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Abstract 

The discovery of both distinctive lead molecules and novel drug targets is a great challenge in drug discovery, 
which particularly accounts for orphan diseases. Huntington’s disease (HD) is an orphan, neurodegenerative disease 
of which the pathology is well-described. However, its pathophysiological background and molecular mechanisms 
are poorly understood. To date, only 2 drugs have been approved on the US and European markets, both of which 
address symptomatic aspects of this disease only. Although several hundreds of agents were described with efficacy 
against the HD phenotype in in vitro and/or in vivo models, a successful translation into clinical use is rarely achieved.  
Two major impediments are, first, the lack of awareness and understanding of the interactome—the sum of key 
proteins, cascades, and mediators—that contributes to HD initiation and progression; and second, the translation 
of the little gained knowledge into useful model systems. To counteract this lack of data awareness, we manually 
compiled and curated the entire modulator landscape of successfully evaluated pre-clinical small-molecule HD-tar-
geting agents which are annotated with substructural molecular patterns, physicochemical properties, as well as drug 
targets, and which were linked to benchmark databases such as PubChem, ChEMBL, or UniProt. Particularly, the anno-
tation with substructural molecular patterns expressed as binary code allowed for the generation of target-specific 
and -unspecific fingerprints which could be used to determine the (poly)pharmacological profile of molecular-struc-
turally distinct molecules.

Objective
Drug annotation
The acquisition, comprehension, and utilization of inte-
gral chemical associations are essential for modern 
drug development. Drug annotation and profiling are 
important measures to gain a wealth of data to predict 
structurally and functionally distinctive novel drug can-
didates—particularly in the light of modern machine 
learning (ML), neural networks (NNs), and artificial intel-
ligence (AI) approaches. Curated high-quality datasets of 
annotated drugs and other small-molecule ligands allow 
for the determination of molecular-structural and phys-
icochemical requirements to trigger a desired biologi-
cal response, and thus, advanced computational model 
development in modern drug discovery.
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Data bias
Proper drug annotation depends on several crucial fac-
tors that determine the goodness of the data used. The 
accessibility and readability of chemical structures, 
for example, is a huge obstacle in chem- and bioinfor-
matics until today. Most chemistry-related articles are 
available in print only, and optical recognition tools 
for both text and chemical structures are necessary to 
transform the data for machine use [1, 2]. These tools 
are still in their infancy today. Furthermore, only a very 
small number of journals require molecular-structural 
information, for example, SMILES codes [3]. Thus, pub-
lic chemical databases that provide large-scale informa-
tion on drug annotation rely on the goodwill of authors, 
librarians, and the performance of the optical chemical 
recognition tools.

Another very important factor is the biological 
background of the assays used to determine bioactiv-
ity. Most data were generated with high-throughput 
screening (HTS) assays using single point measure-
ments only. These data are often not supported by 
alternative assays and full-blown concentration-
effect curves. HTS is prone to assay artifacts due to 
compound-, assay-, or cell line-/host system-related 
unspecific effects. Complementary experiments to 
support or disprove initial findings are, unfortunately, 
required for a minority of journals only [4]. This leads 
inevitably to pollution of the chemical landscape with 
incorrect annotations. This lack of complementation 
reaches further than the individual protein of inter-
est. As resources are limited in virtually every labora-
tory, assays beyond the target of interest are barely 
performed, which accounts even more for other tar-
get classes that may be of relevance. This leads to the 
annotation of many molecules as ‘selective’ or ‘specific’ 
although the truth about these attributes is unknown.

Finally, chemical databases such as PubChem (https://​
pubch​em.​ncbi.​nlm.​nih.​gov) pose themselves a risk of 
misinterpretation. Millions of annotated molecules are 
available. However, these are in most cases not validated, 
and once stored publicly, the information (also incorrect 
annotations or the lack of annotations) are saved forever. 
Validated datasets, such as ChEMBL (www.​ebi.​ac.​uk/​
chembl/) exist, however, the validation process strongly 
reduced the small-molecule landscape, and thus, the 
molecular-structural diversity and opportunity space 
are also limited. In addition, although drug-gene, drug-
target, or drug-disease annotations are implemented in 
most public databases, the true polypharmacology of 
these molecules remains hidden as molecules are stored 
on a ‘one target-one molecule’ basis only. In summary, 
these data biases hamper modern drug development 
approaches [5].

Multitarget datasets
The above-named aspects make a manual compilation 
and curation of data necessary to properly study the 
molecular coherences of particular diseases and to create 
novel networks of interoperable data. This is even more 
evident for orphan diseases, such as Huntington’s dis-
ease (HD), for which a general sparseness of data is given. 
Multitarget datasets (MDSs) support medical research to 
identify target classes and/or constellations underlying a 
certain pathological condition. MDSs correlate bioactiv-
ity landscapes of small-molecules toward different related 
or unrelated pharmacological targets which is crucial for 
novel drug design and discovery.

Recently, we reported on an MDS focusing on the ATP-
binding cassette (ABC) transporters ABCB1, ABCC1, 
and ABCG2 that correlated substructural molecular 
components of small-molecule inhibitors to their effect 
on these three targets [6]. These substructures were pre-
sented as binary code, making their processing easy-to-
use. Applying a self-developed computational prediction 
tool—‘computer-aided pattern analysis’ (‘C@PA’)—we 
were able to predict structurally distinctive and potent 
inhibitors of these three targets by a prediction rate of 
21.7% [7]. Validation of C@PA by overcoming struc-
tural [8] and bioactivity [9] limitations resulted in an 
even higher hit rate of 40.0%. The high hit rates of C@PA 
allowed for fairly low numbers of in vitro-analyzed com-
pounds [7–9], offering a positive perspective for research 
groups with financial constraints, and thus, global appli-
cability. The inclusion of physicochemical parameters 
into this MDS allowed for their correlation to bioactiv-
ity, which was biologically confirmed [10]. Thus, molecu-
lar patterns are important tools in novel drug design and 
development.

Rationale
Here, we report an MDS of 429 HD-targeting small-
molecules that demonstrated efficacy in in  vitro and/or 
in vivo HD models. These 429 small-molecules were ana-
lyzed for molecular substructures resulting in 261 active 
(= present) substructures in a statistical binary pattern 
distribution scheme. Molecular-structural and phys-
icochemical descriptors as well as benchmark database-
linked identifiers complement the HD binary pattern 
MDS (HD_BPMDS). The HD_BPMDS poses five major 
advantages:

(i) One major impediment of previous HD therapy 
attempts was the strict adherence to the ‘specificity 
paradigm’—the ‘one drug-one target principle’ [11] that 
did not lead to clinical success. Enabling the controlled 
engagement of several HD-related drug targets by poly-
pharmacological agents poses a real chance to success-
fully address HD in the future. Pattern-based multitarget 

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
http://www.ebi.ac.uk/chembl/
http://www.ebi.ac.uk/chembl/


Page 3 of 10Stefan et al. Journal of Cheminformatics          (2023) 15:109 	

fingerprints derived from MDSs support the identifica-
tion of novel molecular-structural entities to discover 
such agents;

(ii) The knowledge of substructural features that pro-
mote or impede polypharmacology allows for the design 
and development of selective, single-targeting agents 
for analysis and diagnosis purposes, e.g., novel fluores-
cence- or positron-based imaging techniques to study the 
expression and/or function of key proteins;

(iii) Provision of the entire (successfully evaluated) 
target landscape enables the identification of repetitive 
targets that have frequently been addressed in independ-
ent studies. The association of these repetitive targets 
with drugs/small-molecule ligands promotes not only 
the identification of novel polypharmacological agents as 
outlined in (i), but also ensures the actual addressability 
of these apparent HD key players;

(iv) The entire landscape of (successfully evaluated) tar-
gets allows for the target-based expansion to yet uncov-
ered, not with HD associated target proteins. Many of 
the stated target proteins and pathways are embedded 
in larger cascades that are known and/or a certain basic 
knowledge has been deduced from. Hence, under consid-
eration of these cascades, cross-talks, and constellations, 
not only target space, but subsequently also the drug and 
small-molecule ligand space can be expanded.

(v) Apart from potential therapeutic (i) and diagnos-
tic (ii) options and the establishment (iii) [and extension 
(iv)] of current (and future) therapeutic/small-molecule 
ligand-target protein(s) interaction(s), the elucidation of 
the modes of action of these therapeutics/small-molecule 
ligands and the underlying molecular mechanism of HD 
becomes more feasible under consideration of the given 
data.

The HD_BPMDS is freely available under the https://​
zenodo.​org [12] URL, the https://​panabc.​info website 
[13], as well as under https://​OSF.​io [14], as its use is free 
of charge.

Data description
Data origin
Recently, we reported on a pilot MDS of HD-targeting 
agents (HD_MDS). It contained 358 unique molecules 
extracted from 151 reports of 86 journals. These mol-
ecules showed either efficacy against in  vitro and/or 
in  vivo HD models or have been under clinical evalua-
tion as therapeutics against or diagnostics for HD [15]. 
We updated the dataset under consideration of a recently 
published review article [16] and associated original 
reports. This update extended the dataset by further 71 
molecules from 38 reports from 30 journals. In total, 189 
reports from 104 journals between 1984 and 2022 were 
taken into account covering the entire spectrum between 

medicinal chemistry, chemical biology, clinical pharma-
cology, and other multidisciplinary life sciences.

The 429 literature-retrieved compounds were visual-
ized using ChemDraw Pro version 20.1.1.125, and impor-
tant substructural elements such as aromatic or aliphatic 
rings, side chains, or certain elements were identified. 
These identified substructural elements were derivatized 
by scaffold fragmentation and substructure hopping as 
reported earlier [8] and the output substructures were 
stored in a substructure catalog as previously described 
[6]. The molecular-structural diversity and quantity of 
the substructure catalog was increased taking alterna-
tive datasets of ABC transporter modulators [17–19] 
into account. Applying the query search function of 
InstantJChem version 21.13.0, the substructure catalog 
was subjected to the 429 compounds by an individual 
pattern analysis [9], discovering 261 unique active sub-
structures that occurred at least once within the dataset.

Data records
The HD_BPMDS consists of:

(i)	individual identifiers for each compound, particularly

(a)	 a unique HD_MDS identifier for each com-
pound (‘HD_MDS_0XXX’)

(b)	 the original name of the compound as given in 
the original report(s)

(c)	 a common abbreviation of the original name of 
the compound

(d)	 an important synonym of the compound
(e)	 an alternative synonym of the compound
(f )	 the PubChem Compound ID retrieved from 

https://​pubch​em.​ncbi.​nlm.​nih.​gov (400 of 429 
compounds)

(g)	 the ChEMBL Compound ID retrieved from 
https://​ebi.​ac.​uk/​chembl (336 of 429 com-
pounds)

(h)	 the DrugBank Accession Number as retrieved 
from https://​go.​drugb​ank.​com (181 of 429 
compounds)

(i)	 the IUPHAR/Guide to Pharmacology Ligand 
ID as retrieved from https://​guide​topha​rmaco​
logy.​org (164 of 429 compounds)

(j)	 the Chemical Abstracts Service (CAS) number 
as retrieved from https://​commo​nchem​istry.​
cas.​org (268 of 429 compounds)

(k)	 the systematic compound name according to 
the IUPAC nomenclature generated by Chem-
Draw Pro version 20.1.1.125

	(ii)	 molecular-structural and physicochemical descrip-
tors, particularly

https://zenodo.org
https://zenodo.org
https://panabc.info
https://OSF.io
https://pubchem.ncbi.nlm.nih.gov
https://ebi.ac.uk/chembl
https://go.drugbank.com
https://guidetopharmacology.org
https://guidetopharmacology.org
https://commonchemistry.cas.org
https://commonchemistry.cas.org
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(a)	 the molecular structure of the compound con-
served as SMILES code obtained either from

1.	 the PubChem database (https://​pubch​em.​
ncbi.​nlm.​nih.​gov) or

2.	 manual drawing using ChemDraw Pro ver-
sion 20.1.1.125 according to the 2D repre-
sentation as given in the respective report(s) 
and/or supplementary information file(s);

	 (b)	 the chemical formula as determined by 
ChemDraw Pro version 20.1.1.125

	 (c)	 the physicochemical properties as cal-
culated with MOE version 2019.01:

1.	 calculated octanol–water partition coefficient 
(CLogP)

2.	 calculated solubility (CLogS)
3.	 molecular weight (MW)
4.	 molar refractivity (MR)
5.	 topological polar surface area (TPSA)

	 (d)	 molecular-structural properties as cal-
culated by MOE version 2019.01:

1.	 number of hydrogen-(H)-bond donors
2.	 number of H-bond acceptors
3.	 number of rotatable bonds
4.	 number of heavy atoms

	(iii)	 a binary code (1 = active; 0 = inactive) for each of 
the 261 molecular substructures of the substruc-
ture catalog including

(a)	 an individual substructure identifier 
(‘Substructurwe_0XXX’)

(b)	 number of hits within the 429 compounds 
sorted from most abundant (left) to most rare 
(right)

(c)	 number of heavy atoms
(d)	 number of defined/irreplaceable hydrogens 

(‘[H]’ in SMILES codes)
(e)	 chemical structure represented as SMILES 

code
(f )	 the trivial name of the substructures

	(iv)	 the compound category or categories in which the 
429 compounds were allocated in, i.e.,

(a)	 pharmaceutical drug/diagnostic
(b)	 drug-like compound/chemical substance
(c)	 nutrient/metabolite

(v)	 the addressed pharmacological target(s) and/or 
pathway(s), i.e.,

(a)	 the name of addressed targets 1, 2, …, and 8 or 
addressed pathway 1, 2, and 3

(b)	 the mode(s) of action against target 1, 2, …, and 
8

(c)	 the abbreviation of the name of targets 1, 2, …, 
and 8

(d)	 the UniProt ID/PubChem Protein ID of targets 
1, 2, …, and 8 as retrieved from https://​unipr​ot.​
org / https://​pubch​em.​ncbi.​nlm.​nih.​gov

(e)	 the PubChem gene name and gene ID as 
retrieved from https://​pubch​em.​ncbi.​nlm.​nih.​
gov

(f )	 the ChEMBL Target ID as retrieved from 
https://​ebi.​ac.​uk/​chembl

(g)	 the IUPHAR/Guide to Pharmacology Target ID 
as retrieved from https://​guide​topha​rmaco​logy.​
org

(h)	 the other modes of action 1, 2, and 3
(i)	 the associated pathways 1, 2, and 3
(j)	 the effect on pathways 1, 2, and 3

	(vi)	 the target category or categories of the addressed 
pharmacological target(s) or pathway(s) in which 
the 429 compounds were allocated in, i.e.,

(a)	 neurotransmitter systems
(b)	 mitochondrial systems
(c)	 muHTT RNA or DNA
(d)	 muHTT protein
(e)	 novel targets
(f )	 target category unknown

	(vii)	the drug development stage of the compounds, i.e.,

(a)	 in vitro
(b)	 pre-clinical/in vivo or pre-clinical diagnostic

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://uniprot.org
https://uniprot.org
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://ebi.ac.uk/chembl
https://guidetopharmacology.org
https://guidetopharmacology.org
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(c)	 clinical trial or case study
(d)	 off-label use
(e)	 approved to treat HD

	(viii)	the HD symptoms that were addressed, anticipated 
to address, or observed in clinical trials, case stud-
ies, or pre-clinical evaluations

	(ix)	 the cellular HD models 1, 2, …, and 4 used to assess 
the compounds, particularly

(a)	 the name of the cell line(s)
(b)	 the species of the cell line(s)
(c)	 the Cellular Passport ID(s) of the cell line(s) 

as retrieved from https://​cellm​odelp​asspo​rts.​
sanger.​ac.​uk

(d)	 the Cellosaurus ID(s) as retrieved from https://​
cello​saurus.​org

(e)	 the American Type Culture Collection (ATCC) 
ID(s) as retrieved from https://​atcc.​org

(x)	 the animal HD models 1 and 2 used to assess the 
compounds, particularly

(a)	 the name of the animal model(s)
(b)	 the species of the animal model(s)

	(xi)	 the digital object identifiers(s) [DOI(s)] for reports 
not listed on PubMed (https://​pubmed.​ncbi.​nlm.​
nih.​gov) or the PubMed identifier(s) [PMID(s)] 
retrieved from the National Center for Biotechno-
logical Information (NCBI; https://​ncbi.​nlm.​nih.​
gov) of the original report(s).

Curation
Literature data
The original HD_MDS was generated by compiling 358 
compounds that showed efficacy against in  vitro and/
or in vivo HD models or have been under clinical evalu-
ation as therapeutics against or diagnostics for HD. For 
this purpose, the NCBI web page (https://​ncbi.​nlm.​nih.​
gov) was searched for the key words ‘small-molecule’ 
and ‘Huntington’s’ to obtain relevant reports. From these 
reports, a first selection of both high-class review (e.g., 
[15, 20–24]) and research (e.g., [25, 26]) articles has been 
obtained from which a large number of molecules could 
already been retrieved from. These articles represented 
the backbone of the HD_BPMDS, and were used for 
deep literature mining of the introduction and reference 

sections taking the original reports (in review articles) 
or cross-references (in research articles) into account. 
Cross-validation comparing either several review arti-
cles or aligning the information of one review article with 
the original reports it was citing enabled for the identifi-
cation and verification of critical aspects such as (i) the 
small-molecule agents itself; (ii) its addressed target(s), 
target category or categories, and mode(s) of action; (iii) 
the in  vitro or in  vivo model(s) used for its assessment 
including the description of the addressed/anticipated/
observed HD phenotype; and (iv) its drug development 
stage.

Small‑molecule agents
The retrieved molecules from the deep literature mining 
were either taken from the PubChem database (https://​
pubch​em.​ncbi.​nlm.​nih.​gov; e.g., commonly known 
drugs) or manually drawn applying ChemDraw Pro ver-
sion 20.1.1.125 according to the 2D representation as 
given in the respective report(s) and/or the supplemen-
tary information file(s). Isomeric SMILES were consid-
ered where applicable to allow for the greatest possible 
stereochemical diversity of the dataset. If retrieved from 
PubChem, the respective 2D representation of the mol-
ecules as generated in ChemDraw Pro version 20.1.1.125 
were compared to the 2D representation of the respective 
report for cross-validation purposes.

The 429 molecules were imported into the MarvinSketch 
editor implemented in InstantJChem version 21.13.0. The 
molecular structure was considered as valid in the case that 
the loaded SMILES code appeared as the intended original 
molecular representation without any errors. In a final vali-
dation step, all SMILES were searched for on the PubChem 
database (https://​pubch​em.​ncbi.​nlm.​nih.​gov) and the result-
ant hit compared to the initial 2D representation of the 
respective report. Finally, molecular structures were com-
pared to each other, and duplicates were erased and their 
associated additional data merged with the already existing 
entry in the updated HD_MDS.

FAIR‑ification
Annotation
A prime criterion of interoperability of the given data is 
its multidimensional annotation to public databases. In 
order to achieve this, we cross-linked the given data with 
various identifiers of commonly known public databases:

(i)	Compound annotation with

(a)	 PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov)
(b)	 ChEMBL (https://​ebi.​ac.​uk/​chembl)

https://cellmodelpassports.sanger.ac.uk
https://cellmodelpassports.sanger.ac.uk
https://cellosaurus.org
https://cellosaurus.org
https://atcc.org
https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
https://ncbi.nlm.nih.gov
https://ncbi.nlm.nih.gov
https://ncbi.nlm.nih.gov
https://ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://ebi.ac.uk/chembl
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(c)	 DrugBank (https://​go.​drugb​ank.​com)
(d)	 IUPHAR/Guide to Pharmacology
	 (https://​guide​topha​rmaco​logy.​org)
(e)	 CAS (https://​commo​nchem​istry.​cas.​org)

	(ii)	 Target annotation with

(a)	 UniProt (https://​unipr​ot.​org)
(b)	 PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov)
(c)	 ChEMBL (https://​ebi.​ac.​uk/​chembl)
(d)	 IUPHAR/Guide to Pharmacology
	 (https://​guide​topha​rmaco​logy.​org)

(iii)	Cell model annotation

(a)	 Cell Model Passports

	 (https://​cellm​odelp​asspo​rts.​sanger.​ac.​uk)
(b)	 Cellsaurus (https://​cello​saurus.​org)
(c)	 ATCC (https://​atcc.​org)

	(iv)	 Literature annotation

(a)	 PubChem (https://​pubmed.​ncbi.​nlm.​nih.​gov)/

	 NCBI (https://​ncbi.​nlm.​nih.​gov)

Visibility
Several additional measures were taken to make the data-
set and its content visible to the scientific community; 
particularly,

	(i)	 the HD_BPMDS is deposited and freely available 
under the very same file name (HD_BPMDS_Ver-
sion_3_October_2023) on three independent 
repositories, allowing for its access from anywhere 
in the world, specifically

(a)	 https://​zenodo.​org [12]
(b)	 https://​panabc.​info [13]
(c)	 https://​OSF.​io [14]

	(ii)	 The DOIs generated by zenodo and OSI.io are cited 
within this manuscript, and thus, will be linked to 
benchmark databases, such as NCBI or Google-
Scholar allowing researchers to easily find the data-
set and original literature

	(iii)	 The HD_BPMDS is freely available without restric-
tions (e.g., password, paywall, etc.)

	(iv)	 The HD_BPMDS is provided as both xlsx. and csv 
format, enabling its interoperability

	(v)	 the chemical formulae and molecular substructures 
are primarily represented as SMILES codes that are 
readable by any cheminformatics toolkit

	(vi)	 The compound as well as substructure identifiers 
were allocated under consideration of our previous 
works [6, 15], promoting the visibility of already 
established compound/substructure labels and 
reducing confusion by multiple identifiers

	(vii)	This manuscript as well as the HD_BPMDS are 
published under a BY-CC 4.0 license, enabling any-
one to access, analyze, process, and re-organize the 
given data for non-commercial and commercial 
purposes under referral to the originators.

Limitation
Outline
The HD_BPMDS is not limited with respect to its anno-
tation and visibility providing an inclusive insight into 
the currently known landscape of HD-targeting agents 
with prospect of expansion into unknown chemical, bio-
activity, or target space. However, general limitations are 
given by

	(i)	 the limited number of studies demonstrating 
in vitro and/or in vivo efficacy in HD models

	(ii)	 the limited number of clinical trials and case stud-
ies with drug candidates against HD

	(iii)	 The exclusion of studies on named HD targets that 
did not link their successful findings into actual HD 
models

	(iv)	 the very limited information of binding affinities to 
HD targets and used doses due to the limited num-
ber of studies as well as non-standardized and non-
harmonized assay and treatment procedures

The lack of studies expanding the chemical, bioactiv-
ity, and/or compound space is the major impediment of 
the HD_BPMDS. In vitro assays with potential HD drug 
targets can indeed be found on PubMed (https://​pub-
med.​ncbi.​nlm.​nih.​gov), however, most studies did not 
implement complementary assessment with HD models 
involving HD pathology or biomarkers (e.g., muHTT-
mediated toxicity). The obvious gap between pre-clinical 
success and actual clinical use prompted us to exclude 
all studies not immediately demonstrating efficacy of the 
tested compounds in at least one HD model, as inclusion 
of agents without this ability would have inevitably led 
to their annotation with successful pre-clinical efficacy. 
Reports including in vivo models, on the other hand, are 
genuinely not largely presented in the literature land-
scape as in vivo experiments are costly and adhere to reg-
ulatory constraints (e.g., ethic guidelines, animal welfare, 

https://go.drugbank.com
https://guidetopharmacology.org
https://commonchemistry.cas.org
https://uniprot.org
https://pubchem.ncbi.nlm.nih.gov
https://ebi.ac.uk/chembl
https://guidetopharmacology.org
https://cellmodelpassports.sanger.ac.uk
https://cellosaurus.org
https://atcc.org
https://pubmed.ncbi.nlm.nih.gov
https://ncbi.nlm.nih.gov
https://zenodo.org
https://panabc.info
https://OSF.io
https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
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maintenance costs, personnel education and training, 
etc.).

One major result of the lack of in  vitro and in  vivo 
reports is the lack of affinity and bioactivity values (e.g., 
ki, IC50, EC50, etc.). No standardized or harmonized assay 
procedures exist in the field of cell-based assays, and the 
degree of complexity of the given and variable parameters 
is even advanced regarding in  vivo experiments. These 
assay- and experiment-specific variations limit the overall 
comparability of bioactivity data. Diverse data can indeed 
be compared and used as demonstrated in our previous 
study about the ABC_BPMDS [6]. However, in the case 
of the ABC_BPMDS, the assay variations concerned one 
target (super)family only, while the HD_BPMDS includes 
various targets and even (to a small extent) pathways. 
These aspects prompted us to not include bioactiv-
ity data into the HD_BPMDS at this stage. Additionally, 
the limitation in reports with an in parallel very diverse 
target landscape provided also very diverse assessment 
platforms that can be compared to one another to very 
limited extent only.

Applicability domain
Nevertheless, the inclusion of 261 unique molecular sub-
structures in a clear binary pattern distribution scheme 
enriches the dataset with molecular-structural informa-
tion that allows for the identification of novel molecular 
entities by screening of chemical space. Recently, a simi-
lar fragment-based approach with a much smaller set of 
descriptors resulted in the successful identification of hit 
molecules [27], giving a positive prospect on the future 
use of the HD_BPMDS.

In order to validate the HD_BPMDS with respect to its 
applicability domain, we generated three distinct finger-
prints from the binary code, namely (i) a target-specific 
fingerprint of 13 histone deacetylases-(HDACs)-focusing 
molecules (Additional file  1: Table  S1); (ii) a target-spe-
cific fingerprint of 16 heat shock proteins-(HSPs)-focus-
ing molecules (Additional file  2: Table  S2); and (iii) a 
negative fingerprint obtained from the entire dataset tak-
ing the least occurring substructures (only once in 429 
compounds of the dataset; Additional file  3: Table  S3) 
into account.

Both target-specific fingerprints, which consisted of 
the 75% most occurring substructures within the respec-
tive sets of compounds, were searched for the 17,350 
and 6035 reported and unique HDAC and HSP modu-
lators, respectively, curated from the ChMEBL database 
(https://​ebi.​ac.​uk/​chembl). Applying these substructures 
cumulatively, the HDACs-specific fingerprint was able to 
return 1191 molecules from the ChEMBL-listed HDAC 
molecles (6.86%), while the HSPs-specific fingerprint 
returned 1448 molecules (24.0%). Interestingly, only 4 

and 3 of the found 1191 and 1448 HDACs- and HSPs-tar-
geting agents, respectively, were part of the initial sets of 
compounds both the HDACs- and HSPs-specific finger-
prints were deduced from. This indicates that 99.7% and 
99.8% of the molecules fell outside the molecular-struc-
tural constraints of the HD-BPMDS, which  reflects the 
extensive scope of applicability of the HD-BPMDS.

With respect to the negative fingerprint, the 39 least 
occurring substructures of the HD_BPMDS were 
searched for in both the 17,350 HDACs- and 6035 HSPs-
targeting compounds as available from ChEMBL. Strik-
ingly, each of the substructures massively reduced the 
number of compounds. On average, the negative fin-
gerprint substructure were found in 41 and 18 HDACs- 
and HSPs-targeting molecules only (0.236% and 0.298%, 
respectively.

Although these numbers must be handled with care as 
the respective fingerprints were target subtype-unspecific 
(general HDACs/HSPs modulators), and particularly the 
positive fingerprint contained rather unspecific substruc-
tures with minor substructural variation, it can generally 
be stated that target class- (and pathway-)specific finger-
prints derived from the HD_BPMDS have an extended 
applicability domain beyond the molecular-structural 
limitations of the HD_BPMDS and may be used specifi-
cally to shape the (poly)pharmacological profile of future 
therapeutics. In our earlier work we demonstrated that 
pattern analysis allowed for an accurate prediction of 
biological hit compounds at a fairly low number of tested 
compounds [7–9]. The datasets underlaying these pre-
dictions contained > 1000 compounds each at the time of 
the respective study [6–9]. Interestingly, the HD_BPMDS 
showed that even much smaller input data (429 com-
pounds) was sufficient to provide a large opportunity 
space beyond the molecular-structural limitation as an 
immediate result of the low number of compounds.

Physicochemical and molecular–structural validation
A balanced distribution of physicochemical (e.g., CLogP, 
MW, MR, and TPSA) and molecular-structural (e.g., 
H-bond donors/acceptors, rotatable bonds) parameters 
contributes to the validity of datasets. Figure  1 visual-
izes the analysis of the entire 429 molecules of the HD_
BPMDS toward the above named features, which were all 
distributed in a gaussian manner. Analyses of subsets, i.e., 
HDACs-, HSPs-, solute carriers-(SLCs)-, ion channels-
(ICs)-, (tyrosine) kinases-[(T)Ks]-, and sigma receptors-
(σRs)-focusing molecules (Additional file  4: Figs. S1–6), 
compound categories (i–iii) molecules (Additional file 4: 
Figs. S7–9), target categories (i–v)-focusing molecules 
(Additional file  4: Figs. S14), agonists/activators and 
antagonists/inhibitors (Additional file 4: Figs. S15–16), as 

https://ebi.ac.uk/chembl
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well as early and late drug development stage molecules 
(Additional file 4: Figs. S17–18) supported these findings.

Generally, the individual analyses revealed either equal 
or Gaussian distributions; the cases in which this was 
less/not observed were mainly subsets with very low 
numbers of analyzed compounds. The median and mean 
values of the entire dataset as well as the subsets are well-
aligned underlining the equal distribution the analyzed 
attributes (Additional file 5: Table S4).

Conclusions
The HD_BPMDS provides inclusive molecular-struc-
tural knowledge with an applicability domain beyond 
its limitations regarding compound-, bioactivity-, 
and target-related constraints. Despite the rather 
low number of compounds, particularly with respect 
to the addressed target classes, fingerprints derived 
from these target classes can be used for future virtual 
screening or rational drug design approaches to shape 

Fig. 1  Distribution of physicochemical and molecular-structural attributes of the 429 molecules of the HD BPMDS as determined by MOE version 
2019.01. a Calculated octanol–water partition coefficient (CLogP). b Molecular weight (MW). c Molar refractivity (MR). d Topological polar surface 
area (TPSA). e H bond donors. f H-bond acceptors. g Rotatable bonds
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the (poly)pharmacological profile of HD- (or non-HD-)
targeting drugs of the future. In addition, the present 
work demonstrated also the superiority of pattern 
analysis in terms of ‘negative fingerprints’ that can be 
used to make certain pharmacological effects in drug 
design approaches more unlikely. On the other hand, 
frequently occurring substructures like pyridine (18.8% 
of HD_BPMDS compounds), pyrimidine (7.5%), or thi-
azole (7.0%) in combination with (hetero)aliphatic pat-
terns could represent the backbone for future drug and 
target repurposing strategies for the development of 
novel HD-targeting agents, particularly addressing the 
uncharted territory of target space.

Abbreviations
ABC transporters	� ATP-binding cassette transporters
AI	� Artificial intelligence
ATCC​	� American Type Culture Collection
ATP	� Adenosine-triphosphate
CLogP	� Calculated octanol–water partition coefficient
CLogS	� Calculated solubility
C@PA	� Computer-aided pattern analysis
DNA	� Deoxyribonucleic acid
DOI	� Digital object identifier
EC50	� Half-maximal effect concentration
[H]	� Defined hydrogen
H-bond	� Hydrogen bond
HD	� Huntington’s disease
HD_BPMDS	� HD-focusing binary pattern MDS
HDACs	� Histone deacetylases
HSPs	� Heat shock proteins
HTS	� High-throughput screening
HTT	� Huntingtin
IC50	� Half-maximal inhibition concentration
IUPHAR	� International Union of Basic and Clinical Pharmacology
ki	� Affinity constant
MDSs	� Multitarget datasets
ML	� Machine learning
MR	� Molar refractivity
muHTT	� Mutated HTT
MW	� Molecular weight
NNs	� Neural networks
RNA	� Ribonucleic acid
SMILES	� Simplified molecular input line entry specification
TPSA	� Topological polar surface area

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00775-z.

Additional file 1. HDACs-specific fingerprint.

Additional file 2. HSPs-specific fingerprint.

Additional file 3. HD-specific negative fingerprint.

Additional file 4. Physicochemical and molecular-structural validation 
(visualized graphics).

Additional file 5. Physicochemical and molecular-structural validation 
(numeric values).

Acknowledgements
The authors thank ChemAxon for providing an academic research license to 
their software.

Scientific contribution
The provided dataset interconnects critical knowledge of drug discovery pro-
cesses targeting the orphan disease HD, including compound-, bioactivity-, 
and target-related advances as well as limits, in a FAIR manner, contributing to 
the comprehension and extension of the molecular context of HD as well as 
its applicability domain for future drug development.

Author contributions
SMS: Conceptualization, methodology, validation, formal analysis, data cura-
tion, writing—original draft, writing—review and editing, project administra-
tion, funding acquisition. JP Resources, writing—review and editing, funding 
acquisition. VN Conceptualization, methodology, software, validation, formal 
analysis, data curation, writing—review and editing, project administration.

Funding
Open Access funding enabled and organized by Projekt DEAL. S.M.S. was 
supported by the Walter Benjamin and research grant programs of the 
German Research Foundation [Deutsche Forschungsgemeinschaft, DFG, 
Germany; #446812474, #504079349 [PANABC]). J.P. received funding from the 
DFG (Germany; #263024513), Aufzien Family Center for the Prevention and 
Treatment of Parkinson’s Disease (APPD, with D. Frenkel), Nasjonalforeningen 
(Norway; #16154), HelseSØ (Norway; #2019054, #2019055, and #2022046), 
Barnekreftforeningen (Norway; #19008), EEA and Norway grants Kappa pro-
gramme [Iceland, Liechtenstein, Norway, Czech Republic; #TO01000078 (TAČR 
TARIMAD)], Norges forskningsråd [NFR, Norway; #295910 (NAPI), #327571 
(PETABC)]. PETABC is an EU Joint programme—Neurodegenerative Disease 
Research (JPND) project. PETABC is supported through the following funding 
organizations under the aegis of JPND—http://www.jpnd.eu: NFR (Norway; 
#327571), FFG (Austria; #882717), BMBF (Germany; #01ED2106); MSMT (Czech 
Republic; #8F21002), Latvia; #ES RTD/2020/26, ANR (France; #20-JPW2-0002-
04), SRC (Sweden; #2020-02905). V.N. was supported by the DFG [Germany; 
#504079349 [PANABC]).

Availability of data and materials
The dataset (version 3) is freely available at: (i) zenodo (https://​doi.​org/​10.​
5281/​zenodo.​83637​83)) [12]; (ii) PANABC.info (http://​www.​panabc.​info) [13]; 
(iii) OSI.io (http://​www.​doi.​org/​10.​17605/​OSF.​IO/​EJVWY) [14]. The original 
dataset (version 1) is freely available at (i) zenodo (https://​doi.​org/​10.​5281/​
zenodo.​78549​56).

Declarations

Competing interests
The authors declare no competing interests.

Received: 21 September 2023   Accepted: 25 October 2023

References
	1.	 Brinkhaus HO, Zielesny A, Steinbeck C, Rajan K (2022) DECIMER-hand-

drawn molecule images dataset. J Cheminform 14(1):36. https://​doi.​org/​
10.​1186/​s13321-​022-​00620-9

	2.	 Rajan K, Brinkhaus HO, Zielesny A, Steinbeck C (2020) A review of optical 
chemical structure recognition tools. J Cheminform 12(1):60. https://​doi.​
org/​10.​1186/​s13321-​020-​00465-0

	3.	 Gilson MK, Georg G, Wang S (2014) Digital chemistry in the Journal of 
Medicinal Chemistry. J Med Chem 57(4):1137. https://​doi.​org/​10.​1021/​
jm500​2056

	4.	 Bajorath J (2012) Progress in computational medicinal chemistry. J Med 
Chem 55(8):3593–3594. https://​doi.​org/​10.​1021/​jm300​429z

	5.	 Stefan SM, Rafehi M (2023) The big data challenge – and how polyphar-
macology supports the translation from pre-clinical research into clinical 
use against neurodegenerative diseases and beyond. Neural Regen Res. 
https://​doi.​org/​10.​4103/​1673-​5374.​387984

	6.	 Stefan SM, Jansson PJ, Pahnke J, Namasivayam V (2022) A curated binary 
pattern multitarget dataset of focused ATP-binding cassette transporter 
inhibitors. Sci Data 9(1):446. https://​doi.​org/​10.​1038/​s41597-​022-​01506-z

https://doi.org/10.1186/s13321-023-00775-z
https://doi.org/10.1186/s13321-023-00775-z
http://www.jpnd.eu
https://doi.org/10.5281/zenodo.8363783
https://doi.org/10.5281/zenodo.8363783
http://www.panabc.info
http://www.doi.org/10.17605/OSF.IO/EJVWY
https://doi.org/10.5281/zenodo.7854956
https://doi.org/10.5281/zenodo.7854956
https://doi.org/10.1186/s13321-022-00620-9
https://doi.org/10.1186/s13321-022-00620-9
https://doi.org/10.1186/s13321-020-00465-0
https://doi.org/10.1186/s13321-020-00465-0
https://doi.org/10.1021/jm5002056
https://doi.org/10.1021/jm5002056
https://doi.org/10.1021/jm300429z
https://doi.org/10.4103/1673-5374.387984
https://doi.org/10.1038/s41597-022-01506-z


Page 10 of 10Stefan et al. Journal of Cheminformatics          (2023) 15:109 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	7.	 Namasivayam V, Silbermann K, Wiese M, Pahnke J, Stefan SM (2021) C@
PA: computer-aided pattern analysis to predict multitarget ABC trans-
porter inhibitors. J Med Chem 64(6):3350–3366. https://​doi.​org/​10.​1021/​
acs.​jmedc​hem.​0c021​99

	8.	 Namasivayam V, Silbermann K, Pahnke J, Wiese M, Stefan SM (2021) Scaf-
fold fragmentation and substructure hopping reveal potential, robust-
ness, and limits of computer-aided pattern analysis (C@PA). Comput 
Struct Biotechnol J 19:3269–3283. https://​doi.​org/​10.​1016/j.​csbj.​2021.​05.​
018

	9.	 Namasivayam V, Stefan K, Silbermann K, Pahnke J, Wiese M, Stefan SM 
(2022) Structural feature-driven pattern analysis for multitarget modula-
tor landscapes. Bioinformatics 38(5):1385–1392. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​btab8​32

	10.	 Namasivayam V, Stefan K, Gorecki L, Korabecny J, Soukup O, Jansson 
PJ, Pahnke J, Stefan SM (2022) Physicochemistry shapes bioactivity 
landscape of pan-ABC transporter modulators: anchor point for innova-
tive Alzheimer’s disease therapeutics. Int J Biol Macromol 217:775–791. 
https://​doi.​org/​10.​1016/j.​ijbio​mac.​2022.​07.​062

	11.	 Stefan SM, Rafehi M (2023) Medicinal polypharmacology – exploration 
and exploitation of the polypharmacolome in modern drug develop-
ment. Drug Dev Res. https://​doi.​org/​10.​1002/​ddr.​22125

	12.	 Stefan SM, Pahnke J, Namasivayam V (2023), HD_BPMDS—a curated 
binary pattern multitarget dataset of Huntington’s disease–targeting 
agents. zenodo. https://​doi.​org/​10.​5281/​zenodo.​83637​83

	13.	 Stefan SM, Pahnke J, Namasivayam V (2023), HD_BPMDS—a curated 
binary pattern multitarget dataset of Huntington’s disease–targeting 
agents. panabc.info. http://​www.​panabc.​info

	14.	 Stefan SM, Pahnke J, Namasivayam V (2023), HD_BPMDS—a curated 
binary pattern multitarget dataset of Huntington’s disease–targeting 
agents. OSF.io. https://​doi.​org/​10.​17605/​OSF.​IO/​EJVWY

	15.	 Wu J, Mohle L, Bruning T, Eiriz I, Rafehi M, Stefan K, Stefan SM, Pahnke 
J (2022) A novel Huntington’s disease assessment platform to support 
future drug discovery and development. Int J Mol Sci 23(23):14763. 
https://​doi.​org/​10.​3390/​ijms2​32314​763

	16.	 Ahamad S, Bhat SA (2022) The emerging landscape of small-molecule 
therapeutics for the treatment of Huntington’s disease. J Med Chem 
65(24):15993–16032. https://​doi.​org/​10.​1021/​acs.​jmedc​hem.​2c007​99

	17.	 Pahnke J, Bascunana P, Brackhan M, Stefan K, Namasivayam V, Koldamova 
R, Wu J, Mohle L, Stefan SM (2021) Strategies to gain novel Alzheimer’s 
disease diagnostics and therapeutics using modulators of ABCA trans-
porters. Free Neuropathol. 2:33. https://​doi.​org/​10.​17879/​freen​europ​athol​
ogy-​2021-​3528

	18.	 Wiese M, Stefan SM (2019) The A-B-C of small-molecule ABC transport 
protein modulators: from inhibition to activation-a case study of multi-
drug resistance-associated protein 1 (ABCC1). Med Res Rev 39(6):2031–
2081. https://​doi.​org/​10.​1002/​med.​21573

	19.	 Stefan SM, Wiese M (2019) Small-molecule inhibitors of multidrug 
resistance-associated protein 1 and related processes: a historic approach 
and recent advances. Med Res Rev 39(1):176–264. https://​doi.​org/​10.​
1002/​med.​21510

	20.	 Liu W, Wang G, Wang Z, Wang G, Huang J, Liu B (2022) Repurposing 
small-molecule drugs for modulating toxic protein aggregates in neuro-
degenerative diseases. Drug Discov Today 27(7):1994–2007. https://​doi.​
org/​10.​1016/j.​drudis.​2022.​04.​003

	21.	 Devadiga SJ, Bharate SS (2022) Recent developments in the manage-
ment of Huntington’s disease. Bioorg Chem 120:105642. https://​doi.​org/​
10.​1016/j.​bioorg.​2022.​105642

	22.	 Dash D, Mestre TA (2020) Therapeutic update on Huntington’s disease: 
symptomatic treatments and emerging disease-modifying thera-
pies. Neurotherapeutics 17(4):1645–1659. https://​doi.​org/​10.​1007/​
s13311-​020-​00891-w

	23.	 Dickey AS, La Spada AR (2018) Therapy development in Huntington dis-
ease: from current strategies to emerging opportunities. Am J Med Genet 
A 176(4):842–861. https://​doi.​org/​10.​1002/​ajmg.a.​38494

	24.	 Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C (2009) Therapeu-
tic interventions for symptomatic treatment in Huntington’s disease. 
Cochrane Database Syst Rev 3:CD006456. https://​doi.​org/​10.​1002/​14651​
858.​cd006​456.​pub2

	25.	 Patel-Murray NL, Adam M, Huynh N, Wassie BT, Milani P, Fraenkel E (2020) 
A multi-omics interpretable machine learning model reveals modes of 

action of small molecules. Sci Rep 10(1):954. https://​doi.​org/​10.​1038/​
s41598-​020-​57691-7

	26.	 Pei F, Li H, Henderson MJ, Titus SA, Jadhav A, Simeonov A, Cobanoglu MC, 
Mousavi SH, Shun T, McDermott L, Iyer P, Fioravanti M, Carlisle D, Fried-
lander RM, Bahar I, Taylor DL, Lezon TR, Stern AM, Schurdak ME (2017) 
Connecting neuronal cell protective pathways and drug combinations 
in a Huntington’s disease model through the application of quantita-
tive systems pharmacology. Sci Rep 7(1):17803. https://​doi.​org/​10.​1038/​
s41598-​017-​17378-y

	27.	 Galyan SM, Ewald CY, Jalencas X, Masrani S, Meral S, Mestres J (2022) 
Fragment-based virtual screening identifies a first-in-class preclinical 
drug candidate for Huntington’s disease. Sci Rep 12(1):19642. https://​doi.​
org/​10.​1038/​s41598-​022-​21900-2

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1021/acs.jmedchem.0c02199
https://doi.org/10.1021/acs.jmedchem.0c02199
https://doi.org/10.1016/j.csbj.2021.05.018
https://doi.org/10.1016/j.csbj.2021.05.018
https://doi.org/10.1093/bioinformatics/btab832
https://doi.org/10.1093/bioinformatics/btab832
https://doi.org/10.1016/j.ijbiomac.2022.07.062
https://doi.org/10.1002/ddr.22125
https://doi.org/10.5281/zenodo.8363783
http://www.panabc.info
https://doi.org/10.17605/OSF.IO/EJVWY
https://doi.org/10.3390/ijms232314763
https://doi.org/10.1021/acs.jmedchem.2c00799
https://doi.org/10.17879/freeneuropathology-2021-3528
https://doi.org/10.17879/freeneuropathology-2021-3528
https://doi.org/10.1002/med.21573
https://doi.org/10.1002/med.21510
https://doi.org/10.1002/med.21510
https://doi.org/10.1016/j.drudis.2022.04.003
https://doi.org/10.1016/j.drudis.2022.04.003
https://doi.org/10.1016/j.bioorg.2022.105642
https://doi.org/10.1016/j.bioorg.2022.105642
https://doi.org/10.1007/s13311-020-00891-w
https://doi.org/10.1007/s13311-020-00891-w
https://doi.org/10.1002/ajmg.a.38494
https://doi.org/10.1002/14651858.cd006456.pub2
https://doi.org/10.1002/14651858.cd006456.pub2
https://doi.org/10.1038/s41598-020-57691-7
https://doi.org/10.1038/s41598-020-57691-7
https://doi.org/10.1038/s41598-017-17378-y
https://doi.org/10.1038/s41598-017-17378-y
https://doi.org/10.1038/s41598-022-21900-2
https://doi.org/10.1038/s41598-022-21900-2

	HD_BPMDS: a curated binary pattern multitarget dataset of Huntington’s disease–targeting agents
	Abstract 
	Objective
	Drug annotation
	Data bias
	Multitarget datasets
	Rationale

	Data description
	Data origin
	Data records

	Curation
	Literature data
	Small-molecule agents

	FAIR-ification
	Annotation
	Visibility

	Limitation
	Outline
	Applicability domain
	Physicochemical and molecular–structural validation

	Conclusions
	Anchor 22
	Acknowledgements
	References


