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THE VOLATILITY OF TEMPERATURE AND PRICING OF WEATHER
DERIVATIVES

FRED ESPEN BENTH AND JURATE SALTYTE-BENTH

ABSTRACT. We propose an Ornstein-Uhlenbeck process with seasonal volatility to model
the time dynamics of daily average temperatures. The model is fitted to almost 43 years
of daily observations recorded in Stockholm, one of the European cities for which there
is a trade in weather futures and options on the Chicago Mercantile Exchange (CME).
Explicit pricing dynamics for futures contracts written on the number of heating/cooling
degree-days (so-called HDD/CDD-futures) and the cumulative average daily temperature
(so-called CAT-futures) are calculated, along with a discussion on how to evaluate call
and put options with these futures as underlying.

1. INTRODUCTION

The Chicago Mercantile Exchange (CME) organizes a marketplace for financial deriva-
tives written on temperature. The particpants of the exchange can trade in futures con-
tracts written on temperature indices collected from several US, European as well as two
Japanese cities. To obtain reliable prices of the forward products one needs confident
stochastic models for the temperature index in question.

The current paper follows up the analysis in Benth and Saltyté-Benth [3] with a detailed
model for the temperature dynamics. As observed in a paper by Campbell and Diebold [6]
for US temperature data, and later confirmed for Norwegian temperature data in [3], there
is a clear seasonality in the temperature variations after removing yearly mean and mean-
reversion effects. The seasonality is observed for the autocorrelation function of the squared
residuals, which led the authors to search for a seasonality in the volatility of temperature.
In this paper we propose a truncated Fourier series to model the seasonal volatility, and
validate our model on more than 40 years of daily data collected from Stockholm, Sweden,
one of the European cities traded on CME. The volatility model accounts for high variations
in the winter periods, together with a higher variation in the summer than spring and
fall seasons. Since the form of the autocorrelation function of Stockholm resembles the

Date: March 31, 2005.

Key words and phrases. Weather derivatives, temperature dynamics, stochastic processes, mean-
reversion, seasonality, Heating degree-day futures, options on temperature.

We are grateful to SMHI, the Swedish Meteorological and Hydrological Institute, for providing us with
temperature data. Jiiratée Saltyte-Benth acknowledges the financial support from the Norwegian Research
Council, grant NFR: 155120/432.

1



2 BENTH AND SALTYTE-BENTH

observations in [6] for several US cities, we expect our model to perform good also for
these.

Our suggested model for daily average temperature variations is a mean-reverting process
with seasonality in the level and volatility. It differs from the model of Campbell and
Diebold [6] in its simplicity, since they suggest to use an auto-regressive time series model
with seasonal ARCH residuals with several lags. This model may be better in fitting to
the data (see however, a discussion on this in connection to the Norwegian data in [3]),
but we believe that our model is sophisticated enough to explain the basic stylized facts of
temperatures, yet simple enough to allow for an explicit derivation of futures prices. Also,
for some types of temperature indices, we are able to provide explicit prices for call and put
options written on temperature futures typically traded on the CME. We demonstrate the
importance of having a realistic model for the seasonality of volatility by looking at HDD-
futures prices. Using a constant volatlity for temperature variations leads to significantly
lower HDD-futures prices, especially for the summer months where our proposed volatility
model gives close to a doubling of the prices.

The mean-reversion model suggested here is a generalization of Doernier and Querel [8].
Even though they state a general Ornstein-Uhlenbeck dynamics with time-dependent vari-
ance, they only consider constant specifications in the analysis of Chicago temperature
data. Alaton, Djehiche and Stillberger [1] use a similar model for data collected from
Bromma, Sweden, with a time-dependent variance. However, they smoothen this out to
obtain a constant variance over each month. They calculate prices of several different
kinds of temperature derivatives. Finally, we would like to mention the fractional model
of Brody, Syroka and Zerovs [5], who consider an Ornstein-Uhlenbeck model with a frac-
tional Brownian motion driving the stochastics. Prices for different temperature derivatives
are calculated, however, the derivations become very complicated when going to a time-
dynamics for different futures products. A different view on pricing weather derivatives
is taken by Davis [7], where the HDD-index is modeled directly by a geometric Brownian
motion. Options written on this index is priced using marginal value techniques.

In the OTC market, many kinds of temperature derivatives are based on HDD and
CDD-futures with different delivery periods than those traded on the CME. Our suggested
model for pricing HDD-futures can be used for marking-to-market purposes since the prices
are represented as a function of the delivery period. One may first calibrate the model
using actual quoted market data from the CME for the contract in question, and next use
this to estimate the futures price for the delivery period of interest. In this way we provide
a model yielding prices for all possible delivery periods, not only restricted to those on the
market place.

The paper is organized as follows. In Section 2 we state our proposed dynamics for
the daily temperature variations, and analyse it empirically based on temperature data
collected in Stockholm, Sweden, in Section 3. Section 4 is devoted to the derivation of
futures prices for different temperature indices like Heating-Degree Days (HDD), Cooling-
Degree Days (CDD), cumulative average (CAT) and the Asian averaging (Pacific Rim)
of temperatures. We also discuss the pricing of options on these derivatives, and include
some analytical formulas for average-based futures. The paper concludes in Section 5.
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2. STOCHASTIC DYNAMICS OF TEMPERATURE VARIATIONS

Let (Q, F, P) be a complete probability space equipped with a filtration {F;}:>¢ satisfy-
ing the usual hypotheses (see e.g. Karatzas and Shreve [9]), and denote by B(t) a standard
Brownian motion.

We propose the following Ornstein-Uhlenbeck model for the time evolution of tempera-
tures:

(2.1) dT(t) = ds(t) —  (T(t) — s(t)) dt + o(t) dB(t).

Here, s(t) is a deterministic function modeling the trend and seasonality of temperature,
which we assume to be bounded and continuously differentiable. Note that here T'(¢) is the
daily average temperature, usually defined to be the average of the max and min temper-
ature over a 24h time span for the date in question. Motivated from the empirical studies
in Benth and Saltyte-Benth [2], we suppose that o(t) is a continuously differentiable and
bounded function describing the daily volatility of temperature variations. We are in prin-
ciple free to specify both s(t) and o(t), but as we shall see in the next section, temperature
data suggests that choosing a truncated Fourier series for both gives a sufficiently flexible
class of functions that at the same time allows for explicit calculations. Thus, from now
on we specify s(t) and o2(t) to be of the form

(2.2)  s(t)=a+bt+ag+ Zl a; sin(2i(t — f;)/365) + Zl bj cos(2jm(t — g;)/365),

i=1 j=1
and
IQ JQ
(2.3) o%(t) =c+ Y c;sin(2imt/365) + Y _ d; cos(2jmt/365).
i=1 j=1

Note that we model the square of o(t) as a truncated Fourier series and not o(t) itself.
This is most convenient in the data analysis, but also from the perspective of pricing
futures and options since %(t) is present in many places rather than o(¢). Of course, one
can use different models than (2.3), however, our experience when analyzing data is that
this specification is simple and flexible enough to capture the observed stylized facts of
temperatures. In any case, we suppose that the parameters of ¢%(t) in (2.3) is such that
the volatility function is bounded away from zero. We remark in passing that in [2] we used
a Lévy process to drive the dynamics when analyzing Norwegian data. In this paper we
want to restrict our attention to models where analytical pricing is possible and therefore
consider only a Brownian motion driven dynamics. As we shall see for Stockholm, such a
model will explain the dynamics to a high degree of accuracy.
Observe that the Itd6 Formula gives an explicit dynamics of the temperature (2.1):

t

(2.4) T(t) = s(t) + (T(0) — s(0)) e ™ + /0 o(u)e ™= dB(u).
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This representation shows us that temperature is normally distributed at each time, but
reverting to a mean defined by the seasonal function s(t). The speed of mean-reversion is
defined by x, and the variance of the temperatures is seasonally varying through o.

3. ANALYSIS OF TEMPERATURE DATA FROM STOCKHOLM

The data we have at hand are average daily temperatures. To fit our stochastic model
to these, it is useful to reformulate the time-continuous dynamics to a time series. A
straightforward calculation yields

AT(t) = As(t) — (L —e ")(T(t) — s(t)) + e”/t o(u)e ™" dB(u),

where the notation AX(¢) := X(t + 1) — X(¢) is used. Approximating the stochastic
integral, we find, at least approximately, that

AT(t) & As(t) — (1 — e ™) (T(t) — s(t)) + e "o () AB(t) .

Thus, when estimating the model (2.1) for the temperature data we consider the following
time series model

(3.1) Tir = oT, +5(t)e;,

where € is i.i.d standard normally distributed, o = e™*, anda (t) = ao(t).

The fitting procedure will go in several steps. Empirical studies of daily average tem-
peratures show that there is a significant linear trend in the data. Therefore, before we
proceed further, we check for the presence of such a trend for the Stockholm temperatures.
Next, we fit the seasonal part of s(t) using the method of least squares. Then, we perform a
standard linear regression of today’s (detrended and deseasonalized) temperatures against
previous day’s observations. And finally, we estimate the daily variance of the regression
residuals, to obtain the a%(¢) function. We now describe the results from the estimations
in more details.

We have available daily average temperature observations from Stockholm, Sweden, in
the period January 1, 1961 untill December 19, 2004, resulting in 16059 records. Data of
the last 11 years (starting January 1, 1994) together with the fitted seasonal temperature
s(t) are presented in Fig. 1.

A quick look at the histogram (Fig. 2) of the daily average temperatures gives us a clear
indication of non-normality of data (indeed, the hypothesis of normality is rejected at the
1% significance level). The distribution seems to be bimodal, a fact which is not surprising
due to the cold and warm seasons in Stockholm. Also we observe a left skewness in data
(skewness is equal to -0.10) and negative kurtosis (-0.66).

A simple regression analysis shows that a linear trend exists (in the considered period
the daily average temperature increased by approximately 1.6°C) and is significant. The
values of intercept and slope are a = 6.28 and b = 0.0001, respectively, and they are both
significant at the 1% level.

Using the nlinfit function in MATLAB we fit the seasonal part of the function s(t) to the
de-trended data. We set I} = J; = 1, which leads to the following values of the coefficients:
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F1GURE 1. Daily average temperatures from Stockholm together with the
fitted seasonal function, a snapshot of the last 11 years starting January 1,
1994.
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FIGURE 2. Histogram of daily average temperatures from Stockholm.

ag = 0.07, a; = —10.40 and b; = 22.00. From Fig. 1 we see that this parametrization is
sufficient to capture the seasonal variations in the daily average temperatures.

Next we regress todays de-trended and de-seasonalized daily average temperatures against
those of the previous day. In other words, we fit an AR(1)-model which will explain
the mean-reversion property of temperature dynamics. The mean-reversion parameter
a = 0.82 is significant at the 1% level. This estimate of a corresponds to x = 0.198 in the
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TABLE 1. Fitted parameters of o%(t) = %(t)/a?

C C1 Co C3 Cy d1 d2 d3 d4

6.19 094 -0.39 0.59 0.07 2.08 1.22 0.46 -—-0.07

original continuous-time dynamics (2.1). Moreover, the constant in the regression analysis
was insignificant as expected, and we assume it to be zero. The standard deviation of the
residuals is o = 2.04.

The autocorrelation function of the residuals obtained after all effects mentioned above
were removed are presented in Fig. 3 (graphics on top). We observe quite high values of the
autocorrelation for the several first lags. This indicates that a higher order autoregressive
model is called for in a more sophisticated time-series modeling of temperatures. For
higher lags, the autocorrelation function seems to vary randomly around zero. However,
the autocorrelation function of squared residuals reveals the fact of time dependency in the
variance of residuals (see Fig. 3, bottom graphics). Here we see that the first positive lags
are rapidly decaying, followed by a clear seasonal variation for larger lags.
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F1GURE 3. The autocorrelation functions of the residuals and squared resid-
uals of daily average temperatures from Stockholm.

We estimate this temporal dependency in the variance of residuals in the following way.
First we find empirical values of the daily variance based on the observations over all years
for that particular date. This gives us 365 values. Next we choose Iy = Jo = 4 in (2.3),
and use nlinfit in MATLAB to estimate the values presented in the Table 1. In Fig. 4 we
present the empirical values of o2 (t) together with the fitted function, where we clearly
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observe the temporal dependency in the daily volatility. We have the highest variations in
the winter period, while early spring and fall have lower variations than in the summer.
Maybe surprisingly, we observe a slight increase in the variance for the summer compared
to the autumn and fall seasons, with the lowest variation in the fall.

11

10 - 1

I i
of “ L “ ul]f”’l” l | m J”Wuwl ]

h"‘x'“l .H ll J ‘“m!l'

w

T
—4
—

! ! ! ! ! ! !
50 100 150 200 250 300 350

o

FIGURE 4. Empirical daily squared volatility together with the fitted volatil-
ity function o2(t)

The residuals and squared residuals obtained after removing the temporal phenomena
in the variance are presented in Fig. 5. As we can see, we have completely removed the
seasonality in the autocorrelation function for squared residuals. The rapid decay in the
autocorrelation for the first lags is still present, suggesting that a more refined model could
be of GARCH-type (see e.g. Bollerslev [4]). However, this will complicate the calculation
of futures and options prices significantly, and we will not consider such an extension in
this paper.

The histogram of the residuals (Fig. 6) seems to be quite unimodal and symmetrical.
We find the skewness to be -0.010 and a kurtosis equal to 0.004. However, the hypothesis
of normality is rejected at the 1% significance level. The same conclusion was made for
the Norwegian temperature data analyzed in [3], and there we suggested to model the
residuals by a generalized hyperbolic distribution. This family of distributions are able to
capture the small peak in the center and the semi-heavy tails that we found present in the
Norwegian data. A GARCH-model for the residuals may produce similar results. On the
other hand, these effects are small. The inclusion of a non-normal model for the residuals
leads to a complicated Lévy process dynamics which may be hard to use for pricing of
derivatives. We believe that the assumption about ¢.7.d standard normal residuals is a
reasonable one.

We now move on to calculate futures and option prices based on our model, where we will
provide some numerical examples using the estimated model of Stockholm temperatures.
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FIGURE 5. Autocorrelation function for squared residuals before (above)
and after (below) dividing out the volatility function &(¢) from the regression
residuals.
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FIGURE 6. Histogram of the residuals of temperatures from Stockholm to-
gether with the standard normal density.

4. DERIVATIVES ON TEMPERATURE

The Chicago Mercantile Exchange (CME) organizes standardized trading in futures and
options written on temperature indices for several US, European and Japanese cities'.

1See http:/ /www.cme.com,/prd/wec/ for more information about this trading.
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The futures have the number of Heating-Degree Days (HDD) (or Cooling-Degree days
(CDD)) over one month or one season for 15 US cities as the underlying temperature in-
dex. The HDD index over the time interval |11, 73] is defined in a continuous-time setting
as [ max(65—T/(7),0) dr, whereas the CDD index is defined as [* max(7'(1) —65,0) dr.
The name CDD is stemming from the fact that most air-conditioning is switched on when
temperatures goes above 65°F, while heating is mostly used for lower temperatures, ex-
plaining the name HDD. The futures written on these two indices are financially settled
at the end of the index period.

For the 5 European cities one can trade in futures written on the cumulative (average)
temperature (CAT) index and the HDD index over a month or season. The CAT index
over a time interval [y, 73] is defined as f:f T(7) dr, where the temperature is measured
in degrees of Celsius and not Fahrenheit. The contracts are denominated in GBP rather
than USD. Furthermore, the temperature level for the HDD-contracts is set to 18°C.

For the two Japanese cities (Tokyo and Osaka), the futures are written on the so-called
Pacific Rim index, which measures the average daily temperature over a month or season.
The Pacific Rim index over the period |1, 72| is defined as f:lz’ T(7)dr /(19 — 1), and the
contracts are denominated in Japanese Yen.

The CME also organizes a trade in plain vanilla European options on the different
temperature index futures. For all HDD, CDD, CAT and Pacific Rim index futures there
exist call and put options for different strikes and maturities.

Let us consider the price dynamics of futures written on the HDD index over a specified
period [11,72], 71 < T» (the winter season, say). Assuming a constant continuously com-
pounding interest rate r, the futures price at time ¢t < 7 written on the HDD index is
defined as the F-adapted stochastic process Fupp(t, 71, T2) satisfying?

(4.1) 0= g [ maxe ~ T(r),0)dr ~ Faon(t. ) | 7]

Here @) is a risk-neutral probability and c is equal to 65°F or 18°C depending on whether
the contract is for a US or European city. From the adaptedness of Fypp(t,71,72), we
easily find the futures price to be

(4.2) Fupp(t, 71, m2) = Eqg / max(c — T(7),0) dr | ]:t— ,
L/, J

Analogously, the CDD-futures price is

_ T2 _
(4.3) Fepp(t,m1,m) = Eqg / max(7(7) —¢,0)dr | Fi| ,

By the same reasoning, we derive the price of a CAT-futures and a Pacific Rim-futures to

be
(4.4) Foar(t,m1,m) = Eq [ / ory J—"t] ,

T1

2We have assumed that settlement of the contract takes place at the end of the period where the index
is created, namely 7.
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and
1 2
(45) FPRIM(taThTZ) :EQ[ / T(’T) dT‘JTt] .
T2 —T1 Jn
Observe that trivially,
1

(4.6) Fermv(t, 11, 72) = Foar(t, 11, 72).

To —T1

Furthermore, since max(c — x,0) = ¢ — x + max(x — ¢,0), we have
(4.7) Fupp(t, 71, 72) = c(12 — 1) — Fear(t, 71, 72) + Fepp(t, 71, 72) -

In order to derive a more explicit expression for the futures price, we need to specify
the risk-neutral probability ). Since temperature is not a storable commodity, the futures
contracts can not be hedged and the market is therefore incomplete. A risk-neutral prob-
ability is by definition a probability measure () ~ P such that all tradeable assets in the
market are martingales after discounting. Thus, all equivalent probabilities () will become
risk-neutral probabilities. We specify a sub-family of probability measures () using the
Girsanov transform: Assume () is a real-valued measurable and bounded function. The
stochastic process

(4.8) Z0(t) = exp(/ot % dB(s) — %/Ot iii;) ds> )

will become the density process of the probability measure

QG(A) =K [1AZG(TmaX)} )
where 14 is the indicator function and 7., is a fixed time horizon bigger than the trading
times for all relevant futures. This probability is obviously equivalent to P, and the process

0(t)

4.9 dW(t) =dB(t) — —=dt
(19) (1) = dB(t) - i3
is a standard Brownian motion under Q?. Note that we assumed that the parameters of
0?(t) are such that the function is bounded away from zero, thus creating no problems
when using it as a divisor in the Girsanov transformation. The temperature dynamics
under Q¢ becomes

(4.10) dT(t) = ds(t) + (0(t) — k (T(t) — s(t))) dt + o(t) AW (2).

We denote the expectation under the probability Q? by Ey [-]. By using time-varying 6’s we
have a flexible class of risk-neutral probabilities Q? that we easily can fit to the observed
forward curves. We call 6 the “market price of risk”. An explicit form of T'(¢) is given by

t t
(4.11)  T() = s(t) + (T(0) — s(0))e™"* +/ O(u)e "% du + / o(u)e " dW (u) .
0 0
We see that T'(t) is normally distributed under @, with expectation

Eg [T(t)] = s(t)(T(0) — 5(0))e™"" + /0 O(u)e "= du
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and variance .
Vary [T'(t)] = / o (u)e 20 gy
0
We now move on to calculate the futures prices for the contracts traded at the CME.

4.1. HDD/CDD-futures and options. Denote by ® the cumulative probability distri-
bution function of a standard normal variable, and ¢ its density. We have the following
result for the price of a HDD-futures.

Proposition 4.1. The price of a HDD-futures at time t, where the index is measured over
the period [T, 73], t <11 < To, is given by

412) Fupp(trim) = [ S0 n){d(e. 7. TO)0(d(e 7 T(0) + 6(dle, 7 T(0) .
where
c— (1) + (s(t) — z)e =0 — [TO(u)e =) du

S(t, 1)

d(t,r,z) =

22(25,7'):/ o (u)e 2T gy
¢

Proof. By the Fubini-Tonelli theorem, we can interchange expectation and integration to
obtain

Fupp(t, 71, m) = / Ey [max(c —1T(1),0) |]-"t] dr .

T1

We now calculate
Ey [max(c —T(7),0)| ft]

by using Fourier transform techniques. To make notation more compact, let f(z) =
max(c — x). Observe that f is not an integrable function over R, and we dampen it
with an exponential function e** with o > 0 and define

falz) =e*f(2).
It is easily seen that f, € L*(R). From Fourier analysis we know that
¢ f@) = 5o [ Fatw)edy,
and thus
By [max(c - 7(1),0) | 7] = 5= [ Falw)Ba o970 | 7] ay.

Let z := —a+iy. Then

Eg [eZT(T) |]-"t] = exp <zs(7) + 2(T(0) — 5(0))e™ + z /OT O(u)e " du)
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x Eqg [exp (z/ o(u)e "~ dW(u)> \ft}
0

= exp <zs(7‘) + 2(T(0) — 5(0))e™ + = /OT O(u)e " dy

+z /Ot o(u)e v dW(u))Eg [exp (z /tT o(u)e v dW(u))}
= exp <ZS(7') + 2(T(t) — s(t)e™™ ) 4 2 /T O(u)e " du)

t
1 T
X exp<522/ o?(u)e 2w du) ,
¢

where we used the measurability and independent increment property of the Wiener process
in the second to the last equality.
Introduce the notation

c(t, 1) = s(1) + (T(t) — s(t))e D —I—/ O(u)e % du .
0
Thus,
1 ~ . .
Eg [f(T(t)) ‘Ft] = % /fa(y)e—%Z/222(tﬂ')elyc(t,r)—lyaZQ(tJ) dye%aZEQ(t,T)—ac(t,r)

— e%oﬂE?(tﬂ')—ac(t,T) <fo¢ *p> (C(t, 7_) _ O[ZQ(t, 7_)) ’

where p(z) is the density function of a zero-mean normal random variable with variance
Y2(t, 7). Appealing to the definition of f,, we find

Eg [f(T(t)) |.7-"t] =E [exo‘z(”) max((c —c(t,7) + aX?(t, 7)) — X(t,7), Oﬂ )

for X being a standard normal random variable. A straightforward calculation of this
expectation yields the result. 0

By appealing to the [t6 Formula, we can derive the dynamics of the HDD-futures price,
dFypp(t, 71, T2).

Proposition 4.2. The time-dynamics of a HDD-futures where the index is measured over

the period [Ty, T3] is given by

(4.13) dFypp(t, 1, m7) = —o(t) /T2 e "TVD(d(t, 7, T(t))) dr dW (t)

T1

fort <1 < 7y. The function d(t,7,T(t)) is defined in Prop. 4.1 above.

Proof. Recall the notation in Prop. 4.1 and its proof. We know that Fypp(t,71,72) is a
Q%-martingale, and therefore we need only to focus on the “dWW”-term in It6’s Formula:

WFon(t, ) = [ (~e OB T(0) — elt, ) - T )

T1
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—k(T—t)
X(t,7)

T2
. / o (e 0B (d(t, 7, T(1))) dr dW (2) .

T1

x op(d(t, 7, T(t))) + o(d(t, 7, T(t)))e " Dd(t, T, T(t))) dro(t) dW (t)

This concludes the proof. 0]

The dynamics of Fypp is rather complicated and does not lend itself to explicit com-
putations of put and call options prices, something which is confirmed by the explicit
expression in (4.12). Thus, we are left with a numerical approach if we want to find prices
of calls and puts written on HDD- (or CDD-) futures. A simple approach could be a Monte
Carlo method simulating the risk-neutral temperature 7°(7) at the strike time 7, and then
performing a numerical integration to derive Fypp (7,71, T2).

Note that we need a specification of the market price of risk # in order to find the
HDD-futures price, and options prices written on these futures. By choosing an appropri-
ate family of functions 6, we can fit these using today’s observed HDD-futures curve by
appealing to the theoretical price curve yielded by (4.12):

T2
(4.14) Fupp(0,71,72) = / (0, 7){d(0, 7, T(0))@(d(0, 7, T(0))) + 6(d(0, 7, T(0))) } d
T1

The dependency on 6 is in the function d (see Prop. 4.1). In Fig. 7 we have plotted the
HDD-futures curve (4.14) at time 0 for each month the following year based on the fitted
temperature model of Stockholm reported in the previous section. We have assumed zero
market price of risk, i.e. § = 0. In the same plot we have included the HDD-futures curve
we would obtain if o(t) is supposed to be a constant (broken lines). The constant is chosen
to be the standard deviation of the residuals from the regression analysis, which we recall to
be 0 = 2.04. We observe that assuming a constant volatility leads to an underestimating
of the futures curve, consequently for each month through the year. In the winter the
error is small, but in the summer we see that the varying volatility accounts for close to
a doubling of the price. This emphasizes the importance of having a good model for the
temperature volatility when pricing futures contracts.

4.2. CAT and Pacific Rim-futures and options. In Benth and Saltyté-Benth [2] we
calculated explicitly the CAT-futures price dynamics based on the model (2.1) with Lévy
dynamics. We include here the results and proofs in the special case of a Brownian motion
for the sake of completeness.

First let us calculate the cumulative temperature over a time interval [y, 73] under the
risk neutral probability Q?:

Lemma 4.3. If the temperature T(t) follows (4.10), the cumulative temperature over the
time interval [Ty, 73| is explicitly given by

(4.15) /T2 T(t)dt = /T2 s(t)dt — k™ (T(0) — s(0)) (e7*™ — e ")

T1 T1
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HDD monthly futures curve
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Ficure 7. The HDD-futures curve (4.14) for each month based on the
model for Stockholm temperatures. The broken lines represent the the cor-
responding HDD-prices when assuming a constant volatility of temperature
o =2.04.

- /O e(t)/iil {ein(‘rz*t) - 1[0,7’1]@) ein(ﬁit) - 1[7’1,7’2} (t>} dt
T2

- /0 O(t)’%_l {6_H(Tz_t) - 1[0,7‘1](t) e—n(n—t) - 1[7‘1,7'2](t)} dW(t) :

Proof. Let T(t) = T(t) — s(t) be the deseasonalized temperature. From (4.10) we find

T(7y) :T(Tl)—/f/TQ () dt+/729(t) dt+/T20(t) A (t).

T1

Combining this with the explicit dynamics of 7'(¢) in (4.11) yield the Lemma. O
We apply this result to calculate the CAT-futures price.

Proposition 4.4. The CAT-futures price Foar(t, 71, T2) at time t < 11 where the index is
measured over the interval [Ty, 73| is given by,

(4.16) Foar(t, 1, 1) = / s(7) dr+ k1 <€—n(‘rrt) _ 6*%(7‘2*0) <T(t) —S(t)) +O(t, 71, 7)

T1

where O(t, 1, T2) is given as a function of the market price of risk and volatility as

O(t, my,m2) = Hl/ O(u) (1— e’”(m’“)) du
t
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(4.17) — Kk /T1 O(u) (1— e"‘(ﬁ’“)) du.

Proof. This is a simple calculation using (4.11), (4.15) together with the independent in-
crement property of Brownian motion. U

A straightforward application of [t6’s Formula gives

(4.18) dFcar(t, 71, 72) = E(t, 71, 72) dW (1) .
where
(4.19) Y(t, 7, 70) ==K (e’”(n’t) - e’”(”’t)) o(t).

We can interpret X(¢, 71, 72) as the volatility term structure of the CAT-futures dynamics.
In Fig. 8 we have plotted the volatility as a function of time untill the beginning of each
delivery month. The first curve is X (¢, 71, 72) plotted for ¢ starting January 1, and ending
January 31, and delivery is in February. Next curve is the volatility for delivery in March,
with time ranging from January 1 untill end of February, and so on untill delivery in
January next year. The parameters are taken from the Stockholm model. We notice
that there is hardly any variation before we are close to delivery, where the volatility is
sharply incrasing. This is in line with observations in commodity markets, where there
is a maturity effect in the volatility. Samuelson [10] argued for an increasing volatility of
futures price returns as time to maturity decreases, since most of the important information
is revealed close to maturity. Our model predicts a similar behaviour for the variation of
the absolute CAT-futures prices. The seasonality in o(t) is apparent from the different

CAT volatility

D))

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

FIGURE 8. The volatility ¥(¢, 71, 72) for every month ranging from February
to January. Time is running from January 1 up to the day before delivery.
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levels of volatility close to maturity. Also we observe that there is hardly any volatility far
from the delivery period, since in view of (4.16) the stochastic component T'(t) — s(t) of
the CAT-futures price is negligible.

Since the CAT-futures price is an additive Gaussian process, we can easily derive an
explicit formula for a call option written on the futures contract having exercise date
7 < 711 and strike price K.

Proposition 4.5. The price of a call option at time t on the CAT-futures contract with
exercise date t < 7 < 7 and strike price K is

> 2
4.20 C(t) = e (Foar(t, 71, m2) — K) @(d) + —2=e /2,
(4.20) (t) (Foar(t,m1,T2) ) @(d) Nors
where
Foar(t ~K ’
d= CAT( 7;1’7-2) ) E?,T ::/ ZZ(U,TMTQ) du,
t,T ¢

O the cumulative probability function for the standard normal distribution, and 3(t, 1, 73)

is defined in (4.19).

Proof. This is a straightforward calculation using the properties of the normal distribution.

U

By simple modifications of the analysis above we can derive explicitly the price of PRIM-
futures and call options written on these, as well.

5. CONCLUSIONS

We have proposed a simple model for the time-dynamics of daily average temperatures.
The model is a mean-reverting stochastic process, which has a seasonal variance function
explaining the seasonality observed in the temperature residuals. Our model is simple,
but yet powerful enough to describe the most apparent stylized facts of temperature data
like seasonality and mean-reversion. The seasonal variance function is parametrized as a
truncated Fourier series, and we fit the model to more than 40 years of daily data collected
from Stockhom, Sweden.

The simplicity of our proposed dynamics allows for explicit calculation of futures prices
for HDD/CDD, CAT and PRIM futures quoted on the Chicago Mercantile Exchange. We
also provide explicit formulas for options written on CAT/PRIM futures. The expressions
include a time-dependent market price of risk function, which opens for a seasonal modeling
of this.

We demonstrate empirically that the HDD-futures curve gives higher prices when taking
into account a seasonal volatility of temperature compared to a constant volatility. The
difference is significant in the summer period, where we experience close to a doubling of
prices with a time-dependent volatility. We also show that there is a seasonal maturity
effect in the volatility of CAT-futures prices.



THE VOLATILITY OF TEMPERATURE AND PRICING OF WEATHER DERIVATIVES 17

REFERENCES

[1] Alaton, P., Djehiche, B. and Stillberger, D. (2002). On modelling and pricing weather derivatives.
Appl. Math. Finance, 9(1), 1-20.

[2] Benth, F. E. and Saltyte-Benth, J. (2004). The normal inverse Gaussian distribution and spot price
modelling in energy markets. Intern. J. Theor. Appl. Finance, 7(2), 177-192.

[3] Benth, F. E. and Saltyté-Benth, J. (2004). Stochastic modelling of temperature variations with a view
towards weather derivatives. To appear in Appl. Math. Finance.

[4] Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. J. Econometrics, 31,
307-327.

[5] Brody, D. C., Syroka, J. and Zervos, M. (2002). Dynamical pricing of weather derivatives. Quantit.
Finance, 3, 189-198.

[6] Campbell, S. D. and Diebold, F. X. (2002). Weather forecasting for weather derivatives. Manuscript.
Available on http://www.ssc.upenn.edu/ fdiebold/papers/papers.html. Version: December 4, 2002.
[7] Davis, M. H. A. (2001). Pricing weather derivatives by marginal value. Quantit. Finance, 1, 305-308.
[8] Dornier, F. and Querel, M. (2000). Caution to the wind. Energy Power Risk Manag., Weather risk
special report, August, 30-32.

[9] Karatzas, I., and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, Springer-Verlag,
New York.

[10] Samuelson, P. (1965). Rational theory of warrant pricing. Indust. Management Rev., 6, pp. 13-32.

(Fred Espen Benth)

CENTRE OF MATHEMATICS FOR APPLICATIONS

UNIVERSITY OF OSLO

P.O. Box 1053, BLINDERN

N—-0316 OsLO, NORWAY

AND

AGDER UNIVERSITY COLLEGE

DEPARTMENT OF ECONOMICS AND BUSINESS ADMINISTRATION
SERVICEBOKS 422

N-4604 KRISTIANSAND, NORWAY

E-mail address: fredb@math.uio.no
URL: http://wuw.math.uio.no/"fredb/

(Jarate Saltyte-Benth)

CENTRE OF MATHEMATICS FOR APPLICATIONS
UNIVERSITY OF OSLO

P.O. Box 1053, BLINDERN

N-0316 OsLO, NORWAY

AND

DEPARTMENT OF SYSTEM RESEARCH
KLAIPEDA UNIVERSITY

H. MaANTO 84

LT-5808 KLAIPEDA, LITHUANIA

E-mail address: jurate@math.uio.no



