cdots h_{\alpha_n}(\langle \omega, \xi_n \rangle).
\]
(2.4)

In particular special cases are the unit vectors
\[
\epsilon^{(k)} = (0, 0, \ldots, 0, 1)
\]
with 1 on the \(k \)'th entry, 0 otherwise; \(k = 1, 2, \ldots \). We now use the well-known Wiener-Itô chaos expansion Theorem to define the following space (\(\mathcal{S} \)) of stochastic test functions and the dual space (\(\mathcal{S}^* \) of stochastic distributions:

Definition 2.2 a) We define the Hida space (\(\mathcal{S} \)) of stochastic test functions to be all \(\psi \in L^2(\mathbb{P}) \) whose expansion
\[
\psi(\omega) = \sum_{\alpha \in \mathcal{J}} a_\alpha \mathcal{H}_\alpha(\omega)
\]
satisfies
\[
\|\psi\|_k^2 := \sum_{\alpha \in \mathcal{J}} a_\alpha^2 \alpha!(2N)^{k\alpha} < \infty \quad \text{for all } k = 1, 2, \ldots
\]
(2.6)
where
\[
(2N)^\gamma = (2 \cdot 1)^{\gamma_1}(2 \cdot 2)^{\gamma_2} \cdots (2 \cdot m)^{\gamma_m} \quad \text{if } \gamma = (\gamma_1, \ldots, \gamma_m) \in \mathcal{J}.
\]
(2.7)
We define the Hida space \((S)^*\) of stochastic distributions to be the set of formal expansions
\[
G(\omega) = \sum_{\alpha \in J} b_\alpha H_\alpha(\omega)
\]
such that
\[
\|G\|_q^2 := \sum_{\alpha \in J} b_\alpha^2 \alpha!(2N)^{\alpha q} < \infty \quad \text{for some } q < \infty.
\] (2.8)

We equip \((S)\) with the projective topology and \((S)^*\) with the inductive topology. Convergence in \((S)\) means convergence in \(\| \cdot \|_k\) for every \(k = 1, 2, \cdots\), while convergence in \((S)^*\) means convergence in \(\| \cdot \|_q\) for some \(q < \infty\). Then \((S)^*\) can be identified with the dual of \((S)\) and the action of \(G \in (S)^*\) on \(\psi \in (S)\) is given by
\[
\langle G, \psi \rangle_{(S)^*, (S)} := \sum_{\alpha \in J} \alpha! a_\alpha b_\alpha
\] (2.9)

In the sequel, we will denote the action \(\langle \cdot, \cdot \rangle_{(S)^*, (S)}\) simply with the symbol \(\langle \cdot, \cdot \rangle\). We can in a natural way define \((S)^*\)-valued integrals as follows:

Definition 2.3 (Integration in \((S)^*\)) Suppose \(Z : \mathbb{R} \to (S)^*\) has the property that
\[
\langle Z(t), \psi \rangle \in L^1(\mathbb{R}, dt) \quad \text{for all } \psi \in (S).
\]
Then the integral
\[
\int_{\mathbb{R}} Z(t) dt
\]
is defined to be the unique element of \((S)^*\) such that
\[
\left\langle \int_{\mathbb{R}} Z(t) dt, \psi \right\rangle = \int_{\mathbb{R}} \langle Z(t), \psi \rangle dt \quad \text{for all } \psi \in (S). \quad (2.10)
\]
Such functions \(Z(t)\) are called \(dt\)-integrable in \((S)^*\).

Let \(B(t)\) a standard Brownian motion on \((\Omega, \mathcal{F}, \mathbb{P})\). If we consider \(B(t)\) as a map \(B(\cdot) : \mathbb{R} \to (S)^*\), then \(B(t)\) is differentiable with respect to \(t\) and its derivative \(W(t) := \frac{d}{dt} B(t)\) exists in \((S)^*\) and is called white noise.

A fundamental property of the Wick product is the following relation to (Itô-)Skorohod integration. We recall the definition of Skorohod integral.

Let \(u(t, \omega), \omega \in \Omega, t \in [0, T]\) be a stochastic process (always assumed to be \((t, \omega)\)-measurable), such that
\[
u(t, \cdot) \quad \text{is } \mathcal{F}\text{-measurable for all } t \in [0, T]
\] (2.11)
and
\[E[u^2(t,\omega)] < \infty \quad \text{for all } t \in [0,T]. \quad (2.12) \]

Definition 2.4 Suppose \(u(t,\omega) \) is a stochastic process satisfying (2.11), (2.12) and with Wiener-Itô chaos expansion
\[u(t,\omega) = \sum_{n=0}^{\infty} I_n(f_n(\cdot,t)). \quad (2.13) \]

Then we define the Skorohod integral of \(u \) by
\[\delta(u) : = \int_{\mathbb{R}} u(t,\omega) \delta B(t) := \sum_{n=0}^{\infty} I_{n+1}(\tilde{f}_n) \quad \text{(when convergent)} \quad (2.14) \]
where \(\tilde{f}_n \) is the symmetrization of \(f_n(t_1,\ldots,t_n,t) \) as a function of \(n+1 \) variables \(t_1,\ldots,t_n,t \).

We say \(u \) is Skorohod-integrable and write \(u \in \text{dom}(\delta) \) if the series in (2.14) converges in \(L^2(\mathbb{P}) \). This occurs iff
\[E[\delta(u)^2] = \sum_{n=0}^{\infty} (n+1)! \|\tilde{f}_n\|_{L^2(\mathbb{R}^{n+1})}^2 < \infty. \quad (2.15) \]

Theorem 2.5 Suppose \(f(t,\omega) : \mathbb{R} \times \Omega \to \mathbb{R} \) is Skorohod integrable. Then \(f(t,\cdot) \diamond W(t) \) is dt-integrable in \((\mathbb{S})^*\) and
\[\int_{\mathbb{R}} f(t,\omega) \delta B(t) = \int_{\mathbb{R}} f(t,\omega) \diamond W(t) dt, \quad (2.16) \]
where the integral on the left is the Skorohod integral (which coincides with the Itô integral if \(f \) is adapted) and \(f(t,\omega) \diamond W(t) \) denotes the Wick product in \((\mathbb{S})^*\).

2.1 Integration

We now review briefly how the classical white noise theory can be used in order to construct a stochastic integral with respect to a fractional Brownian motion \(B^{(H)}(t) \) for any \(H \in (0,1) \) as in the approach of [10]. The main idea is to relate the fractional Brownian motion \(B^{(H)}(t) \) with Hurst parameter \(H \in (0,1) \) to classical Brownian motion \(B(t) \) via the following operator \(M \):
Definition 2.6 The operator $M = M^{(H)}$ is defined on functions $f \in S(\mathbb{R})$ by

$$
\hat{M}f(y) = |y|^{\frac{1}{2}-H} \hat{f}(y); \quad y \in \mathbb{R}
$$

(2.17)

where

$$
\hat{g}(y) := \int_\mathbb{R} e^{-ixy}g(x)dx
$$

(2.18)

denotes the Fourier transform.

For further details on the operator M, we refer to [10] and to [6]. The operator M extends in a natural way from $S(\mathbb{R})$ to the space

$$
L^2_H(\mathbb{R}) := \left\{ f : \mathbb{R} \to \mathbb{R} \text{ (deterministic); } |y|^{\frac{1}{2}-H} \hat{f}(y) \in L^2(\mathbb{R}) \right\}
$$

where $\|f\|_{L^2_H(\mathbb{R})} = \|Mf\|_{L^2(\mathbb{R})}$.

The inner product on this space is

$$
\langle f, g \rangle_{L^2_H(\mathbb{R})} = \langle Mf, Mg \rangle_{L^2(\mathbb{R})}.
$$

(2.19)

If $(\xi_n)_{n \in \mathbb{N}}$ is the orthonormal basis of $L^2(\mathbb{R})$ introduced in (2.3), then

$$
e_n := M^{-1}\xi_n, \quad \forall n \in \mathbb{N}
$$

(2.20)

is an orthonormal basis for $L^2_H(\mathbb{R})$. In particular, the indicator function $\chi_{[0,t]}(\cdot)$ is easily seen to belong to this space, for fixed $t \in \mathbb{R}$, and we write

$$
M\chi_{[0,t]}(x) = M[0,t](x).
$$

We now define, for $t \in \mathbb{R}$

$$
\tilde{B}^{(H)}(t) := \tilde{B}^{(H)}(t, \omega) := \langle \omega, M[0,t](\cdot) \rangle
$$

(2.21)

Then $\tilde{B}^{(H)}(t)$ is Gaussian, $\tilde{B}^{(H)}(0) = E[\tilde{B}^{(H)}(t)] = 0$ for all $t \in \mathbb{R}$ and

$$
E \left[\tilde{B}^{(H)}(s) \tilde{B}^{(H)}(t) \right] = \frac{1}{2} \|t|^{2H} + |s|^{2H} - |s-t|^{2H}
$$

as follows by [10], (A.10). Therefore the continuous version of $B^{(H)}(t)$ of $\tilde{B}^{(H)}(t)$ is a fractional Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $f \in L^2_H(\mathbb{R})$ and define

$$
\int_\mathbb{R} f(t)dB^{(H)}(t) := \int_\mathbb{R} Mf(t)dB(t); \quad f \in L^2_H(\mathbb{R}).
$$

(2.22)
Now define the fractional white noise \(W^H(t) \) as the derivative with respect to \(t \) of \(B^H(t) \)

\[
\frac{dB^H(t)}{dt} = W^H(t) \text{ in } (S)^*.
\]

In particular, by [7] we obtain that the relation between fractional and classical white noise is given by

\[
W^H(t) = MW(t).
\]

In view of Theorem 2.5 the following definition is natural:

Definition 2.7 (The fractional Wick-Itô-Skorohod (WIS) integral)

Let \(Y : \mathbb{R} \rightarrow (S)^* \) be such that \(Y(t) \circ W^H(t) \) is \(dt \)-integrable in \((S)^*\). Then we say that \(Y \) is \(dB^H \)-integrable and we define the Wick-Itô-Skorohod (WIS) integral of \(Y(t) = Y(t, \omega) \) with respect to \(B^H(t) \) by

\[
\int_{\mathbb{R}} Y(t, \omega) dB^H(t) := \int_{\mathbb{R}} Y(t) \circ W^H(t) dt.
\]

Note that this definition coincides with (2.22) if \(Y = f \in L^2_H(\mathbb{R}) \).

Definition 2.8

A process \(Y(t) = \sum_{\alpha \in J} c_\alpha(t) \mathcal{H}_\alpha(\omega) \in (S)^* \) belongs to the space \(\mathcal{M} \) if \(c_\alpha(\cdot) \in L^2_H(\mathbb{R}) \) and \(\sum_{\alpha \in J} M c_\alpha(t) \mathcal{H}_\alpha(\omega) \) converges in \((S)^*\) for all \(t \).

Then the following fundamental relation holds.

Proposition 2.9 (Integration) [BØSW, (5.2)], [Ø, (3.16)] Suppose \(Y : \mathbb{R} \rightarrow (S)^* \) is \(dB^H \)-integrable (Definition 2.7) and \(Y \in \mathcal{M} \). Then

\[
\int_{\mathbb{R}} Y(t) dB^H(t) = \int_{\mathbb{R}} MY(t) \delta B(t).
\]

2.2 Differentiation

We now recall the approach in [16] to differentiation, as modified and extended by [10]:

Definition 2.10 Let \(F : \Omega \rightarrow \mathbb{R} \) and choose \(\gamma \in \Omega \). Then we say \(F \) has a directional \(M \)-derivative in the direction \(\gamma \) if

\[
D^{(H)}_\gamma F(\omega) := \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} [F(\omega + \varepsilon M\gamma) - F(\omega)]
\]

exists almost surely in \((S)^*\). In that case we call \(D^{(H)}_\gamma F \) the directional \(M \)-derivative of \(F \) in the direction \(\gamma \).
Definition 2.11 We say that $F: \Omega \to \mathbb{R}$ is differentiable if there exists a function
\[\Psi : \mathbb{R} \to (\mathbb{S})^* \]
in \mathcal{M} such that
\[D_{\gamma}^{(H)} F(\omega) = \int_{\mathbb{R}} M\Psi(t)M\gamma(t)dt \quad \text{for all} \quad \gamma \in L^2_H(\mathbb{R}). \] (2.28)

Then we write
\[D_t^{(H)} F := \frac{\partial^{(H)}}{\partial \omega} F(t, \omega) = \Psi(t) \] (2.29)
and we call $D_t^{(H)} F$ the Malliavin derivative or the stochastic gradient of F at t.

In the classical case ($H = \frac{1}{2}$) we use the notation D_t for the corresponding Malliavin derivative.

Proposition 2.12 [BØSW, (5.1)] Let $F \in (\mathbb{S})^*$. Then
\[D_t F = M D_t^{(H)} F \quad \text{for a.a.} \quad t \in \mathbb{R}. \] (2.30)

Proposition 2.13 [BØSW, Theorem 5.3] Suppose $Y: \mathbb{R} \to (\mathbb{S})^*$ is $dB^{(H)}$-integrable. If $D_t Y(\cdot): \mathbb{R} \to (\mathbb{S})^*$ is $dB^{(H)}$-integrable for every t, then
\[D_t^{(H)} \left(\int_{\mathbb{R}} Y(s)dB^{(H)}(s) \right) = \int_{\mathbb{R}} D_t^{(H)} Y(s)dB^{(H)}(s) + Y(t). \] (2.31)

Definition 2.14 Let $\mathbb{D}_{1,2}^{(H)}$ be the set of all $F \in L^2(\mathbb{P})$ such that the Malliavin derivative $D_t^{(H)} F$ exists and
\[E \left[\int_{\mathbb{R}} [D_t^{(H)} F]^2 dt \right] < \infty \] (2.32)

The following result has been obtained with a different proof in Lemma 2 of [18].

Lemma 2.15 Suppose $g \in L^2_H(\mathbb{R})$ and let $F \in \mathbb{D}_{1,2}^{(H)}$. Then
\[F \circ \int_{\mathbb{R}} g(t)dB^{(H)}(t) = F \cdot \int_{\mathbb{R}} g(t)dB^{(H)}(t) - \langle g, D_t^{(H)} F \rangle_{L^2_H(\mathbb{R})} \] (2.33)
3 The forward integral

By following the approach of [23], we now define the forward integral with respect to the fractional Brownian motion as follows:

Definition 3.1

a) The (classical) forward integral of a real valued measurable process Y with integrable trajectories is defined by

$$
\int_0^T Y(t) d^- B^{(H)}(t) = \lim_{\epsilon \to 0} \int_0^T Y(t) \frac{B^{(H)}(t + \epsilon) - B^{(H)}(t)}{\epsilon} dt,
$$

provided that the limit exists in probability under \mathbb{P}.

b) The (generalized) forward integral of a real valued measurable process Y with integrable trajectories is defined by

$$
\int_0^T Y(t) d^- B^{(H)}(t) = \lim_{\epsilon \to 0} \int_0^T Y(t) \frac{B^{(H)}(t + \epsilon) - B^{(H)}(t)}{\epsilon} dt,
$$

provided that the limit exists in $(\mathcal{S})^*$.

Note that in the generalized definition of forward integral, the limit is required to exist in the Hida space of stochastic distributions $(\mathcal{S})^*$ introduced in Definition 2.2. Convergence in $(\mathcal{S})^*$ is also explained in Section 2.

Corollary 3.2 Let $\psi(t) = \psi(t, \omega)$ be a measurable forward integrable process and assume that ψ is càglàd. The forward integral of ψ with respect to the fractional Brownian motion $B^{(H)}$ coincides with

$$
\int_0^T \psi(t) d^- B^{(H)}(t) = \lim_{|\Delta| \to 0} \sum_{j=1}^N \psi(t_j) \Delta B^{(H)}_{t_j}
$$

whenever the left-hand limit exists in probability, where $\pi : 0 = t_0 < t_1 < \cdots < t_N = T$ is a partition of $[0, T]$ with mesh size $|\Delta| = \sup_{j=0, \ldots, N-1} |t_{j+1} - t_j|$ and $\Delta B^{(H)}_{t_j} = B^{(H)}_{t_{j+1}} - B^{(H)}_{t_j}$.

Proof. Let ψ be a càglàd forward integrable process and

$$
\psi^{(\Delta)}(t) = \sum_k \psi(t_k) \chi_{(t_k, t_{k+1}]}(t)
$$

(3.2)
be a càglàd step function approximation to \(\psi \). Then \(\psi(\Delta)(t) \) converges bound-
edly almost surely to \(\psi(t) \) as \(|\Delta| \to 0 \). The forward integral of \(\psi(\Delta)(t) \) is then given by

\[
\int_0^T \psi(\Delta)(t) d\mathcal{H}(t) = \lim_{\epsilon \to 0} \int_0^T \psi(\Delta)(s) \frac{B(\mathcal{H})(s + \epsilon) - B(\mathcal{H})(s)}{\epsilon} ds
\]

\[
= \lim_{\epsilon \to 0} \sum_k \psi(t_k) \int_{t_k}^{t_{k+1}} \frac{1}{\epsilon} \int_s^{s+\epsilon} dB(\mathcal{H})(u) ds
\]

\[
= \lim_{\epsilon \to 0} \sum_k \psi(t_k) \Delta B_{t_k}(\mathcal{H}), \tag{3.3}
\]

where \(\Delta B_{t_k}(\mathcal{H}) = B_{t_k+1}(\mathcal{H}) - B_{t_k}(\mathcal{H}) \). Hence (3.1) follows by the dominated con-
vergence theorem and by (3.3).

For the sequel we will use the same notation as in Section 2.

Definition 3.3 The space \(L_{1,2}^{\mathcal{H}} \) consists of all càglàd processes

\[
\psi(t) = \sum_{\alpha \in J} c_{\alpha}(t) \mathcal{H}_{\alpha}(\omega) \in (S)^*
\]

for every \(t \in [0, T] \) and such that

\[
\|\psi\|_{L_{1,2}^{\mathcal{H}}}^2 := \sum_{\alpha \in J} \sum_{i=1}^{\infty} \alpha_i \alpha_i! \|c_{\alpha}\|_{L^2([0, T])}^2 < \infty. \tag{3.4}
\]

Note that if \(\psi(t) \in (S)^* \) for every \(t \in [0, T] \), then \(D_s \psi(t) \) exists in \((S)^* \) (see Lemma 3.10 of [1]). We recall a preliminary lemma needed in the following.

Lemma 3.4 Let \((\Gamma, \mathcal{G}, m)\) be a measure space. Let \(f_\epsilon : \Gamma \to B, \epsilon \in \mathbb{R}, \) be measurable functions with values in a Banach space \((B, \| \cdot \|_B)\). If \(f_\epsilon(\gamma) \to f_0(\gamma) \) as \(\epsilon \to 0 \) for almost every \(\gamma \in \Gamma \) and there exists \(K < \infty \) such that

\[
\int_\Gamma \|f_\epsilon(\gamma)\|_B dm(\gamma) < K \tag{3.5}
\]

for all \(\epsilon \in \mathbb{R}, \) then

\[
\int_\Gamma f_\epsilon(\gamma) dm(\gamma) \to \int_\Gamma f_0(\gamma) dm(\gamma) \tag{3.6}
\]

in \(\| \cdot \|_B \).
Proof. The proof is analogous to the one of Theorem II.21.2 of [22]. □

Lemma 3.5 Suppose that $\psi \in \mathbb{L}_{1/2}^{(H)}$. Then

$$M_{t^+}D_{t^+}\psi(t) := \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_t^{t+\epsilon} M_s D_s \psi(t) ds \quad (3.7)$$

exists in $L^2(\mathbb{P})$ for all t. Moreover

$$\int_0^T M_{t^+}D_{t^+}\psi(t) dt = \lim_{\epsilon \to 0} \int_0^T \left(\frac{1}{\epsilon} \int_t^{t+\epsilon} M_s D_s \psi(t) ds \right) dt \quad (3.8)$$

in $L^2(\mathbb{P})$ and

$$E \left[\left(\int_0^T M_{s^+}D_{s^+}\psi(s) ds \right)^2 \right] < \infty. \quad (3.9)$$

Proof. Suppose that $\psi(t)$ has the expansion

$$\psi(t) = \sum_{\alpha \in J} c_{\alpha}(t) \mathcal{H}_\alpha(\omega).$$

In the sequel we drop ω in $\mathcal{H}_\alpha(\omega)$ for the sake of simplicity. Then we have

$$D_s \psi(t) = \sum_{\alpha \in J} \sum_{i=1}^{\infty} c_{\alpha}(t) \alpha_i \mathcal{H}_{\alpha - e_i(s)} \xi_i(s)$$

and

$$M_s D_s \psi(t) = \sum_{\alpha \in J} \sum_{i=1}^{\infty} c_{\alpha}(t) \alpha_i \mathcal{H}_{\alpha - e_i(s)} \eta_i(s),$$

where $\eta_i(s) = M\xi_i(s)$. Hence

$$\frac{1}{\epsilon} \int_t^{t+\epsilon} M_s D_s \psi(t) ds = \sum_{\alpha \in J} \sum_{i=1}^{\infty} (c_{\alpha}(t) \frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_i(s) ds) \alpha_i \mathcal{H}_{\alpha - e_i(s)}.$$

Since $\eta_i(s) = M\xi(s)$ is a continuous function, we have that

$$\frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_i(s) ds \to \eta_i(t)$$

as $\epsilon \to 0$.

We apply now Lemma 3.4 with $\gamma = (\alpha, i)$, $dm(\gamma) = \sum_{\alpha \in J} \sum_{i=1}^{\infty} \delta(\alpha, i)$, where
\(\delta_x\) denotes the point mass at \(x\), \(B = L^2(\mathbb{P})\) and \(f_\epsilon = (c_\alpha(t) \frac{1}{\epsilon} \int_{t}^{t+\epsilon} \eta_i(s) ds) \alpha_i \mathcal{H}_{\alpha - \epsilon(i)}\).

We obtain

\[
\int_G \|f_\epsilon(\gamma)\|_B^2 dm(\gamma) = \sum_{\alpha \in \mathcal{J}} \sum_{i=1}^{\infty} \|f_\epsilon(\gamma)\|_B^2 \mathcal{H}_\alpha = \sum_{\alpha \in \mathcal{J}} \sum_{i=1}^{\infty} (c_\alpha(t) \frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_i(s) ds)^2 \alpha_i \alpha!
\]

since

\[
\frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_i(s) ds = \langle M\xi_i, \frac{1}{\epsilon} \chi_{[t,t+\epsilon]} \rangle = \frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_i(s) ds \leq \frac{(t + \epsilon)^{2H} - t^{2H}}{\epsilon},
\]

where we have used that the fact that \(\|e_i\|_{L^2_\mathbb{R}(\mathbb{R})} = 1\) and the equality

\[
\int_{\mathbb{R}} |M[a,b](x)|^2 dx = (b - a)^{2H}.
\]

Since we have \(\sum_{\alpha \in \mathcal{J}} \sum_{i=1}^{\infty} c_\alpha(t) \alpha_i \alpha! < \infty\) for almost every \(t\), by Lemma 3.4 it follows that \(\sum_{\alpha \in \mathcal{J}} \sum_{i=1}^{\infty} (c_\alpha(t) \frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_i(s) ds) \alpha_i \mathcal{H}_{\alpha - \epsilon(i)}\) converges to

\[
\sum_{\alpha \in \mathcal{J}} \sum_{i=1}^{\infty} c_\alpha(t) \eta_i(t) \alpha_i \mathcal{H}_{\alpha - \epsilon(i)}
\]

in \(L^2(\mathbb{P})\).

We now prove (3.8). Consider

\[
\int_0^T \frac{1}{\epsilon} \int_t^{t+\epsilon} M_x D_s \psi(t) ds dt = \sum_{\alpha \in \mathcal{J}} \sum_{i=1}^{\infty} \int_0^T \left(c_\alpha(t) \frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_i(s) ds \right) dt \alpha_i \mathcal{H}_{\alpha - \epsilon(i)}.
\]

Now assuming \(f_\epsilon = \int_0^T \left(c_\alpha(t) \frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_i(s) ds \right) dt \alpha_i \mathcal{H}_{\alpha - \epsilon(i)}\) and as before \(\gamma = (\alpha, i), B = L^2(\mathbb{P}), dm(\gamma) = \sum_{\alpha \in \mathcal{J}} \sum_{i=1}^{\infty} \delta_{\alpha, i}\), where \(\delta_x\) denotes the point mass.
at x, we use again Lemma 3.4. We obtain

$$\int_{\Gamma} \| f_\epsilon(\gamma) \|^2_2 dm(\gamma) = \sum_{\alpha \in J} \sum_{i=1}^{\infty} \| f_\epsilon(\gamma) \|^2_{L^2(\mathbb{P})} = \sum_{\alpha \in J} \sum_{i=1}^{\infty} \left(\int_{0}^{T} c_\alpha(t) \frac{1}{\epsilon} \int_{t}^{t+\epsilon} \eta_i(s) ds \frac{1}{\epsilon} \right)^2 \alpha_i \alpha!$$

$$\leq \sum_{\alpha \in J} \sum_{i=1}^{\infty} \left(\int_{0}^{T} c_\alpha(t) \left[\frac{(t+\epsilon)^{2H} - t^{2H}}{\epsilon} \right] dt \right)^2 \alpha_i \alpha!$$

$$\leq \sum_{\alpha \in J} \sum_{i=1}^{\infty} \left(\int_{0}^{T} c_\alpha(t)^2 dt \right) \left(\int_{0}^{T} \left[\frac{(t+\epsilon)^{2H} - t^{2H}}{\epsilon} \right]^2 dt \right) \alpha_i \alpha! \tag{3.10}$$

Since $\psi \in L^{(H)}_{1,2}$ by Lemma 3.4 we can conclude that the limit 3.8 exists in $L^2(\mathbb{P})$ and also that (3.9) holds.

Lemma 3.6 Suppose that $\psi \in L^{(H)}_{1,2}$ and let

$$\psi^{(\Delta)}(s) = \sum_{k} \psi(t_k) \chi(t_k, t_{k+1})(s) \tag{3.11}$$

be a càglàd step function approximation to ψ, where $\Delta = \max_i |\Delta t_i|$ is the maximal length of the subinterval in the partition $0 = t_0 < \cdots < t_n = T$ of $[0, T]$. Then $\psi^{(\Delta)} \in L^{(H)}_{1,2}$ for all Δ and

$$\int_{0}^{T} M_{s+D_s+} \psi^{(\Delta)}(s) ds \rightarrow \int_{0}^{T} M_{s+D_s+} \psi(s) ds \quad \text{in } L^2(\mathbb{P}) \tag{3.12}$$

as $|\Delta| \rightarrow 0$.

Proof. Since $\psi^{(\Delta)}(s) = \sum_{\alpha \in J} c_\alpha^{(\Delta)}(s) \mathcal{H}_\alpha(\omega)$ with

$$c_\alpha^{(\Delta)}(s) = \sum_{k} c_\alpha(t_k) \chi(t_k, t_{k+1})(s)$$

and

$$\| c_\alpha^{(\Delta)} \|_{L^2([0,T])} \leq \text{const.} \| c_\alpha \|_{L^2([0,T])} \quad \forall \alpha, \tag{3.13}$$
it follows that \(\psi^{(\Delta)} \in \mathbb{L}^{(H)}_{1,2} \). We have
\[
\frac{1}{\epsilon} \int_{t}^{t+\epsilon} M_s D_s \psi^{(\Delta)}(t) ds = \sum_{\alpha \in \mathbb{J}} \sum_{i=1}^{\infty} \left(\int_{0}^{T} (c^{(\Delta)}_\alpha(t) - \sum_{j=1}^{\infty} \psi(t_j) \chi_{(t_j, t_{j+1})}(t) \right) \quad \alpha;_{-\epsilon(\cdot)}.
\]

If we assume \(\gamma = (\alpha, i), B = L^{2}(\mathbb{P}), m(d\gamma) = \sum_{\alpha \in \mathbb{J}} \sum_{i=1}^{\infty} \delta_{(\alpha, i)}, \) where \(\delta_{x} \) denotes the point mass at \(x \), and \(f_{\Delta} = \left(\int_{0}^{T} c^{(\Delta)}_\alpha(t) \sum_{j=1}^{\infty} \psi(t_j) \right) \alpha;_{-\epsilon(\cdot)}, \)

with the same argument as in (3.10) by Lemma 3.4 we obtain that
\[
\int_{0}^{T} \left(\frac{1}{\epsilon} \int_{t}^{t+\epsilon} M_s D_s \psi(t) ds \right) dt = \lim_{|\Delta| \rightarrow 0} \int_{0}^{T} \left(\frac{1}{\epsilon} \int_{t}^{t+\epsilon} M_s D_s \psi^{(\Delta)}(t) ds \right) dt
\]
in \(L^{2}(\mathbb{P}) \) for almost every \(s \), since \(c^{(\Delta)}_\alpha \) converges by dominated convergence to \(c^{(\Delta)}_\alpha \) in \(L^{2}(\mathbb{P}) \) and \(\psi^{(\Delta)} \in \mathbb{L}^{(H)}_{1,2} \). Using (3.14) and Lemma 3.5 we conclude that (3.12) holds.

We now investigate the relation among forward integrals and WIS-integrals for \(H > \frac{1}{2} \).

In [4] and [19] a similar relation is established between the symmetric integral and the divergence, in [9] between the forward integral and the fractional Wick-Itô-Skorohod integral. For the case \(H < \frac{1}{2} \), we refer to [2].

Theorem 3.7 Let \(H \in (0, 1) \). Suppose \(\psi \in \mathbb{L}^{(H)}_{1,2} \) and that one of the following conditions holds:

i) \(\psi \) is Wick-Itô-Skorohod integrable (Definition 2.7);

ii) \(\psi \) is forward integrable in \((S)^*\) (Definition 3.1).

Then
\[
\int_{0}^{T} \psi(t) dB^{(H)}(t) = \int_{0}^{T} \psi(t) dB^{(H)}(t) + \int_{0}^{T} M_{t+} D_{t+} \psi(t) dt, \quad (3.15)
\]
holds as an identity in \((S)^*\), where here \(\int_{0}^{T} \psi(t) dB^{(H)}(t) \) is the WIS-integral of Definition 2.7.

Proof. We prove (3.15) assuming that hypothesis i) is in force. The argument works symmetrically under hypothesis ii). Let \(\psi \in \mathbb{L}^{(H)}_{1,2} \). Since \(\psi \) is càglàd, we can approximate it as
\[
\psi(t) = \lim_{|\Delta| \rightarrow 0} \sum_{j} \psi(t_j) \chi_{(t_j, t_{j+1})}(t) \quad \text{a.e.}
\]
where for any partition $0 = t_0 < t_1 < \cdots < t_N = T$ of $[0, T]$, with $\Delta t_j = t_{j+1} - t_j$, we have put $|\Delta t| = \sup_{j=0, \ldots, N-1} \Delta t_j$.

As before we put $\psi^{(\Delta)}(t) = \sum_{j=0}^{N-1} \psi(t_k) \chi_{(t_k, t_{k+1})}(t)$ and evaluate

\[
\int_0^T \psi^{(\Delta)}(t) d^- B^{(H)}(t) = \lim_{\epsilon \to 0} \int_0^T \psi^{(\Delta)}(t, \omega) \frac{B^{(H)}(t + \epsilon) - B^{(H)}(t)}{\epsilon} dt =
\]

\[
\lim_{\epsilon \to 0} \int_0^T \left(\sum_j \psi(t_j) \chi_{(t_j, t_{j+1})}(t) \right) \frac{1}{\epsilon} \int_t^{t+\epsilon} d B^{(H)}(u) dt =
\]

\[
\lim_{\epsilon \to 0} \int_0^T \left(\sum_j \psi(t_j) \chi_{(t_j, t_{j+1})}(t) \right) \frac{1}{\epsilon} \int_t^{t+\epsilon} W^{(H)}(u) du dt +
\]

\[
\lim_{\epsilon \to 0} \sum_j \int_0^T \chi_{(t_j, t_{j+1})}(t) \frac{1}{\epsilon} \int_{\mathbb{R}} \chi_{[t,t+\epsilon]}(u) M^2_u D^{(H)}_u \psi(t_j) du dt.
\]

The first limit is equal to

\[
\lim_{\epsilon \to 0} \int_0^T \left(\sum_j \psi(t_j) \chi_{(t_j, t_{j+1})}(t) \right) \frac{1}{\epsilon} \int_t^{t+\epsilon} d B^{(H)}(u) dt =
\]

\[
\lim_{\epsilon \to 0} \int_0^T \left(\sum_j \psi(t_j) \chi_{(t_j, t_{j+1})}(t) \right) \frac{1}{\epsilon} \int_t^{t+\epsilon} W^{(H)}(u) du dt =
\]

\[
\lim_{\epsilon \to 0} \int_0^T \frac{1}{\epsilon} \left(\int_{u-\epsilon}^{u} \sum_j \psi(t_j) \chi_{(t_j, t_{j+1})}(t) \right) \frac{1}{\epsilon} \int_t^{t+\epsilon} W^{(H)}(u) du =
\]

\[
\int_0^T \psi^{(\Delta)}(u) \frac{1}{\epsilon} \int_t^{t+\epsilon} W^{(H)}(u) du,
\]

that converges in $(8)^*$ to $\int_0^T \psi(u) \frac{1}{\epsilon} \int_t^{t+\epsilon} W^{(H)}(u) du = \int_0^T \psi(u) d B^{(H)}(u)$. For the second limit we get

\[
\lim_{\epsilon \to 0} \frac{1}{\epsilon} \sum_j \int_0^T \chi_{(t_j, t_{j+1})}(t) \int_t^{t+\epsilon} M^2_u D^{(H)}_u \psi(t_j) du dt =
\]

\[
\lim_{\epsilon \to 0} \int_0^T \frac{1}{\epsilon} \int_t^{t+\epsilon} M^2_u D^{(H)}_u \psi^{(\Delta)}(t) du dt =
\]

\[
\lim_{\epsilon \to 0} \int_0^T \frac{1}{\epsilon} \int_t^{t+\epsilon} M_u D_u \psi^{(\Delta)}(t) du dt.
\]

By Lemmas 3.5 and 3.6 the last limit converges to

\[
\int_0^T M_u D_u \psi(u) du
\]

(3.16)
in $L^2(\mathbb{P})$. \hfill \Box

An analogous relation to the one of Theorem 3.7 between Stratonovich integrals and Wick-Itô-Skorohod integrals for fractional Brownian motion is proved under different conditions in [18].

An Itô formula for forward integrals with respect to classical Brownian motion was obtained by [23] and then extended to the fractional Brownian motion case in [12]. Here we prove the following Itô formula for forward integrals with respect to fractional Brownian motion as a consequence of Lemma 3.8.

Lemma 3.8 Let $G \in (S)^*$ and suppose that ψ is forward integrable. Then

$$G(\omega) \int_0^T \psi(t) d^- B^{(H)}(t) = \int_0^T G(\omega) \psi(t) d^- B^{(H)}(t) \quad (3.17)$$

Proof. This is immediate by Definition 3.1. \hfill \Box

Definition 3.9 Let ψ be a forward integrable process and let $\alpha(s)$ be a measurable process such that $\int_0^t |\alpha(s)| ds < \infty$ a.s. for all $t \geq 0$. Then the process

$$X(t) := x + \int_0^t \alpha(s) ds + \int_0^t \psi(s) d^- B^{(H)}(s); \quad t \geq 0 \quad (3.18)$$

is called a fractional forward process. As a shorthand notation for (3.18) we write

$$d^- X(t) := \alpha(t) dt + \psi(t) d^- B^{(H)}(t); \quad X(0) = x. \quad (3.19)$$

Theorem 3.10 Let

$$d^- X(t) = \alpha(t) dt + \psi(t) d^- B^{(H)}(t); \quad X(0) = x$$

be a fractional forward process. Suppose $f \in C^2(\mathbb{R}^2)$ and put $Y(t) = f(t, X(t))$.

Then if $\frac{1}{2} < H < 1$, we have

$$d^- Y(t) = \frac{\partial f}{\partial t}(t, X(t)) dt + \frac{\partial f}{\partial x}(t, X(t)) d^- X(t)$$
Proof. Let 0 = t_0 < t_1 < \cdots < t_N = t be a partition of [0, t]. By using Taylor expansion, we get by equation (3.17)

\[Y(t) - Y(0) = \sum_j Y(t_{j+1}) - Y(t_j) \]

\[= \sum_j f(t_{j+1}, X(t_{j+1})) - f(t_j, X(t_j)) \]

\[= \sum_j \frac{\partial f}{\partial t}(t_j, X(t_j)) \Delta t_j + \sum_j \frac{\partial f}{\partial x}(t_j, X(t_j)) \Delta X(t_j) \]

\[+ \frac{1}{2} \sum_j \frac{\partial^2 f}{\partial x^2}(t_j, X(t_j))(\Delta X(t_j))^2 + \sum_j o((\Delta t_j)^2) + o((\Delta X(t_j))^2) \]

\[= \sum_j \frac{\partial f}{\partial t}(t_j, X(t_j)) \Delta t_j + \sum_j \int_{t_j}^{t_{j+1}} \frac{\partial f}{\partial x}(t_j, X(t_j)) d^-X_t \]

\[+ \frac{1}{2} \sum_j \frac{\partial^2 f}{\partial x^2}(t_j, X(t_j))(\Delta X(t_j))^2 + \sum_j o((\Delta t_j)^2) + o((\Delta X(t_j))^2) \]

where \(\Delta X(t_j) = X(t_{j+1}) - X(t_j) \). Since \(\frac{1}{2} < H < 1 \), the quadratic variation of the fractional Brownian motion is zero and we are left with the first terms of the sum above, which converges to \(\int_0^t \frac{\partial f}{\partial s}(s, X(s)) ds + \int_0^t \frac{\partial f}{\partial x}(s, X(s)) d^-X(s) \).

Using the results of Theorem 3.7 and 3.10, we obtain a general Itô formula for functionals of Wick-Itô-Skorohod integrals with respect to the fractional Brownian motion when \(\frac{1}{2} < H < 1 \). An Itô formula for \(\frac{1}{2} < H < 1 \) has been already proved in [9] and in [4], but under more restrictive hypotheses. Here we provide a different proof under weaker assumptions. If \(\frac{1}{2} < H < 1 \) this theorem extends Theorem 3.8 in [7]. A related result, obtained independently and by a different method, can be found in [11]. Moreover our results hold in a different setting.

Theorem 3.11 (Itô formula for the WIS-integral) Suppose \(\frac{1}{2} < H < 1 \). Let \(\gamma(s) \) be a measurable process such that \(\int_0^t |\gamma(s)| ds < \infty \) a.s. for all \(t \geq 0 \), let \(\psi(t) = \sum_{\alpha \in \mathbb{J}} c_{\alpha}(t) \xi_{\alpha}(\omega) \) be càglàd, WIS-integrable and such that

\[\sum_{\alpha \in \mathbb{J}} \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \|c_{\alpha}\|_{L^2([0,T])} \alpha_i(\alpha_k + 1)\alpha_i < \infty. \]
Suppose that $M_t D_t \psi(s)$ is also WIS-integrable for almost all $t \in [0, T]$. Consider

$$X(t) = x + \int_0^t \gamma(s) ds + \int_0^t \psi(s) dB^{(H)}(s), \quad t \in [0, T],$$

or, in short-hand notation,

$$dX(t) = \gamma(t) dt + \psi(t) dB^{(H)}(t), \quad X(0) = x.$$

Suppose that M_t has a càdlàg version (Remark 3.12). Let $f \in C^2(\mathbb{R}^2)$ and put $Y(t) = f(t, X(t))$. Then on $[0, T]$

$$dY(t) = \frac{\partial f}{\partial t}(t, X(t)) dt + \frac{\partial f}{\partial x}(t, X(t)) dX(t) + \frac{\partial^2 f}{\partial x^2}(t, X(t)) \psi(t) M_{t+} D_{t+} X(t) dt,$$

and equivalently

$$dY(t) = \frac{\partial f}{\partial t}(t, X(t)) dt + \frac{\partial f}{\partial x}(t, X(t)) dX(t) + \frac{\partial^2 f}{\partial x^2}(t, X(t)) \psi(t) M^2(\psi_{[0, t]}), dt$$

$$+ \left[\frac{\partial^2 f}{\partial x^2}(t, X(t)) \psi(t) \int_0^t M^2_t D_t^{(H)} \psi(u) dB^{(H)}(u) \right] dt,$$

where $M^2(\psi_{[0, t]}), t = M^2(\psi_{[0, t]})(t)$.

PROOF. For simplicity we put $\alpha = 0$. By Theorem 3.7 we have

$$X(t) = \int_0^t \psi(s) dB^{(H)}(s) - \int_0^t M^2_s D_s^{(H)} \psi(s) ds$$

We note that

$$\frac{1}{\epsilon} \int_t^{t+\epsilon} M^2_s D^{(H)}_s (f'(X(t)) \psi(t)) ds = f'(X(t)) \frac{1}{\epsilon} \int_t^{t+\epsilon} M^2_s D^{(H)}_s \psi(t) ds$$

$$+ \psi(t) f''(X(t)) \frac{1}{\epsilon} \int_t^{t+\epsilon} M^2_s D^{(H)}_s X(t) dt$$

$$= \int_0^{t+\epsilon} M^2_s D^{(H)}_s (\psi_{[0, t]}(s)) ds$$

Since $\psi \in L^{(H)}_{1,2}$, the first term converges to $f'(X(t)) M^2_t D^{(H)}_t \psi(t)$ as $\epsilon \to 0$. For the second term we restrict our attention to

$$\frac{1}{\epsilon} \int_t^{t+\epsilon} M^2_s D^{(H)}_s X(t) ds = \frac{1}{\epsilon} \int_t^{t+\epsilon} \int_0^t M^2_s D^{(H)}_s \psi(u) dB^{(H)}(u) ds$$

$$+ \frac{1}{\epsilon} \int_t^{t+\epsilon} M^2_s (\psi_{[0, t]}) ds.$$
a) To study the convergence of the term a), we proceed as in Lemma 3.5. By using the chaos expansion we obtain

\[
\frac{1}{\epsilon} \int_t^{t+\epsilon} \int_0^t M^2_s D^{(H)}(u) \psi(u) dB^{(H)}(u) ds = \sum_{\alpha \in J} \sum_{i=1}^\infty \sum_{k=1}^\infty (c_{\alpha}, \xi_k)_t \frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_h(s) ds \alpha_i \mathcal{H}_{\alpha,-\epsilon(t),+\epsilon(t)}.
\]

Put \(\psi_{i,k,\alpha,\epsilon} := (c_{\alpha}, \xi_k)_t \frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_h(s) ds \alpha_i \mathcal{H}_{\alpha,-\epsilon(t),+\epsilon(t)} \). Then

\[
\sum_{\alpha \in J} \sum_{i=1}^\infty \sum_{k=1}^\infty \| \psi_{i,k,\alpha,\epsilon} \|^2_{L^2(\mathbb{P})} = \sum_{\alpha \in J} \sum_{i=1}^\infty \sum_{k=1}^\infty (c_{\alpha}, \xi_k)_t^2 \left(\frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_h(s) ds \right)^2 \alpha_i (\alpha_k + 1) ! \leq \left[\frac{(t + \epsilon)^{2H} - \epsilon^{2H}}{\epsilon} \right]^2 \sum_{\alpha \in J} \sum_{i=1}^\infty \sum_{k=1}^\infty \| c_{\alpha} \|^2_{L^2(0,T)} \| \xi_k \|^2_{L^2(0,T)} \alpha_i (\alpha_k + 1) ! \leq \left[\frac{(t + \epsilon)^{2H} - \epsilon^{2H}}{\epsilon} \right]^2 \sum_{\alpha \in J} \sum_{i=1}^\infty \sum_{k=1}^\infty \| c_{\alpha} \|^2_{L^2(0,T)} \alpha_i (\alpha_k + 1) !, \tag{3.23}
\]

where we have used that \(\| \xi_k \|^2_{L^2(0,T)} \leq \| \xi_k \|^2_{L^2(0,T)} = 1, \forall k = 1, 2, \ldots \). Since

\[
\frac{1}{\epsilon} \int_t^{t+\epsilon} \eta_h(s) ds \rightarrow \eta_h(t) \tag{3.24}
\]

and (3.23) holds, by Lemma 3.4 we conclude that

\[
\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_t^{t+\epsilon} \int_0^t M^2_s D^{(H)}(u) \psi(u) dB^{(H)}(u) ds = \int_0^t M^2_t D^{(H)}(u) \psi(u) dB^{(H)}(u)
\]

in \(L^2(\mathbb{P}) \).

b) Since \(\psi \in \mathbb{H}^{1,2}_{1,2} \), we have

\[
\frac{1}{\epsilon} \int_t^{t+\epsilon} M^2_s (\psi \chi_{[0,t]}) ds \rightarrow M^2(\psi \chi_{[0,t]}), \quad \text{a.e. and in } L^2(\mathbb{P}), \tag{3.26}
\]

where for the sake of simplcity we have put \(M^2(\psi \chi_{[0,t]}))_{t} = M^2(\psi \chi_{[0,t]})(t) \).

Let \(A_t = -\int_0^t M^2_{s+} D^{(H)}_s(\psi(s) ds \). Then by the Itô formula for forward integrals
we obtain
\[dY(t) = f'(X(t))dA_t + f'(X(t))d^-B^2(t) \]
\[= -f'(X(t))M_t + D_t + \psi(t)dt \]
\[+ \left[f'(X(t))M_t + D_t + \psi(t)f''(X(t))M_t + D_t + X(t) \right]dt \]
\[= f'(X(t))dX(t) + f''(X(t))\psi(t)M_t + D_t + X(t)dt \]
and by (3.25) and (3.26) we can conclude that
\[dY(t) = \frac{\partial f}{\partial t}(t, X(t))dt + \frac{\partial f}{\partial x}(t, X(t))dX(t) + \frac{\partial^2 f}{\partial x^2}(t, X(t))\psi(t)d\int_0^t f''(X(t))M_t + D_t + X(t)dt \]
\[= f'(X(t))dX(t) + f''(X(t))\psi(t)M_t + D_t + X(t)dt \]
Note that all the integrands appearing in (3.27) are well-defined because \(X_t \)
is càdlàg.

\[\square \]

Remark 3.12 Conditions under which the integral process admits a continuous modification are proved in [3] and [4].

Corollary 3.13 Assume that \(\psi \in L^2_H(\mathbb{R}) \), \(\alpha = 0 \) and otherwise let \(H, X, f, Y \) be as in Theorem 3.11. Then
\[dY(t) = \frac{\partial f}{\partial t}(t, X(t))dt + \frac{\partial f}{\partial x}(t, X(t))dX(t) + \frac{\partial^2 f}{\partial x^2}(t, X(t))\psi(t)dM^2(t, X(t))dt \]
(3.27)

Remark 3.14 In the case when \(\psi(s) \) is deterministic, a (different) Itô formula, valid for all \(H \in (0, 1) \) and for all \(x \)-entire functions \(f(t, x) \) of order 2, has been obtained in Theorem 11.1 of [15].

4 Examples

4.1 A special case

In [5] and [7] an Itô formula for the case when \(Y(t) = f(B^H(t)) \) is provided, valid for all \(H \in (0, 1) \). We recall here that formula
\[dY(t) = f'(X(t))dX(t) + Ht^{2H-1}f''(X(t))\psi(t)dt \]
(4.1)
We now show that if $H > \frac{1}{2}$ then (3.20) and (4.1) coincide in this case.

Proposition 4.1 For every $H \in (0, 1)$ we have

$$M_t + D_t + B^{(H)}(t) = H t^{2H-1}, \quad t \geq 0.$$

Proof. Let $t \geq 0$. We recall that $D_t^{(H)} B^{(H)}(u) = \chi_{[0,u)}(t)$. Hence we need to prove that

$$M_t + D_t + B^{(H)}(t) = \lim_{s \to t^-} \frac{1}{\epsilon} \int_t^{t+\epsilon} M_s^2 D_s^{(H)} B^{(H)}(t) ds$$

$$= [M_t^2 \chi_{[0,u]}(t)]_{t=\xi} = H t^{2H-1}$$

We consider $\psi(u) = \int_{\mathbb{R}} (M_t \chi_{[0,u]}(t))^2 \, dt$. Since, by [10], we have that $\psi(u) = u^{2H}$, we only need to show that $\psi'(u) = 2[M_t^2 \chi_{[0,u]}(t)]_{t=u}$. We rewrite $\psi(u)$ as follows

$$\psi(u) = \int_{\mathbb{R}} (M_t \chi_{[0,u]}(t))^2 \, dt$$

$$= \int_{\mathbb{R}} \chi_{[0,u]}(t) M_t^2 \chi_{[0,u]}(t) \, dt$$

$$= \int_0^u M_t^2 \chi_{[0,u]}(t) \, dt$$

by using the properties of the operator M. We compute

$$\psi(u + \epsilon) - \psi(u)$$

$$= \frac{1}{\epsilon} \left(\int_0^{u+\epsilon} M_t^2 \chi_{[0,u+a]}(t) \, dt - \int_0^u M_t^2 \chi_{[0,u]}(t) \, dt \right)$$

$$= \frac{1}{\epsilon} \left(\int_0^{u+\epsilon} M_t^2 \chi_{[0,u+a]}(t) \, dt + \int_0^u [M_t^2 \chi_{[0,u]}(t) - M_t^2 \chi_{[0,u]}(t)] \, dt \right)$$

by adding and subtracting $\int_0^u M_t^2 \chi_{[0,u]}(t) \, dt$. Since the operator M transforms $\chi_{[0,u]}(t)$ into a continuous function, we obtain

1. $\int_u^{u+\epsilon} M_t^2 \chi_{[0,u+\epsilon]}(t) \, dt = [M_t^2 \chi_{[0,u+\epsilon]}(t)]_{t=\xi} \epsilon$, where $u < \xi < u + \epsilon$. By writing

$$[M_t^2 \chi_{[0,u+\epsilon]}(t)]_{t=\xi} = [M_t^2 (\chi_{[0,u+\epsilon]} - \chi_{[0,u]})](t)_{t=\xi} + [M_t^2 \chi_{[0,u]}(t)]_{t=\xi}$$

we obtain that, when taking the limit as $\epsilon \to 0$, the first term goes to zero, while the second term converges to $[M_t^2 \chi_{[0,u]}(t)]_{t=\xi}$ since $\xi_\epsilon \to u$ when $\epsilon \to 0$.

21
2. We have that
\[
\frac{1}{\epsilon} \int_0^u [M^2_\epsilon \chi_{[0,u+c]}(t) dt - M^2_\epsilon \chi_{[0,u]}(t)] dt =
\frac{1}{\epsilon} \int_0^u M^2_\epsilon [\chi_{(u,u+c)}(t)] dt =
\frac{1}{\epsilon} \int_0^T \chi_{[0,u]}(t)(M^2_\epsilon [\chi_{(u,u+c)}(t)] dt =
\frac{1}{\epsilon} \int_{u+\epsilon}^{u} M^2_\epsilon [\chi_{[0,u]}(t)] dt
\]
converges to \([M^2_\epsilon \chi_{[0,u]}(t)]_{t=u}\) as \(\epsilon \to 0\).

Hence
\[
\psi'(u) = \lim_{\epsilon \to 0} \frac{\psi(u+\epsilon) - \psi(u)}{\epsilon} = 2[M^2_\epsilon \chi_{[0,u]}(t)]_{t=u}
\]
i.e. the equality \([M^2_\epsilon \chi_{[0,u]}(t)]_{t=u} = Hu^{2H-1}\) holds for every \(H \in (0,1)\). \(\square\)

4.2 An integration by parts formula

Let \(\psi(s) = \psi(s, \omega) \in \mathbb{L}_{1,2}^{(H)}\) be \(dB^{(H)}\)-integrable and define
\[
X(t) = \int_0^t \psi(s) dB^{(H)}(s)
\]
and
\[
Y(t) = X^2(t).
\]
By (3.25) and (3.26) we have
\[
M_t + D_t X(t) = \int_0^t M_t D_t \psi(s) dB^{(H)}(s) + M^2(\psi \chi_{[0,t]}),
\]
where \(M^2(\psi \chi_{[0,t]})) = M^2(\psi \chi_{[0,t]})(t)\). Then by Theorem 3.11 and by Proposition 2.12 we have
\[
dY(t) = 2X(t) dX(t) + 2\psi(t) \left(\int_0^t M_t D_t \psi(s) dB^{(H)}(s) + M^2(\psi \chi_{[0,t]})) dt \right) dt
\]
In particular, if \(\psi \in L^2_H(\mathbb{R})\), we get
\[
dY(t) = 2X(t) dX(t) + 2\psi(t) M^2(\psi \chi_{[0,t]})) dt
\]
By using that \(X_1X_2 = \frac{1}{2}[(X_1 + X_2)^2 - X_1^2 - X_2^2]\) this gives the following product rule:
Proposition 4.2 (Product rule) Suppose $\psi_1, \psi_2 \in L^2_H(\mathbb{R})$ and define

$$X_i(t) = \int_0^t \psi_i(s) dB^{(H)}(s); \quad i = 1, 2$$

and

$$Y(t) = X_1(t)X_2(t).$$

Then

$$dY(t) = X_1(t)dX_2(t) + X_2(t)dX_1(t)$$

$$+ \left\{ \psi_1(t)M^2(\psi_2\chi_{[0,t]})(t) + \psi_2(t)M^2(\psi_1\chi_{[0,t]})(t) \right\} dt \quad (4.5)$$

Corollary 4.3 (Integration by parts) Let $X_i(t), i = 1, 2,$ be as in Proposition 4.2. Then

$$\int_0^t X_1(s)dX_2(s) = X_1(t)X_2(t) - \int_0^t X_2(s)dX_1(s)$$

$$- \int_0^t \left\{ \psi_1(s)M^2(\psi_2\chi_{[0,s]})(s) + \psi_2(s)M^2(\psi_1\chi_{[0,s]})(s) \right\} ds. \quad (4.6)$$

References

[19] D. Nualart: Stochastic integration with respect to fractional Brownian motion

