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ANALYTICAL APPROXIMATION FOR THE PRICE DYNAMICS OF
SPARK SPREAD OPTIONS

FRED ESPEN BENTH AND JURATE SALTYTE-BENTH

ABSTRACT. This paper presents an analytic approximation for the pricing dynamics of
spark spread options in terms of Fourier transforms. We propose to model the spark
spread, that is, the price difference of electricity and gas, directly using a mean-reverting
model with diffusion and jumps. The model is analyzed empirically, and shown to fit
observed data in the UK reasonably well. The main advantage with the model is that
the spark spread of electricity and gas forwards, being forwards with delivery over pe-
riods, can be priced analytically. The price dynamics for different spark spread options
with electricity and gas forwards as underlyings, is analytically derived through Fourier
transforms. These pricing expressions allow for efficient numerical valuations via the fast
Fourier transform (FFT) technique.

1. INTRODUCTION

Spark spread options are option contracts written on the price difference of electricity
and gas, being e.g., the spot or forward price. Such contracts can provide a producer
of electricity, say, protection against too high gas prices, or be used as a tool to valuate
a power plant (as a real option). The spark spread also appears in exotic derivatives
contracts like tolling agreements, where the holder is allowed to produce and sell electricity
at advantageous prices, or simply hold back if the price differential is less than a given
threshold. Tolling agreements are typical examples of swing options, where the holder has
additional optionality in choosing the level and timing for striking the contract.

It is well-known, at least in the case when the two underlying processes are geometric
Brownian motions, that there are no analytical pricing formula like the Black & Scholes
formula for spark spread options, except in the case where the strike is equal to zero. When
the option is a call or put on the price differential directly, then one may use the Margrabe
Formula (see Margrabe [14]) to valuate the option. The most common models for spot
energies are of an exponential Ornstein-Uhlenbeck type (known as the Schwartz model,
see Schwartz [16]), and include features like mean-reversion and jumps. These processes
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2 BENTH AND SALTYTE-BENTH

generalize the geometric Brownian motion dynamics, and just add up the complexity of
the pricing problem for spread options.

Most commonly, the spark spread options are written on the difference of the forward
prices of the two underlying commodities. Forwards in gas and electricity are traded with
delivery over a period rather than at a fixed future point in time. If we use a Schwartz model
for both energies, it is possible to derive explicit dynamics for fixed-delivery forwards (see
e.g. Benth et al. [3]), but for forward contracts delivering over a time period there exist no
explicit dynamics. Thus, to price spark spread options when the spot price processes are
modelled marginally by exponential processes, we are forced to apply numerical valuation
techniques for price path simulation and numerical integration. The standard approaches
are Monte Carlo simulation or numerical solution of multi-dimensional partial differential
equations.

Insisting on modeling the price processes of the two underlyings using geometric Brow-
nian motion, and considering spark spread options on fixed-delivery forward contracts,
lead us to calculating the expected value of a payoff function depending on the difference
between to lognormal random variables. In the paper by Carmona and Durrleman [8] it is
suggested to approximate the difference of two lognormal random variables with a normal
random variable. Lima [12] observed that the difference between two exponential Ornstein-
Uhlenbeck processes could not be approximated very well with a normal distribution, but
instead showed features like skewness and heavy tails. This led Lima [12] to propose to
model the difference using the Normal inverse Gaussian distribution (NIG) introduced in
finance by Barndoff-Nielsen [1].

Taking the ideas above one step further, one may ask whether the spark spread data
can be modelled directly using a mean-reverting process with jumps, having additive noise
rather than geometric. This paper proposes a seasonally varying Ornstein-Uhlenbeck pro-
cess to model the spark spread data, where the random innovations are given by a Wiener
process and compound Poisson processes. We let the small price difference variations be
modelled by a diffusion, while the bigger jumps that we observe in the market is cap-
tured by a compound Poisson process. Analysing gas and electricity data from the UK
demonstrates that this additive model fits the observed spark spreads reasonably well.

The main advantage with this model is the pricing tractability. We are able to derive an
explicit dynamics of the spark spread forwards for arbitrary delivery periods, and the price
dynamics of general option contracts written on the spark spread of electricity and gas
forwards can be represented by explicit inverse Fourier transforms. The pricing formula
when we include jumps in the modeling is not as explicit as the Margrabe formula, say,
but can easily be calculated using numerical methods like the fast Fourier transform. To
base the pricing on a two-dimensional stochastic process, one must use advanced numerical
tools which will lead to more complicated and less efficient methods for finding the price.
Moreover, if one wants to analyse the price dynamics, one is forced to numerically simu-
late conditional expectations in the case of a Monte Carlo approach, which needs a large
number of simulations before converging. Our simple formula is more efficient in finding
the price dynamics, and we claim that it is better if one wants to perfom risk evaluations
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on a portfolio, say, consisting of several spark spread option contracts and other nonlinear
products.

The disadvantage with our way to analyse the problem is that we loose the connection
with the marginal processes in the pricing formula (except indirectly via the estimated
parameters). To find a two-dimensional stochastic process that marginally model gas
and electricity, and also includes the correct dependency structure may be a challenging
task. It is known that energies must be modelled by jump processes, however, it is not
straightforward to build reasonable models where the dependency comes into play in an
empirically correct way. Copulas is a modeling tool that seems to be promising, however,
we shall not pursue this idea further in the present paper, but leave it for future research
(see Benth and Kettler [5]). We remark that such a modeling does not lead to any simple
pricing formula for spark spread options, on the contrary, they need to be calculated by
numerical techniques as discussed above.

The paper is organized as follows: In Section 2 we define the market and introduce the
spark spread options that we are going to analyze, together with some discussions about
our proposed model. In Section 3 we continue with defining the stochastic dynamics of the
spark spread, along with the characterstic functions required for calculating the forward
price dynamics. Using Fourier methods, we present formulas for spark spread options
price dynamics in Section 4, being in a suitable form for applying fast Fourier transform
techniques. Finally, in Section 5 we perform an empirical study of electricity and gas
data collected in the UK, and demonstrate the reasonability of our model together with a
discussion of option pricing.

2. SPARK SPEAD OPTIONS

In this section we introduce at a formal level the spark spread options that we are going
to analyze, and establish some connections related to our proposed modeling view. Let
E(t) be the electricity spot price and G(t) the gas spot price at time ¢, modelled as two
stochastic processes on the complete probability space (€2, F, P) equipped with a filtration
{Fiticppry- T is the time horizon of the market. If ¢ is the heat rate, that is, the factor
converting gas prices into the units of electricity prices, the spark spread difference between
electricity and gas is

(2.1) S(t) = B(t) — cG(t) .

We call S(t) the spark spread. A forward contract on electricity and gas deliver over a
period rather than at a fixed point in time. We consider a forward contract written on
a spot with price X (¢) having delivery over the period [y, 73]. The forward price at time
t < 1 is defined to be the risk-neutral expectation of the delivery, that is;

(2.2) F(t,Tl,TQ):EQ{ ! /:X(u)duyft].

T —T1

This forward price can be derived using the theory of no-arbitrage together with the fact
that it is costless to enter a forward contract. In the market, such contracts are settled
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either physically or financially. Let Fy and Fi,s denote the electricity and gas forward,
respectively.

Consider a spark spread option written on the difference of electricity and gas. The price
of an option with exercise at time T with strike K is defined as

(2.3) C(t)= e_”(Tt)EQ (max (Fo(T, 71, 7s) — CFaus(T, 11, 72) — K,0) | F]

where r is the risk-free interest rate. The risk-neutral probability () is the same for both
forwards and the option. It is a probability measure that will change the underlying
characteristics of the processes. We suppose that there is a measure () describing the
risk preferences in both the gas and electricity markets. This can be done without loss of
generality since we model both markets jointly, and the )-probability refer to the stochastic
processes.

We now elaborate a bit on the underlying forward price difference in the spark spread
option price:

Fspread(t7 T1, 7—2) = Fel<t7 71, 7_2) - CFgas(ta 1, 7_2)

! g, l / " B(w) - cG(u) du| ft}

T2 —T1 ﬁ

(2.4) :EQ{ L /TQS(u)dum]

T2 —T1 Jn

Thus, we see that the spark spread option can be considered as an option written on a
forward contract with delivery of the spread difference over the period |71, 73]. Motivated
from this, we can price the spread option based on a model for the spread difference directly,
rather than modeling the electricity and gas separately.

Note that this view is not far from the idea introduced in Carmona and Durrleman [8].
There the authors model each commodity as a geometric model, linked by a correlated
two-dimensional Brownian motion. Only for K = 0 it is possible to price analytically in
terms of a Black & Scholes type formula. To deal with a strike which is different than
zero, they argue that the difference between two lognormal variables can be approximated
by a normal distribution, for which prices can be explcitly found. In Lima [12] it is
demonstrated that the difference for electricity and gas is not very well captured by the
normal distribution when basing the marginal dynamics on a mean-revertion model. The
joint geometric model gives heavy tails in the difference, something that is important for
spread options which are far out of the money. We argue further that when applying
geometric models marginally, we loose in general the analytical expression for the forward
price dynamics. The approach of modeling the spark spread directly by an additive model,
provides us with an explicit dynamics for the spark spread forward and thus tractable
expressions in terms of Fourier transforms for the option prices. The reader is referred to
Benth, Kallsen and Meyer-Brandis [4] for additive models applied to electricity markets.
We now move on with a more detailed analysis.
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3. MODELING AND ANALYSIS OF THE SPARK SPREAD

In this Section we propose a model for the spark spread. Moreover, we derive some key
formulas involving the characteristic function of different expressions of the spark spread,
that becomes useful when pricing forward contracts and options on these.

Our proposal is to model the spark spread directly by a non-Gaussian Ornstein-Uhlenbeck
process. Suppose the dynamics of S(t) is decomposed into a seasonal part A(t) and a sto-
chastic part S(t) as follows,

(3.1) S(t) = A(t) + S(t).
The dynamics of S is given by a non-Gaussian Ornstein-Uhlenbeck process,
(3.2) dS(t) = —aS(t)dt + o dB(t) + dL(t),

where B is a Brownian motion and L is a pure-jump Lévy process. We suppose that B
and L are independent processes. The volatility o is a non-negative constant. We denote
by ¥(0) the cumulant function of L, defined as (6 being a real number)

(3.3) $(6) = InE [exp (0L(1))] .

The Lévy-Kintchine Formula gives an explicit expression for ¥ in terms of the Lévy measure
of L,

(3.4) 0(0) = /R (€% — 102121} €(d2)

Here, the Lévy measure £(dz) is a o-finite Borel measure on the real line with ¢({0}) =0
and

/min(l,zz)ﬁ(dz) < 00.
R
We suppose that L has finite variance, which is equivalent to assuming that

(3.5) /R 24(dz) < o0

We note that for a measurable and bounded function g, the characteristic function of
fabg(u) dL(u), 0 <a <bis

(3.6) E [exp (19 / " o) dL(u))} — exp ( / bw(ﬁg(u))du> |

A useful observation for later is the relation

(3.7) D [ / gl dL(u)] — (-iy/(0)) / gy

For more theory on Lévy processes and their applications in finance, see the book by e.g.
Shiryaev [16].
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We need to specify the dynamics of S under a risk-neutral probability ), and we suppose
from now on that () is defined via the Girsanov transform for which

(3.8) dW (t) = dB(t) — “% dt

is a Brownian motion. Here, iy, is a parameter that we will interpret as the market price
of risk, measuring the reward that market traders charge for the risk of not being able to
hedge perfectly any derivative using gas and/or electricity. The market price of risk is an
additional parameter in the model specification that needs to be calibrated from historical
derivatives price data. Note that under this change of probability, the characteristics of
L remains unaltered, which in other words mean that we suppose that there is no market
price of risk connected to the jumps. This is a frequently used assumption (see e.g. Cartea
and Figueroa [11]), simplifying the further analysis considerably. The @-dynamics of S
becomes

(3.9) dS(t) = (Mmpr - a§<t)) dt + o dW (t) + dL(t) .

We have the following explicit results for S (t) and its time integral:
Lemma 3.1. Under the risk-neutral measure ), we have
t t
(3.10)  S(t) = S(0)e " + m(1 —e ) + Je_at/ e dW (u) + e_at/ e dL(u),
o 0 0
and

2 1~ 1+ mpr
(3.11) /T1 S(u) du = —ES(TQ) + &S(ﬁ) + “ap (o — 1) +

o

% (W) - W(n))

2 (L)~ L(n))

Proof. Equation (3.11) follows by a direct integration of the stochastic differential equation
(3.2). Appealing to the It6 Formula of semimartingales we find (3.10). O

We can from these two explicit representations derive the characteristic functions of S (t)
and f:f S(t) dt, being key formulas in calculating forward prices and options on these. The
characteristic functions are stated in next two Lemmas:

Lemma 3.2. For 0 € R and 0 <t < T, it holds that
(3.12) Eo [exp (¢9§(T>) |ft} = exp (i@(u(t,T) + e o05(4))
0202

4o

(1—e 20+ \If(tm;e)) :

where
pltor) =11 - ety
«

U(t,;6) = /T@D(GG_Q(T_“)) du .
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Proof. For notational simplicity, define L=ocW+ L, which is a Lévy process. Integrating
(3.2) from ¢ to 7 yields

(3.13) S(r) = S(t)e 1 4 %(1 — ey 4 meT / ™ dL(u).
t
From the F;-measurability of S (t) and independence property of the increments of E, we
find
Eq [exp <i05(7)> |.7-"t] = exp (i@u(t, T)+ i@e_a(T_t)g(t)>
> EQ |:e19e"’”' [ e di(u):| .

Hence, the Lemma follows after appealing to the characteristic function of the integral of
the Lévy process L, as given in (3.6). O

The next Lemma states the similar result for f;f S (u) du:

Lemma 3.3. For0 e R and 0 <t <1 < 7o, it holds that
(3.14)

Eq {exp (z’@/ S(u) du) |.7:t} = exp (z’@)\l(t,Tl,Tg) + U(t, 11,72, 0) + 01, Tl,TQ)g(t)> :

T1

where
Hmpr 1 —a(r—t) —a(ra—t)
A (t = — - — 1=t 2
1(t, 71, 72) " {(T2 71) &(6 € )
1
Ao(t, 11, 72) = o {6_a(71_t) — e_o‘(T2_t)}

1 (9 92 2
\I/(t,Tl,TQ; 0) _ / w (a {6—04(7'1—u) o e—oz(Tg—u)}) _ g {e—a(ﬁ—u) . 6—@(72—u)}2 du
t

202

T2 [ 92 2
R e A (R

1

Proof. The proof follows the same lines as in Lemma 3.2: Use L=ocW+ L, and observe
from (3.13) that

S(Tl) — 5(7’2) = §(t) {e—a(n—t) _ e—a(Tz—t)} _ % {e—a(ﬁ—t) B e—a(TQ—t)}

+e M / e dL(u) —e ™ / e dL(u).
t t

Hence, from (3.11), the F;-measurability of S (t) and the independent increment property
of L, we get that

Eq {exp (10/ g(u) du) |Ft} = exp (ié’)\l(t, T, T2) + 10X (¢, 717T2)§(t)>
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6 [ ~
x Eg [exp (i—/ 1 — emalm—t=y) dL(u))}
a Jp,
0 —a(T1—t) —a(ra—t) Tl au JT
x Eq |exp 1a(e 17— em Y e dL(u) )| .
t

The Lemma follows from (3.6). O

We are now in the position to derive the dynamics for the forward price difference
underlying the spark spread option:

Proposition 3.4. For 0 <t <1 < 75, we have that

(3.15)  Fipreaa(t, 1, 7m2) = ! /T2 A(w) du+ Nt, 7, m2) + 0(t, 71, m2) (S(t) — A(t)) ,

To — T1 T1
where
mpr ~ ) 0
(3.16) At 71, 7) = MTW(l —5(t, 11, 72))
1
(3.17) 5(t, 11, 72) = (=0 — gram=)

a(my —11)

Proof. Differentiating the right-hand side of the key formula in Lemma 3.3 and letting
0 = 0 lead to the desired result after observing that W(¢, 7y, m;0) = 0. O

We remark that applying exponential Ornstein-Uhlenbeck models for the spot prices
will not lead to any explicit dynamics for the forward, but has to be represented as an
integral. This makes it impossible to derive any analytical option prices for the spark
spread forwards. Further, note that both functions p and A defined in Lemma 3.2 and
Prop. 3.4, respectively, are functions involving the market price of risk fimp,, and note that
by definition the spread forward Fipeaq is @ martingale with respect to Q.

In Benth and Koekebakker [6] it is shown that there exists no analytical expression for
the forward dynamics with delivery over a period, when the underlying spot price process
follows a Schwartz model. The forward is not even a Markov process, but depends on all
other forwards with shorter delivery periods in a quite complicated way.

If 74,7 — oo with 75 — 77 being bounded, we have that (¢, 71, 72) — 0. Thus, it follows

1 " mpr — gy
Fpread (t; 71, 2) — / A(u) du + M—W(O)'

To — T 7,1 8]

Hence, the forward prices will converge to the average seasonal price modified by the market
price of risk and the drift introduced by the Lévy jump process for deliveries in the far
future. We also note that the price becomes independent on the current spark spread and
will become non-stochastic in the limit. This provides us with a simple tool to estimate
the market price of risk from forward price data as long as the market trades in forwards
where the delivery period is far into the future.
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4. PRICING OF SPARK SPREAD OPTIONS USING FOURIER ANALYSIS

In this subsection we analyze the option pricing dynamics written on the spark spread
using Fourier analysis. For this purpose, consider an option written on the spark spread
with payoft f(Fipeaa(T,71,72)) at the exercise time T < 7y for some real-valued Borel
measurable function f such that f(Fipread(T,71,72)) € L'(Q). Denote the price at time
t < T of this option by

C1spread (t, T7 T1, TQ) = e_T(T_t)EQ [f(Fspread (T7 T1, T2>) | ft] .

Since we shall be mostly interested in call options with payoff function f(x) = max(z —
K,0), we note that for such options the payoff function is at most linearily growing. The
following Lemma tells us that options with at most linearly growing payoff functions are
indeed (Q-integrable under the hypothesis of square-integrability of the Lévy process L:

Lemma 4.1. Suppose that |f(x)| < ¢(1 4+ |z|) for some positive constant ¢. Then we have
that f(Fspread(T7 1, Tg)) € Ll (Q)

Proof. If Fypread(T, 71, 72) € L*(Q), then by the linear growth of f we have that the Lemma
holds. We prove this.
From the dynamics in Prop. 3.4, we see that Fipeaa(T, 71, 72) € L'(Q) whenever

/0 e dL(u) € LY(Q).

Recall that the characterstics of L is the same under P and (), and appealing to Cauchy-
Schwarz’ inequality and It6’s Formula for semimartingales, we find that the Lévy integral
is integrable under () whenever L is square integrable, which we have assumed in (3.5). O

Let us first restrict our attention to payoff functions being integrable, i.e., assuming
that f € L'(R). Note that neither call nor put options are included in this case, but we
can consider different types of knock-out options. However, call and put options can be
analyzed after an appropriate exponential damping, which we will consider in a moment.

Let fdenote the Fourier transform of f, and x be the convolution product. Recall from
the inverse Fourier transform that

fla) = 5= [ Fwedy.

We derive the following price dynamics for a spark spread option expressed in terms of an
inverse Fourier transform:

Proposition 4.2. Let f € L'(R) and 0 < ¢t < T < 7. If f(Fypread(T,71,72)) € L(Q),
then the price dynamics

Cspread(ta T7 T1, T2) - Ospread(-Fspread(ta T1, 7_2); tv Ta T1, 7—2)

s given by

—r(T— ]' Y -~ i— T1,T — T
(A1) Comalait, Tm,m) = e = / T Prirry ) €V OTs 90T rvim) i gy



10 BENTH AND SALTYTE-BENTH

Here, pirr r 5 the probability density of a normal random variable with expectation
—'(0)

o

6(0, 71, 72) (eO‘T — eat) )
and variance )
;—a52(T, m1,72) (1 — e_ZD‘(T_t)) :
Furthermore, the function V is defined in Lemma 3.2 and & in Prop. 3.4.
Proof. From Prop. 3.4 we find,
Eq [f(Fspread (T,71,7m)) | Fi

/f |: <7_2 - f‘:12A du+)\(TT1,T2)+5(TT1,T2)S T)) |f-t
_ 1 / Fly)Bg [e @m0 | F,] ¢ WO@mm)t i [ Aw ) g
The Proposition follows from the key formula in Lemma 3.2. O

The pricing dynamics of the spread option becomes independent of the market price
of risk fimpr. It comes from a Girsanov change in the Wiener part of the spark spread
dynamics only, a risk that can be hedged away. The jump risk, on the other hand, is not
priced in our model and therefore there should be no dependency on any market price
of risk in the option price dynamics. We also see that in the case of no jumps in the
spark spread, i.e. L = 0, the expectation of the normal random variable becomes zero, in
addition to ¥ = 0. The price can then be easily read off as an expectation of a function
of a normal random variable with expectation equal to the forward spread price at time ¢
and variance as in the Proposition.

We proceed to analyze call and put options from the Fourier perspective. Since the
payoff function f(z) = max(z — K, 0) for a call option is not in L*(R), it is not covered by
the above Proposition. However, following the idea in Carr and Madan [10], we can treat
the call option by similar tools as in Prop. 3.4 after an appropriate damping of the linear
growth of the payoff. Introduce the following exponentially dampened payoff function

(4.2) fy(x) = e max(x — K, 0)
for v > 0, and note that

e’?® —~ R 1 ~
- —lzy — (v—iy)
o / f(y)e ™ dy o / I (y)e

The function f, is obviously integrable for every positive constant -y, and the price dynamics
of a call option is given by the following Proposition:

Proposition 4.3. Suppose that the Lévy measure {(dz) of L satisfies the exponential in-

tegrability condition
/ € l(dz) < o0
1
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for some v > 0. Then, the price of a call option with strike K at exercise time T can be
represented as

Cspread call(x; t7 Ta T1, 7_2) = e_r(T_t)C(tv Ta T1, 7_2)) X
1 [~ | B
(4.3) — | )P 1 (W) exD (W (t, T (—y — i7)8(T, 71, 72))) =¥ dy
2m

where f, is defined in (4.2),

) (0 2 2
C(t,T, 7'1,7'2) = exp (Zwof >(5(O,7’1,7‘2)(60T . eat) _ 742 (1 o e—2a(T—t))

and pZT,nﬁz 18 the probability density function of a normal random variable with expectation

PN 0 2
Z"(i( )6(077_177_2)(604T . eat) . %(1 . 6—2a(T—t))
and variance
0_2(1 . 672a(T7t))
200 '
The other functions are as in Prop. 4.2 above.

Proof. Denote by f(x) = max(z — K,0). We have from the considerations above that
Eq [f(FSpread (T, 71,72)) | Fi]
/f |: 1y+’y)(72iT1 ]:12 A(w) du+X(T,m1,72)+6(T,71,72) S(T) |ft dy
N

- 2_ /fv(y)EQ e(—iy+’y)5(T T1,72)S ’f] 1y+’Y)(>\(T7TlaT2)+ﬁ]:12 A(u) du) dy
T

In order for the expectation to be well-defined, the random variable exp(yd(T, 71, , 72)S(t))
must be integrable. However, it holds that

Eo [evfg emalt=w) dL(u)] — olg v(=iveo =) du
as long as 1(—iye~®*=%) is integrable over [0, ], which by defintion of ¢ and the exponen-
tial integrability assumption in the Proposition, holds true.

By extending the key formula in Lemma 3.2 to complex constants €, and using 6 =
—iy + v, we derive the expression in the Proposition. O

To price put options on the spread, we apply the relation
max(r — K,0) —max(K —z,0) =2 — K,
to derive that
(4.4) Cipread pus(#31, T, 71, 72) = Copread can(3 1, T, 11, 7) + Ke 70—,

with © = Fipread(t, 71, 72). This is the put-call parity, which must hold in order to prevent
arbitrage opportunities.
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The Fourier transforms in Props. 4.2 and 4.3 are tailor-made for applying the fast Fourier
transform (FFT) numerical technique. For given models of the jump processes (see the last
Section for more details) we will frequently have an analytic expression of the integrand ) of
U available, thus, after a numerical or analytical integration the inverse Fourier transform
can be calculated by FFT directly, as long as we know the Fourier transform of the payoft
function f. In the next Lemma we state the Fourier transform of the payoff from a call
option, which is derived by a straightforward integration:

Lemma 4.4. The Fourier transform of the function f., for v > 0 defined in (4.2) is given
as

45 o~ e(iy_'V)K

We refer to Carr and Madan [10] for further discussions and numerical examples on the
application of the FFT for valuation of option prices.

If we would have modelled gas and electricity spot prices separately as two exponential
Ornstein-Uhlenbeck processes, we would have faced two problems. Firstly, the dynamics
of the two forward price processes underlying the spark spread option would not have been
analytically available, which means that we will have to evaluate numerically the forward
price. Secondly, even if we would have the forward prices with delivery over a period
available, we face the Fourier transform of a two dimensional payoff function, which is
hard to derive for a call option with general strike price K. Thus, our modeling approach
has a big advantage over marginal modeling of the two commodities underlying the spark
spread option.

Let us briefly mention how we can represent the pricing formula in terms of convolutions
products involving the option payoff function, the normal distribution and a jump distribu-
tion. For simplicity, we restrict our attention to integrable pay-off functions f(z) € L*(R).

Using the definitions of ¢ and ¥, we have that

exp (U(t, T; —yd(t, 71, 75))) — exp ( /t (s, TQ)eMTu)))
_E {exp (—iy(s(t,n,@) /t " gt dL@)ﬂ |

Hence, if we denote the probability distribution function of

T
ot T, ) / =T g1, (u)
t

by Fr(z), then the above calculation reveals that the Fourier transform of this measure is
equal to

exp (U(t,T; —yo(t,71,72))) -
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Using this information, we can write the spread option price by the following convolution
formula:

(4.6) Copmend (£, T, 71, 72) = / (F % potmsn}y — ) Fu(dy)
R

with p; 7. - defined in Prop. 4.2. Thus, the price dynamics of a spark spread option can
be interpreted as a weighted average of spark spread options written on a forward dynamics
without jumps. The weighting is over a modification of the distribution of the jumps.

5. MODELING THE SPARK SPREAD FOR UK ELECTRICITY AND GAS

We test our model on spot price data for gas and electricity observed in UK, and discuss
different issues concerning the modeling of price spikes by jump processes.

5.1. Empirical analysis and model fitting. We had available electricity and gas spot
prices recorded in the period 06 02 2001 to 27 04 2004 in United Kingdom. Observations
are daily market prices, quoted at each working day. This resulted in 806 data over the
period of observation. Electricity spot prices are recorded in £/MWh, while gas is in
pence/therm. Data are transformed to spark spread prices according to (2.1) by taking
the difference of the electricity spot prices and the gas spot prices multiplied by heat rate
c. The heat rate converts the gas prices into the units of electricity, and was chosen to be
¢ = 0.85, which seems to be a reasonable number from practice. Spark spread differences
are presented in Fig. 1. From this time series we see that in the first two years the spark
spreads are less volatile than in the more recent part. This may be a sign that the market
conditions changed, however, we shall not perform a more detailed analysis of this.

100

80 - B

20

_200 160 260 360 460 560 660 760 860
FiGURE 1. Spark spread differences.

To understand better the statistical properties of the spark spread differences, we build
a histogram of empirical values and present it together with a fitted normal distribution
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density function in Fig. 2. The histogram shows obvious non-normality of data: it has an
extremely high peak (kurtosis is equal to 30.22) and very heavy tails. Moreover, it has clear
right skewness (skewness is equal to 4.55). Thus, it is not surprising that the normality
hypothesis is rejected at the 1% level of significance.

200

180 *
160 - *
140 - i
120 N
100 |- *
80 - L~ *
60 - *
40 - B

20 N

fo) . L
—40 —20 (0] 20 40 60 80 100

FiGUurE 2. Histogram of the spark spread differences with normal density curve.

We assume the seasonality function A(¢) to have the form A(t) = Ay (f) + Ax(t), where

(51) A1<t> = Qo -+ alt
is the linear trend component, and
(5.2) Ao (t) = b + by cos (27 (t — by) /252)

describes seasonal effects. By simple linear regression, the slope and intercept were esti-
mated to be ag = 0.008 and a; = 0.273, respectively. The value of intercept is statistically
insignificant, however the slope is significant at the 1% level. Hence, during the period of
observation there has been significant increase in values of the spark spread differences.
The seasonality part As(t) of A(t) is fitted to the de-trended data using nonlinear least
squares, implemented in Matlab as the function nlinfit. The estimated values are pre-
sented in Table 1. From the Fig. 3 it is clear that there are quite weak seasonal effects
in data. We checked for weekly, monthly and quarterly effects in spark spread differences
as well, however they were basically not present and thus ignored. In the further analy-
sis we remove the seasonality function A(t) from the spark spread data, and consider the
remaning time series.

To detect the mean-reversion in model (3.2), we regress today’s data on the data of the
previous day. The estimated mean-reverting parameter is a = 0.508, being significant at
the 1% level. Not unexpectedly, the fitted intercept appeared to be statistically insignif-
icant, and is therefore assumed to be equal to zero as in the model (3.2). The residuals
from the regression analysis are presented as a time series in Fig. 4.
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TABLE 1. Fitted parameters of seasonal function

bo by by
0.180 —3.307 11.526

100

80 - 1

60 - 1

100 200 300 400 500 600 700 800

F1GURE 3. De-trended spark spread differences with the seasonality function.
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FI1GURE 4. Spark spread differences residuals.

The histogram of the residuals of the spark spread differences with the fitted normal
density curve is presented in Fig. 5, where we see that the residuals are far from being
normally distributed. The residuals has a mean close to zero, and standard deviation
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equal to 6.23. They have an extremely high peak (kurtosis is equal to 53.14) and very
heavy tails. Moreover, the skewness is equal to 4.80, indicating quite distinct-right hand
skewness in the residuals. We continue our analysis by investigating different specifications
of the Lévy process L(t) in the spark spread dynamics (3.2) to fit these residuals.

600

500 |- *
400 - i
300 i
200 - *

100 |- *

0 i

—50 o 50 100

FIGURE 5. The histogram of the spark spread differences residuals.

An analytically tractable and flexible class of models for residuals having skewness and
heavy tails is the normal inverse Gaussian (NIG) Lévy process. The NIG Lévy process
L(t) is defined by letting L(1) being NIG distributed (and in addition putting o = 0). This
class of Lévy processes was applied to oil and gas data in Benth and Saltyté-Benth [7], and
is a candidate for modeling the spark spread residuals as well (see Barndorff-Nielsen [1] and
Barndorff-Nielsen and Shephard [2] for applications to finance). However, we shall in this
paper follow a different, but more traditional way of modeling jumps in a commodity time
series. Observing that the residuals are mostly having small fluctuations around zero, but
from time to time showing rather extreme jumps, it may be natural to consider the Lévy
process L(t) to be a pure jump process. A model of this form is conveniently fitted using
the method of recursive filtering (see e.g. Clewlow and Strickland [9] for a description of
this algorithm), which we now apply to our data set.

We begin by calculating the empirical standard deviation of the residuals, being equal
to 6.23. Then we identify all residuals larger in absolute value than 3 x 6.23 = 18.68 as
jumps. In the first step, we find that there are 16 positive and 2 negative values that exceed
this limit. We calculate the daily jump frequency by dividing the number of jumps by the
total number of data, which results in the value 0.0223. After removing these jumps, we
recalculate the standard deviation (becoming 3.36), and repeat the procedure of identifying
jumps. We iterate this algorithm untill the standard deviation of the residuals with jumps
removed converges and no new jumps are identified. The results of the recursive filtering
proceedure are presented in Table 2.
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TABLE 2. Summary of the recursive filtering procedure

Iteration Std.dev. Cumul. § jumps Daily jump frequency

1 3.36 18 0.0223
2 2.68 34 0.0422
3 2.35 50 0.0620
4 2.22 o8 0.0720
) 2.13 64 0.0794
6 2.08 68 0.0844
7 2.07 69 0.0856
8 2.07 69 0.0856

Let us first discuss the “normal variations” given by the filtered residuals. From Table 2
we can read off the standard deviation (or volatility) of the filtered residuals to be o = 2.07,
and a histogram of normalized residuals is given in Fig. 6. It has a clear bell shape,
with kurtosis and skewness being 0.32 and 0.22, respectively. The Kolmogorov-Smirnov
statistics is significant at the level of 8%, meaning that the distribution is very close to
normal. These facts indicate that the choice of Brownian motion as an error process is
reasonable.
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F1cURE 6. Histograms of the filtered residuals.

We next turn our attention to the filtered jumps. A suitable model for L(t) is a compound
Poisson process defined as

(5.3) Lit)=>_ X
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for an independent sequence of i.i.d random variables X; and P(t) being a Poisson process
with jump intensity A. The jump intensity is read off from Table 2 as A = 0.0856. We
did not detect any seasonal pattern of the jump intensity, which supports the choice of
a constant A. In Fig. 7 we have plotted the histogram of the filtered jumps. To have an

25

15 1

10 B

—-50 (¢] 50 100

FI1GURE 7. Histograms of the values of jumps

analytically tractable model (see Subsection 5.2 below for a discussion), we assume that the
jumps are normally distributed, with estimated mean equal to 7.33 and standard deviation
18.78. Hence, we model X; as a normal random variable with this as specified mean and
standard deviation. We remark that the choice of L(¢) in (5.3) gives an additive version of
the jump dynamics model for asset prices suggested by Merton [15].

One may not be convinced by applying the normal distribution to fit the jump size
histogram. Indeed, from Fig. 8, we see that the histograms for the negative and positive
jumps are different. Moreover, the jump intensities are estimated to be 0.0273 for the
negative jumps, while the positive have an intensity of 0.0583, which means that they
occur more than twice as often. Such a skewness in jump behaviour occurs for other data
series as well (see e.g. Clewlow and Strickland [9] for more on this), and a natural model
may be

(5.4) L(t)=N*(t)— N (1)
where N*(t) are two independent compounded Possion processes, defined as
PE(t)
NE(t) = > X;
i=1
for two independent sequences of i.i.d lognormal variables X f with parameters s* (shape)

and m* (scale). The Poisson processes P*(t) are assumed to have jump intensities A%,
which we have estimated to be AT = 0.0583 and A\~ = 0.0273. The estimated shape
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FIGURE 8. Histograms of the values of positive (top) and negative (bottom) jumps.

TABLE 3. Estimated parameters of jumps distribution

Parameter Positive jumps Negative jumps

m 13.25 21.27
s 0.64 1.52

and scale parameters of the positive and negative jump size distributions are presented in
Table 3. The unfortunate effect of choosing lognormal distributions for the jump sizes is
that the integrability condition for call options does not hold.
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5.2. Discussion of option pricing. Let us discuss the relation to option pricing of the
proposed jump processes. Consider first the jump model stated in (5.3). If the cumulant
function of X, the jumps size, is denoted by ¢, we have that

¥(0) = InE [exp(i0L(1))] = A (e*@ — 1) .

When X is supposed to be a normally distributed random variable with expectation m;
and variance ajz, its cumulant becomes

1
6(6) = ibm; — S6%07 .

Noting that the exponential integrability condition in Prop. 4.3 is equivalent with L(1)
having exponential moments, that is, the expectation of exp(yL(1)) being finite, we see
that for the above jump model we can price call options on the spark spread using the
Fourier approach.

Turning our attention to the model (5.4), we find that

W(0) = A(e?" @ 462 @) _9)

where ¢*(6) are the cumulant functions for X*, respectivley. We can calculate these for the
lognormal model, ending up with an infinite series representation. However, we observe
that exponential moments do not exist for the Lévy process L when X is lognormally
distributed, and thus we can not use this model to price call options by FF'T.

In order to apply the fast Fourier technique, we need the function ¥, which is given as
an integral of the cumulant ¢ (see Lemma 3.3). In practical applications of the models
proposed above, we need to approximate ¥ by a numerical integration procedure since the
integral can not be analytically calculated.
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