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Abstract This paper reports measurements of two-pion
femtoscopic correlations in Be+Be collisions at a beam
momentum of 150AGeV/c (energy available in the center-
of-mass system for nucleon pair

√
sNN = 16.84 GeV) by the

NA61/SHINE experiment at the CERN SPS accelerator. The
obtained momentum space correlation functions can be well
described by a Lévy distributed source model. The transverse
mass dependence of the Lévy source parameters is presented,
and their possible theoretical interpretations are discussed.
The results show that the Lévy exponent α is approximately
constant as a function of mT , and far from both the Gaussian
case of α = 2 or the conjectured value at the critical end-
point, α = 0.5. The radius scale parameter R shows a slight
decrease in mT , which can be explained as a signature of
transverse flow. Finally, an approximately constant trend of
the intercept parameter λ as a function of mT was observed,
similar to previous NA44 S + Pb results (obtained with a
Gaussian approximation, but unlike RHIC results).

1 Introduction

This paper reports measurements of quantum-statistical
femtoscopic correlation functions for identified, like-sign
charged pion pairs produced in central Be+Be collisions at
150A GeV/c beam momentum.

The method of quantum-statistical (Bose–Einstein) cor-
relations was first applied in astrophysical intensity correla-
tion measurements by R. Hanbury Brown and R. Q. Twiss
(HBT) [1] in order to determine the apparent angular diam-
eter of stellar objects. Later, a similar quantum-statistical
method was applied in momentum correlation measurements
for proton-antiproton collisions [2,3] to obtain information
on the size parameters of particle emission sources in high-
energy particle collisions. Since then, quantum-statistical
(HBT) correlation measurements have become a standard
tool for experimental characterization of the probability den-
sity in particle the emission process, i.e. the source function,
which sheds light on the spatio-temporal structure of particle
emission. This experimental method also largely contributed
to the understanding of the hydro-dynamical nature of the

a e-mail: bporfy@cern.ch (corresponding author)

produced strongly interacting matter. In fact, the pair momen-
tum dependence of Gaussian shaped source radii [4,5] can be
well explained by a hydro-dynamical expansion. The shape
of the particle emitting source was furthermore suggested to
be affected by the nature of the quark-hadron transition [6].
Hence, exploring HBT correlations is of utmost importance
in the quest for understanding the nature of the matter created
in relativistic heavy-ion collisions.

The results presented in this paper were obtained by
the NA61/SHINE [7] experiment at the CERN Super Pro-
ton Synchrotron accelerator. This measurement is part of
the NA61/SHINE strong interaction program investigating
the properties of the onset of deconfinement and search-
ing for the possible existence of the critical point of
strongly interacting matter. This goal is pursued by the
NA61/SHINE Collaboration through a beam energy scan
with various nucleus-nucleus collisions. This strategy allows
to systematically investigate properties of the phase diagram
of strongly interacting matter [8].

Within the framework of statistical models, the data on
particle production suggest that with increasing collision
energy, the temperature increases and the baryon chemical
potential of strongly interacting matter decreases at freeze-
out, whereas by increasing the nuclear mass number of the
colliding nuclei, the temperature decreases [9,10]. As a result
of the NA61/SHINE research program, a large set of collision
data on p+p , p+Pb, Be+Be, Ar+Sc, Xe+La, and Pb+Pb col-
lision systems has already been recorded. An upgrade of the
NA61/SHINE experiment was completed in 2022, and fur-
ther high-statistics data on Pb+Pb collisions will be collected
in the near future [11]. A basic reference has already been
established with p+p , Be+Be, and Ar+Sc interactions on par-
ticle spectra and multiplicities [12–17]. The present paper
provides results on Bose–Einstein correlations of identified,
like-sign pion pairs in 0–20% centrality selected 7Be+9Be
collisions. The data were recorded in 2011, 2012, and 2013
using a secondary 7Be beam produced by fragmentation of
the primary Pb beam from the CERN SPS [18].

The paper is organized as follows. Section 2 recalls
the fundamental theory behind the technique of Bose–
Einstein correlations in order to fix notations. In Sect. 3, the
NA61/SHINE detector is described. In Sect. 4, the details of
the analysis procedure are discussed. In Sect. 5, the obtained
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experimental results are presented. The paper closes with
Sect. 6, summarizing the results and conclusions.

2 Bose–Einstein correlations

2.1 Bose–Einstein correlation functions

The two-particle Bose–Einstein correlations are defined in
terms of the single- and the two-particle invariant momentum
distributions N1 and N2 as:

C2(p1, p2) = N2(p1, p2)

N1(p1)N1(p2)
, (1)

where p1 and p2 are the momenta of the individual parti-
cles. If the S(x, p) (source function) denotes the probability
density of particle creation at space-time point x and momen-
tum p, the momentum distribution of emitted particles can
be expressed via this source function as [19]:

N1(p1) =
∫

S(x1, p1)|�p(x1)|2d4x1, (2)

N2(p1, p2)

=
∫

S(x1, p1)S(x2, p2)|�p1,p2(x1, x2)|2d4x2d
4x1, (3)

where �p(x) and �p1,p2(x1, x2) are the single- and two-
particle wave functions. In the case of the single-particle
wave function, |�p(x)|2 = 1 holds, whereas for the two-
particle wave function, taking into account the Bose–Einstein
symmetrisation, one has [20]:

|�p1,p2(x1, x2)|2 = 1 + 〈cos(QX)〉, (4)

where X = x1−x2 is the relative coordinate and Q = p1−p2

is the relative momentum of the pair. In the QX term, a
division by h̄ is suppressed, and throughout this paper, we
will utilize the h̄ = 1 convention. Substituting the above
equation into Eq. (1), one infers

C2(p1, p2) = 1 + S̃(Q, p1)S̃(Q, p2)
∗

S̃(Q = 0, p1)S̃(Q = 0, p2)∗
, (5)

where S̃ is the Fourier transform of S in its first variable.
If relative momentum Q is much smaller compared to the
average momentum of the pair K = (p1+ p2)/2, then Eq. (5)
can be expressed as:

C2(Q, K ) = 1 + |S̃(Q, K )|2
|S̃(Q = 0, K )|2 . (6)

Alternatively, with a simplified notation where the K -
dependence is suppressed and a normalized source is

assumed, one may writeC2(Q) = 1+|S̃(Q)|2. This choice is
motivated by the so-called smoothness approximation [21].
The dependence on relative momentum Q is stronger than
on the average momentum of the pair K , hence Q is consid-
ered as the more important variable of the correlation func-
tion, and the other variable is mostly suppressed in the nota-
tion. When the correlation function is parameterized based
on an ansatz for the source function, its parameters can
depend on K . In order to explore the transverse dynamics
of the source, the average transverse momentum of the pair,

KT =
√
K 2
x + K 2

y is introduced, where Kx and Ky are trans-

verse components of K . Furthermore, motivated by hydro-
dynamical considerations, the dependence on the transverse
massmT = √

m2c4 + KT
2c2 is often studied, wherem is the

particle mass. The mT -dependence of the source parameters,
such as its width, the so-called HBT scale, or radius R, was
crucial in understanding the transverse expansion dynamics
of the strongly interacting matter [22,23]. One of the main
goals of HBT correlation measurements is to estimate the
size (or, rather, the correlation length) of the hadron emitting
source.

2.2 Core-halo model

Equation (6) implies that the correlation function takes the
value of 2 at zero relative momentum, or equivalently, if the
notation C2(Q → 0) = 1 + λ were used, then λ = 1 would
follow. However, the intercept parameter λ is often smaller
than one in experimentally measured correlation functions.
The widely accepted explanation for this phenomenon is the
core-halo model [24,25], namely that some correlated parti-
cles are produced in decays of long-lived resonances, creating
a spatially extended component of the source, their momen-
tum difference being unresolvable by the detector. The core-
halo model treats these as belonging to the halo component
of the source, while the primordial particles and the decay
products of short-lived resonances represent the core. While
the latter has a size of a few fm, the former may extend to
thousands of femtometers, due to long-lived resonances. One
can then break up the source S into Score and to Shalo as fol-
lows:

S̃(Q, K ) = S̃core(Q, K ) + S̃halo(Q, K ). (7)

In experimental measurements, the accessible range of Q
values is not smaller than a few MeV/c , due to the finite two-
track resolution of the tracking detectors. Because of the large
radius of the halo, in the accessible Q-range S̃halo(Q, K ) ≈
0 thus, S̃(Q, K ) ≈ S̃core(Q, K ). Given that the Fourier-
transform of each of the source components at Q = 0 equals
to the number (N ) of particles in that component,

S̃core(0, K ) = Ncore, S̃halo(0, K ) = Nhalo,
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S̃(0, K ) = Ncore + Nhalo, (8)

follows, and therefore one obtains

C2(Q) = 1 + |S̃core(Q) + S̃halo(Q)|2
|S̃core(0) + S̃halo(0)|2

≈ 1 + |S̃core(Q)|2
|S̃core(0) + S̃halo(0)|2

= 1 + λ
|S̃core(Q)|2
|S̃core(0)|2 , (9)

with

λ = |S̃core(0)|2
|S̃core(0) + S̃halo(0)|2 =

(
Ncore

Ncore + Nhalo

)2

, (10)

for the experimentally resolvable Q-range. Although the
core-halo model provides a natural explanation for the phe-
nomenon C2(Q → 0) < 2, i.e. λ < 1 in experimental data,
it is important to note that λ �= 1 can also be explained
by other effects, such as coherent pion production [20,26]
or background from improperly reconstructed particles. It is
evident, however, that measuring λ is an important tool in
understanding particle creation in relativistic heavy-ion col-
lisions. Other effects, such as Coulomb ones, are discussed
more in detail in Sect. 2.4 and strong interactions are negli-
gible [27].

2.3 Lévy shaped sources and the QCD critical endpoint

When the source size (i.e., the HBT scale parameter R) or
the correlation strength (i.e., the intercept parameter λ) of
the Bose–Einstein correlation is to be measured, a full three-
dimensional source reconstruction can be performed if the
available statistics allow it. While in our analysis it cannot
be proven experimentally that the source is fully spherical,
studies of 2D correlation functions in the transverse and lon-
gitudinal momentum difference variable show no need to go
beyond the 1D approximation. Nevertheless, for a more com-
plete study with increased statistics, utilization of spherical
harmonics decomposition [28] or performing further stud-
ies in three dimensions may be adequate. Alternatively, a
parametric ansatz for the source shape may be used, and
its derived correlation function is fitted to the data in order
to determine its shape parameters. Quite naturally, Gaus-
sian sources lead to Gaussian correlation functions. In the
present analysis, a more general ansatz is used, i.e. that of
Lévy shaped sources [29,30], exhibiting possible power-law
tails and also incorporating the Gaussian limit. Correlation
functions based on this ansatz have been shown to describe
LEP [31], RHIC [32], and LHC [33,34] data as well.

The spherically symmetric Lévy distribution is defined as

L(α, R, r) = 1

(2π)3

∫
d3ζeiζr e− 1

2 |ζ R|α , (11)

where the parameters of this distribution areα andR, the Lévy
stability index and Lévy scale parameter, respectively, while r
is the vector of spatial coordinates and the vector ζ represents
the integration variable. In the case of α = 2, one recovers
the Gaussian distribution, while α = 1 is equivalent to the
Cauchy distribution, and for α < 2, the Lévy distribution
exhibits a power-law tail. Hence determining the parameter
α by a fit to experimental data yields a way to estimate the
deviation of the source from a Gaussian or a Cauchy shape.

Ideally, the correlation function C2 is investigated as a
function of momentum difference in the entire three dimen-
sions, but in case of statistically insufficient data samples,
or spherically symmetric sources it is advantageous to mea-
sure the correlation functions versus a single-dimensional
momentum variable. A natural choice may be the invariant
momentum difference, equivalent to the magnitude of the
three-momentum difference in the pair comoving (i.e. pair-
center-of-mass) system (PCMS). Another possible choice is
the magnitude of the three-momentum difference in the lon-
gitudinally comoving system (LCMS):

q ≡ qLCMS

=
√

(p1,x − p2,x )2 + (p1,y − p2,y)2 + q2
z,LCMS, (12)

where the coordinate system is set up such that z is the
direction of the beam, also sometimes called the longitudinal
direction; and the transverse plane coordinates are x and y,
which can be chosen arbitrarily. The momentum difference
in this direction can be expressed in the LCMS as:

q2
z,LCMS = 4 · (pz,1 · E2 − pz,2 · E1)

2

(E1 + E2)2 − (pz,1 + pz,2)2 , (13)

where E1 and E2 are the energies of the respective particles.
The LCMS can be advantageous since hadron emission turns
out to be approximately spherically symmetric in this frame
at RHIC energies [32] and at GSI, HADES as well [35].
We note in passing that preliminary investigation of the full
three-dimensional correlation function indicate that, indeed
this is a natural variable for parametrizing Bose–Einstein
correlations, also at SPS energies for Be+Be collisions.

Assuming a three-dimensional spherically symmetric
Lévy shaped source function and the core-halo model, the
corresponding parametric form of the two-particle Bose–
Einstein correlation function becomes

C2(q) = 1 + λ · e−|qR|α . (14)

Its three parameters λ, R, and α implicitly depend on the
average transverse momentum KT , or, alternatively, on the
transverse mass mT .

The shape parameter α carries information on the nature
of the quark-hadron transition. Namely, lattice QCD calcu-
lations [36–38] and other theoretical expectations show two
important regions of the baryochemical potential (μB) axis
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of the phase diagram of strongly interacting matter. A phase
transition of analytical or “cross-over” type is expected at
low μB values and a first-order phase transition at high val-
ues of μB . Therefore, a critical endpoint of the phase transi-
tion line is expected, where a second-order phase transition
takes place. The mapping of the phase diagram of strongly
interacting matter, and determining the position of the criti-
cal endpoint is one of the main goals of high-energy heavy-
ion physics experiments, such as CBM [39], HADES [40],
PHENIX [41], STAR [42], and NA60+ [43].

The Lévy stability index α is related to the spatial critical
exponent η [44], since at the critical endpoint, fluctuations
appear at all scales and spatial correlations will exhibit a
power-law tail of the form ∼ r−1−η, and Lévy distributed
sources also exhibit a power-law tail ∼ r−1−α (in three
dimensions).

Theoretical expectations suggest that the universality class
of QCD to be the same as that of the 3D Ising model [45,
46]. The value of the exponent η around the critical point in
the 3D Ising model is 0.03631 ± 0.00003 [47], and with a
random external field it is seen to be 0.50 ± 0.05 [48]. This
argument suggests that close to the critical endpoint (CEP)
of the phase transition line of strongly interacting matter, α

should also decrease to values near or even possibly below
0.5. While finite size effects and dynamics may modify this
simple picture, measuring the Lévy stability index α is still
expected to provide a signature of the critical point of the
phase diagram of strongly interacting matter.

2.4 Final state Coulomb effect

The final state phenomena, such as the electromagnetic inter-
actions between charged hadrons, were neglected in the
above considerations. Namely, the quantum-statistical cor-
relation functions discussed so far were obtained with the
plane-wave assumption for the wave function. In the fol-
lowing, these will be denoted by C0(q). Let’s suppose that
the final-state electromagnetic interactions are included in
the correlation function. Then the correlation function has
to be calculated not via the interference of plane waves, but
rather via the interference of solutions of the two-particle
Schrödinger equation having a Coulomb-potential, describ-
ing the final state electromagnetic interactions. The ratio of
these two correlation functions is called the Coulomb cor-
rection [27,49]:

KCoulomb(q) = C Coul(q)

C0(q)
. (15)

The numerator in Eq. (15) cannot be calculated analyt-
ically and is quite tedious to estimate numerically. To sim-
plify experimental analysis, in Ref. [33], an approximate for-
mula was obtained and utilized subsequently for the case of

Cauchy-shaped sources (α = 1). However, the Coulomb cor-
rection may also depend on the Lévy stability index α, hence
a more precise treatment is required. To this end, a numeri-
cal calculation was performed in Refs. [49,50] and the results
were parameterized, then the dependence on R, λ and α has
been parameterized as well. In this analysis, we utilize the
results obtained in Refs. [49,50] for estimating the Coulomb
effect.

In order to take into account the effect of the halo men-
tioned in Sect. 2.2, the Bowler–Sinyukov method [51,52] is
utilized. The halo part only contributes at very small values
of relative momenta, and hence it does not affect the source
radii of the core component [53]. This justifies the mentioned
Bowler–Sinyukov method, in which the fit ansatz function is
as follows:

C2(q) = N ·
(

1 − λ + (1 + e−|qR|α ) · λ · KCoulomb(q)
)

.

(16)

Here KCoulomb(q) is the Coulomb correction, and a nor-
malisation parameter N was also introduced.

In addition, another effect has to be taken care of, which is
related to the fact that the Coulomb correction is calculated
in the PCMS while the measurement is done in the LCMS.
When measuring one-dimensional HBT correlations in the
LCMS, the assumption is that the source is of spherical shape,
meaning Rout = Rside = Rlong = R ≡ RLCMS. However, the
source is only spherical in the LCMS, hence an approximate
one dimensional PCMS size parameter needs to be estimated.

This was done in Ref. [54], where an average PCMS radius
of

RPCMS =
√

1 − 2
3β2

T

1 − β2
T

· R (17)

was obtained, where βT = KT
mT

. Furthermore, the following
fact has to be taken into account: the momentum difference
in the Coulomb correction is expressed in the PCMS, as a
function of qPCMS = qinv (the invariant four-momentum dif-
ference equals the three-momentum difference in the PCMS).
Since the reconstruction ofqinv for a given pair (knowing only
q) is not possible, the measurement should be performed as a
function of both q as well as qinv. The estimation performed
in Ref. [54] showed that a simple, approximate relation of the

two may be given as qinv ≈
√

1 − β2
T/3 · q. Implementing

both of the above mentioned effects results in the following
formula for the Coulomb correction expressed in terms of q
and RLCMS, based on the 3D calculation in PCMS:

KCoulomb (q, R) = K 3D, PCMS
Coulomb

×
⎛
⎝

√
1 − β2

T

3
· q,

√
1 − 2

3β2
T

1 − β2
T

· R
⎞
⎠ ,

(18)
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where now the dependence on R is indicated explicitly. This
modified Coulomb correction is then used in Eq. (16). Note
that KCoulomb depends also on the Lévy-index α, but the men-
tioned PCMS-LCMS transformation leaves this parameter
unaffected, hence we suppressed this from the function argu-
ments above. Furthermore, it should also be underlined that
the effect of modifying the Coulomb correction based on the
PCMS-LCMS difference discussed above is small, particu-
larly negligible, compared to the listed systematic uncertainty
sources of Sect. 4.6.

3 The NA61/SHINE detector

The NA61/SHINE fixed-target experiment uses a large accep-
tance hadron spectrometer located in the North Area H2
beam line of the CERN Super Proton Synchrotron accelera-
tor [7]. The main goals of the experiment include the inves-
tigation of the phase diagram of strongly interacting matter.
A schematic of the layout employed during the Be+Be data
taking is shown in Fig. 1.

3.1 Detectors

The key components of the experiment for the detection of
particles produced in the collisions are the five large-volume
Time Projection Chambers (TPCs) for tracking. The two
most upstream ones are the Vertex TPCs (VTPCs), residing in
the two superconducting bending magnets. The magnets have
9 T·m maximum combined bending power. Downstream of
the VTPCs, the two Main TPCs (MTPCs) are located sym-
metrically to the beam line in order to extend the tracking
lever arm and to perform particle identification by measur-
ing their ionisation energy loss in the TPC gas. One smaller
TPC is located in the gap between VTPCs, and is called
Gap-TPC (GTPC; denoted GAP TPC in Fig. 1). The VTPCs
and GTPC are operated with an Ar(90):CO2(10) gas mixture
and the MTPCs with an Ar(95):CO2(5) mixture. The further
downstream Time-of-Flight (ToF) detectors are not used in
the present analysis.

The Projectile Spectator Detector (PSD) at the end of
the setup is a segmented forward hadron calorimeter, cen-
tered on the nominal deflected beam trajectory. It measures
the energy contained in the projectile spectators which is
used for event centrality characterization. Central collisions
are selected by lower values of this very forward energy.
Although for smaller systems, such as Be+Be collisions, the
very forward energy is not expected to be tightly correlated
with the actual impact parameter of the collision, the terms
central and centrality are still adopted following the conven-
tion widely used in heavy-ion physics.

The beam line instrumentation is schematically shown in
the inset of Fig. 1. A set of scintillation counters as well as

Beam Position Detectors (BPDs) [7] upstream of the target
provide timing reference, selection, identification and precise
measurement of the position and direction of individual beam
particles.

3.2 Triggers

The schematic of the placement of the beam and trigger detec-
tors is shown in the inset of Fig. 1. These consist of a scintil-
lation counter (S1) recording the presence of the beam par-
ticle, a set of veto scintillation counters with hole (V0, V1,
V1p) used for rejecting beam halo particles, and a threshold
Cherenkov charge detector (Z). Trigger signals indicating
the passage of valid beam particles are defined by the coin-
cidence T1 = S1 · V0 · V1 · V1p · Z(Be) for high momentum
data taking.

Central collisions were selected through the analysis of
the signal from the 16 central modules of the PSD [55].
The low-energy part of the deposited energy spectrum was
selected to contain 20% of the most central collisions. The
interaction trigger condition was thus T2 = T1·PSD for the
higher energies.

The data consists of ≈ 2.828 ·106 events before event and
track selection.

3.3 The 7Be beam and 9Be target

The NA61/SHINE beam line is designed to handle primary
as well as secondary beams. The beam instrumentation was
optimized accordingly. In the Be+Be runs, a secondary beam
was used, fragmented from a primary Pb beam from the SPS
accelerator. A threshold Cherenkov charge tagging detector,
called the Z detector, was used in order to identify and select
the Z = 4 fragment nuclei. In order to have a low mate-
rial budget for the Z detector, a thin quartz wafer Cherenkov
radiator was used. Additionally, the amplitudes of the sig-
nals measured in the three Beam Position Detectors (BPDs,
see Fig. 1) were used to improve the Z resolution. A detailed
description of the technique for the identification of 7Be frag-
ments is given in Ref. [18].

The target was a 12 mm thick plate of 9Be placed approxi-
mately 80.0 cm upstream of VTPC-1. The total mass concen-
trations of impurities in the target were measured at 0.287%
[56]. No correction was applied for this negligible contami-
nation.

4 Analysis procedure

Femtoscopic correlations are studied in this paper for pions
reconstructed as originating from the primary interaction in
the 20% most central 7Be+9Be collisions selected by the total
energy emitted into the forward direction covered by the PSD
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Fig. 1 Schematic of the
NA61/SHINE detector setup,
used during the Be+Be data
taking

detector. In the following, we describe the event, track and
pair selection procedure, and all the steps required to obtain
the measured source parameters.

4.1 Event selection

The events considered for analysis had to satisfy the follow-
ing conditions:

(i) there are no off-time beam particles detected within a
time window of 4.5 µs around the particle triggering
the event (this is the time needed to have good position
resolution of the main vertex at all times),

(ii) the event has a well-fitted main interaction vertex,
(iii) the maximal distance between the main vertex z posi-

tion and the centre of the beryllium target is between
± 5 cm (vertex z),

(iv) the 0–20% most central collisions, based on PSD
energy measurement, are accepted.

4.2 Track selection

The tracks selected for the analysis had to satisfy the follow-
ing conditions:

(i) the fit of the particle track converged,
(ii) the distance between the track extrapolated to the inter-

action plane and the interaction point (impact parame-
ter) should be smaller or equal to 4 cm in the horizontal
(bending – |Bx |) plane and 2 cm in the vertical (drift –
|By |) plane,1

(iii) the total number of reconstructed points in all TPCs on
the track should be at least 30 (nPoint) and, at the same

1 Track impact point resolution depends on track multiplicity in the
event.

time, the sum of the number of reconstructed points
in VTPC-1 and VTPC-2 should be at least 15 (VTPC
points) or the number of reconstructed points in the
GTPC should be at least 5 (GTPC points),

(iv) the ratio of the total number of reconstructed points on
the track to the potential number of points should be
between 0.5 and 1.02 (nPointRatio),

(v) identified particle’s rapidity is in the interval ± 2 around
midrapidity.

4.3 Particle identification

Particle identification (PID) for pions was performed
using dE/dx cuts, shown in Fig. 2. Tracks within the two
lines are considered pions. The fine-tuning of the dE/dx cut
parameters was performed as follows.

(i) a reasonable interval in ln(p/1(GeV/c) was selected
where the pion contribution dominates (from −1.6 to
4, 0.2 to 55 GeV/c ),

(ii) the data was binned in ln(p) into 80 slices,
(iii) in each bin, a Gaussian was fitted to the dE/dx data, in

order to establish the most probable value of the pion
dE/dx peak,

(iv) the standard deviation (σ ) obtained from these Gaus-
sian fits was used to determine the pion dE/dx response
width (found to be between 0.05 and 0.18, depend-
ing on momentum), which was the basis of the pion
dE/dx selection as shown in Fig. 2 (PID cut).

2 Due to uncertainty of the momentum fitting and the fitted interaction
point, the nPointRatio values may exceed 1. Hence, the upper limit for
the ratio was set to 1.2 when estimating systematic uncertainties.
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Fig. 2 The dE/dx measurement for negatively charged (left panel) and
positively charged (right panel) particles versus natural logarithm of
momentum p (in laboratory frame). The two lines represent the interpo-
lated selection boundaries based on Gaussian fits to dE/dx distributions
at several momenta, and are 3 standard deviations from the pion mean

for negatively charged particles, while for positively charged particles,
the lower line is 1.5 standard deviations distance from the mean, to
remove the more significant kaon and proton contributions present in
this case

4.4 Pair selection and event mixing

Due to the possible imperfections of the detector and of the
tracking algorithm, hits created by a single particle may be
reconstructed as two tracks. This is called track splitting and
leads to a track pair with small momentum difference (< 20
MeV/c ). Furthermore, the hits of two close particles may
be reconstructed as a single track: this is called track merg-
ing. In a correlation analysis, it is important to minimize the
effect of these track reconstruction problems. Track splitting
is already largely removed by the track selection cuts (in par-
ticular, (iv) of Sect. 4.2). The contribution from track merg-
ing was estimated by Monte Carlo (MC) simulations using
EPOS simulation [57] and GEANT3 for particle propagation
[58] and reconstruction, and an appropriate lower limit in the
momentum difference was defined, as described below.

The basic quantity of correlation measurements is the
pair distribution. From pairs of pions created in the same
event, one obtains the so-called actual pair distribution A(q).
Such distributions were measured in several intervals of aver-
age pair transverse momentum KT or pair transverse mass
mT . This pair distribution is influenced by single-particle
momentum distributions, kinematic acceptance of the detec-
tor, phase-space effects, and other phenomena not connected
to quantum-statistics or final state interactions. These can be
removed by constructing a combinatorial background pair
distribution B(q), measured in the same KT or mT intervals
as the A(q) distribution. Calculating this background dis-
tribution starts with the event mixing procedure, where an
artificial, mixed event is created from particles originating
from different events. Subsequently, pairs formed within the
mixed event are used to create the background distribution
B(q). By construction, this method ensures that no two par-

ticles are selected from the same background event, creating
an uncorrelated pool of events.

The obtained background distribution B(q) exhibits all
the previously mentioned non-quantum-statistical effects
(acceptance, momentum distribution, phase-space, etc.),
hence dividing A(q) by B(q) leaves us with a ratio which
exhibits quantum-statistical and final-state interaction effects
as well as the effect of reconstruction inefficiencies (and, in
addition, momentum conservation, which is not relevant in
the range of the investigated q-range). Thus, the measured
correlation function is defined as

C2(q) = A(q)

B(q)
·
∫ q2
q1

B(q)dq∫ q2
q1

A(q)dq
, (19)

where [q1, q2] is a large-q range where quantum-statistical
effects no longer affect the correlation function. The inte-
grals in Eq. (19) provide the normalization of the correlation
function to unity at high relative momentum. An example
for C2(q) is shown in Fig. 3 for both data and EPOS simula-
tion. It is readily apparent that at low q values Bose–Einstein
correlation and Coulomb repulsion effects determine C2(q)

data points. These effects are not present in the simulations,
hence the simulated C2(q) values are approximately con-
stant. The reconstructed C2(q), however, suffers from track
merging effects (where the two tracks forming the pairs are
close spatially), strongly suppressing C2(q) at low q val-
ues. Hence the deviation of the simulated and reconstructed
correlation function provides a good estimate of the range
where inefficiencies are important. This allows to determine
the range in q over which fits can be considered reliable.
The fit range is then selected for each KT bin, e.g. for KT =
0.20–0.35 GeV/c the interval where fit is considered good is
q = 0.049–0.8 GeV/c . This method then ensures that track
merging is not present in the fitting interval.

123



Eur. Phys. J. C           (2023) 83:919 Page 9 of 15   919 

Fig. 3 The ratio of A(q) and B(q) as a function of q. Left: measured NA61/SHINE data. Right: EPOS simulation and EPOS reconstructed data
(GEANT3 + NA61/SHINE rec. chain)

4.5 Estimation of source shape parameters via fitting

The measured correlations were fitted with the formula
described in Eq. (16). Due to the often modest number of
entries in the signal and background distributions [59], Pois-
son maximum-likelihood fitting was used [60]. The corre-
sponding penalty function (χ2

λ,p) to minimise is

χ2
λ,p = 2

[ ∑
i

(yi − ni ) +
( ∑

i
ci �=0

ni · ln(ni/yi )

)]
, (20)

where λ and p denote the fact that we are using a likelihood
χ2 for Poisson distributed histograms, ci references the num-
ber of counts, ni is the number of entries in the ith histogram-
ing bin obtained from the data, and yi is its corresponding
parametric model value to be fitted to the data. Goodness-of-
fit was determined using regular χ2 methods in two ranges:
the full range and the Bose–Einstein peak range. Fits were
done both for positively and negatively charged pion pairs,
as well as their combinations, in four mT intervals. A fit was
accepted if the algorithm converged, the covariance matrix
was positive definite, and the confidence value correspond-
ing to the χ2 and NDF was larger than 0.1%. An example fit
is shown in Fig. 4. To estimate the statistical uncertainties of
the fit parameters, the Minos method was utilised [61] (also
called as likelihood based confidence intervals) which by its
nature, yields asymmetric statistical errors.

4.6 Systematic uncertainties

In the analysis, one has to consider that the parameters
obtained from fits depend on several experimental choices
and cuts, such as the PID cut, the width of bins, or the fitting
range. These dependencies are the dominating contributors
to the systematic uncertainties. In order to estimate these, the
fits were performed with the loose and tight event and track
selection criteria, and also with slightly varied fit intervals.

Fig. 4 Example fit with Bose–Einstein correlation function at KT =
0.20–0.35 GeV/c for the sum

(
π+ + π+) + (

π− + π−)
. Blue points

with error bars represent the data, the green dash-dotted line shows
the fitted function with Coulomb correction given by Eq. (16) within
the range of 0.049–0.8 GeV/c , and the black dotted line indicates the
extrapolated function outside of the fit range

The standard set of cut values together with the alternative
values for systematic error estimation are shown in Table 1.
The systematic uncertainty calculation was performed for
positively and negatively, like-sign charged pairs summed
together.

The combined systematic uncertainties were obtained as
follows. Let P denote the fit parameter vector (α, λ, R).
Denote by P j

n (i) the corresponding estimated parameter vec-
tor obtained for the i-th mT bin (i = 0, . . . , 3), with the n-th
selection criterion (n = 0, . . . , 8) listed in Table 1 set to
the j-th setting ( j = 0, 1, 2 meaning the standard, tight and
loose values). The downward (δP−) and upward (δP+) sys-
tematic uncertainty of the parameter vector P was estimated
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Table 1 The standard cuts used to obtain the final results, as well as the loose and tight cuts applied for estimation of systematic uncertainties

n Source Standard Tight Loose

0 nPoint ≥ 30 ≥ 40 ≥ 10

1 nPointRatio 0.5–1.0 0.7 − 1.0 0.4–1.2

2 VTPC points ≥ 15 ≥ 30 > 10

3 GTPC points ≥ 5 ≥ 5 > 6

4 |Bx |, |By | ≤ 4 cm, ≤ 2 cm ≤ 0.8 cm, ≤ 0.8 cm ≤ 6 cm, ≤ 5 cm

5 q bin width 7 MeV/c 3.5 MeV/c 3.5 MeV/c

6 Fit range KT dependent, lower value is from MC

7 PID cut π+: +3σ and −1.5σ , π−: + 3σ and − 3σ , π+: +2σ and − 1σ , π−: + 2σ and -2σ , π+: + 4σ − 2σ , π−: + 4σ − 4σ

8 Vertex z (cm) − 585 to − 575 − 585 to − 575 − 595 to − 565

as follows:

δP+(i) =
√√√√∑

n

1

N j+
n

∑
jε J+

n

(P j
n (i) − P0(i))2, (21)

δP−(i) =
√√√√∑

n

1

N j−
n

∑
jε J−

n

(P j
n (i) − P0(i))2, (22)

where P0(i) is the parameter vector in i-th mT bin with stan-
dard cut ( j = 0), J+

n and J−
n are the array of j values with

which P j
n (i) > P0(i), and P j

n (i) < P0(i) occurs respec-
tively, and N j+

n and N j−
n denote their corresponding multi-

plicity.

5 Results

The three physical parameters (α, λ and R) were measured
in four bins of pair transverse momentum KT or pair trans-
verse mass mT . The parameters were obtained via fitting a
parametric Lévy ansatz on the source via the formula Eq.
(16) to the measured correlation functions.

The transverse mass dependence of the intercept parame-
ter λ is shown in Fig. 5. One may observe, within uncertain-
ties, λ(mT ) ≈ const. in the availablemT range. An interesting
phenomenon becomes apparent when compared to measure-
ments at RHIC energy Au+Au collisions [32,62,63] and at
SPS energy S+Pb and Pb+Pb collisions [64,65]. At the SPS
energies, there is no visible decrease of λ at lower mT values,
but at RHIC energies, a “hole” appears at mT values around
2–300 MeV . This “hole” was interpreted in Refs. [32,66] to
be a sign of in-medium mass modification of the η′ meson.
The NA61/SHINE results do not indicate the presence of a
low-mT hole. Furthermore, it is important to note that the
obtained values for λ are smaller than unity, which in the
framework of the core-halo model may indicate that a signif-
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 0-20%c GeV/ABe+Be at 150

-π-π++π+π

Fig. 5 The intercept parameter λ, for 0–20% central Be+Be at
150AGeV/c , as a function of mT . Boxes denote systematic uncertain-
ties, bars represent statistical ones

icant fraction of pions are the decay products of long-lived
resonances.

The measured values of the radial scale parameter R of
the Lévy shaped source function, determining the homo-
geneity length of the pion emitting source in the LCMS,
are shown in Fig. 6 as a function of mT . Interestingly, the
resulting R parameter values are similar to those measured
in p+pcollisions at the CMS [33,67]. We also observe a slight
decrease of R with increasing mT . This can be explained by
the presence of radial flow, based on simple hydrodynamical
models [68,69] where one obtains a 1/R2 ∝ mT type of
transverse mass dependence:

R = A√
1 + mT /B

. (23)

This function was fitted to the R values measured in each
mT bin, as shown in Fig. 6, resulting in a good fit quality
(χ2/NDF = 1.7/2, corresponding to a confidence level of
44%). The obtained fit parameters are: A = 4.5 ± 2.9 (stat.)
fm and B = 0.12 ± 0.23 (stat.) GeV , comparable to those
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Fig. 6 The radial scale parameter R, for 0–20% central Be+Be at
150AGeV/c , as a function of mT . The fit to R(mT ) with Eq. (23)
is shown with a solid line. Boxes denote systematic uncertainties, bars
represent statistical ones

measured in p+pcollisions at CMS [67] (although the large
uncertainties prevent a quantitative comparison).

The Lévy stability exponent α describes the shape of
the tail of the source distribution. The NA61/SHINE results,
shown in Fig. 7, yield values for α between 0.9 and 1.5, and
are significantly lower than the Gaussian (α = 2) case, and
also significantly higher than the conjectured critical end-
point value (α = 0.5). The obtained α values are in a similar
range as the ones obtained in Au+Au collisions at RHIC ener-
gies [32]. The shape of the pion emitting source is apparently
independent of mT , within uncertainties. Therefore one can
calculate a simple average of the four α values via a con-
stant fit, shown in Fig. 7, and resulting in a good fit quality
(χ2/NDF = 6.0/2, corresponding to a confidence level of
11%). This results in an average value of α = 1.07 ± 0.06
(stat.), which describes a source shape close to a Cauchy
distribution (where α = 1). Further studies are foreseen at
NA61/SHINE using different collision energies and system
sizes in order to map the evolution of the Lévy stability index
α as a function of collision energy and system size.

Furthermore α � 2 is interesting in particular as we
observe a R ∼ 1/

√
mT , visible in Fig. 6. It is not entirely

clear why it is the case (the indicated mT dependence could
form in the QGP or at a later stage), as one would expect this
to show only at α = 2 [70]; this phenomenon was observed
also at RHIC [32].

6 Summary and conclusions

Measurement of two-particle femtoscopic correlations in
150 A GeV/c Be+Be collisions with the NA61/SHINE detec-
tor system was presented. The correlation functions were
measured in several bins of pair transverse mass mT , and
their fundamental shape parameters were extracted via fit-
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Fig. 7 The Lévy stability index α, for 0–20% central Be+Be at
150AGeV/c , as a function of mT . Special cases corresponding to a
Gaussian (α = 2) or a Cauchy (α = 1) source are shown, as well
as α = 0.5, the conjectured value corresponding to the critical end-
point, while the constant α fit is shown with a solid line. Boxes denote
systematic uncertainties, bars represent statistical ones

ting a Lévy shaped ansatz for the particle source function.
Correction for the final state Coulomb interaction was per-
formed. The mT -dependence of the shape parameters λ, R
and α were studied.

The results show that the Lévy exponent α is approxi-
mately constant as a function of mT , and far from both the
Gaussian case of α = 2 or the conjectured value at the criti-
cal endpoint, α = 0.5. The radius scale parameter R shows a
slight decrease in mT , which can be explained as a signature
of transverse flow. Finally, an approximately constant trend
of the intercept parameter λ as a function ofmT was observed,
clearly different from measurement results at RHIC, but
similar to previous NA44 measurements based on a Gaus-
sian approximation. The NA61/SHINE experimental pro-
gram plans further measurements at different energies and
system sizes of these Lévy shape parameters. This will com-
plete a systematic study of the energy and system size depen-
dence of the source shape parameters.
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A. Additional Lévy fits

Figures 8, 9 and 10 show the individual correlation function
measurements and the corresponding fits in each of the KT

intervals, separately.

Fig. 8 Measured Bose–Einstein correlation function and the corre-
sponding fit, similarly to Fig. 4, but for KT = 0.00–0.10 GeV/c . Fit
range in q in this case was 0.028–0.8 GeV/c

Fig. 9 Measured Bose–Einstein correlation function and the corre-
sponding fit, similarly to Fig. 4, but for KT = 0.10–0.20 GeV/c . Fit
range in q in this case was 0.035–0.8 GeV/c

Fig. 10 Measured Bose–Einstein correlation function and the corre-
sponding fit, similarly to Fig. 4, but for KT = 0.35–0.60 GeV/c . Fit
range in q in this case was 0.049–0.8 GeV/c

B. Systematic uncertainties

Tables 2, 3 and 4 contain the physical parameter values from
Lévy fits and their systematic uncertainty contributions from
various sources. Values in the table indicate the change of the
given fit parameter when the indicated analysis setting was
modified, as compared to its default value. In these tables,
an uncertainty value of 0.00% means that the given setting
modified the fit parameter value only in the opposite direc-
tion.
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Table 2 Systematic
uncertainties for Lévy scale
parameter R

KT range 0.00–0.10 GeV/c 0.10–0.20 GeV/c 0.20–0.35 GeV/c 0.35–0.60 GeV/c

R = 2.92 fm R = 3.03 fm R = 2.18 fm R = 2.29 fm

Up Down Up Down Up Down Up Down

Fit range 0.00% 0.07% 2.18% 0.00% 0.00% 1.57% 0.00% 2.30%

PID cut 1.15% 0.00% 4.24% 0.00% 1.61% 4.55% 28.00% 0.00%

VTPC points 0.61% 2.61% 4.92% 0.00% 0.00% 4.81% 8.03% 1.10%

|Bx |, |By | 0.00% 5.83% 1.98% 6.75% 0.00% 7.48% 4.50% 10.06%

nPoint 9.23% 0.00% 14.59% 14.26% 6.41% 10.46% 7.20% 15.61%

nPointRatio 0.94% 13.78% 3.56% 11.56% 2.37% 6.38% 6.62% 8.94%

q bin width 0.00% 1.28% 0.00% 1.92% 2.73% 0.00% 0.00% 4.97%

Vertex z 7.38% 7.77% 0.00% 7.04% 0.00% 8.57% 0.00% 12.76%

Table 3 Systematic
uncertainties for correlation
strength parameter λ

KT range 0.00–0.10 GeV/c 0.10–0.20 GeV/c 0.20–0.35 GeV/c 0.35–0.60 GeV/c

λ = 0.67 λ = 0.74 λ = 0.63 λ = 0.89

Up Down Up Down Up Down Up Down

Fit range 0.05% 0.00% 2.39% 0.00% 0.00% 1.96% 0.00% 2.68%

PID cut 0.99% 1.56% 4.73% 0.00% 0.15% 0.25% 41.13% 0.00%

VTPC points 1.15% 4.41% 3.75% 0.00% 0.01% 10.11% 7.54% 0.88%

|Bx |, |By | 0.19% 3.33% 2.00% 3.21% 0.00% 8.74% 5.77% 15.10%

nPoint 6.34% 0.00% 22.77% 15.61% 10.41% 13.19% 5.51% 21.65%

nPointRatio 0.19% 15.15% 1.01% 16.88% 0.00% 7.79% 5.96% 16.77%

q bin width 0.00% 1.25% 0.00% 1.99% 3.85% 0.00% 0.00% 6.38%

Vertex z 8.35% 8.74% 0.05% 11.26% 0.00% 12.10% 0.00% 17.46%

Table 4 Systematic
uncertainties for Lévy stability
index α

KT range 0.00–0.10 GeV/c 0.10–0.20 GeV/c 0.20–0.35 GeV/c 0.35–0.60 GeV/c

α = 1.00 α = 0.97 α = 1.30 α = 1.25

Up Down Up Down Up Down Up Down

Fit range 0.00% 0.16% 0.00% 1.44% 0.00% 0.00% 0.00% 0.00%

PID cut 0.00% 0.99% 2.76% 1.97% 0.00% 2.71% 0.00% 13.77%

VTPC points 2.09% 0.60% 2.76% 2.52% 2.09% 0.12% 2.09% 6.66%

|Bx |, |By | 8.55% 0.33% 6.66% 1.30% 8.55% 0.00% 8.55% 2.90%

nPoint 0.00% 3.74% 20.24% 7.17% 0.00% 5.63% 0.00% 6.90%

nPointRatio 10.18% 0.29% 9.96% 1.86% 10.18% 3.26% 10.18% 6.68%

q bin width 0.92% 0.00% 3.77% 0.00% 0.92% 1.94% 0.92% 0.00%

Vertex z 4.36% 3.76% 6.92% 0.00% 4.36% 0.00% 4.36% 0.00%
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