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Abstract

The non-anticipating stochastic derivative represents the integrand in the best
L2-approximation for random variables by Itô non-anticipating integrals with re-
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1 Introduction

In many physical stochastic phenomena interesting for applications the randomness
is generated by a large number of “small” independent factors which appear in their
corresponding “place” and “time”. Having this in mind we consider some elements
of the calculus with respect to stochastic measures with indepenent values on general
space-time products.

In Section 2 we introduce the integrator: the stochastic measure µ = µ(dθdt),
(θ, t) ∈ Θ × T, on the space-time product Θ × T with values in L2(Ω). Here Θ is a
general separable measurable space and T is a time interval. In the applications Θ can
be specified ad-hoc. The measure µ considered has independent values (not necessarily
homogeneous) and the distribution of its values follows the infinitely divisible law (3.1).
Details about this law are given in Section 3. At pleasure the stochastic measure
considered can be regarded as a generalization to the field case (here on space-time
products) of the measures generated by additive processes (cf. e.g. [38]), thus on the
time line, with values in L2(Ω). In fact to retrieve this case it is enough to consider Θ
consisting only of a single point.

In line with classical stochastic calculus we treat stochastic functions as limit of
simple functions in the standard L2(Θ × T × Ω). Explicit simple approximations are
studied both for general stochastic function and for non-anticipating (i.e. adapted to
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the corresponding filtration) ones. See Theorem 2.1 and Theorem 2.2. The partitions
of Θ× T, see (2.7)-(2.10), play a central role in our approach.

In this paper our major interest is stochastic differentiation for non-anticipating
calculus. The non-anticipating derivative Dξ = Dξ(θ, t), (θ, t) ∈ Θ × T (cf. (2.15))
is well defined for all random variables ξ ∈ L2(Ω) and represents the integrand in
the non-anticipating integral which gives the best aproximation to ξ in L2(Ω) by non-
anticipating stochastic integrals. Namely, it is

ξ = ξ0 +
∫∫

Θ×T
Dξ(θ, t)µ(dθdt),

where ξ0 ∈ L2(Ω) is such that Dξ0 ≡ 0 and∥∥∥ξ − ∫∫
Θ×T

Dξ(θ, t)µ(dθdt)
∥∥∥ = min

ϕ

∥∥∥ξ − ∫∫
Θ×T

ϕ(θ, t)µ(dθdt)
∥∥∥.

See [11]. In this paper we provide some explicit formula for the derivative Dξ with
respect to stochastic measures with independent values. See Section 4, Theorem 4.1.

Some of the results here presented will be framed in a wider context in a compre-
hensive survey paper on integration and differentiation for random fields, cf. [14].

2 Framework and preliminary results

The stochastic measure. Let (Ω,A, P ) be a complete probability space. In the line
of the results and the terminology of [11], we deal with the stochastic measure with
independent values µ = µ(∆), ∆ ⊆ Θ× T, of the type

(2.1) Eµ(∆) = 0, Eµ(∆)2 = M(∆).

The values µ(∆) are real random variables in the standard (complex) space L2(Ω) of
random variables ξ = ξ(ω), ω ∈ Ω, with finite norm ‖ξ‖ :=

(
E|ξ|2

)1/2. The variance
indicated above is represented by the σ-finite measure M = M(∆), ∆ ⊆ Θ×T, on the
separable measurable product space Θ× T. Here, Θ is a general separable measurable
space T ⊆ R is a time interval.

Event σ-algebras on Ω. The randomness is represented by events related to the sets
in Θ× T. We write

(2.2) A∆, ∆ ⊆ Θ× T,

for the σ-algebras of the events generated by the stochastic measure µ over the indicated
sets ∆. To be more precise, A∆ is generated by the values µ(∆′) for all ∆′ ⊆ ∆ and all
the events of P -null measure. In the sequel, the main results concern random variables
ξ ∈ L2(Ω) measurable with respect to the σ-algebra AΘ×T. For convenience of notation
we assume that this σ-algebra represents all the events in Ω, i.e. A = AΘ×T. Again for
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convenience in notation we fix T = (0, T ]. Consistently the flow of events in the course
of time is represented by the increasing σ-algebras

(2.3) At := AΘ×(0,t], 0 < t ≤ T.

In this paper we deal with stochastic functions ϕ = ϕ(θ, t), (θ, t) ∈ Θ×T, having values
ϕ(θ, t) := ϕ(θ, t, ω), ω ∈ Ω, in L2(Ω) and belonging to the standard (complex) space
L2(Θ× T× Ω) with norm

‖ϕ‖L2 :=
( ∫∫

Θ×T
‖ϕ(θ, t)‖2M(dθdt)

)1/2
.

In line with the common terminology we say that a stochastic function ϕ = ϕ(θ, t),
(θ, t) ∈ θ×T is non-anticipating with respect to At, t ∈ T, if for every (θ, t) the values

ϕ(θ, t) := ϕ(θ, t, ω), ω ∈ Ω,

are measurable with respect to At.
To be able to grasp all the non-anticipating stochastic functions ϕ ∈ L2(Θ×T×Ω)

as integrands with respect to the stochastic measure µ, the flow of σ-algebras (2.3) is
required to be left-continuous, i.e. for all t it is

(2.4) At = lim
s→t−

As :=
∨
s<t

As

Accordingly it is required that

(2.5) M(Θ× {t}) = 0, t ∈ T.

From now on it is assumed that the variance measure M satisfies the above conti-
nuity condition. Actually, the filtration (2.3) is always right-continuous, i.e. At =
limu→t+ Au :=

⋂
u>t Au. See e.g. [9], [11]. With respect to filtrations generated by

processes with independent increments, we refer to e.g. [24], see also e.g. [26]. However
we do not exploit the right-continuity of the filtration in this paper.

In the arguments forthcoming we are also going to consider the σ-algebras

(2.6) A]∆[, ]∆[ := Θ× T \∆ (∆ ⊆ Θ× T),

i.e. A]∆[ is the σ-algebra generated by all the events in the complement of ∆.

Partitions of Θ×T and corresponding σ-algebras. The measurable sets ∆ ⊆ Θ×T
are here treated as generated by a certain semi-ring which we refer to as the partitions
of Θ× T. The elements of this semi-ring have the basic form

∆ = B × (s, u], B ⊆ Θ, (s, u] ⊆ T,

and are arranged in series of sets. The sets

(2.7) ∆nk = Bnk × (snk, unk], k = 1, ..., κn,
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of each nth-series (n = 1, 2, ...) are disjoint (always meant pairwise disjoint) and repre-
sent the partitions of some increasing sets Θn × T :=

⊔κn
k=1 ∆nk, n = 1, 2, ..., yielding

Θ× T = lim
n→∞

Θn × T :=
∞⋃

n=1

Θn × T.

We can consider (and refer to) each nth-series as the “partitions of Θ×T corresponding
to the nth-level of refinement”. For n = 1, 2, ..., the partitions elements are decreasing
so that any set of the nth-series can be represented as finite (disjoint) union of some
appropriate elements of the (n+ 1)th-series and for n→∞ it is

(2.8) max
k=1,...,κn

(unk − snk) −→ 0, for max
k=1,...,κn

M(∆nk) −→ 0.

All the elements of all the nth-series of partitions of Θ × T constitute a semi-ring. It
is assumed that their finite unions constitute the ring which generates the σ-algebra of
all the measurable sets in Θ×T. Here we have applied the standard approximation of
∆ ⊆ Θ × T: M(∆) < ∞, by the finite union ∆(n) =

⊔
k ∆nk of some elements of the

nth-series of partitions of Θ× T, namely,

(2.9) ∆ = lim
n→∞

∆(n), i.e. M
(
(∆ \∆(n)) t (∆(n) \∆

)
−→ 0, n→∞.

Note that for any group of disjoint sets ∆j , j = 1, ...,m with M(∆j) <∞, the approx-
imation above can be given by corresponding sequences of disjoint ∆(n)

j , j = 1, ...,m
(n = 1, 2, ...). We will refer to the finite unions of elements of the same series of the
partitions as simple sets in Θ× T.

We would like to point the attention to the following fact which will be used in
the sequel. Let (θ, t) be fixed and let us consider the elements ∆nk = Bnk × (snk, unk]
belonging to the partitions of Θ× T which contain (θ, t). Then it is

(2.10) lim
n→∞

A]∆nk[ = AΘ×T and lim
n→∞

Asnk
= At.

Simple approximations. In this paper we are dealing with the stochastic functions
ϕ = ϕ(θ, t), (θ, t) ∈ Θ×T, having values ϕ(θ, t) ∈ L2(Ω) and belonging to the standard
(complex) space L2(Θ × T × Ω). Our approach will be to consider the stochastic
functions as limits of simple functions of the form

(2.11) ϕ =
∑

k

ϕk1∆k
with ϕk :=

1
M(∆k)

∫∫
∆k

ϕ(θ, t)M(dθdt),

where the sum is finite and the sets ∆k involved are disjoint. A fundamental role is
played by the simple functions of the form

(2.12) ϕ =
∑

k

ϕk1∆k
with ϕk =

1
M(∆k)

E
( ∫∫

∆k

ϕ(θ, t)M(dθdt)
∣∣A]∆k[

)
,
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and of the form

(2.13) ϕ =
∑

k

ϕk1∆k
with ϕk =

1
M(∆k)

E
( ∫∫

∆k

ϕ(θ, t)M(dθdt)
∣∣Ask

)
,

for ∆k = Bk × (sk, uk]. These last ones are non-anticipating stochastic functions.

We denote the subspace of all the non-anticipating stochastic functions in L2(Θ×
T× Ω) by

LI
2(Θ× T× Ω) ⊆ L2(Θ× T× Ω).

Theorem 2.1 Any stochastic function ϕ ∈ LI
2(Θ × T × Ω) can be represented as the

limit
ϕ = lim

n→∞
ϕ(n), i.e. ‖ϕ− ϕ(n)‖L2 −→ 0, n→∞,

of simple functions of the type (2.13):

ϕ(n) =
κn∑

k=1

ϕnk1∆nk
with ϕnk =

1
M(∆nk)

E
( ∫∫

∆nk

ϕ(θ, t)M(dθdt)
∣∣Asnk

)
,

Here the sets ∆nk are the elements of the nth-series of the partitions of Θ× T.

Proof. First let us show that any function ϕ ∈ L2(Θ × T × Ω) is the limit of simple
functions of the form (2.11):

ϕ(n) =
κn∑

k=1

ϕnk1∆nk
with ϕnk :=

1
M(∆nk)

∫∫
∆nk

ϕ(θ, t)M(dθdt),

where the sets ∆nk are the elements of the nth-series of the partitions of Θ× T. Being
ϕ ∈ L2(Θ×T×Ω), it can be represented as the limit ϕ = limn→∞ ψ(n) in L2(Θ×T×Ω)
of some simple functions

ψ(n)(θ, t) =
κn∑

k=1

ψnk1∆nk
(θ, t), (θ, t) ∈ Θ× T,

where, for every k, the element ψnk ∈ L2(Ω) is the value taken on the element ∆nk of
the nth-series of the given partitions of Θ× T. Note that

‖ϕnk − ψnk‖2 =
∥∥∥ 1
M(∆nk)

∫∫
∆nk

[
ϕ(θ, t)− ψ(n)(θ, t)

]
M(dθdt)

∥∥∥2

≤ 1
M(∆nk)

∫∫
∆nk

∥∥ϕ(θ, t)− ψ(n)(θ, t)
∥∥2
M(dθdt).

Hence we have

‖ϕ(n) − ψ(n)‖2
L2
≤

κn∑
k=1

∫∫
∆nk

‖ϕ(θ, t)− ψ(n)(θ, t)‖2M(dθdt)

= ‖ϕ− ψ(n)‖2
L2
.
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Thus it is
‖ϕ− ϕ(n)‖L2 ≤ 2‖ϕ− ψ(n)‖L2 −→ 0, n→∞.

Now let us consider the non-anticipating functions ϕ ∈ LI
2(Θ×T×Ω) such that for

some level of refinement n of the partitions of Θ× T we have that the values

ϕ(θ, t) ∈ L2(Ω), (θ, t) ∈ ∆nk = Bnk × (snk, unk],

are Asnk
-measurable. For these kind of stochastic functions we remark that the simple

approximations of type (2.11) and (2.13) considered on the partitions of Θ × T are
identical, for n big enough.

Finally we show that any non-anticipating stochastic function ϕ ∈ LI
2(Θ × T × Ω)

admits approximations via non-anticipating functions of the type described above. To
this aim we recall that, for any (θ, t) and all the sets ∆nk = Bnk × (snk, unk] of the
partitions of Θ×T such that ∆nk 3 (θ, t), we have that limn→∞Asnk

= At - cf. (2.10).
Then we also have

ϕ(θ, t) = E
(
ϕ(θ, t)

∣∣At

)
= lim

n→∞
E

(
ϕ(θ, t)

∣∣Asnk

)
in L2(Ω) and we can also see that ϕ = limn→∞ φ(n) in L2(Θ× T× Ω) with

φ(n)(θ, t) :=
κn∑

k=1

E
(
ϕ(θ, t)

∣∣Asnk

)
1∆nk

(θ, t), (θ, t) ∈ Θ× T.

The proof can be finished by observing that, for any n, the simple approximations of
type (2.11) and (2.13) of the function φ(n) are identical and it is∫∫

∆nk

φ(n)(θ, t)M(dθ, t) =
∫∫

∆nk

E
[
ϕ(θ, t)|Asnk

]
M(dθdt)

= E
[ ∫∫

∆nk

ϕ(θ, t)M(dθ, t)|Asnk

]
.

By this the proof is complete.

Proposition 2.2 Any stochastic function ϕ ∈ L2(Θ×T×Ω) can be represented as the
limit

ϕ = lim
n→∞

ϕ(n)

in L2(Θ× T× Ω) of simple functions of the type (2.12):

ϕ(n) =
κn∑

k=1

ϕnk1∆nk
with ϕnk =

1
M(∆nk)

E
( ∫∫

∆nk

ϕ(θ, t)M(dθdt)
∣∣A]∆nk[

)
1∆nk

.

Here the sets ∆nk are the elements of the nth-series of the partitions of Θ× T.
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Proof. We proceed with arguments similar to the ones in the proof of Theorem 2.1.
Let us recall that for any (θ, t) and all the sets ∆nk of the partitions of Θ×T such that
∆nk 3 (θ, t), we have that limn→∞A]∆nk[ = AΘ×T - cf. (2.10). Thus it is

ϕ(θ, t) = E
(
ϕ(θ, t)|AΘ×T

)
= lim

n→∞
E

(
ϕ(θ, t)|A]∆nk[

)
in L2(Ω). Moreover we can see that ϕ = limn→∞ φ(n) in L2(Θ× T× Ω) with

φ(n)(θ, t) :=
κn∑

k=1

E
(
ϕ(θ, t)

∣∣A]∆nk[

)
1∆nk

(θ, t), (θ, t) ∈ Θ× T.

For all the functions φ(n) we can see that their simple approximations of type (2.11)
and (2.12), for n big enough, are identical. We conclude the proof with arguments
similar to the ones for Theorem 2.1.

The Itô non-anticipating integral. Following the classical work [23], we can apply
stochastic integration on the space-time product Θ × T - cf. e.g. [11]. The Itô non-
anticipating integral

Iϕ :=
∫ ∫

Θ×T
ϕ(θ, t)µ(dθdt)

is well-defined for all ϕ ∈ LI
2(Θ× T× Ω), i.e. for all the non-anticipating functions in

L2(Θ×T×Ω). This stochastic integral is represented by the isometric linear operator
I:

LI
2(Θ× T× Ω) 3 ϕ =⇒ Iϕ ∈ L2(Ω),

and integration can be carried out via the limit (2.13) as

(2.14) Iϕ := lim
n→∞

κn∑
k=1

ϕnkµ(∆nk)

with
ϕnk =

1
M(∆nk)

E
( ∫∫

∆nk

ϕ(θ, t)M(dθdt)
∣∣Asnk

)
,

by means of the simple approximations of type (2.13) related to the partitions of Θ×T.

The non-anticipating derivative. We refer to the adjoint linear operator D = I∗:

L2(Ω) 3 ξ =⇒ Dξ ∈ LI
2(Θ× T× Ω)

as the non-anticipating derivative Dξ = Dξ(θ, t), (θ, t) ∈ Θ×T. According to [11] (see
also [10] and [13]), the non-anticipating differentiation can be done through the limit

(2.15) Dξ = lim
n→∞

κn∑
k=1

1
M(∆nk)

E
(
ξµ(∆nk)|Asnk

)
1∆nk

,
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in L2(Θ×T×Ω). Here the sets ∆nk are the elements of the nth-series of the partitions
of Θ× T.

For all the elements ξ ∈ L2(Ω) the non-anticipating derivative provides the inte-
grand in the best approximation ξ̂ in L2(Ω) to ξ via Itô integrals. Namely,

(2.16) ξ̂ =
∫∫

Θ×T
Dξ(θ, t)µ(dθdt)

and it is
‖ξ − ξ̂‖ = min

ϕ∈LI
2(Θ×T×Ω)

∥∥ξ − Iϕ
∥∥.

Equivalently we can regard the non-anticipating derivative as an explicit way of char-
acterizing the integrand in the (unique) integral representation of ξ:

ξ = ξ0 + ξ̂

where ξ0 ∈ L2(Ω) is orthogonal to all stochastic integrals. Note that ξ0 can be char-
acterized by Dξ0 ≡ 0. See [10], [11]. With respect to integral representations, a part
from the fundamental work [24], we can refer for example to the seminal papers [4], [5],
[8], [19], [29], [34].

The problem to determine the integrand in the best stochastic integral approxima-
tion ξ̂ to ξ is of general interest in applications. In mathematical finance, for example, it
is related to problems of quadratic optimal hedging which are widely studied in litera-
ture. See e.g. [16], [17], [37], [39] and references therein. With respect to applications to
finance, the non-anticipating derivative represents the minimal variance hedging strat-
egy for general market models considered under the risk-neutral probability measure,
see [2], [10] for more details.

However the non-anticipating derivative is not easy to be computed and more ex-
plicit fomulae for its computation are searched. In this paper we provide some explicit
formulae for the non-anticipating derivative (2.15) in the framework we have intro-
duced. Our results are in the same line of interest as a series of results which are
mostly related to Malliavin calculus for Lévy processes, see e.g. [2], [12], [15], [30]. For
the specific case of Brownian motion we can refer to e.g. [1], [6], [32], [33], [35], [41]
and to [36] for some results on a space-time Brownian field.

We would like to stress that we are following a rather different approach than what
was taken in the existing literature which allows us to obtain more general results.

3 The deFinetti-Kolmogorov law

B. deFinetti and A.N. Kolmogorov were the first pioneers in the study of stochastic
processes with independent increments and infinitely divisible distributions. See [7]
and [28]. The focus was on processes with random variables in L2(Ω). Particular
relevance for our discussion is their explicit expression of the characteristic function of
the increments of such processes: the deFinetti-Kolmogorov formula. The generalization
of this formula to all stochastic processes with stationary independent increments is first
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due to the works of P. Lévy and A.N. Khintchine: the Lévy-Khintchine formula. See
[31] and [27]. We can refer to the classical works of [18], [22] and [40], and also to the
recent monographies of [3] and [38] for detailed reading and references. In the line of the
results above we have to mention a version for random measures on some topological
space studied in [25]. Here below we detail our version of the deFinetti-Kolmogorov law
in the context of the general random measures with independent values (2.1) we are
dealing with. In order to be coherent in our exposition we present the result for random
measures on the space-time product Θ×T equipped with a measure M satisfying (2.5).
This formula will be thoroughly exploited in the sequel.

Theorem 3.1 Let µ = µ(∆), ∆ ⊆ Θ × T, be a stochastic measure with independent
values of the type (2.1)-(2.5), then it is

(3.1) logEeiuµ(∆) =
∫∫

∆

[
− u2

2
σ2(θ, t) +

∫
R0

(
eiux − 1− iux

)
L(dx, θ, t)

]
M(dθdt), u ∈ R,

where σ2 = σ2(θ, t), (θ, t) ∈ Θ × T, is a non-negative function and L = L(dx, θ, t),
x ∈ R0, is, for every (θ, t) ∈ Θ×T, a Borel σ-finite measure on R0 := R\{0} such that

σ2(θ, t) +
∫

R0

x2L(dx, θ, t) ≡ 1.

Proof. Recall that the product σ-algebra on Θ×T is separable and that the partitions
of Θ× T generate this σ-algebra. Then it is immediate to see that for any simple set:

∆ =
⊔
k

∆nk, where max
k

M(∆nk) −→ 0, n→∞,

it is
µ(∆) =

∑
k

µ(∆nk)

which shows that µ(∆) is a sum of independent and uniformly infinitely small random
variables µ(∆nk); namely,

max
k

E
[
µ(∆nk)2

]
−→ 0, n→∞.

Accordingly for any ∆ = Θ× T the corresponding value can be represented as sum

µ(∆) =
κn∑

k=1

µ(∆ ∩∆nk) + µ
(
∆ \

κn⊔
k=1

∆nk

)
of independent and uniformly infinitely small random variables - cf. (2.8)-(2.9). Hence
for any fixed ∆ ⊆ Θ × T, the random variable µ(∆) ∈ L2(Ω) obeys the deFinetti-
Kolmogorov law

logEeiuµ(∆) = −u
2

2
σ2

∆ +
∫

R0

(
eiux − 1− iux

)
L∆(dx), u ∈ R,
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where the non-negative constant σ2
∆ and the integrator L∆ = L∆(dx), x ∈ R0, satisfy

the condition
σ2

∆ +
∫

R0

x2L∆(dx) = M(∆).

Moreover σ2
∆ and L∆ depend on ∆ ⊆ Θ×T as additive set-functions, being the values

µ(∆) corresponding to disjoint ∆ ⊆ Θ×T independent random variables. The condition
above shows that σ2

∆ ≤M(∆), thus the additive set-function σ2
∆, ∆ ⊆ Θ×T, is actually

a measure with representation

σ2
∆ =

∫
∆
σ2(θ, t)M(dθdt)

via the non-negative function σ2 = σ2(θ, t), (θ, t) ∈ Θ × T, integrable with respect to
M . Following similar arguments we also obtain the representation

L∆(B) =
∫

∆
L̃(B, θ, t)M(dθdt), B ⊆ R0,

via the non-negative stochastic function L̃(B, θ, t), (θ, t) ∈ Θ×T, integrable with respect
to M for every B ⊆ R0. Note that, for every (θ, t), L̃(B, θ, t) are additive set-functions
on the Borel sets B ⊆ R0. For any B ⊆ R0, the integrand L̃(B, θ, t), (θ, t) ∈ Θ × T,
can be modified on a set of M -null measure in a way which gives the lifting upto a new
equivalent integrand L(B, θ, t), (θ, t) ∈ Θ × T which is, for every (θ, t), a measure on
the Borel sets B ⊆ R0. This is similar to the lifting of conditional probabilities - see
e.g. [20], [21]. By this the proof is complete.

4 An explicit differentiation formula for the non-anticipating
derivative.

Let µ = µ(∆), ∆ ⊆ Θ × T, be a general stochastic measure with independent values
characterized by the probability law given by (3.1). We consider the random variables
ξ ∈ L2(Ω) generated by the values of µ; namely, the random variables we are dealing
with are measurable with respect to AT - cf. (2.3).

In particular in this section we focus on the random variables ξ which can be treated
as functions of a finite number of values of the stochastic measure involved. Any such
random variable admits representation as a function

(4.1) ξ = F (ξ1, ..., ξm)

of the values ξj = µ(Λj), j = 1, ...,m, on some appropriately chosen disjoint sets Λj ,
j = 1, ...,m, in Θ × T. Of course, the representation (4.1) is not unique. So, for any
finite number of any particular group of disjoint sets

Λj ⊆ Θ× T with M(Λj) <∞, j = 1, ...,m,
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we consider ξ = F of type (4.1) for the functions

F = F (ξ1, ..., ξm), (ξ1, ..., ξm) ∈ Rm,

which we assume to be C1(Rm).
In the line with the first continuous derivatives ∂F

∂ξj
, j = 1, ...,m, we write

∂x
j F :=

{
∂

∂ξj
F (..., ξj , ...), x 6= 0

1
x

[
F (..., ξj + x, ...)− F (..., ξj , ...)

]
, x = 0.

According to the characterization of µ by the deFinetti-Kolmogorov law with the pa-
rameters σ2 and L, see (3.1), we define

(4.2) Dξ(θ, t) :=
m∑

j=1

[
∂0

jF σ
2(θ, t) +

∫
R0

∂x
j F x

2 · L(dx, θ, t)
]
1Λj (θ, t), (θ, t) ∈ Θ× T,

for ξ = F of the above type. We assume that the above stochastic functions

Dξ = Dξ(θ, t), (θ, t) ∈ Θ× T,

satisfy the condition

(4.3) |||Dξ|||2L2
:=

m∑
j=1

∫∫
Λj

[
‖∂0

jF‖2 σ2(θ, t) +
∫

R0

‖∂x
j F‖2 x2 L(dx, θ, t)

]
M(dθdt) <∞.

Then we have that Dξ ∈ L2(Θ× T× Ω). In fact

(4.4) ‖Dξ‖L2 ≤ |||Dξ|||L2 .

In the scheme (4.1)-(4.4) we obtain the following result.

Theorem 4.1 For the random variables ξ of type (4.1) for which (4.3) holds, the non-
anticipating derivative Dξ = Dξ(θ, t), (θ, t) ∈ Θ × T, defined via the limit (2.15), can
be obtained by the formula

(4.5) Dξ(θ, t) = E
(
Dξ(θ, t)|At

)
, (θ, t) ∈ θ × T.

Proof. At first let us consider random variables ξ of type (4.1) given by the functions
F of form

(4.6) F (ξ1, ..., ξm) = ei
Pm

j=1 ujξj (uj ∈ R, j = 1, ...,m).

In this case the formula (4.2) gives

Dξ(θ, t) = ξ ·
m∑

j=1

[
iujσ

2(θ, t) +
∫

R0

(
eiujx − 1

)
xL(dx, θ, t)

]
1Λj (θ, t), (θ, t) ∈ Θ× T.
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Having in mind (2.15) it is convenient to start considering ξj = µ(Λj), j = 1, ...,m (see
(4.1)) on disjoint simple sets Λj ; we recall that each Λj as a finite union of elements of
the partitions of Θ × T - cf. (2.7). For n big enough (n → ∞, see (2.8)) any element
∆ of the nth-series of partitions either belongs to some Λj or it is disjoint with all of
them. Then we note that if ∆ is disjoint from all Λj , j = 1, ...,m, we have

E
(
ξ µ(∆)|A]∆[

)
= ξ Eµ(∆) = 0,

- cf. (2.6). Otherwise, if ∆ ⊆ Λj for some j, it is

E
(
ξ µ(∆)|A]∆[

)
= e−iujµ(∆) ξ E

(
µ(∆) eiujµ(∆)

)
with

E
(
µ(∆) eiujµ(∆)

)
= Eeiujµ(∆) ·

∫∫
∆

[
iujσ

2(θ, t) +
∫

R0

(
eiujx − 1

)
xL(dx, θ, t)

]
M(dθdt),

- cf. (3.1). So, for ∆ ⊆ Λj , we can see that

E
(
ξµ(∆)|A]∆[

)
=e−iujµ(∆)Eeiujµ(∆)

∫∫
∆

Dξ(θ, t)M(dθdt)

=E
( ∫∫

∆
Dξ(θ, t)M(dθdt)

∣∣A]∆[

)
.

Then according to Proposition 2.2 the stochastic function Dξ admits representation as
the limit

(4.7) Dξ = lim
n→∞

∑
∆

1
M(∆)

E
(
ξµ(∆)|A]∆[

)
1∆,

in L2(Θ × T × Ω) (the sum
∑

∆ refers to all the elements of the same nth-series of
partitions of Θ × T: we have neglected writing the indexes not playing crucial role in
the argument). From (4.7) by considering the sub-sequence of n = 1, 2, ... for which the
limits (4.7) and (2.15) converge in L2(Ω) for almost all (θ, t) ∈ Θ× T, we have

Dξ(θ, t) = lim
n→∞

1
M(∆)

E
(
ξµ(∆)|A]∆[

)
, (θ, t) ∈ ∆,

and
Dξ(θ, t) = lim

n→∞

1
M(∆)

E
(
ξµ(∆)|As

)
, (θ, t) ∈ ∆,

(for ∆ = B × (s, u], ∆ 3 (θ, t), elements of the nth-series of partitions of Θ × T).
Accordingly, for (θ, t) fixed and via all the corresponding sets ∆ such that ∆ 3 (θ, t),
we obtain

E
(
Dξ(θ, t)|At−

)
= lim

n→∞

1
M(∆)

E
(
ξµ(∆)|At−

)
= E

(
Dξ(θ, t)|At−

)
12



for t− < t. Let t− → t, then the above relationship between Dξ and Dξ implies that

Dξ(θ, t) = lim
t−→t

E
(
Dξ(θ, t)|At−

)
= lim

t−→t
E

(
Dξ(θ, t)|At−

)
= E

(
Dξ(θ, t)|At

)
,

since Dξ(θ, t) ∈ L2(Ω) is an At-measurable random variable and limt−→t At− = At, see
(2.4). Thus the formula (4.5) for all the random variables ξ = F with the functions
(4.6) of the values ξj = µ(Λj), j = 1, ...,m, on disjoint simple sets.

Actually the formula holds for Λj , j = 1, ...,m, as general disjoint sets in Θ × T.
Indeed let us take the approximations (2.9) into account: Λj = limn→∞ Λ(n)

j , j =

1, ...,m, by disjoint simple sets Λ(n)
j which can be chosen in such a way that the limits

µ(Λj) = lim
n→∞

µ(Λj) (j = 1, ...,m)

in L2(Ω) also hold for almost all ω ∈ Ω. Let ξ and ξ(n), n = 1, 2, ..., be the random
variables corresponing to the funtion (4.6) of the values ξj = µ(∆j) and ξ(n)

j = µ(∆(n)
j ),

n = 1, 2, ..., j = 1, ...,m. Then ξ = limn→∞ ξ(n) in L2(Ω) and also

Dξ = lim
n→∞

Dξ(n) and Dξ = lim
n→∞

Dξ(n)

in L2(Θ×T×Ω). Being Dξ(θ, t) = E
(
Dξ(θ, t)|At

)
proved, then the limits above imply

Dξ(θ, t) = E
(
Dξ(θ, t)|At

)
,

for almost all (θ, t) ∈ Θ×T, namely (4.5) holds for Dξ as an element of LI
2(Θ×T×Ω) ⊆

L2(Θ× T× Ω).
Clearly, for all random variables ξ = F of type (4.1) where F is a linear combination

of these functions (4.6) above, the corresponing limit (4.7) holds as well, resulting
formula (4.5).

Then the formula (4.5) can be extended on all the random variables ξ = F with
functions F characterized in the scheme (4.1)-(4.4). This can be done by standard
approximation arguments applied to the scalar functions

(4.8) ∂ξ :=
m∑

j=1

∂x
j F 1Λj

on the product space R × Λ × Ω where Λ :=
⊔m

j=1 Λj , with the finite product-type
measure

L0(dx, θ, t)×M(dθdt)× P (dω), (x, θ, t, ω) ∈ R× Λ× Ω.

The component L0 involved is the finite measure on R equal to σ2(θ, t) at the atom
x = 0 and x2 L(dx, θ, t) on R0. The functions

∂ξ = ∂ξ(x, θ, t, ω), (x, θ, t, ω) ∈ R× Λ× Ω,

are elements of the standard space L2(R× Λ× Ω) with the norm

‖∂ξ‖L2 =
( ∫∫∫

R×Λ×Ω
|∂ξ|2L0(dx, θ, t)M(dθdt)P (dω)

)1/2
,

13



and we have ‖∂ξ‖L2 = |||Dξ|||L2 for

Dξ(θ, t, ω) =
∫

R
∂ξ(x, θ, t, ω)L0(dx, θ, t), (θ, t, ω) ∈ Λ× Ω.

See (4.2)-(4.4).
The key-point of the approximation argument which will be applied is that for the

random variable ξ = F and its approximating sequence ξ(n) = F (n), n = 1, 2, ..., the
convergences

(4.9) ‖ξ − ξ(n)‖ −→ 0, and ‖∂ξ − ∂ξ(n)‖L2 −→ 0, n→∞,

imply
Dξ = lim

n→∞
Dξ(n)

and, being the non-anticipating derivative continuous, ‖ξ − ξ(n)‖ → 0, n→∞, implies

Dξ = lim
n→∞

Dξ(n).

Both limits Dξ and Dξ are in L2(Θ×T×Ω). Note that we apply dominated point-wise
convergence with appropriate corresponding majorants to prove the convergences (4.9).

The approximation argument is here organized in three steps in which the corre-
sponding approximating sequences are given. To simplify the notation we present this
second part of the proof in the case m = 1 (j = 1), namely the random variables of
type (4.1) involve just the value ξ1 = µ(Λ1). Correspondingly, the above function (4.8)
is ∂ξ = ∂ξ(x, θ, t, ω) = ∂x

1F (ξ1(ω))1Λ1(θ, t), (x, θ, t, ω) ∈ R× Λ× Ω.
Set ξ1 = ξ(ω) ∈ R. If ξ = F of type (4.1) is such that F ∈ C∞0 (R), then we

can take the partial sums F (n) = Φn(F ), n = 1, 2, ..., of the Fourier series for F over
|ξ1| ≤ hn (for hn →∞, n→∞) as the approximating sequence ξ(n) = F (n), n = 1, 2, ....
Then the convergences (4.9) hold. In fact considering the Fourier coefficients, for n big
enough (n→∞), it is

∂x
1F

(n) := ∂x
1 Φn(F ) = Φn(∂x

1F ) (n = 1, 2, ...)

whatever x ∈ R be.
Next step is to consider ξ = F of type (4.1) with F ∈ C1

0 (R). Then the approxi-
mating sequence ξ(n) = F (n), n = 1, 2, ..., is given by the convolutions

F (n) := F ? δn =
∫

R
F (ξ1 − x1)δn(x1)dx1 ∈ C∞0 (R)

with δn ∈ C∞0 (R), n = 1, 2, ..., as the standard approximations to the delta-function.
Thanks to the fact that

∂x
1F

(n) := ∂x
1 (F ? δn) = (∂x

1F ) ? δn (n = 1, 2, ...),

we deduce that the convergences (4.9) hold.

14



Finally we can consider the general case ξ = F of type (4.1) with F ∈ C1(R). In this
case the approximating sequence ξ(n) = F (n), n = 1, 2, ..., is given by the truncations
F (n) = F · wn, where wn ∈ C1

0 (R), n = 1, 2, ..., are proper approximations to the unit.
Then the convergences (4.9) hold, thanks to

∂x
1F

(n) := ∂x
1 (Fwn) = (∂x

1F )wn + F (∂x
1wn) (n = 1, 2, ...).

By this we end the proof.

Example. Let us take µ as a Gaussian-Poisson mixture on

Θ× T =
⋃
x∈R

(
Θx × T

)
such that on Θ0×T the stochastic measure µ is a Gaussian stochastic measure and on
Θx × T, for each x 6= 0, it is a centered Poisson stochastic measure multiplied by the
scalar factor x. The measures µ on Θx × T, x ∈ R, considered are independent. Let
ξ = F be a random variable of type (4.1) as a C1(Rm) function of the values ξj = µ(Λj),
j = 1, ...,m, of the stochastic measure on the disjoint sets Λj ∈ Θ × T, j = 1, ...,m.
The formula (4.2) can be written as

Dξ =
m∑

j=1

[
∂0

jF 1Θ0×T +
∑
x 6=0

∂x
j F 1Θx×T

]
1Λj .

Remark. Note that in general formula (4.2) is not valid if ξ of form (4.1) is represented
as a function F = F (ξ1, ..., ξm) of values ξj = µ(Λj), j = 1, ...,m, on not disjoint sets.
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