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Abstract. We analyze the homotopy fixed point spectrum of a T-equivariant com-

mutative S-algebra R in homological terms. There is a homological homotopy fixed
point spectral sequence with E2

s,t = H−s(T;Ht(R;Fp)), which converges condition-

ally to the continuous homology Hc
∗(R

hT;Fp) of the homotopy fixed point spectrum.
We show that there are Dyer–Lashof operations βεQi acting on this algebra spectral

sequence, and that its differentials are completely determined by those originating on
the vertical axis. More surprisingly, we show that for each class x in the E2r-term of
the spectral sequence there are 2r other classes in the E2r-term (obtained mostly by

Dyer–Lashof operations on x) that are infinite cycles, i.e., survive to the E∞-term.
We apply this to completely determine the differentials in the homological homo-
topy fixed point spectral sequences for the topological Hochschild homology spectra

R = THH(B) of many S-algebras, including B = MU , BP , ku, ko and tmf . Similar
results apply for all finite subgroups C ⊂ T, and for the Tate- and homotopy orbit
spectra. This work is part of a homological approach to calculating topological cyclic

homology and algebraic K-theory of commutative S-algebras.

1. Introduction

By an S-algebra we shall either mean one in the sense of [EKMM97], or a sym-
metric ring spectrum in the sense of [HSS00]. For a connective S-algebra B, such
as the sphere spectrum S, the complex bordism spectrum MU or the Eilenberg–
MacLane spectrum of the integers Z, the algebraic K-theory spectrum K(B) can
be very well approximated by the topological cyclic homology spectrum TC(B) of
[BHM93], by the main theorem of [Du97]. The latter spectrum is obtained from
the T-equivariant topological Hochschild homology spectrum X = THH(B) as a
homotopy limit of the fixed point spectra XC , indexed over finite cyclic subgroups
C of the circle group T. These fixed point spectra are in turn approximated by the
homotopy fixed point spectra XhC = F (EC+, X)C , whose homotopy groups can in
principle be computed by the homotopical homotopy fixed point spectral sequence

(1.1) E2s,t = H−s(C;πt(X)) =⇒ πs+t(X
hC) .
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This is derived from the tower of fibrations (with limit XhC) that arises from the
equivariant skeleton filtration on the free contractible C-space EC, by applying
homotopy groups.

Such computations presume a rather detailed knowledge of the homotopy groups
π∗(X) of the T-equivariant spectrum in question. For example, [HM03] and [AuR02]
deal with the cases when B is the valuation ring in a local number field and the
Adams summand in p-complete connective topological K-theory, respectively. In
most other cases the spectral sequence (1.1) cannot be calculated, because the
homotopy groups π∗(X) are not sufficiently well known.

It happens much more frequently that we are familiar with the homology groups
H∗(X;Fp). Applying mod p homology, rather than homotopy, to the tower of
fibrations that approximates XhC leads to a homological homotopy fixed point
spectral sequence

(1.2) E2s,t = H−s(C;Ht(X;Fp)) =⇒ Hc
s+t(X

hC ;Fp) .

This spectral sequence converges conditionally [Bo99] to the (inverse) limit of the
resulting tower in homology, which is not H∗(X

hC ;Fp), but a “continuous” version
Hc
∗(X

hC ;Fp) of it, for homology does not usually commute with limits.
This continuous homology, considered as a comodule over the dual Steenrod al-

gebra A∗ [Mi58], is nonetheless a powerful invariant of XhC . In particular, when X
is bounded below and of finite type there is a strongly convergent spectral sequence

(1.3) Es,t
2 = Exts,tA∗

(Fp, Hc
∗(X

hC ;Fp)) =⇒ πt−s(X
hC)∧p

which can be obtained as an inverse limit of Adams spectral sequences [CMP87,
7.1]. Hence the continuous homology does in some sense determine the p-adic
homotopy type of XhC .

A form of the spectral sequence (1.3) was most notably applied in the proofs
by W.H. Lin [LDMA80] and J. Gunawardena [AGM85] of the Segal conjecture for
cyclic groups of prime order. The conjecture corresponds to the special case of
the discussion above when B = S is the sphere spectrum, so X = THH(S) = S
is the T-equivariant sphere spectrum, which is split [LMS86, II.8] so that XhC '
F (BC+, S) = D(BC+). The proven Segal conjecture [Ca84] then tells us that for
each p-group C the comparison map XC → XhC is a p-adic equivalence. The proof
of the general (cyclic) case is by reduction to the initial case when C = Cp is of
prime order, and therefore relies on the theorems of Lin and Gunawardena cited
above. In this case, of course, we do not know π∗(X) = π∗(S) sufficiently well,
but H∗(X;Fp) = Fp is particularly simple. The proof of the theorems of Lin and
Gunawardena now amounts to showing that although the natural homomorphism
H∗(X

C ;Fp) → Hc
∗(X

hC ;Fp) of A∗-comodules is not in itself an isomorphism, it
does induce an isomorphism of E2-terms upon applying the functor Ext∗∗A∗

(Fp,−).

Returning to the general situation, we are therefore interested in studying (i) the
differentials in the homological homotopy fixed point spectral sequence (1.2) above,
and (ii) the A∗-comodule extension questions relating its E∞-term to the abutment
Hc
∗(X

hC ;Fp). There will in general be non-trivial differentials in (1.2), but our main



LEIBNIZ FORMULAS FOR CYCLIC HOMOTOPY FIXED POINT SPECTRA 3

Theorem 1.5 below provides a very general and useful collapse result, as is illustrated
by the examples in Section 6. The identification of the A∗-comodule structure on
the abutment plays a crucial role already in the case X = S, but requires further
study beyond that given here, and will be presented in the forthcoming Ph.D. thesis
of Sverre Lunøe–Nielsen [L-N].

When B is a commutative S-algebra then so is X = THH(B), and the tower of
fibrations with limit XhC is one of commutative S-algebras [EKMM97, IX]. There-
fore there are Dyer–Lashof operations acting on the spectral sequence (1.2) in this
case, rather analogously to the action by Steenrod operations in the Adams spectral
sequence of a commutative S-algebra [BMMS86, IV]. In the latter case there are
interesting relations between the Adams differentials and the Steenrod operations,
which propagate early differentials to higher degrees. The initial motivation for the
present article was to determine the analogous interaction between the differentials
and the Dyer–Lashof operations in the homological homotopy fixed point spectral
sequence of a commutative S-algebra, hereafter denoted X = R. However, the
analogy with the behavior of differentials in the Adams spectral sequence is more
apparent than real, suggesting neither the survival to E∞ of some classes nor the
method of proof. In particular, there is no analog in the Adams spectral sequence
of our main collapse result, Theorem 1.5.

For each finite subgroup C ⊂ T the homological spectral sequence for RhC is an
algebra over the corresponding homological spectral sequence for RhT, as outlined
in Section 7, so it will suffice for us to consider the circle homotopy fixed points RhT

and the case C = T of the spectral sequence (1.2). Our first results in Sections 2–4
can then be summarized as follows.

Theorem 1.4. (a) Let R be a T-equivariant commutative S-algebra. There is a
natural A∗-comodule algebra spectral sequence

E2∗∗ = H−∗(T;H∗(R;Fp)) = P (y)⊗H∗(R;Fp)

with y in bidegree (−2, 0), which is conditionally convergent to the continuous homo-
logy

Hc
∗(R

hT;Fp) = lim
n

H∗(F (S2n+1+ , R)T;Fp)

of the homotopy fixed point spectrum RhT.
(b) There are natural Dyer–Lashof operations βεQi acting vertically on this ho-

mological homotopy fixed point spectral sequence. For each element x ∈ E2r
0,t ⊂

Ht(R;Fp) we have the relation

d2r(βεQi(x)) = βεQi(d2r(x))

for every integer i and ε ∈ {0, 1}. If d2r(x) = yr · δx with δx ∈ Ht+2r−1(R;Fp), the
right hand side βεQi(d2r(x)) is yr · βεQi(δx).

(c) The classes yn are infinite cycles, so the differentials from the vertical axis
E2r0,∗ propagate to each column by the relation

d2r(yn · x) = yn · d2r(x)
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for all x ∈ E2r0,∗, 2r ≥ 2, n ≥ 0. Hence there are isomorphisms E2r∗∗ ≡ P (y)⊗ E2r0,∗
for all 2r ≥ 2, modulo y-torsion in filtrations −2r < s ≤ 0.

For proofs, see Proposition 2.4, Proposition 4.1 and Lemma 4.3. The key idea
is to identify the differentials in the homological homotopy fixed point spectral
sequence as obstructions to extending equivariant maps, as explained in Section 3.
Note that the spectral sequence is concentrated in even columns, so all differentials
of odd length (dr with r odd) must vanish.

Our main theorem is the following collapse result.

Theorem 1.5. Let R be a T-equivariant commutative S-algebra, suppose that x ∈
Ht(R;Fp) survives to the E2r-term E2r0,t ⊂ Ht(R;Fp) of the homological homotopy
fixed point spectral sequence for R and write d2r(x) = yr · δx.

(a) For p = 2, the 2r classes

x2 = Qt(x), Qt+1(x), . . . , Qt+2r−2(x) and Qt+2r−1(x) + xδx

all survive to the E∞-term, i.e., are infinite cycles.
(b) For p odd and t = 2m even, the 2r classes

xp = Qm(x), βQm+1(x), . . . , Qm+r−1(x) and xp−1δx

all survive to the E∞-term, i.e., are infinite cycles.
(c) For p odd and t = 2m− 1 odd, the 2r classes

βQm(x), Qm(x), . . . , βQm+r−1(x) and Qm+r−1(x)− x(δx)p−1

all survive to the E∞-term, i.e., are infinite cycles.

This is proved in Section 5 as our Theorem 5.1. To be perfectly clear, in case (a)
the classes are x2 = Qt(x), Qi(x) for t+ 1 ≤ i ≤ t+ 2r− 2, and Qt+2r−1(x) + xδx,
in case (b) the classes are xp = Qm(x), βεQi(x) for m + 1 ≤ i ≤ m + r − 1 and
ε ∈ {0, 1}, and xp−1δx, and in case (c) the classes are βεQi(x) for m ≤ i ≤ m+r−2
and ε ∈ {0, 1}, βQm+r−1(x), and Qm+r−1(x)− x(δx)p−1.

There are similar extensions of our results to the Tate constructions RtC =
[ẼC ∧ F (EC+, R)]C and homotopy orbit spectra RhC = EC+ ∧C R, but to keep
the exposition simple these are also only discussed in Section 7.

As applications of our main results, we turn in Section 6 to the study of the alge-
braic K-theory spectrum K(MU) which interpolates between K(S) (which is Wald-
hausen’s A(∗), related to high dimensional geometric topology) and K(Z) (which
relates to the Vandiver and Leopoldt conjectures, and other number theory), by the
methods of topological cyclic homology. Hence we must study the fixed- and homo-
topy fixed point spectra of the commutative S-algebra R = THH(MU), for various
subgroups C of the circle group T. It is known that H∗(MU ;Fp) = P (bk | k ≥ 1),
where P (−) denotes the polynomial algebra over Fp and |bk| = 2k, from which it
follows ([MS93, 4.3] or [CS]) that H∗(THH(MU);Fp) = H∗(MU ;Fp) ⊗ E(σbk |
k ≥ 1), where E(−) denotes the exterior algebra over Fp and σ : H∗(R;Fp) →
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H∗+1(R;Fp) is the degree +1 operator induced by the circle action. Hence the
homological homotopy fixed point spectral sequence for THH(MU)hT begins

E2∗∗ = P (y)⊗ P (bk | k ≥ 1)⊗ E(σbk | k ≥ 1) .

There are differentials d2(bk) = y · σbk for all k ≥ 1, so by our Theorem 1.4

E4∗∗ = P (y)⊗ P (bpk | k ≥ 1)⊗ E(bp−1k σbk | k ≥ 1)

plus some classes (the image of σ) in filtration s = 0. By our Theorem 1.5, the
spectral sequence collapses completely at the E4-term, so that

Hc
∗(THH(MU)hT;Fp) = P (y)⊗ P (bpk | k ≥ 1)⊗ E(bp−1k σbk | k ≥ 1)

plus some classes in filtration zero, as an algebra. The identification of the A∗-
comodule extensions remains, for which we refer to the cited Ph.D. thesis [L-N]. This
provides the input for the inverse limit of Adams spectral sequences (1.3) converging
to π∗(THH(MU)hT)∧p , which approximates the topological version TF (MU) of
negative cyclic homology, and which determines the topological cyclic homology of
MU by a fiber sequence

TC(MU)
π
−→ TF (MU)

R−1
−−−→ TF (MU) .

The fiber of the cyclotomic trace map K(MU) → TC(MU) is equivalent to that
of K(Z) → TC(Z), by [Du97], which now is quite well known [Ro02], [Ro03].
Our theorem therefore provides a key input to the computation of K(MU). See
Theorem 6.4(a).

Similar applications are given for the connective Johnson–Wilson spectra B =
BP 〈n〉, for p and n such that these are commutative S-algebras, and the (higher
real) commutative S-algebras B = ko and tmf for p = 2. See Section 6. Lastly,
we can also show the collapse at E4∗∗ of the homological homotopy fixed point
spectral sequence for R = THH(BP ), where BP is the p-local Brown–Peterson
S-algebra [BJ02], without making the (presently uncertain) assumption that BP
can be realized as a commutative S-algebra. See Theorem 6.4(b). This is possible
by the homological approach, since the split surjection H∗(MU ;Fp)→ H∗(BP ;Fp)
prevails throughout the homological spectral sequences.

2. A homological spectral sequence

Let T ⊂ C∗ be the circle group. As our model for a free contractible T-CW
complex ET we take the unit sphere S∞ ⊂ C∞ with the usual coordinatewise
action by T. It has one T-equivariant cell in each even non-negative dimension.
The equivariant 2n-skeleton is the odd sphere ET(2n) = S2n+1 ⊂ Cn+1, which
is obtained from the equivariant (2n − 2)-skeleton ET(2n−2) = S2n−1 ⊂ Cn by
attaching a free T-equivariant 2n-cell T×D2n along the group action map α : T×
S2n−1 → S2n−1. Hence there is a T-equivariant filtration

(2.1) ∅ ⊂ S1 ⊂ · · · ⊂ S2n−1 ⊂ S2n+1 ⊂ . . .
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with colimit ET, and T-equivariant cofiber sequences

S2n−1 → S2n+1 → T+ ∧ S2n

for each n ≥ 0.
Let X be any spectrum with T-action, i.e., a naively T-equivariant spectrum.

The homotopy fixed point spectrum of X is defined as the mapping spectrum

XhT = F (ET+, X)T

of T-equivariant based maps from ET+ to X. The filtration (2.1) of ET = S∞

induces a tower of fibrations

(2.2) · · · → F (S2n+1+ , X)T → F (S2n−1+ , X)T → · · · → F (S1+, X)T = X → ∗

with the homotopy fixed point spectrum as its (homotopy) limit

XhT ' holim
n

F (S2n+1+ , X)T .

The cofiber sequences above induce (co-)fiber sequences of spectra

Σ−2nX = F (T+ ∧ S2n, X)T → F (S2n+1+ , X)T → F (S2n−1+ , X)T

for each n ≥ 0.
We now place F (S2n−1+ , X)T in the two filtrations s = −2n and s = −2n+1, for

each n ≥ 0. Hence we obtain a chain of cofiber sequences of spectra:

F (S2n+1+ , X)T // F (S2n−1+ , X)T

²²

// F (S2n−1+ , X)T

²²

// F (S2n−3+ , X)T

²²
. . . Σ−2nX

hhQQQQQQQQQQQQ

∗

hhQQQQQQQQQQQQQQQ
Σ−2n+2X

hhQQQQQQQQQQQQ

Here the filtrations −2n− 1 ≤ s ≤ −2n+ 2 are displayed.
Next we apply mod p homology to this chain of cofiber sequences, to obtain a

homologically indexed unrolled exact couple [Bo99, 0.1] with

As,t = Hs+t(F (S2n−1+ , X)T;Fp)

for s = −2n and s = −2n+ 1, and

Es,t = Hs+t(Σ
−2nX;Fp) = Ht(X;Fp)

for s = −2n and zero otherwise. Here Es,t = E1s,t = E2s,t.

The E2-term of the associated spectral sequence can be expressed as the group
cohomology

E2s,t = H−s(T;Ht(X;Fp)) ∼= H−s(T;Fp)⊗Ht(X;Fp)
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of the circle group T, acting trivially on H∗(X;Fp) as it must since T is path
connected. We have H∗(T;Fp) = P (y) with y in degree 2, where P (−) denotes the
polynomial algebra, so

E2∗∗ = P (y)⊗H∗(X;Fp)

with y in bidegree (−2, 0) and Ht(X;Fp) in bidegree (0, t). See [GM95, 14.2] for a
discussion of this and related spectral sequences.

Since As = 0 for s ≥ 0 we have A∞ = colimsAs = 0. Therefore the spec-
tral sequence is conditionally convergent, by [Bo99, 5.10], in this case to the limit
A−∞ = limsAs. Indexing the limit system by n in place of s, it can be written as

(2.3) Hc
∗(X

hT;Fp) = lim
n

H∗(F (S2n+1+ , X)T;Fp) ,

which we call the continuous homology of XhT. The spectral sequence will be
strongly convergent to this target if the criterion RE∞∗∗ = 0 of [Bo99, 7.4] is satisfied,
for which it suffices that in each bidegree (s, t) we have Er

s,t = E∞s,t for some finite
r = r(s, t).

Proposition 2.4. There is a natural spectral sequence

E2∗∗ = H−∗(T;H∗(X;Fp)) = P (y)⊗H∗(X;Fp)

with y in bidegree (−2, 0), which is conditionally convergent to the continuous homo-
logy Hc

∗(X
hT;Fp). We call this the homological homotopy fixed point spectral

sequence. If H∗(X;Fp) is finite in each degree, or the spectral sequence collapses
at a finite stage, then the spectral sequence is strongly convergent.

Remark 2.5. Since homology does usually not commute with the formation of
limits, the canonical map

H∗(X
hT;Fp)→ Hc

∗(X
hT;Fp)

is usually not an isomorphism. The Segal conjecture provides striking examples of
this phenomenon.

As noted in the introduction, it is rather more traditional to apply the homotopy
group functor π∗ to the tower of fibrations (2.2), to obtain an unraveled exact
couple and a conditionally convergent (homotopical) homotopy fixed point spectral
sequence

E2s,t = H−s(T;πt(X)) =⇒ πs+t(X
hT) .

However, this is not the spectral sequence that we will consider. Recent work by
Ch. Ausoni and the second author [AuR02, §4], as well as current work by S. Lunøe-
Nielsen (and the second author) [L-N] support the assertion that the homological
spectral sequence is an interesting object.

3. Differentials

We now make the differentials in the homological homotopy fixed point spectral
sequence more explicit, as obstructions to extending equivariant maps.
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Consider a class x ∈ Ht(X;Fp), represented at the E2-term of the homological
spectral sequence in bidegree (0, t). LetH = HFp be the mod p Eilenberg–MacLane
spectrum. Then x can be represented as a non-equivariant map St → H ∧ X, or
equivalently as a T-equivariant map

x : S1+ ∧ St → H ∧X .

Here T acts on S1+ (freely off the base point) and X, but not on St or H.
The condition that x ∈ E20,t = Ht(X;Fp) survives to the E2r-term, i.e., that all

differentials d2(x), . . . , d2r−2(x) vanish, is equivalent to x being in the image from
Ht(F (S2r−1+ , X)T;Fp) under the map induced by restriction along S1+ ⊂ S2r−1+ .
This is in turn equivalent to the existence of a T-equivariant extension

x′ : S2r−1+ ∧ St → H ∧X

of x along S1+ ⊂ S2r−1+ , in view of the natural equivariant equivalence

H ∧ F (S2r−1+ , X)
'
−→ F (S2r−1+ , H ∧X) .

(To establish this equivalence, note that the finite T-CW complex S2r−1+ admits a
T-equivariant Spanier–Whitehead dual. We are considering maps from free T-CW
complexes into these spectra, so only the naive notion of a T-equivariant equivalence
is required.)

Suppose that x ∈ E2r0,t has survived to the E2r-term, so that such a T-equivariant
extension x′ exists. Then the differential

d2r(x) ∈ E2r−2r,t+2r−1

is the obstruction to extending x′ further along S2r−1+ ⊂ S2r+1+ to an equivariant
map

x′′ : S2r+1+ ∧ St → H ∧X .

We put the obvious right adjoints of these maps together in a diagram, as below.

S1+
x

&&MMMMMMMMMMMM

²²

(T× S2r−1)+
α+ //

²²

S2r−1+
x′ //

²²

F (St, H ∧X)

(T×D2r)+ // S2r+1+

x′′

88r
r

r
r

r

But since S2r+1+ is obtained from S2r−1+ by adjoining a free T-cell along the action
map α : T × S2r−1 → S2r−1, the obstruction to such an extension is precisely
the obstruction to extending the equivariant map x′ ◦ α+ from (T × S2r−1)+ over
(T×D2r)+. Equivalently, the obstruction is that of finding a homotopy to a constant
map of the non-equivariant map x̄ : S2r−1 → F (St, H ∧ X) given by regarding x′

as a non-equivariant map, and then restricting away from the disjoint base point.
Its left adjoint again is then a map

x̄ : S2r−1 ∧ St → H ∧X .

We summarize:
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Lemma 3.1. Let x ∈ E2r0,t ⊂ Ht(X;Fp) be represented by a T-equivariant map
x : S1+∧S

t → H∧X, which extends to an equivariant map x′ : S2r−1+ ∧St → H∧X.
Then d2r(x) = yr · x̄, where x̄ ∈ Ht+2r−1(X;Fp) is represented by x′ considered as a

non-equivariant map, restricted to the stable summand S2r−1∧St of S2r−1+ ∧St. ¤

The extended map x′ represents a class in the homology of F (S2r−1+ , X)T, and
considering x′ as a non-equivariant map amounts to following the map

ϕ : F (S2r−1+ , X)T → F (S2r−1+ , X)

that forgets the T-equivariance. There is a canonical map

ν : DS2r−1+ ∧X → F (S2r−1+ , X)

where DS2r−1+ = F (S2r−1+ , S) is the functional dual of S2r−1+ , and ν is a weak

equivalence by Spanier–Whitehead duality, since S2r−1+ is a finite CW complex.
See [LMS86, §III.1]. Hence there is a natural isomorphism

ν : H−∗(S2r−1;Fp)⊗H∗(X;Fp)→ H∗(F (S2r−1+ , X);Fp)

where we have identified H∗(DS2r−1+ ;Fp) with H̃−∗(S2r−1+ ;Fp) = H−∗(S2r−1;Fp).
We write H∗(S2r−1;Fp) = E(ι2r−1), where ι2r−1 is the canonical generator in
degree (2r − 1) and E(−) denotes the exterior algebra.

Proposition 3.2. The composite map

H∗(F (S2r−1+ , X)T;Fp)
ϕ∗
−→ H∗(F (S2r−1+ , X);Fp)
ν∗←−
∼=

H−∗(S2r−1;Fp)⊗H∗(X;Fp)

takes any class x′ that is mapped to x ∈ E2r0,t ⊂ Ht(X;Fp) by the restriction map

H∗(F (S2r−1+ , X)T;Fp)→ H∗(F (S1+, X)T;Fp) = H∗(X;Fp)

to the sum
(ν−1∗ ϕ∗)(x

′) = 1⊗ x+ ι2r−1 ⊗ δx ,

where d2r(x) = yr ·δx in E2r−2r,t+2r−1. Suppressing the power of y we may somewhat
imprecisely write this formula as

ϕ∗(x) = 1⊗ x+ ι2r−1 ⊗ d2r(x) .

The case r = 1 says d2(x) = y · σx, and follows e.g. from [Ro98, 3.3].

Proof. This is really a corollary to Lemma 3.1, but for the observation that the
restriction of the non-equivariant x′ to the subspace St ⊂ S2r−1+ ∧ St equals the
restriction of the non-equivariant x to the same subspace St ⊂ S1+ ∧ St, which



10 ROBERT R. BRUNER AND JOHN ROGNES

in turn corresponds to x ∈ E2r0,t under the identification H∗(F (S1+, X)T;Fp) =
H∗(X;Fp). ¤

Remark 3.3. Lemma 3.1 says that the differential in the homotopy fixed point
spectral sequence is essentially the T-equivariant root invariant for H ∧ X. A
corresponding description of the (Mahowald) C2-equivariant root invariant for S
can be found in [BG95, 2.5]: Let Sn+kα denote the C2-equivariant sphere that is
the one point compactification of Rn ⊕ Rk(−1), where C2 acts trivially on Rn and
by negation on Rk(−1). Given a non-equivariant (stable) map x : Sn → S0, let
x′ : Sn+kα → S0 be a C2-equivariant extension of x with k maximal. Then the
C2-equivariant root invariant of x contains the non-equivariant map x′ : Sn+k → S0

underlying x′.

4. Commutative S-algebras

Now suppose that X = R is a (naively) T-equivariant commutative S-algebra,
i.e., a commutative S-algebra with a continuous point-set level action by the circle
group T. We shall be concerned with the homotopy fixed points of R, rather than
its genuine fixed points, so only this weak notion of an equivariant spectrum will
be needed [GM95, §1]. Our principal example is R = THH(B), the topological
Hochschild homology spectrum of another commutative S-algebra B. The cyclic
structure on topological Hochschild homology then provides the relevant T-action
[EKMM97, IX].

In this situation the homotopy fixed point spectrum RhT = F (ET+, R)T is also a
commutative S-algebra. Writing µ : R∧R→ R for the T-equivariant multiplication
map of R, the corresponding multiplication map for RhT is given by the composite

F (ET+, R)T ∧ F (ET+, R)T ∧
−→ F (ET+ ∧ ET+, R ∧R)T

µ#∆
#

−−−−→ F (ET+, R)T .

Here ∧ smashes together two T-equivariant maps Σ∞ET+ → R, and considers the
resulting (T × T)-equivariant map as a T-equivariant map by the diagonal action.
The map µ# composes on the left by µ : R ∧R→ R, while the map ∆# composes
on the right by the space level diagonal map ∆: ET+ → ET+ ∧ ET+. Since µ is
commutative and ∆ is cocommutative, the resulting multiplication on RhT is also
strictly commutative.

Writing η : S → R for the T-equivariant unit map of R, the corresponding unit
map for RhT is the composite

S → F (ET+, S)T η#

−−→ F (ET+, R)T .

Here the definition of the first map relies on the fact that T acts trivially on S.
Commutative S-algebras are E∞ ring spectra, and are in particular also H∞

ring spectra. Hence there are Dyer–Lashof operations Qi acting on their mod p
homology algebras [BMMS86, §III.1]. Recall that Qi is a natural transformation

Qi : Ht(R;Fp)→ Ht+iq(R;Fp)
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for all integers t, where q = 2p− 2. We also include their composites βQi with the
homology Bockstein operation β : Ht(R;Fp) → Ht−1(R;Fp) as generators of the
Dyer–Lashof algebra. For p = 2 the standard notation is to write Q2i and Q2i−1

for the operations that would otherwise be called Qi and βQi, respectively.
The homological homotopy fixed point spectral sequence of Proposition 2.4 is

derived by applying homology to the tower (2.2). Now that X = R, each spectrum
F (S2n+1+ , R)T is a commutative S-algebra, for the same reasons as we just indi-

cated for RhT, and each fibration in the tower is a map of commutative S-algebras.
Therefore the spectral sequence is one of commutative (A∗-comodule) algebras over
the Dyer–Lashof algebra. We can make this action quite explicit, as follows.

Proposition 4.1. Let R be a T-equivariant commutative S-algebra, and let Er
∗∗

be its homological homotopy fixed point spectral sequence. Then for each element
x ∈ E2r0,t ⊂ Ht(R;Fp) we have the relation

d2r(βεQi(x)) = βεQi(d2r(x)) ,

for every integer i and ε ∈ {0, 1}. Here the right hand side should be interpreted
as follows. If d2r(x) = yr · δx with δx ∈ Ht+2r−1(R;Fp) then βεQi(d2r(x)) =
yr · βεQi(δx).

The case r = 1 also appears as [AnR, 5.9].

Proof. Let x ∈ Ht(R;Fp) and suppose that x survives to the E2r-term. Then there

exists an extension x′ ∈ Ht(F (S2r−1+ , R)T;Fp) of x over the restriction map, and

z′ = βεQi(x′) is an extension of z = βεQi(x) over the same map, by naturality. The
maps ϕ and ν from Proposition 3.2 are both maps of commutative S-algebras, and
therefore induce (A∗-comodule) algebra homomorphisms ϕ∗ and ν∗ that commute
with the Dyer–Lashof operations. Thus

(4.2) (ν−1∗ ϕ∗)(β
εQi(x′)) = 1⊗ βεQi(x) + ι2r−1 ⊗ δz

where d2r(βεQi(x)) = yr · δz, is equal to

βεQi((ν−1∗ ϕ∗)(x
′)) = βεQi(1⊗ x+ ι2r−1 ⊗ δx)

where d2r(x) = yr · δx. Now the Dyer–Lashof operations on the homology of the
smash product DS2r−1+ ∧R are given by a Cartan formula, and on the tensor factor

H∗(DS2r−1+ ;Fp) ∼= H−∗(S2r−1;Fp) the operation βεQi corresponds to the Steenrod

operation βεP−i, by [BMMS86, III.1.2]. But the latter operations all act trivially
on H∗(S2r−1;Fp), except for P 0 = 1, so the Cartan formula gives

βεQi(1⊗ x+ ι2r−1 ⊗ δx) = 1⊗ βεQi(x) + ι2r−1 ⊗ βεQi(δx) .

Identifying this with (4.2) and comparing the coefficients of ι2r−1 we obtain the
identity

δz = βεQi(δx) ,

as claimed. ¤
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Any spectrum X can be considered as a module over the sphere spectrum S, and
any action by T on X may be taken to be in the category of S-modules. It follows
that the homological homotopy fixed point spectral sequence for X is a module over
the corresponding spectral sequence for S, which is an algebra spectral sequence
by our previous remarks (since S is a commutative S-algebra).

In fact the homological homotopy fixed point spectral sequence for S is partic-
ularly simple, since H∗(S;Fp) = Fp is concentrated in degree 0, so the spectral
sequence collapses to

E2∗∗ = P (y) ,

which is concentrated on the horizontal axis. Hence each power of y is an infinite
cycle, i.e., dr(yn) = 0 for all r and n.

Since the spectral sequence for X is a module over the one for S, the Leibniz
formula for the module pairing immediately yields the following result.

Lemma 4.3. Let X be any T-equivariant spectrum. The differentials in the ho-
mological homotopy fixed point spectral sequence converging to H c

∗(X
hT;Fp) satisfy

the relation
d2r(yn · x) = yn · d2r(x)

for all x ∈ E2r0,∗ ⊂ H∗(X;Fp), 2r ≥ 2 and n ≥ 0. Hence the spectral sequence is
completely determined by the differentials that originate on the vertical axis. ¤

Remark 4.4. A proof by induction on r shows that each class in E2r
−2n,t has

the form yn · x for a class x ∈ E2r0,t ⊂ Ht(X;Fp). The E2r-term may therefore
only contain y-torsion of height strictly less than r, and concentrated in filtrations
−2r < s ≤ 0. In Section 7 we shall remark on an analogous homological Tate
spectral sequence, where P (y) is replaced by P (y, y−1) and the issue of y-torsion
classes becomes void.

5. Infinite cycles

The Dyer–Lashof operations satisfy instability conditions [BMMS86, III.1.1] that
are in a sense dual to those of the Steenrod operations. For a class x ∈ Ht(R;Fp) the
lowest nontrivial operation is Qt(x) = x2 when p = 2, Qm(x) = xp when p is odd
and t = 2m is even, and βQm(x) when p is odd and t = 2m− 1 is odd. Similarly,
the lowest nontrivial operation on δx ∈ Ht+2r−1(R;Fp) with d2r(x) = yr · δx is
Qt+2r−1(δx) = (δx)2 when p = 2, βQm+r(δx) when p is odd and t = 2m is even,
and Qm+r−1(δx) = (δx)p when p is odd and t = 2m − 1 is odd. Thus there is
in each case a sequence of (2r − 1) Dyer–Lashof operations βεQi whose action on
x can be nontrivial, but whose action on δx must be trivial. By Proposition 4.1,
this sequence of operations on x will survive past the E2r-term, at least to the
E2r+2-term. It is the main point of the present article to show that these classes,
and one more “companion class”, then in fact go on indefinitely to survive to the
E∞-term, i.e., are infinite cycles!

Theorem 5.1. Let R be a T-equivariant commutative S-algebra, suppose that x ∈
Ht(R;Fp) survives to the E2r-term E2r0,t ⊂ Ht(R;Fp) of the homological homotopy
fixed point spectral sequence for R, and write d2r(x) = yr · δx.
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(a) For p = 2, the 2r classes

x2 = Qt(x), Qt+1(x), . . . , Qt+2r−2(x) and Qt+2r−1(x) + xδx

all survive to the E∞-term, i.e., are infinite cycles.
(b) For p odd and t = 2m even, the 2r classes

xp = Qm(x), βQm+1(x), . . . , Qm+r−1(x) and xp−1δx

all survive to the E∞-term, i.e., are infinite cycles.
(c) For p odd and t = 2m− 1 odd, the 2r classes

βQm(x), Qm(x), . . . , βQm+r−1(x) and Qm+r−1(x)− x(δx)p−1

all survive to the E∞-term, i.e., are infinite cycles.

Proof. The argument proceeds by considering a universal example. Recall that a
class x ∈ E2r0,t is represented by a T-equivariant map x : S1+ ∧ St → H ∧ R that

admits an equivariant extension x′ : S2r−1+ ∧ St → H ∧R. Let

X = Dp(S
2r−1
+ ∧ St) = EΣp nΣp

(S2r−1+ ∧ St)∧p

be the p-th extended power of S2r−1+ ∧ St.

Somewhat abusively, we write H̃∗(S
2r−1
+ ∧ St;Fp) = Fp{x, δx} with |x| = t and

|δx| = t+ 2r − 1. Then the homology of the p-th extended power is

H∗(X;F2) = F2{xδx, Qi(x) | i ≥ t, Qi(δx) | i ≥ t+ 2r − 1}

for p = 2,

H∗(X;Fp) = Fp{xp−1δx, βεQi(x) | i ≥ m+ ε, βεQi(δx) | i ≥ m+ r}

for p odd and t = 2m even, and

H∗(X;Fp) = Fp{x(δx)p−1, βεQi(x) | i ≥ m, βεQi(δx) | i ≥ m+ r − 1 + ε}

for p odd and t = 2m− 1 odd. Throughout i is an integer and ε ∈ {0, 1}.
The equivariant extension x′ induces an equivariant map

Dp(x
′) : X = Dp(S

2r−1
+ ∧ St)→ Dp(H ∧R) .

The commutative S-algebra structures on H and R combine to form one on H ∧R,
and the associated H∞ structure includes, in particular, a T-equivariant structure
map

ξp : Dp(H ∧R)→ H ∧R

that extends the p-fold multiplication map on H∧R. Taken together, these produce
an equivariant map

H ∧Dp(S
2r−1
+ ∧ St)

1∧Dp(x
′)

−−−−−−→ H ∧Dp(H ∧R)
1∧ξp

−−−→ H ∧H ∧R
µ∧1
−−→ H ∧R ,
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where µ is the multiplication on H. Applying homotopy we have a homomorphism

(5.2) H∗(X;Fp) = H∗(Dp(S
2r−1
+ ∧ St);Fp)→ H∗(R;Fp)

which, by definition, takes the classes generating H∗(X;Fp) to the classes with the

same names in H∗(R;Fp). Now X = Dp(S
2r−1
+ ∧ St) is a T-equivariant retract of

the free commutative S-algebra

P '
∨

j≥0

Dj(S
2r−1
+ ∧ St)

on the space S2r−1+ ∧St, so the homological homotopy fixed point spectral sequence
for X is a direct summand of the one for P . Thus the formula from Proposition 4.1
for the d2r-differentials in the spectral sequence for P is also applicable in the
spectral sequence for X.

Now consider the homological homotopy fixed point spectral sequence for X =
Dp(S

2r−1
+ ∧ St), first for p = 2 and then for p odd. We shall show in each case

that the 2r classes in E2r0,∗ ⊂ H∗(X;Fp), with names as listed in the statement of
the theorem, are infinite cycles. By naturality of the homotopy fixed point spectral
sequence with respect to the map H ∧X → H ∧R from (5.2), it follows that the 2r
target classes listed in E2r0,∗ ⊂ H∗(R;Fp) are also infinite cycles. This will complete
the proof of the theorem.

(a) Let p = 2. The homological homotopy fixed point spectral sequence for X
has

E2∗∗ = P (y)⊗ F2{xδx, Qi(x) | i ≥ t, Qi(δx) | i ≥ t+ 2r − 1}

and nontrivial differentials d2r(xδx) = yr · (δx)2 and

d2r(Qi(x)) = yr ·Qi(δx)

for all i ≥ t+ 2r − 1, together with their y-multiples.
This leaves

E2r+2∗∗ = P (y)⊗ F2{Qi(x) | t ≤ i < t+ 2r − 1, Qt+2r−1(x) + xδx}

plus some y-torsion classes from E2∗∗ in filtrations −2r < s ≤ 0. Hence there are
no classes remaining in the entire quadrant with filtration s ≤ −2r and vertical
degree ∗ > |xδx| = 2t+ 2r − 1. All further differentials on the classes in E2r+2

0,∗ on

the vertical axis land in this zero region, since already E2
0,∗ starts in degree 2t with

the lowest class Qt(x) = x2. Thus all further differentials from the vertical axis are
zero, and the spectral sequence collapses at E2r+2∗∗ = E∞∗∗ .

(b) Let p be odd and t = 2m even. The homological homotopy fixed point
spectral sequence for X has

E2∗∗ = P (y)⊗ Fp{xp−1δx, βεQi(x) | i ≥ m+ ε, βεQi(δx) | i ≥ m+ r}

and nontrivial differentials

d2r(βεQi(x)) = yr · βεQi(δx)
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yr ·Qt+2r(δx) ...

yr · (δx)2 Qt+2r(x)
¹

d2r

kkVVVVVVVVVVVVVVVVVVVVVV

Qt+2r−1(x)
º

d2r

kkWWWWWWWWWWWWWWWWWWWWWW

xδx¹

d2r

mm

Qt+2r−2(x)

...

Qt(x) = x2

Figure 1. The case p = 2.

for i ≥ m+ r. This leaves

E2r+2∗∗ = P (y)⊗ Fp{xp−1δx, Qi(x) | m+ ε ≤ i < m+ r}

plus some y-torsion classes in filtrations −2r < s ≤ 0. Hence there are no classes
left in the region where s ≤ −2r and the vertical degree is ∗ > |Qm+r−1(x)|.

Now, x was also a class in the E2r−2-term, with d2r−2(x) = 0, so by induction
over r we may assume (by naturality from the case of (r − 1)) that the classes
βεQi(x) with m + ε ≤ i < m + (r − 1) are infinite cycles. This leaves the three
classes xp−1δx, βQm+r−1(x) and Qm+r−1(x) in E2r+20,∗ that are not y-torsion, and

could therefore imaginably support a differential after d2r. But the first two classes
βQm+r−1(x) and Qm+r−1(x) are so close to the horizontal edge of the vanishing
region that all differentials after d2r must vanish on these classes.

The third class xp−1δx has odd degree, so an even length differential on it must
land in an even degree. The only even degree classes in filtrations s ≤ −2r are the
y-multiples of Qi(x) for m ≤ i < m+r, of which Qm(x) = xp is in lower degree than
that of xp−1δx. The remaining possible target classes Qi(x) for m < i < m + r
all have nontrivial Bockstein images βQi(x), but β(xp−1δx) = 0 in H∗(X;Fp).
Therefore, by naturality of the differential with respect to the Bockstein operation,
all of these targets for a differential on xp−1δx are excluded. Thus also xp−1δx is
an infinite cycle.

(c) Let p be odd and t = 2m − 1 odd. The homological homotopy fixed point
spectral sequence for X has

E2∗∗ = P (y)⊗ Fp{x(δx)p−1, βεQi(x) | i ≥ m, βεQi(δx) | i ≥ m+ r − 1 + ε}
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yr ·Qm+r(δx) ...

yr · βQm+r(δx) Qm+r(x)
º

d2r

kkWWWWWWWWWWWWWWWWWWWWWWW

βQm+r(x)
º

d2r

kkWWWWWWWWWWWWWWWWWWWWWW

Qm+r−1(x)

βQm+r−1(x)

... xp−1δx

Qm(x) = xp

Figure 2. The case p odd and t = 2m even.

and nontrivial differentials d2r(x(δx)p−1) = yr · (δx)p and

d2r(βεQi(x)) = yr · βεQi(δx)

for i ≥ m+ r − 1 + ε. This leaves

E2r+2∗∗ = P (y)⊗ Fp{βεQi(x) | m ≤ i < m+ r − 1 + ε, Qm+r−1(x)− x(δx)p−1}

plus y-torsion classes in filtrations −2r < s ≤ 0. Hence there are no classes left in
the region where s ≤ −2r and the vertical degree is ∗ > |Qm+r−1(x)|.

Again considering x as a class in E2r−20,∗ and using induction on r we may assume

that the classes βεQi(x) for m ≤ i < m + r − 2 + ε and Qm+r−2(x) − x(δ′x)p−1

are infinite cycles. Here δ′x is defined by d2r−2(x) = yr−1 · δ′x. The fact that
d2r−2(x) = 0 gives δ′x = 0, so in fact all the classes βεQi(x) for m ≤ i < m+ r− 1
in E2r+2∗∗ are infinite cycles.

This leaves only the two classes βQm+r−1(x) and Qm+r−1(x) − x(δx)p−1, but
these are so close to the horizontal border of the vanishing region that all differen-
tials after d2r must be zero on them. ¤

6. Examples

Our Theorem 5.1 has applications to the homological homotopy fixed point spec-
tral sequence for the commutative S-algebra R = THH(B) given by the topological
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yr · βQm+r(δx) ...

yr · (δx)p βQm+r(x)
º

d2r

kkWWWWWWWWWWWWWWWWWWWWWW

Qm+r−1(x)
º

d2r

kkWWWWWWWWWWWWWWWWWWWWWWW

x(δx)p−1
º

d2r

nn

βQm+r−1(x)

...

βQm(x)

Figure 3. The case p odd and t = 2m− 1 odd.

Hochschild homology of a commutative S-algebra B. The T-homotopy fixed point
spectrum THH(B)hT is closely related to the topological model TF (B) for the
negative cyclic homology of B, which in turn is very close to the topological cyclic
homology TC(B) [BHM93] and algebraic K-theory K(B) of B [Du97]. These spec-
tral sequences therefore have significant interest.

First consider the connective Johnson–Wilson spectra B = BP 〈m−1〉, for some
prime p and integer 0 ≤ m <∞. So

π∗BP 〈m− 1〉 = BP∗/(vn | n ≥ m) ,

where BP∗ = Z(p)[vn | n ≥ 1] and v0 = p, and

H∗(BP 〈m− 1〉;Fp) =
{

P (ξ̄21 , . . . , ξ̄
2
m, ξ̄m+1, . . . ) for p = 2,

P (ξ̄k | k ≥ 1)⊗ E(τ̄k | k ≥ m) for p odd.

The latter is a sub-algebra of the dual Steenrod algebra A∗ = H∗(HFp;Fp) [Mi58].
Suppose that p and m are such that BP 〈m − 1〉 admits the structure of a

commutative S-algebra. This is so at least for m ∈ {0, 1, 2}, when BP 〈−1〉 = HFp,
BP 〈0〉 = HZ(p) and BP 〈1〉 = `, respectively, where ` is the Adams summand of
p-local connective topological K-theory ku(p). When p = 2, ` = ku(2).

Then the Bökstedt spectral sequence

E2∗∗ = HH∗(H∗(B;Fp)) =⇒ H∗(THH(B);Fp)
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has E2-term

E2∗∗ =

{
H∗(BP 〈m− 1〉;F2)⊗ E(σξ̄21 , . . . , σξ̄

2
m, σξ̄m+1, . . . ) for p = 2,

H∗(BP 〈m− 1〉;Fp)⊗ E(σξ̄k | k ≥ 1)⊗ Γ(στ̄k | k ≥ m) for p odd.

For x ∈ H∗(B;Fp), σx ∈ HH1(H∗(B;Fp)) is represented by the Hochschild 1-
cycle 1 ⊗ x. The operator σ is a differential (σ2 = 0) and a graded derivation
(σ(xy) = xσ(y) + (−1)|y|σ(x)y). Here Γ(−) denotes the divided power algebra.

For p odd, Bökstedt found differentials

dp−1(γj(στ̄k)) = σξ̄k+1 · γj−p(στ̄k)

for j ≥ p, and in all cases the spectral sequence collapses at the Ep-term. So

E∞∗∗ =

{
H∗(BP 〈m− 1〉;F2)⊗ E(σξ̄21 , . . . , σξ̄

2
m, σξ̄m+1, . . . ) for p = 2,

H∗(BP 〈m− 1〉;Fp)⊗ E(σξ̄1, . . . , σξ̄m)⊗ Pp(στ̄k | k ≥ m) for p odd.

Here Pp(−) denotes the truncated polynomial algebra of height p.
If BP 〈m − 1〉, and thus THH(BP 〈m − 1〉), is a commutative S-algebra, then

(σξ̄k)
2 = σξ̄k+1 for p = 2 and (στ̄k)

p = στ̄k+1 for p odd, so

H∗(THH(BP 〈m− 1〉);Fp)

=

{
H∗(BP 〈m− 1〉;F2)⊗ E(σξ̄21 , . . . , σξ̄

2
m)⊗ P (σξ̄m+1) for p = 2,

H∗(BP 〈m− 1〉;Fp)⊗ E(σξ̄1, . . . , σξ̄m)⊗ P (στ̄m) for p odd.

For more references and details on the calculation up to this point, see [AnR, §5].
We now consider the homological homotopy fixed point spectral sequence for

R = THH(B). It starts with

E2∗∗ = P (y)⊗H∗(THH(B);Fp)

and by Lemma 3.1 it has first differentials

d2(x) = y · σx

for all x ∈ H∗(THH(B);Fp). Here σx ∈ Ht+1(THH(B);Fp) is the image of
x⊗ s1 ∈ Ht(THH(B);Fp)⊗H1(T;Fp) under the circle action map

α : THH(B) ∧ T+ → THH(B) ,

where s1 ∈ H1(T;Fp) is the canonical generator. By Lemma 4.3 we have similar
differentials d2(yn · x) = yn+1 · σx for all n ≥ 0.

Hence we can find the columns of E4∗∗ in the homological homotopy fixed point
spectral sequence by passing to the homology of E20,∗ = H∗(THH(B);Fp) with
respect to the operator σ, at least to the left of the vertical axis.
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Proposition 6.1. The homological homotopy fixed point spectral sequence for R =
THH(B) with B = BP 〈m − 1〉, for p and m such that B is a commutative S-
algebra, collapses after the d2-differentials, with the following E∞-term:

(a) For p = 2,

E∞∗∗ = P (y)⊗ P (ξ̄41 , . . . , ξ̄
4
m, ξ̄2m+1, ξ

′
m+2, . . . )⊗ E(ξ̄21σξ̄

2
1 , . . . , ξ̄

2
mσξ̄2m)

plus some classes in filtration s = 0, where ξ′k+1 = ξ̄k+1 + ξ̄kσξ̄k for k ≥ m+ 1.
(b) For p odd,

E∞∗∗ = P (y)⊗ P (ξ̄pk | 1 ≤ k ≤ m)⊗ P (ξ̄k+1 | k ≥ m)

⊗ E(τ ′k+1 | k ≥ m)⊗ E(ξ̄p−1k σξ̄k | 1 ≤ k ≤ m)

plus some classes in filtration s = 0, where τ ′k+1 = τ̄k+1 − τ̄k(στ̄k)
p−1 for k ≥ m.

Proof. (a) For B = BP 〈m− 1〉 and p = 2 we have

E20,∗ = H∗(THH(BP 〈m− 1〉);F2)
= P (ξ̄21 , . . . , ξ̄

2
m, ξ̄m+1, . . . )⊗ E(σξ̄21 , . . . , σξ̄

2
m)⊗ P (σξ̄m+1) .

Here σ : ξ̄2k 7→ σξ̄2k for 1 ≤ k ≤ m and σ : ξ̄k+1 7→ σξ̄k+1 for k ≥ m. We have
σξ̄k+1 = (σξ̄k)

2 for k ≥ m+ 1.
So the squares (ξ̄2k)

2 = ξ̄4k and ξ̄2m+1, as well as the companion classes defined by

ξ′k+1 = ξ̄k+1 + ξ̄kσξ̄k

for k ≥ m + 1, are d2-cycles, while E(ξ̄2k, σξ̄
2
k) has homology E(ξ̄2kσξ̄

2
k) for each k,

and E(ξ̄m+1)⊗ P (σξ̄m+1) has homology F2.
Hence the homological spectral sequence has

E4∗∗ = P (y)⊗ P (ξ̄41 , . . . , ξ̄
4
m, ξ̄2m+1, ξ

′
m+2, . . . )⊗ E(ξ̄21σξ̄

2
1 , . . . , ξ̄

2
mσξ̄2m)

plus the image of σ in filtration s = 0.
By our Theorem 5.1(a) applied to the classes x = ξ̄2k for 1 ≤ k ≤ m, in even

degree t = |x|, the classes x2 = ξ̄4k and Qt+1(x) + xσx = ξ̄2kσξ̄
2
k are infinite cycles,

for Qt+1(ξ̄2k) = 0 by the Cartan formula.
Similarly, by Theorem 5.1(a) applied to the classes x = ξ̄k for k ≥ m+1, in odd

degree t = |x|, the classes x2 = ξ̄2k and Qt+1(x) + xσx = ξ̄k+1 + ξ̄kσξ̄k = ξ′k+1 are

infinite cycles. For Qt+1(ξ̄k) = ξ̄k+1 by [BMMS86, III.2.2 and I.3.6].
The extra classes in filtration s = 0 are y-torsion, hence infinite cycles. Therefore

the E4-term above is generated as an algebra by infinite cycles, so the homological
spectral sequence collapses at this stage.

(b) For B = BP 〈m− 1〉 and p odd we have

E20,∗ = H∗(THH(BP 〈m− 1〉);Fp)
= P (ξ̄k | k ≥ 1)⊗ E(τ̄k | k ≥ m)⊗ E(σξ̄k | 1 ≤ k ≤ m)⊗ P (στ̄m) .
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Here σ : ξ̄k 7→ σξ̄k for 1 ≤ k ≤ m, σ : ξ̄k+1 7→ 0 for k ≥ m and σ : τ̄k 7→ στ̄k for
k ≥ m. We have στ̄k+1 = (στ̄k)

p for k ≥ m.
So the p-th powers ξ̄pk for 1 ≤ k ≤ m, the classes ξ̄k+1 for k ≥ m, and the

companion classes defined by

τ ′k+1 = τ̄k+1 − τ̄k(στ̄k)
p−1

for k ≥ m, are d2-cycles, while Pp(ξ̄k)⊗E(σξ̄k) has homology E(ξ̄p−1k σξ̄k) for each
1 ≤ k ≤ m, and E(τ̄m)⊗ P (στ̄m) has homology Fp.

Hence the homological spectral sequence has

E4∗∗ = P (y)⊗ P (ξ̄pk | 1 ≤ k ≤ m)⊗ P (ξ̄k+1 | k ≥ m)

⊗ E(τ ′k+1 | k ≥ m)⊗ E(ξ̄p−1k σξ̄k | 1 ≤ k ≤ m)

plus some classes in filtration s = 0.
Applying our Theorem 5.1(b) to the classes x = ξ̄k for 1 ≤ k ≤ m, in even degree

t = |x|, the classes xp = ξ̄pk and xp−1σx = ξ̄p−1k σξ̄k are infinite cycles.
Similarly, applying Theorem 5.1(c) to the classes x = τ̄k for k ≥ m, in odd

degree t = |x| = 2pk − 1, the classes βQpk

(x) = ξ̄k+1 and Qpk

(x) − x(σx)p−1 =

τ̄k+1 − τ̄k(στ̄k)
p−1 = τ ′k+1 are infinite cycles, for Qpk

(τ̄k) = τ̄k+1 and βτ̄k+1 = ξ̄k+1
by [BMMS86, III.2.3 and I.3.6].

Hence the E4-term above is generated as an algebra by infinite cycles, and the
homological spectral sequence collapses after the d2-differentials. ¤

For convenience in the comparison with ko, we make the case B = ku at p = 2
explicit:

Corollary 6.2. The homological homotopy fixed point spectral sequence for R =
THH(ku) at p = 2 collapses after the d2-differentials, with

E∞∗∗ = P (y)⊗ P (ξ̄41 , ξ̄
4
2 , ξ̄

2
3 , ξ

′
4, . . . )⊗ E(ξ̄21σξ̄

2
1 , ξ̄

2
2σξ̄

2
2)

plus some classes in filtration s = 0, where ξ′k+1 = ξ̄k+1 + ξ̄kσξ̄k for k ≥ 3.

Proposition 6.3. The homological homotopy fixed point spectral sequence for R =
THH(B) collapses after the d2-differentials, in both of the cases:

(a) B = ko and p = 2, when

E∞∗∗ = P (y)⊗ P (ξ̄81 , ξ̄
4
2 , ξ̄

2
3 , ξ

′
4, . . . )⊗ E(ξ̄41σξ̄

4
1 , ξ̄

2
2σξ̄

2
2)

plus classes on the vertical axis, and
(b) B = tmf and p = 2, when

E∞∗∗ = P (y)⊗ P (ξ̄161 , ξ̄82 , ξ̄
4
3 , ξ̄

2
4 , ξ

′
5, . . . )⊗ E(ξ̄81σξ̄

8
1 , ξ̄

4
2σξ̄

4
2 , ξ̄

2
3σξ̄

2
3)

plus classes on the vertical axis.

Proof. (a) For B = ko with H∗(B;F2) = (A//A1)∗ = P (ξ̄41 , ξ̄
2
2 , ξ̄3, . . . ) we have

H∗(THH(ko);F2) = P (ξ̄41 , ξ̄
2
2 , ξ̄3, . . . )⊗ E(σξ̄41 , σξ̄

2
2)⊗ P (σξ̄3) .
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See [AnR, 6.2(a)].
As in the proof of Proposition 6.1, the squares ξ̄81 , ξ̄

4
2 and ξ̄23 , as well as the classes

ξ′k+1 = ξ̄k+1 + ξ̄kσξ̄k for k ≥ 3 are d2-cycles, while E(ξ̄41 , σξ̄
4
1) and E(ξ̄22 , σξ̄

2
2) have

homology E(ξ̄41σξ̄
4
1) and E(ξ̄22σξ̄

2
2), respectively. The homology of E(ξ̄3) ⊗ P (σξ̄3)

is F2. So
E4∗∗ = P (y)⊗ P (ξ̄81 , ξ̄

4
2 , ξ̄

2
3 , ξ

′
4, . . . )⊗ E(ξ̄41σξ̄

4
1 , ξ̄

2
2σξ̄

2
2)

plus some classes in filtration s = 0.
By Theorem 5.1(a), all of these algebra generators are in fact infinite cycles, so

the homological spectral sequence collapses, as claimed.
(b) For B = tmf with H∗(B;F2) = (A//A2)∗ = P (ξ̄81 , ξ̄

4
2 , ξ̄

2
3 , ξ̄4, . . . ) we have

H∗(THH(tmf);F2) = P (ξ̄81 , ξ̄
4
2 , ξ̄

2
3 , ξ̄4, . . . )⊗ E(σξ̄81 , σξ̄

4
2 , σξ̄

2
3)⊗ P (σξ̄4) .

See [AnR, 6.2(b)]. This gives the E2-term of the homological spectral sequence,
and as before its homology with respect to the σ-operator is

E4∗∗ = P (y)⊗ P (ξ̄161 , ξ̄82 , ξ̄
4
3 , ξ̄

2
4 , ξ

′
5, . . . )⊗ E(ξ̄81σξ̄

8
1 , ξ̄

4
2σξ̄

4
2 , ξ̄

2
3σξ̄

2
3)

plus some classes in filtration s = 0.
By Theorem 5.1(a), all of these algebra generators are in fact infinite cycles, so

the homological spectral sequence collapses, as claimed. ¤

Theorem 6.4. The homological homotopy fixed point spectral sequence for R =
THH(B) collapses after the d2-differentials, in both of the cases:

(a) B = MU , with

E∞∗∗ = P (y)⊗ P (bpk | k ≥ 1)⊗ E(bp−1k σbk | k ≥ 1)

plus classes in filtration zero, and
(b) B = BP , with

E∞∗∗ = P (y)⊗ P (ξpk | k ≥ 1)⊗ E(ξp−1k σξk | k ≥ 1)

plus classes in filtration zero. (When p = 2, substitute ξ2k for ξk.)

Note that we do not need to assume that BP is a commutative S-algebra for
the result in part (b).

Proof. The integral homology algebra of MU is H∗(MU ;Z) = Z[bk | k ≥ 1], where
bk in degree 2k is the stabilized image of the generator βk+1 ∈ H2k+2(BU(1);Z),
under the zero-section identification BU(1) 'MU(1). So

H∗(MU ;Fp) = P (bk | k ≥ 1)

is concentrated in even degrees, and the E2-term of the Bökstedt spectral sequence
is

E2∗∗ = HH∗(H∗(MU ;Fp)) = H∗(MU ;Fp)⊗ E(σbk | k ≥ 1) .
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All the algebra generators are in filtrations s ≤ 1, so the spectral sequence col-
lapses at this stage. There are no algebra extensions, since for p = 2, (σbk)

2 =
Q2k+1(σbk) = σQ2k+1(bk) = 0, where Q2k+1(bk) = 0 because it has odd degree.
For p odd, (σbk)

2 = 0 by graded commutativity, because σbk has odd degree. Thus

H∗(THH(MU);Fp) = H∗(MU ;Fp)⊗ E(σbk | k ≥ 1) .

This much can also be read off from [MS93, 4.3], or from Cohen and Schlichtkrull’s
formula THH(MU) 'MU ∧ SU+ [CS].

The homological homotopy fixed point spectral sequence has E2-term

E2∗∗ = P (y)⊗ P (bk | k ≥ 1)⊗ E(σbk | k ≥ 1) .

Its homology with respect to the d2-differential, satisfying d2(bk) = y · σbk, is

E4∗∗ = P (y)⊗ P (bpk | k ≥ 1)⊗ E(bp−1k σbk | k ≥ 1)

plus the usual y-torsion on the vertical axis. By Theorem 5.1(a) and (b), the algebra
generators of this E4-term are all infinite cycles. Hence the spectral sequence
collapses at this stage.

(b) The Brown–Peterson spectrum BP was originally constructed to have mod p
homology

H∗(BP ;Fp) =
{

P (ξ2k | k ≥ 1) for p = 2,

P (ξk | k ≥ 1) for p odd.

This equals the sub-algebra (A//E)∗ of A∗ that is dual to the quotient algebra
A//E = A/AβA of A. Hereafter we focus on the odd-primary case; the reader
should substitute ξ2k for ξk when p = 2.

The spectrum BP is known to be an (associative) S-algebra, and to receive an
S-algebra map from MU [BJ02, 3.5]. This map induces a split surjective algebra
homomorphism H∗(MU ;Fp) → H∗(BP ;Fp) in homology, which maps bpk−1 to

ξk for k ≥ 1 and takes the remaining algebra generators bi to 0 for i 6= pk − 1.
For the homology of BP injects into H∗(HZ(p);Fp) and at the level of second
spaces the composite map of spectra MU → BP → HZ(p) is a p-local equivalence

MU(1) → K(Z(p), 2). The generator βi+1 ∈ H̃2i+2(MU(1);Fp) maps to bi ∈

H2i(MU ;Fp), while the corresponding generator βi+1 ∈ H̃2i+2(K(Z(p), 2);Fp) maps

to ξk ∈ H2i(HZ(p);Fp) when i = pk − 1 and to 0 otherwise [Mi58, §5]. This proves
the claim.

The Bökstedt spectral sequence for BP has E2-term

E2∗∗ = HH∗(H∗(BP ;Fp)) = H∗(BP ;Fp)⊗ E(σξk | k ≥ 1) .

Note that the map MU → BP induces a surjection of Bökstedt spectral sequence
E2-terms. Thus the fact that the Bökstedt spectral sequence for MU collapses at
E2 with no algebra extensions implies the corresponding statement for BP , also
without the assumption that BP is a commutative S-algebra. We can conclude
that

H∗(THH(BP );Fp) = H∗(BP ;Fp)⊗ E(σξk | k ≥ 1) .
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The homological homotopy fixed point spectral sequence has E2-term

E2∗∗ = P (y)⊗ P (ξk | k ≥ 1)⊗ E(σξk | k ≥ 1) .

Again the map MU → BP induces a surjection of E2-terms, so the d2-differentials
satisfy d2(ξk) = y · σξk and d2(y) = 0, and are derivations. This leaves

E4∗∗ = P (y)⊗ P (ξpk | k ≥ 1)⊗ E(ξp−1k σξk | k ≥ 1)

plus some y-torsion on the vertical axis, and the map from the E4-term of the
spectral sequence for MU is still surjective. Thus the spectral sequence for BP
also collapses at this stage. ¤

7. Generalizations and comments

In this section we note some generalizations of our results, and also comment
on the relation to related patterns of differentials in other spectral sequences. The
generalizations are of two sorts. First, we can replace the homotopy fixed points
construction by the Tate construction or the homotopy orbits. Second, we can
change the group of equivariance. We consider these in order.

First, there are spectral sequences similar to the one considered here for the Tate

construction XtT = [ẼT ∧ F (ET+, X)]T (denoted tT(X)T in [GM95] and Ĥ(T, X)
in [AuR02]) and the homotopy orbit spectrum XhT = ET+ ∧T X.

Proposition 7.1. There is a natural spectral sequence

Ê2∗∗ = Ĥ−∗(T;H∗(X;Fp)) = P (y, y−1)⊗H∗(X;Fp)

with y in bidegree (−2, 0), which is conditionally convergent to the continuous homo-
logy Hc

∗(X
tT;Fp). We call this the homological Tate spectral sequence. If

H∗(X;Fp) is finite in each degree, or the spectral sequence collapses at a finite
stage, then the spectral sequence is strongly convergent.

Proposition 7.2. There is a natural spectral sequence

E2∗∗ = H∗(T;H∗(X;Fp)) = P (y−1)⊗H∗(X;Fp)

with y−1 in bidegree (2, 0), which is strongly convergent to H∗(XhT;Fp). We call
this the homological homotopy orbit spectral sequence. (Note that for XhT
the continuous homology is the same as the ordinary homology.)

Further, the middle and right hand maps of the (homotopy) norm cofiber se-
quence

ΣXhT
N
−→ XhT → XtT → Σ2XhT

induce the homomorphisms of E2-terms given by tensoring H∗(X;Fp) with the
short exact sequence of P (y)-modules

0→ P (y)→ P (y, y−1)→ Σ2P (y−1)→ 0.
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Thus the homological Tate spectral sequence is an upper half plane spectral se-
quence whose E2-term is obtained by continuing the y-periodicity in the homo-
logical homotopy fixed point spectral sequence into the first quadrant, and the
homological homotopy orbit spectral sequence (shifted 2 degrees to the right from
Proposition 7.2) has the quotient of these as its E2-term.

Proposition 4.1 and Theorem 5.1 apply equally well to all three spectral se-
quences. For details, see the thesis of Lunøe–Nielsen [L-N].

Second, we could also consider these three spectral sequences for the action of a
finite cyclic subgroup C of T. For example, there is the homological Tate spectral
sequence

Ê2∗∗ = Ĥ−∗(C;H∗(X;Fp))

converging conditionally to Hc
∗(X

tC ;Fp). The analogue of Lemma 4.3 still holds,
so that there are isomorphisms

Êr
∗∗
∼= Ĥ−∗(C;Fp)⊗ Êr

0,∗

for all r ≥ 2 (and now y is invertible, so there is no y-torsion), and all differentials

are determined by those originating on the vertical axis Êr
0,∗. In turn, the latter

differentials are determined by those in the T-equivariant case, by naturality with
respect to the restriction map XtT → XtC . Therefore the collapsing results in
Theorem 5.1 also hold in these cases. See [L-N] for more details.

These latter spectral sequences, for finite subgroups C ⊂ T, are essential in the
analysis of the topological model TF (B) for the negative cyclic homology of B, and
the topological cyclic homology TC(B).

Though the differentials here allow us to determine E∞∗∗ in the cases of interest
(see Section 6), there are still A∗-comodule extensions hidden by the filtration.
These are of course of critical importance for the analysis of the Adams spectral
sequence (1.3). A more elaborate study of the geometry of the universal examples
used in Section 5 allows these to be recovered. This too can be found in [L-N].

Finally, it is interesting to compare the formulas for differentials here to analo-
gous results in other spectral sequences. The first to be considered was the Adams
spectral sequence, where the results are due to Kahn [Ka70], Milgram [Mi72],
Mäkinen [Mä73], and the first author [BMMS86, Ch. VI]. For simplicity, let us
assume p = 2 in this discussion, as there are several cases to be considered at
odd primes ([BMMS86, VI.1.1]). Suppose that x is in the Er-term of the Adams
spectral sequence

E∗∗2 = ExtA(H
∗(R;F2),F2) =⇒ π∗(R)∧2 ,

where R is a commutative S-algebra. The commutative S-algebra structure of R
induces Steenrod operations in the E2-term of the Adams spectral sequence, which
are the analog in this situation of the Dyer–Lashof operations in H∗(R;F2). (In
fact, under the Hurewicz homomorphism, they map to the Dyer–Lashof operations.)
Then, in most cases we have

(7.3) d∗(Sqjx) = Sqjdr(x) +̇ aSqj−vx ,
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where A +̇ B denotes whichever of A or B is in the lower filtration, or their sum,
if they are in the same filtration. The subscript in d∗ is then the difference in
filtrations between the right and left hand sides. In this formula, a is an infinite
cycle in the Adams spectral sequence for the homotopy groups of spheres, and a
and v are determined by j and the degree of x. When the first half of the right
hand side dominates we have

d2r−1(Sqjx) = Sqjdr(x) ,

and this formula resembles the formula

d2r(βεQi(x)) = βεQi(d2r(x))

of Proposition 4.1, in that both essentially say that the relevant differential com-
mutes with the Dyer–Lashof operations. The fact that the length of the differential
increases from r to (2r − 1) when we apply the squaring operation in the Adams
spectral sequence reflects the difference between the homotopy fixed point filtration
and the Adams filtration, and the way in which they interact with the extended pow-
ers. A more extreme difference occurs when the second term aSqj−vx is involved.
In the homological homotopy fixed point spectral sequence this term disappears,
essentially because the element a ∈ π∗S is mapped to 0 by the Hurewicz homo-
morphism. Homotopical homotopy fixed point spectral sequences, as in [AuR02],
will have differential formulas with two parts, as in the Adams spectral sequence.
Such two part formulas for differentials reflect universally hidden extensions in the
following sense.

The differential (7.3) arises from decomposing the boundary of the cell on which
Sqjx is defined into two pieces. One of the pieces carries Sqjdr(x) and the other
carries aSqj−vx. The half that lies in the lower filtration is killed by the differential
(7.3), and therefore appears to be 0 in the associated graded E∞. However, the
geometry of the situation shows that it is actually equal to the half of the formula
that lies in the higher filtration, modulo still higher filtrations. Thus we have a
universally hidden extension, that is, an expression which is 0 in the associated
graded, by virtue of being equal to an expression which lies in a higher filtration.
We should expect this sort of phenomenon to occur in homotopical homotopy fixed
point spectral sequences.

Finally, Theorem 5.1 seems to be particular to the homological homotopy fixed
point spectral sequence. Certainly the Adams spectral sequence seems to have no
analog of this extreme cutoff, in which certain terms die at Er and the remaining
terms live to E∞.
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