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Abstract  

 
The genome is not merely organized into a linear string spun around nucleosome but exhibits a 

complex hierarchical chromatin structure. These higher order chromatin structures take part in 

determining the 3D structure of the genome, taking part in the epigenetic regulatory landscape in 

the cell. Hi-C data captures this complex chromatin structure by capturing chromatin interactions 

genome-wide. An automated pipeline was made and used to process Hi-C data from five cell 

lines to networks. This Hi-C to network pipeline takes raw Hi-C data and returns significant 

chromatin interactions. Centrality metrics and community detection network theory approaches 

were then used to analyze and compare the chromatin networks between cell lines. Centrality 

distributions were calculated and contrasted between cell lines on a genome wide scale. 

Networks were determined to have a scale-free-like distribution, showing no difference in the 

genome-wide centrality distributions. The healthy tissue breast cell line MCF-10A and the 

cancer breast tissue cell line MCF-7 were analyzed further. Centrality metrics were determined 

in networks and compared across chromosomes, finding significant differences at specific 

chromosomes. Community detection algorithms were used to detect and compare the topology of 

the MCF-10A and MCF-7 networks. Large differences in topology were found across 

chromosomes, with smaller chromosomes being more similar. Chromosome compartments were 

determined and used to annotate the networks. Many nodes switch compartment status between 

MCF-10A and MCF-7, most of these nodes change from compartment B to compartment A. 

Taken together, these results capture the change in chromatin structure between healthy breast 

tissue cells (MCF-10A) and malignant breast tissue cells (MCF-7). This project can potentially 

shed light on how chromatin structure changes in breast cancer progression.  
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1. Introduction 

1.1 Chromatin  

1.1.1 Organization of DNA  

 
The total length of DNA in a human cell is around 2 meters in length, yet it must fit into the 

nucleus of the cell, which ranges in size from 5 – 20 micrometers in diameter in mammals 

(Lammerding, 2011). This severe compaction is achieved by histone proteins binding to DNA, 

which are positively charged proteins that have high affinity for the negatively charged 

phosphate backbone of DNA. The core histone proteins form octamers, consisting of two 

subunits of each histone protein (H2A, H2B, H3 and H4). DNA wraps around these octamers 

every 147 bp, forming the basic unit of chromatin, the nucleosome. Between each nucleosome is 

linker DNA, associated with H1 histones which stabilizes the linker DNA by binding both to 

DNA and to histones in the octamer. Chromatin can thus be defined as all DNA and RNA and 

their associated proteins, mainly histone proteins. The core repeating unit of chromatin is the 

nucleosomes, which stack together to form the helical 30 nm fiber. This fiber is further organized 

into larger structures, folding first into the 120 nm chromonema, then the 300 nm and 700 nm 

chromatid structures (Ou et al., 2017).  

These larger chromatin structures form the structural basis of the chromosomal architecture, 

shown in Figure 1 on the proceeding page. This classical view on the nucleosome fibers and the 

secondary structure of chromatin has changed over the years as imaging technology and 

techniques have improved. One example of this is the finding that the 30-nm fiber largely does 

not occur in vivo in interphase chromosomes. Chromatin structures seem to be more irregular 

and dynamic, forming fractal-like structures instead the regular fiber architecture proposed in 

earlier studies (Nishino et al., 2012). The authors of the study concluded that no regular 

chromatin structures are found above the histone octamer of 11 nm, corroborated by other 

studies on chromatin secondary structures (Fussner et al., 2011) & (Maeshima et al., 2010). 

Although the classical view on the 30 nm fiber and higher order chromatin structure is 

challenged, what remains true is the formation of the nucleosome fiber to form chromatin, 

resulting in compaction of DNA. 
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Figure 1: Schematic view of the classical model of chromatin architecture – consisting of DNA wound around 
histone octamers (light blue) to form nucleosomes. Nucleosomes are wound together to form higher order structures 
of compacted chromatin, eventually forming the chromosome. Reprinted from Genomic Architecture, by 
BioRender.com (2023). Retrieved from: https://app.biorender.com/biorender-templates.  

 

1.1.2 Chromatin modifications and chromatin structure  

In general, there are two chromatin states genome wide, which are heterochromatin and 

euchromatin. Heterochromatin is tightly packed and condensed, whereas euchromatin is loosely 

packed and decondensed. Chromatin state can mediate the ease of access to nucleic acids, 

whereby condensed chromatin prevents binding of proteins and thus can prevent regulatory 

proteins from binding. This chromatin state is controlled in part by covalent modifications to 

histone proteins. Each histone protein has “tails”, where parts of their amino acid structure 

protrude from the nucleosomes. A class of enzymes called histone modifying enzymes can 

covalently change specific residues on histone protein tails, affecting the secondary structure or 

the charge of residues. These post-translational modifications of histone proteins are reversible 
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and highly specific. One example illustrating this is the histone methyltransferase enzymes, 

which adds methyl groups to specific residues on histone protein tails, most often on lysine 

residues in histones H3 and H4 (Zhang et al., 2021). Methylation of H3K9 (histone H3, lysine 

residue K9) occurs by the HMTase SUV39H1 and is associated with the formation of 

heterochromatin and thus silencing of genes (Lomberk et al., 2006). These modifications can 

again be removed, and their effects reversed. This example illustrates the basis of the histone 

code hypothesis, which postulates that histone modifications are recognized by proteins which 

lead to downstream effects such as chromatin condensation and gene silencing (Strahl & Allis, 

2000). Continuing the H3K9 methylation example with the histone code in mind, we find that 

such a methylation mark does indeed lead to downstream effects. Proteins that recognize histone 

modifications contain structural domains that bind to specific modified residues of histone tails, 

such as chromodomains and bromodomains. The HP1 protein is a chromatin reader and contains 

a chromodomain that recognizes H3K9me and upon binding to this residue, recruits more 

SUV39H1 proteins to extend the methylation pattern. This is the most common effect of HP1 

and leads to the formation of heterochromatin and transcriptional silencing (Lomberk et al., 

2006).  

 

This example illustrates a monocausal relationship between H3K9me and heterochromatin 

formation, but the full picture is not that simple. Histone modifications have different effects 

determined by the histone code surrounding them, for instance the combination of H3K9me and 

H3K4me is associated with active transcription (Berger, 2007).  

PTMs of histones leads to the formation of euchromatin in similar manners, but with other 

histone modifying proteins, histone residues and potential downstream effects. In addition to 

histone modifications, DNA methylation and chromatin remodeling complexes also affect the 

chromatin state by inducing local changes to chromatin. DNA methylation is generally 

associated with the formation of heterochromatin (Buitrago et al., 2021) and chromatin 

remodeling complexes perform a wide range of functions by interacting with nucleosomes 

(Clapier et al., 2017). This paints a complex but partial picture of chromatin structure, where 

local changes like PTMs to histones or reshuffling of histones during transcription, affect the 

chromatin state.  
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1.2 Higher order chromatin structure  

 
Chromatin structure is more complex than its organization around nucleosomes and subsequent 

packing that defines the chromatin state. Chromatin form self-interactions and 3D structures 

across multiple scales, defined as higher order chromatin structures. These higher order 

structures are not the result of stochastic processes, they form distinct structures and take part in 

a multitude of regulatory processes within the nucleus. Chromatin structure takes part in 

regulating gene expression, transcription timing and enhancer-promoter interactions. Many of 

these chromatin structures are conserved across tissues (McArthur & Capra, 2021). Disruption of 

the chromatin structure can lead to pathologies such as cancer and congenital disorder. It is thus 

important to study how the nature of these chromatin structures and how they interact, as they 

play important parts in the regulatory landscape of the nucleus.  

 

1.2.1 Chromosome capture technologies  

Several methods have been used throughout the years to capture higher order chromatin 

structures, like cryo-electron microscopy, light microscopy and by labeling chromosomes 

(Zakirov et al., 2022). An example of this is evidence found for chromosome territories by the 

use of fluorescence in situ hybridization (FISH) which labels DNA with fluorescent probes to 

evaluate the proximity between loci (Cremer & Cremer, 2010). Chromosome positioning in the 

nucleus was found to correlate with chromatin state, where gene rich chromosomes with more 

transcription was located closer to the nuclear center and chromosomes with less transcription 

and fewer genes located closer to the nuclear periphery (Jerkovic´ & Cavalli, 2021). It was also 

observed that chromosomes consisted of regions of “giant loops” around 1 Mb in size and small-

scale loops around 100 kb in size (Cremer et al., 2006). The arrival of next-generation 

sequencing (NGS) technologies and chromatin conformation techniques provided new insights 

into higher order chromatin structures. Chromosome conformation capture, termed 3C, was the 

first of such chromatin conformation technologies and relied on capturing chromatin interactions 

between two loci and sequencing these regions by PCR. 3C experiments confirmed the existence 

of chromatin loops seen by FISH, but could only be used to detect the chromatin structure of 

known DNA sequences due to the PCR step of the protocol (Dekker et al., 2002). Many 

chromosome conformation methods are derived from 3C, enabling different analyses of 
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chromatin structure. 4C improves upon the original 3C protocol, improving the range limit from 

a few hundred kb to the whole genome, enabling capture of all chromatin contacts made from 

one locus. Both the 3C and 4C protocols examine the chromatin structure associated with 

specific loci. Other methods include 5C which capture chromatin interactions between multiple 

regions, and ChIA-PET which combines 3C with immunoprecipitation to find chromatin 

interactions associated with specific proteins (Han et al., 2018). Further improvements were 

made to the 3C protocol, combining it with NGS to enable capture of all chromatin contacts 

across the genome. This technology is termed high throughput chromosome conformation 

capture (Hi-C) and enables capture of chromatin interactions, and thereby structure, without 

relying on PCR primer design.  

 

1.2.2 Hi-C data  

Hi-C is a 3C derived technique and that captures chromatin interactions genome wide, which 

then can be used to infer structure. The Hi-C protocol (see Figure 2) starts with crosslinking of 

DNA with formaldehyde to link DNA with any proteins present to preserve the chromatin 

interactions. After the crosslinking of DNA, the cells are lysed, and chromatin is released from 

the cells. Next the crosslinked DNA is cut with a restriction enzyme which leaves 5’ overhangs. 

These are then filled and marked with biotin. The two separate strands are ligated to create one 

chimeric DNA molecule derived from two separate loci, representing the chromatin interaction 

that took place at the time of crosslinking with formaldehyde. The DNA is then purified and can 

be sheared before biotin pull down occurs to preferentially select chimeric reads for sequencing. 

The end point of the protocol is two separate reads, each containing parts of the chromatin of the 

loci where the chromatin interactions took place (Lieberman-Aiden et al., 2009). The Hi-C 

protocol thus enables capture of loci that engage in chromatin interactions, capturing loci that are 

close together in space, but might be far away in linear sequence.   
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Figure 2: Overview of the Hi-C protocol steps focused on one chromatin interactions. The figure shows crosslinking 
of DNA and subsequent cutting by the restriction enzyme HindIII. The hanging ends are filled and marked with 
biotin, before the two loci are ligated by NheI. DNA is then purified, sheared and biotin enables the resulting 
ligation to be pulled down. The result of the protocol are two reads containing sequences from two separate loci 
involved in one chromatin interaction. Figure retrieved from figure 1A in Lieberman-Aiden, et al., (2009). 
Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science (New 
York, N.Y.), 326(5950), 289. https://doi.org/10.1126/science.1181369. Reprinted with permission from AAAS.  

 

Since the reads contain parts of two separate loci, they contain information about a chromatin 

interaction. The output of a Hi-C experiment is raw data in the form of chimeric reads forming a 

Hi-C library, requiring further processing to align the reads to a reference genome and do quality 

filtering (see methods section). One important point to keep in mind with dilution Hi-C data is 

that each interaction frequency represents the population average, since Hi-C libraries are 

generated from a pool of cells. This means Hi-C data does not enable analyses of chromatin 

structures related to phenomena like cell cycle or specific conditions unless all cells in the 

population are synced in terms of cell cycle or treated with the same condition. If a specific 

chromatin interaction between two loci varies across two Hi-C libraries, it’s not possible to infer 

if the chromatin structure is binary (i.e., it is there or not) or if there are several configurations of 

the chromatin structure present in the population. In one population the chromatin interaction 

might be transient and exist half of the time in all cells, but in the other population the chromatin 

interaction exists in half of the cells all the time. If these two populations of cells are compared, 

the interaction counts corresponding to the loci representing the chromatin interaction will be 

indistinguishable. This illustrates that Hi-C data describes the average chromatin structure from 

the population of cells that generated the Hi-C library (Lajoie et al., 2015). This population 
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average is also affecting individual populations, there might be a small proportion of cells that 

might always have a specific chromatin interaction between two loci, while in most cells this 

chromatin interaction does not take place. In a Hi-C library this phenomenon is indistinguishable 

from a weak population level interaction frequency between the two loci (Lajoie et al., 2015).  

 

Hi-C data can be represented as a contact matrix spanning the entire genome, where each entry 

in the contact matrix represents the number of chromatin contacts between two regions of the 

genome. The upper limit on resolution of Hi-C data experiments is limited by the restriction 

fragment length and the sequencing depth of the data. The interaction frequencies in a Hi-C 

library are thus binned at non-overlapping segments of fixed length across the genome, and this 

is the Hi-C resolution of a processed Hi-C library and is determined computationally. A smaller 

bin size needs a higher sequencing depth to adequately represent the actual interaction 

frequencies of a chromatin region (Lajoie et al., 2015). Different resolutions will thus also 

represent chromatin interactions across different scales, selecting a bin size of 10 kb will enable 

different downstream analyses than a resolution of 1 Mb will. From the Hi-C contact matrix, a 

typical representation of interaction frequencies if the heatmap. These representations enable a 

look at varying structures of the genome and can be generated across all resolutions of Hi-C data 

and can be generated on a per chromosome basis or for the whole genome.  

 

Figure 3 is an example of a typical heatmap and is generated from the IMR90 cell line using raw 

Hi-C data. The figure shows the entirety of chromosome 2, where darker colors indicate a higher 

interaction frequency, and a lighter color corresponds to a lower interaction frequency. From 

examining these heatmaps several genome wide patterns emerge, the strongest of which is the 

cis/trans interaction ratio. This is the ratio between the total number of intrachromosomal 

interactions versus the total number of interchromosomal interactions. Chromosome territories 

separate chromosomes into specific regions of the nucleus, which might explain the fact that 

inter-chromosomal (trans) interactions have a lower frequency than intra-chromosomal (cis) 

interactions. In general, cis interactions occur 40 – 60 times more frequently than trans 

interaction in Hi-C libraries. If there is noise in the dataset, which might be caused by fragments 

randomly ligating and interpreted as chromatin interactions, this affects both cis and trans 
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interactions by an equal amount. Therefore the trans interaction counts will be disproportionally 

affected compared to the cis interaction frequency counts (Lajoie et al., 2015). 

 
Figure 3: Heatmap generated from Hi-C data from the MCF-10A cell line. The chromosome 2 interaction matrix is 
plotted against itself, and the color scales from yellow to red as interaction frequency increases. The resolution of 
the data is 250 kb, each tick is 25 million base pairs (Mb).  

 
Another genome-wide pattern observed from the Hi-C matrix is distance dependent decay, where 

the number of interactions decrease as the distance between two loci increases. They can be seen 

in the heatmap in Figure 3 above, where the highest interactions frequency regions are centered 

around the diagonal. Regions far away in linear sequence generally have a lower interaction 

frequency, but this pattern cannot be found in inter-chromosomal data. These trans interactions 

occur between chromosomes and are thus constrained by different factors than cis interactions. 

They are limited in their interaction counts by the folding of chromosomes and the territories 
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they occupy. These interactions patterns, the distance dependent decay and the cis/trans ratio, 

does not correspond to specific chromatin structures but are rather the results of the Hi-C 

protocol and the nature of Hi-C data.  

 
1.2.3 Chromosome compartments  

The largest intrachromosomal chromatin structures captured by Hi-C data are the chromosome 

compartments. These domains divide the chromosomes into two distinct regions, compartment A 

and compartment B (Lieberman-Aiden et al., 2009). Compartments preferentially interact with 

other compartments of the same type, meaning they interact with specific patterns in 3D enabling 

the capture of these chromatin interactions. This spatial segregation of compartments can thus be 

seen in the Hi-C matrix and visualized in Hi-C heatmaps, which are usually identified in Hi-C 

matrices at a 1 Mb resolution. Each compartment correlates strongly with the chromatin state, 

where compartment A is associated with active transcription and euchromatin. Compartment B 

on the other hand associates with heterochromatin and transcriptional repression. This correlation 

between compartment type and chromatin state is strong and remains true even for cell lines with 

potential genomic rearrangements like the lymphoblastoid cell line K562. Chromosome 

compartments functions as large domains to control transcription timing by modifying the 

chromatin state over large regions of the genome, which is seen in Drosophila melanogaster 

embryogenesis. During development an increasing amount of genes are switched to an active 

state, and this is captured by Hi-C data as compartments switch from compartment B to 

compartment A (Rowley & Corces, 2018). The maintenance of the chromosome compartments 

could be the result of proteins regulating transcription, rather than being directly affected by 

transcription itself. Inhibition of RNA polymerase II during embryogenesis in D. melanogaster 

led to reduced compartment formation, but not the total loss of chromosome compartments. This 

is also observed from the heat shock response in D. melanogaster where the degree of RNA 

Polymerase II loss correlates with loss of compartmentalization.  

 

Identifying compartments be done using only the Hi-C matrix as input, as the compartments 

preferentially interact with themselves. This method relies eigenvector analysis, as the first 

eigenvector changes signs when compartments switch (Fortin & Hansen, 2015). Using this 

approach allows for identification of compartments A and B, which is done on a per-
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chromosome basis. This method uses the first principal component, which is responsible for the 

largest variance in data, to denote chromosome compartments. In some cases the largest variance 

captured by the first principal component can capture other factors, instead capture the separation 

of chromosomes into chromosome arms instead of the compartment structure (Kalluchi et al., 

2023). Chromosome compartments have also been found to contain different sub-compartments, 

indicating that the compartment structure is more complex than the A and B compartments. 

These sub compartments reflect the complex chromatin states present on the genome, where 

several histone modifications are associated with the higher order chromatin structure.  

 

Compartments can also be differentially enriched differentially between cell lines, meaning if 

repressive histone marks such as H3K9me3 are associated with compartment B in one cell line, 

this might not be the case for all regions of compartment B in another cell line. In one study a 

clustering algorithm was used to define compartments, taking histone modifications into account, 

and compared with A and B compartments defined by principal component analysis. This 

approach resulted in the identification of four distinct compartments, suggesting that 

compartmentalization of chromosomes is more complex than previously thought (Nichols & 

Corces, 2021). With further increase in the Hi-C resolution to 1-kb the A and B compartments 

could be further subdivided into 6 distinct compartment types based on their histone 

modification and interaction profiles (Rao et al., 2014b). Compartments can now be called at 

sub-kilobase resolutions, finding that a larger proportion of compartment B than previously 

thought did not contain repressive histone marks which might suggest that compartment A drives 

compartmentalization (Zhou, 2022).  

 

Comparing the A and B compartments between cell lines at lower resolutions can still be 

informative; when A and B compartments were compared between normal breast tissue (MCF-

10A) and cancerous breast cell line (MCF-7), 12% of compartments switched between the 

tissues. Overall, there were more open compartments present in the cancer cell line, especially 

for the small chromosomes (chr16 – chr22). The altered compartment profile of the cancer cells 

reflected repression of Wnt signaling and correlated with compartment switching from A to B in 

the MCF-7 tissue (Barutcu et al., 2015). It is however unclear from this study if the compartment 
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switching in MCF-7 was due to deactivation of genes which influence the chromatin state, or if 

compartment switching occurred first which then led to changes in gene expression.  

Compartments can be visualized in Hi-C heatmaps due to the differential interaction patterns 

between the A and B compartments. To improve the visualization of the compartments in 

heatmaps, the normalized observed over expected interaction frequencies can be calculated. The 

expected interaction frequencies are calculated with regards to the distance decay of interactions 

in the Hi-C matrix. The “plaid” pattern seen in such heatmaps can be further enhanced by 

coloring the interactions based on the Pearson correlation between the normalized values in an 

interaction. An example of such a figure is Figure 4 on the next page, where this approach was 

used. There is a clear diagonal line of self-interacting domains, and large regions spanning 

multiple megabases belonging to different compartments, compartment A (red) and B (blue).  
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Figure 4: This figure shows the Hi-C heatmap for MCF10-A chromosome 2 at 250kb binned resolution. 
Compartments are visualized by doing iterative correction (matrix balancing – see methods) on the Hi-C matrix. 
Interactions are colored by the Spearman correlation between the observed over expected interaction frequency, 
ranging from 0 to 1. The colors show a “plaid” pattern, corresponding to compartment A (euchromatin) and 
compartment B (heterochromatin) present in the dataset.  

 
1.2.4 Topologically associating domains  

Topologically associating domains (TADs) are another chromatin structure seen in intra-

chromosomal Hi-C matrices. These domains are smaller in size than chromosome compartments, 

first thought to have an median size of 880kb (Dixon et al., 2012), but more recent evidence 
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suggests this number is closer to 185 kb (Rao et al., 2014b). TADs are chromatin domains 

increased self-interactions, in which interactions inside the domain occur much more frequently 

than between different domains. Around 91% of the genome is organized into TADs; they play 

important parts in regulating chromatin interactions and controlling the transcriptional process. 

Boundary regions in TADs are enriched for the transcriptional repressor CCCTC-binding factor 

(CTCF), which acts to stop the spread of heterochromatin, forming barriers between the regions 

inside the TAD from the chromatin state outside of it (Dixon et al., 2012). Factors associated 

with active gene expression are also enriched at TAD boundaries, indicating the TADs form as 

regulatory regions which limit the external chromatin state from interfering with gene regulation 

within the domain.  

 

The formation of TADs can be explained by the loop extrusion model, which states that 

chromatin is extruded by a loop extrusion factor (LEF) until it encounters a boundary element 

(BE). The LEF binds to DNA and moves along the genome in both directions, forming a loop of 

chromatin behind it, when it reaches a BE, it stops, and a loop of chromatin is formed. This 

hypothesis was tested using polymer simulations which supported the loop extrusion model and 

its role in TAD formation (Fudenberg et al., 2016), and further strengthened when loop extrusion 

by yeast condensin was observed ex vivo using real-time imaging (Ganji et al., 2018).  

It is now thought that structural maintenance of chromosome (SMC) protein complexes, cohesin 

and condensin, are responsible for the loop extrusion process that generates TADs. They form 

circular complexes that bind to DNA and extrudes the chromatin in an ATP-dependent manner, 

until they reach boundary domains such as CTCFs. CTCF binds to DNA in a directional manner 

and most long-range cis interactions are enriched for CTCF at their anchors. These interactions 

form when CTCF sites converge directionally, meaning that the LEF only stops at CTCF 

domains when they point in the same direction – when they converge (Davidson & Peters, 2021).  

TADs might then be formed by the extrusion of multiple such loops that stop when they meet 

convergent CTCF domains, forming regions of increased interaction within the TAD borders.  

TADs can be seen from the unprocessed Hi-C heatmap as square blocks of increased interaction 

frequency along the diagonal, although visual inspection cannot be used to quantify TADs or 

define them accurately – as seen in Figure 5.  
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Figure 5: This figure is a heatmap of Hi-C data from MCF-10A cell line, showing the first 20 Mb of chromosome 2. 
The resolution of the data is 250 kb, which is too coarse to accurately depict TADs, and no TAD caller algorithm 
has been used. Domains can be seen along the diagonal, where several domains overlap and form nested structures, 
several of which might be defined as TADs.  

 

TADs are usually defined computationally from the Hi-C matrix alone, through a wide range of 

algorithms that leads to big discrepancy in results between tools (Dali & Blanchette, 2017). 

These algorithms use the interaction frequencies between regions in the Hi-C data to define 

TADs and their boundaries genome wide. TADs can be nested, which several of these algorithms 

do not account for, meaning called TADs miss about 25% of TADs defined through manual 

annotation. Still, this approach of calling TADs genome wide has enabled a deeper look into 

TADs and their effect on the regulatory process in the cell. The boundaries between TADs 

enriched for CTCF and the physical separation of TADs in space helps prevent interactions 
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forming between different TADs. Disruptions of the TAD boundaries can thus lead to aberrant 

enhancer promoter interactions forming. The deletion of boundaries surrounding the Epha4a 

locus led the formation of de novo enhancer-promoter interactions and the introduction of limb 

malformations in mice. Analysis of families with a history of limb malformation found that this 

TAD deletion also occurs in humans and leads to similar limb malformations (Lupiáñez et al., 

2015). Disruption of TADs and TAD borders have similarly been found to play important role in 

tumorigenesis and cancer progress in a wide variety of cancer subtypes (S. Deng et al., 2022).  

 

MCF-7 breast cancer cells have increased proliferation, caused in part by increased upregulation 

of the ESR1 gene. This gene is in a TAD thought to be regulated by the non-coding RNA 

(ncRNA) Eleanor, which is located at the ESR1 TAD boundaries. The ESR1 TAD is in a 

transcriptionally active state, and forms interactions with other TADs in compartment A. One of 

these interactions is with a TAD housing the FOXO3 gene, encoding a transcription factor 

involved in apoptosis. Upon Eleanor inhibition, the interaction between these two TADs is lost, 

causing silencing of genes within the ESR1 TAD while not affecting the FOXO3 expression. 

This suggests that the ncRNA Eleanor enables upregulation of ESR1 mediated by chromatin 

interactions to the FOXO3 TAD. Upon loss of Eleanor, the interaction between the TADs is lost. 

This leads to silencing of the ESR1 gene while not affecting FOXO3 expression, enabling the 

cancer cells to undergo apoptosis while having decreased proliferation. Disruption of chromatin 

interactions, in this case by loss of the ncRNA Eleanor, provides potential therapeutic targets in 

cancer medicine (Abdalla et al., 2019). TADs can also associate with the B compartment 

(heterochromatin) and these TADs are often associated with the nuclear lamina and termed 

lamina associated domains (LADs). These LADs are enriched for H3K9me2/me3 histone 

modifications, meaning they contain heterochromatin and thus their gene expression levels are 

low. Insertion of genes into LADs lead to less transcripts than when the gene was inserted into 

inter-TAD regions (Briand & Collas, 2020). The compartmentalization of the genome into TADs 

and LADs thus provides the cell with additional layers of regulatory control. The positioning of 

these domains and the chromatin interactions within and between them is vital for the regulation 

of gene expression. 
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Figure 6: Schematic overview of higher order chromatin structures found in the nucleus. Chromosomes are 
organized into chromosome compartments, within chromosomes are the larger structured A and B compartments. 
Within these compartments we find TADs and LADs, denoting regions of increased self-interaction mediated by 
chromatin loop formation between regulatory elements and genes. Figure made with Biorender.com, adapted from 
“Chromosome Organization in the Nucleus: TADs” template.  
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1.2.5 Loops  

Loops are chromatin domains thought to be formed by loop extrusion, as explained earlier. The 

main function of these loops is to promote enhancer promoter interactions though the looping of 

chromatin. Several loops can form within a TAD, but both TADs and loops are demarcated by 

regions such as CTCF. It is thus possible that TADs are population average structures seen in Hi-

C data, emerging from the overall average loop interactions across many different cells (Hansen 

et al., 2018). This perspective also explains why loop formation is dynamic while TADs are 

more conserved across time. Loops can be seen in high resolution Hi-C heat maps, as small 

points of increased interaction frequencies perpendicular to the diagonal. These points in the Hi-

C heatmap, found at the corners of the squares denoting TADs, are interactions between anchors 

in the loop, which are the regions brought close together in space by the loop formation: the 

enhancer-promoter interaction.  

 

 
Figure 7: Schematic view of the loop extrusion mechanisms mediated by the SMC complex cohesin. The loop 
extrusion process continues until the cohesin complex reaches converging CTCF domains (Purple). The formation 
of a chromatin loop brings enhancers and promoter close together in physical space, mediated by activator proteins 
(orange), mediator proteins (blue) and transcription factors (red). Figure made with Biorender.com.  
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Disruption to chromatin loop structure can alter gene expression directly. This is demonstrated 

by the globin genes; the transcription of different globin genes determines the hemoglobin type. 

In adults, hemoglobin A is the predominant type, while in fetal development hemoglobin F is the 

predominant type. Distal enhancers in the locus control region (LCR) control the expression of 

the globin genes, mediation by the chromatin loop formation. By the engineering a novel protein, 

GG1-SA, the LCR chromatin loops can be changed. This GG1-SA protein contains a self-

associating subunit (Ldb1SA) involved in chromatin loop formation and the GG1 subunit, which 

binds to the 𝛾-globin promoter. The effect of this protein is thus binding to the 𝛾-globin promoter 

and subsequent loop formation to the LCR. GG1-SA leads to altered expression of globin genes, 

mediated by changes in chromatin loop structure, and expression of fetal hemoglobin. This 

finding might be important in patients with mutations in the 𝛽-globin gene, whereby expressing 

fetal hemoglobin by changing the enhancer-promoter interaction mediated by GG1-SA, could be 

a therapeutic strategy in sickle cell anemia (W. Deng et al., 2014).  

 

 

1.3 Network theory 

A network can be defined as a data structure or a method to represent data, in which each object 

of the network is a node, and the interaction between these objects are edges. A network, also 

defined as a graph, thus represents objects and their relation. Networks are often used to 

represent and model data which has interactions between the components, and have been widely 

used in social sciences, economics, informatics, machine learning, and in system biology. 

Biological systems are often complex and contain layers of interactions acting in multidirectional 

manners. Representing biological systems as networks is not only useful for visualization 

purposes, but adds structure to the data, where each object in the network is viewed in the 

context of the system it takes part in. Graph theory is the mathematical field in which networks 

are studied and analyzed, methods from this field can thus be applied to biological data when 

represented as networks. Networks have been used to represent and model protein interactions, 

gene co-expression, metabolic pathways and 3C data as chromatin networks.  
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1.3.1 Networks and Hi-C data: The basics   

Hi-C data can be represented as networks, where the interaction matrix is used to construct a 

network. In such networks, the nodes are regions of the genome, and the edges are the chromatin 

interactions between regions of the genome. Such networks can be made when converting the 

interaction matrix to formats capable of generating networks. Converting the interaction matrix 

to an adjacency matrix is often done, although many formats can be used to generate networks, 

as the data structure only needs to denote every connection between all nodes in the network. An 

adjacency matrix in its simplest form is defined as a square matrix, similarly to the interaction 

matrix in Hi-C datasets. Interactions between two nodes are denoted as a 1, and 0 for no 

interactions (Koutrouli et al., 2020).  

Thus, the adjacency matrix captures every node and their edges. Representing Hi-C data as 

networks instead of 2D matrices or heatmaps can then be done after conversion to a format like 

the adjacency matrix. In such networks the chromatin interactions in Hi-C data are proxies for 

the physical chromatin structure in a cell. These interactions are close in space but can be far 

away in sequence. In network representations of Hi-C data the linear genomic distance between 

nodes is not what determines the distance between the nodes in a layout, but their interactions.  

 
 

 
 

Figure 8: This figure depicts a simplistic schematic of a TAD and the corresponding chromatin network generated 
from it. The TAD has sub-regions which interact (denoted A-D) with varying intensities. Both representations of the 
Hi-C data depict the same interactions, but the network model is better fit to visualize the interactions between 
chromatin regions. In the network representation the sub-TADs are nodes (A-D) corresponding to the sub-TADs and 
their interaction patterns. Figure made with Biorender.com.   
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There are many types of network representations, the one in Figure 8 is an unweighted and 

undirected graph. This means that the edges between the nodes are not ranked by some metric, 

which is often the case in biological networks. Weighted edges can denote interaction strength 

between loci, in chromatin networks this weight can be derived from the raw interaction counts 

between nodes (Koutrouli et al., 2020). Chromatin networks are undirected, because one region 

cannot unidirectionally engage in a chromatin interaction with another chromatin region. In other 

words, all chromatin interactions are bidirectional, and thus chromatin networks representing 

chromatin interactions are undirected. Traversal of graphs is an important concept for many 

network algorithms and metrics. A walk is a set of nodes and edges in a network, denoting a 

specific traversal from one node to another. The two possible walks in the graph in figure 8 from 

node A to node D is A-B-D and A-C-B-D. Paths are like walks, but every edge must be unique. 

A valid walk in the graph in Figure 8, is A-B-C-B, while an example of a path is A-B-D.  

When walks are cyclic they end up on the same node as they started at, and are aptly termed 

cycles, an example of a walk in Figure 8 graph is A-B-C-A (Pavlopoulos et al., 2011).  

The distance between two nodes in a network is the shortest path in between them, represented 

as number of edges.  

 

Subgraphs are smaller sections of the larger graph (networks). Some subgraphs form cliques, 

when every node is connected to every other node – a complete subgraph. The triangle formation 

in Figure 8 formed between node A-B-C is an example of a clique. Similarly, clusters are 

subgraphs of the larger networks which form more tightly connected regions, but nodes in 

clusters are not required to be complete. A graph is termed connected if there is a path from any 

node to any other node, as in there are no nodes disconnected from the main graph. Many graphs 

form from several components, which are smaller regions of the larger graphs where all nodes 

are connected. With these definitions in mind, the graph in Figure 8 is an undirected, unweighted 

complete graph.  

Several metrics can be calculated for nodes in a graph, one important metric is the degree, which 

is how many edges a node has associated with it. In the example graph in Figure 8, node D has a 

degree of one and node B a degree of 3. Figure 9 is an example of a heatmap, and a network 

generated from real data, but these concepts apply to all undirected, unweighted chromatin 
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networks. The network in figure 9 is a processed network, but the heatmap represents normalized 

data that has not been fully processed.  

 

 

 

Figure 9: Heatmap and corresponding network generated from chromosome 2 from the IMR-90 cell line at 250kb 
resolution. The network represents processed data while the heatmap does not, thus the number of interactions in 
the heatmap does directly not correspond to the number of nodes and edges seen in the network.  

 

There are different approaches to creating chromatin networks. The first being derived from 

spatial data gained from microscopy and labeling to describe direct spatial location of chromatin.  

The second approach relies on modeling chromatin interactions to create spatial models of 

chromatin networks at varying scales. These approaches are used to create 3D models of 

chromatin, based on polymer physics or constraint modeling. The final method of representation 

in chromatin networks are the abstract topological representations. In this approach chromatin 

interactions are represented as networks directly from Hi-C datasets, without embedding the 

nodes spatially or modeling the physical conformation of chromatin. Graph theory approaches 

are used to describe these networks and their structure, which might then be used to describe the 

phenotype (Pancaldi, 2023). Chromatin networks considered in this thesis is of the latter type, 

not spatially embedded nor temporally annotated, but abstract representations of chromatin 

interactions. All networks discussed in this work are undirected, unweighted networks unless 

stated otherwise.  
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1.3.2 Centrality   

The centrality of a network is a collection of summary statistical metrics used to describe 

individual nodes in a network. Such centrality metrics are important tools that allow for 

identification of important nodes in a network. Many centrality metrics exist (Das et al., 2018), 

but some of the most common ones are degree centrality, closeness centrality and betweenness 

centrality. These metrics inform us of a node’s importance in the network and the nodes 

influence over other nodes. The degree centrality is a measure of every node’s degree in a 

network. In an undirected network the degree is simply the number of edges associated with each 

node. Closeness centrality is a measure of how close nodes are to other nodes in the network. It 

is defined in undirected networks as the reciprocal sum of shortest paths between a specific node 

and all other nodes in the network. Closeness centrality is defined mathematically for one node	𝑖 
as:  

 

𝐶!"#$%&%$$	(𝑖) 	= 	
1

Σ	𝑑',)	
	 , 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗 ≠ 𝑖 

 

Where 𝑖 is a specific node, 𝑗 are all other nodes and the Σ	𝑑',)	 term denotes all shortest path 

length from 𝑖 to 𝑗.  

Betweenness centrality is a measure of how important a node is for communication between 

different parts of a network. Betweenness centrality is calculated in undirected networks as the 

shortest path between every pair of nodes in the network, for each node summing the number of 

shortest paths pass through that specific node. Repeating this for all nodes in the network results 

in the raw betweenness count of every node in the network. Betweenness centrality is thus 

defined for one node 𝑖 as: 

 

∁+%,-%%&&%$		(𝑖) = 	
𝜎.,/𝑖
𝜎.,/

, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑥 ≠ 𝑖 ≠ 𝑦	 

 

Where 𝜎.,/ is the sum of shortest paths between nodes 𝑥, 𝑦 and 𝜎.,/𝑖 is the sum of shortest paths 

between nodes 𝑥, 𝑦 passing through node 𝑖 (Koutrouli et al., 2020). All these centrality metrics 

can be normalized in respect to the size of the network.  
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1.3.3 Community detection  

Centrality metrics are used to describe singular nodes of interest and how they relate to the 

networks overall structure, the network topology. To characterize larger structures relating to 

network topology it is also important to consider groups of nodes. These groups of related nodes 

can be termed clusters or communities – and there is a wide array of algorithms to define such 

groups. The goal of defining communities in a network is to group nodes based on their 

structural similarity. There are differences in the clustering between networks and it is not 

obvious which level of clustering best defines communities within a network. A network could 

for instance be partitioned into two parts – but this is not very informative (Newman, 2006).  

One approach to solve this problem and define communities is by using modularity maximizing 

algorithms. Modularity, as defined by Newman & Girvan in 2004, is a measure of density of 

edges within a community compared to outside a community. It can be defined as: 

 

𝑄	 = 	
1
2𝑚	;(𝐴') 	− 	𝑘'𝑘)

',)

)	𝛿(𝑐' , 𝑐)) 

 

Here 𝑚 is defined as the number of edges in the network, and 𝐴	is the adjacency matrix 

representing the network while 𝐴') represents one element in this adjacency matrix for nodes  

𝑖, 𝑗. The product of the degree between nodes 𝑖, 𝑗 is represented as 𝑘'𝑘). The communities that the 

nodes 𝑖, 𝑗 belong to are defined as 𝑐' , 𝑐). The Kronecker delta function is 𝛿, which returns 0 for 

edges between nodes in separate communities, only returning 1 for edges where nodes are 

assigned to the same community. This function allows for distinguishing between nodes assigned 

to different communities. Modularity values for a network where communities are defines ranges 

from -1 to 1. The closer the modularity is to 1 the better the community structure is, for real 

world networks the values of a network with good community structure does not approach 1 but 

ranges from 0.3 to 0.7, a higher modularity in a network means nodes within a community have 

denser connections then outside of communities. The result of this when implemented in 

community detection algorithms is the optimization for modularity, where this function is 

applied to each set of nodes in a network.  
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There are several such implementations of modularity-based community detection algorithms, 

each with differing implementation and optimization strategies. Some common modularity-based 

algorithms are the fast-greedy algorithm and the Louvain algorithm (Lancichinetti & Fortunato, 

2009). There are many other approaches for defining communities which do not rely on 

modularity optimizations. In general, one can categorize community detection algorithms as 

modularity based approaches, traditional algorithms and dynamic algorithms (Javed et al., 2018). 

These categories are not clear cut, for instance fast greedy optimizes for the higher modularity 

score but is also a hierarchical clustering algorithm, which is defined as a traditional approach. 

What they have in common is that they define nodes as part of only one community, but this 

might not reflect the reality of biological networks, as they are dynamic. This means that optimal 

approach might be to assign nodes are members of several communities to better reflect the 

reality of biological networks (Javed et al., 2018).  

 

Community structures can be compared across networks, but many algorithmic implementations 

of such methods assume that the communities in each network contain the same number of 

nodes. This is often not the case in chromatin networks, as which might not be the case for 

chromatin networks. Methods developed to compare networks with differing number of nodes 

and node sets in community structures are termed unknown node-correspondence methods 

(Tantardini et al., 2019). Comparing community clusters is a difficult problem because 

communities can be nested, contain different nodes and have different sizes. Normalized mutual 

information (NMI) is a metric that scores the similarity between two clusters – or community 

structures. Algorithmic implementations of NMI that allow for differences in community sizes 

can be used to compare the community structures between two graphs (Lancichinetti et al., 

2009). An improvement on the normalization method for this algorithm was made to better 

handle different overlaps of communities (McDaid et al., 2011). These approaches were 

originally aimed at comparing community structures determined by different community 

detection algorithms. But NMI can also be used to calculate the similarity between communities 

of two different networks, using an implementation of the NMI metric which allows for differing 

number of nodes between communities. The NMI is a normalized score between 0 and 1, a 

higher score means the community structure is more similar between the compared networks. 

NMI works by comparing the mutual information between two variables, when comparing two 
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networks with differing communities, it measures how much information is gained about the 

community structure in one network by examining the other networks community structure. 

There are several other approaches for comparing community structures that allow for different 

node sets, community structures and variables nestedness. These NMI methods are general 

mathematical approaches and can be used to find the similarities between communities. In 

addition to these methods, a myriad of biological network approaches have been developed that 

seek to define differences between different networks (Ideker & Krogan, 2012). Many of these 

approaches do not consider communities structures directly, but instead evaluate the differences 

between communities on an edge-to-edge basis.  

 

One recent approach that considers differences in community structure between two biological 

networks is the Alpaca algorithm (Padi & Quackenbush, 2018). In this approach, one network 

with communities in considered the ground truth, and compared to another network’s community 

structure. This model considers differential community structures, where the expected number of 

edges in the perturbed network is calculated based on the community structure found in the 

baseline network (the ground truth). The modularity scores are then compared between the 

networks and uses a Louvain algorithm to maximize this differential modularity score to 

determine the differential communities between two networks. Most approaches used in 

biological networks assume the networks are weighted networks and that there is a known node-

correspondence between the networks, as is often the case when working with protein interaction 

networks (PINs) or gene co-expression networks. Besides these approaches, there are also global 

summary approaches that can be used to compare the community structure between two 

networks, for instance the modularity score. General approaches, NMI, and modularity, measure 

the overall structural differences between communities in two networks. Unlike the more 

specialized approaches like the Alpaca algorithm, the generalized metrics do not inform on 

specific community differences in networks. Instead, they give an overall similarity of the 

partition differences between the two networks, reflecting the overall community structure 

similarities.  
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1.3.4 Chromatin networks    

Biological networks often form structural architectures which are seen in other real-world 

networks, namely that they are scale-free and form core-periphery structure. A scale-free 

network has an asymmetry in the distribution of degree centrality, meaning that most nodes have 

low degree while a few nodes have a very high degree. Networks are deemed scale-free if they 

follow such a power-law. Scale-free networks are less prone to structural changes when 

removing individual nodes, if random nodes are removed from a scale free network it is less 

likely to affect the overall topology of the network. This is because there is a large difference in 

degree distribution between nodes in such networks, where most nodes have a low degree and 

are less important for the networks overall structure (Albert et al., 2000). In biological terms, this 

organizational feature might allow higher tolerance in general to alteration of components in the 

network. If a disease affects a hub node it is then expected to perturb the network, and the 

underlying phenotype, more than a peripheral node (Furlong, 2013). One example of this is in 

the HIST1 gene cluster, which form several long-range (<200kb) and super-long-range (<500kb) 

interactions. If these interactions are lost, the cluster would break into several smaller 

components. It was further found that strong promoters and enhancer have are hub nodes and 

occupy more central positions in CINs, while weak enhancers and promoters are located in 

peripheral regions of the network (Sandhu et al., 2012). This further illustrates that network 

structures reflects the underlying biological function of these systems. 

Core-periphery structures are observed in a wide variety of systems pertaining to information 

flow, like the brain and social groups. The core contains nodes which are central to the network 

and affect many other nodes. This network structure was observed in a subset of hub TADs in 

cortical neurons, where disease causing single-nucleotide polymorphisms (SNPs) in neurological 

disease are enriched in these core TADs. This indicates that disruption to core TADs lead to 

disruption to the network topology, while a change in the periphery does not (Huang et al., 

2019). Both the scale-free and core-periphery structure of networks serve to make networks more 

robust against perturbance and channel communication through specific paths. A node with high 

centrality, e.g., degree or betweenness, will thus have a larger effect on the topology of the 

network. This indicates that centrality metrics reflect the underlying biology in the system.  

 



 27 

Networks also allow for annotation of datasets describing the linear genome, which can be 

integrated into the networks. An example of this is annotating nodes in the network with histone 

modification data from ChIP-Seq. Several datasets can be integrated at the same time to provide 

a clearer view of the genome in 3D and how it relates to function. This approach allows for one-

dimensional genomic data to be related to the 3D structure of chromatin. Chromatin assortativity 

is an example of this, it is a measure of the correlation between features of nodes in networks, 

ranging from -1 to 1. This metric can be used to determine if similar nodes preferentially interact 

with each other. A feature can be histone modifications or promoters, and this approach can be 

used to define the interaction patterns in chromatin networks. Histone modifications correlate 

with chromatin state and was determined to be assortative in promoter-capture chromatin 

networks of neutrophils. Some variability was found between individuals, for instance in the 

H3K27Ac histone modification which is associated with active transcription (Madrid-Mencía et 

al., 2020). These findings suggest that chromatin with similar features preferentially interact, 

which is known to be the case for large scale chromatin structures like the A and B 

compartments. Using network approaches to find assortativity can thus shed light on chromatin 

structures and how they interact.  

 

Networks also allow for multiscale hierarchical representations of biological data, where nodes 

can represent different structures at differing scales. Such representations of biological networks 

might reflect the complexity of biological networks more accurately since they capture the 

complex nestedness found in biological systems. A hierarchical network was created by 

combining Hi-C, promoter capture Hi-C (PCHi-C) and compartment profiling data to create a 

single multiscale network. Using this approach allows for exploration of chromatin interactions 

across multiple scales, with integration of multiple annotations like enhancers and promoters 

being possible. Comparing different murine cell lines using multiscale networks annotated with 

transcription factor sites and methylation profiles revealed changes across all scales. Primary and 

naïve stem cells were compared across multiple Hi-C resolutions and with respect to the 

promoter sites. The network was then annotated with methylation states and large differences 

between the cell lines were found. For instance, the cadherin gene is controlled by enhancer-

promoter binding mediated by CTCF loops to form an interaction hub. This hub seems to form 

during development, which might be priming this region for transcription when the naïve 
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pluripotent stem cells (PSC) transition to primed PSC (Chovanec et al., 2021). This approach 

underlines the flexibility of networks, they can contain multitudes of annotated data and 

represent hierarchical structures, such as chromatin organization. Network theory approaches 

have also been used to call TADs allowing for capture of their nested structures, using 

modularity maximizing community algorithms to detect nested TADs (Norton et al., 2018)  

across multiple scales (Yan et al., 2017).  

 

Nodes in chromatin networks are organized into components of varying size. Around 40% of 

nodes in ChIA-PET networks formed one giant connected component, termed the largest 

connected component (Sandhu et al., 2012). This was also found to be the case in promoter-

capture Hi-C networks (Lace et al., 2020). This implies that a large proportion of the genome has 

widespread potential for co-regulation, although this represents a population average, meaning in 

single cells this largest connected component (LCC) might differ significantly from average LCC 

in the population-level network. ChIA-PET chromatin interaction networks from K562 and 

MCF-7 cell lines were found to form scale-free networks (Sandhu et al., 2012).  

Local changes do occur between cancer cell lines and healthy cell lines. By creating CINs 

annotated with H3K4me and H3K27ac marks, it was wound that super-enhancers and broad 

domain promoters interact more frequently. Using network approaches to examine these 

interactions revealed that the connectivity between these elements were conserved across cell 

lines. Decomposing chromatin networks into graphlets (topologically unique subgraphs) revealed 

that different chromatin features exhibit unique topological patterns. For instance, the super-

enhancers occupy more central locations and are more likely to form cliques compared to 

enhancers. The EMP2 oncogene in the MCF-7 breast cancer cell line had a different network 

structure than the K562 and GSM12878 cell lines, being connected to more enhancers. 

(Thibodeau et al., 2017). To determine whether chromatin network patterns reflect the 

underlying biology, machine learning models can be trained on CINs and used to predict cell-

activity. Such a model was trained and could distinguish between super-enhancers and enhancer, 

as well as broad domain- and regular promoters with an AUC of <0.7 for all cell lines tested 

(Thibodeau et al., 2017). While this model is not the most accurate, it does indicate that networks 

approaches are valuable tools for understanding the underlying biology. Similar approaches 

using graphlets and network centralities were used to characterize chromatin networks from 
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healthy and cancer-derived human blood cell lines. There were differences between healthy and 

cancer cells, indicating that structural changes in the chromatin network reflect the underlying 

phenotype of the genome. Leukemia genomes had a lower modularity score, indicating poorer 

community structure. In concordance with this overall structural change, driver genes of chronic 

lymphocytic leukemia adopt more central positions in the CIN to become hub nodes (Malod-

Dognin et al., 2020). Machine learning models have also been used to show that Hi-C interaction 

models as networks can predict gene co-expression, without input from external data (AUC 

<0.77). When the model trained on topological networks representing Hi-C interactions in 

murine cortical cells it could accurately predict gene co-expression. This might be an effect of 

chromatin assortativity; similar chromatin features co-localize spatially and gene-pairs that co-

express interact with these assortative features.  

Co-expression of genes was not found to have a one-to-one relationship with chromatin 

interactions, but was rather the result of indirect interactions between several chromatin regions 

(Babaei et al., 2015). This means that representing and modeling chromatin interactions as 

networks allows for better representation of the complex underlying biology.  
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2. Aims of study  
 
The overarching goal of this master project is twofold: (1) Develop an automated processing 

pipeline that generated Hi-C networks from raw Hi-C data, and (2) use network theory 

approaches such as degree centrality and community detection to characterize and compare these 

networks.  
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3. Methods  

3.1 Datasets   

Hi-C data from five different cell lines was acquired and processed to networks. Two breast 

tissue-derived cell lines were used, MCF-10A and MCF-7. The MCF-10A cell line originates 

from healthy mammary epithelial tissue and is widely used as a model for healthy breast tissue 

(Qu et al., 2015). MCF-7 is a commonly used model for cancer research as they are transformed 

mammary epithelial tissue that is estrogen responsive (Vantangoli et al., 2015).  

Three additional cell lines from healthy tissue was processed and analyzed. HUVEC is derived 

from the vein of the umbilical cord and are primary tissue cells (Baudin et al., 2007).  

The IMR-90 cell line is derived from myofibroblasts isolated from lung tissue (Ehler et al., 

1996). HA-c are astrocytes isolated from the cerebellum (Dekker, 2017), and is referred to in the 

results by its NCBI sample accession number (gsm2824367). All datasets come from cell lines 

except for HA-c and HUVEC, which are primary cells.  The Hi-C libraries were all generated 

using the HindIII restriction enzyme, except for IMR-90 which used MboI. All Hi-C libraries 

was aligned to the hg19 reference genome. All datasets were generated from dilution Hi-C 

protocols, except for the HA-c dataset, which was generated from an in-situ Hi-C protocol.  

 

The MCF-10A and MCF-7 Hi-C data (Barutcu et al., 2015) used in this study can be accessed 

from the European Nucleotide Archive (ENA) at EMBL-EBI with project accession number 

PRJNA277846. The individual run accessions are found at SRR1909069 (MCF-10A) and 

SRR1909070 (MCF-7), located at:  https://www.ebi.ac.uk/ena/browser/view/PRJNA277846.  

 

The IMR-90 Hi-C data (Rao et al., 2014a) was retrieved from the ENCODE portal with 

experiment accession number ENCSR645ZPH located at: 

https://www.encodeproject.org/experiments/ENCSR645ZPH/.  

The individual reads have accession numbers ENCFF238TYE and ENCFF361VGE.  

 

HUVEC Hi-C data was also retrieved from the ENCODE portal, with the following experiment 

accession number ENCSR008UIB located at:  

https://www.encodeproject.org/experiments/ENCSR008UIB/  
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Individual reads have accession numbers: ENCFF468XVT and ENCFF395VSI.  

 

The HA-c Hi-C dataset has the GEO accession number GSM2824367, the ENCODE experiment 

accession number ENCSR011GNI and was retrieved from: 

https://www.encodeproject.org/experiments/ENCSR011GNI/. The individual reads have 

accession numbers: ENCFF198DDF and ENCFF901VRD.  

 

 

3.2 Pipeline  

A pipeline was made to pre-process raw Hi-C data into edge-lists to generate networks, based on 

the Chrom3D pipeline (Paulsen et al., 2018). The pipeline automatically processes Hi-C data 

from several cell lines across many resolutions, in parallel. The pipeline takes input files from 

Hi-C Pro output, formats them correctly, finds significant interactions, adjusts for false discovery 

rate, and returns data in a network-compatible format, the default being edgelists. This allows for 

automatic generation of networks in python that are compatible with iGraph, NetworkX and 

Cdlib, common network processing and visualization tools. An overview of the pipeline is 

shown in figure 10 below, highlighting the most important steps from raw Hi-C data to networks 

representing the chromatin interactions present in the Hi-C datasets.  
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Figure 10: Schematic overview of pre-processing pipeline used to generate networks from raw Hi-C data. 1) 
Acquiring raw Hi-C data in paired-end FASTQ format is the first step, this is the input to Hi-C Pro. 2) Hi-C Pro 
aligns the reads to the reference genome of choice and filters low quality data. Hi-C Pro returns a matrix file with 
the number of interactions per loci, which maps to a BED file denoting the genome segments. 3) This is the first 
input to the network pipeline, which maps the interactions to the binned genome, creating a BEDPE file. 4) This 
BEDPE file is run through a series of steps which removes “blacklisted” regions like centromeres and low map- 
ability regions. 5) The full genome file is split into intra- and interchromosomal datasets. 6) The intrachromosomal 
files is further split into each chromosome, while the interchromosomal file is kept in its full genome state. 7) These 
files are fed in parallel to the NCHG tool, which finds significant interactions both for intra- and interchromosomal 
data. 8) The intrachromosomal files are concatenated, both intra- and interchromosomal data is controlled for false 
discovery rate (FDR) using Benjamini-Hochberg procedure. 9) The intra- and interchromosomal files are formatted 
to edgelist files and imported to Python to generate iGraph- and NetworkX-compatible networks. Green square 
boxes denote external tools used. Figure made with Biorender.com.  
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3.2.1 Hi-C Pro  

Hi-C Pro is a tool used to generate Hi-C datasets from raw Hi-C libraries. It takes paired 

sequenced FASTQ files as input and generates full-genome contact maps. It is a powerful tool 

that aligns the reads to a reference genome, filters out low quality data and allows for correction 

of bias, all while running efficiently in parallel (Servant et al., 2015). Reads are first aligned to 

their respective locations on the reference genome and interactions are classified. The first step 

when running Hi-C Pro is mapping, this is the process of aligning reads individually to a 

reference genome. Some reads will map to several regions of the genome and will be unable to 

be aligned using the Bowtie2 aligner. This is handled by Hi-C Pro aligning the 5’ end of the read 

to the genome by finding the ligation sites, so that unmapped chimeric reads can also be aligned.  

For a read to be considered valid it must map to two different restriction fragments, while also 

representing valid reads as generated from the Hi-C protocol. Some reads to not form valid read 

pairs and Hi-C Pro has extensive quality controls in place to filter these reads out. Some 

examples of this are singletons (reads from one loci), form dangling ends (larger than expected 

reads), self-circle reads (reads form circles) and relegation (two restriction sites ligate). Reads 

that do not fulfill these quality criteria are discarded, while the valid reads are aligned to 

restriction fragments. After alignment of valid reads to restriction fragments, the genome is then 

divided into equal size bins of the pre-determined sizes, designating the resolution of the dataset. 

All valid reads are then aligned to its corresponding bin to generate a full-genome dataset 

containing all Hi-C interactions (Servant et al., 2015).  

 

The reference genome used in this pipeline was hg19 (Kent et al., 2002). Hi-C Pro uses the 

Bowtie2 aligner tool, which requires indexed versions of the reference genome to enable more 

efficient mapping of reads. These indexed reference genome files were generated using 

Bowtie2’s indexing functionality (Langmead & Salzberg, 2012). In addition to the Hi-C Data 

and the reference genome, Hi-C Pro requires two reference files: One file containing the sizes of 

each chromosome and one file containing the sizes of all restriction fragments. The restriction 

fragment file should correspond to the restriction fragment used in the generation of the Hi-C 

library. These reference files for hg19 are part of the Hi-C Pro repository and enable correct 

mapping of Hi-C reads to the reference genome.  
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3.2.2 Aggregation, blacklist, and centromeres  

The next step of the pipeline is taking the output from Hi-C Pro which is cell-line and resolution 

specific. This means Hi-C Pro generates two files for each Hi-C library per resolution, the matrix 

file contains each interaction and interaction frequency, while the BED file contains the genomic 

region (the bins). There is a mapping between the interaction counts and the bins, allowing for 

the creation of a single file, aggregating the frequencies and the bins into a single file. This file is 

in the BEDPE format, which contains each interaction as regions of the genome and the 

interaction frequency between each region. This process is done for each resolution, and each 

cell line. These BEDPE files are then checked for overlap with blacklisted regions (Amemiya et 

al., 2019). The ENCODE blacklist dataset contains regions of high-signal, irregular and 

unstructured regions, such as high-repeat regions resulting from e.g., transposable elements. 

These regions are removed from the datasets to ensure higher quality of downstream data 

analysis. The next step in the pipeline is similar, centromeres are removed by checking for 

overlap with a BED file containing centromeric regions for hg19 generated from USCS genome 

browser. Both filtering for blacklisted regions and centromeric regions is done with the python 

package Pybedtools (Dale et al., 2011).  

 

3.2.3 Statistical significance  

Hi-C data is important to test for significance. During the Hi-C protocol, loci in spatial proximity 

will crosslink and be captured as chromatin interactions. There is inherent noise in Hi-C datasets 

resulting from the random movement of chromatin, resulting in a background noise in the data. 

In addition to this, there are also biases present ranging from batch effects to sequence specific 

bias such GC content. Several different approaches have been developed to deal with the noise 

and bias in Hi-C data to determine significant chromatin interactions (Ay & Noble, 2015).  

Matrix balancing is a commonly used normalization strategy, aiming to reduce inherent bias in 

Hi-C contact maps. The method operates under the assumption that if there were no bias present, 

all loci would produce equal amounts of Hi-C reads in the experiment, and the number of reads 

in a Hi-C experiment would be proportional to the number of interactions. The Hi-C matrix is 

decomposed such that the observed interactions sum to equal values for each locus and the 

decomposition term captures the bias. In matrix balancing approaches distance dependent decay 
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is not accounted for, which can be problematic for intrachromosomal data. Furthermore, no 

confidence or estimate of significance is attached to interactions.  

 

To account for distance dependent decay and capture significant Hi-C interactions, the Hi-C to 

network pipeline uses the NCHG statistical tool (Paulsen et al., 2018). This tool is made to find 

statistically significant interaction in Hi-C datasets and is based on the non-central 

hypergeometric distribution. This tool calculates the probability of finding the number of 

interactions between loci observed in the dataset. It achieves this by finding the total number of 

interactions for the Hi-C matrix, the number of contacts between the two loci interacting and the 

linear genomic distance between these loci. This implementation of the non-central 

hypergeometric distribution is defined as:   
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Here 𝑃	denotes the probability of observing a given number of chromatin interactions between 

two loci 𝑛'). This probability depends on the total number of chromatin interaction in the 

chromosome 𝑛 and the individual number of contacts to all regions for each locus involved in the 

interaction, 𝑛' and 𝑛). The 𝑛2 (n prime) term denotes the total number of interactions in the 

dataset. The last term, 𝜔'), is the odds ratio for the loci involved in the interaction, and is given 

by this equation: 

 

𝜔') =	
𝜆')(2𝜆 − 𝜆' − 𝜆)+𝜆'))
(𝜆' − 𝜆'))(𝜆)−𝜆'))

 

 

Where the odds ratio for the two loci involved in an interaction, 𝜔'), is determined by the 

expected interaction between the two loci, 𝜆'). The odds ratio is a measure of how much the 

actual interaction frequency deviates from the expected interaction frequency given the distance 

between two loci interacting. Lambda can be determined by the number of interactions between 

two loci by taking the genomic distance between these loci into account for intrachromosomal 
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data. For interchromosomal data a constant expected interaction frequency is determined since 

there is no distance dependent decay in interchromosomal data. The probability for the number 

of contacts for interchromosomal data is then transformed into a Fisher’s exact test with a central 

hypergeometric distribution, since there is no distance dependent decay effect between loci on 

different chromosomes. The NCHG tool calculates p-values based on the odds ratio for every 

interaction in the dataset and returns each interaction with a corresponding p-value. The NCHG 

script is originally written to run sequentially, and the statistical testing is computationally 

expensive as it runs with time complexity of O(𝑛0). The runtime increases cubically with each 

doubling of resolution in the matrices, meaning high resolution data is very computationally 

expensive to process. To increase performance, the pipeline enables splitting of the 

intrachromosomal input files on each chromosome. It then calls the NCHG script in parallel for 

all input files. There is no need for parallelism when processing interchromosomal data as the 

resolution (bin size) for these regions are 1 Mb or larger. After completion the single-

chromosome output files are joined to generate a full-genome file once more. Each output fil is 

specific to the resolution that generated it, and intra- and interchromosomal datasets are kept 

separate. This is not only due to the practical limitations imposed by statistical tools, 

interchromosomal interactions occur much less frequently and are governed by different 

biological processes than the compartments found on single chromosomes.  

 

One statistical test, as described above, is performed for each interaction present in the dataset. 

The null-hypothesis is thus the interaction frequency between two loci that is regarded as 

random, given the distance between them and the total number of interactions in the Hi-C matrix.  

Small p-values means the interaction frequency observed between the two loci is very unlikely to 

occur under the null hypothesis, indicating a significant interaction. Still, doing many multiple 

tests results in a portion of significant interactions being false positives. To account for this, false 

discovery rate detection was done using Benjamini-Hochberg’s procedure (Benjamini & 

Hochberg, 1995). This results in the expected number of false positives being below the 

threshold, in this case 5%, meaning all p-values above 0.05 is excluded from the dataset and all 

p-values below 0.05 are deemed significant interactions. After this process is complete, the input 

data with raw counts is transformed to significant interactions and interactions with a 

significance below the threshold are removed.  



 38 

3.2.4 Edgelists and Networks  

After significant interactions are determined, the datasets are reformatted to edgelists. This is a 

simple data structure, where each line in the file represents one interaction. Interaction frequency 

between two loci is not considered after significance testing. This means that one locus can have 

several interactions to different loci, but the number of interactions between them is omitted. 

This means that the edge lists are used to generate unweighted, undirected networks. Networks 

are generated as an optional step in the pipeline, from the edgelist files, and automatically creates 

networks using the iGraph package (Csardi & Nepusz, 2005).  

 

3.3 ICE Normalization   

In the Hi-C to network pipeline the NCHG tool was used to find significant Hi-C interactions, 

and p-values were adjusted using Benjamini-Hochberg’s procedure. When generating heatmaps, 

this was not the case, as the NCHG tool filters out too many interactions to generate complete 

heatmaps. Instead, raw data was normalized using the iterative correction and eigenvalue 

decomposition (ICE) method (Imakaev et al., 2012). This algorithm is implemented in Hi-C Pro 

but is also part of the python package Cooler (Abdennur & Mirny, 2020). The BEDPE files were 

converted to cooler files, and then the matrix was balanced to allow for clearer visualization of 

the Hi-C data. When defining the compartment status of each chromosome of each cell line, 

these balanced cooler files were used as input. The cooler and Scikit-learn python package was 

used to perform eigenvalue decomposition on the matrices (Pedregosa et al., 2011). The 

compartment status assigned to each genomic bin in the dataset, done on a per-chromosome 

basis. The direction of the sign of the first principal component of these matrices is what defines 

a compartment region. When this sign switches value, a compartment switch has occurred 

(Fortin & Hansen, 2015). These files were then converted back to BED files, allowing for 

integration with downstream analyses, such as network annotation.  

 

3.4 Network metrics  

Network calculations, centrality metrics and community detection was done using iGraph and 

the cdlib python packages (Rossetti et al., 2019). iGraph has an extensive library of built-in 

functions and algorithms that can be used to do calculate common network and centrality 
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metrics. There are also built in community detection algorithms, such as the fast greedy 

algorithm in iGraph and the fuzzy NMI algorithms, both present in. In addition to this, the cdlib 

library was used to compare networks as this package offers fuzzy algorithmic implementations 

of common comparison methods like NMI.  

 

3.5 Visualization   

All network visualization were generated using iGraph with matplotlib as the plotting backend 

(Hunter, 2007). Heatmaps were made using cooler, the remainder of plots not depicting networks 

nor heatmaps were made with matplotlib or the Seaborn python package (Waskom et al., 2014).   

 

3.6 Code availability  

All code written for and used in this project is available at: 

https://github.com/Gabrielstav/mastercode  
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4. Results  

4.1 Global network characterization   

 
The Hi-C to network pipeline was used to process raw Hi-C data from five cell lines to obtain 

Hi-C interactions networks. The pipeline ran in parallel for all cell lines, processing data across a 

wide range of resolutions. MCF-7 and MCF-10A cell lines were processed at resolutions 50kb, 

80kb, 120kb, 250kb, 500kb and 1Mb for intrachromosomal data. Another run was done for 

intrachromosomal data for the breast tissue cell lines, where the Hi-C matrices were normalized 

using iterative correction (ICE) matrices as an output from Hi-C Pro before finding significant 

interactions. The other three cell lines, IMR-90, HUVEC and HA-c (referred to as gsm2824367), 

were run at 120kb, 250kb and 1Mb for intrachromosomal interactions. Interchromosomal data 

was processed for all cell lines by the pipeline, at a 1Mb resolution. As the pipeline runs, the 

interactions counts are drastically reduced after multiple testing by NCHG and correcting for 

multiple testing by FDR, resulting in a decrease of interactions to around 2-5% of the original 

size of the network. The remaining bins are thus deemed statistically significant and are not 

associated with an interaction frequency.  The output of the pipeline was then used to generate 

networks, yielding in total 38 networks representing Hi-C data. All networks analyzed in this 

work are intrachromosomal networks – only containing edges from nodes on the same 

chromosome. All networks analyzed in this work are intrachromosomal networks, where all 

nodes within a network have the same resolution.  

 

These intrachromosomal networks range in size, increasing drastically in number of nodes for 

high resolutions. High resolution MCF-10A and MCF-7 networks not normalized by iterative 

correction before running the pipeline form smaller networks compared to the other cell lines at 

higher resolutions. The network size of the different datasets converges as resolution lowers – 

being the most similar at 1Mb resolution (see figure 11). As the resolution of Hi-C data halves 

(e.g., from 1Mb to 500kb) the number of bins doubles, the resulting increase in network size with 

higher resolution is thus to be expected.  
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Figure 11: Relationship between resolution and network size (number of nodes). All solid lines represent raw data, 
while the dashed lines represent data corrected for bias by iterative correction matrix balancing before running the 
pipeline proper. The network size increases when resolution increases. The normalized MCF-10A and MCF-7 data 
is closer to the IMR-90, HUVEC and HA-c (gsm2824367) cell lines in respect to node size. MCF-10A and MCF-7 
networks not generated from normalized data show a much lower network size than their counterpart. The spread in 
size increases with resolution, converging on similar values at 1Mb. Ignoring the raw MCF-10A and MCF-7 
networks at high resolutions the general trend is the same for all cell lines and interaction counts increases slowly 
from 1Mb to 250kb resolution.  

 
 

Similarly, the number of interactions (edges) per network across resolutions was determined. For 

higher resolutions, the MCF-7 and MCF-10A iteratively corrected (ICE) and raw data diverge. 

The ICE normalized data is more like the HUVEC, IMR-90 and GSM (HA-c) datasets for higher 

resolution data (120 kb). These patterns can be seen in Figure 12. At lower resolution (250kb – 

1Mb) the interactions counts are similar for the raw and normalized MCF-10A and MCF-7 

datasets, while the other cell lines have a higher interaction count at lower resolutions. At high 

resolutions, the iterative corrected (ICE) MCF-10A and MCF-7 cell lines diverge from their 

counterparts becoming more like the other cell lines (at 120 kb).   
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Figure 12: Relationship between number of interactions (edges) in log10 scale and the resolution of networks. ICE 
balanced matrices from MCF-10A and MCF-7 are in dashed lines, while the solid lines denote data not normalized 
by iterative correction before running the pipeline. Again, the difference between ICE normalized data for MCF-
10A and MCF-7 is large for high resolution data but smaller for low resolutions (250kb - 1 Mb). IMR-90, HUVEC 
and HA-c (GSM) interaction counts are very similar across all resolutions examined, and higher than the breast 
tissue cell lines (MCF-7 and MCF-10A).  

 
Next the number of connected components per network was determined, where the networks are 

the most similar low resolutions, as seen in the figure below. A higher number of connected 

components in the networks at the same resolution means that the networks have less overall 

connectivity. Comparison across resolutions needs to take the size of the network into account, 

as a larger network will have more nodes and might thus have more connected components.  For 

1Mb resolution data, the HA-c (gsm) and HUVEC data has the least number of connected 

components, while the MCF-10 and MCF-7 has the greatest number of connected components. 

There is a large discrepancy between the MCF-10A, and MCF-7 cell lines for the data 

normalized by matrix balancing (ICE) before running the pipeline, versus the raw data at high 

resolutions. 
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Figure 13: Number of connected components in networks across resolutions. Dashes lines represents the matrix 
balanced data for MCF-10A (yellow) and MCF-7 (red). Solid lines cell lines whose data was not normalized before 
running the pipeline. There is a clear divergence between the normalized data and the raw data for low resolutions. 
As resolution decreases so does the variance in the number of connected components between networks.  

 

From these results the higher resolution data seems to be more prone to bias and is much more 

computationally expensive to analyze. All subsequent analyses were thus carried out on 1 Mb 

networks, containing intrachromosomal Hi-C interactions. 
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4.2 Centrality metrics     

To determine if there were systemic differences in centrality between the 1Mb networks, 

centrality analysis was carried out on each cell line. The degree distribution seen in Figure 14 

represents unique degree frequencies per network.   

 

 
 

 
 

Figure 14: Degree distribution of all cell lines at 1Mb resolution, each data point in the scatter plot (top) is colored 
by cell line and represents each unique degree value for that cell line. There are no large-scale differences in degree 
distributions between cell lines (line plot, bottom). MCF-7 and MCF-10A do however have a larger frequency of 
low degree nodes compared to other cell lines. The highest degree nodes are all in HA-c (gsm), HUVEC and IMR-
90 cell lines. The plot approaches a power-law curve, indicating a scale-free network.  
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There are no overall differences found between networks for in terms of degree. MCF-10A and 

MCF-7 has the highest frequency of low degree nodes and lowest frequency of high degree 

nodes. The degree ranges from 1 to 85 across the networks, with the highest degree frequency 

being 0.32 from MCF-7 and the lowest frequency being 6.3e-4. This frequency represents one 

node for the IMR-90, HUVEC and HA-c (gsm) networks, which is the reason for the collection 

of nodes at that frequency count. The MCF-10A and MCF-7 cell lines have a smaller number of 

nodes at their minimum frequency count, and a larger proportion of nodes of degree equaling 

one. This indicates that the MCF-7 and MCF-10A networks are less defined by hub nodes and 

have more spokes, that is nodes with one connection, compared to the other cell lines. 

The distribution of the data remains similar between cell lines, and is power-law adjacent, which 

indicates that the networks are scale-free networks.  

 

Next the closeness distribution of each network was determined and compared, as seen in Figure 

15 below. The distribution of closeness scores is similar between networks on larger the whole-

networks scale, as is the case with Degree.  
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Figure 15: Distribution of normalized closeness for all cell lines at 1Mb resolution. The distribution is similar (line 
plot, bottom) for all networks, with MCF-10A and MCF-7 cell lines having slightly more nodes are higher 
frequencies (magenta and cyan lines). Each data point in the scatterplot (top) is colored by cell line and represents 
a unique closeness value for that cell line. The four frequencies at closeness equaling 1.0 are the hub nodes found in 
chromosome 20, which is one connected component with five nodes in all networks but the HA-c (gsm) network. 
This results in the upwards trend in the slopes, not being reflective of the actual distribution of the closeness values 
across networks.  

 

 

 

Lastly the distribution of betweenness values was found for each network, yielding very similar 

distributions between networks from differing cell lines, as indicated by Figure 16 below.  



 47 

 
 

 
 

 
 
Figure 16: Betweenness distribution for all cell lines at 1Mb resolution. The overall distribution is the same for all 
networks as seen with the line plot (bottom), with MCF-7 and MCF-10A having slightly smaller betweenness values 
than the other cell lines. Each data point in the scatter plot (top) is colored by cell line and represents a unique 
betweenness value found in that cell line network.  

 
As seen in the figures above, the overall centrality distributions for the networks do not differ by 

much. To determine if the centrality metrics calculated correlate at large scale – calculated on the 

whole networks – correlations plots were made, as seen in Figure 17 below. There was no 
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correlation between closeness and betweenness nor for closeness versus degree. Comparing 

degree and betweenness gave a different correlation, ranging from 0.43 in MCF-7 to 0.71 in 

MCF-10A. Nodes having a high degree are more likely to occupy a larger number of shortest 

paths between other nodes, explaining why two metrics correlates. This is not the case for 

closeness versus betweenness and degree, nodes in all networks with high degrees and 

betweenness values (hub and bottleneck nodes) do not have closeness values above 0.6.  
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Figure 17: Correlation plots between centrality metrics for all networks at 1Mb resolution. No correlation between 
betweenness and closeness (top) nor closeness and degree (middle) were found. Degree and betweenness (bottom) 
do correlate, meaning that high degree nodes are more likely to also have high betweenness. High degree nodes 
have closeness values peaking around 0.4 – 0.6, while the nodes with the highest closeness have low degrees.  

 
Lastly the Jaccard similarity between chromosomes for all networks was calculated. Here the set 

are the nodes and the similarity calculated is the proportion of nodes with the same genomic 

coordinates for each chromosome. Each node in the network spans a genomic region, and each 

chromosome is a collection of sub-graphs of the larger intra-chromosomal network from each 

cell line. The chromosomes were matched between cell lines, and all nodes were aligned in terms 

of genomic position and were compared between networks on a per-chromosome basis. The 

average proportion of nodes for each network overlapping – that is, being present in all networks 

– is thus the Jaccard score. This is a similarity score between networks as seen in Figure 18 

below, identifying the proportion of nodes present across all networks.  
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Figure 18: Jaccard similarities between all cell lines at 1Mb resolution, showing the Jaccard score ranging from 
0.0 to 1.0, showing the average proportion of nodes at the same genomic location between all networks. Error bars 
show 95% confidence interval. This is an overall metric for comparing the node locations from different cell lines, 
enabled by the fact that each node is the exact same size and has a genomic location.  

 

4.3 MCF-10A and MCF-7 comparison  

 
After comparing global network metrics, MCF-10A and MCF-7 networks were selected for 

further analyses. The proportion of overlapping nodes was determined again and can be seen in 

Figure 19 on the next page. The overall similarity between MCF-10A and MCF-7 does not 

indicate large differences in terms of node overlap compared to the node overlap similarities 

found between all networks.  
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Figure 19:  Jaccard similarity between nodes in the MCF-10A and MCF-7 networks on a per chromosome basis. 
Each node has the same size – 1Mb – and the networks are aligned per node to determine the overlap. The most 
dissimilar chromosome in terms of node overlap is the small chromosome 20, follow by chromosome X, 10 and 11.   

 
Next the node positioning on the genome was plotted as ideograms, to show the distributions of 

nodes across the chromosomes, seen in Figures 20 and 21 on the next pages.  
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Figure 20: Ideogram of node position of the intrachromosomal 1Mb network of MCF-10A.  The colored areas of the 
chromosome denote the cytogenic banding pattern. The white regions are Giemsa negative, light gray to black 
regions denotes Giemsa positive regions, where black is the highest staining density. Red regions are centromeres. 
Nodes are found in both gene poor (Giemsa negative) and gene dense (Giemsa positive) regions. 
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Figure 21: Ideogram of node position of the intrachromosomal 1Mb network of MCF-7.  The colored areas of the 
chromosome denote the cytogenic banding pattern. The white regions are Giemsa negative, light gray to black 
regions denotes Giemsa positive regions, where black is the highest staining density. Red regions are centromeres. 
Nodes are found in both gene poor (Giemsa negative) and gene dense (Giemsa positive) regions.  

 
 
 

 



 54 

For further centrality analysis on the MCF-10A and MCF-7 networks, it is important to isolate 

the largest connected components (LCC), such that the results are not skewed due to the 

disconnected nature of the intrachromosomal graphs. The size of the LCC for each network was 

calculated, as well as the LCC proportion of total network size, for each chromosome. The size 

of the LCC is quite similar between the MCF-7 and MCF-10A networks seen in Figure 22. 

 

 
 

 
 
Figure 22: Size of largest connected component (top) and proportion of nodes in the largest connected component 
(bottom) for chromosomes found in the MCF-10A and MCF-7 networks.  



 55 

4.3.1 Degree Centrality    

After isolating LCCs for each graph in MCF-10 and MCF-7, the centrality metrics was 

compared. The top 100 ranked nodes in terms of degree were found in both cell lines, and plotted 

on a chromosome specific level, while also comparing node overlap as seen in Figure 23.  

 
Figure 23: Overlap of top 100 hub nodes (nodes with highest degree) in MCF-7 and MCF-10A cell lines. Non-
overlapping nodes are in the majority. Overlap is determined by a nodes genomic coordinate, resulting in 
chromosome 9, 6, 2 and 1 having the largest overlap in hub nodes. Chromosomes 5, 8, 1 and 9 have the highest 
amount of non-overlapping nodes.  

 
Chromosome 6 and chromosome 9 were then compared between MCF-10A and MCF-7, where 

the nodes are colored by degree in their LCC networks. These networks represent the 

chromosomes with the highest amount of overlapping hub nodes. The same analysis was done 

for the least similar chromosomes in terms of hub node overlap – chromosome 1 and 

chromosome 5. These findings are represented as networks in the subsequent four figures (Figure 

24 – 27).  
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Figure 24: Largest connected component plot of chromosome 6 from MCF-10A and MCF-7. The top 5 nodes hub 
nodes for each cell line are highlighted in the legend along with their genomic positions. Both networks have many 
low degree nodes connecting to a few hub nodes, these hub nodes are largely conserved. The MCF-7 network has a 
rearrangement in its structure – there are fewer interactions between domains, showing a clear division of 
chromatin structure into two domains separated by one bottleneck node. MCF-10A on the other hand is more 
interconnected with an additional region of hub nodes.   
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Figure 25: MCF-10A and MCF-7 LCC networks with top hub nodes in chromosome 9. These networks have very 
similar structures – and all the top hub nodes are conserved between cell lines. The hub nodes are in a single 
central position in both networks – showing a clear core-periphery structure for both networks.  
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Figure 26: MCF-10A and MCF-7 LCC networks with top hub nodes in chromosome 1. There is a shift in networks 
structure and hub nodes between MCF-10A to MCF-7: There are only two high degree nodes in the MCF-7 LCC, 
which are also present in MCF-10A. The 150 Mb nodes are not hub nodes, or not present at all, in the MCF-7 
network. The MCF-7 network has one hub region, whereas MCF-10A has two distinct regions of high degree nodes.  
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Figure 27: MCF-10A and MCF-7 LCC networks with top hub nodes in chromosome 5. The MCF-10A network is 
much larger than the MCF7 networks, where the MCF7 network has loss of interactions between hub regions – 
resulting the smaller LCC for chromosome 5 in MCF-7. Within this LCC several of hub nodes change but are in the 
chromosomal region as the hub nodes of the corresponding region in MCF-10A.  

 
Overall, there are large differences in network structure and degree centrality between MCF-10A 

and MCF-7 for several chromosomes. Treating MCF-10A as a baseline or reference network the 

MCF-7 networks show less connectivity between hub regions and differences in top hub nodes. 

This feature chromosome specific, as some chromosome networks retain a very similar topology 

– as seen in chromosome 5 with its core-periphery structure.  

 
 
4.3.2 Betweenness centrality   

The betweenness centrality was calculated for each LCC on each chromosome for both MCF-

10A and MCF-7 networks. This was done to determine the overlap of bottleneck nodes between 

networks. The top 100 betweenness centrality nodes were found for each network and the 

overlap proportion was calculated, as seen in Figure 28. Chromosome 6 had the higher 

proportion of overlap in bottleneck nodes, while chromosome 2 had the highest absolute amount 

followed closely by chromosome 1. These closeness networks are compared between cell lines 

on the proceeding pages (Figures 28 – 30).  
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Figure 28: Node overlap for betweenness in LCC top 100 bottleneck nodes for MCF-10 and MCF-7. This pattern of 
bottleneck node overlap is similar to the hub node overlap for chromosome 6 and chromosome 5. Most nodes with a 
high betweenness score are found in networks with a larger connected component – chromosome 1, 2 and 6.  
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Figure 29: Betweenness centrality network plot for LCC in chromosome 1 between MCF-10A and MCF-7. The LCC 
networks have overall similar structures, but loss of interactions occurs in MCF-7, with less bifurcating paths 
between nodes in general. The top bottleneck nodes are different between the networks.  
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Figure 30: LCC Betweenness network plot for chromosome 6 between MCF-10A and MCF-7. The bottleneck nodes 
are a result of the different topology seen in MCF-7, where one node connected two domains. This pattern is not 
seen in MCF-10A, where several paths through multiple bottleneck nodes exists between the different domains of the 
network.   
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4.3.3 Closeness Centrality   

A per chromosome analysis of closeness centrality was done similarly to betweenness and 

degree centralities. The top 100 highest closeness nodes for each network and their overlap are 

seen in Figure 31. High closeness nodes have a different overall overlap pattern than the one 

seen in the betweenness and degree centralities, where chromosomes 1 and 5 had the most hub 

and bottleneck node overlap. In terms of closeness, the largest overlaps are at chromosomes 1, 9 

and 15. Chromosome 15 in both MCF-10A and MCF-7 has a small LCC. Chromosome 1 and 8 

was compared as they contain larger overlaps and non-overlapping regions while having a larger 

LCC.  

 
Figure 31: Closeness overlap in top 100 ranked nodes for closeness between MCF-10A and MCF-7. There are four 
distinct chromosomes, chromosomes 1, 8, 9, and 15, which all contain a higher proportion of the overlapping 
closeness nodes, indicating that these chromosomes are more similar in terms of closeness.  

 
Closeness ranked networks were generated and visualized and are summarized in figures below 
in Figure 32 and Figure 33. Chromosome 1 and chromosome 8 was compared between the MCF-
10A and MCF-7 cell lines, and the closeness nodes with the highest values are in the legends.  
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Figure 32: Closeness centrality LCC networks for chromosome 1 in MCF-10A and MCF-7 cell lines. There is no 
overlap in the top closeness (central) nodes. MCF-7 has lost the central region of interactions between close nodes 
– reflecting a change in interaction patterns between the networks.  
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Figure 33: Closeness network for chromosome 8 in MCF-10A and MCF-7 networks. There is only one direct 
overlap in the top hub nodes – but the overall region of highest closeness is the same. The network structures are 
quite different, as the MCF-7 LCC is organized into a core-periphery network with two central regions of high 
closeness.  MCF-10A on the other hand has a less distinct core-periphery organization with fewer spokes (low 
degree nodes).  
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4.3.4 Community detection in MCF-10A & MCF-7 

After determining centralities of MCF-10A and MCF-7 cell lines, and examining networks for 

nodes with high centralities, the topology of the networks was explored by community detection. 

At the full genome level, the intrachromosomal MCF-10A and MCF-7 networks have similar 

overall topologies as determined by fast greedy community detection. As seen in Figure 34.  

 

  
 
Figure 34: Full genome community detection using fast greedy for MCF-10A and MCF-7. The networks have a 
highly similar modularity: MCF-10A modularity = 0.909 and MCF-7 modularity = 0.914. On full genome level 
there are no systematic differences. 

 
 
To determine communities and their differences on a chromosomal level, each network was split 

into separate chromosomes, and the communities was determined for each chromosomal network 

with the fast greedy algorithm. The number of communities are highly similar for each 

chromosome, except for chromosome 8 which has a much higher community count in MCF-10A 

compared to MCF-7.   
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Figure 35: Number of communities found by the fast greedy algorithm for MCF-10A and MCF-7 intrachromosomal 
networks (top), and the average community size for each chromosome in MCF-10A and MCF-7 networks (bottom). 
The number of communities between networks are similar for most chromosomes – the largest deviation is found in 
chromosome 8.  The average community size has large deviation between networks for chromosomes 5, 8, 17 while 
the average community size is more similar between other chromosomes. There is a slight decrease in community 
size as network size decreases due to chromosome length.  

 
To compare communities with networks of varying community size and different node locations, 

the NMI fuzzy metric was used to compare communities across networks on a chromosome 
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specific level, seen in Figure 36. The NMI score ranges from 0.0 to 1.0 and increases for small 

chromosomes, except for chromosome 17 and 20. The larger chromosomes (chr1-15) have a 

more dissimilar community structure compared to the small chromosomes, with some 

exceptions.  

 
 
Figure 36: NMI of communities per chromosome for MCF-10A and MCF-7 networks. Communities are first 
detected by fast greedy modularization, then each community is compared per chromosome. MCF-10A is treated as 
the reference the MCF-7 communities are compared to. A higher score means the community structure is likely 
more similar between the networks, as the NMI in this case is a metric of how much information is gained about the 
community structure of MCF-7 from knowing the community structure in MCF-10A.  

Chromosome 1 is the largest chromosome and is found to be the most dissimilar between 

MCF10-A and MCF-7. These communities for chromosome 1 between cell lines are seen in 

Figure 37.  
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Figure 37: Chromosome 1 with fast greedy community structure, 8 communities in MCF-7 and 6 in MCF-10A. 
There are two connected components in each cell line, but their structure differs as well as the community 
assignments. These community structures were determined to be the most different by the NMI metric.  

 

Due to the nested structure of communities and the nature of the intrachromosomal networks, 

some communities within connected components might not be detected. Calculating NMI once 

more but for each chromosome with LCC only yielded highly similar result for networks with 

fewer connected components. For networks with many connected components, the metric 

changes drastically when isolating the LCC before calculating NMI.  

Figure 38 shows an example of the LCC isolation, in chromosome 14 for MCF-10A and MCF-7, 

which was determined to be the most similar chromosomes in terms of community structure by 

the NMI metric.  
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Figure 38: MCF-10A and MCF-7 chromosome 14 community detection by fast greedy. This chromosome was the 
most similar regarding NMI of community structure between MCF-10A (left) and MCF7 (right). Each component is 
assigned to a separate community (top left, bottom left). When isolating the largest connected component from the 
whole network (purple, top left and bottom left) and determining communities for this largest connected component 
(top right and bottom right), several smaller communities are detected.  

 
Isolation of the LCC from chromosome 14 in MCF-10A and MCF-7 to detect was done and 

compared with NMI once more. This changed the NMI score from 0.81 to 0.14, indicating that 

the relationship between community similarity is highly dependent on the number of LCC 

present in the networks being compared. The same was done for chromosome 1, the most 

dissimilar chromosome the according to the NMI metric, the score was unchanged (0.9). 
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Chromosome 1 has two connected components, further indicating that connected component 

numbers influence the NMI score significantly. The analysis was done again, but only for the 

LCCs of MCF10-A and MCF-7.  

 

 
Figure 39: NMI of communities on the LCC in each chromosome for MCF-10A and MCF-7 networks. 
Communities are detected by fast greedy modularization, then each LCC on each chromosome is compared. MCF-
10A is treated as the reference the MCF-7 communities are compared to. A higher score means the community 
structure in LCCs is more similar between the datasets. NMI in this case measures how much information is gained 
about the community structure of the LCC in each chromosome on MCF-7 from knowing the community structure 
of the corresponding LCC per chromosome in MCF-10A. 

 
When selecting the LCC on each chromosome the NMI scores change more for chromosomes 

with different numbers of LCCs and for chromosomes with many smaller LCCs. From this 

analysis chromosomes 16, 18, 19 and 22 have the most similar community structures when 

compared by NMI. For the full chromosome comparison this was not the case, in this analysis 

chromosomes 14 and 15 were the most similar.  
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4.3.5 Chromosomal compartments in MCF-10A and MCF-7 

The final part of the network analysis and comparison between MCF-10A and MCF-7 was 

compartment calling by ICE (iterative correction and eigenvalue decomposition). Compartments 

were called at 1Mb resolution using the balanced matrix files for each chromosome (for each cell 

line). Ideograms were generated, where the resulting compartments are overlaid on the 

chromosomes and nodes are positioned below the chromosome.  

 

 
 

Figure 40: Compartment status and node positioning (gray blocks) for MCF-7. Compartment A is colored red and 
compartment B is colored blue. Compartment A correlates with higher gene density and euchromatin, while 
compartment B correlates with heterochromatin and lower gene density.  
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Figure 41: Compartment status and node positioning (gray blocks) for MCF-7. Compartment A is colored red and 
compartment B is colored blue. Compartment A correlates with higher gene density and euchromatin, while 
compartment B correlates with heterochromatin and lower gene density.  

 

The MCF-10A and MCF-7 networks were thus annotated with this compartment data, as each 

eigenvalue sign switch correlates with compartment switching, and these compartments might 

change between cell lines.  

The proportion of nodes in the full genome intrachromosomal networks switching compartments 

between MCF-10A to MCF-7 was determined. Here, MCF-10A is treated as a reference network 

and MCF-7 as the changed network. Nodes overlapping between the two networks are calculated 

per chromosome, and for each overlapping node the compartment state is compared (Figure 42).  
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Figure 42: Compartment switch from MCF-10A to MCF-7 for overlapping nodes. MCF-10A was determined as the 
reference network that MCF-7 was compared to. The Y axis is the total number of overlapping nodes for each 
chromosome between MCF-10A and MCF-7. Most nodes do not switch compartments (gray). The active nodes in 
the bar plot (red) are nodes that switch from compartment B (MCF-10A) to compartment A (MCF-7). The inactive 
nodes (blue) are nodes that switch from compartment A (MCF-10) to compartment B in MCF-7. There is in general 
a higher proportion of active compartment switching from MCF-10A to MCF-7.  

 
An extensive part of chromosome switch compartment states, and in general the MCF-7 cell line 
has more nodes in open compartments (A). Chromosome 1, 20 and 22 and deviations from this 
trend. Below are networks from MCF-10A and MCF-7 annotated with compartment status 
(Figure 43).  
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Figure 43: MCF-7 (left) and MCF-10A networks annotated with compartment status. Chromosome 1 (top) has more 
nodes in compartment B in MCF-7 compared to MCF-10A. Chromosome 9 (bottom) has the largest number of 
nodes switching compartments from MCF-10A to MCF-7.  
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5. Discussion 
 
This project has involved two main parts, the first of which involved development of pipeline 

that processes raw Hi-C data to networks and the exploration of these networks. The pipeline 

works across a range of resolutions and runs automatically to generate networks from this data. 

The Hi-C to network pipeline allows for analyses of deeper complexities than what has been 

carried out in this work. Networks of any resolutions can be generated, annotated, filtered upon, 

and combined with a few function calls. This allows for annotation not just of compartments – 

but any omics data type such as promoter capture Hi-C, ChIP-Seq of histone proteins and gene 

names and location. In this regard the pipeline is a powerful framework that can be used to 

expand upon the analyses done in this work.  

 

The second part of the project involved selecting specific Hi-C networks generated by the 

pipeline and exploring their properties using network approaches. MCF-10A and MCF-7 was 

compared in terms of centrality metrics, community structure and compartment status. It is 

however challenging to draw specific conclusions from these analyses – as they show statistical 

trends in the networks not easily linked to the underlying genome state from low-resolution Hi-C 

data alone. It was observed that there are no meaningful differences in centrality metrics on a 

genome-wide level for intrachromosomal networks, but this difference is greatest when the 

networks (MCF-10A and MCF-7) are compared on a chromosome-to-chromosome basis. The 

resolution of the data analyzed in this study is low, yielding very small networks from the small 

chromosomes (chromosomes 16 – 22). This means that for many chromosomes the sample size 

is low and thus might be less informative in terms of chromatin structure comparison across 

networks. In addition to the size limitation, the nodes of 1Mb often contain many genes which 

are much smaller than the nodes themselves. Since the nodes are created without calling TADs 

from the same HI-C datasets, they can overlap many genomic features and cut through TADs. 

Genes within these TADs are again even smaller, and the much larger bins network metric (i.e., 

degree) might not correlate with the underlying genes expression status. This problem could be 

mitigated with lower resolution data, TAD calling and annotation of the data with chromatin 

marks or promoter-capture HI-C.  
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Degree centralities were determined by analyzing the LCCs for each chromosome.  

Degree centrality showed similar patterns across chromosomes between MCF-10A and MCF-7, 

as seen in Figure 24 and Figure 25. While other chromosomes have differing hub patterns across 

the cell lines - for instance in chromosome 1 in Figure 26 the MCF-7 network does not have hub 

nodes at ≈ 150 Mb as the MCF-10A cell line does. Chromosomes 9, 6,1 and 2 are the most 

similar in terms of hub node overlap. Chromosomes 6, 2 and 1 are again the most similar in 

terms of overlapping betweenness nodes - which can be expected as betweenness correlated with 

degree but not with closeness.  

 

Networks show rearrangement of structure - in Figure 24 for instance - there is loss of hub nodes 

in MCF-7, creating two separate domains separated by one node (chr6: 61 - 62 Mb). This node 

was later determined to be part of the centromere of chromosome 6 for hg19 - meaning that the 

pipeline processing failed to remove all centromeric regions. This was found to be the case for 

target nodes as the pipeline step fails to remove nodes receiving interactions, and thus the nodes 

in centromeric regions are artifacts of errors in the processing pipeline.  

This might be the case for other high closeness nodes as well - undermining the network 

structure comparisons between cell lines. The wrongful inclusion of centromeres means the 

MCF-7 network in Figure 30 is in fact two separate LCCs, as this is the only node connecting the 

two network modules. This means that the resulting network structures would be even more 

different if that node was deleted in both networks. This specific processing error leads to a large 

effect on the analysis of the network as the node included leads to two LCCs when there should 

only be one in the MCF-7 LCC of chromosome 6. Despite this error the structures analyzed 

across networks shows that MCF-7 has distinct structures varying from MCF-10A - there are 

different hub nodes, bottleneck nodes and nodes with high closeness between networks. Some 

regions are more conserved than others, which might be chromatin structures important for the 

normal functioning of the cell. The regions that are the most different in MCF-7 might play 

regulatory roles and be more involved in specialized cellular functions and differentiation. This 

is speculation without verification of other omics datasets - but demonstrates an important point: 

There are specific structural differences between the normal breast cell line MCF-10A and the 

cancer tissue breast cell line (MCF-7).  
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Closeness centrality did not correlate with betweenness nor degree on a genome level for any 

cell line. Chromosomes 15, 9 and 1 are the most similar chromosomes in terms of hub nodes. 

The most similar chromosome in terms of closeness was chromosome 1 - which has no overlap 

in top hub nodes between the cell lines, reflecting the structural change of the chromosome 1 

LCC in MCF-7. Chromosome 8 has a large difference in the network topology - showing a much 

higher closeness value for top nodes.  

 

Community detection was done next - to analyze the topological similarities and differences 

between the networks. The number of communities did not differ much between each 

chromosome between MCF-10A and MCF-7, except for chromosome 8. This chromosome has a 

very different topology in the two cell lines - which might indicate large-scale chromatin 

structural changes associated with the transformation of naive breast cancer cells to malignant 

cells. The average community size per chromosome was then found, where chromosomes 5, 8 

and 17 had the largest differences between cell lines.  

Due to the nature of the networks, classical metrics like rand index cannot be used without 

deleting nodes because of the often-large differences in network sizes and node locations. 

Deleting nodes thus risking removing nodes important for the network structure and the removal 

of many nodes. A better approach could be to re-run the processing pipeline and include 

singleton nodes in the network, to ensure that the network sizes are the same.  

Using cdlibs fuzzy implementation of the NMI metric, the comparison of node similarities could 

still be carried out despite these features of the networks. This was first done on each 

chromosome, without selecting the LCC. most chromosomes were quite dissimilar and had low 

NMI values, while smaller chromosomes were more similar. This might reflect that smaller 

chromosomes have fewer nodes and generally are less connected, having more components. This 

analysis was redone on the LCC of each network, giving similar results for chromosomes with 

larger connected components and a decrease in similarities for chromosomes with many small 

components. The chromosomal NMI approach (Figure 36) gave the most similar community 

structures of chromosomes 6, 14, 15, 16 and 6. The LCC NMI approach (Figure 39) resulted in 

chromosomes 19, 18, 16, 6 being the most similar, while chromosomes 14 and 15 were not 

similar at all when comparing the LCC. The overall most similar chromosomes were thus 

chromosome 19, chromosome 16 and chromosome 6.  
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Lastly the chromosomal compartments for MCF-10A and MCF-7 were determined by ICE 

(iterative correction and eigenvalue decomposition). The matrices were balanced, and then 

decomposed, the eigenvalues switch sign (+ / -) along the chromosome and this correlates with 

compartment switching. The corresponding compartment plots are pictured in Figures 40 and 41. 

There is a big difference in the granularity of compartments called between chromosomes. In 

chromosome 14 for instance, the first chromosome arm is determined as compartment A while in 

fact this region is associated with heterochromatin formation and gene silencing. Similar patterns 

are seen in chromosome 15, where the short arm is determined as compartment A. This indicates 

from error in compartment calling process or the matrix balancing analyses. Nonetheless, there 

were compartment differences found between cell lines, as seen in Figure 42. Chromosome 9 had 

the largest switch to active state (A), while chromosome 1 had the largest switch to inactive state 

(B).  

 

Most nodes are not associated with regions that switch compartments. Of the nodes that are, 

most switch from inactive in MCF-10A to active in MCF-7. Networks annotated with 

compartment status were visualized (Figure 43) for chromosome 1 and chromosome 9.  

MCF-7 chromosome 9 has more hub nodes in the center of the network, all belonging to 

compartment A, while in MCF-10A the structure is similar but with fewer nodes. It is difficult to 

say if these approaches lead to conclusive results without validation from external compartment 

status datasets - or annotation with genomic data that correlates strongly with compartment state 

such as histone modification data. Additionally, compartments A and B are simplifications of the 

actual chromatin interaction patterns and were called at low resolution (1Mb). The results might 

have different were a lower resolution dataset used. Hi-C data might suffer from biases and the 

datasets were not normalized for the differences between them, i.e., the Hi-C to network pipeline 

does not compare the raw datasets in the significance steps to find significantly different 

interactions. This might be an issue, as the different node sets and structures might be a feature 

of the data and not the cancer state. Replicates and further comparison between datasets would 

be needed to further analyze this. To increase the robustness of the pipeline, such methods could 

be introducing, as well as TAD calling directly on the data while processing it such that nodes 

are informed by TAD positioning directly. This might lead to nodes representing the chromatin 
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structure more accurately but would introduce additional complexity and normalization for equal 

node sizes across networks.   

 

The lack of validation and annotation with external data is a strong limiting factor. Nodes have a 

location but are not analyzed for genomic feature on that location, this is also a limiting factor for 

this analysis. Many chromatin network analyses are done with annotation of several addition 

datasets. Hub nodes have been found to not only occupy more central positions, which was seen 

in the MCF-10A and MCF-7 networks but tend to be more important genomic feature such as 

super enhancers (Sandhu et al., 2012). In ChIA-PET and promoter capture Hi-C chromatin 

networks, around 40% of nodes are in the LCC, as seen in (Sandhu et al., 2012) and (Lace et al., 

2020). These ChIA-Pet CINs in MCF-7 – and the K562 cancer cell line – were found to form 

scale-free networks (Sandhu et al., 2012). The degree distribution of MCF-10A and MCF-7, 

analyzed in this body of work, approached a power-law curve, indicating that the networks are 

indeed scale free. In another annotated CIN, it was found that the MCF-7 cell line had a different 

network structure for oncogenes (specifically EMP2) compared to other cell lines (Thibodeau et 

al., 2017).  
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6. Conclusion & Future perspectives  
 
In this project a novel pipeline was developed to process raw Hi-C data to chromatin networks. 

The Hi-C to network pipeline handles datasets ranging in resolution from 50kb to 1Mb, 

processing both inter- and intrachromosomal data to significant chromatin interactions. The 

networks generated from this pipeline were analyzed at whole-genome scales. No significant 

difference between centrality metrics were found between the scale-free like Hi-C networks at 

this scale. The healthy breast cell line MCF-10A was then compared to the breast cancer cell line 

MCF-7. Centrality metrics were compared at a chromosome level between these cell lines, 

finding that hub and betweenness nodes vary to large extent between cell lines. High closeness 

centrality was found to be less conserved between cell lines than degree and betweenness. 

Communities were then detected by the fast greedy algorithm to compare topologies between 

cell lines. A normalized mutual information algorithm was used to compare the community 

structure on chromosome and largest connected component level. Communities between MCF-

10A and MCF-7 differ at both levels, with the largest difference in community structure being at 

the largest chromosomes. Lastly, the compartment status of the Hi-C data that generated the 

networks was determined. Most nodes that switch compartments from MCF-10A to MCF-7 are 

active switches.  

 

The limitations to this project regarding the network analysis are that networks were not 

annotated with external datasets to validate the findings. Furthermore, no replicates were used to 

rule out the possibility that differences observed are not biases inherent in the data but actual 

representative differences. Furthermore, cell lines were compared at a low resolution which led 

to small network sizes compared to higher resolution data. The Hi-C to network processing 

pipeline does not consider differences between the datasets being compared, it processes each 

cell line separately. Last is the limitation of all Hi-C data - networks represent population 

average chromatin structures, and do not capture the heterogeneity within cell populations.   

 

Further analyses might include correlations between compartment states and centrality values. 

Networks with higher resolution could be used to call TADs and be annotated with gene 

accession numbers. Nodes with a high centrality or differing centrality score across cell lines 
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could then be used to associate the network metrics directly to genomic features found in breast 

cancer. Furthermore, communities in cell lines could be mapped back to the linear genome and 

compared with structural variations involved in breast cancer. Additionally, more sophisticated, 

and specialized approaches used to determine differential community structures could be 

implemented – such as the Alpaca algorithm. Weighted networks could be created automatically 

during the processing pipeline, since raw Hi-C data has interaction counts. This would open 

many new network analysis possibilities. 

 

Modeling data as networks represents not only the data itself but its relation to the system it is 

part of. Network analysis approaches in Hi-C networks thus allow for a detailed representation of 

the complex biological system they represent. Annotation of networks allows for a multi-omics 

approach to integrate several data types into one network. Representing networks across multiple 

scales can be achieved in one network – nodes can represent any relationship between the data. 

With the increased power of in silico machine learning technologies enabled by higher quality 

data, paired with network theory approaches, new discoveries about the 3D structure of 

chromatin and its relation to the epigenetic landscape are bound to be made.  
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